WorldWideScience

Sample records for position sense error

  1. Effect of cooling on thixotropic position-sense error in human biceps muscle.

    Science.gov (United States)

    Sekihara, Chikara; Izumizaki, Masahiko; Yasuda, Tomohiro; Nakajima, Takayuki; Atsumi, Takashi; Homma, Ikuo

    2007-06-01

    Muscle temperature affects muscle thixotropy. However, it is unclear whether changes in muscle temperature affect thixotropic position-sense errors. We studied the effect of cooling on thixotropic position-sense errors induced by short-length muscle contraction (hold-short conditioning) in the biceps of 12 healthy men. After hold-short conditioning of the right biceps muscle in a cooled (5.0 degrees C) or control (36.5 degrees C) environment, subjects perceived greater extension of the conditioned forearm at 5.0 degrees C. The angle differences between the two forearms following hold-short conditioning of the right biceps muscle in normal or cooled conditions were significantly different (-3.335 +/- 1.680 degrees at 36.5 degrees C vs. -5.317 +/- 1.096 degrees at 5.0 degrees C; P=0.043). Induction of a tonic vibration reflex in the biceps muscle elicited involuntary forearm elevation, and the angular velocities of the elevation differed significantly between arms conditioned in normal and cooled environments (1.583 +/- 0.326 degrees /s at 36.5 degrees C vs. 3.100 +/- 0.555 degrees /s at 5.0 degrees C, P=0.0039). Thus, a cooled environment impairs a muscle's ability to provide positional information, potentially leading to poor muscle performance.

  2. Joint position sense error in people with neck pain: A systematic review.

    Science.gov (United States)

    de Vries, J; Ischebeck, B K; Voogt, L P; van der Geest, J N; Janssen, M; Frens, M A; Kleinrensink, G J

    2015-12-01

    Several studies in recent decades have examined the relationship between proprioceptive deficits and neck pain. However, there is no uniform conclusion on the relationship between the two. Clinically, proprioception is evaluated using the Joint Position Sense Error (JPSE), which reflects a person's ability to accurately return his head to a predefined target after a cervical movement. We focused to differentiate between JPSE in people with neck pain compared to healthy controls. Systematic review according to the PRISMA guidelines. Our data sources were Embase, Medline OvidSP, Web of Science, Cochrane Central, CINAHL and Pubmed Publisher. To be included, studies had to compare JPSE of the neck (O) in people with neck pain (P) with JPSE of the neck in healthy controls (C). Fourteen studies were included. Four studies reported that participants with traumatic neck pain had a significantly higher JPSE than healthy controls. Of the eight studies involving people with non-traumatic neck pain, four reported significant differences between the groups. The JPSE did not vary between neck-pain groups. Current literature shows the JPSE to be a relevant measure when it is used correctly. All studies which calculated the JPSE over at least six trials showed a significantly increased JPSE in the neck pain group. This strongly suggests that 'number of repetitions' is a major element in correctly performing the JPSE test. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Wavefront error sensing for LDR

    Science.gov (United States)

    Tubbs, Eldred F.; Glavich, T. A.

    1988-01-01

    Wavefront sensing is a significant aspect of the LDR control problem and requires attention at an early stage of the control system definition and design. A combination of a Hartmann test for wavefront slope measurement and an interference test for piston errors of the segments was examined and is presented as a point of departure for further discussion. The assumption is made that the wavefront sensor will be used for initial alignment and periodic alignment checks but that it will not be used during scientific observations. The Hartmann test and the interferometric test are briefly examined.

  4. Head and neck position sense.

    Science.gov (United States)

    Armstrong, Bridget; McNair, Peter; Taylor, Denise

    2008-01-01

    fails to be appropriately integrated in the CNS, errors in head position may occur, resulting in an inaccurate reference for HNPS, and conversely if neck proprioceptive information is inaccurate, then control of head position may be affected. The cerebellum and cortex also play a role in control of head position, providing feed-forward and modulatory influences depending on the task requirements. Position-matching tasks have been the most popular means of testing position sense in the cervical spine. These allow the appreciation of absolute, constant and variable errors in positioning and have been shown to be reliable. The results of such tests indicate that errors are relatively low (2-5 degrees). It is apparent that error is not consistently affected by age, a finding similar to studies undertaken in peripheral joints. Furthermore, the range of motion in which subjects are tested does not consistently affect accuracy in a predictable manner. However, it is evident that impairments in position sense are observed in individuals who have experienced whiplash-type injuries and individuals with chronic head and neck pain of non-traumatic origin (e.g. cervical spondylosis). While researchers advocate comprehensive retraining protocols, which include eye and neck motion targeting tasks and coordination exercises, as well as co-contraction exercises to reduce such impairments, some studies show that more general exercises and manipulation may be of benefit. Overall, there is limited information concerning the efficacy of treatment programmes.

  5. Position Error Covariance Matrix Validation and Correction

    Science.gov (United States)

    Frisbee, Joe, Jr.

    2016-01-01

    In order to calculate operationally accurate collision probabilities, the position error covariance matrices predicted at times of closest approach must be sufficiently accurate representations of the position uncertainties. This presentation will discuss why the Gaussian distribution is a reasonable expectation for the position uncertainty and how this assumed distribution type is used in the validation and correction of position error covariance matrices.

  6. Reward positivity: Reward prediction error or salience prediction error?

    Science.gov (United States)

    Heydari, Sepideh; Holroyd, Clay B

    2016-08-01

    The reward positivity is a component of the human ERP elicited by feedback stimuli in trial-and-error learning and guessing tasks. A prominent theory holds that the reward positivity reflects a reward prediction error signal that is sensitive to outcome valence, being larger for unexpected positive events relative to unexpected negative events (Holroyd & Coles, 2002). Although the theory has found substantial empirical support, most of these studies have utilized either monetary or performance feedback to test the hypothesis. However, in apparent contradiction to the theory, a recent study found that unexpected physical punishments also elicit the reward positivity (Talmi, Atkinson, & El-Deredy, 2013). The authors of this report argued that the reward positivity reflects a salience prediction error rather than a reward prediction error. To investigate this finding further, in the present study participants navigated a virtual T maze and received feedback on each trial under two conditions. In a reward condition, the feedback indicated that they would either receive a monetary reward or not and in a punishment condition the feedback indicated that they would receive a small shock or not. We found that the feedback stimuli elicited a typical reward positivity in the reward condition and an apparently delayed reward positivity in the punishment condition. Importantly, this signal was more positive to the stimuli that predicted the omission of a possible punishment relative to stimuli that predicted a forthcoming punishment, which is inconsistent with the salience hypothesis. © 2016 Society for Psychophysiological Research.

  7. Sources of Error in Satellite Navigation Positioning

    Directory of Open Access Journals (Sweden)

    Jacek Januszewski

    2017-09-01

    Full Text Available An uninterrupted information about the user’s position can be obtained generally from satellite navigation system (SNS. At the time of this writing (January 2017 currently two global SNSs, GPS and GLONASS, are fully operational, two next, also global, Galileo and BeiDou are under construction. In each SNS the accuracy of the user’s position is affected by the three main factors: accuracy of each satellite position, accuracy of pseudorange measurement and satellite geometry. The user’s position error is a function of both the pseudorange error called UERE (User Equivalent Range Error and user/satellite geometry expressed by right Dilution Of Precision (DOP coefficient. This error is decomposed into two types of errors: the signal in space ranging error called URE (User Range Error and the user equipment error UEE. The detailed analyses of URE, UEE, UERE and DOP coefficients, and the changes of DOP coefficients in different days are presented in this paper.

  8. Cryotherapy impairs knee joint position sense.

    Science.gov (United States)

    Oliveira, R; Ribeiro, F; Oliveira, J

    2010-03-01

    The effects of cryotherapy on joint position sense are not clearly established; however it is paramount to understand its impact on peripheral feedback to ascertain the safety of using ice therapy before resuming exercise on sports or rehabilitation settings. Thus, the aim of the present study was to determine the effects of cryotherapy, when applied over the quadriceps and over the knee joint, on knee position sense. This within-subjects repeated-measures study encompassed fifteen subjects. Knee position sense was measured by open kinetic chain technique and active positioning at baseline and after cryotherapy application. Knee angles were determined by computer analysis of the videotape images. Twenty-minute ice bag application was applied randomly, in two sessions 48 h apart, over the quadriceps and the knee joint. The main effect for cryotherapy application was significant (F (1.14)=7.7, p=0.015) indicating an increase in both absolute and relative angular errors after the application. There was no significant main effect for the location of cryotherapy application, indicating no differences between the application over the quadriceps and the knee joint. In conclusion, cryotherapy impairs knee joint position sense in normal knees. This deleterious effect is similar when cryotherapy is applied over the quadriceps or the knee joint. Georg Thieme Verlag KG Stuttgart.New York.

  9. Systematic changes in position sense accompany normal aging across adulthood.

    Science.gov (United States)

    Herter, Troy M; Scott, Stephen H; Dukelow, Sean P

    2014-03-25

    Development of clinical neurological assessments aimed at separating normal from abnormal capabilities requires a comprehensive understanding of how basic neurological functions change (or do not change) with increasing age across adulthood. In the case of proprioception, the research literature has failed to conclusively determine whether or not position sense in the upper limb deteriorates in elderly individuals. The present study was conducted a) to quantify whether upper limb position sense deteriorates with increasing age, and b) to generate a set of normative data that can be used for future comparisons with clinical populations. We examined position sense in 209 healthy males and females between the ages of 18 and 90 using a robotic arm position-matching task that is both objective and reliable. In this task, the robot moved an arm to one of nine positions and subjects attempted to mirror-match that position with the opposite limb. Measures of position sense were recorded by the robotic apparatus in hand-and joint-based coordinates, and linear regressions were used to quantify age-related changes and percentile boundaries of normal behaviour. For clinical comparisons, we also examined influences of sex (male versus female) and test-hand (dominant versus non-dominant) on all measures of position sense. Analyses of hand-based parameters identified several measures of position sense (Variability, Shift, Spatial Contraction, Absolute Error) with significant effects of age, sex, and test-hand. Joint-based parameters at the shoulder (Absolute Error) and elbow (Variability, Shift, Absolute Error) also exhibited significant effects of age and test-hand. The present study provides strong evidence that several measures of upper extremity position sense exhibit declines with age. Furthermore, this data provides a basis for quantifying when changes in position sense are related to normal aging or alternatively, pathology.

  10. Error Analysis of Determining Airplane Location by Global Positioning System

    OpenAIRE

    Hajiyev, Chingiz; Burat, Alper

    1999-01-01

    This paper studies the error analysis of determining airplane location by global positioning system (GPS) using statistical testing method. The Newton Rhapson method positions the airplane at the intersection point of four spheres. Absolute errors, relative errors and standard deviation have been calculated The results show that the positioning error of the airplane varies with the coordinates of GPS satellite and the airplane.

  11. A methodology for translating positional error into measures of attribute error, and combining the two error sources

    Science.gov (United States)

    Yohay Carmel; Curtis Flather; Denis Dean

    2006-01-01

    This paper summarizes our efforts to investigate the nature, behavior, and implications of positional error and attribute error in spatiotemporal datasets. Estimating the combined influence of these errors on map analysis has been hindered by the fact that these two error types are traditionally expressed in different units (distance units, and categorical units,...

  12. Influence of Ephemeris Error on GPS Single Point Positioning Accuracy

    Science.gov (United States)

    Lihua, Ma; Wang, Meng

    2013-09-01

    The Global Positioning System (GPS) user makes use of the navigation message transmitted from GPS satellites to achieve its location. Because the receiver uses the satellite's location in position calculations, an ephemeris error, a difference between the expected and actual orbital position of a GPS satellite, reduces user accuracy. The influence extent is decided by the precision of broadcast ephemeris from the control station upload. Simulation analysis with the Yuma almanac show that maximum positioning error exists in the case where the ephemeris error is along the line-of-sight (LOS) direction. Meanwhile, the error is dependent on the relationship between the observer and spatial constellation at some time period.

  13. Joint position sense and vibration sense: anatomical organisation and assessment.

    Science.gov (United States)

    Gilman, S

    2002-11-01

    Clinical examination of joint position sense and vibration sense can provide important information concerning specific cutaneous sensory receptors, peripheral nerves, dorsal roots, and central nervous system pathways and should be included as a regular component of the neurological examination. Although these sensory modalities share a spinal cord and brainstem pathway, they arise in different receptors and terminate in separate distributions within the thalamus and cerebral cortex. Consequently, both modalities should be tested as part of the neurological examination. Clinical testing of these modalities requires simultaneous stimulation of tactile receptors; hence this review will include information about the receptors and pathways responsible for tactile sensation.

  14. Wideband spectrum sensing order for cognitive radios with sensing errors and channel SNR probing uncertainty

    KAUST Repository

    Hamza, Doha R.

    2013-04-01

    A secondary user (SU) seeks to transmit by sequentially sensing statistically independent primary user (PU) channels. If a channel is sensed free, it is probed to estimate the signal-to-noise ratio between the SU transmitter-receiver pair over the channel. We jointly optimize the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order under imperfect synchronization between the PU and the SU. The sensing and probing times and the decision threshold are assumed to be the same for all channels. We maximize a utility function related to the SU throughput under the constraint that the collision probability with the PU is kept below a certain value and taking sensing errors into account. We illustrate the optimal policy and the variation of SU throughput with various system parameters. © 2012 IEEE.

  15. Wideband spectrum sensing order for cognitive radios with sensing errors and channel SNR probing uncertainty

    KAUST Repository

    Hamza, Doha R.; Aï ssa, Sonia

    2013-01-01

    A secondary user (SU) seeks to transmit by sequentially sensing statistically independent primary user (PU) channels. If a channel is sensed free, it is probed to estimate the signal-to-noise ratio between the SU transmitter-receiver pair over the channel. We jointly optimize the channel sensing time, the sensing decision threshold, the channel probing time, together with the channel sensing order under imperfect synchronization between the PU and the SU. The sensing and probing times and the decision threshold are assumed to be the same for all channels. We maximize a utility function related to the SU throughput under the constraint that the collision probability with the PU is kept below a certain value and taking sensing errors into account. We illustrate the optimal policy and the variation of SU throughput with various system parameters. © 2012 IEEE.

  16. Approaches to relativistic positioning around Earth and error estimations

    Science.gov (United States)

    Puchades, Neus; Sáez, Diego

    2016-01-01

    In the context of relativistic positioning, the coordinates of a given user may be calculated by using suitable information broadcast by a 4-tuple of satellites. Our 4-tuples belong to the Galileo constellation. Recently, we estimated the positioning errors due to uncertainties in the satellite world lines (U-errors). A distribution of U-errors was obtained, at various times, in a set of points covering a large region surrounding Earth. Here, the positioning errors associated to the simplifying assumption that photons move in Minkowski space-time (S-errors) are estimated and compared with the U-errors. Both errors have been calculated for the same points and times to make comparisons possible. For a certain realistic modeling of the world line uncertainties, the estimated S-errors have proved to be smaller than the U-errors, which shows that the approach based on the assumption that the Earth's gravitational field produces negligible effects on photons may be used in a large region surrounding Earth. The applicability of this approach - which simplifies numerical calculations - to positioning problems, and the usefulness of our S-error maps, are pointed out. A better approach, based on the assumption that photons move in the Schwarzschild space-time governed by an idealized Earth, is also analyzed. More accurate descriptions of photon propagation involving non symmetric space-time structures are not necessary for ordinary positioning and spacecraft navigation around Earth.

  17. Long-term neuromuscular training and ankle joint position sense.

    Science.gov (United States)

    Kynsburg, A; Pánics, G; Halasi, T

    2010-06-01

    Preventive effect of proprioceptive training is proven by decreasing injury incidence, but its proprioceptive mechanism is not. Major hypothesis: the training has a positive long-term effect on ankle joint position sense in athletes of a high-risk sport (handball). Ten elite-level female handball-players represented the intervention group (training-group), 10 healthy athletes of other sports formed the control-group. Proprioceptive training was incorporated into the regular training regimen of the training-group. Ankle joint position sense function was measured with the "slope-box" test, first described by Robbins et al. Testing was performed one day before the intervention and 20 months later. Mean absolute estimate errors were processed for statistical analysis. Proprioceptive sensory function improved regarding all four directions with a high significance (pneuromuscular training has improved ankle joint position sense function in the investigated athletes. This joint position sense improvement can be one of the explanations for injury rate reduction effect of neuromuscular training.

  18. A Nonlinear Multiparameters Temperature Error Modeling and Compensation of POS Applied in Airborne Remote Sensing System

    Directory of Open Access Journals (Sweden)

    Jianli Li

    2014-01-01

    Full Text Available The position and orientation system (POS is a key equipment for airborne remote sensing systems, which provides high-precision position, velocity, and attitude information for various imaging payloads. Temperature error is the main source that affects the precision of POS. Traditional temperature error model is single temperature parameter linear function, which is not sufficient for the higher accuracy requirement of POS. The traditional compensation method based on neural network faces great problem in the repeatability error under different temperature conditions. In order to improve the precision and generalization ability of the temperature error compensation for POS, a nonlinear multiparameters temperature error modeling and compensation method based on Bayesian regularization neural network was proposed. The temperature error of POS was analyzed and a nonlinear multiparameters model was established. Bayesian regularization method was used as the evaluation criterion, which further optimized the coefficients of the temperature error. The experimental results show that the proposed method can improve temperature environmental adaptability and precision. The developed POS had been successfully applied in airborne TSMFTIS remote sensing system for the first time, which improved the accuracy of the reconstructed spectrum by 47.99%.

  19. The role of positional errors while interpolating soil organic carbon contents using satellite imagery

    NARCIS (Netherlands)

    Samsonova, V.P.; Meshalkina, J.L.; Blagoveschensky, Y.N.; Yaroslavtsev, A.M.; Stoorvogel, J.J.

    2018-01-01

    Increasingly, soil surveys make use of a combination of legacy data, ancillary data and new field data. While combining the different sources of information, positional errors can play a large role. For example, the spatial discrepancy between remote sensing images and field data can depend on

  20. Aliasing errors in measurements of beam position and ellipticity

    International Nuclear Information System (INIS)

    Ekdahl, Carl

    2005-01-01

    Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all

  1. Aliasing errors in measurements of beam position and ellipticity

    Science.gov (United States)

    Ekdahl, Carl

    2005-09-01

    Beam position monitors (BPMs) are used in accelerators and ion experiments to measure currents, position, and azimuthal asymmetry. These usually consist of discrete arrays of electromagnetic field detectors, with detectors located at several equally spaced azimuthal positions at the beam tube wall. The discrete nature of these arrays introduces systematic errors into the data, independent of uncertainties resulting from signal noise, lack of recording dynamic range, etc. Computer simulations were used to understand and quantify these aliasing errors. If required, aliasing errors can be significantly reduced by employing more than the usual four detectors in the BPMs. These simulations show that the error in measurements of the centroid position of a large beam is indistinguishable from the error in the position of a filament. The simulations also show that aliasing errors in the measurement of beam ellipticity are very large unless the beam is accurately centered. The simulations were used to quantify the aliasing errors in beam parameter measurements during early experiments on the DARHT-II accelerator, demonstrating that they affected the measurements only slightly, if at all.

  2. Optimality of Multichannel Myopic Sensing in the Presence of Sensing Error for Opportunistic Spectrum Access

    Directory of Open Access Journals (Sweden)

    Xiaofeng Jiang

    2013-01-01

    Full Text Available The optimization problem for the performance of opportunistic spectrum access is considered in this study. A user, with the limited sensing capacity, has opportunistic access to a communication system with multiple channels. The user can only choose several channels to sense and decides whether to access these channels based on the sensing information in each time slot. Meanwhile, the presence of sensing error is considered. A reward is obtained when the user accesses a channel. The objective is to maximize the expected (discounted or average reward accrued over an infinite horizon. This problem can be formulated as a partially observable Markov decision process. This study shows the optimality of the simple and robust myopic policy which focuses on maximizing the immediate reward. The results show that the myopic policy is optimal in the case of practical interest.

  3. Silicon Drift Detectors development for position sensing

    International Nuclear Information System (INIS)

    Castoldi, A.; Guazzoni, C.; Hartmann, R.; Strueder, L.

    2007-01-01

    Novel Silicon Drift Detectors (SDDs) with multi-linear architecture specifically intended for 2D position sensing and imaging applications are presented and their achievable spatial, energy and time resolution are discussed. The capability of providing a fast timing of the interaction with nanosecond time resolution is a new available feature that allows operating the drift detector in continuous readout mode for coincidence imaging applications either with an external trigger or in self-timing. The application of SDDs with multi-linear architecture to Compton electrons' tracking within a single silicon layer and the achieved experimental results will be discussed

  4. The Effects of Cryotherapy on Knee Joint Position Sense and Force Production Sense in Healthy Individuals

    Directory of Open Access Journals (Sweden)

    Furmanek Mariusz P.

    2018-03-01

    Full Text Available The proprioceptive information received from mechanoreceptors is potentially responsible for controlling the joint position and force differentiation. However, it is unknown whether cryotherapy influences this complex mechanism. Previously reported results are not universally conclusive and sometimes even contradictory. The main objective of this study was to investigate the impact of local cryotherapy on knee joint position sense (JPS and force production sense (FPS. The study group consisted of 55 healthy participants (age: 21 ± 2 years, body height: 171.2 ± 9 cm, body mass: 63.3 ± 12 kg, BMI: 21.5 ± 2.6. Local cooling was achieved with the use of gel-packs cooled to -2 ± 2.5°C and applied simultaneously over the knee joint and the quadriceps femoris muscle for 20 minutes. JPS and FPS were evaluated using the Biodex System 4 Pro apparatus. Repeated measures analysis of variance (ANOVA did not show any statistically significant changes of the JPS and FPS under application of cryotherapy for all analyzed variables: the JPS’s absolute error (p = 0.976, its relative error (p = 0.295, and its variable error (p = 0.489; the FPS’s absolute error (p = 0.688, its relative error (p = 0.193, and its variable error (p = 0.123. The results indicate that local cooling does not affect proprioceptive acuity of the healthy knee joint. They also suggest that local limited cooling before physical activity at low velocity did not present health or injury risk in this particular study group.

  5. The Effects of Cryotherapy on Knee Joint Position Sense and Force Production Sense in Healthy Individuals

    Science.gov (United States)

    Furmanek, Mariusz P.; Słomka, Kajetan J.; Sobiesiak, Andrzej; Rzepko, Marian; Juras, Grzegorz

    2018-01-01

    Abstract The proprioceptive information received from mechanoreceptors is potentially responsible for controlling the joint position and force differentiation. However, it is unknown whether cryotherapy influences this complex mechanism. Previously reported results are not universally conclusive and sometimes even contradictory. The main objective of this study was to investigate the impact of local cryotherapy on knee joint position sense (JPS) and force production sense (FPS). The study group consisted of 55 healthy participants (age: 21 ± 2 years, body height: 171.2 ± 9 cm, body mass: 63.3 ± 12 kg, BMI: 21.5 ± 2.6). Local cooling was achieved with the use of gel-packs cooled to -2 ± 2.5°C and applied simultaneously over the knee joint and the quadriceps femoris muscle for 20 minutes. JPS and FPS were evaluated using the Biodex System 4 Pro apparatus. Repeated measures analysis of variance (ANOVA) did not show any statistically significant changes of the JPS and FPS under application of cryotherapy for all analyzed variables: the JPS’s absolute error (p = 0.976), its relative error (p = 0.295), and its variable error (p = 0.489); the FPS’s absolute error (p = 0.688), its relative error (p = 0.193), and its variable error (p = 0.123). The results indicate that local cooling does not affect proprioceptive acuity of the healthy knee joint. They also suggest that local limited cooling before physical activity at low velocity did not present health or injury risk in this particular study group. PMID:29599858

  6. Positional error in automated geocoding of residential addresses

    Directory of Open Access Journals (Sweden)

    Talbot Thomas O

    2003-12-01

    Full Text Available Abstract Background Public health applications using geographic information system (GIS technology are steadily increasing. Many of these rely on the ability to locate where people live with respect to areas of exposure from environmental contaminants. Automated geocoding is a method used to assign geographic coordinates to an individual based on their street address. This method often relies on street centerline files as a geographic reference. Such a process introduces positional error in the geocoded point. Our study evaluated the positional error caused during automated geocoding of residential addresses and how this error varies between population densities. We also evaluated an alternative method of geocoding using residential property parcel data. Results Positional error was determined for 3,000 residential addresses using the distance between each geocoded point and its true location as determined with aerial imagery. Error was found to increase as population density decreased. In rural areas of an upstate New York study area, 95 percent of the addresses geocoded to within 2,872 m of their true location. Suburban areas revealed less error where 95 percent of the addresses geocoded to within 421 m. Urban areas demonstrated the least error where 95 percent of the addresses geocoded to within 152 m of their true location. As an alternative to using street centerline files for geocoding, we used residential property parcel points to locate the addresses. In the rural areas, 95 percent of the parcel points were within 195 m of the true location. In suburban areas, this distance was 39 m while in urban areas 95 percent of the parcel points were within 21 m of the true location. Conclusion Researchers need to determine if the level of error caused by a chosen method of geocoding may affect the results of their project. As an alternative method, property data can be used for geocoding addresses if the error caused by traditional methods is

  7. Perceptual learning eases crowding by reducing recognition errors but not position errors.

    Science.gov (United States)

    Xiong, Ying-Zi; Yu, Cong; Zhang, Jun-Yun

    2015-08-01

    When an observer reports a letter flanked by additional letters in the visual periphery, the response errors (the crowding effect) may result from failure to recognize the target letter (recognition errors), from mislocating a correctly recognized target letter at a flanker location (target misplacement errors), or from reporting a flanker as the target letter (flanker substitution errors). Crowding can be reduced through perceptual learning. However, it is not known how perceptual learning operates to reduce crowding. In this study we trained observers with a partial-report task (Experiment 1), in which they reported the central target letter of a three-letter string presented in the visual periphery, or a whole-report task (Experiment 2), in which they reported all three letters in order. We then assessed the impact of training on recognition of both unflanked and flanked targets, with particular attention to how perceptual learning affected the types of errors. Our results show that training improved target recognition but not single-letter recognition, indicating that training indeed affected crowding. However, training did not reduce target misplacement errors or flanker substitution errors. This dissociation between target recognition and flanker substitution errors supports the view that flanker substitution may be more likely a by-product (due to response bias), rather than a cause, of crowding. Moreover, the dissociation is not consistent with hypothesized mechanisms of crowding that would predict reduced positional errors.

  8. Force Reproduction Error Depends on Force Level, whereas the Position Reproduction Error Does Not

    NARCIS (Netherlands)

    Onneweer, B.; Mugge, W.; Schouten, Alfred Christiaan

    2016-01-01

    When reproducing a previously perceived force or position humans make systematic errors. This study determined the effect of force level on force and position reproduction, when both target and reproduction force are self-generated with the same hand. Subjects performed force reproduction tasks at

  9. Predicting positional error of MLC using volumetric analysis

    International Nuclear Information System (INIS)

    Hareram, E.S.

    2008-01-01

    IMRT normally using multiple beamlets (small width of the beam) for a particular field to deliver so that it is imperative to maintain the positional accuracy of the MLC in order to deliver integrated computed dose accurately. Different manufacturers have reported high precession on MLC devices with leaf positional accuracy nearing 0.1 mm but measuring and rectifying the error in this accuracy is very difficult. Various methods are used to check MLC position and among this volumetric analysis is one of the technique. Volumetric approach was adapted in our method using primus machine and 0.6cc chamber at 5 cm depth In perspex. MLC of 1 mm error introduces an error of 20%, more sensitive to other methods

  10. Cryotherapy does not impair shoulder joint position sense.

    Science.gov (United States)

    Dover, Geoffrey; Powers, Michael E

    2004-08-01

    To determine the effects of a cryotherapy treatment on shoulder proprioception. Crossover design with repeated measures. University athletic training and sports medicine research laboratory. Thirty healthy subjects (15 women, 15 men). A 30-minute cryotherapy treatment. Joint position sense was measured in the dominant shoulder by using an inclinometer before and after receiving 30 minutes of either no ice or a 1-kg ice bag application. Skin temperature was measured below the tip of the acromion process and recorded every 5 minutes for the entire 30 minutes and immediately after testing. Three different types of error scores were calculated for data analyses and used to determine proprioception. Separate analyses of absolute, constant, and variable error failed to identify changes in shoulder joint proprioception as a function of the cryotherapy application. Application of an ice bag to the shoulder does not impair joint position sense. The control of proprioception at the shoulder may be more complex than at other joints in the body. Clinical implications may involve modifying rehabilitation considerations when managing shoulder injuries.

  11. The error model and experiment of measuring angular position error based on laser collimation

    Science.gov (United States)

    Cai, Yangyang; Yang, Jing; Li, Jiakun; Feng, Qibo

    2018-01-01

    Rotary axis is the reference component of rotation motion. Angular position error is the most critical factor which impair the machining precision among the six degree-of-freedom (DOF) geometric errors of rotary axis. In this paper, the measuring method of angular position error of rotary axis based on laser collimation is thoroughly researched, the error model is established and 360 ° full range measurement is realized by using the high precision servo turntable. The change of space attitude of each moving part is described accurately by the 3×3 transformation matrices and the influences of various factors on the measurement results is analyzed in detail. Experiments results show that the measurement method can achieve high measurement accuracy and large measurement range.

  12. Source position error influence on industry CT image quality

    International Nuclear Information System (INIS)

    Cong Peng; Li Zhipeng; Wu Haifeng

    2004-01-01

    Based on the emulational exercise, the influence of source position error on industry CT (ICT) image quality was studied and the valuable parameters were obtained for the design of ICT. The vivid container CT image was also acquired from the CT testing system. (authors)

  13. High precision relative position sensing system for formation flying spacecraft

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop and test an optical sensing system that provides high precision relative position sensing for formation flying spacecraft.  A high precision...

  14. Slide-position errors degrade machined optical component quality

    International Nuclear Information System (INIS)

    Arnold, J.B.; Steger, P.J.; Burleson, R.R.

    1975-01-01

    An ultraprecision lathe is being developed at the Oak Ridge Y-12 Plant to fabricate optical components for use in high-energy laser systems. The lathe has the capability to produce virtually any shape mirror which is symmetrical about an axis of revolution. Two basic types of mirrors are fabricated on the lathe, namely: (1) mirrors which are machined using a single slide motion (such as flats and cylinders), and (2) mirrors which are produced by two-coordinated slide motions (such as hyperbolic reflectors; large, true-radius reflectors, and other contoured-surface reflectors). The surface-finish quality of typical mirrors machined by a single axis of motion is better than 13 nm, peak to valley, which is an order of magnitude better than the surface finishes of mirrors produced by two axes of motion. Surface finish refers to short-wavelength-figure errors that are visibly detectable. The primary cause of the inability to produce significantly better surface finishes on contoured mirrors has been determined as positional errors which exist in the slide positioning systems. The correction of these errors must be accomplished before contoured surface finishes comparable to the flat and cylinder can be machined on the lathe

  15. Common positioning errors in panoramic radiography: A review

    Energy Technology Data Exchange (ETDEWEB)

    Randon, Rafael Henrique Nunes [Stomathology and Oral Diagnostic Program, School of Dentistry of Sao Paulo, University of Sao Paulo, Sao Paulo (Brazil); Pereira, Yamba Carla Lara [Biology Dental Buco Graduate Program, School of Dentistry of Piracicaba, University of Campinas, Piracicaba (Brazil); Nascimento, Glauce Crivelaro do [Psychobiology Graduate Program, School of Philosophy, Science and Literature of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto (Brazil)

    2014-03-15

    Professionals performing radiographic examinations are responsible for maintaining optimal image quality for accurate diagnoses. These professionals must competently execute techniques such as film manipulation and processing to minimize patient exposure to radiation. Improper performance by the professional and/or patient may result in a radiographic image of unsatisfactory quality that can also lead to a misdiagnosis and the development of an inadequate treatment plan. Currently, the most commonly performed extraoral examination is panoramic radiography. The invention of panoramic radiography has resulted in improvements in image quality with decreased exposure to radiation and at a low cost. However, this technique requires careful, accurate positioning of the patient's teeth and surrounding maxillofacial bone structure within the focal trough. Therefore, we reviewed the literature for the most common types of positioning errors in panoramic radiography to suggest the correct techniques. We would also discuss how to determine if the most common positioning errors occurred in panoramic radiography, such as in the positioning of the patient's head, tongue, chin, or body.

  16. Common positioning errors in panoramic radiography: A review

    International Nuclear Information System (INIS)

    Randon, Rafael Henrique Nunes; Pereira, Yamba Carla Lara; Nascimento, Glauce Crivelaro do

    2014-01-01

    Professionals performing radiographic examinations are responsible for maintaining optimal image quality for accurate diagnoses. These professionals must competently execute techniques such as film manipulation and processing to minimize patient exposure to radiation. Improper performance by the professional and/or patient may result in a radiographic image of unsatisfactory quality that can also lead to a misdiagnosis and the development of an inadequate treatment plan. Currently, the most commonly performed extraoral examination is panoramic radiography. The invention of panoramic radiography has resulted in improvements in image quality with decreased exposure to radiation and at a low cost. However, this technique requires careful, accurate positioning of the patient's teeth and surrounding maxillofacial bone structure within the focal trough. Therefore, we reviewed the literature for the most common types of positioning errors in panoramic radiography to suggest the correct techniques. We would also discuss how to determine if the most common positioning errors occurred in panoramic radiography, such as in the positioning of the patient's head, tongue, chin, or body.

  17. Coordinated joint motion control system with position error correction

    Science.gov (United States)

    Danko, George L.

    2016-04-05

    Disclosed are an articulated hydraulic machine supporting, control system and control method for same. The articulated hydraulic machine has an end effector for performing useful work. The control system is capable of controlling the end effector for automated movement along a preselected trajectory. The control system has a position error correction system to correct discrepancies between an actual end effector trajectory and a desired end effector trajectory. The correction system can employ one or more absolute position signals provided by one or more acceleration sensors supported by one or more movable machine elements. Good trajectory positioning and repeatability can be obtained. A two joystick controller system is enabled, which can in some cases facilitate the operator's task and enhance their work quality and productivity.

  18. Nonlinear control of ships minimizing the position tracking errors

    Directory of Open Access Journals (Sweden)

    Svein P. Berge

    1999-07-01

    Full Text Available In this paper, a nonlinear tracking controller with integral action for ships is presented. The controller is based on state feedback linearization. Exponential convergence of the vessel-fixed position and velocity errors are proven by using Lyapunov stability theory. Since we only have two control devices, a rudder and a propeller, we choose to control the longship and the sideship position errors to zero while the heading is stabilized indirectly. A Virtual Reference Point (VRP is defined at the bow or ahead of the ship. The VRP is used for tracking control. It is shown that the distance from the center of rotation to the VRP will influence on the stability of the zero dynamics. By selecting the VRP at the bow or even ahead of the bow, the damping in yaw can be increased and the zero dynamics is stabilized. Hence, the heading angle will be less sensitive to wind, currents and waves. The control law is simulated by using a nonlinear model of the Japanese training ship Shiojimaru with excellent results. Wind forces are added to demonstrate the robustness and performance of the integral controller.

  19. Sex differences in the shoulder joint position sense acuity: a cross-sectional study.

    Science.gov (United States)

    Vafadar, Amir K; Côté, Julie N; Archambault, Philippe S

    2015-09-30

    Work-related musculoskeletal disorders (WMSD) is the most expensive form of work disability. Female sex has been considered as an individual risk factor for the development of WMSD, specifically in the neck and shoulder region. One of the factors that might contribute to the higher injury rate in women is possible differences in neuromuscular control. Accordingly the purpose of this study was to estimate the effect of sex on shoulder joint position sense acuity (as a part of shoulder neuromuscular control) in healthy individuals. Twenty-eight healthy participants, 14 females and 14 males were recruited for this study. To test position sense acuity, subjects were asked to flex their dominant shoulder to one of the three pre-defined angle ranges (low, mid and high-ranges) with eyes closed, hold their arm in that position for three seconds, go back to the starting position and then immediately replicate the same joint flexion angle, while the difference between the reproduced and original angle was taken as the measure of position sense error. The errors were measured using Vicon motion capture system. Subjects reproduced nine positions in total (3 ranges × 3 trials each). Calculation of absolute repositioning error (magnitude of error) showed no significant difference between men and women (p-value ≥ 0.05). However, the analysis of the direction of error (constant error) showed a significant difference between the sexes, as women tended to mostly overestimate the target, whereas men tended to both overestimate and underestimate the target (p-value ≤ 0.01, observed power = 0.79). The results also showed that men had a significantly more variable error, indicating more variability in their position sense, compared to women (p-value ≤ 0.05, observed power = 0.78). Differences observed in the constant JPS error suggest that men and women might use different neuromuscular control strategies in the upper limb. In addition, higher JPS

  20. A systematic framework for Monte Carlo simulation of remote sensing errors map in carbon assessments

    Science.gov (United States)

    S. Healey; P. Patterson; S. Urbanski

    2014-01-01

    Remotely sensed observations can provide unique perspective on how management and natural disturbance affect carbon stocks in forests. However, integration of these observations into formal decision support will rely upon improved uncertainty accounting. Monte Carlo (MC) simulations offer a practical, empirical method of accounting for potential remote sensing errors...

  1. Aerobic training in aquatic environment improves the position sense of stroke patients: A randomized clinical trial

    Directory of Open Access Journals (Sweden)

    Flávia de Andrade e Souza Mazuchi

    2018-03-01

    Full Text Available Abstract AIMS (Stroke patients often present sensory-motor alterations and less aerobic capacity. Joint position sense, which is crucial for balance and gait control, is also affected in stroke patients. To compare the effect of two exercise training protocols (walking in deep water and on a treadmill on the knee position sense of stroke patients. METHODS This study was designed as a randomized controlled clinical trial. Twelve adults, who suffered a stroke at least one year prior to the start of the study, were randomly assigned to one of two groups: 1 pool group submitted to aerobic deep water walking training; and 2 the treadmill group which was submitted to aerobic walk on a treadmill. Measurements: The position sense, absolute error and variable error, of the knee joint was evaluated prior to and after nine weeks of aerobic training. RESULTS The pool group presented smaller absolute (13.9o versus 6.1o; p < 0.05 and variable (9.2o versus 3.9o; p < 0.05 errors after nine-weeks gait training than the treadmill group. CONCLUSIONS Nine-week aerobic exercise intervention in aquatic environment improved precision in the position sense of the knee joint of stroke patients, suggesting a possible application in a rehabilitation program.

  2. POSITION-SPECIFIC DEFICIT OF JOINT POSITION SENSE IN ANKLES WITH CHRONIC FUNCTIONAL INSTABILITY

    Directory of Open Access Journals (Sweden)

    Shigeki Yokoyama

    2008-12-01

    Full Text Available The present study was aimed to test a hypothesis that individuals with functional ankle instability (FAI underestimate the joint angle at greater plantarflexion and inversion. Seventeen males with unilateral FAI and 17 controls (males without FAI consented for participation in this IRB-approved, case-control study. Using a passive reproduction test, we assessed ankle joint position sense (JPS for test positions between 30 and -10 degrees plantarflexion with an inclement of 10 degrees with or without 20° inversion at each plantarflexion angle. The constant error (CE was defined as the value obtained by subtracting the true angle of a test position from the corresponding perceived angle. At plantarflexed and inverted test positions, the CE values were smaller in negative with greater in the FAI group than in the control group. That is, in the FAI group, the FAI group underestimated the true plantarflexion angle at combined 30° plantarflexion and 20° inversion. We conclude that the ankle with FAI underestimate the amount of plantarflexion, which increases the chance of reaching greater planterflexion and inversion than patients' intention at high risk situations of spraining such as landing

  3. Sensorless SPMSM Position Estimation Using Position Estimation Error Suppression Control and EKF in Wide Speed Range

    Directory of Open Access Journals (Sweden)

    Zhanshan Wang

    2014-01-01

    Full Text Available The control of a high performance alternative current (AC motor drive under sensorless operation needs the accurate estimation of rotor position. In this paper, one method of accurately estimating rotor position by using both motor complex number model based position estimation and position estimation error suppression proportion integral (PI controller is proposed for the sensorless control of the surface permanent magnet synchronous motor (SPMSM. In order to guarantee the accuracy of rotor position estimation in the flux-weakening region, one scheme of identifying the permanent magnet flux of SPMSM by extended Kalman filter (EKF is also proposed, which formed the effective combination method to realize the sensorless control of SPMSM with high accuracy. The simulation results demonstrated the validity and feasibility of the proposed position/speed estimation system.

  4. Elbow joint position sense after neuromuscular training with handheld vibration.

    Science.gov (United States)

    Tripp, Brady L; Faust, Donald; Jacobs, Patrick

    2009-01-01

    Clinicians use neuromuscular control exercises to enhance joint position sense (JPS); however, because standardizing such exercises is difficult, validations of their use are limited. To evaluate the acute effects of a neuromuscular training exercise with a handheld vibrating dumbbell on elbow JPS acuity. Crossover study. University athletic training research laboratory. Thirty-one healthy, college-aged volunteers (16 men, 15 women, age = 23 + or - 3 years, height = 173 + or - 8 cm, mass = 76 + or - 14 kg). We measured and trained elbow JPS using an electromagnetic tracking device that provided auditory and visual biofeedback. For JPS testing, participants held a dumbbell and actively identified the target elbow flexion angle (90 degrees ) using the software-generated biofeedback, followed by 3 repositioning trials without feedback. Each neuromuscular training protocol included 3 exercises during which participants held a 2.55-kg dumbbell vibrating at 15, 5, or 0 Hz and used software-generated biofeedback to locate and maintain the target elbow flexion angle for 15 seconds. We calculated absolute (accuracy) and variable (variability) errors using the differences between target and reproduced angles. Training protocols using 15-Hz vibration enhanced accuracy and decreased variability of elbow JPS (P or = .200). Our results suggest these neuromuscular control exercises, which included low-magnitude, low-frequency handheld vibration, may enhance elbow JPS. Future researchers should examine vibration of various durations and frequencies, should include injured participants and functional multijoint and multiplanar measures, and should examine long-term effects of training protocols on JPS and injury.

  5. Efficient Error Detection in Soft Data Fusion for Cooperative Spectrum Sensing

    KAUST Repository

    Saqib Bhatti, Dost Muhammad

    2018-03-18

    The primary objective of cooperative spectrum sensing (CSS) is to determine whether a particular spectrum is occupied by a licensed user or not, so that unlicensed users called secondary users (SUs) can utilize that spectrum, if it is not occupied. For CSS, all SUs report their sensing information through reporting channel to the central base station called fusion center (FC). During transmission, some of the SUs are subjected to fading and shadowing, due to which the overall performance of CSS is degraded. We have proposed an algorithm which uses error detection technique on sensing measurement of all SUs. Each SU is required to re-transmit the sensing data to the FC, if error is detected on it. Our proposed algorithm combines the sensing measurement of limited number of SUs. Using Proposed algorithm, we have achieved the improved probability of detection (PD) and throughput. The simulation results compare the proposed algorithm with conventional scheme.

  6. Propagation of positional error in 3D GIS

    NARCIS (Netherlands)

    Biljecki, Filip; Heuvelink, Gerard B.M.; Ledoux, Hugo; Stoter, Jantien

    2015-01-01

    While error propagation in GIS is a topic that has received a lot of attention, it has not been researched with 3D GIS data. We extend error propagation to 3D city models using a Monte Carlo simulation on a use case of annual solar irradiation estimation of building rooftops for assessing the

  7. PERFORMANCE OF OPPORTUNISTIC SPECTRUM ACCESS WITH SENSING ERROR IN COGNITIVE RADIO AD HOC NETWORKS

    Directory of Open Access Journals (Sweden)

    N. ARMI

    2012-04-01

    Full Text Available Sensing in opportunistic spectrum access (OSA has a responsibility to detect the available channel by performing binary hypothesis as busy or idle states. If channel is busy, secondary user (SU cannot access and refrain from data transmission. SU is allowed to access when primary user (PU does not use it (idle states. However, channel is sensed on imperfect communication link. Fading, noise and any obstacles existed can cause sensing errors in PU signal detection. False alarm detects idle states as a busy channel while miss-identification detects busy states as an idle channel. False detection makes SU refrain from transmission and reduces number of bits transmitted. On the other hand, miss-identification causes SU collide to PU transmission. This paper study the performance of OSA based on the greedy approach with sensing errors by the restriction of maximum collision probability allowed (collision threshold by PU network. The throughput of SU and spectrum capacity metric is used to evaluate OSA performance and make comparisons to those ones without sensing error as function of number of slot based on the greedy approach. The relations between throughput and signal to noise ratio (SNR with different collision probability as well as false detection with different SNR are presented. According to the obtained results show that CR users can gain the reward from the previous slot for both of with and without sensing errors. It is indicated by the throughput improvement as slot number increases. However, sensing on imperfect channel with sensing errors can degrade the throughput performance. Subsequently, the throughput of SU and spectrum capacity improves by increasing maximum collision probability allowed by PU network as well. Due to frequent collision with PU, the throughput of SU and spectrum capacity decreases at certain value of collision threshold. Computer simulation is used to evaluate and validate these works.

  8. Determination of global positioning system (GPS) receiver clock errors: impact on positioning accuracy

    International Nuclear Information System (INIS)

    Yeh, Ta-Kang; Hwang, Cheinway; Xu, Guochang; Wang, Chuan-Sheng; Lee, Chien-Chih

    2009-01-01

    Enhancing the positioning precision is the primary pursuit of global positioning system (GPS) users. To achieve this goal, most studies have focused on the relationship between GPS receiver clock errors and GPS positioning precision. This study utilizes undifferentiated phase data to calculate GPS clock errors and to compare with the frequency of cesium clock directly, to verify estimated clock errors by the method used in this paper. The frequency stability calculated from this paper (the indirect method) and measured from the National Standard Time and Frequency Laboratory (NSTFL) of Taiwan (the direct method) match to 1.5 × 10 −12 (the value from this study was smaller than that from NSTFL), suggesting that the proposed technique has reached a certain level of quality. The built-in quartz clocks in the GPS receivers yield relative frequency offsets that are 3–4 orders higher than those of rubidium clocks. The frequency stability of the quartz clocks is on average two orders worse than that of the rubidium clock. Using the rubidium clock instead of the quartz clock, the horizontal and vertical positioning accuracies were improved by 26–78% (0.6–3.6 mm) and 20–34% (1.3–3.0 mm), respectively, for a short baseline. These improvements are 7–25% (0.3–1.7 mm) and 11% (1.7 mm) for a long baseline. Our experiments show that the frequency stability of the clock, rather than relative frequency offset, is the governing factor of positioning accuracy

  9. Dependence of fluence errors in dynamic IMRT on leaf-positional errors varying with time and leaf number

    International Nuclear Information System (INIS)

    Zygmanski, Piotr; Kung, Jong H.; Jiang, Steve B.; Chin, Lee

    2003-01-01

    In d-MLC based IMRT, leaves move along a trajectory that lies within a user-defined tolerance (TOL) about the ideal trajectory specified in a d-MLC sequence file. The MLC controller measures leaf positions multiple times per second and corrects them if they deviate from ideal positions by a value greater than TOL. The magnitude of leaf-positional errors resulting from finite mechanical precision depends on the performance of the MLC motors executing leaf motions and is generally larger if leaves are forced to move at higher speeds. The maximum value of leaf-positional errors can be limited by decreasing TOL. However, due to the inherent time delay in the MLC controller, this may not happen at all times. Furthermore, decreasing the leaf tolerance results in a larger number of beam hold-offs, which, in turn leads, to a longer delivery time and, paradoxically, to higher chances of leaf-positional errors (≤TOL). On the other end, the magnitude of leaf-positional errors depends on the complexity of the fluence map to be delivered. Recently, it has been shown that it is possible to determine the actual distribution of leaf-positional errors either by the imaging of moving MLC apertures with a digital imager or by analysis of a MLC log file saved by a MLC controller. This leads next to an important question: What is the relation between the distribution of leaf-positional errors and fluence errors. In this work, we introduce an analytical method to determine this relation in dynamic IMRT delivery. We model MLC errors as Random-Leaf Positional (RLP) errors described by a truncated normal distribution defined by two characteristic parameters: a standard deviation σ and a cut-off value Δx 0 (Δx 0 ∼TOL). We quantify fluence errors for two cases: (i) Δx 0 >>σ (unrestricted normal distribution) and (ii) Δx 0 0 --limited normal distribution). We show that an average fluence error of an IMRT field is proportional to (i) σ/ALPO and (ii) Δx 0 /ALPO, respectively, where

  10. Dissipative quantum error correction and application to quantum sensing with trapped ions.

    Science.gov (United States)

    Reiter, F; Sørensen, A S; Zoller, P; Muschik, C A

    2017-11-28

    Quantum-enhanced measurements hold the promise to improve high-precision sensing ranging from the definition of time standards to the determination of fundamental constants of nature. However, quantum sensors lose their sensitivity in the presence of noise. To protect them, the use of quantum error-correcting codes has been proposed. Trapped ions are an excellent technological platform for both quantum sensing and quantum error correction. Here we present a quantum error correction scheme that harnesses dissipation to stabilize a trapped-ion qubit. In our approach, always-on couplings to an engineered environment protect the qubit against spin-flips or phase-flips. Our dissipative error correction scheme operates in a continuous manner without the need to perform measurements or feedback operations. We show that the resulting enhanced coherence time translates into a significantly enhanced precision for quantum measurements. Our work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.

  11. Attitudes toward Immigration as a Sense of Group Position

    DEFF Research Database (Denmark)

    Farah, Abdulkadir Osman

    2018-01-01

    such as affirmative action and immigration, we examine the extent to which American attitudes toward immigration can be conceptualized from a Blumerian sense of group position without setting Allport’s contact theory as an alternative hypothesis. Our findings show cultural and ideological threat, and subjective...... economic threat as more important in informing attitudes toward immigration than objective economic conditions; and social and ethnic location threat. Our findings are consistent with and confirm Blumer’s argument that prejudice as a sense of group position is primarily derived from feelings, and are...

  12. Image Positioning Accuracy Analysis for Super Low Altitude Remote Sensing Satellites

    Directory of Open Access Journals (Sweden)

    Ming Xu

    2012-10-01

    Full Text Available Super low altitude remote sensing satellites maintain lower flight altitudes by means of ion propulsion in order to improve image resolution and positioning accuracy. The use of engineering data in design for achieving image positioning accuracy is discussed in this paper based on the principles of the photogrammetry theory. The exact line-of-sight rebuilding of each detection element and this direction precisely intersecting with the Earth's elliptical when the camera on the satellite is imaging are both ensured by the combined design of key parameters. These parameters include: orbit determination accuracy, attitude determination accuracy, camera exposure time, accurately synchronizing the reception of ephemeris with attitude data, geometric calibration and precise orbit verification. Precise simulation calculations show that image positioning accuracy of super low altitude remote sensing satellites is not obviously improved. The attitude determination error of a satellite still restricts its positioning accuracy.

  13. Real-Time Hand Position Sensing Technology Based on Human Body Electrostatics

    Directory of Open Access Journals (Sweden)

    Kai Tang

    2018-05-01

    Full Text Available Non-contact human-computer interactions (HCI based on hand gestures have been widely investigated. Here, we present a novel method to locate the real-time position of the hand using the electrostatics of the human body. This method has many advantages, including a delay of less than one millisecond, low cost, and does not require a camera or wearable devices. A formula is first created to sense array signals with five spherical electrodes. Next, a solving algorithm for the real-time measured hand position is introduced and solving equations for three-dimensional coordinates of hand position are obtained. A non-contact real-time hand position sensing system was established to perform verification experiments, and the principle error of the algorithm and the systematic noise were also analyzed. The results show that this novel technology can determine the dynamic parameters of hand movements with good robustness to meet the requirements of complicated HCI.

  14. The effects of knee direction, physical activity and age on knee joint position sense.

    Science.gov (United States)

    Relph, Nicola; Herrington, Lee

    2016-06-01

    Previous research has suggested a decline in knee proprioception with age. Furthermore, regular participation in physical activity may improve proprioceptive ability. However, there is no large scale data on uninjured populations to confirm these theories. The aim of this study was to provide normative knee joint position data (JPS) from healthy participants aged 18-82years to evaluate the effects of age, physical activity and knee direction. A sample of 116 participants across five age groups was used. The main outcome measures were knee JPS absolute error scores into flexion and extension, Tegner activity levels and General Practitioner Physical Activity Questionnaire results. Absolute error scores in to knee flexion were 3.6°, 3.9°, 3.5°, 3.7° and 3.1° and knee extension were 2.7°, 2.5°, 2.9°, 3.4° and 3.9° for ages 15-29, 30-44, 45-59, 60-74 and 75 years old respectively. Knee extension and flexion absolute error scores were significantly different when age group data were pooled. There was a significant effect of age and activity level on joint position sense into knee extension. Age and lower Tegner scores were also negatively correlated to joint position sense into knee extension. The results provide some evidence for a decline in knee joint position sense with age. Further, active populations may have heightened static proprioception compared to inactive groups. Normative knee joint position sense data is provided and may be used by practitioners to identify patients with reduced proprioceptive ability. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. SU-E-T-195: Gantry Angle Dependency of MLC Leaf Position Error

    Energy Technology Data Exchange (ETDEWEB)

    Ju, S; Hong, C; Kim, M; Chung, K; Kim, J; Han, Y; Ahn, S; Chung, S; Shin, E; Shin, J; Kim, H; Kim, D; Choi, D [Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2014-06-01

    Purpose: The aim of this study was to investigate the gantry angle dependency of the multileaf collimator (MLC) leaf position error. Methods: An automatic MLC quality assurance system (AutoMLCQA) was developed to evaluate the gantry angle dependency of the MLC leaf position error using an electronic portal imaging device (EPID). To eliminate the EPID position error due to gantry rotation, we designed a reference maker (RM) that could be inserted into the wedge mount. After setting up the EPID, a reference image was taken of the RM using an open field. Next, an EPID-based picket-fence test (PFT) was performed without the RM. These procedures were repeated at every 45° intervals of the gantry angle. A total of eight reference images and PFT image sets were analyzed using in-house software. The average MLC leaf position error was calculated at five pickets (-10, -5, 0, 5, and 10 cm) in accordance with general PFT guidelines using in-house software. This test was carried out for four linear accelerators. Results: The average MLC leaf position errors were within the set criterion of <1 mm (actual errors ranged from -0.7 to 0.8 mm) for all gantry angles, but significant gantry angle dependency was observed in all machines. The error was smaller at a gantry angle of 0° but increased toward the positive direction with gantry angle increments in the clockwise direction. The error reached a maximum value at a gantry angle of 90° and then gradually decreased until 180°. In the counter-clockwise rotation of the gantry, the same pattern of error was observed but the error increased in the negative direction. Conclusion: The AutoMLCQA system was useful to evaluate the MLC leaf position error for various gantry angles without the EPID position error. The Gantry angle dependency should be considered during MLC leaf position error analysis.

  16. Effects of Target Positioning Error on Motion Compensation for Airborne Interferometric SAR

    Directory of Open Access Journals (Sweden)

    Li Yin-wei

    2013-12-01

    Full Text Available The measurement inaccuracies of Inertial Measurement Unit/Global Positioning System (IMU/GPS as well as the positioning error of the target may contribute to the residual uncompensated motion errors in the MOtion COmpensation (MOCO approach based on the measurement of IMU/GPS. Aiming at the effects of target positioning error on MOCO for airborne interferometric SAR, the paper firstly deduces a mathematical model of residual motion error bring out by target positioning error under the condition of squint. And the paper analyzes the effects on the residual motion error caused by system sampling delay error, the Doppler center frequency error and reference DEM error which result in target positioning error based on the model. Then, the paper discusses the effects of the reference DEM error on the interferometric SAR image quality, the interferometric phase and the coherent coefficient. The research provides theoretical bases for the MOCO precision in signal processing of airborne high precision SAR and airborne repeat-pass interferometric SAR.

  17. Effect of proprioception training on knee joint position sense in female team handball players.

    Science.gov (United States)

    Pánics, G; Tállay, A; Pavlik, A; Berkes, I

    2008-06-01

    A number of studies have shown that proprioception training can reduce the risk of injuries in pivoting sports, but the mechanism is not clearly understood. To determine the contributing effects of propioception on knee joint position sense among team handball players. Prospective cohort study. Two professional female handball teams were followed prospectively for the 2005-6 season. 20 players in the intervention team followed a prescribed proprioceptive training programme while 19 players in the control team did not have a specific propioceptive training programme. The coaches recorded all exposures of the individual players. The location and nature of injuries were recorded. Joint position sense (JPS) was measured by a goniometer on both knees in three angle intervals, testing each angle five times. Assessments were performed before and after the season by the same examiner for both teams. In the intervention team a third assessment was also performed during the season. Complete data were obtained for 15 subjects in the intervention team and 16 in the control team. Absolute error score, error of variation score and SEM were calculated and the results of the intervention and control teams were compared. The proprioception sensory function of the players in the intervention team was significantly improved between the assessments made at the start and the end of the season (mean (SD) absolute error 9.78-8.21 degrees (7.19-6.08 degrees ) vs 3.61-4.04 degrees (3.71-3.20 degrees ), pteam between the start and the end of the season (mean (SD) absolute error 6.31-6.22 degrees (6.12-3.59 degrees ) vs 6.13-6.69 degrees (7.46-6.49 degrees ), p>0.05). This is the first study to show that proprioception training improves the joint position sense in elite female handball players. This may explain the effect of neuromuscular training in reducing the injury rate.

  18. Knee joint position sense of roller hockey players: a comparative study.

    Science.gov (United States)

    Venâncio, João; Lopes, Diogo; Lourenço, Joaquim; Ribeiro, Fernando

    2016-06-01

    This study aimed to compare knee joint position sense of roller hockey players with an age-matched group of non-athletes. Forty-three male participants voluntarily participated in this cross-sectional study: 21 roller hockey players (mean age: 23.2 ± 4.2 years old, mean weight: 81.8 ± 9.8 kg, mean height: 180.5 ± 4.1 cm) and 22 age-matched non-athletes (mean age: 23.7 ± 3.9 years old, mean weight: 85.0 ± 6.2 kg, mean height: 181.5 ± 5.0 cm). Knee joint position sense of the dominant limb was evaluated using a technique of open-kinetic chain and active knee positioning. Joint position sense was reported using absolute, relative and variable angular errors. The main results indicated that the group of roller hockey players showed significantly lower absolute (2.4 ± 1.2º vs. 6.5 ± 3.2º, p ≤ 0.001) and relative (1.7 ± 2.1º vs. 5.8 ± 4.4º, p ≤ 0.001) angular errors in comparison with the non-athletes group. In conclusion, the results from this present study suggest that proprioceptive acuity, assessed by measuring joint position sense, is increased in roller hockey players. The enhanced proprioception of the roller hockey players could contribute to injury prevention and improved performance during sporting activities.

  19. Common Positioning Errors in Digital Panoramic Radiographies Taken In Mashhad Dental School

    Directory of Open Access Journals (Sweden)

    Ali Bagherpour

    2018-06-01

    Full Text Available Introduction: The present study was aimed at evaluating common positioning errors on panoramic radiographs taken in the Radiology Department of Mashhad Dental School. Materials and methods: The study sample included 1,990 digital panoramic radiographs taken in the Radiology Department of Mashhad Dental School by a Planmeca Promax (Planmeca Oy, Helsinki, Finland, during a 2-year period (2010–2012. All radiographs, according to dentition and sex, were evaluated for positioning errors. Results: There were 1,927 (96.8% panoramic radiographs with one or more errors. While the number of errors in each image varied between one and five, most images had one error (48.4%. The most common error was that the tongue was not in contact with the hard palate (94.8%. "Open lips" was an error not seen in any patients. Conclusions:positioning errors are common in panoramic radiographies. The most common error observed in this study was a failure to place the tongue on the palate. This error and the other errors reported in this study can be reduced by training the technicians and spending little more time for patient positioning and more effective communication with the patients.

  20. Evaluation of positioning errors of the patient using cone beam CT megavoltage

    International Nuclear Information System (INIS)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Zucca Aparicio, D.; Perez Moreno, J. M.; Minambres Moro, A.

    2013-01-01

    Image-guided radiation therapy allows you to assess and fix the positioning of the patient in the treatment unit, thus reducing the uncertainties due to the positioning of the patient. This work assesses errors systematic and errors of randomness from the corrections made to a series of patients of different diseases through a protocol off line of cone beam CT (CBCT) megavoltage. (Author)

  1. STUDY ON MODELING AND VISUALIZING THE POSITIONAL UNCERTAINTY OF REMOTE SENSING IMAGE

    Directory of Open Access Journals (Sweden)

    W. Jiao

    2016-06-01

    Full Text Available It is inevitable to bring about uncertainty during the process of data acquisition. The traditional method to evaluate the geometric positioning accuracy is usually by the statistical method and represented by the root mean square errors (RMSEs of control points. It is individual and discontinuous, so it is difficult to describe the error spatial distribution. In this paper the error uncertainty of each control point is deduced, and the uncertainty spatial distribution model of each arbitrary point is established. The error model is proposed to evaluate the geometric accuracy of remote sensing image. Then several visualization methods are studied to represent the discrete and continuous data of geometric uncertainties. The experiments show that the proposed evaluation method of error distribution model compared with the traditional method of RMSEs can get the similar results but without requiring the user to collect control points as checkpoints, and error distribution information calculated by the model can be provided to users along with the geometric image data. Additionally, the visualization methods described in this paper can effectively and objectively represents the image geometric quality, and also can help users probe the reasons of bringing the image uncertainties in some extent.

  2. Differences among Job Positions Related to Communication Errors at Construction Sites

    Science.gov (United States)

    Takahashi, Akiko; Ishida, Toshiro

    In a previous study, we classified the communicatio n errors at construction sites as faulty intention and message pattern, inadequate channel pattern, and faulty comprehension pattern. This study seeks to evaluate the degree of risk of communication errors and to investigate differences among people in various job positions in perception of communication error risk . Questionnaires based on the previous study were a dministered to construction workers (n=811; 149 adminis trators, 208 foremen and 454 workers). Administrators evaluated all patterns of communication error risk equally. However, foremen and workers evaluated communication error risk differently in each pattern. The common contributing factors to all patterns wer e inadequate arrangements before work and inadequate confirmation. Some factors were common among patterns but other factors were particular to a specific pattern. To help prevent future accidents at construction sites, administrators should understand how people in various job positions perceive communication errors and propose human factors measures to prevent such errors.

  3. Modeling the probability distribution of positional errors incurred by residential address geocoding

    Directory of Open Access Journals (Sweden)

    Mazumdar Soumya

    2007-01-01

    Full Text Available Abstract Background The assignment of a point-level geocode to subjects' residences is an important data assimilation component of many geographic public health studies. Often, these assignments are made by a method known as automated geocoding, which attempts to match each subject's address to an address-ranged street segment georeferenced within a streetline database and then interpolate the position of the address along that segment. Unfortunately, this process results in positional errors. Our study sought to model the probability distribution of positional errors associated with automated geocoding and E911 geocoding. Results Positional errors were determined for 1423 rural addresses in Carroll County, Iowa as the vector difference between each 100%-matched automated geocode and its true location as determined by orthophoto and parcel information. Errors were also determined for 1449 60%-matched geocodes and 2354 E911 geocodes. Huge (> 15 km outliers occurred among the 60%-matched geocoding errors; outliers occurred for the other two types of geocoding errors also but were much smaller. E911 geocoding was more accurate (median error length = 44 m than 100%-matched automated geocoding (median error length = 168 m. The empirical distributions of positional errors associated with 100%-matched automated geocoding and E911 geocoding exhibited a distinctive Greek-cross shape and had many other interesting features that were not capable of being fitted adequately by a single bivariate normal or t distribution. However, mixtures of t distributions with two or three components fit the errors very well. Conclusion Mixtures of bivariate t distributions with few components appear to be flexible enough to fit many positional error datasets associated with geocoding, yet parsimonious enough to be feasible for nascent applications of measurement-error methodology to spatial epidemiology.

  4. MATLAB implementation of satellite positioning error overbounding by generalized Pareto distribution

    Science.gov (United States)

    Ahmad, Khairol Amali; Ahmad, Shahril; Hashim, Fakroul Ridzuan

    2018-02-01

    In the satellite navigation community, error overbound has been implemented in the process of integrity monitoring. In this work, MATLAB programming is used to implement the overbounding of satellite positioning error CDF. Using a trajectory of reference, the horizontal position errors (HPE) are computed and its non-parametric distribution function is given by the empirical Cumulative Distribution Function (ECDF). According to the results, these errors have a heavy-tailed distribution. Sınce the ECDF of the HPE in urban environment is not Gaussian distributed, the ECDF is overbound with the CDF of the generalized Pareto distribution (GPD).

  5. CALIBRATION ERRORS IN THE CAVITY BEAM POSITION MONITOR SYSTEM AT THE ATF2

    CERN Document Server

    Cullinan, F; Joshi, N; Lyapin, A

    2011-01-01

    It has been shown at the Accelerator Test Facility at KEK, that it is possible to run a system of 37 cavity beam position monitors (BPMs) and achieve high working resolution. However, stability of the calibration constants (position scale and radio frequency (RF) phase) over a three/four week running period is yet to be demonstrated. During the calibration procedure, random beam jitter gives rise to a statistical error in the position scale and slow orbit drift in position and tilt causes systematic errors in both the position scale and RF phase. These errors are dominant and have been evaluated for each BPM. The results are compared with the errors expected after a tested method of beam jitter subtraction has been applied.

  6. Exercises focusing on rotator cuff and scapular muscles do not improve shoulder joint position sense in healthy subjects.

    Science.gov (United States)

    Lin, Yin-Liang; Karduna, Andrew

    2016-10-01

    Proprioception is essential for shoulder neuromuscular control and shoulder stability. Exercise of the rotator cuff and scapulothoracic muscles is an important part of shoulder rehabilitation. The purpose of this study was to investigate the effect of rotator cuff and scapulothoracic muscle exercises on shoulder joint position sense. Thirty-six healthy subjects were recruited and randomly assigned into either a control or training group. The subjects in the training group received closed-chain and open-chain exercises focusing on rotator cuff and scapulothoracic muscles for four weeks. Shoulder joint position sense errors in elevation, including the humerothoracic, glenohumeral and scapulothoracic joints, was measured. After four weeks of exercise training, strength increased overall in the training group, which demonstrated the effect of exercise on the muscular system. However, the changes in shoulder joint position sense errors in any individual joint of the subjects in the training group were not different from those of the control subjects. Therefore, exercises specifically targeting individual muscles with low intensity may not be sufficient to improve shoulder joint position sense in healthy subjects. Future work is needed to further investigate which types of exercise are more effective in improving joint position sense, and the mechanisms associated with those changes. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. ASSESSMENT AND COMPARISION OF CERVICAL JOINT POSITION SENSE IN SUBJECTS WITH CHRONIC NECK PAIN vs NORMALS

    Directory of Open Access Journals (Sweden)

    Oberoi Mugdha

    2015-06-01

    Full Text Available Background: The abundance of mechanoreceptors in the cervical spine and their central and reflex afferent connections to the vestibular, visual and postural control system suggests that the cervical proprioceptive information provides important somatosensory information influencing postural stability, head orientation and eye movement control. Disturbances to the afferent input from the cervical region is thought to underlie symptoms of dizziness, unsteadiness, visual disturbances and signs of altered postural stability, cervical proprioception and head and eye movement control in people with chronic neck pain. This study aimed to assess and compare cervical joint position sense in subjects with chronic neck pain vs normals. Methods: Total 60 subjects, divided into two groups chronic neck pain group (n=30 (12 males and 18 females with mean age of 40.7 years and control group (n=30 with age and gender matched normal individuals were assessed for baseline data and demographic variables. Head repositioning accuracy test was used to assess cervical joint position sense in degrees. Results: The difference in the head repositioning error values were found to be extremely significant (p<0.0001 for all the neck movements for subjects with chronic neck pain as compared to normals. Conclusion: Cervical joint position sense in subjects with chronic neck pain is found to be altered as compared to age and gender matched normals.

  8. Negative cognitive errors and positive illusions for negative divorce events: predictors of children's psychological adjustment.

    Science.gov (United States)

    Mazur, E; Wolchik, S A; Sandler, I N

    1992-12-01

    This study examined the relations among negative cognitive errors regarding hypothetical negative divorce events, positive illusions about those same events, actual divorce events, and psychological adjustment in 38 8- to 12-year-old children whose parents had divorced within the previous 2 years. Children's scores on a scale of negative cognitive errors (catastrophizing, overgeneralizing, and personalizing) correlated significantly with self-reported symptoms of anxiety and self-esteem, and with maternal reports of behavior problems. Children's scores on a scale measuring positive illusions (high self-regard, illusion of personal control, and optimism for the future) correlated significantly with less self-reported aggression. Both appraisal types accounted for variance in some measures of symptomatology beyond that explained by actual events. There was no significant association between children's negative cognitive errors and positive illusions. The implications of these results for theories of negative cognitive errors and of positive illusions, as well as for future research, are discussed.

  9. Influence of chronic neck pain on cervical joint position error (JPE): Comparison between young and elderly subjects.

    Science.gov (United States)

    Alahmari, Khalid A; Reddy, Ravi Shankar; Silvian, Paul; Ahmad, Irshad; Nagaraj, Venkat; Mahtab, Mohammad

    2017-11-06

    Evaluation of cervical joint position sense in subjects with chronic neck pain has gained importance in recent times. Different authors have established increased joint position error (JPE) in subjects with acute neck pain. However, there is a paucity of studies to establish the influence of chronic neck pain on cervical JPE. The objective of the study was to understand the influence of chronic neck pain on cervical JPE, and to examine the differences in cervical JPE between young and elderly subjects with chronic neck pain. Forty-two chronic neck pain patients (mean age 47.4) were compared for cervical JPE with 42 age-matched healthy subjects (mean age 47.8), using a digital inclinometer. The cervical JPE were measured in flexion, extension, and rotation in right and left movement directions. The comparison of JPE showed significantly larger errors in subjects with chronic neck pain when compared to healthy subjects (ppain revealed no significant differences (P> 0.05) in cervical JPE. Cervical joint position sense is impaired in subjects with chronic neck pain.

  10. The effects of transcutaneous electrical nerve stimulation on joint position sense in patients with knee joint osteoarthritis.

    Science.gov (United States)

    Shirazi, Zahra Rojhani; Shafaee, Razieh; Abbasi, Leila

    2014-10-01

    To study the effects of transcutaneous electrical nerve stimulation (TENS) on joint position sense (JPS) in knee osteoarthritis (OA) subjects. Thirty subjects with knee OA (40-60 years old) using non-random sampling participated in this study. In order to evaluate the absolute error of repositioning of the knee joint, Qualysis Track Manager system was used and sensory electrical stimulation was applied through the TENS device. The mean errors in repositioning of the joint, in two position of the knee joint with 20 and 60 degree angle, after applying the TENS was significantly decreased (p knee OA could improve JPS in these subjects.

  11. An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning.

    Science.gov (United States)

    Deng, Zhongliang; Fu, Xiao; Wang, Hanhua

    2018-01-20

    Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS). Wireless positioning signals have a considerable attenuation in received signal strength (RSS) when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided) body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC) is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC) is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization.

  12. An IMU-Aided Body-Shadowing Error Compensation Method for Indoor Bluetooth Positioning

    Directory of Open Access Journals (Sweden)

    Zhongliang Deng

    2018-01-01

    Full Text Available Research on indoor positioning technologies has recently become a hotspot because of the huge social and economic potential of indoor location-based services (ILBS. Wireless positioning signals have a considerable attenuation in received signal strength (RSS when transmitting through human bodies, which would cause significant ranging and positioning errors in RSS-based systems. This paper mainly focuses on the body-shadowing impairment of RSS-based ranging and positioning, and derives a mathematical expression of the relation between the body-shadowing effect and the positioning error. In addition, an inertial measurement unit-aided (IMU-aided body-shadowing detection strategy is designed, and an error compensation model is established to mitigate the effect of body-shadowing. A Bluetooth positioning algorithm with body-shadowing error compensation (BP-BEC is then proposed to improve both the positioning accuracy and the robustness in indoor body-shadowing environments. Experiments are conducted in two indoor test beds, and the performance of both the BP-BEC algorithm and the algorithms without body-shadowing error compensation (named no-BEC is evaluated. The results show that the BP-BEC outperforms the no-BEC by about 60.1% and 73.6% in terms of positioning accuracy and robustness, respectively. Moreover, the execution time of the BP-BEC algorithm is also evaluated, and results show that the convergence speed of the proposed algorithm has an insignificant effect on real-time localization.

  13. Reduction of digital errors of digital charge division type position-sensitive detectors

    International Nuclear Information System (INIS)

    Uritani, A.; Yoshimura, K.; Takenaka, Y.; Mori, C.

    1994-01-01

    It is well known that ''digital errors'', i.e. differential non-linearity, appear in a position profile of radiation interactions when the profile is obtained with a digital charge-division-type position-sensitive detector. Two methods are presented to reduce the digital errors. They are the methods using logarithmic amplifiers and a weighting function. The validities of these two methods have been evaluated mainly by computer simulation. These methods can considerably reduce the digital errors. The best results are obtained when both methods are applied. ((orig.))

  14. Comparing Knee Joint Position Sense in Patellofemoral Pain and Healthy Futsal Women

    Directory of Open Access Journals (Sweden)

    Negar Kooroshfar

    2017-03-01

    Full Text Available Background: Proprioception, or joint position sense, probably plays an important role in joint function. A number of studies have shown that proper joint position sense can decrease the risk of injuries in sports. It is not very clear how patellofemoral pain syndrome (PFPS can affect athletes joint position sense (JPS. Regarding the importance of proper joint position sense for movement performance and injury prevention in athletes, the aim of this study was to evaluate knee JPS in athletes with PFPS and compare it with asymptomatic individuals under non-weight bearing (sitting conditions. Methods: The study design was comparative in which 15 patients and 15 healthy athletes participated. JPS was evaluated by active and passive replication of knee angles for 30, 45 and 60° of knee flexion target angle while visual cues were eliminated. Each test was repeated three times. By subtracting the test angle from the replicated angle, the absolute error was calculated as a dependent variable. T-statistical test was used to compare data between two groups and P value of 0.05 was considered as the level of statistical significance. Results: No significant difference (P<0.05 in active (A and passive (P knee JPS was found between two groups for three (30°, p-value (A =0.79, P=0.68, 45°, P value (A=0.12, P=0.54 and 60°, P value (A=0.74, P=0.71 target angles. Conclusion: According to results, both groups had the same JPS ability, it seems PFPS does not affect the knee JPS at least in athlete cases. It would be possible that deficiency of JPS compensated for the physical activity or on the other hand, maybe pain intensity was not high enough to interfere with JPS accuracy. According to our results, PFPS doesn’t reduce IPS but further investigation is needed to disclose if other factors such as skill

  15. Relationship between Joint Position Sense, Force Sense, and Muscle Strength and the Impact of Gymnastic Training on Proprioception

    Directory of Open Access Journals (Sweden)

    Bartłomiej Niespodziński

    2018-01-01

    Full Text Available The aims of this study were (1 to assess the relationship between joint position (JPS and force sense (FS and muscle strength (MS and (2 to evaluate the impact of long-term gymnastic training on particular proprioception aspects and their correlations. 17 elite adult gymnasts and 24 untrained, matched controls performed an active reproduction (AR and passive reproduction (PR task and a force reproduction (FR task at the elbow joint. Intergroup differences and the relationship between JPS, FS, and MS were evaluated. While there was no difference in AR or PR between groups, absolute error in the control group was higher during the PR task (7.15 ± 2.72° than during the AR task (3.1 ± 1.93°. Mean relative error in the control group was 61% higher in the elbow extensors than in the elbow flexors during 50% FR, while the gymnast group had similar results in both reciprocal muscles. There was no linear correlation between JPS and FS in either group; however, FR was negatively correlated with antagonist MS. In conclusion, this study found no evidence for a relationship between the accuracy of FS and JPS at the elbow joint. Long-term gymnastic training improves the JPS and FS of the elbow extensors.

  16. 2D position sensitive microstrip sensors with charge division along the strip Studies on the position measurement error

    CERN Document Server

    Bassignana, D; Fernandez, M; Jaramillo, R; Lozano, M; Munoz, F.J; Pellegrini, G; Quirion, D; Vila, I; Vitorero, F

    2013-01-01

    Position sensitivity in semiconductor detectors of ionizing radiation is usually achieved by the segmentation of the sensing diode junction in many small sensing elements read out separately as in the case of conventional microstrips and pixel detectors. Alternatively, position sensitivity can be obtained by splitting the ionization signal collected by one single electrode amongst more than one readout channel with the ratio of the collected charges depending on the position where the signal was primary generated. Following this later approach, we implemented the charge division method in a conventional microstrip detector to obtain position sensitivity along the strip. We manufactured a proofof-concept demonstrator where the conventional aluminum electrodes were replaced by slightly resistive electrodes made of strongly doped poly-crystalline silicon and being readout at both strip ends. Here, we partially summarize the laser characterization of this first proof-of-concept demonstrator with special emphasis ...

  17. Analysis of positioning errors in radiotherapy; Analyse des erreurs de positionnement en radiotherapie

    Energy Technology Data Exchange (ETDEWEB)

    Josset-Gaudaire, S.; Lisbona, A.; Llagostera, C.; Delpon, G.; Chiavassa, S.; Brunet, G. [Service de physique medicale, ICO Rene-Gauducheau, Saint Herblain (France); Rousset, S.; Nerriere, E.; Leblanc, M. [Service de radiotherapie, ICO Rene-Gauducheau, Saint Herblain (France)

    2011-10-15

    Within the frame of a study of control imagery management in radiotherapy, the authors report the study of positioning errors associated with control imagery in order to give an overview of practice and to help the adjustment or definition of action levels for clinical practice. Twenty groups of patients have been defined by considering tumour locations (head, ENT, thorax, breast, abdomen, and pelvis), treatment positions, immobilization systems and imagery systems. Positioning errors have thus been analyzed for 340 patients. Aspects and practice to be improved are identified. Short communication

  18. Performance of muon reconstruction including Alignment Position Errors for 2016 Collision Data

    CERN Document Server

    CMS Collaboration

    2016-01-01

    From 2016 Run muon reconstruction is using non-zero Alignment Position Errors to account for the residual uncertainties of muon chambers' positions. Significant improvements are obtained in particular for the startup phase after opening/closing the muon detector. Performance results are presented for real data and MC simulations, related to both the offline reconstruction and the High-Level Trigger.

  19. Consonant acquisition: a first approach to the distribution of errors in four positions in the word

    Directory of Open Access Journals (Sweden)

    Silvia Llach

    2012-12-01

    Full Text Available The goal of this study is to describe the behavior of errors in two types of onsets (initial and intervocalic and two types of codas (in the middle and end of the word in order to determine if any of these positions are more prone to specific types of errors than the others.We have looked into the errors that are frequently produced in these four contexts during the acquisition of consonant sounds in the Catalan language. The data were taken from a study on the acquisition of consonants in Catalan, carried out on 90 children between the ages of 3 and 5 years from several kindergarten schools. The results do show that there are characteristic errors depending on the position within the word.

  20. Compensation for positioning error of industrial robot for flexible vision measuring system

    Science.gov (United States)

    Guo, Lei; Liang, Yajun; Song, Jincheng; Sun, Zengyu; Zhu, Jigui

    2013-01-01

    Positioning error of robot is a main factor of accuracy of flexible coordinate measuring system which consists of universal industrial robot and visual sensor. Present compensation methods for positioning error based on kinematic model of robot have a significant limitation that it isn't effective in the whole measuring space. A new compensation method for positioning error of robot based on vision measuring technique is presented. One approach is setting global control points in measured field and attaching an orientation camera to vision sensor. Then global control points are measured by orientation camera to calculate the transformation relation from the current position of sensor system to global coordinate system and positioning error of robot is compensated. Another approach is setting control points on vision sensor and two large field cameras behind the sensor. Then the three dimensional coordinates of control points are measured and the pose and position of sensor is calculated real-timely. Experiment result shows the RMS of spatial positioning is 3.422mm by single camera and 0.031mm by dual cameras. Conclusion is arithmetic of single camera method needs to be improved for higher accuracy and accuracy of dual cameras method is applicable.

  1. The method to evaluate the position error in graphic positioning technology

    Institute of Scientific and Technical Information of China (English)

    Huiqing Lu(卢慧卿); Baoguang Wang(王宝光); Lishuang Liu(刘力双); Yabiao Li(李亚标)

    2004-01-01

    In the measurement of automobile body-in-white, it has been widely studied to position the two dimensional(2D)visual sensors with high precision. In this paper a graphic positioning method is proposed,a hollow tetrahedron is used for a positioning target to replace all the edges of a standard automobile body.A 2D visual sensor can be positioned through adjusting two triangles to be superposed on a screen of the computer, so it is very important to evaluate the superposition precision of the two triangles. Several methods are discussed and the least square method is adopted at last, it makes the adjustment more easy and intuitive with high precision.

  2. Circular Array of Magnetic Sensors for Current Measurement: Analysis for Error Caused by Position of Conductor.

    Science.gov (United States)

    Yu, Hao; Qian, Zheng; Liu, Huayi; Qu, Jiaqi

    2018-02-14

    This paper analyzes the measurement error, caused by the position of the current-carrying conductor, of a circular array of magnetic sensors for current measurement. The circular array of magnetic sensors is an effective approach for AC or DC non-contact measurement, as it is low-cost, light-weight, has a large linear range, wide bandwidth, and low noise. Especially, it has been claimed that such structure has excellent reduction ability for errors caused by the position of the current-carrying conductor, crosstalk current interference, shape of the conduction cross-section, and the Earth's magnetic field. However, the positions of the current-carrying conductor-including un-centeredness and un-perpendicularity-have not been analyzed in detail until now. In this paper, for the purpose of having minimum measurement error, a theoretical analysis has been proposed based on vector inner and exterior product. In the presented mathematical model of relative error, the un-center offset distance, the un-perpendicular angle, the radius of the circle, and the number of magnetic sensors are expressed in one equation. The comparison of the relative error caused by the position of the current-carrying conductor between four and eight sensors is conducted. Tunnel magnetoresistance (TMR) sensors are used in the experimental prototype to verify the mathematical model. The analysis results can be the reference to design the details of the circular array of magnetic sensors for current measurement in practical situations.

  3. Evaluation of positioning errors of the patient using cone beam CT megavoltage; Evaluacion de errores de posicionamiento del paciente mediante Cone Beam CT de megavoltaje

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Ruiz-Zorrilla, J.; Fernandez Leton, J. P.; Zucca Aparicio, D.; Perez Moreno, J. M.; Minambres Moro, A.

    2013-07-01

    Image-guided radiation therapy allows you to assess and fix the positioning of the patient in the treatment unit, thus reducing the uncertainties due to the positioning of the patient. This work assesses errors systematic and errors of randomness from the corrections made to a series of patients of different diseases through a protocol off line of cone beam CT (CBCT) megavoltage. (Author)

  4. Reduction in specimen labeling errors after implementation of a positive patient identification system in phlebotomy.

    Science.gov (United States)

    Morrison, Aileen P; Tanasijevic, Milenko J; Goonan, Ellen M; Lobo, Margaret M; Bates, Michael M; Lipsitz, Stuart R; Bates, David W; Melanson, Stacy E F

    2010-06-01

    Ensuring accurate patient identification is central to preventing medical errors, but it can be challenging. We implemented a bar code-based positive patient identification system for use in inpatient phlebotomy. A before-after design was used to evaluate the impact of the identification system on the frequency of mislabeled and unlabeled samples reported in our laboratory. Labeling errors fell from 5.45 in 10,000 before implementation to 3.2 in 10,000 afterward (P = .0013). An estimated 108 mislabeling events were prevented by the identification system in 1 year. Furthermore, a workflow step requiring manual preprinting of labels, which was accompanied by potential labeling errors in about one quarter of blood "draws," was removed as a result of the new system. After implementation, a higher percentage of patients reported having their wristband checked before phlebotomy. Bar code technology significantly reduced the rate of specimen identification errors.

  5. Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators

    International Nuclear Information System (INIS)

    Flammia, Steven T; Gross, David; Liu, Yi-Kai; Eisert, Jens

    2012-01-01

    Intuitively, if a density operator has small rank, then it should be easier to estimate from experimental data, since in this case only a few eigenvectors need to be learned. We prove two complementary results that confirm this intuition. Firstly, we show that a low-rank density matrix can be estimated using fewer copies of the state, i.e. the sample complexity of tomography decreases with the rank. Secondly, we show that unknown low-rank states can be reconstructed from an incomplete set of measurements, using techniques from compressed sensing and matrix completion. These techniques use simple Pauli measurements, and their output can be certified without making any assumptions about the unknown state. In this paper, we present a new theoretical analysis of compressed tomography, based on the restricted isometry property for low-rank matrices. Using these tools, we obtain near-optimal error bounds for the realistic situation where the data contain noise due to finite statistics, and the density matrix is full-rank with decaying eigenvalues. We also obtain upper bounds on the sample complexity of compressed tomography, and almost-matching lower bounds on the sample complexity of any procedure using adaptive sequences of Pauli measurements. Using numerical simulations, we compare the performance of two compressed sensing estimators—the matrix Dantzig selector and the matrix Lasso—with standard maximum-likelihood estimation (MLE). We find that, given comparable experimental resources, the compressed sensing estimators consistently produce higher fidelity state reconstructions than MLE. In addition, the use of an incomplete set of measurements leads to faster classical processing with no loss of accuracy. Finally, we show how to certify the accuracy of a low-rank estimate using direct fidelity estimation, and describe a method for compressed quantum process tomography that works for processes with small Kraus rank and requires only Pauli eigenstate preparations

  6. Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position

    International Nuclear Information System (INIS)

    Malinowski, Kathleen T.; McAvoy, Thomas J.; George, Rohini; Dieterich, Sonja; D'Souza, Warren D.

    2012-01-01

    Purpose: To investigate the effect of tumor site, measurement precision, tumor–surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor–surrogate correlation and the precision in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor–surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3–3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.

  7. Mitigating Errors in External Respiratory Surrogate-Based Models of Tumor Position

    Energy Technology Data Exchange (ETDEWEB)

    Malinowski, Kathleen T. [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States); McAvoy, Thomas J. [Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States); Department of Chemical and Biomolecular Engineering and Institute of Systems Research, University of Maryland, College Park, MD (United States); George, Rohini [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Dieterich, Sonja [Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA (United States); D' Souza, Warren D., E-mail: wdsou001@umaryland.edu [Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, MD (United States); Fischell Department of Bioengineering, University of Maryland, College Park, MD (United States)

    2012-04-01

    Purpose: To investigate the effect of tumor site, measurement precision, tumor-surrogate correlation, training data selection, model design, and interpatient and interfraction variations on the accuracy of external marker-based models of tumor position. Methods and Materials: Cyberknife Synchrony system log files comprising synchronously acquired positions of external markers and the tumor from 167 treatment fractions were analyzed. The accuracy of Synchrony, ordinary-least-squares regression, and partial-least-squares regression models for predicting the tumor position from the external markers was evaluated. The quantity and timing of the data used to build the predictive model were varied. The effects of tumor-surrogate correlation and the precision in both the tumor and the external surrogate position measurements were explored by adding noise to the data. Results: The tumor position prediction errors increased during the duration of a fraction. Increasing the training data quantities did not always lead to more accurate models. Adding uncorrelated noise to the external marker-based inputs degraded the tumor-surrogate correlation models by 16% for partial-least-squares and 57% for ordinary-least-squares. External marker and tumor position measurement errors led to tumor position prediction changes 0.3-3.6 times the magnitude of the measurement errors, varying widely with model algorithm. The tumor position prediction errors were significantly associated with the patient index but not with the fraction index or tumor site. Partial-least-squares was as accurate as Synchrony and more accurate than ordinary-least-squares. Conclusions: The accuracy of surrogate-based inferential models of tumor position was affected by all the investigated factors, except for the tumor site and fraction index.

  8. Clinical measuring system for the form and position errors of circular workpieces using optical fiber sensors

    Science.gov (United States)

    Tan, Jiubin; Qiang, Xifu; Ding, Xuemei

    1991-08-01

    Optical sensors have two notable advantages in modern precision measurement. One is that they can be used in nondestructive measurement because the sensors need not touch the surfaces of workpieces in measuring. The other one is that they can strongly resist electromagnetic interferences, vibrations, and noises, so they are suitable to be used in machining sites. But the drift of light intensity and the changing of the reflection coefficient at different measuring positions of a workpiece may have great influence on measured results. To solve the problem, a spectroscopic differential characteristic compensating method is put forward. The method can be used effectively not only in compensating the measuring errors resulted from the drift of light intensity but also in eliminating the influence to measured results caused by the changing of the reflection coefficient. Also, the article analyzes the possibility of and the means of separating data errors of a clinical measuring system for form and position errors of circular workpieces.

  9. Error characterization methods for surface soil moisture products from remote sensing

    International Nuclear Information System (INIS)

    Doubková, M.

    2012-01-01

    To support the operational use of Synthetic Aperture Radar (SAR) earth observation systems, the European Space Agency (ESA) is developing Sentinel-1 radar satellites operating in C-band. Much like its SAR predecessors (Earth Resource Satellite, ENVISAT, and RADARSAT), the Sentinel-1 will operate at a medium spatial resolution (ranging from 5 to 40 m), but with a greatly improved revisit period, especially over Europe (∼2 days). Given the planned high temporal sampling and the operational configuration Sentinel-1 is expected to be beneficial for operational monitoring of dynamic processes in hydrology and phenology. The benefit of a C-band SAR monitoring service in hydrology has already been demonstrated within the scope of the Soil Moisture for Hydrometeorologic Applications (SHARE) project using data from the Global Mode (GM) of the Advanced Synthetic Aperture Radar (ASAR). To fully exploit the potential of the SAR soil moisture products, well characterized error needs to be provided with the products. Understanding errors of remotely sensed surface soil moisture (SSM) datasets was indispensible for their application in models, for extractions of blended SSM products, as well as for their usage in evaluation of other soil moisture datasets. This thesis has several objectives. First, it provides the basics and state of the art methods for evaluating measures of SSM, including both the standard (e.g. Root Mean Square Error, Correlation coefficient) and the advanced (e.g. Error propagation, Triple collocation) evaluation measures. A summary of applications of soil moisture datasets is presented and evaluation measures are suggested for each application according to its requirement on the dataset quality. The evaluation of the Advanced Synthetic Aperture Radar (ASAR) Global Mode (GM) SSM using the standard and advanced evaluation measures comprises a second objective of the work. To achieve the second objective, the data from the Australian Water Assessment System

  10. Rail-guided robotic end-effector position error due to rail compliance and ship motion

    NARCIS (Netherlands)

    Borgerink, Dian; Stegenga, J.; Brouwer, Dannis Michel; Woertche, H.J.; Stramigioli, Stefano

    2014-01-01

    A rail-guided robotic system is currently being designed for the inspection of ballast water tanks in ships. This robotic system will manipulate sensors toward the interior walls of the tank. In this paper, the influence of rail compliance on the end-effector position error due to ship movement is

  11. Compensation of position errors in passivity based teleoperation over packet switched communication networks

    NARCIS (Netherlands)

    Secchi, C; Stramigioli, Stefano; Fantuzzi, C.

    Because of the use of scattering based communication channels, passivity based telemanipulation systems can be subject to a steady state position error between master and slave robots. In this paper, we consider the case in which the passive master and slave sides communicate through a packet

  12. Robust Adaptive Beamforming with Sensor Position Errors Using Weighted Subspace Fitting-Based Covariance Matrix Reconstruction.

    Science.gov (United States)

    Chen, Peng; Yang, Yixin; Wang, Yong; Ma, Yuanliang

    2018-05-08

    When sensor position errors exist, the performance of recently proposed interference-plus-noise covariance matrix (INCM)-based adaptive beamformers may be severely degraded. In this paper, we propose a weighted subspace fitting-based INCM reconstruction algorithm to overcome sensor displacement for linear arrays. By estimating the rough signal directions, we construct a novel possible mismatched steering vector (SV) set. We analyze the proximity of the signal subspace from the sample covariance matrix (SCM) and the space spanned by the possible mismatched SV set. After solving an iterative optimization problem, we reconstruct the INCM using the estimated sensor position errors. Then we estimate the SV of the desired signal by solving an optimization problem with the reconstructed INCM. The main advantage of the proposed algorithm is its robustness against SV mismatches dominated by unknown sensor position errors. Numerical examples show that even if the position errors are up to half of the assumed sensor spacing, the output signal-to-interference-plus-noise ratio is only reduced by 4 dB. Beam patterns plotted using experiment data show that the interference suppression capability of the proposed beamformer outperforms other tested beamformers.

  13. Positive Beliefs about Errors as an Important Element of Adaptive Individual Dealing with Errors during Academic Learning

    Science.gov (United States)

    Tulis, Maria; Steuer, Gabriele; Dresel, Markus

    2018-01-01

    Research on learning from errors gives reason to assume that errors provide a high potential to facilitate deep learning if students are willing and able to take these learning opportunities. The first aim of this study was to analyse whether beliefs about errors as learning opportunities can be theoretically and empirically distinguished from…

  14. Position error compensation via a variable reluctance sensor applied to a Hybrid Vehicle Electric machine.

    Science.gov (United States)

    Bucak, Ihsan Ömür

    2010-01-01

    In the automotive industry, electromagnetic variable reluctance (VR) sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV) system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  15. Position Error Compensation via a Variable Reluctance Sensor Applied to a Hybrid Vehicle Electric Machine

    Directory of Open Access Journals (Sweden)

    İhsan Ömür Bucak

    2010-03-01

    Full Text Available In the automotive industry, electromagnetic variable reluctance (VR sensors have been extensively used to measure engine position and speed through a toothed wheel mounted on the crankshaft. In this work, an application that already uses the VR sensing unit for engine and/or transmission has been chosen to infer, this time, the indirect position of the electric machine in a parallel Hybrid Electric Vehicle (HEV system. A VR sensor has been chosen to correct the position of the electric machine, mainly because it may still become critical in the operation of HEVs to avoid possible vehicle failures during the start-up and on-the-road, especially when the machine is used with an internal combustion engine. The proposed method uses Chi-square test and is adaptive in a sense that it derives the compensation factors during the shaft operation and updates them in a timely fashion.

  16. Quantitative analysis of the errors positioning of a multi leaf collimator for volumetric arcoterapia treatments

    International Nuclear Information System (INIS)

    Gomez Gonzalez, N.; Garcia Repiso, S.; Martin Rincon, C.; Cons Perez, N.; Saez Beltran, M.; Delgado Aparicio, J. M.; Perez alvarez, M. E.; Verde Velasco, J. M.; Ramos Pacho, J. A.; Sena Espinel, E. de

    2013-01-01

    The precision in the positioning of the multi leaf collimation system of a linear accelerator is critical, especially in treatments of IMRT, where small mistakes can cause relevant dosimetry discrepancies regarding the calculated plan. To assess the accuracy and repeatability of the blades positioning can be used controls, including the one known as fence test whose image pattern allows you to find anomalies in a visual way. The objective of this study is to develop a method which allows to quantify the positioning errors of the multi leaf collimator from this test. (Author)

  17. Age-Related Decline of Wrist Position Sense and its Relationship to Specific Physical Training

    Directory of Open Access Journals (Sweden)

    Ann Van de Winckel

    2017-11-01

    Full Text Available Perception of limb and body positions is known as proprioception. Sensory feedback, especially from proprioceptive receptors, is essential for motor control. Aging is associated with a decline in position sense at proximal joints, but there is inconclusive evidence of distal joints being equally affected by aging. In addition, there is initial evidence that physical activity attenuates age-related decline in proprioception. Our objectives were, first, to establish wrist proprioceptive acuity in a large group of seniors and compare their perception to young adults, and second, to determine if specific types of training or regular physical activity are associated with preserved wrist proprioception. We recruited community-dwelling seniors (n = 107, mean age, 70 ± 5 years, range, 65–84 years without cognitive decline (Mini Mental State Examination-brief version ≥13/16 and young adult students (n = 51, mean age, 20 ± 1 years, range, 19–26 years. Participants performed contralateral and ipsilateral wrist position sense matching tasks with a bimanual wrist manipulandum to a 15° flexion reference position. Systematic error or proprioceptive bias was computed as the mean difference between matched and reference position. The respective standard deviation over five trials constituted a measure of random error or proprioceptive precision. Current levels of physical activity and previous sport, musical, or dance training were obtained through a questionnaire. We employed longitudinal mixed effects linear models to calculate the effects of trial number, sex, type of matching task and age on wrist proprioceptive bias and precision. The main results were that relative proprioceptive bias was greater in older when compared to young adults (mean difference: 36% ipsilateral, 88% contralateral, p < 0.01. Proprioceptive precision for contralateral but not for ipsilateral matching was smaller in older than in young adults (mean difference: 38

  18. Observations of geographically correlated orbit errors for TOPEX/Poseidon using the global positioning system

    Science.gov (United States)

    Christensen, E. J.; Haines, B. J.; Mccoll, K. C.; Nerem, R. S.

    1994-01-01

    We have compared Global Positioning System (GPS)-based dynamic and reduced-dynamic TOPEX/Poseidon orbits over three 10-day repeat cycles of the ground-track. The results suggest that the prelaunch joint gravity model (JGM-1) introduces geographically correlated errors (GCEs) which have a strong meridional dependence. The global distribution and magnitude of these GCEs are consistent with a prelaunch covariance analysis, with estimated and predicted global rms error statistics of 2.3 and 2.4 cm rms, respectively. Repeating the analysis with the post-launch joint gravity model (JGM-2) suggests that a portion of the meridional dependence observed in JGM-1 still remains, with global rms error of 1.2 cm.

  19. Positive phase error from parallel conductance in tetrapolar bio-impedance measurements and its compensation

    Directory of Open Access Journals (Sweden)

    Ivan M Roitt

    2010-01-01

    Full Text Available Bioimpedance measurements are of great use and can provide considerable insight into biological processes.  However, there are a number of possible sources of measurement error that must be considered.  The most dominant source of error is found in bipolar measurements where electrode polarisation effects are superimposed on the true impedance of the sample.  Even with the tetrapolar approach that is commonly used to circumvent this issue, other errors can persist. Here we characterise the positive phase and rise in impedance magnitude with frequency that can result from the presence of any parallel conductive pathways in the measurement set-up.  It is shown that fitting experimental data to an equivalent electrical circuit model allows for accurate determination of the true sample impedance as validated through finite element modelling (FEM of the measurement chamber.  Finally, the model is used to extract dispersion information from cell cultures to characterise their growth.

  20. Early math and reading achievement are associated with the error positivity

    Directory of Open Access Journals (Sweden)

    Matthew H. Kim

    2016-12-01

    Full Text Available Executive functioning (EF and motivation are associated with academic achievement and error-related ERPs. The present study explores whether early academic skills predict variability in the error-related negativity (ERN and error positivity (Pe. Data from 113 three- to seven-year-old children in a Go/No-Go task revealed that stronger early reading and math skills predicted a larger Pe. Closer examination revealed that this relation was quadratic and significant for children performing at or near grade level, but not significant for above-average achievers. Early academics did not predict the ERN. These findings suggest that the Pe – which reflects individual differences in motivational processes as well as attention – may be associated with early academic achievement.

  1. SU-E-T-377: Inaccurate Positioning Might Introduce Significant MapCheck Calibration Error in Flatten Filter Free Beams

    International Nuclear Information System (INIS)

    Wang, S; Chao, C; Chang, J

    2014-01-01

    Purpose: This study investigates the calibration error of detector sensitivity for MapCheck due to inaccurate positioning of the device, which is not taken into account by the current commercial iterative calibration algorithm. We hypothesize the calibration is more vulnerable to the positioning error for the flatten filter free (FFF) beams than the conventional flatten filter flattened beams. Methods: MapCheck2 was calibrated with 10MV conventional and FFF beams, with careful alignment and with 1cm positioning error during calibration, respectively. Open fields of 37cmx37cm were delivered to gauge the impact of resultant calibration errors. The local calibration error was modeled as a detector independent multiplication factor, with which propagation error was estimated with positioning error from 1mm to 1cm. The calibrated sensitivities, without positioning error, were compared between the conventional and FFF beams to evaluate the dependence on the beam type. Results: The 1cm positioning error leads to 0.39% and 5.24% local calibration error in the conventional and FFF beams respectively. After propagating to the edges of MapCheck, the calibration errors become 6.5% and 57.7%, respectively. The propagation error increases almost linearly with respect to the positioning error. The difference of sensitivities between the conventional and FFF beams was small (0.11 ± 0.49%). Conclusion: The results demonstrate that the positioning error is not handled by the current commercial calibration algorithm of MapCheck. Particularly, the calibration errors for the FFF beams are ~9 times greater than those for the conventional beams with identical positioning error, and a small 1mm positioning error might lead to up to 8% calibration error. Since the sensitivities are only slightly dependent of the beam type and the conventional beam is less affected by the positioning error, it is advisable to cross-check the sensitivities between the conventional and FFF beams to detect

  2. Direct focusing error correction with ring-wide TBT beam position data

    International Nuclear Information System (INIS)

    Yang, M.J.

    2011-01-01

    Turn-By-Turn (TBT) betatron oscillation data is a very powerful tool in studying machine optics. Hundreds and thousands of turns of free oscillations are taken in just few tens of milliseconds. With beam covering all positions and angles at every location TBT data can be used to diagnose focusing errors almost instantly. This paper describes a new approach that observes focusing error collectively over all available TBT data to find the optimized quadrupole strength, one location at a time. Example will be shown and other issues will be discussed. The procedure presented clearly has helped to reduce overall deviations significantly, with relative ease. Sextupoles, being a permanent feature of the ring, will need to be incorporated into the model. While cumulative effect from all sextupoles around the ring may be negligible on turn-to-turn basis it is not so in this transfer line analysis. It should be noted that this procedure is not limited to looking for quadrupole errors. By modifying the target of minimization it could in principle be used to look for skew quadrupole errors and sextupole errors as well.

  3. Cervical Joint Position Sense in Hypobaric Conditions: A Randomized Double-Blind Controlled Trial.

    Science.gov (United States)

    Bagaianu, Diana; Van Tiggelen, Damien; Duvigneaud, N; Stevens, Veerle; Schroyen, Danny; Vissenaeken, Dirk; D'Hondt, Gino; Pitance, Laurent

    2017-09-01

    Well-adapted motor actions require intact and well-integrated information from all of the sensory systems, specifically the visual, vestibular, and somatosensory systems, including proprioception. Proprioception is involved in the sensorimotor control by providing the central nervous system with an updated body schema of the biomechanical and spatial properties of the body parts. With regard to the cervical spine, proprioceptive information from joint and muscle mechanoreceptors is integrated with vestibular and visual feedback to control head position, head orientation, and whole body posture. Postural control is highly complex and proprioception from joints is an important contributor to the system. Altitude has been used as a paradigm to study the mechanisms of postural control. Determining the mechanisms of postural control that are affected by moderate altitude is important as unpressurized aircrafts routinely operate at altitudes where hypoxia may be a concern. Deficits in motor performance arise when the reliance on proprioceptive feedback is abolished either experimentally or because of a disorder. As pilots require good neck motor control to counteract the weight of their head gear and proprioceptive information plays an important role in this process, the aim of this study was to determine if hypoxia at moderate altitudes would impair proprioception measured by joint position sense of the cervical spine in healthy subjects. Thirty-six healthy subjects (Neck Disability Index environment, a hypobaric chamber was used to simulate artificial moderate altitude. Head repositioning error was measured by asking the subject to perform a head-to-neutral task after submaximal flexion-extension and right/left rotation movements, and a head-to-target task, in which the subjects had to return to a 30° right and left rotation position. Exposure to artificial acute moderate altitude of 7,000 feet had no significant effects on cervical joint position sense measured by

  4. A new stochastic model considering satellite clock interpolation errors in precise point positioning

    Science.gov (United States)

    Wang, Shengli; Yang, Fanlin; Gao, Wang; Yan, Lizi; Ge, Yulong

    2018-03-01

    Precise clock products are typically interpolated based on the sampling interval of the observational data when they are used for in precise point positioning. However, due to the occurrence of white noise in atomic clocks, a residual component of such noise will inevitable reside within the observations when clock errors are interpolated, and such noise will affect the resolution of the positioning results. In this paper, which is based on a twenty-one-week analysis of the atomic clock noise characteristics of numerous satellites, a new stochastic observation model that considers satellite clock interpolation errors is proposed. First, the systematic error of each satellite in the IGR clock product was extracted using a wavelet de-noising method to obtain the empirical characteristics of atomic clock noise within each clock product. Then, based on those empirical characteristics, a stochastic observation model was structured that considered the satellite clock interpolation errors. Subsequently, the IGR and IGS clock products at different time intervals were used for experimental validation. A verification using 179 stations worldwide from the IGS showed that, compared with the conventional model, the convergence times using the stochastic model proposed in this study were respectively shortened by 4.8% and 4.0% when the IGR and IGS 300-s-interval clock products were used and by 19.1% and 19.4% when the 900-s-interval clock products were used. Furthermore, the disturbances during the initial phase of the calculation were also effectively improved.

  5. Characterization of positional errors and their influence on micro four-point probe measurements on a 100 nm Ru film

    DEFF Research Database (Denmark)

    Kjær, Daniel; Hansen, Ole; Østerberg, Frederik Westergaard

    2015-01-01

    Thin-film sheet resistance measurements at high spatial resolution and on small pads are important and can be realized with micrometer-scale four-point probes. As a result of the small scale the measurements are affected by electrode position errors. We have characterized the electrode position...... errors in measurements on Ru thin film using an Au-coated 12-point probe. We show that the standard deviation of the static electrode position error is on the order of 5 nm, which significantly affects the results of single configuration measurements. Position-error-corrected dual......-configuration measurements, however, are shown to eliminate the effect of position errors to a level limited either by electrical measurement noise or dynamic position errors. We show that the probe contact points remain almost static on the surface during the measurements (measured on an atomic scale) with a standard...

  6. Analysis of the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery☆

    Science.gov (United States)

    Arba-Mosquera, Samuel; Aslanides, Ioannis M.

    2012-01-01

    Purpose To analyze the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery. Methods A comprehensive model, which directly considers eye movements, including saccades, vestibular, optokinetic, vergence, and miniature, as well as, eye-tracker acquisition rate, eye-tracker latency time, scanner positioning time, laser firing rate, and laser trigger delay have been developed. Results Eye-tracker acquisition rates below 100 Hz correspond to pulse positioning errors above 1.5 mm. Eye-tracker latency times to about 15 ms correspond to pulse positioning errors of up to 3.5 mm. Scanner positioning times to about 9 ms correspond to pulse positioning errors of up to 2 mm. Laser firing rates faster than eye-tracker acquisition rates basically duplicate pulse-positioning errors. Laser trigger delays to about 300 μs have minor to no impact on pulse-positioning errors. Conclusions The proposed model can be used for comparison of laser systems used for ablation processes. Due to the pseudo-random nature of eye movements, positioning errors of single pulses are much larger than observed decentrations in the clinical settings. There is no single parameter that ‘alone’ minimizes the positioning error. It is the optimal combination of the several parameters that minimizes the error. The results of this analysis are important to understand the limitations of correcting very irregular ablation patterns.

  7. Did I Do That? Expectancy Effects of Brain Stimulation on Error-related Negativity and Sense of Agency.

    Science.gov (United States)

    Hoogeveen, Suzanne; Schjoedt, Uffe; van Elk, Michiel

    2018-06-19

    This study examines the effects of expected transcranial stimulation on the error(-related) negativity (Ne or ERN) and the sense of agency in participants who perform a cognitive control task. Placebo transcranial direct current stimulation was used to elicit expectations of transcranially induced cognitive improvement or impairment. The improvement/impairment manipulation affected both the Ne/ERN and the sense of agency (i.e., whether participants attributed errors to oneself or the brain stimulation device): Expected improvement increased the ERN in response to errors compared with both impairment and control conditions. Expected impairment made participants falsely attribute errors to the transcranial stimulation. This decrease in sense of agency was correlated with a reduced ERN amplitude. These results show that expectations about transcranial stimulation impact users' neural response to self-generated errors and the attribution of responsibility-especially when actions lead to negative outcomes. We discuss our findings in relation to predictive processing theory according to which the effect of prior expectations on the ERN reflects the brain's attempt to generate predictive models of incoming information. By demonstrating that induced expectations about transcranial stimulation can have effects at a neural level, that is, beyond mere demand characteristics, our findings highlight the potential for placebo brain stimulation as a promising tool for research.

  8. The impact of whole-hand vibration exposure on the sense of angular position about the wrist joint.

    Science.gov (United States)

    Radovanovic, Sasa; Day, Scott Jason; Johansson, Håkan

    2006-02-01

    The purpose of this research is to determine the impact of whole-hand vibration on the capacity of subjects to identify previously presented positions of the hand in both wrist flexion and extension. In each movement direction, targets of 15 or 30 degrees were presented with an imposed passive movement from the start position. During the second imposed movement, subjects were required to identify when the target position had been reached. For the vibration condition, 15 s of whole-hand vibration exposure was repeated immediately prior to each target position trial. Proprioceptive capacity was assessed by comparing the identified angular position with the reference position-angular distance expressed in terms of absolute error (AE), constant error (CE), and variable error (VE). For three of the four target positions (15 and 30 degrees flexion and 15 degrees extension), the absolute, constant, and VEs of target identification were insensitive to vibration, whereas for the 30 degrees extension target, both the absolute and CE were significantly different before and after the vibration application, showing the subjects overshooting previously presented target position. All three error measures were larger for the long targets than the short targets. Short-duration exposure to whole-hand vibration is insufficient to compromise post-vibration position sense in the wrist joint, except near the end range of joint movement in wrist extension. Complement contribution of different proprioceptive receptors (muscle, joint, and skin receptors) seems to be crucial for accuracy to reproduce passive movements, since the capacity of any individual class of receptor to deliver information about movement and position of the limbs is limited.

  9. Cryotherapy and Joint Position Sense in Healthy Participants: A Systematic Review

    Science.gov (United States)

    Costello, Joseph T.; Donnelly, Alan E.

    2010-01-01

    Abstract Objective: To (1) search the English-language literature for original research addressing the effect of cryotherapy on joint position sense (JPS) and (2) make recommendations regarding how soon healthy athletes can safely return to participation after cryotherapy. Data Sources: We performed an exhaustive search for original research using the AMED, CINAHL, MEDLINE, and SportDiscus databases from 1973 to 2009 to gather information on cryotherapy and JPS. Key words used were cryotherapy and proprioception, cryotherapy and joint position sense, cryotherapy, and proprioception. Study Selection: The inclusion criteria were (1) the literature was written in English, (2) participants were human, (3) an outcome measure included JPS, (4) participants were healthy, and (5) participants were tested immediately after a cryotherapy application to a joint. Data Extraction: The means and SDs of the JPS outcome measures were extracted and used to estimate the effect size (Cohen d) and associated 95% confidence intervals for comparisons of JPS before and after a cryotherapy treatment. The numbers, ages, and sexes of participants in all 7 selected studies were also extracted. Data Synthesis: The JPS was assessed in 3 joints: ankle (n  =  2), knee (n  =  3), and shoulder (n  =  2). The average effect size for the 7 included studies was modest, with effect sizes ranging from −0.08 to 1.17, with a positive number representing an increase in JPS error. The average methodologic score of the included studies was 5.4/10 (range, 5–6) on the Physiotherapy Evidence Database scale. Conclusions: Limited and equivocal evidence is available to address the effect of cryotherapy on proprioception in the form of JPS. Until further evidence is provided, clinicians should be cautious when returning individuals to tasks requiring components of proprioceptive input immediately after a cryotherapy treatment. PMID:20446845

  10. Action planning and position sense in children with Developmental Coordination Disorder

    NARCIS (Netherlands)

    Adams, I.L.; Ferguson, G.D.; Lust, J.M.; Steenbergen, B.; Smits-Engelsman, B.C.M.

    2016-01-01

    The present study examined action planning and position sense in children with Developmental Coordination Disorder (DCD). Participants performed two action planning tasks, the sword task and the bar grasping task, and an active elbow matching task to examine position sense. Thirty children were

  11. The Effect of Antenna Position Errors on Redundant-Baseline Calibration of HERA

    Science.gov (United States)

    Orosz, Naomi; Dillon, Joshua; Ewall-Wice, Aaron; Parsons, Aaron; HERA Collaboration

    2018-01-01

    HERA (the Hydrogen Epoch of Reionization Array) is a large, highly-redundant radio interferometer in South Africa currently being built out to 350 14-m dishes. Its mission is to probe large scale structure during and prior to the epoch of reionization using the 21 cm hyperfine transition of neutral hydrogen. The array is designed to be calibrated using redundant baselines of known lengths. However, the dishes can deviate from ideal positions, with errors on the order of a few centimeters. This potentially increases foreground contamination of the 21 cm power spectrum in the cleanest part of Fourier space. The calibration algorithm treats groups of baselines that should be redundant, but are not due to position errors, as if they actually are. Accurate, precise calibration is critical because the foreground signals are 100,000 times stronger than the reionization signal. We explain the origin of this effect and discuss weighting strategies to mitigate it.

  12. Automatic detection of patient identification and positioning errors in radiotherapy treatment using 3D setup images

    OpenAIRE

    Jani, Shyam

    2015-01-01

    The success of modern radiotherapy treatment depends on the correct alignment of the radiation beams with the target region in the patient. In the conventional paradigm of image-guided radiation therapy, 2D or 3D setup images are taken immediately prior to treatment and are used by radiation therapy technologists to localize the patient to the same position as defined from the reference planning CT dataset. However, numerous reports in the literature have described errors during this step, wh...

  13. A machine learning approach to the accurate prediction of multi-leaf collimator positional errors

    Science.gov (United States)

    Carlson, Joel N. K.; Park, Jong Min; Park, So-Yeon; In Park, Jong; Choi, Yunseok; Ye, Sung-Joon

    2016-03-01

    Discrepancies between planned and delivered movements of multi-leaf collimators (MLCs) are an important source of errors in dose distributions during radiotherapy. In this work we used machine learning techniques to train models to predict these discrepancies, assessed the accuracy of the model predictions, and examined the impact these errors have on quality assurance (QA) procedures and dosimetry. Predictive leaf motion parameters for the models were calculated from the plan files, such as leaf position and velocity, whether the leaf was moving towards or away from the isocenter of the MLC, and many others. Differences in positions between synchronized DICOM-RT planning files and DynaLog files reported during QA delivery were used as a target response for training of the models. The final model is capable of predicting MLC positions during delivery to a high degree of accuracy. For moving MLC leaves, predicted positions were shown to be significantly closer to delivered positions than were planned positions. By incorporating predicted positions into dose calculations in the TPS, increases were shown in gamma passing rates against measured dose distributions recorded during QA delivery. For instance, head and neck plans with 1%/2 mm gamma criteria had an average increase in passing rate of 4.17% (SD  =  1.54%). This indicates that the inclusion of predictions during dose calculation leads to a more realistic representation of plan delivery. To assess impact on the patient, dose volumetric histograms (DVH) using delivered positions were calculated for comparison with planned and predicted DVHs. In all cases, predicted dose volumetric parameters were in closer agreement to the delivered parameters than were the planned parameters, particularly for organs at risk on the periphery of the treatment area. By incorporating the predicted positions into the TPS, the treatment planner is given a more realistic view of the dose distribution as it will truly be

  14. Reducing classification error of grassland overgrowth by combing low-density lidar acquisitions and optical remote sensing data

    Science.gov (United States)

    Pitkänen, T. P.; Käyhkö, N.

    2017-08-01

    Mapping structural changes in vegetation dynamics has, for a long time, been carried out using satellite images, orthophotos and, more recently, airborne lidar acquisitions. Lidar has established its position as providing accurate material for structure-based analyses but its limited availability, relatively short history, and lack of spectral information, however, are generally impeding the use of lidar data for change detection purposes. A potential solution in respect of detecting both contemporary vegetation structures and their previous trajectories is to combine lidar acquisitions with optical remote sensing data, which can substantially extend the coverage, span and spectral range needed for vegetation mapping. In this study, we tested the simultaneous use of a single low-density lidar data set, a series of Landsat satellite frames and two high-resolution orthophotos to detect vegetation succession related to grassland overgrowth, i.e. encroachment of woody plants into semi-natural grasslands. We built several alternative Random Forest models with different sets of variables and tested the applicability of respective data sources for change detection purposes, aiming at distinguishing unchanged grassland and woodland areas from overgrown grasslands. Our results show that while lidar alone provides a solid basis for indicating structural differences between grassland and woodland vegetation, and orthophoto-generated variables alone are better in detecting successional changes, their combination works considerably better than its respective parts. More specifically, a model combining all the used data sets reduces the total error from 17.0% to 11.0% and omission error of detecting overgrown grasslands from 56.9% to 31.2%, when compared to model constructed solely based on lidar data. This pinpoints the efficiency of the approach where lidar-generated structural metrics are combined with optical and multitemporal observations, providing a workable framework to

  15. Error Analysis System for Spacecraft Navigation Using the Global Positioning System (GPS)

    Science.gov (United States)

    Truong, S. H.; Hart, R. C.; Hartman, K. R.; Tomcsik, T. L.; Searl, J. E.; Bernstein, A.

    1997-01-01

    The Flight Dynamics Division (FDD) at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC) is currently developing improved space-navigation filtering algorithms to use the Global Positioning System (GPS) for autonomous real-time onboard orbit determination. In connection with a GPS technology demonstration on the Small Satellite Technology Initiative (SSTI)/Lewis spacecraft, FDD analysts and programmers have teamed with the GSFC Guidance, Navigation, and Control Branch to develop the GPS Enhanced Orbit Determination Experiment (GEODE) system. The GEODE system consists of a Kalman filter operating as a navigation tool for estimating the position, velocity, and additional states required to accurately navigate the orbiting Lewis spacecraft by using astrodynamic modeling and GPS measurements from the receiver. A parallel effort at the FDD is the development of a GPS Error Analysis System (GEAS) that will be used to analyze and improve navigation filtering algorithms during development phases and during in-flight calibration. For GEAS, the Kalman filter theory is extended to estimate the errors in position, velocity, and other error states of interest. The estimation of errors in physical variables at regular intervals will allow the time, cause, and effect of navigation system weaknesses to be identified. In addition, by modeling a sufficient set of navigation system errors, a system failure that causes an observed error anomaly can be traced and accounted for. The GEAS software is formulated using Object Oriented Design (OOD) techniques implemented in the C++ programming language on a Sun SPARC workstation. The Phase 1 of this effort is the development of a basic system to be used to evaluate navigation algorithms implemented in the GEODE system. This paper presents the GEAS mathematical methodology, systems and operations concepts, and software design and implementation. Results from the use of the basic system to evaluate

  16. Differential effects of galvanic vestibular stimulation on arm position sense in right- vs. left-handers.

    Science.gov (United States)

    Schmidt, Lena; Artinger, Frank; Stumpf, Oliver; Kerkhoff, Georg

    2013-04-01

    The human brain is organized asymmetrically in two hemispheres with different functional specializations. Left- and right-handers differ in many functional capacities and their anatomical representations. Right-handers often show a stronger functional lateralization than left-handers, the latter showing a more bilateral, symmetrical brain organization. Recent functional imaging evidence shows a different lateralization of the cortical vestibular system towards the side of the preferred hand in left- vs. right-handers as well. Since the vestibular system is involved in somatosensory processing and the coding of body position, vestibular stimulation should affect such capacities differentially in left- vs. right-handers. In the present, sham-stimulation-controlled study we explored this hypothesis by studying the effects of galvanic vestibular stimulation (GVS) on proprioception in both forearms in left- and right-handers. Horizontal arm position sense (APS) was measured with an opto-electronic device. Second, the polarity-specific online- and after-effects of subsensory, bipolar GVS on APS were investigated in different sessions separately for both forearms. At baseline, both groups did not differ in their unsigned errors for both arms. However, right-handers showed significant directional errors in APS of both arms towards their own body. Right-cathodal/left-anodal GVS, resulting in right vestibular cortex activation, significantly deteriorated left APS in right-handers, but had no detectable effect on APS in left-handers in either arm. These findings are compatible with a right-hemisphere dominance for vestibular functions in right-handers and a differential vestibular organization in left-handers that compensates for the disturbing effects of GVS on APS. Moreover, our results show superior arm proprioception in left-handers in both forearms. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Influence of Marker Movement Errors on Measuring 3 Dimentional Scapular Position and Orientation

    Directory of Open Access Journals (Sweden)

    Afsoun Nodehi-Moghaddam

    2003-12-01

    Full Text Available Objective: Scapulothoracic muscles weakness or fatique can result in abnormal scapular positioning and compromising scapulo-humeral rhythm and shoulder dysfunction .The scapula moves in a -3 Dimentional fashion so the use of 2-Dimentional Techniques cannot fully capture scapular motion . One of approaches to positioining markers of kinematic systems is to mount each marker directly on the skin generally over a bony anatomical landmarks . Howerer skin movement and Motion of underlying bony structures are not Necessaritly identical and substantial errors may be introduced in the description of bone movement when using skin –mounted markers. evaluation of Influence of marker movement errors on 3-Dimentional scapular position and orientation. Materials & Methods: 10 Healthy subjects with a mean age 30.50 participated in the study . They were tested in three sessions A 3-dimentiional electro mechanical digitizer was used to measure scapular position and orientation measures were obtained while arm placed at the side of the body and elevated 45٫90٫120 and full Rang of motion in the scapular plane . At each test positions six bony landmarks were palpated and skin markers were mounted on them . This procedure repeated in the second test session in third session Removal of markers was not performed through obtaining entire Range of motion after mounting the markers . Results: The intraclass correlation coefficients (ICC for scapulor variables were higher (0.92-0.84 when markers were replaced and re-mounted on bony landmarks with Increasing the angle of elevation. Conclusion: our findings suggested significant markers movement error on measuring the upward Rotation and posterior tilt angle of scapula.

  18. Positional accommodative intraocular lens power error induced by the estimation of the corneal power and the effective lens position

    Directory of Open Access Journals (Sweden)

    David P Piñero

    2015-01-01

    Full Text Available Purpose: To evaluate the predictability of the refractive correction achieved with a positional accommodating intraocular lenses (IOL and to develop a potential optimization of it by minimizing the error associated with the keratometric estimation of the corneal power and by developing a predictive formula for the effective lens position (ELP. Materials and Methods: Clinical data from 25 eyes of 14 patients (age range, 52-77 years and undergoing cataract surgery with implantation of the accommodating IOL Crystalens HD (Bausch and Lomb were retrospectively reviewed. In all cases, the calculation of an adjusted IOL power (P IOLadj based on Gaussian optics considering the residual refractive error was done using a variable keratometric index value (n kadj for corneal power estimation with and without using an estimation algorithm for ELP obtained by multiple regression analysis (ELP adj . P IOLadj was compared to the real IOL power implanted (P IOLReal , calculated with the SRK-T formula and also to the values estimated by the Haigis, HofferQ, and Holladay I formulas. Results: No statistically significant differences were found between P IOLReal and P IOLadj when ELP adj was used (P = 0.10, with a range of agreement between calculations of 1.23 D. In contrast, P IOLReal was significantly higher when compared to P IOLadj without using ELP adj and also compared to the values estimated by the other formulas. Conclusions: Predictable refractive outcomes can be obtained with the accommodating IOL Crystalens HD using a variable keratometric index for corneal power estimation and by estimating ELP with an algorithm dependent on anatomical factors and age.

  19. Inductive Loops for Sensing Position as Signature Signals

    International Nuclear Information System (INIS)

    Larbani, Sofiane; Malik, Noreha Abdul; Nordin, Anis Norashikin; Khan, Sheroz; Shobaki, Mohammad

    2013-01-01

    In this paper, an inductive sensing technique made of a special shaped inductive loop is proposed. The inductive loop has an inner turn fitted within an outer turn, making a total inductance value 100μH. This loop is made to be shown with balanced response using three capacitance values of 0.068μF each when a sinusoidal voltage source of 5V peak-to-peak is applied. The variation of the relative permeability of the inductance of the inductive loop (AL) results in a variation of the overall inductance value (L+AL), that causes the output signal to change in term of shape and amplitude for variation of total inductance sweep over a given period of time. As a result of change in inductance value (lμH) there is a correspondence increase of 300mV. Theoretical derivations have showed in close agreement with the simulation plots obtained using Multisim software

  20. Inductive Loops for Sensing Position as Signature Signals

    Science.gov (United States)

    Larbani, Sofiane; Malik, Noreha Abdul; Norashikin Nordin, Anis; Khan, Sheroz; Shobaki, Mohammad

    2013-12-01

    In this paper, an inductive sensing technique made of a special shaped inductive loop is proposed. The inductive loop has an inner turn fitted within an outer turn, making a total inductance value 100μH. This loop is made to be shown with balanced response using three capacitance values of 0.068μF each when a sinusoidal voltage source of 5V peak-to-peak is applied. The variation of the relative permeability of the inductance of the inductive loop (AL) results in a variation of the overall inductance value (L+AL), that causes the output signal to change in term of shape and amplitude for variation of total inductance sweep over a given period of time. As a result of change in inductance value (lμH) there is a correspondence increase of 300mV. Theoretical derivations have showed in close agreement with the simulation plots obtained using Multisim software.

  1. Connection of position sensing circuit of regulating body

    International Nuclear Information System (INIS)

    Janosek, B.

    1988-01-01

    The source of position pulses is connected to the evaluation unit to which is also connected a display which in turn is connected to a numerical selection unit connected via a power output to the action drive unit. A feedback member is connected between the evaluation unit and the numerical selection unit. Changes in the position of the regulating body produces voltage in the position sensor proportional to the actual value of this change. Voltage pulses are led via a measuring amplifier to the evaluation unit. After amplification the pulses are compared with the value on the numerical selection unit connected in the feedback branch to the measuring amplifier which evaluates differential values of pulses shown on the display in form of instantaneous and required values. The required value is selected via the numerical unit. (J.B.). 1 fig

  2. Square-Wave Voltage Injection Algorithm for PMSM Position Sensorless Control With High Robustness to Voltage Errors

    DEFF Research Database (Denmark)

    Ni, Ronggang; Xu, Dianguo; Blaabjerg, Frede

    2017-01-01

    relationship with the magnetic field distortion. Position estimation errors caused by higher order harmonic inductances and voltage harmonics generated by the SVPWM are also discussed. Both simulations and experiments are carried out based on a commercial PMSM to verify the superiority of the proposed method......Rotor position estimated with high-frequency (HF) voltage injection methods can be distorted by voltage errors due to inverter nonlinearities, motor resistance, and rotational voltage drops, etc. This paper proposes an improved HF square-wave voltage injection algorithm, which is robust to voltage...... errors without any compensations meanwhile has less fluctuation in the position estimation error. The average position estimation error is investigated based on the analysis of phase harmonic inductances, and deduced in the form of the phase shift of the second-order harmonic inductances to derive its...

  3. GammaSense: Infrastructureless Positioning using Background Radioactivity

    DEFF Research Database (Denmark)

    Bucur, Doina; Kjærgaard, Mikkel Baun

    2008-01-01

    -versus-outdoor locations. We find that the performance of a machine-learning algorithm in detecting position varies with the building, and is highest for interfloor detection in the case of an old domestic house, while it is highest for intrafloor detection if the floor spans building segments made from different...

  4. Aerobic training in aquatic environment improves the position sense of stroke patients: A randomized clinical trial

    OpenAIRE

    Flávia de Andrade e Souza Mazuchi; Aline Bigongiari; Juliana Valente Francica; Patricia Martins Franciulli; Luis Mochizuki; Joseph Hamill; Ulysses Fernandes Ervilha

    2018-01-01

    Abstract AIMS (Stroke patients often present sensory-motor alterations and less aerobic capacity. Joint position sense, which is crucial for balance and gait control, is also affected in stroke patients). To compare the effect of two exercise training protocols (walking in deep water and on a treadmill) on the knee position sense of stroke patients. METHODS This study was designed as a randomized controlled clinical trial. Twelve adults, who suffered a stroke at least one year prior to the ...

  5. On the Spatial and Temporal Sampling Errors of Remotely Sensed Precipitation Products

    Directory of Open Access Journals (Sweden)

    Ali Behrangi

    2017-11-01

    Full Text Available Observation with coarse spatial and temporal sampling can cause large errors in quantification of the amount, intensity, and duration of precipitation events. In this study, the errors resulting from temporal and spatial sampling of precipitation events were quantified and examined using the latest version (V4 of the Global Precipitation Measurement (GPM mission integrated multi-satellite retrievals for GPM (IMERG, which is available since spring of 2014. Relative mean square error was calculated at 0.1° × 0.1° every 0.5 h between the degraded (temporally and spatially and original IMERG products. The temporal and spatial degradation was performed by producing three-hour (T3, six-hour (T6, 0.5° × 0.5° (S5, and 1.0° × 1.0° (S10 maps. The results show generally larger errors over land than ocean, especially over mountainous regions. The relative error of T6 is almost 20% larger than T3 over tropical land, but is smaller in higher latitudes. Over land relative error of T6 is larger than S5 across all latitudes, while T6 has larger relative error than S10 poleward of 20°S–20°N. Similarly, the relative error of T3 exceeds S5 poleward of 20°S–20°N, but does not exceed S10, except in very high latitudes. Similar results are also seen over ocean, but the error ratios are generally less sensitive to seasonal changes. The results also show that the spatial and temporal relative errors are not highly correlated. Overall, lower correlations between the spatial and temporal relative errors are observed over ocean than over land. Quantification of such spatiotemporal effects provides additional insights into evaluation studies, especially when different products are cross-compared at a range of spatiotemporal scales.

  6. Assessing Error Correlations in Remote Sensing-Based Estimates of Forest Attributes for Improved Composite Estimation

    Directory of Open Access Journals (Sweden)

    Sarah Ehlers

    2018-04-01

    Full Text Available Today, non-expensive remote sensing (RS data from different sensors and platforms can be obtained at short intervals and be used for assessing several kinds of forest characteristics at the level of plots, stands and landscapes. Methods such as composite estimation and data assimilation can be used for combining the different sources of information to obtain up-to-date and precise estimates of the characteristics of interest. In composite estimation a standard procedure is to assign weights to the different individual estimates inversely proportional to their variance. However, in case the estimates are correlated, the correlations must be considered in assigning weights or otherwise a composite estimator may be inefficient and its variance be underestimated. In this study we assessed the correlation of plot level estimates of forest characteristics from different RS datasets, between assessments using the same type of sensor as well as across different sensors. The RS data evaluated were SPOT-5 multispectral data, 3D airborne laser scanning data, and TanDEM-X interferometric radar data. Studies were made for plot level mean diameter, mean height, and growing stock volume. All data were acquired from a test site dominated by coniferous forest in southern Sweden. We found that the correlation between plot level estimates based on the same type of RS data were positive and strong, whereas the correlations between estimates using different sources of RS data were not as strong, and weaker for mean height than for mean diameter and volume. The implications of such correlations in composite estimation are demonstrated and it is discussed how correlations may affect results from data assimilation procedures.

  7. Efficient Error Detection in Soft Data Fusion for Cooperative Spectrum Sensing

    KAUST Repository

    Saqib Bhatti, Dost Muhammad; Ahmed, Saleem; Saeed, Nasir; Shaikh, Bushra

    2018-01-01

    . For CSS, all SUs report their sensing information through reporting channel to the central base station called fusion center (FC). During transmission, some of the SUs are subjected to fading and shadowing, due to which the overall performance of CSS

  8. Positivity, discontinuity, finite resources, and nonzero error for arbitrarily varying quantum channels

    International Nuclear Information System (INIS)

    Boche, H.; Nötzel, J.

    2014-01-01

    This work is motivated by a quite general question: Under which circumstances are the capacities of information transmission systems continuous? The research is explicitly carried out on finite arbitrarily varying quantum channels (AVQCs). We give an explicit example that answers the recent question whether the transmission of messages over AVQCs can benefit from assistance by distribution of randomness between the legitimate sender and receiver in the affirmative. The specific class of channels introduced in that example is then extended to show that the unassisted capacity does have discontinuity points, while it is known that the randomness-assisted capacity is always continuous in the channel. We characterize the discontinuity points and prove that the unassisted capacity is always continuous around its positivity points. After having established shared randomness as an important resource, we quantify the interplay between the distribution of finite amounts of randomness between the legitimate sender and receiver, the (nonzero) probability of a decoding error with respect to the average error criterion and the number of messages that can be sent over a finite number of channel uses. We relate our results to the entanglement transmission capacities of finite AVQCs, where the role of shared randomness is not yet well understood, and give a new sufficient criterion for the entanglement transmission capacity with randomness assistance to vanish

  9. Effects of taping on knee joint position sense of female athletes across the menstrual cycle

    Directory of Open Access Journals (Sweden)

    Rose fouladi

    2013-06-01

    Full Text Available Introduction: The rate of anterior cruciate ligament (ACL tearing is more common in female athletes and one of thereasons is the effect of sex hormones. It was illustrated that knee joint position sense (JPS isaltered across the menstrual cycle and its lowest level is at menses. Therefore, it’s important to find a method to reduce injury risk at menses. Thus, the purpose of this study was to evaluate the effect of taping as a stimulator of skin, on the knee JPS in healthy female athletes across the menstrual cycle with different levels of estrogen and progesterone. Materials and Methods: In this semi-experimental study, 16 healthy female athletes with regular menstrual cycle voluntarily participated. Knee JPS was measured at 3 menstrual cycle phases, before and after patellataping. JPS was evaluated by reproduction of the target angle (30° flexion in standing position, from full extension. Serum estrogen and progesterone levels were collected in these 3 phases. Knee angles were measured by using a system comprised of skin markers, digital photography, and autoCAD software. Absolute error was considered as a dependent variable.Results: There was a significant difference between the knee JPS in 3 phases of measurement before taping (P=0.025, while no significant difference was found between knee JPS in 3 phases after taping (P=0.965. Conclusion: Findings of this study suggest that healthy female athletes have different levels of knee JPS across a menstrual cycle and its accuracy decreasesat menses. This differencecan be reduced by skin stimulatingmethods, such as taping. Therefore, kinesio taping would improve the knee JPSdeficiency at menses.

  10. Mobility and Position Error Analysis of a Complex Planar Mechanism with Redundant Constraints

    Science.gov (United States)

    Sun, Qipeng; Li, Gangyan

    2018-03-01

    Nowadays mechanisms with redundant constraints have been created and attracted much attention for their merits. The mechanism of the redundant constraints in a mechanical system is analyzed in this paper. A analysis method of Planar Linkage with a repetitive structure is proposed to get the number and type of constraints. According to the difference of applications and constraint characteristics, the redundant constraints are divided into the theoretical planar redundant constraints and the space-planar redundant constraints. And the calculation formula for the number of redundant constraints and type of judging method are carried out. And a complex mechanism with redundant constraints is analyzed of the influence about redundant constraints on mechanical performance. With the combination of theoretical derivation and simulation research, a mechanism analysis method is put forward about the position error of complex mechanism with redundant constraints. It points out the direction on how to eliminate or reduce the influence of redundant constraints.

  11. Impact of MLC leaf position errors on simple and complex IMRT plans for head and neck cancer

    International Nuclear Information System (INIS)

    Mu, G; Ludlum, E; Xia, P

    2008-01-01

    The dosimetric impact of random and systematic multi-leaf collimator (MLC) leaf position errors is relatively unknown for head and neck intensity-modulated radiotherapy (IMRT) patients. In this report we studied 17 head and neck IMRT patients, including 12 treated with simple plans ( 100 segments). Random errors (-2 to +2 mm) and systematic errors (±0.5 mm and ±1 mm) in MLC leaf positions were introduced into the clinical plans and the resultant dose distributions were analyzed based on defined endpoint doses. The dosimetric effect was insignificant for random MLC leaf position errors up to 2 mm for both simple and complex plans. However, for systematic MLC leaf position errors, we found significant dosimetric differences between the simple and complex IMRT plans. For 1 mm systematic error, the average changes in D 95% were 4% in simple plans versus 8% in complex plans. The average changes in D 0.1cc of the spinal cord and brain stem were 4% in simple plans versus 12% in complex plans. The average changes in parotid glands were 9% in simple plans versus 13% for the complex plans. Overall, simple IMRT plans are less sensitive to leaf position errors than complex IMRT plans

  12. Implication of spot position error on plan quality and patient safety in pencil-beam-scanning proton therapy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Juan; Beltran, Chris J., E-mail: beltran.chris@mayo.edu; Herman, Michael G. [Division of Medical Physics, Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota 55905 (United States)

    2014-08-15

    Purpose: To quantitatively and systematically assess dosimetric effects induced by spot positioning error as a function of spot spacing (SS) on intensity-modulated proton therapy (IMPT) plan quality and to facilitate evaluation of safety tolerance limits on spot position. Methods: Spot position errors (PE) ranging from 1 to 2 mm were simulated. Simple plans were created on a water phantom, and IMPT plans were calculated on two pediatric patients with a brain tumor of 28 and 3 cc, respectively, using a commercial planning system. For the phantom, a uniform dose was delivered to targets located at different depths from 10 to 20 cm with various field sizes from 2{sup 2} to 15{sup 2} cm{sup 2}. Two nominal spot sizes, 4.0 and 6.6 mm of 1 σ in water at isocenter, were used for treatment planning. The SS ranged from 0.5 σ to 1.5 σ, which is 2–6 mm for the small spot size and 3.3–9.9 mm for the large spot size. Various perturbation scenarios of a single spot error and systematic and random multiple spot errors were studied. To quantify the dosimetric effects, percent dose error (PDE) depth profiles and the value of percent dose error at the maximum dose difference (PDE [ΔDmax]) were used for evaluation. Results: A pair of hot and cold spots was created per spot shift. PDE[ΔDmax] is found to be a complex function of PE, SS, spot size, depth, and global spot distribution that can be well defined in simple models. For volumetric targets, the PDE [ΔDmax] is not noticeably affected by the change of field size or target volume within the studied ranges. In general, reducing SS decreased the dose error. For the facility studied, given a single spot error with a PE of 1.2 mm and for both spot sizes, a SS of 1σ resulted in a 2% maximum dose error; a SS larger than 1.25 σ substantially increased the dose error and its sensitivity to PE. A similar trend was observed in multiple spot errors (both systematic and random errors). Systematic PE can lead to noticeable hot

  13. Analysis of the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery

    Directory of Open Access Journals (Sweden)

    Samuel Arba-Mosquera

    2012-01-01

    Conclusions: The proposed model can be used for comparison of laser systems used for ablation processes. Due to the pseudo-random nature of eye movements, positioning errors of single pulses are much larger than observed decentrations in the clinical settings. There is no single parameter that ‘alone’ minimizes the positioning error. It is the optimal combination of the several parameters that minimizes the error. The results of this analysis are important to understand the limitations of correcting very irregular ablation patterns.

  14. The Effect of Fatigued External Rotator Muscles of the Shoulder on the Shoulder Position Sense

    Directory of Open Access Journals (Sweden)

    Naoya Iida

    2011-10-01

    Full Text Available This study aimed to investigate the effect of fatigue in shoulder external rotator muscles on position sense of shoulder abduction, internal rotation, and external rotation. The study included 10 healthy subjects. Shoulder position sense was measured before and after a fatigue task involving shoulder external rotator muscles. The fatigue task was performed using an isokinetic machine. To confirm the muscle fatigue, electromyography (EMG was recorded, and an integrated EMG and median power frequency (MDF during 3 sec performed target torque were calculated. After the fatigue task, the MDF of the infraspinatus muscle significantly decreased. This indicates that the infraspinatus muscle was involved in the fatigue task. In addition, the shoulder position sense of internal and external rotation significantly decreased after the fatigue task. These results suggest that the fatigue reduced the accuracy of sensory input from muscle spindles. However, no significant difference was observed in shoulder position sense of abduction before and after the fatigue task. This may be due to the fact that infraspinatus muscle did not act as prime movers in shoulder abduction. These results suggest that muscle fatigue decreased position sense during movements in which the affected muscles acted as prime movers.

  15. Position Tracking During Human Walking Using an Integrated Wearable Sensing System

    Directory of Open Access Journals (Sweden)

    Giulio Zizzo

    2017-12-01

    Full Text Available Progress has been made enabling expensive, high-end inertial measurement units (IMUs to be used as tracking sensors. However, the cost of these IMUs is prohibitive to their widespread use, and hence the potential of low-cost IMUs is investigated in this study. A wearable low-cost sensing system consisting of IMUs and ultrasound sensors was developed. Core to this system is an extended Kalman filter (EKF, which provides both zero-velocity updates (ZUPTs and Heuristic Drift Reduction (HDR. The IMU data was combined with ultrasound range measurements to improve accuracy. When a map of the environment was available, a particle filter was used to impose constraints on the possible user motions. The system was therefore composed of three subsystems: IMUs, ultrasound sensors, and a particle filter. A Vicon motion capture system was used to provide ground truth information, enabling validation of the sensing system. Using only the IMU, the system showed loop misclosure errors of 1% with a maximum error of 4–5% during walking. The addition of the ultrasound sensors resulted in a 15% reduction in the total accumulated error. Lastly, the particle filter was capable of providing noticeable corrections, which could keep the tracking error below 2% after the first few steps.

  16. Control strategies for active noise barriers using near-field error sensing

    NARCIS (Netherlands)

    Berkhoff, Arthur P.

    In this paper active noise control strategies for noise barriers are presented which are based on the use of sensors near the noise barrier. Virtual error signals are derived from these near-field sensor signals such that reductions of the far-field sound pressure are obtained with the active

  17. Impact of sensing errors on the queueing delay and transmit power in cognitive radio access

    KAUST Repository

    Hamza, Doha R.; Aissa, Sonia

    2011-01-01

    We study a multiple-access system with a primary user (PU) and a secondary user (SU) utilizing the same frequency band and communicating with a common receiver. Both users transmit with a fixed transmission rate by employing a channel inversion power control scheme. The SU transmits with a certain probability that depends on the sensing outcome, its queue length and whether it has a new packet arrival. We consider the case of erroneous sensing. The goal of the SU is to find the optimal transmission scheduling policy so as to minimize its queueing delay under constraints on its average transmit power and the maximum tolerable primary outage probability caused by miss-detection. The access probabilities are obtained efficiently using linear programming. © 2011 IEEE.

  18. Impact of sensing errors on the queueing delay and transmit power in cognitive radio access

    KAUST Repository

    Hamza, Doha R.

    2011-03-01

    We study a multiple-access system with a primary user (PU) and a secondary user (SU) utilizing the same frequency band and communicating with a common receiver. Both users transmit with a fixed transmission rate by employing a channel inversion power control scheme. The SU transmits with a certain probability that depends on the sensing outcome, its queue length and whether it has a new packet arrival. We consider the case of erroneous sensing. The goal of the SU is to find the optimal transmission scheduling policy so as to minimize its queueing delay under constraints on its average transmit power and the maximum tolerable primary outage probability caused by miss-detection. The access probabilities are obtained efficiently using linear programming. © 2011 IEEE.

  19. SU-F-J-208: Prompt Gamma Imaging-Based Prediction of Bragg Peak Position for Realistic Treatment Error Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Y; Macq, B; Bondar, L [Universite catholique de Louvain, Louvain-la-Neuve (Belgium); Janssens, G [IBA, Louvain-la-Neuve (Belgium)

    2016-06-15

    Purpose: To quantify the accuracy in predicting the Bragg peak position using simulated in-room measurements of prompt gamma (PG) emissions for realistic treatment error scenarios that combine several sources of errors. Methods: Prompt gamma measurements by a knife-edge slit camera were simulated using an experimentally validated analytical simulation tool. Simulations were performed, for 143 treatment error scenarios, on an anthropomorphic phantom and a pencil beam scanning plan for nasal cavity. Three types of errors were considered: translation along each axis, rotation around each axis, and CT-calibration errors with magnitude ranging respectively, between −3 and 3 mm, −5 and 5 degrees, and between −5 and +5%. We investigated the correlation between the Bragg peak (BP) shift and the horizontal shift of PG profiles. The shifts were calculated between the planned (reference) position and the position by the error scenario. The prediction error for one spot was calculated as the absolute difference between the PG profile shift and the BP shift. Results: The PG shift was significantly and strongly correlated with the BP shift for 92% of the cases (p<0.0001, Pearson correlation coefficient R>0.8). Moderate but significant correlations were obtained for all cases that considered only CT-calibration errors and for 1 case that combined translation and CT-errors (p<0.0001, R ranged between 0.61 and 0.8). The average prediction errors for the simulated scenarios ranged between 0.08±0.07 and 1.67±1.3 mm (grand mean 0.66±0.76 mm). The prediction error was moderately correlated with the value of the BP shift (p=0, R=0.64). For the simulated scenarios the average BP shift ranged between −8±6.5 mm and 3±1.1 mm. Scenarios that considered combinations of the largest treatment errors were associated with large BP shifts. Conclusion: Simulations of in-room measurements demonstrate that prompt gamma profiles provide reliable estimation of the Bragg peak position for

  20. Stressor experience negatively affects life satisfaction in adolescents: the positive role of sense of coherence.

    Science.gov (United States)

    Moksnes, Unni K; Haugan, G

    2015-10-01

    The aim of the present study was to investigate the association between different normative stressors, sense of coherence and life satisfaction separately for gender in Norwegian adolescents. The interaction effect of stress by sense of coherence in relation to life satisfaction was also investigated. The data are based on a cross-sectional sample of 1239 adolescents (13-18 years) from public elementary and secondary schools in Central Norway. Hierarchical multiple regression analysis was used to evaluate the association between stressors, sense of coherence and life satisfaction, separately for gender. The results showed significant differences between genders, where boys reported higher scores than girls on sense of coherence and life satisfaction, whereas girls scored higher than boys on five of seven stressor domains. All stressors were significantly and inversely associated with life satisfaction in both genders; however, all associations were stronger for girls compared to boys. Sense of coherence showed a significant strong and positive association with life satisfaction, controlled for age and each individual stressor. A significant although weak interaction effect of stress related to romantic relationships by sense of coherence was found in association with life satisfaction for boys; the other interaction effects were nonsignificant in both genders. The results give support for a significant unique role of stressor experience and sense of coherence in relation to life satisfaction in both genders during adolescence, where the associations were especially strong in girls.

  1. Impact of habitat-specific GPS positional error on detection of movement scales by first-passage time analysis.

    Directory of Open Access Journals (Sweden)

    David M Williams

    Full Text Available Advances in animal tracking technologies have reduced but not eliminated positional error. While aware of such inherent error, scientists often proceed with analyses that assume exact locations. The results of such analyses then represent one realization in a distribution of possible outcomes. Evaluating results within the context of that distribution can strengthen or weaken our confidence in conclusions drawn from the analysis in question. We evaluated the habitat-specific positional error of stationary GPS collars placed under a range of vegetation conditions that produced a gradient of canopy cover. We explored how variation of positional error in different vegetation cover types affects a researcher's ability to discern scales of movement in analyses of first-passage time for white-tailed deer (Odocoileus virginianus. We placed 11 GPS collars in 4 different vegetative canopy cover types classified as the proportion of cover above the collar (0-25%, 26-50%, 51-75%, and 76-100%. We simulated the effect of positional error on individual movement paths using cover-specific error distributions at each location. The different cover classes did not introduce any directional bias in positional observations (1 m≤mean≤6.51 m, 0.24≤p≤0.47, but the standard deviation of positional error of fixes increased significantly with increasing canopy cover class for the 0-25%, 26-50%, 51-75% classes (SD = 2.18 m, 3.07 m, and 4.61 m, respectively and then leveled off in the 76-100% cover class (SD = 4.43 m. We then added cover-specific positional errors to individual deer movement paths and conducted first-passage time analyses on the noisy and original paths. First-passage time analyses were robust to habitat-specific error in a forest-agriculture landscape. For deer in a fragmented forest-agriculture environment, and species that move across similar geographic extents, we suggest that first-passage time analysis is robust with regard to

  2. Errors in the calculation of new salary positions and performance premiums – 2017 MERIT exercise

    CERN Multimedia

    Staff Association

    2017-01-01

    Following the receipt of the letters dated May 12th announcing the qualification of their performance (MERIT 2017), and the notification of their salary slips for the month of May, several colleagues have come to us to enquire about the calculation of salary increases and performance premiums. After verification, the Staff Association has informed the Management, in a meeting of the Standing Concertation Committee on June 1st, about errors owing to rounding in the applied formulas. James Purvis, Head of HR department, has published in the CERN Bulletin dated July 18th an article, under the heading “Better precision (rounding)”, that gives a short explanation of these rounding effects. But we want to further bring you more precise explanations. Advancement On the salary slips for the month of May, the calculations of the advancement and new salary positions were done, by the services of administrative computing in the FAP department, on the basis of the salary, rounded to the nearest franc...

  3. Positioning performance analysis of the time sum of arrival algorithm with error features

    Science.gov (United States)

    Gong, Feng-xun; Ma, Yan-qiu

    2018-03-01

    The theoretical positioning accuracy of multilateration (MLAT) with the time difference of arrival (TDOA) algorithm is very high. However, there are some problems in practical applications. Here we analyze the location performance of the time sum of arrival (TSOA) algorithm from the root mean square error ( RMSE) and geometric dilution of precision (GDOP) in additive white Gaussian noise (AWGN) environment. The TSOA localization model is constructed. Using it, the distribution of location ambiguity region is presented with 4-base stations. And then, the location performance analysis is started from the 4-base stations with calculating the RMSE and GDOP variation. Subsequently, when the location parameters are changed in number of base stations, base station layout and so on, the performance changing patterns of the TSOA location algorithm are shown. So, the TSOA location characteristics and performance are revealed. From the RMSE and GDOP state changing trend, the anti-noise performance and robustness of the TSOA localization algorithm are proved. The TSOA anti-noise performance will be used for reducing the blind-zone and the false location rate of MLAT systems.

  4. SU-E-P-36: Evaluation of MLC Positioning Errors in Dynamic IMRT Treatments by Analyzing Dynalog Files

    International Nuclear Information System (INIS)

    Olasolo, J; Pellejero, S; Gracia, M; Gallardo, N; Martin, M; Lozares, S; Maneru, F; Bragado, L; Miquelez, S; Rubio, A

    2015-01-01

    Purpose: To assess the accuracy of MLC positioning in Varian linear accelerator, in dynamic IMRT technique, from the analysis of dynalog files generated by the MLC controller. Methods: In Clinac accelerators (pre-TrueBeam technology), control system has an approximately 50ms delay (one control cycle time). Then, the system compares the measured position to the planned position corresponding to the next control cycle. As it has been confirmed by Varian technical support, this effect causes that measured positions appear in dynalogs one cycle out of phase with respect to the planned positions. Around 9000 dynalogs have been analyzed, coming from the three linear accelerators of our center (one Trilogy and two Clinac 21EX) equipped with a Millennium 120 MLC. In order to compare our results to recent publications, leaf positioning errors (RMS and 95th percentile) are calculated with and without delay effect. Dynalogs have been analyzed using a in-house Matlab software. Results: The RMS errors were 0.341, 0.339 and 0.348mm for each Linac; being the average error 0.343 mm. The 95th percentiles of the error were 0.617, 0.607 and 0.625; with an average of 0.617mm. A recent multi-institution study carried out by Kerns et al. found a mean leaf RMS error of 0.32mm and a 95th percentile error value of 0.64mm.Without delay effect, mean leaf RMS errors obtained were 0.040, 0.042 and 0.038mm for each treatment machine; being the average 0.040mm. The 95th percentile error values obtained were 0.057, 0.058 and 0.054 mm, with an average of 0.056mm. Conclusion: Results obtained for the mean leaf RMS error and the mean 95th percentile were consistent with the multi-institution study. Calculated error statistics with delay effect are significantly larger due to the speed proportional and systematic leaf offset. Consequently it is proposed to correct this effect in dynalogs analysis to determine the MLC performance

  5. A Mathematical Model to Estimate the Position of Mobile Robot by Sensing Caster Wheel Motion

    Directory of Open Access Journals (Sweden)

    Amarendra Jnana H.

    2018-01-01

    Full Text Available This paper describes the position estimation of mobile robot by sensing caster wheel motion. A mathematical model is developed to determine the position of mobile robot by sensing the angular velocity and heading angle of the caster wheel. Using the established equations, simulations were carried out using MATLAB version 8.6 to observe and verify the position coordinates of mobile robot and in turn obtain its trajectory. The simulation results show that the angular velocity of caster wheel and heading angle calculated from the sensor output readings with the help of inverse kinematics equations matches well with that of actual values given as input for simulation. Simulation result of tracking rectangular trajectory implies that the path traced by the mobile robot can also be determined from the sensor output readings. This concept can be implemented on a real mobile robot for estimation of its position.

  6. Test-retest reliability of joint position and kinesthetic sense in the elbow of healthy subjects

    DEFF Research Database (Denmark)

    Juul-Kristensen, B.; Lund, Hans Aage; Hansen, K.

    2008-01-01

    Proprioception is an important effect measure in neuromuscular function training in physiotherapy. Reliability studies of methods for measuring proprioception are few on joint position sense (JPS) and threshold to detection of a passive movement (TDPM) on the elbow. The aim was to study test-rete...

  7. Foot and ankle compression improves joint position sense but not bipedal stance in older people

    NARCIS (Netherlands)

    Hijmans, J.M.; Zijlstra, W.; Geertzen, J.H.; Hof, A.L.; Postema, K.

    This study investigates the effects of foot and ankle compression on joint position sense (JPS) and balance in older people and young adults. 12 independently living healthy older persons (77-93 years) were recruited from a senior accommodation facility. 15 young adults (19-24 years) also

  8. A New Neurocognitive Interpretation of Shoulder Position Sense during Reaching: Unexpected Competence in the Measurement of Extracorporeal Space

    Directory of Open Access Journals (Sweden)

    Teresa Paolucci

    2016-01-01

    Full Text Available Background. The position sense of the shoulder joint is important during reaching. Objective. To examine the existence of additional competence of the shoulder with regard to the ability to measure extracorporeal space, through a novel approach, using the shoulder proprioceptive rehabilitation tool (SPRT, during reaching. Design. Observational case-control study. Methods. We examined 50 subjects: 25 healthy and 25 with impingement syndrome with a mean age [years] of 64.52 +/− 6.98 and 68.36 +/− 6.54, respectively. Two parameters were evaluated using the SPRT: the integration of visual information and the proprioceptive afferents of the shoulder (Test 1 and the discriminative proprioceptive capacity of the shoulder, with the subject blindfolded (Test 2. These tasks assessed the spatial error (in centimeters by the shoulder joint in reaching movements on the sagittal plane. Results. The shoulder had proprioceptive features that allowed it to memorize a reaching position and reproduce it (error of 1.22 cm to 1.55 cm in healthy subjects. This ability was lower in the impingement group, with a statistically significant difference compared to the healthy group (p<0.05 by Mann–Whitney test. Conclusions. The shoulder has specific expertise in the measurement of the extracorporeal space during reaching movements that gradually decreases in impingement syndrome.

  9. Positioning errors assessed with kV cone-beam CT for image-guided prostate radiotherapy

    International Nuclear Information System (INIS)

    Li Jiongyan; Guo Xiaomao; Yao Weiqiang; Wang Yanyang; Ma Jinli; Chen Jiayi; Zhang Zhen; Feng Yan

    2010-01-01

    Objective: To assess set-up errors measured with kilovoltage cone-beam CT (KV-CBCT), and the impact of online corrections on margins required to account for set-up variability during IMRT for patients with prostate cancer. Methods: Seven patients with prostate cancer undergoing IMRT were enrolled onto the study. The KV-CBCT scans were acquired at least twice weekly. After initial set-up using the skin marks, a CBCT scan was acquired and registered with the planning CT to determine the setup errors using an auto grey-scale registration software. Corrections would be made by moving the table if the setup errors were considered clinically significant (i. e. , > 2 mm). A second CBCT scan was acquired immediately after the corrections to evaluate the residual error. PTV margins were derived to account for the measured set-up errors and residual errors determined for this group of patients. Results: 197 KV-CBCT images in total were acquired. The random and systematic positioning errors and calculated PTV margins without correction in mm were : a) Lateral 3.1, 2.1, 9.3; b) Longitudinal 1.5, 1.8, 5.1;c) Vertical 4.2, 3.7, 13.0. The random and systematic positioning errors and calculated PTV margin with correction in mm were : a) Lateral 1.1, 0.9, 3.4; b) Longitudinal 0.7, 1.1, 2.5; c) Vertical 1.1, 1.3, 3.7. Conclusions: With the guidance of online KV-CBCT, set-up errors could be reduced significantly for patients with prostate cancer receiving IMRT. The margin required after online CBCT correction for the patients enrolled in the study would be appoximatively 3-4 mm. (authors)

  10. Validity of an ankle joint motion and position sense measurement system and its application in healthy subjects and patients with ankle sprain.

    Science.gov (United States)

    Lin, Chueh-Ho; Chiang, Shang-Lin; Lu, Liang-Hsuan; Wei, Shun-Hwa; Sung, Wen-Hsu

    2016-07-01

    Ankle motion and proprioception in multiple axis movements are crucial for daily activities. However, few studies have developed and used a multiple axis system for measuring ankle motion and proprioception. This study was designed to validate a novel ankle haptic interface system that measures the ankle range of motion (ROM) and joint position sense in multiple plane movements, investigating the proprioception deficits during joint position sense tasks for patients with ankle instability. Eleven healthy adults (mean ± standard deviation; age, 24.7 ± 1.9 years) and thirteen patients with ankle instability were recruited in this study. All subjects were asked to perform tests to evaluate the validity of the ankle ROM measurements and underwent tests for validating the joint position sense measurements conducted during multiple axis movements of the ankle joint. Pearson correlation was used for validating the angular position measurements obtained using the developed system; the independent t test was used to investigate the differences in joint position sense task performance for people with or without ankle instability. The ROM measurements of the device were linearly correlated with the criterion standards (r = 0.99). The ankle instability and healthy groups were significantly different in direction, absolute, and variable errors of plantar flexion, dorsiflexion, inversion, and eversion (p ankle joint motion and position sense measurement system is valid and can be used for measuring the ankle ROM and joint position sense in multiple planes and indicate proprioception deficits for people with ankle instability. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Errors in measuring transverse and energy jitter by beam position monitors

    Energy Technology Data Exchange (ETDEWEB)

    Balandin, V.; Decking, W.; Golubeva, N.

    2010-02-15

    The problem of errors, arising due to finite BPMresolution, in the difference orbit parameters, which are found as a least squares fit to the BPM data, is one of the standard and important problems of accelerator physics. Even so for the case of transversely uncoupled motion the covariance matrix of reconstruction errors can be calculated ''by hand'', the direct usage of obtained solution, as a tool for designing of a ''good measurement system'', does not look to be fairly straightforward. It seems that a better understanding of the nature of the problem is still desirable. We make a step in this direction introducing dynamic into this problem, which at the first glance seems to be static. We consider a virtual beam consisting of virtual particles obtained as a result of application of reconstruction procedure to ''all possible values'' of BPM reading errors. This beam propagates along the beam line according to the same rules as any real beam and has all beam dynamical characteristics, such as emittances, energy spread, dispersions, betatron functions and etc. All these values become the properties of the BPM measurement system. One can compare two BPM systems comparing their error emittances and rms error energy spreads, or, for a given measurement system, one can achieve needed balance between coordinate and momentum reconstruction errors by matching the error betatron functions in the point of interest to the desired values. (orig.)

  12. Errors in measuring transverse and energy jitter by beam position monitors

    International Nuclear Information System (INIS)

    Balandin, V.; Decking, W.; Golubeva, N.

    2010-02-01

    The problem of errors, arising due to finite BPMresolution, in the difference orbit parameters, which are found as a least squares fit to the BPM data, is one of the standard and important problems of accelerator physics. Even so for the case of transversely uncoupled motion the covariance matrix of reconstruction errors can be calculated ''by hand'', the direct usage of obtained solution, as a tool for designing of a ''good measurement system'', does not look to be fairly straightforward. It seems that a better understanding of the nature of the problem is still desirable. We make a step in this direction introducing dynamic into this problem, which at the first glance seems to be static. We consider a virtual beam consisting of virtual particles obtained as a result of application of reconstruction procedure to ''all possible values'' of BPM reading errors. This beam propagates along the beam line according to the same rules as any real beam and has all beam dynamical characteristics, such as emittances, energy spread, dispersions, betatron functions and etc. All these values become the properties of the BPM measurement system. One can compare two BPM systems comparing their error emittances and rms error energy spreads, or, for a given measurement system, one can achieve needed balance between coordinate and momentum reconstruction errors by matching the error betatron functions in the point of interest to the desired values. (orig.)

  13. Error Parsing: An alternative method of implementing social judgment theory

    OpenAIRE

    Crystal C. Hall; Daniel M. Oppenheimer

    2015-01-01

    We present a novel method of judgment analysis called Error Parsing, based upon an alternative method of implementing Social Judgment Theory (SJT). SJT and Error Parsing both posit the same three components of error in human judgment: error due to noise, error due to cue weighting, and error due to inconsistency. In that sense, the broad theory and framework are the same. However, SJT and Error Parsing were developed to answer different questions, and thus use different m...

  14. Development of a Motion Sensing and Automatic Positioning Universal Planisphere Using Augmented Reality Technology

    Directory of Open Access Journals (Sweden)

    Wernhuar Tarng

    2017-01-01

    Full Text Available This study combines the augmented reality technology and the sensor functions of GPS, electronic compass, and 3-axis accelerometer on mobile devices to develop a motion sensing and automatic positioning universal planisphere. It can create local star charts according to the current date, time, and position and help users locate constellations on the planisphere easily through motion sensing operation. By holding the mobile device towards the target constellation in the sky, the azimuth and elevation angles are obtained automatically for mapping to its correct position on the star chart. The proposed system combines observational activities with physical operation and spatial cognition for developing correct astronomical concepts, thus making learning more effective. It contains a built-in 3D virtual starry sky to enable observation in classroom for supporting teaching applications. The learning process can be shortened by setting varying observation date, time, and latitude. Therefore, it is a useful tool for astronomy education.

  15. The role of sense of coherence and physical activity in positive and negative affect of Turkish adolescents.

    Science.gov (United States)

    Oztekin, Ceyda; Tezer, Esin

    2009-01-01

    This study investigated the role of sense of coherence and total physical activity in positive and negative affect. Participants were 376 (169 female, 206 male, and 1 missing value) student volunteers from different faculties of Middle East Technical University. Three questionnaires: Sense of Coherence Scale (SOC), Physical Activity Assessment Questionnaire (PAAQ), and Positive and Negative Affect Schedule (PANAS) were administered to the students together with the demographic information sheet. Two separate stepwise multiple linear regression analyses were conducted to examine the predictive power of sense of coherence and total physical activity on positive and negative affect scores. Results revealed that both sense of coherence and total physical activity predicted the positive affect whereas only the sense of coherence predicted the negative affect on university students. Findings are discussed in light of sense of coherence, physical activity, and positive and negative affect literature.

  16. Proprioceptive assessment in clinical settings: Evaluation of joint position sense in upper limb post-stroke using a robotic manipulator.

    Directory of Open Access Journals (Sweden)

    Sara Contu

    Full Text Available Proprioception is a critical component for motor functions and directly affects motor learning after neurological injuries. Conventional methods for its assessment are generally ordinal in nature and hence lack sensitivity. Robotic devices designed to promote sensorimotor learning can potentially provide quantitative precise, accurate, and reliable assessments of sensory impairments. In this paper, we investigate the clinical applicability and validity of using a planar 2 degrees of freedom robot to quantitatively assess proprioceptive deficits in post-stroke participants. Nine stroke survivors and nine healthy subjects participated in the study. Participants' hand was passively moved to the target position guided by the H-Man robot (Criterion movement and were asked to indicate during a second passive movement towards the same target (Matching movement when they felt that they matched the target position. The assessment was carried out on a planar surface for movements in the forward and oblique directions in the contralateral and ipsilateral sides of the tested arm. The matching performance was evaluated in terms of error magnitude (absolute and signed and its variability. Stroke patients showed higher variability in the estimation of the target position compared to the healthy participants. Further, an effect of target was found, with lower absolute errors in the contralateral side. Pairwise comparison between individual stroke participant and control participants showed significant proprioceptive deficits in two patients. The proposed assessment of passive joint position sense was inherently simple and all participants, regardless of motor impairment level, could complete it in less than 10 minutes. Therefore, the method can potentially be carried out to detect changes in proprioceptive deficits in clinical settings.

  17. Decisions to shoot in a weapon identification task: The influence of cultural stereotypes and perceived threat on false positive errors.

    Science.gov (United States)

    Fleming, Kevin K; Bandy, Carole L; Kimble, Matthew O

    2010-01-01

    The decision to shoot a gun engages executive control processes that can be biased by cultural stereotypes and perceived threat. The neural locus of the decision to shoot is likely to be found in the anterior cingulate cortex (ACC), where cognition and affect converge. Male military cadets at Norwich University (N=37) performed a weapon identification task in which they made rapid decisions to shoot when images of guns appeared briefly on a computer screen. Reaction times, error rates, and electroencephalogram (EEG) activity were recorded. Cadets reacted more quickly and accurately when guns were primed by images of Middle-Eastern males wearing traditional clothing. However, cadets also made more false positive errors when tools were primed by these images. Error-related negativity (ERN) was measured for each response. Deeper ERNs were found in the medial-frontal cortex following false positive responses. Cadets who made fewer errors also produced deeper ERNs, indicating stronger executive control. Pupil size was used to measure autonomic arousal related to perceived threat. Images of Middle-Eastern males in traditional clothing produced larger pupil sizes. An image of Osama bin Laden induced the largest pupil size, as would be predicted for the exemplar of Middle East terrorism. Cadets who showed greater increases in pupil size also made more false positive errors. Regression analyses were performed to evaluate predictions based on current models of perceived threat, stereotype activation, and cognitive control. Measures of pupil size (perceived threat) and ERN (cognitive control) explained significant proportions of the variance in false positive errors to Middle-Eastern males in traditional clothing, while measures of reaction time, signal detection response bias, and stimulus discriminability explained most of the remaining variance.

  18. Urban Land Use Mapping by Combining Remote Sensing Imagery and Mobile Phone Positioning Data

    Directory of Open Access Journals (Sweden)

    Yuanxin Jia

    2018-03-01

    Full Text Available Land use is of great importance for urban planning, environmental monitoring, and transportation management. Several methods have been proposed to obtain land use maps of urban areas, and these can be classified into two categories: remote sensing methods and social sensing methods. However, remote sensing and social sensing approaches have specific disadvantages regarding the description of social and physical features, respectively. Therefore, an appropriate fusion strategy is vital for large-area land use mapping. To address this issue, we propose an efficient land use mapping method that combines remote sensing imagery (RSI and mobile phone positioning data (MPPD for large areas. We implemented this method in two steps. First, a support vector machine was adopted to classify the RSI and MPPD. Then, the two classification results were fused using a decision fusion strategy to generate the land use map. The proposed method was applied to a case study of the central area of Beijing. The experimental results show that the proposed method improved classification accuracy compared with that achieved using MPPD alone, validating the efficacy of this new approach for identifying land use. Based on the land use map and MPPD data, activity density in key zones during daytime and nighttime was analyzed to illustrate the volume and variation of people working and living across different regions.

  19. SU-G-BRB-03: Assessing the Sensitivity and False Positive Rate of the Integrated Quality Monitor (IQM) Large Area Ion Chamber to MLC Positioning Errors

    Energy Technology Data Exchange (ETDEWEB)

    Boehnke, E McKenzie; DeMarco, J; Steers, J; Fraass, B [Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    2016-06-15

    Purpose: To examine both the IQM’s sensitivity and false positive rate to varying MLC errors. By balancing these two characteristics, an optimal tolerance value can be derived. Methods: An un-modified SBRT Liver IMRT plan containing 7 fields was randomly selected as a representative clinical case. The active MLC positions for all fields were perturbed randomly from a square distribution of varying width (±1mm to ±5mm). These unmodified and modified plans were measured multiple times each by the IQM (a large area ion chamber mounted to a TrueBeam linac head). Measurements were analyzed relative to the initial, unmodified measurement. IQM readings are analyzed as a function of control points. In order to examine sensitivity to errors along a field’s delivery, each measured field was divided into 5 groups of control points, and the maximum error in each group was recorded. Since the plans have known errors, we compared how well the IQM is able to differentiate between unmodified and error plans. ROC curves and logistic regression were used to analyze this, independent of thresholds. Results: A likelihood-ratio Chi-square test showed that the IQM could significantly predict whether a plan had MLC errors, with the exception of the beginning and ending control points. Upon further examination, we determined there was ramp-up occurring at the beginning of delivery. Once the linac AFC was tuned, the subsequent measurements (relative to a new baseline) showed significant (p <0.005) abilities to predict MLC errors. Using the area under the curve, we show the IQM’s ability to detect errors increases with increasing MLC error (Spearman’s Rho=0.8056, p<0.0001). The optimal IQM count thresholds from the ROC curves are ±3%, ±2%, and ±7% for the beginning, middle 3, and end segments, respectively. Conclusion: The IQM has proven to be able to detect not only MLC errors, but also differences in beam tuning (ramp-up). Partially supported by the Susan Scott Foundation.

  20. Validity and Reliability of a Digital Inclinometer to Assess Knee Joint Position Sense in an Open Kinetic Chain.

    Science.gov (United States)

    Romero-Franco, Natalia; Montaño-Munuera, Juan Antonio; Fernández-Domínguez, Juan Carlos; Jiménez-Reyes, Pedro

    2017-12-18

    New methods are being validated to easily evaluate the knee joint position sense (JPS) due to its role in sports movement and the risk of injury. However, no studies to date have considered the open kinetic chain (OKC) technique, despite the biomechanical differences compared to closed kinetic chain movements. To analyze the validity and reliability of a digital inclinometer to measure the knee JPS in the OKC movement. The validity, inter-tester and intra-tester reliability of a digital inclinometer for measuring knee JPS were evaluated. Sports research laboratory. Eighteen athletes (11 males and 7 females; 28.4 ± 6.6 years; 71.9 ± 14.0 kg; 1.77 ± 0.09 m; 22.8 ± 3.2 kg/m 2 ) voluntary participated in this study. Absolute angular error (AAE), relative angular error (RAE) and variable angular error (VAE) of knee JPS in an OKC. Intraclass correlation coefficient (ICC) and standard error of the mean (SEM) were calculated to determine the validity and reliability of the inclinometer. Data showed excellent validity of the inclinometer to obtain proprioceptive errors compared to the video analysis in JPS tasks (AAE: ICC = 0.981, SEM = 0.08; RAE: ICC = 0.974, SEM = 0.12; VAE: ICC = 0.973, SEM = 0.07). Inter-tester reliability was also excellent for all the proprioceptive errors (AAE: ICC = 0.967, SEM = 0.04; RAE: ICC = 0.974, SEM = 0.03; VAE: ICC = 0.939, SEM = 0.08). Similar results were obtained for intra-tester reliability (AAE: ICC = 0.861, SEM = 0.1; RAE: ICC = 0.894, SEM = 0.1; VAE: ICC = 0.700, SEM = 0.2). The digital inclinometer is a valid and reliable method to assess the knee JPS in OKC. Sport professionals may evaluate the knee JPS to monitor its deterioration during training or improvements throughout the rehabilitation process.

  1. A false positive food chain error associated with a generic predator gut content ELISA

    Science.gov (United States)

    Conventional prey-specific gut content ELISA and PCR assays are useful for identifying predators of insect pests in nature. However, these assays are prone to yielding certain types of food chain errors. For instance, it is possible that prey remains can pass through the food chain as the result of ...

  2. A 200-m All-out Front-crawl Swim Modifies Competitive Swimmers' Shoulder Joint Position Sense

    NARCIS (Netherlands)

    Uematsu, A.; Kurita, Y.; Inoue, K.; Okuno, K.; Hortobagyi, T.; Suzuki, S.

    2015-01-01

    We tested the hypothesis that an all-out-effort 200-m front-crawl swim trial affects competitive swimmers' shoulder joint position sense. On Day 1, we measured shoulder joint position sense before and after the swim trial, and on Day 2 before and after 2 min of seated rest. On both days, shoulder

  3. On minimizing assignment errors and the trade-off between false positives and negatives in parentage analysis

    KAUST Repository

    Harrison, Hugo B.

    2013-11-04

    Genetic parentage analyses provide a practical means with which to identify parent-offspring relationships in the wild. In Harrison et al.\\'s study (2013a), we compare three methods of parentage analysis and showed that the number and diversity of microsatellite loci were the most important factors defining the accuracy of assignments. Our simulations revealed that an exclusion-Bayes theorem method was more susceptible to false-positive and false-negative assignments than other methods tested. Here, we analyse and discuss the trade-off between type I and type II errors in parentage analyses. We show that controlling for false-positive assignments, without reporting type II errors, can be misleading. Our findings illustrate the need to estimate and report both the rate of false-positive and false-negative assignments in parentage analyses. © 2013 John Wiley & Sons Ltd.

  4. On minimizing assignment errors and the trade-off between false positives and negatives in parentage analysis

    KAUST Repository

    Harrison, Hugo B.; Saenz Agudelo, Pablo; Planes, Serge; Jones, Geoffrey P.; Berumen, Michael L.

    2013-01-01

    Genetic parentage analyses provide a practical means with which to identify parent-offspring relationships in the wild. In Harrison et al.'s study (2013a), we compare three methods of parentage analysis and showed that the number and diversity of microsatellite loci were the most important factors defining the accuracy of assignments. Our simulations revealed that an exclusion-Bayes theorem method was more susceptible to false-positive and false-negative assignments than other methods tested. Here, we analyse and discuss the trade-off between type I and type II errors in parentage analyses. We show that controlling for false-positive assignments, without reporting type II errors, can be misleading. Our findings illustrate the need to estimate and report both the rate of false-positive and false-negative assignments in parentage analyses. © 2013 John Wiley & Sons Ltd.

  5. No Correlation between Distorted Body Representations Underlying Tactile Distance Perception and Position Sense

    Directory of Open Access Journals (Sweden)

    Matthew R. Longo

    2016-11-01

    Full Text Available Both tactile distance perception and position sense are believed to require that immediate afferent signals be referenced to a stored representation of body size and shape (the body model. For both of these abilities, recent studies have reported that the stored body representations involved are highly distorted, at least in the case of the hand, with the hand dorsum represented as wider and squatter than it actually is. Here, we investigated whether individual differences in the magnitude of these distortions are shared between tactile distance perception and position sense, as would be predicted by the hypothesis that a single distorted body model underlies both tasks. We used established task to measure distortions of the represented shape of the hand dorsum. Consistent with previous results, in both cases there were clear biases to overestimate distances oriented along the medio-lateral axis of the hand compared to the proximo-distal axis. Moreover, within each task there were clear split-half correlations, demonstrating that both tasks show consistent individual differences. Critically, however, there was no correlation between the magnitudes of distortion in the two tasks. This casts doubt on the proposal that a common body model underlies both tactile distance perception and position sense.

  6. Effects of age, sex and arm on the precision of arm position sense-left-arm superiority in healthy right-handers.

    Science.gov (United States)

    Schmidt, Lena; Depper, Lena; Kerkhoff, Georg

    2013-01-01

    Position sense is an important proprioceptive ability. Disorders of arm position sense (APS) often occur after unilateral stroke, and are associated with a negative functional outcome. In the present study we assessed horizontal APS by measuring angular deviations from a visually defined target separately for each arm in a large group of healthy subjects. We analyzed the accuracy and instability of horizontal APS as a function of age, sex and arm. Subjects were required to specify verbally the position of their unseen arm on a 0-90° circuit by comparing the current position with the target position indicated by a LED lamp, while the arm was passively moved by the examiner. Eighty-seven healthy subjects participated in the study, ranging from 20 to 77 years, subdivided into three age groups. The results revealed that APS was not a function of age or sex, but was significantly better in the non-dominant (left) arm in absolute errors (AE) but not in constant errors (CE) across all age groups of right-handed healthy subjects. This indicates a right-hemisphere superiority for left APS in right-handers and neatly fits to the more frequent and more severe left-sided body-related deficits in patients with unilateral stroke (i.e. impaired APS in left spatial neglect, somatoparaphrenia) or in individuals with abnormalities of the right cerebral hemisphere. These clinical issues will be discussed.

  7. SU-E-J-94: Positioning Errors Resulting From Using Bony Anatomy Alignment for Treating SBRT Lung Tumor

    International Nuclear Information System (INIS)

    Frame, C; Ding, G

    2014-01-01

    Purpose: To quantify patient setups errors based on bony anatomy registration rather than 3D tumor alignment for SBRT lung treatments. Method: A retrospective study was performed for patients treated with lung SBRT and imaged with kV cone beam computed tomography (kV-CBCT) image-guidance. Daily CBCT images were registered to treatment planning CTs based on bony anatomy alignment and then inter-fraction tumor movement was evaluated by comparing shift in the tumor center in the medial-lateral, anterior-posterior, and superior-inferior directions. The PTV V100% was evaluated for each patient based on the average daily tumor displacement to assess the impact of the positioning error on the target coverage when the registrations were based on bony anatomy. Of the 35 patients studied, 15 were free-breathing treatments, 10 used abdominal compression with a stereotactic body frame, and the remaining 10 were performed with BodyFIX vacuum bags. Results: For free-breathing treatments, the range of tumor displacement error is between 1–6 mm in the medial-lateral, 1–13 mm in the anterior-posterior, and 1–7 mm in the superior-inferior directions. These positioning errors lead to 6–22% underdose coverage for PTV - V100% . Patients treated with abdominal compression immobilization showed positional errors of 0–4mm mediallaterally, 0–3mm anterior-posteriorly, and 0–2 mm inferior-superiorly with PTV - V100% underdose ranging between 6–17%. For patients immobilized with the vacuum bags, the positional errors were found to be 0–1 mm medial-laterally, 0–1mm anterior-posteriorly, and 0–2 mm inferior-superiorly with PTV - V100% under dose ranging between 5–6% only. Conclusion: It is necessary to align the tumor target by using 3D image guidance to ensure adequate tumor coverage before performing SBRT lung treatments. The BodyFIX vacuum bag immobilization method has the least positioning errors among the three methods studied when bony anatomy is used for

  8. Motivational processes from expectancy-value theory are associated with variability in the error positivity in young children.

    Science.gov (United States)

    Kim, Matthew H; Marulis, Loren M; Grammer, Jennie K; Morrison, Frederick J; Gehring, William J

    2017-03-01

    Motivational beliefs and values influence how children approach challenging activities. The current study explored motivational processes from an expectancy-value theory framework by studying children's mistakes and their responses to them by focusing on two event-related potential (ERP) components: the error-related negativity (ERN) and the error positivity (Pe). Motivation was assessed using a child-friendly challenge puzzle task and a brief interview measure prior to ERP testing. Data from 50 4- to 6-year-old children revealed that greater perceived competence beliefs were related to a larger Pe, whereas stronger intrinsic task value beliefs were associated with a smaller Pe. Motivation was unrelated to the ERN. Individual differences in early motivational processes may reflect electrophysiological activity related to conscious error awareness. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. The impact of sensor errors and building structures on particle filter-based inertial positioning

    DEFF Research Database (Denmark)

    Toftkjær, Thomas; Kjærgaard, Mikkel Baun

    2012-01-01

    Positioning systems that do not depend on in-building infrastructures are critical for enabling a range of applications within pervasive computing. Particle filter-based inertial positioning promises infrastructure-less positioning, but previous research has not provided an understanding of how t...

  10. Hand position-dependent modulation of errors in vibrotactile temporal order judgments

    DEFF Research Database (Denmark)

    Ritterband-Rosenbaum, Anina; Hermosillo, Robert; Kroliczak, Gregory

    2014-01-01

    this confounded information is processed in the brain is poorly understood. In the present set of experiments, we addressed this knowledge gap by using singlepulse transcranial magnetic stimulation (TMS) to disrupt processing in the right or left posterior parietal cortex (PPC) during a vibrotactile TOJ task...... with stimuli applied to the right and left index fingers. In the first experiment, participants held their hands in an uncrossed configuration, and we found that when the index finger contralateral to the site of TMS was stimulated first, there was a significant increase in TOJ errors. This increase did...... that these TMS-induced changes in TOJ errors were not due to a reduced ability to detect the timing of the vibrotactile stimuli. Taken together, these results demonstrate that both the right and left PPC contribute to the processing underlying vibrotactile TOJs by integrating vibrotactile information...

  11. [Positioning errors of CT common rail technique in intensity-modulated radiotherapy for nasopharyngeal carcinoma].

    Science.gov (United States)

    Tian, Fei; Xu, Zihai; Mo, Li; Zhu, Chaohua; Chen, Chaomin

    2012-11-01

    To evaluate the value of CT common rail technique for application in intensity-modulated radiotherapy for nasopharyngeal carcinoma (NPC). Twenty-seven NPC patients underwent Somatom CT scans using the Siemens CTVision system prior to the commencement of the radiotherapy sessions. The acquired CT images were registered with the planning CT images using the matching function of the system to obtain the linear set-up errors of 3 directions, namely X (left to right), Y (superior to inferior), and Z (anterior to posterior). The errors were then corrected online on the moving couch. The 27 NPC patients underwent a total of 110 CT scans and the displacement deviations of the X, Y and Z directions were -0.16∓1.68 mm, 0.25∓1.66 mm, and 0.33∓1.09 mm, respectively. CT common rail technique can accurately and rapidly measure the space error between the posture and the target area to improve the set-up precision of intensity-modulated radiotherapy for NPC.

  12. High angle of attack position sensing for the Southampton University magnetic suspension and balance system

    Science.gov (United States)

    Parker, David H.

    1987-01-01

    An all digital five channel position detection system is to be installed in the Southampton University Magnetic Suspension and Balance System (SUMSBS). The system is intended to monitor a much larger range of model pitch attitudes than has been possible hitherto, up to a maximum of a 90 degree angle of attack. It is based on the use of self-scanning photodiode arrays and illuminating laser light beams, together with purpose built processing electronics. The principles behind the design of the system are discussed, together with the results of testing one channel of the system which was used to control the axial position of a magnetically suspended model in SUMSBS. The removal of optically coupled heave position information from the axial position sensing channel is described.

  13. Effect of MLC leaf position, collimator rotation angle, and gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Sen; Li, Guangjun; Wang, Maojie; Jiang, Qinfeng; Zhang, Yingjie [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan (China); Wei, Yuquan, E-mail: yuquawei@vip.sina.com [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan (China)

    2013-07-01

    The purpose of this study was to investigate the effect of multileaf collimator (MLC) leaf position, collimator rotation angle, and accelerator gantry rotation angle errors on intensity-modulated radiotherapy plans for nasopharyngeal carcinoma. To compare dosimetric differences between the simulating plans and the clinical plans with evaluation parameters, 6 patients with nasopharyngeal carcinoma were selected for simulation of systematic and random MLC leaf position errors, collimator rotation angle errors, and accelerator gantry rotation angle errors. There was a high sensitivity to dose distribution for systematic MLC leaf position errors in response to field size. When the systematic MLC position errors were 0.5, 1, and 2 mm, respectively, the maximum values of the mean dose deviation, observed in parotid glands, were 4.63%, 8.69%, and 18.32%, respectively. The dosimetric effect was comparatively small for systematic MLC shift errors. For random MLC errors up to 2 mm and collimator and gantry rotation angle errors up to 0.5°, the dosimetric effect was negligible. We suggest that quality control be regularly conducted for MLC leaves, so as to ensure that systematic MLC leaf position errors are within 0.5 mm. Because the dosimetric effect of 0.5° collimator and gantry rotation angle errors is negligible, it can be concluded that setting a proper threshold for allowed errors of collimator and gantry rotation angle may increase treatment efficacy and reduce treatment time.

  14. An Implementation of Error Minimization Position Estimate in Wireless Inertial Measurement Unit using Modification ZUPT

    Directory of Open Access Journals (Sweden)

    Adytia Darmawan

    2016-12-01

    Full Text Available Position estimation using WIMU (Wireless Inertial Measurement Unit is one of emerging technology in the field of indoor positioning systems. WIMU can detect movement and does not depend on GPS signals. The position is then estimated using a modified ZUPT (Zero Velocity Update method that was using Filter Magnitude Acceleration (FMA, Variance Magnitude Acceleration (VMA and Angular Rate (AR estimation. Performance of this method was justified on a six-legged robot navigation system. Experimental result shows that the combination of VMA-AR gives the best position estimation.

  15. Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling

    Science.gov (United States)

    Thakur, Jay Krishna; Singh, Sudhir Kumar; Ekanthalu, Vicky Shettigondahalli

    2017-07-01

    Integration of remote sensing (RS), geographic information systems (GIS) and global positioning system (GPS) are emerging research areas in the field of groundwater hydrology, resource management, environmental monitoring and during emergency response. Recent advancements in the fields of RS, GIS, GPS and higher level of computation will help in providing and handling a range of data simultaneously in a time- and cost-efficient manner. This review paper deals with hydrological modeling, uses of remote sensing and GIS in hydrological modeling, models of integrations and their need and in last the conclusion. After dealing with these issues conceptually and technically, we can develop better methods and novel approaches to handle large data sets and in a better way to communicate information related with rapidly decreasing societal resources, i.e. groundwater.

  16. What Do Letter Migration Errors Reveal About Letter Position Coding in Visual Word Recognition?

    Science.gov (United States)

    Davis, Colin J.; Bowers, Jeffrey S.

    2004-01-01

    Dividing attention across multiple words occasionally results in misidentifications whereby letters apparently migrate between words. Previous studies have found that letter migrations preserve within-word letter position, which has been interpreted as support for position-specific letter coding. To investigate this issue, the authors used word…

  17. Residual position errors of lymph node surrogates in breast cancer adjuvant radiotherapy: Comparison of two arm fixation devices and the effect of arm position correction

    International Nuclear Information System (INIS)

    Kapanen, Mika; Laaksomaa, Marko; Skyttä, Tanja; Haltamo, Mikko; Pehkonen, Jani; Lehtonen, Turkka; Kellokumpu-Lehtinen, Pirkko-Liisa; Hyödynmaa, Simo

    2016-01-01

    Residual position errors of the lymph node (LN) surrogates and humeral head (HH) were determined for 2 different arm fixation devices in radiotherapy (RT) of breast cancer: a standard wrist-hold (WH) and a house-made rod-hold (RH). The effect of arm position correction (APC) based on setup images was also investigated. A total of 113 consecutive patients with early-stage breast cancer with LN irradiation were retrospectively analyzed (53 and 60 using the WH and RH, respectively). Residual position errors of the LN surrogates (Th1-2 and clavicle) and the HH were investigated to compare the 2 fixation devices. The position errors and setup margins were determined before and after the APC to investigate the efficacy of the APC in the treatment situation. A threshold of 5 mm was used for the residual errors of the clavicle and Th1-2 to perform the APC, and a threshold of 7 mm was used for the HH. The setup margins were calculated with the van Herk formula. Irradiated volumes of the HH were determined from RT treatment plans. With the WH and the RH, setup margins up to 8.1 and 6.7 mm should be used for the LN surrogates, and margins up to 4.6 and 3.6 mm should be used to spare the HH, respectively, without the APC. After the APC, the margins of the LN surrogates were equal to or less than 7.5/6.0 mm with the WH/RH, but margins up to 4.2/2.9 mm were required for the HH. The APC was needed at least once with both the devices for approximately 60% of the patients. With the RH, irradiated volume of the HH was approximately 2 times more than with the WH, without any dose constraints. Use of the RH together with the APC resulted in minimal residual position errors and setup margins for all the investigated bony landmarks. Based on the obtained results, we prefer the house-made RH. However, more attention should be given to minimize the irradiation of the HH with the RH than with the WH.

  18. Dosimetric impact of systematic MLC positional errors on step and shoot IMRT for prostate cancer: a planning study

    International Nuclear Information System (INIS)

    Ung, N.M.; Harper, C.S.; Wee, L.

    2011-01-01

    Full text: The positional accuracy of multileaf collimators (MLC) is crucial in ensuring precise delivery of intensity-modulated radiotherapy (IMRT). The aim of this planning study was to investigate the dosimetric impact of systematic MLC positional errors on step and shoot IMRT of prostate cancer. A total of 12 perturbations of MLC leaf banks were introduced to six prostate IMRT treatment plans to simulate MLC systematic positional errors. Dose volume histograms (DVHs) were generated for the extraction of dose endpoint parameters. Plans were evaluated in terms of changes to the defined endpoint dose parameters, conformity index (CI) and healthy tissue avoidance (HTA) to planning target volume (PTV), rectum and bladder. Negative perturbations of MLC had been found to produce greater changes to endpoint dose parameters than positive perturbations of MLC (p 9 5 of -1.2 and 0.9% respectively. Negative and positive synchronised MLC perturbations of I mm in one direction resulted in median changes in D 9 5 of -2.3 and 1.8% respectively. Doses to rectum were generally more sensitive to systematic MLC en-ors compared to bladder (p < 0.01). Negative and positive synchronised MLC perturbations of I mm in one direction resulted in median changes in endpoint dose parameters of rectum and bladder from 1.0 to 2.5%. Maximum reduction of -4.4 and -7.3% were recorded for conformity index (CI) and healthy tissue avoidance (HT A) respectively due to synchronised MLC perturbation of 1 mm. MLC errors resulted in dosimetric changes in IMRT plans for prostate. (author)

  19. Use of a multilayer printed circuit board as the position sensing electrode in an MWPC

    International Nuclear Information System (INIS)

    Barbosa, A.F.

    1995-01-01

    An X-ray gas position sensitive detector (PSD) is described. The detector makes use of a single electrode, the X and Y cathode, to sense the electric charge induced by the avalanches generated after the absorption of X-ray photons in a multiwire proportional counter (MWPC). Two-dimensional (2D) localization of photons is achieved by associating one delay line to each coordinate. The delay lines are directly coupled to the X and Y cathode, so that the propagation time of electric pulses can be related to the corresponding avalanche position. Since the position encoding does not involve wires, the anode is the only wire electrode present in the detector, used for collecting the avalanche electrons. (orig.)

  20. GPS Users Positioning Errors during Disturbed Near-Earth Space Conditions

    National Research Council Canada - National Science Library

    Afraimovich, E. L; Demyanov, V. V; Tatarinov, P. V; Astafieva, E. I; Zhivetiev, I. V

    2006-01-01

    .... (GPS Solutions, 2003, V7, N2, 109) showed, that during geomagnetic disturbances in the near space deterioration of GNSS operation quality is appeared and, as consequence, reduction of positioning accuracy and occurrence of failures...

  1. Development of a Simple Radioactive marker System to Reduce Positioning Errors in Radiation Treatment

    International Nuclear Information System (INIS)

    William H. Miller; Dr. Jatinder Palta

    2007-01-01

    The objective of this research is to implement an inexpensive, quick and simple monitor that provides an accurate indication of proper patient position during the treatment of cancer by external beam X-ray radiation and also checks for any significant changes in patient anatomy. It is believed that this system will significantly reduce the treatment margin, provide an additional, independent quality assurance check of positioning accuracy prior to all treatments and reduce the probability of misadministration of therapeutic dose

  2. Dosimetric impact of systematic MLC positional errors on step and shoot IMRT for prostate cancer: a planning study

    International Nuclear Information System (INIS)

    Ung, N.M.; Wee, L.; Harper, C.S.

    2010-01-01

    Full text: The positional accuracy of multi leaf collimators (MLC) is crucial in ensuring precise delivery of intensity-modulated radiotherapy (IMRT). The aim of this planning study was to investigate the dosimetric impact of systematic MLC errors on step and shoot IMRT of prostate cancer. Twelve MLC leaf banks perturbations were introduced to six prostate IMRT treatment plans to simulate MLC systematic errors. Dose volume histograms (OYHs) were generated for the extraction of dose endpoint parameters. Plans were evaluated in terms of changes to the defined endpoint dose parameters, conformity index (CI) and healthy tissue avoidance (HTA) to planning target volume (PTY), rectum and bladder. Negative perturbations of MLC had been found to produce greater changes to endpoint dose parameters than positive perturbations of MLC (p < 0.05). Negative and positive synchronized MLC perturbations of I mm resulted in median changes of -2.32 and 1.78%, respectively to 095% of PTY whereas asynchronized MLC perturbations of the same direction and magnitude resulted in median changes of 1.18 and 0.90%, respectively. Doses to rectum were generally more sensitive to systematic MLC errors compared to bladder. Synchronized MLC perturbations of I mm resulted in median changes of endpoint dose parameters to both rectum and bladder from about I to 3%. Maximum reduction of -4.44 and -7.29% were recorded for CI and HTA, respectively, due to synchronized MLC perturbation of I mm. In summary, MLC errors resulted in measurable amount of dose changes to PTY and surrounding critical structures in prostate LMRT. (author)

  3. Interactive football training based on rebounders with hit position sensing and audio/light feedback

    DEFF Research Database (Denmark)

    Jensen, Mads Møller; Grønbæk, Kaj; Rasmussen, Majken Kirkegård

    A Danish football club has established a (24/7/365) football training facility, where the authors developed an interactive training installation (http://vimeo.com/28446312). The training installation consist of a 12*12 m square with 4 M­Station Pro rebounders equipped with sensors that enable hit...... position sensing. The rebounders are equipped with loudspeakers and lights being used to call for the ball. Here we discuss one game “Pass ­and ­Turn”, which is meant to train speed in controlling a returned ball, reaction to a call for the ball and turning to hit rebounders to the left, right, behind...

  4. A technique for position sensing and improved momentum evaluation of microparticle impacts in space.

    Science.gov (United States)

    Mcdonnell, J. A. M.; Abellanas, C.

    1972-01-01

    The design of a three element piezoelectric microparticle impact sensing diaphragm is described which is sensitive to the detection of momentum propagated by the bending wave. The design achieves a sensitivity of .03 microdyn/sec and optimizes the detection of the direct-path pulse from impact relative to secondary reflections and interference from discontinuities. Measurement of the relative arrival times and the maximum amplitudes of the outputs from the three piezoelectric sensors leads to the determination of the impact position and the normally resolved impact momentum exchange. Coincidence of the signals and a partial redundancy of data leads to a very high noise discrimination.

  5. EFFECT OF DIFFERENT LEVELS OF LOCALIZED MUSCLE FATIGUE ON KNEE POSITION SENSE

    Directory of Open Access Journals (Sweden)

    William S. Gear

    2011-12-01

    Full Text Available There is little information available regarding how proprioceptive abilities decline as the amount of exertion increases during exercise. The purpose of this study was to determine the role of different levels of fatigue on knee joint position sense. A repeated measures design was used to examine changes in active joint reposition sense (AJRS prior to and following three levels of fatigue. Eighteen participants performed knee extension and flexion isokinetic exercise until torque output was 90%, 70%, or 50% of the peak hamstring torque for three consecutive repetitions. Active joint reposition sense at 15, 30, or 45 degrees was tested following the isokinetic exercise session. Following testing of the first independent measure, participants were given a 20 minute rest period. Testing procedures were repeated for two more exercise sessions following the other levels of fatigue. Testing of each AJRS test angle was conducted on three separate days with 48 hours between test days. Significant main effect for fatigue was indicated (p = 0.001. Pairwise comparisons indicated a significant difference between the pre-test and following 90% of peak hamstring torque (p = 0.02 and between the pre-test and following 50% of peak hamstring torque (p = 0.02. Fatigue has long been theorized to be a contributing factor in decreased proprioceptive acuity, and therefore a contributing factor to joint injury. The findings of the present study indicate that fatigue may have an effect on proprioception following mild and maximum fatigue.

  6. Causes and consequences of timing errors associated with global positioning system collar accelerometer activity monitors

    Science.gov (United States)

    Adam J. Gaylord; Dana M. Sanchez

    2014-01-01

    Direct behavioral observations of multiple free-ranging animals over long periods of time and large geographic areas is prohibitively difficult. However, recent improvements in technology, such as Global Positioning System (GPS) collars equipped with motion-sensitive activity monitors, create the potential to remotely monitor animal behavior. Accelerometer-equipped...

  7. Validity and Reliability of a Digital Inclinometer to Assess Knee Joint Position Sense in a Closed Kinetic Chain.

    Science.gov (United States)

    Romero-Franco, Natalia; Montaño-Munuera, Juan Antonio; Jiménez-Reyes, Pedro

    2017-01-01

    Knee joint position sense (JPS) is a key parameter for optimum performance in many sports but is frequently negatively affected by injuries and/or fatigue during training sessions. Although evaluation of JPS may provide key information to reduce the risk of injury, it often requires expensive and/or complex tools that make monitoring proprioceptive deterioration difficult. To analyze the validity and reliability of a digital inclinometer to measure knee JPS in a closed kinetic chain (CKC). The validity and intertester and intratester reliability of a digital inclinometer for measuring knee JPS were assessed. Biomechanics laboratory. 10 athletes (5 men and 5 women; 26.2 ± 1.3 y, 71.7 ± 12.4 kg; 1.75 ± 0.09 m; 23.5 ± 3.9 kg/m 2 ). Knee JPS was measured in a CKC. Absolute angular error (AAE) of knee JPS in a CKC. Intraclass correlation coefficient (ICC) and standard error of the mean (SEM) were calculated to determine the validity and reliability of the inclinometer. Data showed that the inclinometer had a high level of validity compared with an isokinetic dynamometer (ICC = 1.0, SEM = 1.39, p AutoCAD video analysis, inclinometer validity was very high (ICC = 0.980, SEM = 3.46, p < 0.001) for measuring AAE during knee JPS in a CKC. In addition, the intertester reliability of the inclinometer for obtaining AAE was very high (ICC = .994, SEM = 1.67, p < 0.001). The inclinometer provides a valid and reliable method for assessing knee JPS in a CKC. Health and sports professionals could take advantage of this tool to monitor proprioceptive deterioration in athletes.

  8. Absolute Position Sensing Based on a Robust Differential Capacitive Sensor with a Grounded Shield Window

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2016-05-01

    Full Text Available A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10−4 pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range.

  9. [Medical errors from positions of mutual relations of patient-lawyer-doctor].

    Science.gov (United States)

    Radysh, Ia F; Tsema, Ie V; Mehed', V P

    2013-01-01

    The basic theoretical and practical aspects of problem of malpractice in the system of health protection Ukraine are presented in the article. On specific examples the essence of the term "malpractice" is expounded. It was considered types of malpractice, conditions of beginning and kinds of responsibility to assumption of malpractice. The special attention to the legal and mental and ethical questions of problem from positions of protection of rights for a patient and medical worker is spared. The necessity of qualification malpractices on intentional and unintentional, possible and impermissible is grounded.

  10. A new approach to the form and position error measurement of the auto frame surface based on laser

    Science.gov (United States)

    Wang, Hua; Li, Wei

    2013-03-01

    Auto frame is a very large workpiece, with length up to 12 meters and width up to 2 meters, and it's very easy to know that it's inconvenient and not automatic to measure such a large workpiece by independent manual operation. In this paper we propose a new approach to reconstruct the 3D model of the large workpiece, especially the auto truck frame, based on multiple pulsed lasers, for the purpose of measuring the form and position errors. In a concerned area, it just needs one high-speed camera and two lasers. It is a fast, high-precision and economical approach.

  11. Automatic detection of patient identification and positioning errors in radiation therapy treatment using 3-dimensional setup images.

    Science.gov (United States)

    Jani, Shyam S; Low, Daniel A; Lamb, James M

    2015-01-01

    To develop an automated system that detects patient identification and positioning errors between 3-dimensional computed tomography (CT) and kilovoltage CT planning images. Planning kilovoltage CT images were collected for head and neck (H&N), pelvis, and spine treatments with corresponding 3-dimensional cone beam CT and megavoltage CT setup images from TrueBeam and TomoTherapy units, respectively. Patient identification errors were simulated by registering setup and planning images from different patients. For positioning errors, setup and planning images were misaligned by 1 to 5 cm in the 6 anatomical directions for H&N and pelvis patients. Spinal misalignments were simulated by misaligning to adjacent vertebral bodies. Image pairs were assessed using commonly used image similarity metrics as well as custom-designed metrics. Linear discriminant analysis classification models were trained and tested on the imaging datasets, and misclassification error (MCE), sensitivity, and specificity parameters were estimated using 10-fold cross-validation. For patient identification, our workflow produced MCE estimates of 0.66%, 1.67%, and 0% for H&N, pelvis, and spine TomoTherapy images, respectively. Sensitivity and specificity ranged from 97.5% to 100%. MCEs of 3.5%, 2.3%, and 2.1% were obtained for TrueBeam images of the above sites, respectively, with sensitivity and specificity estimates between 95.4% and 97.7%. MCEs for 1-cm H&N/pelvis misalignments were 1.3%/5.1% and 9.1%/8.6% for TomoTherapy and TrueBeam images, respectively. Two-centimeter MCE estimates were 0.4%/1.6% and 3.1/3.2%, respectively. MCEs for vertebral body misalignments were 4.8% and 3.6% for TomoTherapy and TrueBeam images, respectively. Patient identification and gross misalignment errors can be robustly and automatically detected using 3-dimensional setup images of different energies across 3 commonly treated anatomical sites. Copyright © 2015 American Society for Radiation Oncology. Published by

  12. A Doppler Radar System for Sensing Physiological Parameters in Walking and Standing Positions

    Directory of Open Access Journals (Sweden)

    Malikeh Pour Ebrahim

    2017-03-01

    Full Text Available Doppler radar can be implemented for sensing physiological parameters wirelessly at a distance. Detecting respiration rate, an important human body parameter, is essential in a range of applications like emergency and military healthcare environments, and Doppler radar records actual chest motion. One challenge in using Doppler radar is being able to monitor several patients simultaneously and in different situations like standing, walking, or lying. This paper presents a complete transmitter-receiver Doppler radar system, which uses a 4 GHz continuous wave radar signal transmission and receiving system, to extract base-band data from a phase-shifted signal. This work reports experimental evaluations of the system for one and two subjects in various standing and walking positions. It provides a detailed signal analysis of various breathing rates of these two subjects simultaneously. These results will be useful in future medical monitoring applications.

  13. The Effectiveness of a Functional Knee Brace on Joint-Position Sense in Anterior Cruciate Ligament-Reconstructed Individuals.

    Science.gov (United States)

    Sugimoto, Dai; LeBlanc, Jessica C; Wooley, Sarah E; Micheli, Lyle J; Kramer, Dennis E

    2016-05-01

    It is estimated that approximately 350,000 individuals undergo anterior cruciate ligament (ACL) reconstruction surgery in each year in the US. Although ACL-reconstruction surgery and postoperative rehabilitation are successfully completed, deficits in postural control remain prevalent in ACL-reconstructed individuals. In order to assist the lack of balance ability and reduce the risk of retear of the reconstructed ACL, physicians often provide a functional knee brace on the patients' return to physical activity. However, it is not known whether use of the functional knee brace enhances knee-joint position sense in individuals with ACL reconstruction. Thus, the effect of a functional knee brace on knee-joint position sense in an ACL-reconstructed population needs be critically appraised. After systematically review of previously published literature, 3 studies that investigated the effect of a functional knee brace in ACL-reconstructed individuals using joint-position-sense measures were found. They were rated as level 2b evidence in the Centre of Evidence Based Medicine Level of Evidence chart. Synthesis of the reviewed studies indicated inconsistent evidence of a functional knee brace on joint-position improvement after ACL reconstruction. More research is needed to provide sufficient evidence on the effect of a functional knee brace on joint-position sense after ACL reconstruction. Future studies need to measure joint-position sense in closed-kinetic-chain fashion since ACL injury usually occurs under weight-bearing conditions.

  14. Self-Sensing of Position-Related Loads in Continuous Carbon Fibers-Embedded 3D-Printed Polymer Structures Using Electrical Resistance Measurement.

    Science.gov (United States)

    Luan, Congcong; Yao, Xinhua; Shen, Hongyao; Fu, Jianzhong

    2018-03-27

    Condition monitoring in polymer composites and structures based on continuous carbon fibers show overwhelming advantages over other potentially competitive sensing technologies in long-gauge measurements due to their great electromechanical behavior and excellent reinforcement property. Although carbon fibers have been developed as strain- or stress-sensing agents in composite structures through electrical resistance measurements, the electromechanical behavior under flexural loads in terms of different loading positions still lacks adequate research, which is the most common situation in practical applications. This study establishes the relationship between the fractional change in electrical resistance of carbon fibers and the external loads at different loading positions along the fibers' longitudinal direction. An approach for real-time monitoring of flexural loads at different loading positions was presented simultaneously based on this relationship. The effectiveness and feasibility of the approach were verified by experiments on carbon fiber-embedded three-dimensional (3D) printed thermoplastic polymer beam. The error in using the provided approach to monitor the external loads at different loading positions was less than 1.28%. The study fully taps the potential of continuous carbon fibers as long-gauge sensory agents and reinforcement in the 3D-printed polymer structures.

  15. Self-Sensing of Position-Related Loads in Continuous Carbon Fibers-Embedded 3D-Printed Polymer Structures Using Electrical Resistance Measurement

    Directory of Open Access Journals (Sweden)

    Congcong Luan

    2018-03-01

    Full Text Available Condition monitoring in polymer composites and structures based on continuous carbon fibers show overwhelming advantages over other potentially competitive sensing technologies in long-gauge measurements due to their great electromechanical behavior and excellent reinforcement property. Although carbon fibers have been developed as strain- or stress-sensing agents in composite structures through electrical resistance measurements, the electromechanical behavior under flexural loads in terms of different loading positions still lacks adequate research, which is the most common situation in practical applications. This study establishes the relationship between the fractional change in electrical resistance of carbon fibers and the external loads at different loading positions along the fibers’ longitudinal direction. An approach for real-time monitoring of flexural loads at different loading positions was presented simultaneously based on this relationship. The effectiveness and feasibility of the approach were verified by experiments on carbon fiber-embedded three-dimensional (3D printed thermoplastic polymer beam. The error in using the provided approach to monitor the external loads at different loading positions was less than 1.28%. The study fully taps the potential of continuous carbon fibers as long-gauge sensory agents and reinforcement in the 3D-printed polymer structures.

  16. Setup accuracy of stereoscopic X-ray positioning with automated correction for rotational errors in patients treated with conformal arc radiotherapy for prostate cancer

    International Nuclear Information System (INIS)

    Soete, Guy; Verellen, Dirk; Tournel, Koen; Storme, Guy

    2006-01-01

    We evaluated setup accuracy of NovalisBody stereoscopic X-ray positioning with automated correction for rotational errors with the Robotics Tilt Module in patients treated with conformal arc radiotherapy for prostate cancer. The correction of rotational errors was shown to reduce random and systematic errors in all directions. (NovalisBody TM and Robotics Tilt Module TM are products of BrainLAB A.G., Heimstetten, Germany)

  17. Cognitive moderators of children's adjustment to stressful divorce events: the role of negative cognitive errors and positive illusions.

    Science.gov (United States)

    Mazur, E; Wolchik, S A; Virdin, L; Sandler, I N; West, S G

    1999-01-01

    This study examined whether children's cognitive appraisal biases moderate the impact of stressful divorce-related events on psychological adjustment in 355 children ages 9 to 12, whose families had experienced divorce within the past 2 years. Multiple regression indicated that endorsement of negative cognitive errors for hypothetical divorce events moderates the relations between stressful divorce events and self- and maternal reports of internalizing and externalizing symptoms, but only for older children. Positive illusions buffer the effects of stressful divorce events on child-reported depression and mother-reported externalizing problems. Implications of these results for theories of stress and coping, as well as for interventions for children of divorced families, are discussed.

  18. HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs

    Directory of Open Access Journals (Sweden)

    Thibaut Raharijaona

    2015-07-01

    Full Text Available An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

  19. HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs.

    Science.gov (United States)

    Raharijaona, Thibaut; Mignon, Paul; Juston, Raphaël; Kerhuel, Lubin; Viollet, Stéphane

    2015-07-08

    An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz) with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

  20. Multisensory Tracking of Objects in Darkness: Capture of Positive Afterimages by the Tactile and Proprioceptive Senses.

    Directory of Open Access Journals (Sweden)

    Brian W Stone

    Full Text Available This paper reports on three experiments investigating the contribution of different sensory modalities to the tracking of objects moved in total darkness. Participants sitting in the dark were exposed to a brief, bright flash which reliably induced a positive visual afterimage of the scene so illuminated. If the participants subsequently move their hand in the darkness, the visual afterimage of that hand fades or disappears; this is presumably due to conflict between the illusory visual afterimage (of the hand in its original location and other information (e.g., proprioceptive from a general mechanism for tracking body parts. This afterimage disappearance effect also occurs for held objects which are moved in the dark, and some have argued that this represents a case of body schema extension, i.e. the rapid incorporation of held external objects into the body schema. We demonstrate that the phenomenon is not limited to held objects and occurs in conditions where incorporation into the body schema is unlikely. Instead, we propose that the disappearance of afterimages of objects moved in darkness comes from a general mechanism for object tracking which integrates input from multiple sensory systems. This mechanism need not be limited to tracking body parts, and thus we need not invoke body schema extension to explain the afterimage disappearance. In this series of experiments, we test whether auditory feedback of object movement can induce afterimage disappearance, demonstrate that the disappearance effect scales with the magnitude of proprioceptive feedback, and show that tactile feedback alone is sufficient for the effect. Together, these data demonstrate that the visual percept of a positive afterimage is constructed not just from visual input of the scene when light reaches the eyes, but in conjunction with input from multiple other senses.

  1. Per-pixel bias-variance decomposition of continuous errors in data-driven geospatial modeling: A case study in environmental remote sensing

    Science.gov (United States)

    Gao, Jing; Burt, James E.

    2017-12-01

    This study investigates the usefulness of a per-pixel bias-variance error decomposition (BVD) for understanding and improving spatially-explicit data-driven models of continuous variables in environmental remote sensing (ERS). BVD is a model evaluation method originated from machine learning and have not been examined for ERS applications. Demonstrated with a showcase regression tree model mapping land imperviousness (0-100%) using Landsat images, our results showed that BVD can reveal sources of estimation errors, map how these sources vary across space, reveal the effects of various model characteristics on estimation accuracy, and enable in-depth comparison of different error metrics. Specifically, BVD bias maps can help analysts identify and delineate model spatial non-stationarity; BVD variance maps can indicate potential effects of ensemble methods (e.g. bagging), and inform efficient training sample allocation - training samples should capture the full complexity of the modeled process, and more samples should be allocated to regions with more complex underlying processes rather than regions covering larger areas. Through examining the relationships between model characteristics and their effects on estimation accuracy revealed by BVD for both absolute and squared errors (i.e. error is the absolute or the squared value of the difference between observation and estimate), we found that the two error metrics embody different diagnostic emphases, can lead to different conclusions about the same model, and may suggest different solutions for performance improvement. We emphasize BVD's strength in revealing the connection between model characteristics and estimation accuracy, as understanding this relationship empowers analysts to effectively steer performance through model adjustments.

  2. Satellite remote sensing reveals a positive impact of living oyster reefs on microalgal biofilm development

    Directory of Open Access Journals (Sweden)

    C. Echappé

    2018-02-01

    Full Text Available Satellite remote sensing (RS is routinely used for the large-scale monitoring of microphytobenthos (MPB biomass in intertidal mudflats and has greatly improved our knowledge of MPB spatio-temporal variability and its potential drivers. Processes operating on smaller scales however, such as the impact of benthic macrofauna on MPB development, to date remain underinvestigated. In this study, we analysed the influence of wild Crassostrea gigas oyster reefs on MPB biofilm development using multispectral RS. A 30-year time series (1985–2015 combining high-resolution (30 m Landsat and SPOT data was built in order to explore the relationship between C. gigas reefs and MPB spatial distribution and seasonal dynamics, using the normalized difference vegetation index (NDVI. Emphasis was placed on the analysis of a before–after control-impact (BACI experiment designed to assess the effect of oyster killing on the surrounding MPB biofilms. Our RS data reveal that the presence of oyster reefs positively affects MPB biofilm development. Analysis of the historical time series first showed the presence of persistent, highly concentrated MPB patches around oyster reefs. This observation was supported by the BACI experiment which showed that killing the oysters (while leaving the physical reef structure, i.e. oyster shells, intact negatively affected both MPB biofilm biomass and spatial stability around the reef. As such, our results are consistent with the hypothesis of nutrient input as an explanation for the MPB growth-promoting effect of oysters, whereby organic and inorganic matter released through oyster excretion and biodeposition stimulates MPB biomass accumulation. MPB also showed marked seasonal variations in biomass and patch shape, size and degree of aggregation around the oyster reefs. Seasonal variations in biomass, with higher NDVI during spring and autumn, were consistent with those observed on broader scales in other European mudflats. Our

  3. Satellite remote sensing reveals a positive impact of living oyster reefs on microalgal biofilm development

    Science.gov (United States)

    Echappé, Caroline; Gernez, Pierre; Méléder, Vona; Jesus, Bruno; Cognie, Bruno; Decottignies, Priscilla; Sabbe, Koen; Barillé, Laurent

    2018-02-01

    Satellite remote sensing (RS) is routinely used for the large-scale monitoring of microphytobenthos (MPB) biomass in intertidal mudflats and has greatly improved our knowledge of MPB spatio-temporal variability and its potential drivers. Processes operating on smaller scales however, such as the impact of benthic macrofauna on MPB development, to date remain underinvestigated. In this study, we analysed the influence of wild Crassostrea gigas oyster reefs on MPB biofilm development using multispectral RS. A 30-year time series (1985-2015) combining high-resolution (30 m) Landsat and SPOT data was built in order to explore the relationship between C. gigas reefs and MPB spatial distribution and seasonal dynamics, using the normalized difference vegetation index (NDVI). Emphasis was placed on the analysis of a before-after control-impact (BACI) experiment designed to assess the effect of oyster killing on the surrounding MPB biofilms. Our RS data reveal that the presence of oyster reefs positively affects MPB biofilm development. Analysis of the historical time series first showed the presence of persistent, highly concentrated MPB patches around oyster reefs. This observation was supported by the BACI experiment which showed that killing the oysters (while leaving the physical reef structure, i.e. oyster shells, intact) negatively affected both MPB biofilm biomass and spatial stability around the reef. As such, our results are consistent with the hypothesis of nutrient input as an explanation for the MPB growth-promoting effect of oysters, whereby organic and inorganic matter released through oyster excretion and biodeposition stimulates MPB biomass accumulation. MPB also showed marked seasonal variations in biomass and patch shape, size and degree of aggregation around the oyster reefs. Seasonal variations in biomass, with higher NDVI during spring and autumn, were consistent with those observed on broader scales in other European mudflats. Our study provides the

  4. Overcoming function annotation errors in the Gram-positive pathogen Streptococcus suis by a proteomics-driven approach

    Directory of Open Access Journals (Sweden)

    Bárcena José A

    2008-12-01

    Full Text Available Abstract Background Annotation of protein-coding genes is a key step in sequencing projects. Protein functions are mainly assigned on the basis of the amino acid sequence alone by searching of homologous proteins. However, fully automated annotation processes often lead to wrong prediction of protein functions, and therefore time-intensive manual curation is often essential. Here we describe a fast and reliable way to correct function annotation in sequencing projects, focusing on surface proteomes. We use a proteomics approach, previously proven to be very powerful for identifying new vaccine candidates against Gram-positive pathogens. It consists of shaving the surface of intact cells with two proteases, the specific cleavage-site trypsin and the unspecific proteinase K, followed by LC/MS/MS analysis of the resulting peptides. The identified proteins are contrasted by computational analysis and their sequences are inspected to correct possible errors in function prediction. Results When applied to the zoonotic pathogen Streptococcus suis, of which two strains have been recently sequenced and annotated, we identified a set of surface proteins without cytoplasmic contamination: all the proteins identified had exporting or retention signals towards the outside and/or the cell surface, and viability of protease-treated cells was not affected. The combination of both experimental evidences and computational methods allowed us to determine that two of these proteins are putative extracellular new adhesins that had been previously attributed a wrong cytoplasmic function. One of them is a putative component of the pilus of this bacterium. Conclusion We illustrate the complementary nature of laboratory-based and computational methods to examine in concert the localization of a set of proteins in the cell, and demonstrate the utility of this proteomics-based strategy to experimentally correct function annotation errors in sequencing projects. This

  5. Triple collocation-based estimation of spatially correlated observation error covariance in remote sensing soil moisture data assimilation

    Science.gov (United States)

    Wu, Kai; Shu, Hong; Nie, Lei; Jiao, Zhenhang

    2018-01-01

    Spatially correlated errors are typically ignored in data assimilation, thus degenerating the observation error covariance R to a diagonal matrix. We argue that a nondiagonal R carries more observation information making assimilation results more accurate. A method, denoted TC_Cov, was proposed for soil moisture data assimilation to estimate spatially correlated observation error covariance based on triple collocation (TC). Assimilation experiments were carried out to test the performance of TC_Cov. AMSR-E soil moisture was assimilated with a diagonal R matrix computed using the TC and assimilated using a nondiagonal R matrix, as estimated by proposed TC_Cov. The ensemble Kalman filter was considered as the assimilation method. Our assimilation results were validated against climate change initiative data and ground-based soil moisture measurements using the Pearson correlation coefficient and unbiased root mean square difference metrics. These experiments confirmed that deterioration of diagonal R assimilation results occurred when model simulation is more accurate than observation data. Furthermore, nondiagonal R achieved higher correlation coefficient and lower ubRMSD values over diagonal R in experiments and demonstrated the effectiveness of TC_Cov to estimate richly structuralized R in data assimilation. In sum, compared with diagonal R, nondiagonal R may relieve the detrimental effects of assimilation when simulated model results outperform observation data.

  6. Global CO2 flux inversions from remote-sensing data with systematic errors using hierarchical statistical models

    Science.gov (United States)

    Zammit-Mangion, Andrew; Stavert, Ann; Rigby, Matthew; Ganesan, Anita; Rayner, Peter; Cressie, Noel

    2017-04-01

    The Orbiting Carbon Observatory-2 (OCO-2) satellite was launched on 2 July 2014, and it has been a source of atmospheric CO2 data since September 2014. The OCO-2 dataset contains a number of variables, but the one of most interest for flux inversion has been the column-averaged dry-air mole fraction (in units of ppm). These global level-2 data offer the possibility of inferring CO2 fluxes at Earth's surface and tracking those fluxes over time. However, as well as having a component of random error, the OCO-2 data have a component of systematic error that is dependent on the instrument's mode, namely land nadir, land glint, and ocean glint. Our statistical approach to CO2-flux inversion starts with constructing a statistical model for the random and systematic errors with parameters that can be estimated from the OCO-2 data and possibly in situ sources from flasks, towers, and the Total Column Carbon Observing Network (TCCON). Dimension reduction of the flux field is achieved through the use of physical basis functions, while temporal evolution of the flux is captured by modelling the basis-function coefficients as a vector autoregressive process. For computational efficiency, flux inversion uses only three months of sensitivities of mole fraction to changes in flux, computed using MOZART; any residual variation is captured through the modelling of a stochastic process that varies smoothly as a function of latitude. The second stage of our statistical approach is to simulate from the posterior distribution of the basis-function coefficients and all unknown parameters given the data using a fully Bayesian Markov chain Monte Carlo (MCMC) algorithm. Estimates and posterior variances of the flux field can then be obtained straightforwardly from this distribution. Our statistical approach is different than others, as it simultaneously makes inference (and quantifies uncertainty) on both the error components' parameters and the CO2 fluxes. We compare it to more classical

  7. [Transposition errors during learning to reproduce a sequence by the right- and the left-hand movements: simulation of positional and movement coding].

    Science.gov (United States)

    Liakhovetskiĭ, V A; Bobrova, E V; Skopin, G N

    2012-01-01

    Transposition errors during the reproduction of a hand movement sequence make it possible to receive important information on the internal representation of this sequence in the motor working memory. Analysis of such errors showed that learning to reproduce sequences of the left-hand movements improves the system of positional coding (coding ofpositions), while learning of the right-hand movements improves the system of vector coding (coding of movements). Learning of the right-hand movements after the left-hand performance involved the system of positional coding "imposed" by the left hand. Learning of the left-hand movements after the right-hand performance activated the system of vector coding. Transposition errors during learning to reproduce movement sequences can be explained by neural network using either vector coding or both vector and positional coding.

  8. Who Benefits From Humor-Based Positive Psychology Interventions? The Moderating Effects of Personality Traits and Sense of Humor.

    Science.gov (United States)

    Wellenzohn, Sara; Proyer, René T; Ruch, Willibald

    2018-01-01

    The evidence for the effectiveness of humor-based positive psychology interventions (PPIs; i.e., interventions aimed at enhancing happiness and lowering depressive symptoms) is steadily increasing. However, little is known about who benefits most from them. We aim at narrowing this gap by examining whether personality traits and sense of humor moderate the long-term effects of humor-based interventions on happiness and depressive symptoms. We conducted two placebo-controlled online-intervention studies testing for moderation effects. In Study 1 ( N = 104) we tested for moderation effects of basic personality traits (i.e., psychoticism, extraversion, and neuroticism) in the three funny things intervention, a humor-based PPI. In Study 2 ( N = 632) we tested for moderation effects of the sense of humor in five different humor-based interventions. Happiness and depressive symptoms were assessed before and after the intervention, as well as after 1, 3, and 6 months. In Study 2, we assessed sense of humor before and 1 month after the intervention to investigate if changes in sense of humor go along with changes in happiness and depressive symptoms. We found moderating effects only for extraversion. Extraverts benefitted more from the three funny things intervention than introverts. For neuroticism and psychoticism no moderation effects were found. For sense of humor, no moderating effects were found for the effectiveness of the five humor-based interventions tested in Study 2. However, changes in sense of humor from pretest to the 1-month follow-up predicted changes in happiness and depressive symptoms. Taking a closer look, the playful attitude- and sense of humor-subscales predicted changes in happiness and depression for up to 6 months. Overall, moderating effects for personality (i.e., extraversion) were found, but none for sense of humor at baseline. However, increases in sense of humor during and after the intervention were associated with the interventions

  9. Cervical joint position sense in neck pain. Immediate effects of muscle vibration versus mental training interventions: a RCT.

    Science.gov (United States)

    Beinert, K; Preiss, S; Huber, M; Taube, W

    2015-12-01

    Impaired cervical joint position sense is a feature of chronic neck pain and is commonly argued to rely on abnormal cervical input. If true, muscle vibration, altering afferent input, but not mental interventions, should have an effect on head repositioning acuity and neck pain perception. The aim of the present study was to determine the short-term effects of neck muscle vibration, motor imagery, and action observation on cervical joint position sense and pressure pain threshold in people with chronic neck pain. Forty-five blinded participants with neck pain received concealed allocation and were randomized in three treatment groups. A blinded assessor performed pre- and post-test measurement. Patients were recruited from secondary outpatient clinics in the southwest of Germany. Chronic, non specific neck pain patients without arm pain were recruited for this study. A single intervention session of 5 minutes was delivered to each blinded participant. Patients were either allocated to one of the following three interventions: (1) neck muscle vibration; (2) motor imagery; (3) action observation. Primary outcomes were cervical joint position sense acuity and pressure pain threshold. Repeated measures ANOVAs were used to evaluate differences between groups and subjects. Repositioning acuity displayed significant time effects for vibration, motor imagery, and action observation (all Ppain threshold demonstrated a time*group effect (P=0.042) as only vibration significantly increased pressure pain threshold (P=0.01). Although motor imagery and action observation did not modulate proprioceptive, afferent input, they nevertheless improved cervical joint position sense acuity. This indicates that, against the common opinion, changes in proprioceptive input are not prerequisite to improve joint repositioning performance. However, the short-term applications of these cognitive treatments had no effect on pressure pain thresholds, whereas vibration reduced pressure pain

  10. Condom Use Errors and Problems: A Comparative Study of HIV-Positive Versus HIV-Negative Young Black Men Who Have Sex With Men.

    Science.gov (United States)

    Crosby, Richard; Mena, Leandro; Yarber, William L; Graham, Cynthia A; Sanders, Stephanie A; Milhausen, Robin R

    2015-11-01

    To describe self-reported frequencies of selected condom use errors and problems among young (age, 15-29 years) black men who have sex with men (YBMSM) and to compare the observed prevalence of these errors/problems by HIV serostatus. Between September 2012 October 2014, electronic interview data were collected from 369 YBMSM attending a federally supported sexually transmitted infection clinic located in the southern United States. Seventeen condom use errors and problems were assessed. χ(2) Tests were used to detect significant differences in the prevalence of these 17 errors and problems between HIV-negative and HIV-positive men. The recall period was the past 90 days. The overall mean (SD) number of errors/problems was 2.98 (2.29). The mean (SD) for HIV-negative men was 2.91 (2.15), and the mean (SD) for HIV-positive men was 3.18 (2.57). These means were not significantly different (t = 1.02, df = 367, P = 0.31). Only 2 significant differences were observed between HIV-negative and HIV-positive men. Breakage (P = 0.002) and slippage (P = 0.005) were about twice as likely among HIV-positive men. Breakage occurred for nearly 30% of the HIV-positive men compared with approximately 15% among HIV-negative men. Slippage occurred for approximately 16% of the HIV-positive men compared with approximately 9% among HIV-negative men. A need exists to help YBMSM acquire the skills needed to avert breakage and slippage issues that could lead to HIV transmission. Beyond these 2 exceptions, condom use errors and problems were ubiquitous in this population regardless of HIV serostatus. Clinic-based intervention is warranted for these young men, including education about correct condom use and provision of free condoms and long-lasting lubricants.

  11. Quantitative analysis of the errors positioning of a multi leaf collimator for volumetric arcoterapia treatments; Analisis cuantitativo de los errores de posicionamiento de un colimador multilaminas para tratamientos de arcoterapia volumetrica

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Gonzalez, N.; Garcia Repiso, S.; Martin Rincon, C.; Cons Perez, N.; Saez Beltran, M.; Delgado Aparicio, J. M.; Perez alvarez, M. E.; Verde Velasco, J. M.; Ramos Pacho, J. A.; Sena Espinel, E. de

    2013-07-01

    The precision in the positioning of the multi leaf collimation system of a linear accelerator is critical, especially in treatments of IMRT, where small mistakes can cause relevant dosimetry discrepancies regarding the calculated plan. To assess the accuracy and repeatability of the blades positioning can be used controls, including the one known as fence test whose image pattern allows you to find anomalies in a visual way. The objective of this study is to develop a method which allows to quantify the positioning errors of the multi leaf collimator from this test. (Author)

  12. A study of the positioning errors of head and neck in the process of intensity modulation radiated therapy of nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Lin Chengguang; Lin Liuwen; Liu Bingti; Liu Xiaomao; Li Guowen

    2011-01-01

    Objective: To investigate the positioning errors of head and neck during intensity-modulated radiation therapy of nasopharyngeal carcinoma. Methods: Nineteen patients with middle-advanced nasopharyngeal carcinoma (T 2-4 N 1-3 M 0 ), treated by intensity-modulated radiation therapy, underwent repeated CT during their 6-week treatment course. All the patients were immobilized by head-neck-shoulder thermoplastic mask. We evaluated their anatomic landmark coordinated in a total of 66 repeated CT data sets and respective x, y, z shifts relative to their position in the planning CT. Results: The positioning error of the neck was 2.44 mm ± 2.24 mm, 2.05 mm ± 1.42 mm, 1.83 mm ± 1.53 mm in x, y, z respectively. And that of the head was 1.05 mm ± 0.87 mm, 1.23 mm ± 1.05 mm, 1.17 mm ± 1.55 mm respectively. The positioning error between neck and head have respectively statistical difference (t=-6.58, -5.28, -3.42, P=0.000, 0.000, 0.001). The system error of the neck was 2.33, 1.67 and 1.56 higher than that of the head, respectively in left-right, vertical and head-foot directions; and the random error of neck was 2.57, 1.34 and 0.99 higher than that of head respectively. Conclusions: In the process of the intensity-modulated radiation therapy of nasopharyngeal carcinoma, with the immobilization by head-neck-shoulder thermoplastic mask, the positioning error of neck is higher than that of head. (authors)

  13. Dosimetric implications of inter- and intrafractional prostate positioning errors during tomotherapy : Comparison of gold marker-based registrations with native MVCT.

    Science.gov (United States)

    Wust, Peter; Joswig, Marc; Graf, Reinhold; Böhmer, Dirk; Beck, Marcus; Barelkowski, Thomasz; Budach, Volker; Ghadjar, Pirus

    2017-09-01

    For high-dose radiation therapy (RT) of prostate cancer, image-guided (IGRT) and intensity-modulated RT (IMRT) approaches are standard. Less is known regarding comparisons of different IGRT techniques and the resulting residual errors, as well as regarding their influences on dose distributions. A total of 58 patients who received tomotherapy-based RT up to 84 Gy for high-risk prostate cancer underwent IGRT based either on daily megavoltage CT (MVCT) alone (n = 43) or the additional use of gold markers (n = 15) under routine conditions. Planned Adaptive (Accuray Inc., Madison, WI, USA) software was used for elaborated offline analysis to quantify residual interfractional prostate positioning errors, along with systematic and random errors and the resulting safety margins after both IGRT approaches. Dosimetric parameters for clinical target volume (CTV) coverage and exposition of organs at risk (OAR) were also analyzed and compared. Interfractional as well as intrafractional displacements were determined. Particularly in the vertical direction, residual interfractional positioning errors were reduced using the gold marker-based approach, but dosimetric differences were moderate and the clinical relevance relatively small. Intrafractional prostate motion proved to be quite high, with displacements of 1-3 mm; however, these did not result in additional dosimetric impairments. Residual interfractional positioning errors were reduced using gold marker-based IGRT; however, this resulted in only slightly different final dose distributions. Therefore, daily MVCT-based IGRT without markers might be a valid alternative.

  14. Space-borne remote sensing of CO2 by IPDA lidar with heterodyne detection: random error estimation

    Science.gov (United States)

    Matvienko, G. G.; Sukhanov, A. Y.

    2015-11-01

    Possibilities of measuring the CO2 column concentration by spaceborne integrated path differential lidar (IPDA) signals in the near IR absorption bands are investigated. It is shown that coherent detection principles applied in the nearinfrared spectral region promise a high sensitivity for the measurement of the integrated dry air column mixing ratio of the CO2. The simulations indicate that for CO2 the target observational requirements (0.2%) for the relative random error can be met with telescope aperture 0.5 m, detector bandwidth 10 MHz, laser energy per impulse 0.3 mJ and averaging 7500 impulses. It should also be noted that heterodyne technique allows to significantly reduce laser power and receiver overall dimensions compared to direct detection.

  15. Joint-position sense is altered by football pre-participation warm-up exercise and match induced fatigue.

    Science.gov (United States)

    Salgado, Eduardo; Ribeiro, Fernando; Oliveira, José

    2015-06-01

    The demands to which football players are exposed during the match may augment the risk of injury by decreasing the sense of joint position. This study aimed to assess the effect of pre-participation warm-up and fatigue induced by an official football match on the knee-joint-position sense of football players. Fourteen semi-professional male football players (mean age: 25.9±4.6 years old) volunteered in this study. The main outcome measures were rate of perceived exertion and knee-joint-position sense assessed at rest, immediately after a standard warm-up (duration 25 min), and immediately after a competitive football match (90 minutes duration). Perceived exertion increased significantly from rest to the other assessments (rest: 8.6±2.0; after warm-up: 12.1±2.1; after football match: 18.5±1.3; pfootball match compared to both rest (pfootball match-induced fatigue. Warm-up exercises could contribute to knee injury prevention, whereas the deleterious effect of match-induced fatigue on the sensorimotor system could ultimately contribute to knee instability and injury. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. SU-F-T-381: Fast Calculation of Three-Dimensional Dose Considering MLC Leaf Positional Errors for VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Katsuta, Y [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan); Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Kadoya, N; Jingu, K [Tohoku University Graduate School of Medicine, Sendal, Miyagi (Japan); Shimizu, E; Majima, K [Takeda General Hospital, Aizuwakamatsu City, Fukushima (Japan)

    2016-06-15

    Purpose: In this study, we developed a system to calculate three dimensional (3D) dose that reflects dosimetric error caused by leaf miscalibration for head and neck and prostate volumetric modulated arc therapy (VMAT) without additional treatment planning system calculation on real time. Methods: An original system called clarkson dose calculation based dosimetric error calculation to calculate dosimetric error caused by leaf miscalibration was developed by MATLAB (Math Works, Natick, MA). Our program, first, calculates point doses at isocenter for baseline and modified VMAT plan, which generated by inducing MLC errors that enlarged aperture size of 1.0 mm with clarkson dose calculation. Second, error incuced 3D dose was generated with transforming TPS baseline 3D dose using calculated point doses. Results: Mean computing time was less than 5 seconds. For seven head and neck and prostate plans, between our method and TPS calculated error incuced 3D dose, the 3D gamma passing rates (0.5%/2 mm, global) are 97.6±0.6% and 98.0±0.4%. The dose percentage change with dose volume histogram parameter of mean dose on target volume were 0.1±0.5% and 0.4±0.3%, and with generalized equivalent uniform dose on target volume were −0.2±0.5% and 0.2±0.3%. Conclusion: The erroneous 3D dose calculated by our method is useful to check dosimetric error caused by leaf miscalibration before pre treatment patient QA dosimetry checks.

  17. Development of an iterative reconstruction method to overcome 2D detector low resolution limitations in MLC leaf position error detection for 3D dose verification in IMRT

    NARCIS (Netherlands)

    Visser, Ruurd; J., Godart; Wauben, D.J.L.; Langendijk, J.; van 't Veld, A.A.; Korevaar, E.W.

    2016-01-01

    The objective of this study was to introduce a new iterative method to reconstruct multi leaf collimator (MLC) positions based on low resolution ionization detector array measurements and to evaluate its error detection performance. The iterative reconstruction method consists of a fluence model, a

  18. SU-E-P-21: Impact of MLC Position Errors On Simultaneous Integrated Boost Intensity-Modulated Radiotherapy for Nasopharyngeal Carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Chengqiang, L; Yin, Y; Chen, L [Shandong Cancer Hospital and Institute, 440 Jiyan Road, Jinan, 250117 (China)

    2015-06-15

    Purpose: To investigate the impact of MLC position errors on simultaneous integrated boost intensity-modulated radiotherapy (SIB-IMRT) for patients with nasopharyngeal carcinoma. Methods: To compare the dosimetric differences between the simulated plans and the clinical plans, ten patients with locally advanced NPC treated with SIB-IMRT were enrolled in this study. All plans were calculated with an inverse planning system (Pinnacle3, Philips Medical System{sub )}. Random errors −2mm to 2mm{sub )},shift errors{sub (} 2mm,1mm and 0.5mm) and systematic extension/ contraction errors (±2mm, ±1mm and ±0.5mm) of the MLC leaf position were introduced respectively into the original plans to create the simulated plans. Dosimetry factors were compared between the original and the simulated plans. Results: The dosimetric impact of the random and system shift errors of MLC position was insignificant within 2mm, the maximum changes in D95% of PGTV,PTV1,PTV2 were-0.92±0.51%,1.00±0.24% and 0.62±0.17%, the maximum changes in the D0.1cc of spinal cord and brainstem were 1.90±2.80% and −1.78±1.42%, the maximum changes in the Dmean of parotids were1.36±1.23% and −2.25±2.04%.However,the impact of MLC extension or contraction errors was found significant. For 2mm leaf extension errors, the average changes in D95% of PGTV,PTV1,PTV2 were 4.31±0.67%,4.29±0.65% and 4.79±0.82%, the averaged value of the D0.1cc to spinal cord and brainstem were increased by 7.39±5.25% and 6.32±2.28%,the averaged value of the mean dose to left and right parotid were increased by 12.75±2.02%,13.39±2.17% respectively. Conclusion: The dosimetric effect was insignificant for random MLC leaf position errors up to 2mm. There was a high sensitivity to dose distribution for MLC extension or contraction errors.We should pay attention to the anatomic changes in target organs and anatomical structures during the course,individual radiotherapy was recommended to ensure adaptive doses.

  19. Dealing with Daily Challenges in Dementia (Deal-id Study): An Experience Sampling Study to Assess Caregivers' Sense of Competence and Experienced Positive Affect in Daily Life.

    Science.gov (United States)

    van Knippenberg, Rosalia J M; de Vugt, Marjolein E; Ponds, Rudolf W; Myin-Germeys, Inez; Verhey, Frans R J

    2017-08-01

    Positive emotions and feelings of competence seem to play an important role in the well-being of caregivers of people with dementia. Both are likely to fluctuate constantly throughout the caretaking process. Unlike standard retrospective methods, momentary assessments in daily life can provide insight into these moment-to-moment fluctuations. Therefore, in this study both retrospective and momentary assessments were used to examine the relationship between caregivers' sense of competence and their experienced positive affect (PA) in daily life. Thirty Dutch caregivers provided momentary data on PA and daily sense of competence ratings for 6 consecutive days using the experience sampling methodology. Additionally, they reported retrospectively on their sense of competence with a traditional questionnaire. A positive association was found between retrospective and daily measured sense of competence. Caregivers reported corresponding levels of sense of competence on both measures. Both daily and retrospective sense of competence were positively associated with the experienced levels of PA. However, daily sense of competence appeared to be the strongest predictor. Regarding the variability in PA, only daily sense of competence showed a significant association, with a higher daily sense of competence predicting a more stable PA pattern. This study provides support for redirecting caregiver support interventions toward enhancement of positive rather than negative experiences and focusing more on caregivers' momentary emotional experiences. Momentary assessments are a valuable addition to standard retrospective measures and provide a more comprehensive and dynamic view of caregiver functioning. Copyright © 2016 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  20. Impact of the error sensing probability in wide coverage areas of clustered-based wireless sensor networks

    Directory of Open Access Journals (Sweden)

    Edgar Romo-Montiel

    2016-01-01

    Full Text Available Las redes inalámbricas de sensores están compuestas por un gran número de nodos autónomos que vigilan algún parámetro del ambiente de interés, como puede ser la temperatura, la humedad o incluso objetivos móviles. Este trabajo se enfoca en la detección de móviles en áreas amplias como puede ser la vigilancia de animales en un bosque o la detección de vehículos en misiones de seguridad. Específicamente, se propone, analiza y estudia un protocolo de agrupación de bajo consumo de energía. Para ello, se presentan dos esquemas de comunicaciones basados en el bien conocido protocolo LEACH. El desempeño del sistema se estudia por medio de un modelo matemático que describe el comportamiento de la red bajo los parámetros más relevantes, como son: radio de cobertura, radio de transmisión y número de nodos en la red. Adicionalmente, se estudia la probabilidad de transmisión en la fase de formación de grupos bajo consideraciones realistas de un canal inalámbrico, en donde la detección de la señal tiene errores debido a la interferencia y ruido en el canal de acceso

  1. Cognitive Moderators of Children's Adjustment to Stressful Divorce Events: The Role of Negative Cognitive Errors and Positive Illusions.

    Science.gov (United States)

    Mazur, Elizabeth; Wolchik, Sharlene A.; Virdin, Lynn; Sandler, Irwin N.; West, Stephen G.

    1999-01-01

    Examined whether children's cognitive biases moderated impact of stressful divorce-related events on adjustment in 9- to 12-year olds. Found that endorsing negative cognitive errors for hypothetical divorce events moderated relations between stressful divorce events and self- and maternal-reports of internalizing and externalizing symptoms for…

  2. Set-up error in supine-positioned patients immobilized with two different modalities during conformal radiotherapy of prostate cancer

    International Nuclear Information System (INIS)

    Fiorino, C.; Cattaneo, G.M.; Calandrino, R.; Reni, M.; Bolognesi, A.; Bonini, A.

    1998-01-01

    Background: Conformal radiotherapy requires reduced margins around the clinical target volume (CTV) with respect to traditional radiotherapy techniques. Therefore, high set-up accuracy and reproducibility are mandatory. Purpose: To investigate the effectiveness of two different immobilization techniques during conformal radiotherapy of prostate cancer with small fields. Materials and methods: 52 patients with prostate cancer were treated by conformal three- or four-field techniques with radical or adjuvant intent between November 1996 and March 1998. In total, 539 portal images were collected on a weekly basis for at least the first 4 weeks of the treatment on lateral and anterior 18 MV X-ray fields. The average number of sessions monitored per patient was 5.7 (range 4-10). All patients were immobilized with an alpha-cradle system; 25 of them were immobilized at the pelvis level (group A) and the remaining 27 patients were immobilized in the legs (group B). The shifts with respect to the simulation condition were assessed by measuring the distances between the same bony landmarks and the field edges. The global distributions of cranio-caudal (CC), posterior-anterior (PA) and left-right (LR) shifts were considered; for each patient random and systematic error components were assessed by following the procedure suggested by Bijhold et al. (Bijhold J, Lebesque JV, Hart AAM, Vijlbrief RE. Maximising set-up accuracy using portal images as applied to a conformal boost technique for prostatic cancer. Radiother. Oncol. 1992;24:261-271). For each patient the average isocentre (3D) shift was assessed as the quadratic sum of the average shifts in the three directions. Results 5 mm equal to 4.4% with respect to the 21.6% of group A (P<0.0001). This value was also better than the corresponding value found in a previously investigated group of 21 non-immobilized patients (Italia C, Fiorino C, Ciocca M, et al. Quality control by portal film analysis of the conformal radiotherapy

  3. Positioning of patients with acute respiratory distress syndrome: combining prone and upright makes sense.

    Science.gov (United States)

    Richard, Jean-Christophe M; Lefebvre, Jean-Claude

    2011-01-01

    Positional strategies have been proposed for mechanically ventilated patients with acute respiratory distress syndrome. Despite different physiological mechanisms involved, oxygenation improvement has been demonstrated with both prone and upright positions. In the previous issue of Critical Care, Robak and colleagues reported the first study evaluating the short-term effects of combining prone and upright positioning. The combined positioning enhanced the response rate in terms of oxygenation. Other benefits, such as a reduction in ventilator-associated pneumonia and better enteral feeding tolerance, can potentially be expected.

  4. Decisions to Shoot in a Weapon Identification Task: The Influence of Cultural Stereotypes and Perceived Threat on False Positive Errors

    OpenAIRE

    Fleming, Kevin K.; Bandy, Carole L.; Kimble, Matthew O.

    2009-01-01

    The decision to shoot engages executive control processes that can be biased by cultural stereotypes and perceived threat. The neural locus of the decision to shoot is likely to be found in the anterior cingulate cortex (ACC) where cognition and affect converge. Male military cadets at Norwich University (N=37) performed a weapon identification task in which they made rapid decisions to shoot when images of guns appeared briefly on a computer screen. Reaction times, error rates, and EEG activ...

  5. Effect of a patellar strap on the joint position sense of the symptomatic knee in athletes with patellar tendinopathy.

    Science.gov (United States)

    de Vries, Astrid J; van den Akker-Scheek, Inge; Haak, Svenja L; Diercks, Ron L; van der Worp, Henk; Zwerver, Johannes

    2017-11-01

    The primary aim of this study was to investigate the effect of a patellar strap on the proprioception of the symptomatic leg in PT. Secondary aims were to investigate a possible difference in effectiveness between athletes with high and low proprioceptive acuity, and whether predictors of effectiveness could be found. Randomised cross-over pilot study. 24 athletes with PT (age 27.3±9.0, VISA-P 50.6±11.2) performed a joint position sense test with and without a patellar strap. The difference between both conditions was analysed using linear mixed-model analysis. No improvement in the joint position sense using the strap for the whole group was found, while those classified as having low proprioceptive acuity did improve using the strap (p=0.015, 17.2%). A larger knee girth, longer duration of symptoms and more tendon abnormalities were negatively associated with the strap's effectiveness. The use of a patellar strap improves the knee joint proprioception - measured with joint position sense - of the symptomatic leg in athletes with poor proprioceptive acuity. Especially athletes with relatively small knee girth, short duration of symptoms and small tendon abnormalities might benefit from the strap. As proprioception plays an important role in motor control, and deficits in proprioception may put an athlete at risk for (re-)injury, these findings may be relevant for prevention as well as rehabilitation purposes in those PT athletes with low proprioceptive acuity. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Sub-spatial resolution position estimation for optical fibre sensing applications

    DEFF Research Database (Denmark)

    Zibar, Darko; Werzinger, Stefan; Schmauss, Bernhard

    2017-01-01

    Methods from machine learning community are employed for estimating the position of fibre Bragg gratings in an array. Using the conventional methods for position estimation, based on inverse discrete Fourier transform (IDFT), it is required that two-point spatial resolution is less than gratings...... of reflection coefficients and the positions is performed. From the practical point of view, we can demonstrate the reduction of the interrogator's bandwidth by factor of 2. The technique is demonstrated for incoherent optical frequency domain reflectometry (IOFDR). However, the approach is applicable to any...

  7. Probing of RNA structures in a positive sense RNA virus reveals selection pressures for structural elements

    Science.gov (United States)

    Watters, Kyle E; Choudhary, Krishna; Aviran, Sharon; Perry, Keith L

    2018-01-01

    Abstract In single stranded (+)-sense RNA viruses, RNA structural elements (SEs) play essential roles in the infection process from replication to encapsidation. Using selective 2′-hydroxyl acylation analyzed by primer extension sequencing (SHAPE-Seq) and covariation analysis, we explore the structural features of the third genome segment of cucumber mosaic virus (CMV), RNA3 (2216 nt), both in vitro and in plant cell lysates. Comparing SHAPE-Seq and covariation analysis results revealed multiple SEs in the coat protein open reading frame and 3′ untranslated region. Four of these SEs were mutated and serially passaged in Nicotiana tabacum plants to identify biologically selected changes to the original mutated sequences. After passaging, loop mutants showed partial reversion to their wild-type sequence and SEs that were structurally disrupted by mutations were restored to wild-type-like structures via synonymous mutations in planta. These results support the existence and selection of virus open reading frame SEs in the host organism and provide a framework for further studies on the role of RNA structure in viral infection. Additionally, this work demonstrates the applicability of high-throughput chemical probing in plant cell lysates and presents a new method for calculating SHAPE reactivities from overlapping reverse transcriptase priming sites. PMID:29294088

  8. Measurement Errors Arising When Using Distances in Microeconometric Modelling and the Individuals’ Position Is Geo-Masked for Confidentiality

    Directory of Open Access Journals (Sweden)

    Giuseppe Arbia

    2015-10-01

    Full Text Available In many microeconometric models we use distances. For instance, in modelling the individual behavior in labor economics or in health studies, the distance from a relevant point of interest (such as a hospital or a workplace is often used as a predictor in a regression framework. However, in order to preserve confidentiality, spatial micro-data are often geo-masked, thus reducing their quality and dramatically distorting the inferential conclusions. In particular in this case, a measurement error is introduced in the independent variable which negatively affects the properties of the estimators. This paper studies these negative effects, discusses their consequences, and suggests possible interpretations and directions to data producers, end users, and practitioners.

  9. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy

    International Nuclear Information System (INIS)

    Josipovic, Mirjana; Fredberg Persson, Gitte; Logadottir, Aashildur; Smulders, Bob; Westmann, Gunnar; Bangsgaard, Jens Peter

    2012-01-01

    Background. Implementation of cone beam computed tomography (CBCT) in frameless stereotactic body radiotherapy (SBRT) of lung tumours enables setup correction based on tumour position. The aim of this study was to compare setup accuracy with daily soft tissue matching to bony anatomy matching and evaluate intra- and inter-fractional translational and rotational errors in patient and target positions. Material and methods. Fifteen consecutive SBRT patients were included in the study. Vacuum cushions were used for immobilisation. SBRT plans were based on midventilation phase of four-dimensional (4D)-CT or three-dimensional (3D)-CT from PET/CT. Margins of 5 mm in the transversal plane and 10 mm in the cranio-caudal (CC) direction were applied. SBRT was delivered in three fractions within a week. At each fraction, CBCT was performed before and after the treatment. Setup accuracy comparison between soft tissue matching and bony anatomy matching was evaluated on pretreatment CBCTs. From differences in pre- and post-treatment CBCTs, we evaluated the extent of translational and rotational intra-fractional changes in patient position, tumour position and tumour baseline shift. All image registration was rigid with six degrees of freedom. Results. The median 3D difference between patient position based on bony anatomy matching and soft tissue matching was 3.0 mm (0-8.3 mm). The median 3D intra-fractional change in patient position was 1.4 mm (0-12.2 mm) and 2.2 mm (0-13.2 mm) in tumour position. The median 3D intra-fractional baseline shift was 2.2 mm (0-4.7 mm). With correction of translational errors, the remaining systematic and random errors were approximately 1deg. Conclusion. Soft tissue tumour matching improved precision of treatment delivery in frameless SBRT of lung tumours compared to image guidance using bone matching. The intra-fractional displacement of the target position was affected by both translational and rotational changes in tumour baseline position

  10. SU-E-T-132: Dosimetric Impact of Positioning Errors in Hypo-Fractionated Cranial Radiation Therapy Using Frameless Stereotactic BrainLAB System

    International Nuclear Information System (INIS)

    Keeling, V; Jin, H; Ali, I; Ahmad, S

    2014-01-01

    Purpose: To determine dosimetric impact of positioning errors in the stereotactic hypo-fractionated treatment of intracranial lesions using 3Dtransaltional and 3D-rotational corrections (6D) frameless BrainLAB ExacTrac X-Ray system. Methods: 20 cranial lesions, treated in 3 or 5 fractions, were selected. An infrared (IR) optical positioning system was employed for initial patient setup followed by stereoscopic kV X-ray radiographs for position verification. 6D-translational and rotational shifts were determined to correct patient position. If these shifts were above tolerance (0.7 mm translational and 1° rotational), corrections were applied and another set of X-rays was taken to verify patient position. Dosimetric impact (D95, Dmin, Dmax, and Dmean of planning target volume (PTV) compared to original plans) of positioning errors for initial IR setup (XC: Xray Correction) and post-correction (XV: X-ray Verification) was determined in a treatment planning system using a method proposed by Yue et al. (Med. Phys. 33, 21-31 (2006)) with 3D-translational errors only and 6D-translational and rotational errors. Results: Absolute mean translational errors (±standard deviation) for total 92 fractions (XC/XV) were 0.79±0.88/0.19±0.15 mm (lateral), 1.66±1.71/0.18 ±0.16 mm (longitudinal), 1.95±1.18/0.15±0.14 mm (vertical) and rotational errors were 0.61±0.47/0.17±0.15° (pitch), 0.55±0.49/0.16±0.24° (roll), and 0.68±0.73/0.16±0.15° (yaw). The average changes (loss of coverage) in D95, Dmin, Dmax, and Dmean were 4.5±7.3/0.1±0.2%, 17.8±22.5/1.1±2.5%, 0.4±1.4/0.1±0.3%, and 0.9±1.7/0.0±0.1% using 6Dshifts and 3.1±5.5/0.0±0.1%, 14.2±20.3/0.8±1.7%, 0.0±1.2/0.1±0.3%, and 0.7±1.4/0.0±0.1% using 3D-translational shifts only. The setup corrections (XC-XV) improved the PTV coverage by 4.4±7.3% (D95) and 16.7±23.5% (Dmin) using 6D adjustment. Strong correlations were observed between translation errors and deviations in dose coverage for XC. Conclusion

  11. Influence of Elastic Bandage and Neoprene Sleeve on Knee Position Sense and Pain in Subjects with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Basir Majdoleslami

    2003-12-01

    Full Text Available Objective: to investigate whether a neoprene sleeve and elastic bandage around the knee joint of subjects with knee osteoarthritis (OA would , in short term (a reduce pain (b improve knee joint position sense and comparison of their effect with each other if they have. Materials & Methods: In a semi-experimental study, 30 subjects (11 men, 19 women, age between 33-75 with unilateral knee OA. Subjects had to have at least 2cm from 10cm visual analogue scale (VAS of knee pain for study entry.All patients were randomly assigned to either an elastic bandage or a neoprene sleeve. One week later they were assigned to the opposite selection. Joint position sense was assessed in the sitting position using an electrogoniometer and pain by VAS where 0cm equals no pain and 10 cm equals worst pain. Knee pain and JPS were assessed for each selection one week apart. During each visit assessment were performed at baseline and after 20 min of bandage/neoprene sleeve application. Results: the mean of scores for knee variables JPS and VAS was taken and paired-t test and Wilcoxon signed rank test was employed to calculate the different between two trails. Neoprene sleeve had significant effect on knee JPS (P=0.037. But elastic bandage had no effect (P=0.631. Both of them had significantly reduced knee pain. (P=0.000 Conclusion: In subjects with both neoprene sleeve and elastic bandage reduced knee pain with more effect of neoprene sleeve. Only the neoprene sleeve had effect on knee JPS.

  12. The influence of the analog-to-digital conversion error on the JT-60 plasma position/shape feedback control system

    International Nuclear Information System (INIS)

    Yoshida, Michiharu; Kurihara, Kenichi

    1995-12-01

    In the plasma feedback control system (PFCS) and the direct digital controller (DDC) for the poloidal field coil power supply in the JT-60 tokamak, it is necessary to observe signals of all the poloidal field coil currents. Each of the signals, originally measured by a single sensor, is distributed to the PFCS and DDC through different cable routes and different analog-to-digital converters from each other. This produces the conversion error to the amount of several bits. Consequently, proper voltage from feedback calculation cannot be applied to the coil, and hence the control performance is possibly supposed to deteriorate to a certain extent. This paper describes how this error makes an influence on the plasma horizontal position control and how to improve the deteriorated control performance. (author)

  13. Two-dimensional errors

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This chapter addresses the extension of previous work in one-dimensional (linear) error theory to two-dimensional error analysis. The topics of the chapter include the definition of two-dimensional error, the probability ellipse, the probability circle, elliptical (circular) error evaluation, the application to position accuracy, and the use of control systems (points) in measurements

  14. Taking into account positioning errors during a three dimensional conformal radiotherapy for a non at small cells lung cancer

    International Nuclear Information System (INIS)

    Fernandez, D.; Maisonobe, J.A.; Leignel, D.; Durdux, C.; Henni, M.; Dessard-Diana, B.; Housset, M.; Giraud, P.

    2009-01-01

    Purpose: According to the report 62 of the International commission on radiation units and measurements (ICRU), the estimated target volume adds to the internal margin that takes into account the movements of the target volume during breathing, an external margin that takes into account the uncertainties of beams positioning. Our objective was to describe a method of estimated target volume calculation taking into account the technique of irradiation chosen in the service. (N.C.)

  15. Dosimetric implications of inter- and intrafractional prostate positioning errors during tomotherapy. Comparison of gold marker-based registrations with native MVCT

    Energy Technology Data Exchange (ETDEWEB)

    Wust, Peter; Joswig, Marc; Graf, Reinhold; Boehmer, Dirk; Beck, Marcus; Barelkowski, Thomasz; Budach, Volker; Ghadjar, Pirus [Charite Universitaetsmedizin Berlin, Department of Radiation Oncology and Radiotherapy, Berlin (Germany)

    2017-09-15

    For high-dose radiation therapy (RT) of prostate cancer, image-guided (IGRT) and intensity-modulated RT (IMRT) approaches are standard. Less is known regarding comparisons of different IGRT techniques and the resulting residual errors, as well as regarding their influences on dose distributions. A total of 58 patients who received tomotherapy-based RT up to 84 Gy for high-risk prostate cancer underwent IGRT based either on daily megavoltage CT (MVCT) alone (n = 43) or the additional use of gold markers (n = 15) under routine conditions. Planned Adaptive (Accuray Inc., Madison, WI, USA) software was used for elaborated offline analysis to quantify residual interfractional prostate positioning errors, along with systematic and random errors and the resulting safety margins after both IGRT approaches. Dosimetric parameters for clinical target volume (CTV) coverage and exposition of organs at risk (OAR) were also analyzed and compared. Interfractional as well as intrafractional displacements were determined. Particularly in the vertical direction, residual interfractional positioning errors were reduced using the gold marker-based approach, but dosimetric differences were moderate and the clinical relevance relatively small. Intrafractional prostate motion proved to be quite high, with displacements of 1-3 mm; however, these did not result in additional dosimetric impairments. Residual interfractional positioning errors were reduced using gold marker-based IGRT; however, this resulted in only slightly different final dose distributions. Therefore, daily MVCT-based IGRT without markers might be a valid alternative. (orig.) [German] Bei der hochdosierten Bestrahlung des Prostatakarzinoms sind die bildgesteuerte (IGRT) und die intensitaetsmodulierte Bestrahlung (IMRT) Standard. Offene Fragen gibt es beim Vergleich von IGRT-Techniken im Hinblick auf residuelle Fehler und Beeinflussungen der Dosisverteilung. Bei 58 Patienten, deren Hochrisiko-Prostatakarzinom am

  16. Discrimination of the wall effect in a thin counter with micro-gap structure for neutron position sensing

    Energy Technology Data Exchange (ETDEWEB)

    Sakae, Takeji; Manabe, Tohru; Kitamura, Yasunori; Nohtomi, Akihiro [Kyushu Univ., Fukuoka (Japan); Sakamoto, Sigeyasu

    1996-07-01

    Simulation by the Monte Carlo method is applied to estimate the wall effect in a thermal neutron counter having a new function for discriminating the effect. The counter is designed to have paralleled electrodes with micro-gap structure. A resistive anode is used for position sensing on the center of a set of the three electrode. The structure can be made by simple arrangement of anode and cathode wires on an insulator plane. The calculation shows discrimination of the wall effect can be achieved by coincident counting of two or three elements included in the counter. By using the coincident counting, the thickness of the neutron counter can be made into 1 mm with the information of the total energy created in the neutron detection. (author)

  17. Measuring and modeling intraocular light scatter with Shack-Hartmann wavefront sensing and the effects of nuclear cataract on the measurement of wavefront error

    Science.gov (United States)

    Donnelly, William J., III

    Purpose. The purpose of this research is to determine if Shack/Hartmann (S/H) wavefront sensing (SHWS) can be used to objectively quantify ocular forward scatter. Methods. Patient S/H images from an study of nuclear cataract were analyzed to extract scattering data by examining characteristics of the lenslet point spread functions. Physical and computer eye models with simulated cataract were developed to control variables and to test the underlying assumptions for using SHWS to measure aberrations and light scatter from nuclear cataract. Results. (1) For patients with nuclear opalescence (NO) >=2.5, forward scatter metrics in a multiple regression analysis account for 33% of variance in Mesopic Low Contrast acuity. Prediction of visual acuity was improved by employing a multiple regression analysis that included both backscatter and forward scatter metrics (R2 = 51%) for Mesopic High Contrast acuity. (2) The physical and computer models identified areas of instrument noise (e.g., stray light and unwanted reflections) improving the design of a second generation SHWS for measuring both wavefront error and scatter. (3) Exposure time had the most influence on, and pupil size had negligible influence on forward scatter metrics. Scatter metric MAX_SD predicted changes in simulated cataract up to R2 = 92%. There were small but significant differences (alpha = 0.05) between 1.5-pass and 1-pass wavefront measurements inclusive of variable simulated nuclear cataract and exposure; however, these differences were not visually significant. Improvements to the SHWS imaging hardware, software, and test protocol were implemented in a second generation SHWS to be used in a longitudinal cataract study. Conclusions. Forward light scatter in real eyes can be quantified using a SHWS. In the presence of clinically significant nuclear opalescence, forward scatter metrics predicted acuity better than the LOCS III NO backscatter metric. The superiority of forward scatter metrics over back

  18. Action errors, error management, and learning in organizations.

    Science.gov (United States)

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  19. Assessment of long-range kinematic GPS positioning errors by comparison with airborne laser altimetry and satellite altimetry

    DEFF Research Database (Denmark)

    Zhang, X.H.; Forsberg, René

    2007-01-01

    Long-range airborne laser altimetry and laser scanning (LIDAR) or airborne gravity surveys in, for example, polar or oceanic areas require airborne kinematic GPS baselines of many hundreds of kilometers in length. In such instances, with the complications of ionospheric biases, it can be a real...... challenge for traditional differential kinematic GPS software to obtain reasonable solutions. In this paper, we will describe attempts to validate an implementation of the precise point positioning (PPP) technique on an aircraft without the use of a local GPS reference station. We will compare PPP solutions...... of the Arctic Ocean north of Greenland, near-coincident in time and space with the ICESat satellite laser altimeter. Both of these flights were more than 800 km long. Comparisons between different GPS methods and four different software packages do not suggest a clear preference for any one, with the heights...

  20. SU-E-T-261: Development of An Automated System to Detect Patient Identification and Positioning Errors Prior to Radiotherapy Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Jani, S; Low, D; Lamb, J [UCLA, Los Angeles, CA (United States)

    2015-06-15

    Purpose: To develop a system that can automatically detect patient identification and positioning errors using 3D computed tomography (CT) setup images and kilovoltage CT (kVCT) planning images. Methods: Planning kVCT images were collected for head-and-neck (H&N), pelvis, and spine treatments with corresponding 3D cone-beam CT (CBCT) and megavoltage CT (MVCT) setup images from TrueBeam and TomoTherapy units, respectively. Patient identification errors were simulated by registering setup and planning images from different patients. Positioning errors were simulated by misaligning the setup image by 1cm to 5cm in the six anatomical directions for H&N and pelvis patients. Misalignments for spine treatments were simulated by registering the setup image to adjacent vertebral bodies on the planning kVCT. A body contour of the setup image was used as an initial mask for image comparison. Images were pre-processed by image filtering and air voxel thresholding, and image pairs were assessed using commonly-used image similarity metrics as well as custom -designed metrics. A linear discriminant analysis classifier was trained and tested on the datasets, and misclassification error (MCE), sensitivity, and specificity estimates were generated using 10-fold cross validation. Results: Our workflow produced MCE estimates of 0.7%, 1.7%, and 0% for H&N, pelvis, and spine TomoTherapy images, respectively. Sensitivities and specificities ranged from 98.0% to 100%. MCEs of 3.5%, 2.3%, and 2.1% were obtained for TrueBeam images of the above sites, respectively, with sensitivity and specificity estimates between 96.2% and 98.4%. MCEs for 1cm H&N/pelvis misalignments were 1.3/5.1% and 9.1/8.6% for TomoTherapy and TrueBeam images, respectively. 2cm MCE estimates were 0.4%/1.6% and 3.1/3.2%, respectively. Vertebral misalignment MCEs were 4.8% and 4.9% for TomoTherapy and TrueBeam images, respectively. Conclusion: Patient identification and gross misalignment errors can be robustly and

  1. SU-E-T-261: Development of An Automated System to Detect Patient Identification and Positioning Errors Prior to Radiotherapy Treatment

    International Nuclear Information System (INIS)

    Jani, S; Low, D; Lamb, J

    2015-01-01

    Purpose: To develop a system that can automatically detect patient identification and positioning errors using 3D computed tomography (CT) setup images and kilovoltage CT (kVCT) planning images. Methods: Planning kVCT images were collected for head-and-neck (H&N), pelvis, and spine treatments with corresponding 3D cone-beam CT (CBCT) and megavoltage CT (MVCT) setup images from TrueBeam and TomoTherapy units, respectively. Patient identification errors were simulated by registering setup and planning images from different patients. Positioning errors were simulated by misaligning the setup image by 1cm to 5cm in the six anatomical directions for H&N and pelvis patients. Misalignments for spine treatments were simulated by registering the setup image to adjacent vertebral bodies on the planning kVCT. A body contour of the setup image was used as an initial mask for image comparison. Images were pre-processed by image filtering and air voxel thresholding, and image pairs were assessed using commonly-used image similarity metrics as well as custom -designed metrics. A linear discriminant analysis classifier was trained and tested on the datasets, and misclassification error (MCE), sensitivity, and specificity estimates were generated using 10-fold cross validation. Results: Our workflow produced MCE estimates of 0.7%, 1.7%, and 0% for H&N, pelvis, and spine TomoTherapy images, respectively. Sensitivities and specificities ranged from 98.0% to 100%. MCEs of 3.5%, 2.3%, and 2.1% were obtained for TrueBeam images of the above sites, respectively, with sensitivity and specificity estimates between 96.2% and 98.4%. MCEs for 1cm H&N/pelvis misalignments were 1.3/5.1% and 9.1/8.6% for TomoTherapy and TrueBeam images, respectively. 2cm MCE estimates were 0.4%/1.6% and 3.1/3.2%, respectively. Vertebral misalignment MCEs were 4.8% and 4.9% for TomoTherapy and TrueBeam images, respectively. Conclusion: Patient identification and gross misalignment errors can be robustly and

  2. Moving-Target Position Estimation Using GPU-Based Particle Filter for IoT Sensing Applications

    Directory of Open Access Journals (Sweden)

    Seongseop Kim

    2017-11-01

    Full Text Available A particle filter (PF has been introduced for effective position estimation of moving targets for non-Gaussian and nonlinear systems. The time difference of arrival (TDOA method using acoustic sensor array has normally been used to for estimation by concealing the location of a moving target, especially underwater. In this paper, we propose a GPU -based acceleration of target position estimation using a PF and propose an efficient system and software architecture. The proposed graphic processing unit (GPU-based algorithm has more advantages in applying PF signal processing to a target system, which consists of large-scale Internet of Things (IoT-driven sensors because of the parallelization which is scalable. For the TDOA measurement from the acoustic sensor array, we use the generalized cross correlation phase transform (GCC-PHAT method to obtain the correlation coefficient of the signal using Fast Fourier Transform (FFT, and we try to accelerate the calculations of GCC-PHAT based TDOA measurements using FFT with GPU compute unified device architecture (CUDA. The proposed approach utilizes a parallelization method in the target position estimation algorithm using GPU-based PF processing. In addition, it could efficiently estimate sudden movement change of the target using GPU-based parallel computing which also can be used for multiple target tracking. It also provides scalability in extending the detection algorithm according to the increase of the number of sensors. Therefore, the proposed architecture can be applied in IoT sensing applications with a large number of sensors. The target estimation algorithm was verified using MATLAB and implemented using GPU CUDA. We implemented the proposed signal processing acceleration system using target GPU to analyze in terms of execution time. The execution time of the algorithm is reduced by 55% from to the CPU standalone operation in target embedded board, NVIDIA Jetson TX1. Also, to apply large

  3. Classification of radiological errors in chest radiographs, using support vector machine on the spatial frequency features of false- negative and false-positive regions

    Science.gov (United States)

    Pietrzyk, Mariusz W.; Donovan, Tim; Brennan, Patrick C.; Dix, Alan; Manning, David J.

    2011-03-01

    Aim: To optimize automated classification of radiological errors during lung nodule detection from chest radiographs (CxR) using a support vector machine (SVM) run on the spatial frequency features extracted from the local background of selected regions. Background: The majority of the unreported pulmonary nodules are visually detected but not recognized; shown by the prolonged dwell time values at false-negative regions. Similarly, overestimated nodule locations are capturing substantial amounts of foveal attention. Spatial frequency properties of selected local backgrounds are correlated with human observer responses either in terms of accuracy in indicating abnormality position or in the precision of visual sampling the medical images. Methods: Seven radiologists participated in the eye tracking experiments conducted under conditions of pulmonary nodule detection from a set of 20 postero-anterior CxR. The most dwelled locations have been identified and subjected to spatial frequency (SF) analysis. The image-based features of selected ROI were extracted with un-decimated Wavelet Packet Transform. An analysis of variance was run to select SF features and a SVM schema was implemented to classify False-Negative and False-Positive from all ROI. Results: A relative high overall accuracy was obtained for each individually developed Wavelet-SVM algorithm, with over 90% average correct ratio for errors recognition from all prolonged dwell locations. Conclusion: The preliminary results show that combined eye-tracking and image-based features can be used for automated detection of radiological error with SVM. The work is still in progress and not all analytical procedures have been completed, which might have an effect on the specificity of the algorithm.

  4. Error induced by the estimation of the corneal power and the effective lens position with a rotationally asymmetric refractive multifocal intraocular lens.

    Science.gov (United States)

    Piñero, David P; Camps, Vicente J; Ramón, María L; Mateo, Verónica; Pérez-Cambrodí, Rafael J

    2015-01-01

    To evaluate the prediction error in intraocular lens (IOL) power calculation for a rotationally asymmetric refractive multifocal IOL and the impact on this error of the optimization of the keratometric estimation of the corneal power and the prediction of the effective lens position (ELP). Retrospective study including a total of 25 eyes of 13 patients (age, 50 to 83y) with previous cataract surgery with implantation of the Lentis Mplus LS-312 IOL (Oculentis GmbH, Germany). In all cases, an adjusted IOL power (PIOLadj) was calculated based on Gaussian optics using a variable keratometric index value (nkadj) for the estimation of the corneal power (Pkadj) and on a new value for ELP (ELPadj) obtained by multiple regression analysis. This PIOLadj was compared with the IOL power implanted (PIOLReal) and the value proposed by three conventional formulas (Haigis, Hoffer Q and Holladay I). PIOLReal was not significantly different than PIOLadj and Holladay IOL power (P>0.05). In the Bland and Altman analysis, PIOLadj showed lower mean difference (-0.07 D) and limits of agreement (of 1.47 and -1.61 D) when compared to PIOLReal than the IOL power value obtained with the Holladay formula. Furthermore, ELPadj was significantly lower than ELP calculated with other conventional formulas (P<0.01) and was found to be dependent on axial length, anterior chamber depth and Pkadj. Refractive outcomes after cataract surgery with implantation of the multifocal IOL Lentis Mplus LS-312 can be optimized by minimizing the keratometric error and by estimating ELP using a mathematical expression dependent on anatomical factors.

  5. Error induced by the estimation of the corneal power and the effective lens position with a rotationally asymmetric refractive multifocal intraocular lens

    Directory of Open Access Journals (Sweden)

    David P. Piñero

    2015-06-01

    Full Text Available AIM:To evaluate the prediction error in intraocular lens (IOL power calculation for a rotationally asymmetric refractive multifocal IOL and the impact on this error of the optimization of the keratometric estimation of the corneal power and the prediction of the effective lens position (ELP.METHODS:Retrospective study including a total of 25 eyes of 13 patients (age, 50 to 83y with previous cataract surgery with implantation of the Lentis Mplus LS-312 IOL (Oculentis GmbH, Germany. In all cases, an adjusted IOL power (PIOLadj was calculated based on Gaussian optics using a variable keratometric index value (nkadj for the estimation of the corneal power (Pkadj and on a new value for ELP (ELPadj obtained by multiple regression analysis. This PIOLadj was compared with the IOL power implanted (PIOLReal and the value proposed by three conventional formulas (Haigis, Hoffer Q and Holladay Ⅰ.RESULTS:PIOLReal was not significantly different than PIOLadj and Holladay IOL power (P>0.05. In the Bland and Altman analysis, PIOLadj showed lower mean difference (-0.07 D and limits of agreement (of 1.47 and -1.61 D when compared to PIOLReal than the IOL power value obtained with the Holladay formula. Furthermore, ELPadj was significantly lower than ELP calculated with other conventional formulas (P<0.01 and was found to be dependent on axial length, anterior chamber depth and Pkadj.CONCLUSION:Refractive outcomes after cataract surgery with implantation of the multifocal IOL Lentis Mplus LS-312 can be optimized by minimizing the keratometric error and by estimating ELP using a mathematical expression dependent on anatomical factors.

  6. Modulation of Quorum Sensing in a Gram-Positive Pathogen by Linear Molecularly Imprinted Polymers with Anti-infective Properties.

    Science.gov (United States)

    Motib, Anfal; Guerreiro, Antonio; Al-Bayati, Firas; Piletska, Elena; Manzoor, Irfan; Shafeeq, Sulman; Kadam, Anagha; Kuipers, Oscar; Hiller, Luisa; Cowen, Todd; Piletsky, Sergey; Andrew, Peter W; Yesilkaya, Hasan

    2017-12-22

    We describe the development, characterization, and biological testing of a new type of linear molecularly imprinted polymer (LMIP) designed to act as an anti-infective by blocking the quorum sensing (QS) mechanism and so abrogating the virulence of the pathogen Streptococcus pneumoniae. The LMIP is prepared (polymerized) in presence of a template molecule, but unlike in traditional molecular imprinting approaches, no cross-linker is used. This results in soluble low-molecular-weight oligomers that can act as a therapeutic agent in vitro and in vivo. The LMIP was characterized by mass spectrometry to determine its monomer composition. Fragments identified were then aligned along the peptide template by computer modeling to predict the possible monomer sequence of the LMIP. These findings provide a proof of principle that LMIPs can be used to block QS, thus setting the stage for the development of LMIPs a novel drug-discovery platform and class of materials to target Gram-positive pathogens. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Advancements in the development of a directional-position sensing fast neutron detector using acoustically tensioned metastable fluids

    Energy Technology Data Exchange (ETDEWEB)

    Archambault, Brian C. [Sagamore Adams Laboratories, Lafayette, IN (United States); Webster, Jeffrey A.; Grimes, Thomas F.; Fischer, Kevin F.; Hagen, Alex R. [School of Nuclear Engineering, Purdue University, 400 Central Avenue, West Lafayette, IN 47907 (United States); Taleyakhan, Rusi P., E-mail: rusi@purdue.edu [Sagamore Adams Laboratories, Lafayette, IN (United States); School of Nuclear Engineering, Purdue University, 400 Central Avenue, West Lafayette, IN 47907 (United States)

    2015-06-01

    Advancements in the development of a direction and position sensing fast neutron detector which utilizes the directional acoustic tensioned metastable fluid detector (D-ATMFD) are described. The resulting D-ATMFD sensor is capable of determining the direction of neutron radiation with a single compact detector versus use of arrays of detectors in conventional directional systems. Directional neutron detection and source positioning offer enhanced detection speeds in comparison to traditional proximity searching; including enabling determination of the neutron source shape, size, and strength in near real time. This paper discusses advancements that provide the accuracy and precision of ascertaining directionality and source localization information utilizing enhanced signal processing-cum-signal analysis, refined computational algorithms, and on-demand enlargement capability of the detector sensitive volume. These advancements were accomplished utilizing experimentation and theoretical modeling. Benchmarking and qualifications studies were successfully conducted with random and fission based special nuclear material (SNM) neutron sources ({sup 239}Pu–Be and {sup 252}Cf). These results of assessments have indicated that the D-ATMFD compares well in technical performance with banks of competing directional fast neutron detector technologies under development worldwide, but it does so with a single detector unit, an unlimited field of view, and at a significant reduction in both cost and size while remaining completely blind to common background (e.g., beta-gamma) radiation. Rapid and direct SNM neutron source imaging with two D-ATMFD sensors was experimentally demonstrated, and furthermore, validated via multidimensional nuclear particle transport simulations utilizing MCNP-PoliMi. Characterization of a scaled D-ATMFD based radiation portal monitor (RPM) as a cost-effective and efficient {sup 3}He sensor replacement was performed utilizing MCNP-PoliMi simulations

  8. BodySense: an evaluation of a positive body image intervention on sport climate for female athletes.

    Science.gov (United States)

    Buchholz, Annick; Mack, Heidi; McVey, Gail; Feder, Stephen; Barrowman, Nicholas

    2008-01-01

    The goal of the present study was to evaluate the effectiveness of a selective prevention program designed to reduce pressures to be thin in sport, and to promote positive body image and eating behaviors in young female athletes. Participants were competitive female gymnasts (aged 11 to 18 years), parents, and coaches from 7 gymnastic clubs across Ontario, Canada. Four of the seven clubs were randomized to receive the 3-month intervention program (IG) aimed at increasing awareness and positive climate change of body image pressures for athletes in their clubs. Three clubs were randomized to the control group (CG). A total of 62 female gymnasts (IG n = 31; CG n = 31) completed self-report questionnaires examining perceptions of pressure to be thin within their sports clubs, self-efficacy over dieting pressures, awareness and internalization of societal pressure to be thin, body esteem, and eating attitudes and behaviours before and following the intervention. A total of 32 mothers (IG n = 24; CG n = 8) completed measures examining their perceptions of their daughter's pressure to be thin, awareness and internalization of societal pressures to be thin, daughter's self-efficacy over dieting pressures, in addition to mothers' beliefs regarding thinness and success for women in society, before and following the intervention. The findings revealed that participation in the BodySense program resulted in athletes perceiving a reduction in pressure from their sports clubs to be thin, though no changes were found in body esteem, the EAT, or the SATAQ. No significant change was observed over time on mothers' measures. The role of climate change for prevention of eating disorders in athletes is discussed.

  9. SU-F-J-131: Reproducibility of Positioning Error Due to Temporarily Indwelled Urethral Catheter for Urethra-Sparing Prostate IMRT

    International Nuclear Information System (INIS)

    Hirose, K; Takai, Y; Sato, M; Hatayama, Y; Kawaguchi, H; Aoki, M; Akimoto, H; Komai, F; Souma, M; Obara, H; Suzuki, M

    2016-01-01

    Purpose: The purpose of this study was to prospectively assess the reproducibility of positioning errors due to temporarily indwelled catheter in urethra-sparing image-guided (IG) IMRT. Methods: Ten patients received urethra-sparing prostate IG-IMRT with implanted fiducials. After the first CT scan was performed in supine position, 6-Fr catheter was indwelled into urethra, and the second CT images were taken for planning. While the PTV received 80 Gy, 5% dose reduction was applied for the urethral PRV along the catheter. Additional CT scans were also performed at 5th and 30th fraction. Positions of interests (POIs) were set on posterior edge of prostate at beam isocenter level (POI1) and cranial and caudal edge of prostatic urethra on the post-indwelled CT images. POIs were copied into the pre-indwelled, 5th and 30th fraction’s CT images after fiducial matching on these CT images. The deviation of each POI between pre- and post-indwelled CT and the reproducibility of prostate displacement due to catheter were evaluated. Results: The deviation of POI1 caused by the indwelled catheter to the directions of RL/AP/SI (mm) was 0.20±0.27/−0.64±2.43/1.02±2.31, respectively, and the absolute distances (mm) were 3.15±1.41. The deviation tends to be larger if closer to the caudal edge of prostate. Compared with the pre-indwelled CT scan, a median displacement of all POIs (mm) were 0.3±0.2/2.2±1.1/2.0±2.6 in the post-indwelled, 0.4±0.4/3.4±2.1/2.3±2.6 in 5th, and 0.5±0.5/1.7±2.2/1.9±3.1 in 30th fraction’s CT scan with a similar data distribution. There were 6 patients with 5-mm-over displacement in AP and/or CC directions. Conclusion: Reproducibility of positioning errors due to temporarily indwelling catheter was observed. Especially in case of patients with unusually large shifts by indwelling catheter at the planning process, treatment planning should be performed by using the pre-indwelled CT images with transferred contour of the urethra identified by

  10. SU-F-J-131: Reproducibility of Positioning Error Due to Temporarily Indwelled Urethral Catheter for Urethra-Sparing Prostate IMRT

    Energy Technology Data Exchange (ETDEWEB)

    Hirose, K; Takai, Y [Hirosaki University, Hirosaki (Japan); Southern Tohoku BNCT Research Center, Koriyama (Japan); Sato, M; Hatayama, Y; Kawaguchi, H; Aoki, M; Akimoto, H [Hirosaki University, Hirosaki (Japan); Komai, F; Souma, M; Obara, H; Suzuki, M [Hirosaki University Hospital, Hirosaki (Japan)

    2016-06-15

    Purpose: The purpose of this study was to prospectively assess the reproducibility of positioning errors due to temporarily indwelled catheter in urethra-sparing image-guided (IG) IMRT. Methods: Ten patients received urethra-sparing prostate IG-IMRT with implanted fiducials. After the first CT scan was performed in supine position, 6-Fr catheter was indwelled into urethra, and the second CT images were taken for planning. While the PTV received 80 Gy, 5% dose reduction was applied for the urethral PRV along the catheter. Additional CT scans were also performed at 5th and 30th fraction. Positions of interests (POIs) were set on posterior edge of prostate at beam isocenter level (POI1) and cranial and caudal edge of prostatic urethra on the post-indwelled CT images. POIs were copied into the pre-indwelled, 5th and 30th fraction’s CT images after fiducial matching on these CT images. The deviation of each POI between pre- and post-indwelled CT and the reproducibility of prostate displacement due to catheter were evaluated. Results: The deviation of POI1 caused by the indwelled catheter to the directions of RL/AP/SI (mm) was 0.20±0.27/−0.64±2.43/1.02±2.31, respectively, and the absolute distances (mm) were 3.15±1.41. The deviation tends to be larger if closer to the caudal edge of prostate. Compared with the pre-indwelled CT scan, a median displacement of all POIs (mm) were 0.3±0.2/2.2±1.1/2.0±2.6 in the post-indwelled, 0.4±0.4/3.4±2.1/2.3±2.6 in 5th, and 0.5±0.5/1.7±2.2/1.9±3.1 in 30th fraction’s CT scan with a similar data distribution. There were 6 patients with 5-mm-over displacement in AP and/or CC directions. Conclusion: Reproducibility of positioning errors due to temporarily indwelling catheter was observed. Especially in case of patients with unusually large shifts by indwelling catheter at the planning process, treatment planning should be performed by using the pre-indwelled CT images with transferred contour of the urethra identified by

  11. Comparison of thoracic kyphosis degree, trunk muscle strength and joint position sense among healthy and osteoporotic elderly women: a cross-sectional preliminary study.

    Science.gov (United States)

    Granito, Renata Neves; Aveiro, Mariana Chaves; Renno, Ana Claudia Muniz; Oishi, Jorge; Driusso, Patricia

    2012-01-01

    Increased thoracic kyphosis is one of the most disfiguring consequences of osteoporotic spine fractures in the elderly. However, mechanisms involved in the increasing of the kyphosis degree among osteoporotic women are not completely understood. Then, the aims of this cross-sectional preliminary study were comparing thoracic kyphosis degree, trunk muscle peak torque and joint position sense among healthy and osteoporotic elderly women and investigating possible factors affecting the kyphosis degree. Twenty women were selected for 2 groups: healthy (n=10) and osteoporotic (n=10) elderly women. Bone mineral density (BMD), thoracic kyphosis degree, trunk muscles peak torque and joint position sense were measured. Differences among groups were analyzed by Student's Test T for unpaired data. Correlations between variables were performed by Pearson's coefficient correlation. The level of significance used for all comparisons was 5% (p≤0.05). We observed that the osteoporotic women demonstrated a significantly higher degree of kyphosis and lower trunk extensor muscle peak torque. Moreover, it was found that the BMD had a negative correlation with the thoracic kyphosis degree. Kyphosis degree showed a negative correlation between extensor muscle strength and joint position sense index. This study suggests that lower BMD may be associated to higher degree of kyphosis degree, lower trunk extensors muscle strength and an impaired joint position sense. It is also suggested that lower extensor muscle strength may be a factor that contributes to the increasing in kyphosis thoracic degree. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. TU-AB-201-05: Automatic Adaptive Per-Operative Re-Planning for HDR Prostate Brachytherapy - a Simulation Study On Errors in Needle Positioning

    International Nuclear Information System (INIS)

    Borot de Battisti, M; Maenhout, M; Lagendijk, J J W; Van Vulpen, M; Moerland, M A; Senneville, B Denis de; Hautvast, G; Binnekamp, D

    2015-01-01

    Purpose: To develop adaptive planning with feedback for MRI-guided focal HDR prostate brachytherapy with a single divergent needle robotic implant device. After each needle insertion, the dwell positions for that needle are calculated and the positioning of remaining needles and dosimetry are both updated based on MR imaging. Methods: Errors in needle positioning may occur due to inaccurate needle insertion (caused by e.g. the needle’s bending) and unpredictable changes in patient anatomy. Consequently, the dose plan quality might dramatically decrease compared to the preplan. In this study, a procedure was developed to re-optimize, after each needle insertion, the remaining needle angulations, source positions and dwell times in order to obtain an optimal coverage (D95% PTV>19 Gy) without exceeding the constraints of the organs at risk (OAR) (D10% urethra<21 Gy, D1cc bladder<12 Gy and D1cc rectum<12 Gy). Complete HDR procedures with 6 needle insertions were simulated for a patient MR-image set with PTV, prostate, urethra, bladder and rectum delineated. Random angulation errors, modeled by a Gaussian distribution (standard deviation of 3 mm at the needle’s tip), were generated for each needle insertion. We compared the final dose parameters for the situations (I) without re-optimization and (II) with the automatic feedback. Results: The computation time of replanning was below 100 seconds on a current desk computer. For the patient tested, a clinically acceptable dose plan was achieved while applying the automatic feedback (median(range) in Gy, D95% PTV: 19.9(19.3–20.3), D10% urethra: 13.4(11.9–18.0), D1cc rectum: 11.0(10.7–11.6), D1cc bladder: 4.9(3.6–6.8)). This was not the case without re-optimization (median(range) in Gy, D95% PTV: 19.4(14.9–21.3), D10% urethra: 12.6(11.0–15.7), D1cc rectum: 10.9(8.9–14.1), D1cc bladder: 4.8(4.4–5.2)). Conclusion: An automatic guidance strategy for HDR prostate brachytherapy was developed to compensate

  13. Time-order errors and standard-position effects in duration discrimination: An experimental study and an analysis by the sensation-weighting model.

    Science.gov (United States)

    Hellström, Åke; Rammsayer, Thomas H

    2015-10-01

    Studies have shown that the discriminability of successive time intervals depends on the presentation order of the standard (St) and the comparison (Co) stimuli. Also, this order affects the point of subjective equality. The first effect is here called the standard-position effect (SPE); the latter is known as the time-order error. In the present study, we investigated how these two effects vary across interval types and standard durations, using Hellström's sensation-weighting model to describe the results and relate them to stimulus comparison mechanisms. In Experiment 1, four modes of interval presentation were used, factorially combining interval type (filled, empty) and sensory modality (auditory, visual). For each mode, two presentation orders (St-Co, Co-St) and two standard durations (100 ms, 1,000 ms) were used; half of the participants received correctness feedback, and half of them did not. The interstimulus interval was 900 ms. The SPEs were negative (i.e., a smaller difference limen for St-Co than for Co-St), except for the filled-auditory and empty-visual 100-ms standards, for which a positive effect was obtained. In Experiment 2, duration discrimination was investigated for filled auditory intervals with four standards between 100 and 1,000 ms, an interstimulus interval of 900 ms, and no feedback. Standard duration interacted with presentation order, here yielding SPEs that were negative for standards of 100 and 1,000 ms, but positive for 215 and 464 ms. Our findings indicate that the SPE can be positive as well as negative, depending on the interval type and standard duration, reflecting the relative weighting of the stimulus information, as is described by the sensation-weighting model.

  14. Modelling of the X , Y , Z positioning errors and uncertainty evaluation for the LNE’s mAFM using the Monte Carlo method

    International Nuclear Information System (INIS)

    Ceria, Paul; Ducourtieux, Sebastien; Boukellal, Younes; Feltin, Nicolas; Allard, Alexandre; Fischer, Nicolas

    2017-01-01

    In order to evaluate the uncertainty budget of the LNE’s mAFM, a reference instrument dedicated to the calibration of nanoscale dimensional standards, a numerical model has been developed to evaluate the measurement uncertainty of the metrology loop involved in the XYZ positioning of the tip relative to the sample. The objective of this model is to overcome difficulties experienced when trying to evaluate some uncertainty components which cannot be experimentally determined and more specifically, the one linked to the geometry of the metrology loop. The model is based on object-oriented programming and developed under Matlab. It integrates one hundred parameters that allow the control of the geometry of the metrology loop without using analytical formulae. The created objects, mainly the reference and the mobile prism and their mirrors, the interferometers and their laser beams, can be moved and deformed freely to take into account several error sources. The Monte Carlo method is then used to determine the positioning uncertainty of the instrument by randomly drawing the parameters according to their associated tolerances and their probability density functions (PDFs). The whole process follows Supplement 2 to ‘The Guide to the Expression of the Uncertainty in Measurement’ (GUM). Some advanced statistical tools like Morris design and Sobol indices are also used to provide a sensitivity analysis by identifying the most influential parameters and quantifying their contribution to the XYZ positioning uncertainty. The approach validated in the paper shows that the actual positioning uncertainty is about 6 nm. As the final objective is to reach 1 nm, we engage in a discussion to estimate the most effective way to reduce the uncertainty. (paper)

  15. Modelling of the X,Y,Z positioning errors and uncertainty evaluation for the LNE’s mAFM using the Monte Carlo method

    Science.gov (United States)

    Ceria, Paul; Ducourtieux, Sebastien; Boukellal, Younes; Allard, Alexandre; Fischer, Nicolas; Feltin, Nicolas

    2017-03-01

    In order to evaluate the uncertainty budget of the LNE’s mAFM, a reference instrument dedicated to the calibration of nanoscale dimensional standards, a numerical model has been developed to evaluate the measurement uncertainty of the metrology loop involved in the XYZ positioning of the tip relative to the sample. The objective of this model is to overcome difficulties experienced when trying to evaluate some uncertainty components which cannot be experimentally determined and more specifically, the one linked to the geometry of the metrology loop. The model is based on object-oriented programming and developed under Matlab. It integrates one hundred parameters that allow the control of the geometry of the metrology loop without using analytical formulae. The created objects, mainly the reference and the mobile prism and their mirrors, the interferometers and their laser beams, can be moved and deformed freely to take into account several error sources. The Monte Carlo method is then used to determine the positioning uncertainty of the instrument by randomly drawing the parameters according to their associated tolerances and their probability density functions (PDFs). The whole process follows Supplement 2 to ‘The Guide to the Expression of the Uncertainty in Measurement’ (GUM). Some advanced statistical tools like Morris design and Sobol indices are also used to provide a sensitivity analysis by identifying the most influential parameters and quantifying their contribution to the XYZ positioning uncertainty. The approach validated in the paper shows that the actual positioning uncertainty is about 6 nm. As the final objective is to reach 1 nm, we engage in a discussion to estimate the most effective way to reduce the uncertainty.

  16. Multi-class geospatial object detection based on a position-sensitive balancing framework for high spatial resolution remote sensing imagery

    Science.gov (United States)

    Zhong, Yanfei; Han, Xiaobing; Zhang, Liangpei

    2018-04-01

    Multi-class geospatial object detection from high spatial resolution (HSR) remote sensing imagery is attracting increasing attention in a wide range of object-related civil and engineering applications. However, the distribution of objects in HSR remote sensing imagery is location-variable and complicated, and how to accurately detect the objects in HSR remote sensing imagery is a critical problem. Due to the powerful feature extraction and representation capability of deep learning, the deep learning based region proposal generation and object detection integrated framework has greatly promoted the performance of multi-class geospatial object detection for HSR remote sensing imagery. However, due to the translation caused by the convolution operation in the convolutional neural network (CNN), although the performance of the classification stage is seldom influenced, the localization accuracies of the predicted bounding boxes in the detection stage are easily influenced. The dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage has not been addressed for HSR remote sensing imagery, and causes position accuracy problems for multi-class geospatial object detection with region proposal generation and object detection. In order to further improve the performance of the region proposal generation and object detection integrated framework for HSR remote sensing imagery object detection, a position-sensitive balancing (PSB) framework is proposed in this paper for multi-class geospatial object detection from HSR remote sensing imagery. The proposed PSB framework takes full advantage of the fully convolutional network (FCN), on the basis of a residual network, and adopts the PSB framework to solve the dilemma between translation-invariance in the classification stage and translation-variance in the object detection stage. In addition, a pre-training mechanism is utilized to accelerate the training procedure

  17. Inkjet-/3D-/4D-printed autonomous wearable RF modules for biomonitoring, positioning and sensing applications

    Science.gov (United States)

    Bito, Jo; Bahr, Ryan; Hester, Jimmy; Kimionis, John; Nauroze, Abdullah; Su, Wenjing; Tehrani, Bijan; Tentzeris, Manos M.

    2017-05-01

    In this paper, numerous inkjet-/3D-/4D-printed wearable flexible antennas, RF electronics, modules and sensors fabricated on paper and other polymer (e.g. LCP) substrates are introduced as a system-level solution for ultra-low-cost mass production of autonomous Biomonitoring, Positioning and Sensing applications. This paper briefly discusses the state-of-the-art area of fully-integrated wearable wireless sensor modules on paper or flexible LCP and show the first ever 4D sensor module integration on paper, as well as numerous 3D and 4D multilayer paper-based and LCP-based RF/microwave, flexible and wearable structures, that could potentially set the foundation for the truly convergent wireless sensor ad-hoc "on-body networks of the future with enhanced cognitive intelligence and "rugged" packaging. Also, some challenges concerning the power sources of "nearperpetual" wearable RF modules, including flexible miniaturized batteries as well as power-scavenging approaches involving electromagnetic and solar energy forms are discuessed. The final step of the paper will involve examples from mmW wearable (e.g. biomonitoring) antennas and RF modules, as well as the first examples of the integration of inkjet-printed nanotechnology-based (e.g.CNT) sensors on paper and organic substrates for Internet of Things (IoT) applications. It has to be noted that the paper will review and present challenges for inkjetprinted organic active and nonlinear devices as well as future directions in the area of environmentally-friendly "green") wearable RF electronics and "smart-skin conformal sensors.

  18. Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition.

    Directory of Open Access Journals (Sweden)

    Sarah B Clarke

    Full Text Available Postural control and joint position sense are essential for safely undertaking leisure and professional activities, particularly at high altitude. We tested whether exposure to a 12-day trek with a gradual ascent to high altitude impairs postural control and joint position sense. This was a repeated measures observational study of 12 military service personnel (28±4 years. Postural control (sway velocity measured by a portable force platform during standing balance, a Sharpened Romberg Test and knee joint position sense were measured, in England (113m elevation and at 3 research camps (3619m, 4600m and 5140m on a 12-day high altitude trek in the Dhaulagiri region of Nepal. Pulse oximetry, and Lake Louise scores were also recorded on the morning and evening of each trek day. Data were compared between altitudes and relationships between pulse oximetry, Lake Louise score, and sway velocity were explored. Total sway velocity during standing balance with eyes open (p = 0.003, d = 1.9 and during Sharpened Romberg test with eyes open (p = 0.007, d = 1.6 was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Anterior-posterior sway velocity during standing balance with eyes open was also significantly greater at altitudes of 3619m and 5140m when compared with sea level (p = 0.001, d = 1.9. Knee joint position sense was not altered at higher altitudes. There were no significant correlations between Lake Louise scores, pulse oximetry and postural sway. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control without impairment in knee joint position sense. Importantly, these impairments did not worsen at higher altitudes of 4600 m or 5140 m. The present findings should be considered during future trekking expeditions when developing training strategies targeted to manage impairments in postural control that occur with increasing altitude.

  19. Changes in balance and joint position sense during a 12-day high altitude trek: The British Services Dhaulagiri medical research expedition.

    Science.gov (United States)

    Clarke, Sarah B; Deighton, Kevin; Newman, Caroline; Nicholson, Gareth; Gallagher, Liam; Boos, Christopher J; Mellor, Adrian; Woods, David R; O'Hara, John P

    2018-01-01

    Postural control and joint position sense are essential for safely undertaking leisure and professional activities, particularly at high altitude. We tested whether exposure to a 12-day trek with a gradual ascent to high altitude impairs postural control and joint position sense. This was a repeated measures observational study of 12 military service personnel (28±4 years). Postural control (sway velocity measured by a portable force platform) during standing balance, a Sharpened Romberg Test and knee joint position sense were measured, in England (113m elevation) and at 3 research camps (3619m, 4600m and 5140m) on a 12-day high altitude trek in the Dhaulagiri region of Nepal. Pulse oximetry, and Lake Louise scores were also recorded on the morning and evening of each trek day. Data were compared between altitudes and relationships between pulse oximetry, Lake Louise score, and sway velocity were explored. Total sway velocity during standing balance with eyes open (p = 0.003, d = 1.9) and during Sharpened Romberg test with eyes open (p = 0.007, d = 1.6) was significantly greater at altitudes of 3619m and 5140m when compared with sea level. Anterior-posterior sway velocity during standing balance with eyes open was also significantly greater at altitudes of 3619m and 5140m when compared with sea level (p = 0.001, d = 1.9). Knee joint position sense was not altered at higher altitudes. There were no significant correlations between Lake Louise scores, pulse oximetry and postural sway. Despite a gradual ascent profile, exposure to 3619 m was associated with impairments in postural control without impairment in knee joint position sense. Importantly, these impairments did not worsen at higher altitudes of 4600 m or 5140 m. The present findings should be considered during future trekking expeditions when developing training strategies targeted to manage impairments in postural control that occur with increasing altitude.

  20. Hemispheric Asymmetries in Striatal Reward Responses Relate to Approach-Avoidance Learning and Encoding of Positive-Negative Prediction Errors in Dopaminergic Midbrain Regions.

    Science.gov (United States)

    Aberg, Kristoffer Carl; Doell, Kimberly C; Schwartz, Sophie

    2015-10-28

    Some individuals are better at learning about rewarding situations, whereas others are inclined to avoid punishments (i.e., enhanced approach or avoidance learning, respectively). In reinforcement learning, action values are increased when outcomes are better than predicted (positive prediction errors [PEs]) and decreased for worse than predicted outcomes (negative PEs). Because actions with high and low values are approached and avoided, respectively, individual differences in the neural encoding of PEs may influence the balance between approach-avoidance learning. Recent correlational approaches also indicate that biases in approach-avoidance learning involve hemispheric asymmetries in dopamine function. However, the computational and neural mechanisms underpinning such learning biases remain unknown. Here we assessed hemispheric reward asymmetry in striatal activity in 34 human participants who performed a task involving rewards and punishments. We show that the relative difference in reward response between hemispheres relates to individual biases in approach-avoidance learning. Moreover, using a computational modeling approach, we demonstrate that better encoding of positive (vs negative) PEs in dopaminergic midbrain regions is associated with better approach (vs avoidance) learning, specifically in participants with larger reward responses in the left (vs right) ventral striatum. Thus, individual dispositions or traits may be determined by neural processes acting to constrain learning about specific aspects of the world. Copyright © 2015 the authors 0270-6474/15/3514491-10$15.00/0.

  1. A study of respiration-correlated cone-beam CT scans to correct target positioning errors in radiotherapy of thoracic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Santoro, J. P.; McNamara, J.; Yorke, E.; Pham, H.; Rimner, A.; Rosenzweig, K. E.; Mageras, G. S. [Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States); Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States)

    2012-10-15

    Purpose: There is increasingly widespread usage of cone-beam CT (CBCT) for guiding radiation treatment in advanced-stage lung tumors, but difficulties associated with daily CBCT in conventionally fractionated treatments include imaging dose to the patient, increased workload and longer treatment times. Respiration-correlated cone-beam CT (RC-CBCT) can improve localization accuracy in mobile lung tumors, but further increases the time and workload for conventionally fractionated treatments. This study investigates whether RC-CBCT-guided correction of systematic tumor deviations in standard fractionated lung tumor radiation treatments is more effective than 2D image-based correction of skeletal deviations alone. A second study goal compares respiration-correlated vs respiration-averaged images for determining tumor deviations. Methods: Eleven stage II-IV nonsmall cell lung cancer patients are enrolled in an IRB-approved prospective off-line protocol using RC-CBCT guidance to correct for systematic errors in GTV position. Patients receive a respiration-correlated planning CT (RCCT) at simulation, daily kilovoltage RC-CBCT scans during the first week of treatment and weekly scans thereafter. Four types of correction methods are compared: (1) systematic error in gross tumor volume (GTV) position, (2) systematic error in skeletal anatomy, (3) daily skeletal corrections, and (4) weekly skeletal corrections. The comparison is in terms of weighted average of the residual GTV deviations measured from the RC-CBCT scans and representing the estimated residual deviation over the treatment course. In the second study goal, GTV deviations computed from matching RCCT and RC-CBCT are compared to deviations computed from matching respiration-averaged images consisting of a CBCT reconstructed using all projections and an average-intensity-projection CT computed from the RCCT. Results: Of the eleven patients in the GTV-based systematic correction protocol, two required no correction

  2. A study of respiration-correlated cone-beam CT scans to correct target positioning errors in radiotherapy of thoracic cancer

    International Nuclear Information System (INIS)

    Santoro, J. P.; McNamara, J.; Yorke, E.; Pham, H.; Rimner, A.; Rosenzweig, K. E.; Mageras, G. S.

    2012-01-01

    Purpose: There is increasingly widespread usage of cone-beam CT (CBCT) for guiding radiation treatment in advanced-stage lung tumors, but difficulties associated with daily CBCT in conventionally fractionated treatments include imaging dose to the patient, increased workload and longer treatment times. Respiration-correlated cone-beam CT (RC-CBCT) can improve localization accuracy in mobile lung tumors, but further increases the time and workload for conventionally fractionated treatments. This study investigates whether RC-CBCT-guided correction of systematic tumor deviations in standard fractionated lung tumor radiation treatments is more effective than 2D image-based correction of skeletal deviations alone. A second study goal compares respiration-correlated vs respiration-averaged images for determining tumor deviations. Methods: Eleven stage II–IV nonsmall cell lung cancer patients are enrolled in an IRB-approved prospective off-line protocol using RC-CBCT guidance to correct for systematic errors in GTV position. Patients receive a respiration-correlated planning CT (RCCT) at simulation, daily kilovoltage RC-CBCT scans during the first week of treatment and weekly scans thereafter. Four types of correction methods are compared: (1) systematic error in gross tumor volume (GTV) position, (2) systematic error in skeletal anatomy, (3) daily skeletal corrections, and (4) weekly skeletal corrections. The comparison is in terms of weighted average of the residual GTV deviations measured from the RC-CBCT scans and representing the estimated residual deviation over the treatment course. In the second study goal, GTV deviations computed from matching RCCT and RC-CBCT are compared to deviations computed from matching respiration-averaged images consisting of a CBCT reconstructed using all projections and an average-intensity-projection CT computed from the RCCT. Results: Of the eleven patients in the GTV-based systematic correction protocol, two required no correction

  3. Assessment on tracking error performance of Cascade P/PI, NPID and N-Cascade controller for precise positioning of xy table ballscrew drive system

    International Nuclear Information System (INIS)

    Abdullah, L; Jamaludin, Z; Rafan, N A; Jamaludin, J; Chiew, T H

    2013-01-01

    At present, positioning plants in machine tools are looking for high degree of accuracy and robustness attributes for the purpose of compensating various disturbance forces. The objective of this paper is to assess the tracking performance of Cascade P/PI, Nonlinear PID (NPID) and Nonlinear cascade (N-Cascade) controller with the existence of disturbance forces in the form of cutting forces. Cutting force characteristics at different cutting parameters; such as spindle speed rotations is analysed using Fast Fourier Transform. The tracking performance of a Nonlinear cascade controller in presence of these cutting forces is compared with NPID controller and Cascade P/PI controller. Robustness of these controllers in compensating different cutting characteristics is compared based on reduction in the amplitudes of cutting force harmonics using Fast Fourier Transform. It is found that the N-cascade controller performs better than both NPID controller and Cascade P/PI controller. The average percentage error reduction between N-cascade controller and Cascade P/PI controller is about 65% whereas the average percentage error reduction between cascade controller and NPID controller is about 82% at spindle speed of 3000 rpm spindle speed rotation. The finalized design of N-cascade controller could be utilized further for machining application such as milling process. The implementation of N-cascade in machine tools applications will increase the quality of the end product and the productivity in industry by saving the machining time. It is suggested that the range of the spindle speed could be made wider to accommodate the needs for high speed machining

  4. Inhibiting HER3-mediated tumor cell growth with affibody molecules engineered to low picomolar affinity by position-directed error-prone PCR-like diversification.

    Science.gov (United States)

    Malm, Magdalena; Kronqvist, Nina; Lindberg, Hanna; Gudmundsdotter, Lindvi; Bass, Tarek; Frejd, Fredrik Y; Höidén-Guthenberg, Ingmarie; Varasteh, Zohreh; Orlova, Anna; Tolmachev, Vladimir; Ståhl, Stefan; Löfblom, John

    2013-01-01

    The HER3 receptor is implicated in the progression of various cancers as well as in resistance to several currently used drugs, and is hence a potential target for development of new therapies. We have previously generated Affibody molecules that inhibit heregulin-induced signaling of the HER3 pathways. The aim of this study was to improve the affinity of the binders to hopefully increase receptor inhibition efficacy and enable a high receptor-mediated uptake in tumors. We explored a novel strategy for affinity maturation of Affibody molecules that is based on alanine scanning followed by design of library diversification to mimic the result from an error-prone PCR reaction, but with full control over mutated positions and thus less biases. Using bacterial surface display and flow-cytometric sorting of the maturation library, the affinity for HER3 was improved more than 30-fold down to 21 pM. The affinity is among the higher that has been reported for Affibody molecules and we believe that the maturation strategy should be generally applicable for improvement of affinity proteins. The new binders also demonstrated an improved thermal stability as well as complete refolding after denaturation. Moreover, inhibition of ligand-induced proliferation of HER3-positive breast cancer cells was improved more than two orders of magnitude compared to the previously best-performing clone. Radiolabeled Affibody molecules showed specific targeting of a number of HER3-positive cell lines in vitro as well as targeting of HER3 in in vivo mouse models and represent promising candidates for future development of targeted therapies and diagnostics.

  5. Model-based mean square error estimators for k-nearest neighbour predictions and applications using remotely sensed data for forest inventories

    Science.gov (United States)

    Steen Magnussen; Ronald E. McRoberts; Erkki O. Tomppo

    2009-01-01

    New model-based estimators of the uncertainty of pixel-level and areal k-nearest neighbour (knn) predictions of attribute Y from remotely-sensed ancillary data X are presented. Non-parametric functions predict Y from scalar 'Single Index Model' transformations of X. Variance functions generated...

  6. Field error lottery

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, C.J.; McVey, B. (Los Alamos National Lab., NM (USA)); Quimby, D.C. (Spectra Technology, Inc., Bellevue, WA (USA))

    1990-01-01

    The level of field errors in an FEL is an important determinant of its performance. We have computed 3D performance of a large laser subsystem subjected to field errors of various types. These calculations have been guided by simple models such as SWOOP. The technique of choice is utilization of the FELEX free electron laser code that now possesses extensive engineering capabilities. Modeling includes the ability to establish tolerances of various types: fast and slow scale field bowing, field error level, beam position monitor error level, gap errors, defocusing errors, energy slew, displacement and pointing errors. Many effects of these errors on relative gain and relative power extraction are displayed and are the essential elements of determining an error budget. The random errors also depend on the particular random number seed used in the calculation. The simultaneous display of the performance versus error level of cases with multiple seeds illustrates the variations attributable to stochasticity of this model. All these errors are evaluated numerically for comprehensive engineering of the system. In particular, gap errors are found to place requirements beyond mechanical tolerances of {plus minus}25{mu}m, and amelioration of these may occur by a procedure utilizing direct measurement of the magnetic fields at assembly time. 4 refs., 12 figs.

  7. Modulation of Quorum Sensing in a Gram Positive Pathogen by Linear Imprinted Copolymers with anti-Infective Properties

    NARCIS (Netherlands)

    Motib, Anfal; Guerreiro, Antonio; Al-Bayati, Firas; Piletska, Elena; Manzoor, Irfan; Shafeeq, Sulman; Kadam, Anagha; Kuipers, Oscar; Hiller, Luisa; Cowen, Todd; Piletsky, Sergey; Andrew, Peter; Yesilkaya, Hasan

    2017-01-01

    Here we describe the development, characterization and biological testing of a new type of linear molecularly imprinted polymer (LMIP) designed to act as anti-infective by blocking the quorum sensing (QS) mechanism and so preventing virulence of the pathogen Streptococcus pneumoniae. The LMIP is

  8. The Effect of Theraband Training on Position Sense of Internal and External Rotator Muscles in Male Athletes with Shoulder Impingement Syndrome

    Directory of Open Access Journals (Sweden)

    Ramin Moharrami

    2015-10-01

    Full Text Available Objective: This study evaluated the effect of theraband training on Position sense of internal and external rotator muscles in male athletes with shoulder impingement syndrome. Materials & Methods: In this semi-experimental interventional study 30 cases of men with Shoulder syndrome with age range of 20 to 30 years participated. They were divided in test and control groups, each group including 15 people through non-random and purposeful method Biodex System 3 Made in America was used to measure position sense of internal and external rotator muscles. For data analysis independent 7 paired t-test was used in SPSS software (version 21. Results: The experimental group showed significant improvement after six weeks of theraband training in the internal and external rotator muscles in three 90,45,0 degree angle at a significance level of 0.05 (P=0.05. Conclusion: The results of this study showed that of theraband training resulted in improved position sense of internal and external rotator muscles in male athletes with impingement syndrome thus, the benefits of these exercises can be used widely in team sports and also for easy and quick rehabilitation of patients.

  9. Surgical Reconstruction with the Remnant Ligament Improves Joint Position Sense as well as Functional Ankle Instability: A 1-Year Follow-Up Study

    Directory of Open Access Journals (Sweden)

    Kamizato Iwao

    2014-01-01

    Full Text Available Introduction. Chronic functional instability—characterized by repeated ankle inversion sprains and a subjective sensation of instability—is one of the most common residual disabilities after an inversion sprain. However, whether surgical reconstruction improves sensorimotor control has not been reported to date. The purpose of this study was to assess functional improvement of chronic ankle instability after surgical reconstruction using the remnant ligament. Materials and Methods. We performed 10 cases in the intervention group and 20 healthy individuals as the control group. Before and after surgical reconstruction, we evaluated joint position sense and functional ankle instability by means of a questionnaire. Results and Discussion. There was a statistically significant difference between the control and intervention groups before surgical reconstruction. Three months after surgery in the intervention group, the joint position sense was significantly different from those found preoperatively. Before surgery, the mean score of functional ankle instability in the intervention group was almost twice as low. Three months after surgery, however, the score significantly increased. The results showed that surgical reconstruction using the remnant ligament was effective not only for improving mechanical retensioning but also for ameliorating joint position sense and functional ankle instability.

  10. Error Patterns

    NARCIS (Netherlands)

    Hoede, C.; Li, Z.

    2001-01-01

    In coding theory the problem of decoding focuses on error vectors. In the simplest situation code words are $(0,1)$-vectors, as are the received messages and the error vectors. Comparison of a received word with the code words yields a set of error vectors. In deciding on the original code word,

  11. Strategic positioning of the ERATOSTHENES Research Centre for atmospheric remote sensing research in the Eastern Mediterranean and Middle East region

    Science.gov (United States)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert; Hadjimitsis, Diofantos G.; Nisantzi, Argyro; Bühl, Johannes; Michaelides, Silas; Seifert, Patric; Engelmann, Ronny; Wandinger, Ulla; Kontoes, Charalampos; Schreier, Gunter; Komodromos, Georgios; Themistocleous, Kyriacos

    2017-10-01

    The aim of this article is to present the importance of a permanent state-of-the-art atmospheric remote sensing ground based station in the region of the Eastern Mediterranean and Middle East (EMME). The ERATOSTHENES Research Centre (ERC) with the vision to become a Centre of Excellence for Earth Surveillance and Space-Based Monitoring of the Environment (EXCELSIOR H2020: Teaming project) already operates (within Phase 1) a fully established EARLINETt-Cloudnet supersite at Limassol, Cyprus, for a period of 2 years, in close collaboration with the German Leibniz Institute for Tropospheric Research (TROPOS), The scientific aspects of this prototype-like field campaign CyCARE (Cyprus Cloud Aerosol and Rain Experiment) - a common initiative between the Cyprus University of Technology (CUT), Limassol and TROPOS- are presented in this paper. Cy-CARE has been designed by TROPOS and CUT to fill a gap in the understanding of aerosol-cloud interaction in one of the key regions of climate change and how precipitation formation is influenced by varying aerosol/pollution and meteorological conditions The guiding questions are: How may rain patterns change in future and what may be the consequences of climate change in arid regions such as EMME. EXCELSIOR is a team effort between CUT (acting as the coordinator), the German Aerospace Centre (DLR), the Institute for Astronomy and Astrophysics Space Applications and Remote Sensing of the National Observatory of Athens (NOA), TROPOS and the Cyprus Department of Electronic Communications of the Ministry of Transport, Communications and Works (DEC-MTCW) who will work together to improve the network structures significantly, resulting in Cyprus being regarded as a cornerstone of a European Network of active remote sensing of the atmosphere.

  12. Operator errors

    International Nuclear Information System (INIS)

    Knuefer; Lindauer

    1980-01-01

    Besides that at spectacular events a combination of component failure and human error is often found. Especially the Rasmussen-Report and the German Risk Assessment Study show for pressurised water reactors that human error must not be underestimated. Although operator errors as a form of human error can never be eliminated entirely, they can be minimized and their effects kept within acceptable limits if a thorough training of personnel is combined with an adequate design of the plant against accidents. Contrary to the investigation of engineering errors, the investigation of human errors has so far been carried out with relatively small budgets. Intensified investigations in this field appear to be a worthwhile effort. (orig.)

  13. The Effect of Eccentric Exercise-Induced Delayed-Onset Muscle Soreness on Positioning Sense and Shooting Percentage in Wheelchair Basketball Players

    Directory of Open Access Journals (Sweden)

    Mehmet Akif Serinken

    2013-12-01

    Full Text Available Background: Eccentric exercise is defined as a type of exercise in which the muscle produces power by extending. In contrast to isometric and concentric exercises, eccentric muscle activity is much more effective mechanically; however, it may expose the muscle to soreness. Delayed-Onset Muscle Soreness (DOMS emerges a couple of hours after an eccentric activity, especially in individuals who are not used to this kind of exercise, and causes a temporary decrease in muscle performance, joint movement angle and muscle power, and also a temporary increase in the blood creatine kinase (CK activity. Aims: This study investigates the effect of DOMS on the upper extremities motor performance by conducting an eccentric exercise load on the elbow flexor muscles. Study design: Cross sectional study. Methods: The study included 10 wheelchair basketball players. First, the participants underwent blood CK activity, positioning sense, muscle pain, shooting performance measurements tests at the base, and after 30 minutes and 24 and 48 hours. Then, one week later, the one-repetition-maximums of biceps curls were determined in order to define the intensity of the eccentric exercise. An eccentric exercise protocol which would cause DOMS was applied to all players. All tests were replaced with acute exhaustive eccentric exercise; the same tests were repeated in the same order after the exercise. Blood CK activity was measured by taking an earlobe capillary blood sample. The muscle pain level was measured by using a Visual Analogue Scale (VAS. Positioning sense loss was assessed via goniometer at 30º, 60º and 90º degrees horizontally. Results: The study found a statistically significant increase in blood CK activity and positioning sense loss, and a decrease in the pressure-pain threshold, as well as the shooting percentages in the exercise group when compared with the control. Conclusion: These findings suggest that DOMS negatively affects the upper extremities

  14. Experiences in Sense Making: Health Science Students' "I"-Positioning in an Online Philosophy of Science Course

    Science.gov (United States)

    Arvaja, Maarit

    2015-01-01

    This article reports on a qualitative study on the dialogical approach to learning in the context of higher education. The aim was to shed light on the "I"-Position and multivoicedness in students' identity building and to provide empirical substantiation for these theoretical constructs, focusing especially on the connection between…

  15. Mental health and positive change among Japanese mothers of children with intellectual disabilities: Roles of sense of coherence and social capital.

    Science.gov (United States)

    Kimura, Miyako; Yamazaki, Yoshihiko

    2016-12-01

    We investigated predictors of mental health and positive change among mothers of children with intellectual disabilities in Japan based on the concept of the Double ABCX model. We used variables of having a child with autism spectrum disorder (ASD) and dissatisfaction with systems as stressors, availability of social support and social capital (SC) as existing resources, sense of coherence (SOC) as appraisal of the stressor, and mental health and positive change as adaptation. A self-administered questionnaire was distributed to 10 intellectual disability-oriented special needs schools in Tokyo, and obtained 613 responses from mothers of children under age 20 attending these schools. The results showed that our Double ABCX model explained 46.0% of the variance in mothers' mental health and 38.9% of the variance in positive change. The most powerful predictor of this model was SOC, and SC may be directly and indirectly related to maternal mental health and positive change through mothers' SOC. Increasing opportunity for interaction between neighbors and family of children with disabilities may be one effective way to enhance SOC through SC. Since maternal SOC, SC, mental health, and positive change were significantly correlated with each other, synergy among these elements could be expected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Einstein's error

    International Nuclear Information System (INIS)

    Winterflood, A.H.

    1980-01-01

    In discussing Einstein's Special Relativity theory it is claimed that it violates the principle of relativity itself and that an anomalous sign in the mathematics is found in the factor which transforms one inertial observer's measurements into those of another inertial observer. The apparent source of this error is discussed. Having corrected the error a new theory, called Observational Kinematics, is introduced to replace Einstein's Special Relativity. (U.K.)

  17. Influence of Elastic Bandage and Neoprene Ankle Support on Ankle Position Sense and Pain in Subjects with Ankle Sprain (Grade I & II

    Directory of Open Access Journals (Sweden)

    Basir Majdoleslami

    2004-06-01

    Full Text Available Objective: to investigate whether a neoprene ankle support and elastic bandage around the ankle joint of subjects with ankle sprain (grade I&II would , in short term (a reduce pain (b improve ankle joint position sense and comparison of their effect with each other if they have. Materials & Methods: In a semi-experimental study, 30 subjects (16men, 14 women, age between 16-52 with ankle sprain grade I&II. Subjects had to have at least 2cm from 10cm visual analogue scale (VAS of ankle pain for study entry. All patients were randomly assigned to either an elastic bandage or a neoprene ankle support. One week later they were assigned to the opposite selection. Joint position sense was assessed in the sitting position using an electrogoniometer and pain by VAS where 0cm equals no pain and 10 cm equals worst pain. ankle pain and JPS were assessed for each selection one week apart. During each visit assessment were performed at baseline and after 20 min of bandage/neoprene ankle support application. Results: the mean of scores for ankle variables JPS and VAS was taken and paired-t test and Wilcoxon signed rank test was employed to calculate the different between two trails. Neoprene ankle support had significant effect on ankle JPS (P=0.034. But elastic bandage had no effect (P=0.539. Both of them had significantly reduced ankle pain. (P=0.000  Conclusion: In subjects with both neoprene ankle support and elastic bandage reduced ankle pain with more effect of neoprene ankle support. Only the neoprene ankle support had effect on knee JPS.

  18. Positioning of the sensor cell on the sensing area using cell trapping pattern in incubation type planar patch clamp biosensor.

    Science.gov (United States)

    Wang, Zhi-Hong; Takada, Noriko; Uno, Hidetaka; Ishizuka, Toru; Yawo, Hiromu; Urisu, Tsuneo

    2012-08-01

    Positioning the sensor cell on the micropore of the sensor chip and keeping it there during incubation are problematic tasks for incubation type planar patch clamp biosensors. To solve these problems, we formed on the Si sensor chip's surface a cell trapping pattern consisting of a lattice pattern with a round area 5 μm deep and with the micropore at the center of the round area. The surface of the sensor chip was coated with extra cellular matrix collagen IV, and HEK293 cells on which a chimera molecule of channel-rhodopsin-wide-receiver (ChR-WR) was expressed, were then seeded. We examined the effects of this cell trapping pattern on the biosensor's operation. In the case of a flat sensor chip without a cell trapping pattern, it took several days before the sensor cell covered the micropore and formed an almost confluent state. As a result, multi-cell layers easily formed and made channel current measurements impossible. On the other hand, the sensor chip with cell trapping pattern easily trapped cells in the round area, and formed the colony consisted of the cell monolayer covering the micropore. A laser (473 nm wavelength) induced channel current was observed from the whole cell arrangement formed using the nystatin perforation technique. The observed channel current characteristics matched measurements made by using a pipette patch clamp. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Direct Metal Writing and Precise Positioning of Gold Nanoparticles within Microfluidic Channels for SERS Sensing of Gaseous Analytes.

    Science.gov (United States)

    Lee, Mian Rong; Lee, Hiang Kwee; Yang, Yijie; Koh, Charlynn Sher Lin; Lay, Chee Leng; Lee, Yih Hong; Phang, In Yee; Ling, Xing Yi

    2017-11-15

    We demonstrate a one-step precise direct metal writing of well-defined and densely packed gold nanoparticle (AuNP) patterns with tunable physical and optical properties. We achieve this by using two-photon lithography on a Au precursor comprising poly(vinylpyrrolidone) (PVP) and ethylene glycol (EG), where EG promotes higher reduction rates of Au(III) salt via polyol reduction. Hence, clusters of monodisperse AuNP are generated along raster scanning of the laser, forming high-particle-density, well-defined structures. By varying the PVP concentration, we tune the AuNP size from 27.3 to 65.0 nm and the density from 172 to 965 particles/μm 2 , corresponding to a surface roughness of 12.9 to 67.1 nm, which is important for surface-based applications such as surface-enhanced Raman scattering (SERS). We find that the microstructures exhibit an SERS enhancement factor of >10 5 and demonstrate remote writing of well-defined Au microstructures within a microfluidic channel for the SERS detection of gaseous molecules. We showcase in situ SERS monitoring of gaseous 4-methylbenzenethiol and real-time detection of multiple small gaseous species with no specific affinity to Au. This one-step, laser-induced fabrication of AuNP microstructures ignites a plethora of possibilities to position desired patterns directly onto or within most surfaces for the future creation of multifunctional lab-on-a-chip devices.

  20. Digitization errors using digital charge division positionsensitive detectors

    International Nuclear Information System (INIS)

    Berliner, R.; Mildner, D.F.R.; Pringle, O.A.

    1981-01-01

    The data acquisition speed and electronic stability of a charge division position-sensitive detector may be improved by using digital signal processing with a table look-up high speed multiply to form the charge division quotient. This digitization process introduces a positional quantization difficulty which reduces the detector position sensitivity. The degree of the digitization error is dependent on the pulse height spectrum of the detector and on the resolution or dynamic range of the system analog-to-digital converters. The effects have been investigated analytically and by computer simulation. The optimum algorithm for position sensing determination using 8-bit digitization and arithmetic has a digitization error of less than 1%. (orig.)

  1. Determination of locational error associated with global positioning system (GPS) radio collars in relation to vegetation and topography in north-central New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, K.; Biggs, J.; Fresquez, P.R.

    1997-02-01

    In 1996, a study was initiated to assess seasonal habitat use and movement patterns of Rocky Mountain elk (Cervus elaphus nelsoni) using global positioning system (GPS) radio collars. As part of this study, the authors attempted to assess the accuracies of GPS (non-differentially corrected) positions under various vegetation canopies and terrain conditions with the use of a GPS ``test`` collar. The test collar was activated every twenty minutes to obtain a position location and continuously uplinked to Argos satellites to transfer position data files. They used a Telonics, Inc. uplink receiver to intercept the transmission and view the results of the collar in real time. They placed the collar on a stand equivalent to the neck height of an adult elk and then placed the stand within three different treatment categories: (1) topographical influence (canyon and mesa tops), (2) canopy influence (open and closed canopy), and (3) vegetation type influence (ponderosa pine and pinion pine-juniper). The collar was kept at each location for one hour (usually obtaining three fixes). In addition, the authors used a hand-held GPS to obtain a position of the test collar at the same time and location.

  2. A mode of error: Immunoglobulin binding protein (a subset of anti-citrullinated proteins can cause false positive tuberculosis test results in rheumatoid arthritis

    Directory of Open Access Journals (Sweden)

    Maria Greenwald

    2017-12-01

    Full Text Available Citrullinated Immunoglobulin Binding Protein (BiP is a newly described autoimmune target in rheumatoid arthritis (RA, one of many cyclic citrullinated peptides(CCP or ACPA. BiP is over-expressed in RA patients causing T cell expansion and increased interferon levels during incubation for the QuantiFERON-Gold tuberculosis test (QFT-G TB. The QFT-G TB has never been validated where interferon is increased by underlying disease, as for example RA.Of ACPA-positive RA patients (n = 126, we found a 13% false-positive TB test rate by QFT-G TB. Despite subsequent biologic therapy for 3 years of all 126 RA patients, none showed evidence of TB without INH. Most of the false-positive RA patients after treatment with biologic therapy reverted to a negative QFT-G test. False TB tests correlated with ACPA level (p < 0.02.Three healthy women without arthritis or TB exposure had negative QFT-G TB. In vitro, all three tested positive every time for TB correlating to the dose of BiP or anti-BiP added, at 2 ug/ml, 5 ug/ml, 10 ug/ml, and 20 ug/ml.BiP naturally found in the majority of ACPA-positive RA patients can result in a false positive QFT-G TB. Subsequent undertreatment of RA, if biologic therapy is withheld, and overtreatment of presumed latent TB may harm patients. Keywords: Tuberculosis, IGRA, Rheumatoid arthritis, Interferon, Anti-citrullinated peptide antibody (ACPA, Immunoglobulin binding protein (BiP

  3. The sensitivity of gamma-index method to the positioning errors of high-definition MLC in patient-specific VMAT QA for SBRT

    International Nuclear Information System (INIS)

    Kim, Jung-in; Park, So-Yeon; Kim, Hak Jae; Kim, Jin Ho; Ye, Sung-Joon; Park, Jong Min

    2014-01-01

    To investigate the sensitivity of various gamma criteria used in the gamma-index method for patient-specific volumetric modulated arc therapy (VMAT) quality assurance (QA) for stereotactic body radiation therapy (SBRT) using a flattening filter free (FFF) photon beam. Three types of intentional misalignments were introduced to original high-definition multi-leaf collimator (HD-MLC) plans. The first type, referred to Class Out, involved the opening of each bank of leaves. The second type, Class In, involved the closing of each bank of leaves. The third type, Class Shift, involved the shifting of each bank of leaves towards the ground. Patient-specific QAs for the original and the modified plans were performed with MapCHECK2 and EBT2 films. The sensitivity of the gamma-index method using criteria of 1%/1 mm, 1.5%/1.5 mm, 1%/2 mm, 2%/1 mm and 2%/2 mm was investigated with absolute passing rates according to the magnitudes of MLCs misalignments. In addition, the changes in dose-volumetric indicators due to the magnitudes of MLC misalignments were investigated. The correlations between passing rates and the changes in dose-volumetric indicators were also investigated using Spearman’s rank correlation coefficient (γ). The criterion of 2%/1 mm was able to detect Class Out and Class In MLC misalignments of 0.5 mm and Class Shift misalignments of 1 mm. The widely adopted clinical criterion of 2%/2 mm was not able to detect 0.5 mm MLC errors of the Class Out or Class In types, and also unable to detect 3 mm Class Shift errors. No correlations were observed between dose-volumetric changes and gamma passing rates (γ < 0.8). Gamma criterion of 2%/1 mm was found to be suitable as a tolerance level with passing rates of 90% and 80% for patient-specific VMAT QA for SBRT when using MapCHECK2 and EBT2 film, respectively

  4. Translational and rotational intra- and inter-fractional errors in patient and target position during a short course of frameless stereotactic body radiotherapy

    DEFF Research Database (Denmark)

    Josipovic, Mirjana; Persson, Gitte Fredberg; Logadottir, Ashildur

    2012-01-01

    Implementation of cone beam computed tomography (CBCT) in frameless stereotactic body radiotherapy (SBRT) of lung tumours enables setup correction based on tumour position. The aim of this study was to compare setup accuracy with daily soft tissue matching to bony anatomy matching and evaluate...

  5. Design rules for a compact and low-cost optical position sensing of MOEMS tilt mirrors based on a Gaussian-shaped light source

    Science.gov (United States)

    Baumgart, Marcus; Tortschanoff, Andreas

    2013-05-01

    A tilt mirror's deflection angle tracking setup is examined from a theoretical point of view. The proposed setup is based on a simple optical approach and easily scalable. Thus, the principle is especially of interest for small and fast oscillating MEMS/MOEMS based tilt mirrors. An experimentally established optical scheme is used as a starting point for accurate and fast mirror angle-position detection. This approach uses an additional layer, positioned under the MOEMS mirror's backside, consisting of a light source in the center and two photodetectors positioned symmetrical around the center. The mirror's back surface is illuminated by the light source and the intensity change due to mirror tilting is tracked via the photodiodes. The challenge of this method is to get a linear relation between the measured intensity and the current mirror tilt angle even for larger angles. State-of-the-art MOEMS mirrors achieve angles up to ±30°, which exceeds the linear angle approximations. The use of an LED, small laser diode or VCSEL as a lightsource is appropriate due to their small size and inexpensive price. Those light sources typically emit light with a Gaussian intensity distribution. This makes an analytical prediction of the expected detector signal quite complicated. In this publication an analytical simulation model is developed to evaluate the influence of the main parameters for this optical mirror tilt-sensor design. An easy and fast to calculate value directly linked to the mirror's tilt-angle is the "relative differential intensity" (RDI = (I1 - I2) / (I1 + I2)). Evaluation of its slope and nonlinear error highlights dependencies between the identified parameters for best SNR and linearity. Also the energy amount covering the detector area is taken into account. Design optimizing rules are proposed and discussed based on theoretical considerations.

  6. SU-G-JeP3-02: Comparison of Magnitude and Frequency of Patient Positioning Errors in Breast Irradiation Using AlignRT 3D Optical Surface Imaging and Skin Mark Techniques

    International Nuclear Information System (INIS)

    Yao, R; Chisela, W; Dorbu, G

    2016-01-01

    Purpose: To evaluate clinical usefulness of AlignRT (Vision RT Ltd., London, UK) in reducing patient positioning errors in breast irradiation. Methods: 60 patients undergoing whole breast irradiation were selected for this study. Patients were treated to the left or right breast lying on Qfix Access breast board (Qfix, Avondale, PA) in supine position for 28 fractions using tangential fields. 30 patients were aligned using AlignRT by aligning a breast surface region of interest (ROI) to the same area from a reference surface image extracted from planning CT. When the patient’s surface image deviated from the reference by more than 3mm on one or more translational and rotational directions, a new reference was acquired using AlignRT in-room cameras. The other 30 patients were aligned to the skin marks with room lasers. On-Board MV portal images of medial field were taken daily and matched to the DRRs. The magnitude and frequency of positioning errors were determined from measured translational shifts. Kolmogorov-Smirnov test was used to evaluate statistical differences of positional accuracy and precision between AlignRT and non-AlignRT patients. Results: The percentage of port images with no shift required was 46.5% and 27.0% in vertical, 49.8% and 25.8% in longitudinal, 47.6% and 28.5% in lateral for AlignRT and non-AlignRT patients, respectively. The percentage of port images requiring more than 3mm shifts was 18.1% and 35.1% in vertical, 28.6% and 50.8% in longitudinal, 11.3% and 24.2% in lateral for AlignRT and non-AlignRT patients, respectively. Kolmogorov-Smirnov test showed that there were significant differences between the frequency distributions of AlignRT and non-AlignRT in vertical, longitudinal, and lateral shifts. Conclusion: As confirmed by port images, AlignRT-assisted patient positioning can significantly reduce the frequency and magnitude of patient setup errors in breast irradiation compared to the use of lasers and skin marks.

  7. Novel Positive-Sense, Single-Stranded RNA (+ssRNA) Virus with Di-Cistronic Genome from Intestinal Content of Freshwater Carp (Cyprinus carpio)

    Science.gov (United States)

    Pankovics, Péter; Simmonds, Peter

    2011-01-01

    A novel positive-sense, single-stranded RNA (+ssRNA) virus (Halastavi árva RNA virus, HalV; JN000306) with di-cistronic genome organization was serendipitously identified in intestinal contents of freshwater carps (Cyprinus carpio) fished by line-fishing from fishpond “Lőrinte halastó” located in Veszprém County, Hungary. The complete nucleotide (nt) sequence of the genomic RNA is 9565 nt in length and contains two long - non-in-frame - open reading frames (ORFs), which are separated by an intergenic region. The ORF1 (replicase) is preceded by an untranslated sequence of 827 nt, while an untranslated region of 139 nt follows the ORF2 (capsid proteins). The deduced amino acid (aa) sequences of the ORFs showed only low (less than 32%) and partial similarity to the non-structural (2C-like helicase, 3C-like cystein protease and 3D-like RNA dependent RNA polymerase) and structural proteins (VP2/VP4/VP3) of virus families in Picornavirales especially to members of the viruses with dicistronic genome. Halastavi árva RNA virus is present in intestinal contents of omnivorous freshwater carps but the origin and the host species of this virus remains unknown. The unique viral sequence and the actual position indicate that Halastavi árva RNA virus seems to be the first member of a new di-cistronic ssRNA virus. Further studies are required to investigate the specific host species (and spectrum), ecology and role of Halastavi árva RNA virus in the nature. PMID:22195010

  8. Medication Errors - A Review

    OpenAIRE

    Vinay BC; Nikhitha MK; Patel Sunil B

    2015-01-01

    In this present review article, regarding medication errors its definition, medication error problem, types of medication errors, common causes of medication errors, monitoring medication errors, consequences of medication errors, prevention of medication error and managing medication errors have been explained neatly and legibly with proper tables which is easy to understand.

  9. Dopamine reward prediction error coding

    OpenAIRE

    Schultz, Wolfram

    2016-01-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards?an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less...

  10. Error Budgeting

    Energy Technology Data Exchange (ETDEWEB)

    Vinyard, Natalia Sergeevna [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Perry, Theodore Sonne [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Usov, Igor Olegovich [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-04

    We calculate opacity from k (hn)=-ln[T(hv)]/pL, where T(hv) is the transmission for photon energy hv, p is sample density, and L is path length through the sample. The density and path length are measured together by Rutherford backscatter. Δk = $\\partial k$\\ $\\partial T$ ΔT + $\\partial k$\\ $\\partial (pL)$. We can re-write this in terms of fractional error as Δk/k = Δ1n(T)/T + Δ(pL)/(pL). Transmission itself is calculated from T=(U-E)/(V-E)=B/B0, where B is transmitted backlighter (BL) signal and B0 is unattenuated backlighter signal. Then ΔT/T=Δln(T)=ΔB/B+ΔB0/B0, and consequently Δk/k = 1/T (ΔB/B + ΔB$_0$/B$_0$ + Δ(pL)/(pL). Transmission is measured in the range of 0.2

  11. Young adults' medicine use for headache: the combined effect of socioeconomic position and perceived stress, and the contribution of sense of coherence.

    Science.gov (United States)

    Koushede, Vibeke; Hansen, Ebba Holme; Andersen, Anette; Holstein, Bjørn E

    2012-01-01

    Over-the-counter analgesic (OTCA) use is increasingly common and may have potential harmful side effects. The primary reason for using analgesics is headache symptoms. Whether OTCA use for headache is sensitive to psychosocial and social circumstances is an understudied topic. The purpose of this study was to examine the combined effect of socioeconomic position (SEP) and perceived stress on OTCA use for headache. An additional objective was to determine whether sense of coherence (SOC) modifies the association. Data derived from the cross-sectional "Danish Lifestyle and Medicine Use Study," 2009. The study population consisted of men and women ages 25-44 years (n = 955). The dependent variable was OTCA use for headache within the past 14 days. The independent variables were SEP, perceived stress, and SOC. Gender, headache prevalence, and response method were included as covariates. Associations were examined by means of logistic regression analyses, and reported as odds ratios (ORs) with 95% confidence intervals. The OR for OTCA use was 1.42 (0.94-2.14) (statistically nonsignificant) among participants with low SEP but no perceived stress (reference high SEP, no perceived stress), 2.09 (1.53-2.85) for participants with perceived stress and high SEP, and 2.65 (1.66-4.25) among participants with perceived stress and low SEP. In analysis, stratified by SOC associations were stronger among participants with low SOC than among those with high SOC. Individuals exposed to both low SEP and high perceived stress have high odds for using OTCA for headache, apparently higher than participants only exposed to 1 of these factors. SOC may act as a buffer against the harmful effects of perceived stress and low SEP on OTCA use. Health care professionals and policymakers need to be aware of the sensitivity of OTCA use to psychosocial and social circumstances. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Effect of removing the common mode errors on linear regression analysis of noise amplitudes in position time series of a regional GPS network & a case study of GPS stations in Southern California

    Science.gov (United States)

    Jiang, Weiping; Ma, Jun; Li, Zhao; Zhou, Xiaohui; Zhou, Boye

    2018-05-01

    The analysis of the correlations between the noise in different components of GPS stations has positive significance to those trying to obtain more accurate uncertainty of velocity with respect to station motion. Previous research into noise in GPS position time series focused mainly on single component evaluation, which affects the acquisition of precise station positions, the velocity field, and its uncertainty. In this study, before and after removing the common-mode error (CME), we performed one-dimensional linear regression analysis of the noise amplitude vectors in different components of 126 GPS stations with a combination of white noise, flicker noise, and random walking noise in Southern California. The results show that, on the one hand, there are above-moderate degrees of correlation between the white noise amplitude vectors in all components of the stations before and after removal of the CME, while the correlations between flicker noise amplitude vectors in horizontal and vertical components are enhanced from un-correlated to moderately correlated by removing the CME. On the other hand, the significance tests show that, all of the obtained linear regression equations, which represent a unique function of the noise amplitude in any two components, are of practical value after removing the CME. According to the noise amplitude estimates in two components and the linear regression equations, more accurate noise amplitudes can be acquired in the two components.

  13. Dopamine reward prediction error coding.

    Science.gov (United States)

    Schultz, Wolfram

    2016-03-01

    Reward prediction errors consist of the differences between received and predicted rewards. They are crucial for basic forms of learning about rewards and make us strive for more rewards-an evolutionary beneficial trait. Most dopamine neurons in the midbrain of humans, monkeys, and rodents signal a reward prediction error; they are activated by more reward than predicted (positive prediction error), remain at baseline activity for fully predicted rewards, and show depressed activity with less reward than predicted (negative prediction error). The dopamine signal increases nonlinearly with reward value and codes formal economic utility. Drugs of addiction generate, hijack, and amplify the dopamine reward signal and induce exaggerated, uncontrolled dopamine effects on neuronal plasticity. The striatum, amygdala, and frontal cortex also show reward prediction error coding, but only in subpopulations of neurons. Thus, the important concept of reward prediction errors is implemented in neuronal hardware.

  14. Ubiquitous positioning

    CERN Document Server

    Mannings, Robin

    2008-01-01

    This groundbreaking resource offers a practical, in-depth understanding of Ubiquitous Positioning - positioning systems that identify the location and position of people, vehicles and objects in time and space in the digitized networked economy. The future and growth of ubiquitous positioning will be fueled by the convergence of many other areas of technology, from mobile telematics, Internet technology, and location systems, to sensing systems, geographic information systems, and the semantic web. This first-of-its-kind volume explores ubiquitous positioning from a convergence perspective, of

  15. DC cancellation as a method of generating a t2-response and of solving the radial position error in a concentric free-falling two-sphere equivalence-principle experiment in a drag-free satellite

    International Nuclear Information System (INIS)

    Lange, Benjamin

    2010-01-01

    This paper presents a new method for doing a free-fall equivalence-principle (EP) experiment in a satellite at ambient temperature which solves two problems that have previously blocked this approach. By using large masses to change the gravity gradient at the proof masses, the orbit dynamics of a drag-free satellite may be changed in such a way that the experiment can mimic a free-fall experiment in a constant gravitational field on the earth. An experiment using a sphere surrounded by a spherical shell both completely unsupported and free falling has previously been impractical because (1) it is not possible to distinguish between a small EP violation and a slight difference in the semi-major axes of the orbits of the two proof masses and (2) the position difference in the orbit due to an EP violation only grows as t whereas the largest disturbance grows as t 3/2 . Furthermore, it has not been known how to independently measure the positions of a shell and a solid sphere with sufficient accuracy. The measurement problem can be solved by using a two-color transcollimator (see the main text), and since the radial-position-error and t-response problems arise from the earth's gravity gradient and not from its gravity field, one solution is to modify the earth's gravity gradient with local masses fixed in the satellite. Since the gravity gradient at the surface of a sphere, for example, depends only on its density, the gravity gradients of laboratory masses and of the earth unlike their fields are of the same order of magnitude. In a drag-free satellite spinning perpendicular to the orbit plane, two fixed spherical masses whose connecting line parallels the satellite spin axis can generate a dc gravity gradient at test masses located between them which cancels the combined gravity gradient of the earth and differential centrifugal force. With perfect cancellation, the position-error problem vanishes and the response grows as t 2 along a line which always points toward

  16. Hydroball string sensing system

    International Nuclear Information System (INIS)

    Hurwitz, M.J.; Ekeroth, D.E.; Squarer, D.

    1991-01-01

    This patent describes a hydroball string sensing system for a nuclear reactor having a core containing a fluid at a fluid pressure. It comprises a tube connectable to the nuclear reactor so that the fluid can flow within the tube at a fluid pressure that is substantially the same as the fluid pressure of the nuclear reactor core; a hydroball string including - a string member having objects positioned therealong with a specified spacing, the object including a plurality of hydroballs, and bullet members positioned at opposing ends of the string member; first sensor means, positioned outside a first segment of the tube, for sensing one of the objects being positioned within the first segment, and for providing a sensing signal responsive to the sensing of the first sensing means

  17. Modeling coherent errors in quantum error correction

    Science.gov (United States)

    Greenbaum, Daniel; Dutton, Zachary

    2018-01-01

    Analysis of quantum error correcting codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. Here we examine the accuracy of the Pauli approximation for noise containing coherent errors (characterized by a rotation angle ɛ) under the repetition code. We derive an analytic expression for the logical error channel as a function of arbitrary code distance d and concatenation level n, in the small error limit. We find that coherent physical errors result in logical errors that are partially coherent and therefore non-Pauli. However, the coherent part of the logical error is negligible at fewer than {ε }-({dn-1)} error correction cycles when the decoder is optimized for independent Pauli errors, thus providing a regime of validity for the Pauli approximation. Above this number of correction cycles, the persistent coherent logical error will cause logical failure more quickly than the Pauli model would predict, and this may need to be combated with coherent suppression methods at the physical level or larger codes.

  18. Average beta-beating from random errors

    CERN Document Server

    Tomas Garcia, Rogelio; Langner, Andy Sven; Malina, Lukas; Franchi, Andrea; CERN. Geneva. ATS Department

    2018-01-01

    The impact of random errors on average β-beating is studied via analytical derivations and simulations. A systematic positive β-beating is expected from random errors quadratic with the sources or, equivalently, with the rms β-beating. However, random errors do not have a systematic effect on the tune.

  19. Preliminary evaluation of an algorithm to minimize the power error selection of an aspheric intraocular lens by optimizing the estimation of the corneal power and the effective lens position

    Directory of Open Access Journals (Sweden)

    David P. Piñero

    2016-06-01

    Full Text Available AIM: To evaluate the refractive predictability achieved with an aspheric intraocular lens(IOLand to develop a preliminary optimized algorithm for the calculation of its power(PIOL.METHODS: This study included 65 eyes implanted with the aspheric IOL LENTIS L-313(Oculentis GmbHthat were divided into 2 groups: 12 eyes(8 patientswith PIOL≥23.0 D(group A, and 53 eyes(35 patientswith PIOLIOLadjwas calculated considering a variable refractive index for corneal power estimation, the refractive outcome obtained, and an adjusted effective lens position(ELPadjaccording to age and anatomical factors. RESULTS: Postoperative spherical equivalent ranged from -0.75 to +0.75 D and from -1.38 to +0.75 D in groups A and B, respectively. No statistically significant differences were found in groups A(P=0.64and B(P=0.82between PIOLadj and the IOL power implanted(PIOLReal. The Bland and Altman analysis showed ranges of agreement between PIOLadj and PIOLReal of +1.11 to -0.96 D and +1.14 to -1.18 D in groups A and B, respectively. Clinically and statistically significant differences were found between PIOLadj and PIOL obtained with Hoffer Q and Holladay I formulas(PCONCLUSION: The refractive predictability of cataract surgery with implantation of an aspheric IOL can be optimized using paraxial optics combined with linear algorithms to minimize the error associated to the estimation of corneal power and ELP.

  20. Effect of different head-neck-jaw postures on cervicocephalic kinesthetic sense.

    Science.gov (United States)

    Zafar, H; Alghadir, A H; Iqbal, Z A

    2017-12-01

    To investigate the effect of different induced head-neck-jaw postures on head-neck relocation error among healthy subjects. 30 healthy adult male subjects participated in this study. Cervicocephalic kinesthetic sense was measured while standing, habitual sitting, habitual sitting with clenched jaw and habitual sitting with forward head posture during right rotation, left rotation, flexion and extension using kinesthetic sensibility test. Head-neck relocation error was least while standing, followed by habitual sitting, habitual sitting with forward head posture and habitual sitting with jaw clenched. However, there was no significant difference in error between different tested postures during all the movements. To the best of our knowledge, this is the first study to see the effect of different induced head-neck-jaw postures on head-neck position sense among healthy subjects. Assuming a posture for a short duration of time doesn't affect head-neck relocation error in normal healthy subjects.

  1. How Do Simulated Error Experiences Impact Attitudes Related to Error Prevention?

    Science.gov (United States)

    Breitkreuz, Karen R; Dougal, Renae L; Wright, Melanie C

    2016-10-01

    The objective of this project was to determine whether simulated exposure to error situations changes attitudes in a way that may have a positive impact on error prevention behaviors. Using a stratified quasi-randomized experiment design, we compared risk perception attitudes of a control group of nursing students who received standard error education (reviewed medication error content and watched movies about error experiences) to an experimental group of students who reviewed medication error content and participated in simulated error experiences. Dependent measures included perceived memorability of the educational experience, perceived frequency of errors, and perceived caution with respect to preventing errors. Experienced nursing students perceived the simulated error experiences to be more memorable than movies. Less experienced students perceived both simulated error experiences and movies to be highly memorable. After the intervention, compared with movie participants, simulation participants believed errors occurred more frequently. Both types of education increased the participants' intentions to be more cautious and reported caution remained higher than baseline for medication errors 6 months after the intervention. This study provides limited evidence of an advantage of simulation over watching movies describing actual errors with respect to manipulating attitudes related to error prevention. Both interventions resulted in long-term impacts on perceived caution in medication administration. Simulated error experiences made participants more aware of how easily errors can occur, and the movie education made participants more aware of the devastating consequences of errors.

  2. Making Sense of Trajectory Data in Indoor Spaces

    DEFF Research Database (Denmark)

    Prentow, Thor Siiger; Thom, Andreas; Blunck, Henrik

    2015-01-01

    The increasing prevalence of positioning and tracking systems has helped simplify tracking large amounts of, e.g., people moving through buildings or cars traveling on roads, over long periods of time. However, technical limitations of positioning algorithms and traditional sensing infrastructures......-specific analysis tools. Additionally, it allows to predict the locally occurring expected positioning error biases. This in turn allows improved positioning, e.g., for real-time navigation assistance scenarios. We evaluate the proposed methods using trajectory data from employees at a large hospital complex...... which route was taken in a particular travel instance or whether two travel instances followed the same route. In this paper, we present a bootstrapping approach and several algorithms to mitigate error biases and related phenomena, focusing on indoor scenarios. In particular, we are able to estimate...

  3. Learning from prescribing errors

    OpenAIRE

    Dean, B

    2002-01-01

    

 The importance of learning from medical error has recently received increasing emphasis. This paper focuses on prescribing errors and argues that, while learning from prescribing errors is a laudable goal, there are currently barriers that can prevent this occurring. Learning from errors can take place on an individual level, at a team level, and across an organisation. Barriers to learning from prescribing errors include the non-discovery of many prescribing errors, lack of feedback to th...

  4. Error field considerations for BPX

    International Nuclear Information System (INIS)

    LaHaye, R.J.

    1992-01-01

    Irregularities in the position of poloidal and/or toroidal field coils in tokamaks produce resonant toroidal asymmetries in the vacuum magnetic fields. Otherwise stable tokamak discharges become non-linearly unstable to disruptive locked modes when subjected to low level error fields. Because of the field errors, magnetic islands are produced which would not otherwise occur in tearing mode table configurations; a concomitant reduction of the total confinement can result. Poloidal and toroidal asymmetries arise in the heat flux to the divertor target. In this paper, the field errors from perturbed BPX coils are used in a field line tracing code of the BPX equilibrium to study these deleterious effects. Limits on coil irregularities for device design and fabrication are computed along with possible correcting coils for reducing such field errors

  5. Numerical optimization with computational errors

    CERN Document Server

    Zaslavski, Alexander J

    2016-01-01

    This book studies the approximate solutions of optimization problems in the presence of computational errors. A number of results are presented on the convergence behavior of algorithms in a Hilbert space; these algorithms are examined taking into account computational errors. The author illustrates that algorithms generate a good approximate solution, if computational errors are bounded from above by a small positive constant. Known computational errors are examined with the aim of determining an approximate solution. Researchers and students interested in the optimization theory and its applications will find this book instructive and informative. This monograph contains 16 chapters; including a chapters devoted to the subgradient projection algorithm, the mirror descent algorithm, gradient projection algorithm, the Weiszfelds method, constrained convex minimization problems, the convergence of a proximal point method in a Hilbert space, the continuous subgradient method, penalty methods and Newton’s meth...

  6. Culture and error in space: implications from analog environments.

    Science.gov (United States)

    Helmreich, R L

    2000-09-01

    An ongoing study investigating national, organizational, and professional cultures in aviation and medicine is described. Survey data from 26 nations on 5 continents show highly significant national differences regarding appropriate relationships between leaders and followers, in group vs. individual orientation, and in values regarding adherence to rules and procedures. These findings replicate earlier research on dimensions of national culture. Data collected also isolate significant operational issues in multi-national flight crews. While there are no better or worse cultures, these cultural differences have operational implications for the way crews function in an international space environment. The positive professional cultures of pilots and physicians exhibit a high enjoyment of the job and professional pride. However, a negative component was also identified characterized by a sense of personal invulnerability regarding the effects of stress and fatigue on performance. This misperception of personal invulnerability has operational implications such as failures in teamwork and increased probability of error. A second component of the research examines team error in operational environments. From observational data collected during normal flight operations, new models of threat and error and their management were developed that can be generalized to operations in space and other socio-technological domains. Five categories of crew error are defined and their relationship to training programs in team performance, known generically as Crew Resource Management, is described. The relevance of these data for future spaceflight is discussed.

  7. Part two: Error propagation

    International Nuclear Information System (INIS)

    Picard, R.R.

    1989-01-01

    Topics covered in this chapter include a discussion of exact results as related to nuclear materials management and accounting in nuclear facilities; propagation of error for a single measured value; propagation of error for several measured values; error propagation for materials balances; and an application of error propagation to an example of uranium hexafluoride conversion process

  8. Learning from Errors

    OpenAIRE

    Martínez-Legaz, Juan Enrique; Soubeyran, Antoine

    2003-01-01

    We present a model of learning in which agents learn from errors. If an action turns out to be an error, the agent rejects not only that action but also neighboring actions. We find that, keeping memory of his errors, under mild assumptions an acceptable solution is asymptotically reached. Moreover, one can take advantage of big errors for a faster learning.

  9. Plasmonic sensing

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo

    2015-01-01

    Plasmonic sensors typically rely on detection of changes in the refractive index of the surrounding medium. Here, an alternative approach is reported based on electrical surface screening and controlled dissolution of ultrasmall silver nanoparticles (NPs; R ... in the plasmon band. This is demonstrated by using the strong nucleophiles, cyanide and cysteamine, as ligands. The “dissolution paths” in terms of peak wavelength and amplitude shifts differ significantly between different types of analytes, which are suggested as a means to obtain selectivity of the detection...... that cannot be obtained by traditional refractive index sensing, without the use of bioprobes. A simple modified Drude model is used to account for shifts in the plasmon band position due to electrical charging. Here, a screening parameter is introduced in the expression for the free electron density...

  10. Robot learning and error correction

    Science.gov (United States)

    Friedman, L.

    1977-01-01

    A model of robot learning is described that associates previously unknown perceptions with the sensed known consequences of robot actions. For these actions, both the categories of outcomes and the corresponding sensory patterns are incorporated in a knowledge base by the system designer. Thus the robot is able to predict the outcome of an action and compare the expectation with the experience. New knowledge about what to expect in the world may then be incorporated by the robot in a pre-existing structure whether it detects accordance or discrepancy between a predicted consequence and experience. Errors committed during plan execution are detected by the same type of comparison process and learning may be applied to avoiding the errors.

  11. Generalized Gaussian Error Calculus

    CERN Document Server

    Grabe, Michael

    2010-01-01

    For the first time in 200 years Generalized Gaussian Error Calculus addresses a rigorous, complete and self-consistent revision of the Gaussian error calculus. Since experimentalists realized that measurements in general are burdened by unknown systematic errors, the classical, widespread used evaluation procedures scrutinizing the consequences of random errors alone turned out to be obsolete. As a matter of course, the error calculus to-be, treating random and unknown systematic errors side by side, should ensure the consistency and traceability of physical units, physical constants and physical quantities at large. The generalized Gaussian error calculus considers unknown systematic errors to spawn biased estimators. Beyond, random errors are asked to conform to the idea of what the author calls well-defined measuring conditions. The approach features the properties of a building kit: any overall uncertainty turns out to be the sum of a contribution due to random errors, to be taken from a confidence inter...

  12. Game Design Principles based on Human Error

    Directory of Open Access Journals (Sweden)

    Guilherme Zaffari

    2016-03-01

    Full Text Available This paper displays the result of the authors’ research regarding to the incorporation of Human Error, through design principles, to video game design. In a general way, designers must consider Human Error factors throughout video game interface development; however, when related to its core design, adaptations are in need, since challenge is an important factor for fun and under the perspective of Human Error, challenge can be considered as a flaw in the system. The research utilized Human Error classifications, data triangulation via predictive human error analysis, and the expanded flow theory to allow the design of a set of principles in order to match the design of playful challenges with the principles of Human Error. From the results, it was possible to conclude that the application of Human Error in game design has a positive effect on player experience, allowing it to interact only with errors associated with the intended aesthetics of the game.

  13. Understanding human management of automation errors

    Science.gov (United States)

    McBride, Sara E.; Rogers, Wendy A.; Fisk, Arthur D.

    2013-01-01

    Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance. PMID:25383042

  14. HORIZON SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Larry G. Stolarczyk

    2003-03-18

    With the aid of a DOE grant (No. DE-FC26-01NT41050), Stolar Research Corporation (Stolar) developed the Horizon Sensor (HS) to distinguish between the different layers of a coal seam. Mounted on mining machine cutter drums, HS units can detect or sense the horizon between the coal seam and the roof and floor rock, providing the opportunity to accurately mine the section of the seam most desired. HS also enables accurate cutting of minimum height if that is the operator's objective. Often when cutting is done out-of-seam, the head-positioning function facilitates a fixed mining height to minimize dilution. With this technology, miners can still be at a remote location, yet cut only the clean coal, resulting in a much more efficient overall process. The objectives of this project were to demonstrate the feasibility of horizon sensing on mining machines and demonstrate that Horizon Sensing can allow coal to be cut cleaner and more efficiently. Stolar's primary goal was to develop the Horizon Sensor (HS) into an enabling technology for full or partial automation or ''agile mining''. This technical innovation (R&D 100 Award Winner) is quickly demonstrating improvements in productivity and miner safety at several prominent coal mines in the United States. In addition, the HS system can enable the cutting of cleaner coal. Stolar has driven the HS program on the philosophy that cutting cleaner coal means burning cleaner coal. The sensor, located inches from the cutting bits, is based upon the physics principles of a Resonant Microstrip Patch Antenna (RMPA). When it is in proximity of the rock-coal interface, the RMPA impedance varies depending on the thickness of uncut coal. The impedance is measured by the computer-controlled electronics and then sent by radio waves to the mining machine. The worker at the machine can read the data via a Graphical User Interface, displaying a color-coded image of the coal being cut, and direct the machine

  15. Medication errors: prescribing faults and prescription errors.

    Science.gov (United States)

    Velo, Giampaolo P; Minuz, Pietro

    2009-06-01

    1. Medication errors are common in general practice and in hospitals. Both errors in the act of writing (prescription errors) and prescribing faults due to erroneous medical decisions can result in harm to patients. 2. Any step in the prescribing process can generate errors. Slips, lapses, or mistakes are sources of errors, as in unintended omissions in the transcription of drugs. Faults in dose selection, omitted transcription, and poor handwriting are common. 3. Inadequate knowledge or competence and incomplete information about clinical characteristics and previous treatment of individual patients can result in prescribing faults, including the use of potentially inappropriate medications. 4. An unsafe working environment, complex or undefined procedures, and inadequate communication among health-care personnel, particularly between doctors and nurses, have been identified as important underlying factors that contribute to prescription errors and prescribing faults. 5. Active interventions aimed at reducing prescription errors and prescribing faults are strongly recommended. These should be focused on the education and training of prescribers and the use of on-line aids. The complexity of the prescribing procedure should be reduced by introducing automated systems or uniform prescribing charts, in order to avoid transcription and omission errors. Feedback control systems and immediate review of prescriptions, which can be performed with the assistance of a hospital pharmacist, are also helpful. Audits should be performed periodically.

  16. Medical Error and Moral Luck.

    Science.gov (United States)

    Hubbeling, Dieneke

    2016-09-01

    This paper addresses the concept of moral luck. Moral luck is discussed in the context of medical error, especially an error of omission that occurs frequently, but only rarely has adverse consequences. As an example, a failure to compare the label on a syringe with the drug chart results in the wrong medication being administered and the patient dies. However, this error may have previously occurred many times with no tragic consequences. Discussions on moral luck can highlight conflicting intuitions. Should perpetrators receive a harsher punishment because of an adverse outcome, or should they be dealt with in the same way as colleagues who have acted similarly, but with no adverse effects? An additional element to the discussion, specifically with medical errors, is that according to the evidence currently available, punishing individual practitioners does not seem to be effective in preventing future errors. The following discussion, using relevant philosophical and empirical evidence, posits a possible solution for the moral luck conundrum in the context of medical error: namely, making a distinction between the duty to make amends and assigning blame. Blame should be assigned on the basis of actual behavior, while the duty to make amends is dependent on the outcome.

  17. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model.

    Science.gov (United States)

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander

    2015-04-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. Copyright © 2015 the American Physiological Society.

  18. Remote Sensing

    CERN Document Server

    Khorram, Siamak; Koch, Frank H; van der Wiele, Cynthia F

    2012-01-01

    Remote Sensing provides information on how remote sensing relates to the natural resources inventory, management, and monitoring, as well as environmental concerns. It explains the role of this new technology in current global challenges. "Remote Sensing" will discuss remotely sensed data application payloads and platforms, along with the methodologies involving image processing techniques as applied to remotely sensed data. This title provides information on image classification techniques and image registration, data integration, and data fusion techniques. How this technology applies to natural resources and environmental concerns will also be discussed.

  19. Prescription Errors in Psychiatry

    African Journals Online (AJOL)

    Arun Kumar Agnihotri

    clinical pharmacists in detecting errors before they have a (sometimes serious) clinical impact should not be underestimated. Research on medication error in mental health care is limited. .... participation in ward rounds and adverse drug.

  20. Integrative Approach with Electrophysiological and Theoretical Methods Reveals a New Role of S4 Positively Charged Residues in PKD2L1 Channel Voltage-Sensing.

    Science.gov (United States)

    Numata, Tomohiro; Tsumoto, Kunichika; Yamada, Kazunori; Kurokawa, Tatsuki; Hirose, Shinichi; Nomura, Hideki; Kawano, Mitsuhiro; Kurachi, Yoshihisa; Inoue, Ryuji; Mori, Yasuo

    2017-08-29

    Numerical model-based simulations provide important insights into ion channel gating when experimental limitations exist. Here, a novel strategy combining numerical simulations with patch clamp experiments was used to investigate the net positive charges in the putative transmembrane segment 4 (S4) of the atypical, positively-shifted voltage-dependence of polycystic kidney disease 2-like 1 (PKD2L1) channel. Charge-neutralising mutations (K452Q, K455Q and K461Q) in S4 reduced gating charges, positively shifted the Boltzmann-type activation curve [i.e., open probability (P open )-V curve] and altered the time-courses of activation/deactivation of PKD2L1, indicating that this region constitutes part of a voltage sensor. Numerical reconstruction of wild-type (WT) and mutant PKD2L1-mediated currents necessitated, besides their voltage-dependent gating parameters, a scaling factor that describes the voltage-dependence of maximal conductance, G max . Subsequent single-channel conductance (γ) measurements revealed that voltage-dependence of G max in WT can be explained by the inward-rectifying property of γ, which is greatly changed in PKD2L1 mutants. Homology modelling based on PKD2 and Na V Ab structures suggest that such voltage dependence of P open and γ in PKD2L1 could both reflect the charged state of the S4 domain. The present conjunctive experimental and theoretical approaches provide a framework to explore the undetermined mechanism(s) regulating TRP channels that possess non-classical voltage-dependent properties.

  1. Large errors and severe conditions

    CERN Document Server

    Smith, D L; Van Wormer, L A

    2002-01-01

    Physical parameters that can assume real-number values over a continuous range are generally represented by inherently positive random variables. However, if the uncertainties in these parameters are significant (large errors), conventional means of representing and manipulating the associated variables can lead to erroneous results. Instead, all analyses involving them must be conducted in a probabilistic framework. Several issues must be considered: First, non-linear functional relations between primary and derived variables may lead to significant 'error amplification' (severe conditions). Second, the commonly used normal (Gaussian) probability distribution must be replaced by a more appropriate function that avoids the occurrence of negative sampling results. Third, both primary random variables and those derived through well-defined functions must be dealt with entirely in terms of their probability distributions. Parameter 'values' and 'errors' should be interpreted as specific moments of these probabil...

  2. Errors in otology.

    Science.gov (United States)

    Kartush, J M

    1996-11-01

    Practicing medicine successfully requires that errors in diagnosis and treatment be minimized. Malpractice laws encourage litigators to ascribe all medical errors to incompetence and negligence. There are, however, many other causes of unintended outcomes. This article describes common causes of errors and suggests ways to minimize mistakes in otologic practice. Widespread dissemination of knowledge about common errors and their precursors can reduce the incidence of their occurrence. Consequently, laws should be passed to allow for a system of non-punitive, confidential reporting of errors and "near misses" that can be shared by physicians nationwide.

  3. Glucose Sensing

    CERN Document Server

    Geddes, Chris D

    2006-01-01

    Topics in Fluorescence Spectroscopy, Glucose Sensing is the eleventh volume in the popular series Topics in Fluorescence Spectroscopy, edited by Drs. Chris D. Geddes and Joseph R. Lakowicz. This volume incorporates authoritative analytical fluorescence-based glucose sensing reviews specialized enough to be attractive to professional researchers, yet also appealing to the wider audience of scientists in related disciplines of fluorescence. Glucose Sensing is an essential reference for any lab working in the analytical fluorescence glucose sensing field. All academics, bench scientists, and industry professionals wishing to take advantage of the latest and greatest in the continuously emerging field of glucose sensing, and diabetes care & management, will find this volume an invaluable resource. Topics in Fluorescence Spectroscopy Volume 11, Glucose Sensing Chapters include: Implantable Sensors for Interstitial Fluid Smart Tattoo Glucose Sensors Optical Enzyme-based Glucose Biosensors Plasmonic Glucose Sens...

  4. Make Sense?

    DEFF Research Database (Denmark)

    Gyrd-Jones, Richard; Törmälä, Minna

    Purpose: An important part of how we sense a brand is how we make sense of a brand. Sense-making is naturally strongly connected to how we cognize about the brand. But sense-making is concerned with multiple forms of knowledge that arise from our interpretation of the brand-related stimuli......: Declarative, episodic, procedural and sensory. Knowledge is given meaning through mental association (Keller, 1993) and / or symbolic interaction (Blumer, 1969). These meanings are centrally related to individuals’ sense of identity or “identity needs” (Wallpach & Woodside, 2009). The way individuals make...... sense of brands is related to who people think they are in their context and this shapes what they enact and how they interpret the brand (Currie & Brown, 2003; Weick, Sutcliffe, & Obstfeld, 2005; Weick, 1993). Our subject of interest in this paper is how stakeholders interpret and ascribe meaning...

  5. Analysis of errors in forensic science

    Directory of Open Access Journals (Sweden)

    Mingxiao Du

    2017-01-01

    Full Text Available Reliability of expert testimony is one of the foundations of judicial justice. Both expert bias and scientific errors affect the reliability of expert opinion, which in turn affects the trustworthiness of the findings of fact in legal proceedings. Expert bias can be eliminated by replacing experts; however, it may be more difficult to eliminate scientific errors. From the perspective of statistics, errors in operation of forensic science include systematic errors, random errors, and gross errors. In general, process repetition and abiding by the standard ISO/IEC:17025: 2005, general requirements for the competence of testing and calibration laboratories, during operation are common measures used to reduce errors that originate from experts and equipment, respectively. For example, to reduce gross errors, the laboratory can ensure that a test is repeated several times by different experts. In applying for forensic principles and methods, the Federal Rules of Evidence 702 mandate that judges consider factors such as peer review, to ensure the reliability of the expert testimony. As the scientific principles and methods may not undergo professional review by specialists in a certain field, peer review serves as an exclusive standard. This study also examines two types of statistical errors. As false-positive errors involve a higher possibility of an unfair decision-making, they should receive more attention than false-negative errors.

  6. Isolation and characterization of Nylanderia fulva virus 1, a positive-sense, single-stranded RNA virus infecting the tawny crazy ant, Nylanderia fulva

    Energy Technology Data Exchange (ETDEWEB)

    Valles, Steven M., E-mail: steven.valles@ars.usda.gov [Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608 (United States); Oi, David H.; Becnel, James J. [Center for Medical, Agricultural and Veterinary Entomology, USDA-ARS, 1600 SW 23rd Drive, Gainesville, FL 32608 (United States); Wetterer, James K. [Wilkes Honors College, Florida Atlantic University, 5353 Parkside Drive, Jupiter, FL 33458 (United States); LaPolla, John S. [Department of Biological Sciences, Towson University, 8000 York Road, Towson, MD 21252 (United States); Firth, Andrew E. [Department of Pathology, University of Cambridge, Cambridge CB2 1QP (United Kingdom)

    2016-09-15

    We report the discovery of Nylanderia fulva virus 1 (NfV-1), the first virus identified and characterized from the ant, Nylanderia fulva. The NfV-1 genome (GenBank accession KX024775) is 10,881 nucleotides in length, encoding one large open reading frame (ORF). Helicase, protease, RNA-dependent RNA polymerase, and jelly-roll capsid protein domains were recognized within the polyprotein. Phylogenetic analysis placed NfV-1 in an unclassified clade of viruses. Electron microscopic examination of negatively stained samples revealed particles with icosahedral symmetry with a diameter of 28.7±1.1 nm. The virus was detected by RT-PCR in larval, pupal, worker and queen developmental stages. However, the replicative strand of NfV-1 was only detected in larvae. Vertical transmission did not appear to occur, but horizontal transmission was facile. The inter-colonial field prevalence of NfV-1 was 52±35% with some local infections reaching 100%. NfV-1 was not detected in limited samples of other Nylanderia species or closely related ant species. - Highlights: • A new positive-strand RNA virus was discovered in the ant, Nylanderia fulva. • The Nylanderia fulva virus 1 genome was comprised of 10,881 nucleotides. • NfV-1 was detected in larval, pupal, queen and worker ants, but not eggs. • Replication of NfV-1 appeared to be limited to the larval stage.

  7. Isolation and characterization of Nylanderia fulva virus 1, a positive-sense, single-stranded RNA virus infecting the tawny crazy ant, Nylanderia fulva

    International Nuclear Information System (INIS)

    Valles, Steven M.; Oi, David H.; Becnel, James J.; Wetterer, James K.; LaPolla, John S.; Firth, Andrew E.

    2016-01-01

    We report the discovery of Nylanderia fulva virus 1 (NfV-1), the first virus identified and characterized from the ant, Nylanderia fulva. The NfV-1 genome (GenBank accession KX024775) is 10,881 nucleotides in length, encoding one large open reading frame (ORF). Helicase, protease, RNA-dependent RNA polymerase, and jelly-roll capsid protein domains were recognized within the polyprotein. Phylogenetic analysis placed NfV-1 in an unclassified clade of viruses. Electron microscopic examination of negatively stained samples revealed particles with icosahedral symmetry with a diameter of 28.7±1.1 nm. The virus was detected by RT-PCR in larval, pupal, worker and queen developmental stages. However, the replicative strand of NfV-1 was only detected in larvae. Vertical transmission did not appear to occur, but horizontal transmission was facile. The inter-colonial field prevalence of NfV-1 was 52±35% with some local infections reaching 100%. NfV-1 was not detected in limited samples of other Nylanderia species or closely related ant species. - Highlights: • A new positive-strand RNA virus was discovered in the ant, Nylanderia fulva. • The Nylanderia fulva virus 1 genome was comprised of 10,881 nucleotides. • NfV-1 was detected in larval, pupal, queen and worker ants, but not eggs. • Replication of NfV-1 appeared to be limited to the larval stage.

  8. Control for stabilizing the alignment position of the rotor of the synchronous motor

    Science.gov (United States)

    Donley, L.I.

    1985-03-12

    A method and apparatus is described for damping oscillations in the rotor load angle of a synchronous motor to provide stable rotational alignment in high precision applications. The damping method includes sensing the angular position of the rotor and utilizing the position signal to generate an error signal in response to changes in the period of rotation of the rotor. The error signal is coupled to phase shift amplifiers which shift the phase of the motor drive signal in a direction to damp out the oscillations in the rotor load angle.

  9. Internal quality control of RIA with Tonks error calculation method

    International Nuclear Information System (INIS)

    Chen Xiaodong

    1996-01-01

    According to the methodology feature of RIA, an internal quality control chart with Tonks error calculation method which is suitable for RIA is designed. The quality control chart defines the value of the allowance error with normal reference range. The method has the simplicity of its performance and directly perceived through the senses. Taking the example of determining T 3 and T 4 , the calculation of allowance error, drawing of quality control chart and the analysis of result are introduced

  10. The error in total error reduction.

    Science.gov (United States)

    Witnauer, James E; Urcelay, Gonzalo P; Miller, Ralph R

    2014-02-01

    Most models of human and animal learning assume that learning is proportional to the discrepancy between a delivered outcome and the outcome predicted by all cues present during that trial (i.e., total error across a stimulus compound). This total error reduction (TER) view has been implemented in connectionist and artificial neural network models to describe the conditions under which weights between units change. Electrophysiological work has revealed that the activity of dopamine neurons is correlated with the total error signal in models of reward learning. Similar neural mechanisms presumably support fear conditioning, human contingency learning, and other types of learning. Using a computational modeling approach, we compared several TER models of associative learning to an alternative model that rejects the TER assumption in favor of local error reduction (LER), which assumes that learning about each cue is proportional to the discrepancy between the delivered outcome and the outcome predicted by that specific cue on that trial. The LER model provided a better fit to the reviewed data than the TER models. Given the superiority of the LER model with the present data sets, acceptance of TER should be tempered. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Comparing Absolute Error with Squared Error for Evaluating Empirical Models of Continuous Variables: Compositions, Implications, and Consequences

    Science.gov (United States)

    Gao, J.

    2014-12-01

    Reducing modeling error is often a major concern of empirical geophysical models. However, modeling errors can be defined in different ways: When the response variable is continuous, the most commonly used metrics are squared (SQ) and absolute (ABS) errors. For most applications, ABS error is the more natural, but SQ error is mathematically more tractable, so is often used as a substitute with little scientific justification. Existing literature has not thoroughly investigated the implications of using SQ error in place of ABS error, especially not geospatially. This study compares the two metrics through the lens of bias-variance decomposition (BVD). BVD breaks down the expected modeling error of each model evaluation point into bias (systematic error), variance (model sensitivity), and noise (observation instability). It offers a way to probe the composition of various error metrics. I analytically derived the BVD of ABS error and compared it with the well-known SQ error BVD, and found that not only the two metrics measure the characteristics of the probability distributions of modeling errors differently, but also the effects of these characteristics on the overall expected error are different. Most notably, under SQ error all bias, variance, and noise increase expected error, while under ABS error certain parts of the error components reduce expected error. Since manipulating these subtractive terms is a legitimate way to reduce expected modeling error, SQ error can never capture the complete story embedded in ABS error. I then empirically compared the two metrics with a supervised remote sensing model for mapping surface imperviousness. Pair-wise spatially-explicit comparison for each error component showed that SQ error overstates all error components in comparison to ABS error, especially variance-related terms. Hence, substituting ABS error with SQ error makes model performance appear worse than it actually is, and the analyst would more likely accept a

  12. Errors in Neonatology

    OpenAIRE

    Antonio Boldrini; Rosa T. Scaramuzzo; Armando Cuttano

    2013-01-01

    Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy). Results: In Neonatology the main err...

  13. Teamwork and Clinical Error Reporting among Nurses in Korean Hospitals

    Directory of Open Access Journals (Sweden)

    Jee-In Hwang, PhD

    2015-03-01

    Conclusions: Teamwork was rated as moderate and was positively associated with nurses' error reporting performance. Hospital executives and nurse managers should make substantial efforts to enhance teamwork, which will contribute to encouraging the reporting of errors and improving patient safety.

  14. Systematic Procedural Error

    National Research Council Canada - National Science Library

    Byrne, Michael D

    2006-01-01

    .... This problem has received surprisingly little attention from cognitive psychologists. The research summarized here examines such errors in some detail both empirically and through computational cognitive modeling...

  15. Human errors and mistakes

    International Nuclear Information System (INIS)

    Wahlstroem, B.

    1993-01-01

    Human errors have a major contribution to the risks for industrial accidents. Accidents have provided important lesson making it possible to build safer systems. In avoiding human errors it is necessary to adapt the systems to their operators. The complexity of modern industrial systems is however increasing the danger of system accidents. Models of the human operator have been proposed, but the models are not able to give accurate predictions of human performance. Human errors can never be eliminated, but their frequency can be decreased by systematic efforts. The paper gives a brief summary of research in human error and it concludes with suggestions for further work. (orig.)

  16. VOLUMETRIC ERROR COMPENSATION IN FIVE-AXIS CNC MACHINING CENTER THROUGH KINEMATICS MODELING OF GEOMETRIC ERROR

    Directory of Open Access Journals (Sweden)

    Pooyan Vahidi Pashsaki

    2016-06-01

    Full Text Available Accuracy of a five-axis CNC machine tool is affected by a vast number of error sources. This paper investigates volumetric error modeling and its compensation to the basis for creation of new tool path for improvement of work pieces accuracy. The volumetric error model of a five-axis machine tool with the configuration RTTTR (tilting head B-axis and rotary table in work piece side A΄ was set up taking into consideration rigid body kinematics and homogeneous transformation matrix, in which 43 error components are included. Volumetric error comprises 43 error components that can separately reduce geometrical and dimensional accuracy of work pieces. The machining accuracy of work piece is guaranteed due to the position of the cutting tool center point (TCP relative to the work piece. The cutting tool is deviated from its ideal position relative to the work piece and machining error is experienced. For compensation process detection of the present tool path and analysis of the RTTTR five-axis CNC machine tools geometrical error, translating current position of component to compensated positions using the Kinematics error model, converting newly created component to new tool paths using the compensation algorithms and finally editing old G-codes using G-code generator algorithm have been employed.

  17. New decoding methods of interleaved burst error-correcting codes

    Science.gov (United States)

    Nakano, Y.; Kasahara, M.; Namekawa, T.

    1983-04-01

    A probabilistic method of single burst error correction, using the syndrome correlation of subcodes which constitute the interleaved code, is presented. This method makes it possible to realize a high capability of burst error correction with less decoding delay. By generalizing this method it is possible to obtain probabilistic method of multiple (m-fold) burst error correction. After estimating the burst error positions using syndrome correlation of subcodes which are interleaved m-fold burst error detecting codes, this second method corrects erasure errors in each subcode and m-fold burst errors. The performance of these two methods is analyzed via computer simulation, and their effectiveness is demonstrated.

  18. Errors resulting from assuming opaque Lambertian clouds in TOMS ozone retrieval

    International Nuclear Information System (INIS)

    Liu, X.; Newchurch, M.J.; Loughman, R.; Bhartia, P.K.

    2004-01-01

    Accurate remote sensing retrieval of atmospheric constituents over cloudy areas is very challenging because of insufficient knowledge of cloud parameters. Cloud treatments are highly idealized in most retrieval algorithms. Using a radiative transfer model treating clouds as scattering media, we investigate the effects of assuming opaque Lambertian clouds and employing a Partial Cloud Model (PCM) on Total Ozone Mapping Spectrometer (TOMS) ozone retrievals, especially for tropical high-reflectivity clouds. Assuming angularly independent cloud reflection is good because the Ozone Retrieval Errors (OREs) are within 1.5% of the total ozone (i.e., within TOMS retrieval precision) when Cloud Optical Depth (COD)≥20. Because of Intra-Cloud Ozone Absorption ENhancement (ICOAEN), assuming opaque clouds can introduce large OREs even for optically thick clouds. For a water cloud of COD 40 spanning 2-12 km with 20.8 Dobson Unit (DU) ozone homogeneously distributed in the cloud, the ORE is 17.8 DU in the nadir view. The ICOAEN effect depends greatly on solar zenith angle, view zenith angle, and intra-cloud ozone amount and distribution. The TOMS PCM is good because negative errors from the cloud fraction being underestimated partly cancel other positive errors. At COD≤5, the TOMS algorithm retrieves approximately the correct total ozone because of compensating errors. With increasing COD up to 20-40, the overall positive ORE increases and is finally dominated by the ICOAEN effect. The ICOAEN effect is typically 5-13 DU on average over the Atlantic and Africa and 1-7 DU over the Pacific for tropical high-altitude (cloud top pressure ≤300 hPa) and high-reflectivity (reflectivity ≥ 80%) clouds. Knowledge of TOMS ozone retrieval errors has important implications for remote sensing of ozone/trace gases from other satellite instruments

  19. Learning from Errors

    Science.gov (United States)

    Metcalfe, Janet

    2017-01-01

    Although error avoidance during learning appears to be the rule in American classrooms, laboratory studies suggest that it may be a counterproductive strategy, at least for neurologically typical students. Experimental investigations indicate that errorful learning followed by corrective feedback is beneficial to learning. Interestingly, the…

  20. A Novel Sensing Circuit with Large Sensing Margin for Embedded Spin-Transfer Torque MRAMs

    DEFF Research Database (Denmark)

    Bagheriye, Leila; Toofan, Siroos; Saeidi, Roghayeh

    -disturbance and high yield. In this paper, to deal with the read reliability challenge, a high sensing margin sensing circuit with strong positive feedback is proposed. It improves the sensing margin (SM) by 10.42X/3.3X and a with 1.24X/1.59X lower read energy at iso-sensing time (2ns) in comparison...

  1. ERROR DISTRIBUTION EVALUATION OF THE THIRD VANISHING POINT BASED ON RANDOM STATISTICAL SIMULATION

    Directory of Open Access Journals (Sweden)

    C. Li

    2012-07-01

    Full Text Available POS, integrated by GPS / INS (Inertial Navigation Systems, has allowed rapid and accurate determination of position and attitude of remote sensing equipment for MMS (Mobile Mapping Systems. However, not only does INS have system error, but also it is very expensive. Therefore, in this paper error distributions of vanishing points are studied and tested in order to substitute INS for MMS in some special land-based scene, such as ground façade where usually only two vanishing points can be detected. Thus, the traditional calibration approach based on three orthogonal vanishing points is being challenged. In this article, firstly, the line clusters, which parallel to each others in object space and correspond to the vanishing points, are detected based on RANSAC (Random Sample Consensus and parallelism geometric constraint. Secondly, condition adjustment with parameters is utilized to estimate nonlinear error equations of two vanishing points (VX, VY. How to set initial weights for the adjustment solution of single image vanishing points is presented. Solving vanishing points and estimating their error distributions base on iteration method with variable weights, co-factor matrix and error ellipse theory. Thirdly, under the condition of known error ellipses of two vanishing points (VX, VY and on the basis of the triangle geometric relationship of three vanishing points, the error distribution of the third vanishing point (VZ is calculated and evaluated by random statistical simulation with ignoring camera distortion. Moreover, Monte Carlo methods utilized for random statistical estimation are presented. Finally, experimental results of vanishing points coordinate and their error distributions are shown and analyzed.

  2. Error Distribution Evaluation of the Third Vanishing Point Based on Random Statistical Simulation

    Science.gov (United States)

    Li, C.

    2012-07-01

    POS, integrated by GPS / INS (Inertial Navigation Systems), has allowed rapid and accurate determination of position and attitude of remote sensing equipment for MMS (Mobile Mapping Systems). However, not only does INS have system error, but also it is very expensive. Therefore, in this paper error distributions of vanishing points are studied and tested in order to substitute INS for MMS in some special land-based scene, such as ground façade where usually only two vanishing points can be detected. Thus, the traditional calibration approach based on three orthogonal vanishing points is being challenged. In this article, firstly, the line clusters, which parallel to each others in object space and correspond to the vanishing points, are detected based on RANSAC (Random Sample Consensus) and parallelism geometric constraint. Secondly, condition adjustment with parameters is utilized to estimate nonlinear error equations of two vanishing points (VX, VY). How to set initial weights for the adjustment solution of single image vanishing points is presented. Solving vanishing points and estimating their error distributions base on iteration method with variable weights, co-factor matrix and error ellipse theory. Thirdly, under the condition of known error ellipses of two vanishing points (VX, VY) and on the basis of the triangle geometric relationship of three vanishing points, the error distribution of the third vanishing point (VZ) is calculated and evaluated by random statistical simulation with ignoring camera distortion. Moreover, Monte Carlo methods utilized for random statistical estimation are presented. Finally, experimental results of vanishing points coordinate and their error distributions are shown and analyzed.

  3. Uncorrected refractive errors.

    Science.gov (United States)

    Naidoo, Kovin S; Jaggernath, Jyoti

    2012-01-01

    Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC), were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR) Development, Service Development and Social Entrepreneurship.

  4. Uncorrected refractive errors

    Directory of Open Access Journals (Sweden)

    Kovin S Naidoo

    2012-01-01

    Full Text Available Global estimates indicate that more than 2.3 billion people in the world suffer from poor vision due to refractive error; of which 670 million people are considered visually impaired because they do not have access to corrective treatment. Refractive errors, if uncorrected, results in an impaired quality of life for millions of people worldwide, irrespective of their age, sex and ethnicity. Over the past decade, a series of studies using a survey methodology, referred to as Refractive Error Study in Children (RESC, were performed in populations with different ethnic origins and cultural settings. These studies confirmed that the prevalence of uncorrected refractive errors is considerably high for children in low-and-middle-income countries. Furthermore, uncorrected refractive error has been noted to have extensive social and economic impacts, such as limiting educational and employment opportunities of economically active persons, healthy individuals and communities. The key public health challenges presented by uncorrected refractive errors, the leading cause of vision impairment across the world, require urgent attention. To address these issues, it is critical to focus on the development of human resources and sustainable methods of service delivery. This paper discusses three core pillars to addressing the challenges posed by uncorrected refractive errors: Human Resource (HR Development, Service Development and Social Entrepreneurship.

  5. Error Control in Distributed Node Self-Localization

    Directory of Open Access Journals (Sweden)

    Ying Zhang

    2008-03-01

    Full Text Available Location information of nodes in an ad hoc sensor network is essential to many tasks such as routing, cooperative sensing, and service delivery. Distributed node self-localization is lightweight and requires little communication overhead, but often suffers from the adverse effects of error propagation. Unlike other localization papers which focus on designing elaborate localization algorithms, this paper takes a different perspective, focusing on the error propagation problem, addressing questions such as where localization error comes from and how it propagates from node to node. To prevent error from propagating and accumulating, we develop an error-control mechanism based on characterization of node uncertainties and discrimination between neighboring nodes. The error-control mechanism uses only local knowledge and is fully decentralized. Simulation results have shown that the active selection strategy significantly mitigates the effect of error propagation for both range and directional sensors. It greatly improves localization accuracy and robustness.

  6. Preventing Errors in Laterality

    OpenAIRE

    Landau, Elliot; Hirschorn, David; Koutras, Iakovos; Malek, Alexander; Demissie, Seleshie

    2014-01-01

    An error in laterality is the reporting of a finding that is present on the right side as on the left or vice versa. While different medical and surgical specialties have implemented protocols to help prevent such errors, very few studies have been published that describe these errors in radiology reports and ways to prevent them. We devised a system that allows the radiologist to view reports in a separate window, displayed in a simple font and with all terms of laterality highlighted in sep...

  7. Errors and violations

    International Nuclear Information System (INIS)

    Reason, J.

    1988-01-01

    This paper is in three parts. The first part summarizes the human failures responsible for the Chernobyl disaster and argues that, in considering the human contribution to power plant emergencies, it is necessary to distinguish between: errors and violations; and active and latent failures. The second part presents empirical evidence, drawn from driver behavior, which suggest that errors and violations have different psychological origins. The concluding part outlines a resident pathogen view of accident causation, and seeks to identify the various system pathways along which errors and violations may be propagated

  8. Error Estimation for Indoor 802.11 Location Fingerprinting

    DEFF Research Database (Denmark)

    Lemelson, Hendrik; Kjærgaard, Mikkel Baun; Hansen, Rene

    2009-01-01

    providers could adapt their delivered services based on the estimated position error to achieve a higher service quality. Finally, system operators could use the information to inspect whether a location system provides satisfactory positioning accuracy throughout the covered area. For position error...

  9. Help prevent hospital errors

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/patientinstructions/000618.htm Help prevent hospital errors To use the sharing features ... in the hospital. If You Are Having Surgery, Help Keep Yourself Safe Go to a hospital you ...

  10. Pedal Application Errors

    Science.gov (United States)

    2012-03-01

    This project examined the prevalence of pedal application errors and the driver, vehicle, roadway and/or environmental characteristics associated with pedal misapplication crashes based on a literature review, analysis of news media reports, a panel ...

  11. Rounding errors in weighing

    International Nuclear Information System (INIS)

    Jeach, J.L.

    1976-01-01

    When rounding error is large relative to weighing error, it cannot be ignored when estimating scale precision and bias from calibration data. Further, if the data grouping is coarse, rounding error is correlated with weighing error and may also have a mean quite different from zero. These facts are taken into account in a moment estimation method. A copy of the program listing for the MERDA program that provides moment estimates is available from the author. Experience suggests that if the data fall into four or more cells or groups, it is not necessary to apply the moment estimation method. Rather, the estimate given by equation (3) is valid in this instance. 5 tables

  12. Spotting software errors sooner

    International Nuclear Information System (INIS)

    Munro, D.

    1989-01-01

    Static analysis is helping to identify software errors at an earlier stage and more cheaply than conventional methods of testing. RTP Software's MALPAS system also has the ability to check that a code conforms to its original specification. (author)

  13. Errors in energy bills

    International Nuclear Information System (INIS)

    Kop, L.

    2001-01-01

    On request, the Dutch Association for Energy, Environment and Water (VEMW) checks the energy bills for her customers. It appeared that in the year 2000 many small, but also big errors were discovered in the bills of 42 businesses

  14. Medical Errors Reduction Initiative

    National Research Council Canada - National Science Library

    Mutter, Michael L

    2005-01-01

    The Valley Hospital of Ridgewood, New Jersey, is proposing to extend a limited but highly successful specimen management and medication administration medical errors reduction initiative on a hospital-wide basis...

  15. The surveillance error grid.

    Science.gov (United States)

    Klonoff, David C; Lias, Courtney; Vigersky, Robert; Clarke, William; Parkes, Joan Lee; Sacks, David B; Kirkman, M Sue; Kovatchev, Boris

    2014-07-01

    Currently used error grids for assessing clinical accuracy of blood glucose monitors are based on out-of-date medical practices. Error grids have not been widely embraced by regulatory agencies for clearance of monitors, but this type of tool could be useful for surveillance of the performance of cleared products. Diabetes Technology Society together with representatives from the Food and Drug Administration, the American Diabetes Association, the Endocrine Society, and the Association for the Advancement of Medical Instrumentation, and representatives of academia, industry, and government, have developed a new error grid, called the surveillance error grid (SEG) as a tool to assess the degree of clinical risk from inaccurate blood glucose (BG) monitors. A total of 206 diabetes clinicians were surveyed about the clinical risk of errors of measured BG levels by a monitor. The impact of such errors on 4 patient scenarios was surveyed. Each monitor/reference data pair was scored and color-coded on a graph per its average risk rating. Using modeled data representative of the accuracy of contemporary meters, the relationships between clinical risk and monitor error were calculated for the Clarke error grid (CEG), Parkes error grid (PEG), and SEG. SEG action boundaries were consistent across scenarios, regardless of whether the patient was type 1 or type 2 or using insulin or not. No significant differences were noted between responses of adult/pediatric or 4 types of clinicians. Although small specific differences in risk boundaries between US and non-US clinicians were noted, the panel felt they did not justify separate grids for these 2 types of clinicians. The data points of the SEG were classified in 15 zones according to their assigned level of risk, which allowed for comparisons with the classic CEG and PEG. Modeled glucose monitor data with realistic self-monitoring of blood glucose errors derived from meter testing experiments plotted on the SEG when compared to

  16. Design for Error Tolerance

    DEFF Research Database (Denmark)

    Rasmussen, Jens

    1983-01-01

    An important aspect of the optimal design of computer-based operator support systems is the sensitivity of such systems to operator errors. The author discusses how a system might allow for human variability with the use of reversibility and observability.......An important aspect of the optimal design of computer-based operator support systems is the sensitivity of such systems to operator errors. The author discusses how a system might allow for human variability with the use of reversibility and observability....

  17. The District Nursing Clinical Error Reduction Programme.

    Science.gov (United States)

    McGraw, Caroline; Topping, Claire

    2011-01-01

    The District Nursing Clinical Error Reduction (DANCER) Programme was initiated in NHS Islington following an increase in the number of reported medication errors. The objectives were to reduce the actual degree of harm and the potential risk of harm associated with medication errors and to maintain the existing positive reporting culture, while robustly addressing performance issues. One hundred medication errors reported in 2007/08 were analysed using a framework that specifies the factors that predispose to adverse medication events in domiciliary care. Various contributory factors were identified and interventions were subsequently developed to address poor drug calculation and medication problem-solving skills and incorrectly transcribed medication administration record charts. Follow up data were obtained at 12 months and two years. The evaluation has shown that although medication errors do still occur, the programme has resulted in a marked shift towards a reduction in the associated actual degree of harm and the potential risk of harm.

  18. Apologies and Medical Error

    Science.gov (United States)

    2008-01-01

    One way in which physicians can respond to a medical error is to apologize. Apologies—statements that acknowledge an error and its consequences, take responsibility, and communicate regret for having caused harm—can decrease blame, decrease anger, increase trust, and improve relationships. Importantly, apologies also have the potential to decrease the risk of a medical malpractice lawsuit and can help settle claims by patients. Patients indicate they want and expect explanations and apologies after medical errors and physicians indicate they want to apologize. However, in practice, physicians tend to provide minimal information to patients after medical errors and infrequently offer complete apologies. Although fears about potential litigation are the most commonly cited barrier to apologizing after medical error, the link between litigation risk and the practice of disclosure and apology is tenuous. Other barriers might include the culture of medicine and the inherent psychological difficulties in facing one’s mistakes and apologizing for them. Despite these barriers, incorporating apology into conversations between physicians and patients can address the needs of both parties and can play a role in the effective resolution of disputes related to medical error. PMID:18972177

  19. Thermodynamics of Error Correction

    Directory of Open Access Journals (Sweden)

    Pablo Sartori

    2015-12-01

    Full Text Available Information processing at the molecular scale is limited by thermal fluctuations. This can cause undesired consequences in copying information since thermal noise can lead to errors that can compromise the functionality of the copy. For example, a high error rate during DNA duplication can lead to cell death. Given the importance of accurate copying at the molecular scale, it is fundamental to understand its thermodynamic features. In this paper, we derive a universal expression for the copy error as a function of entropy production and work dissipated by the system during wrong incorporations. Its derivation is based on the second law of thermodynamics; hence, its validity is independent of the details of the molecular machinery, be it any polymerase or artificial copying device. Using this expression, we find that information can be copied in three different regimes. In two of them, work is dissipated to either increase or decrease the error. In the third regime, the protocol extracts work while correcting errors, reminiscent of a Maxwell demon. As a case study, we apply our framework to study a copy protocol assisted by kinetic proofreading, and show that it can operate in any of these three regimes. We finally show that, for any effective proofreading scheme, error reduction is limited by the chemical driving of the proofreading reaction.

  20. Uticaj mesta ugradnje inercijalnog mernog bloka i akcelerometara na grešku u određivanju pozicije aviona / Size effect of the inertial measurement unit and inside IMU accelerometers on aircraft position error

    Directory of Open Access Journals (Sweden)

    Slobodan Janićijević

    2003-03-01

    Full Text Available U ovom članku analiziran je uticaj mesta ugradnje inercijalnog mernog bloka (IMB u avionu i mesta ugradnje akcelerometara u IMB na tačnost određivanja pozicije pomoću bes-platformskog inercijalnog navigacijskog sistema (BINS. Pokazano je da se ovi uticaji ne mogu uvek zanemariti. Izračunata je ukupna greška u određivanju pozicije aviona ako se IMB ugrađuje van centra rotacije aviona, a akcelerometri van centra IMB. Predložena je optimalna orijentacija akcelerometara u IMB-u, kako bi se minimizirao uticaj ugradnje akcelerometara van centra IMB na tačnost određivanja pozicije aviona. Predložen je i način kompenzacije greške. / This paper analyzes the mounting offset size effect of the inertial measurement unit (IMU in aircraft and accelerometers mounting offset size effect in the IMU on the accuracy of strap down inertial navigation system (SDINS. It is also shown that these effects cannot be always neglected. The total size effect error for the IMU has been the computed. An accelerometers optimum orientation inside the IMU has been proposed to minimize size effects on the accuracy of navigation parameters. A manner to compensate these size effects has been proposed as well.

  1. Effects of simultaneously elevated temperature and CO2 levels on Nicotiana benthamiana and its infection by different positive-sense RNA viruses are cumulative and virus type-specific.

    Science.gov (United States)

    Del Toro, Francisco J; Rakhshandehroo, Farshad; Larruy, Beatriz; Aguilar, Emmanuel; Tenllado, Francisco; Canto, Tomás

    2017-11-01

    We have studied how simultaneously elevated temperature and CO 2 levels [climate change-related conditions (CCC) of 30°C, 970 parts-per-million (ppm) of CO 2 vs. standard conditions (SC) of 25°C, ~ 405ppm CO 2 ] affect physiochemical properties of Nicotiana benthamiana leaves, and also its infection by several positive-sense RNA viruses. In previous works we had studied effects of elevated temperature, CO 2 levels separately. Under CCC, leaves of healthy plants almost doubled their area relative to SC but contained less protein/unit-of-area, similarly to what we had found under conditions of elevated CO 2 alone. CCC also affected the sizes/numbers of different foliar cell types differently. Under CCC, infection outcomes in titers and symptoms were virus type-specific, broadly similar to those observed under elevated temperature alone. Under either condition, infections did not significantly alter the protein content of leaf discs. Therefore, effects of elevated temperature and CO 2 combined on properties of the pathosystems studied were overall cumulative. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Fiber optic distributed temperature sensing for fire source localization

    Science.gov (United States)

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Sigrist, Markus W.; Li, Jun; Dong, Fengzhong

    2017-08-01

    A method for localizing a fire source based on a distributed temperature sensor system is proposed. Two sections of optical fibers were placed orthogonally to each other as the sensing elements. A tray of alcohol was lit to act as a fire outbreak in a cabinet with an uneven ceiling to simulate a real scene of fire. Experiments were carried out to demonstrate the feasibility of the method. Rather large fluctuations and systematic errors with respect to predicting the exact room coordinates of the fire source caused by the uneven ceiling were observed. Two mathematical methods (smoothing recorded temperature curves and finding temperature peak positions) to improve the prediction accuracy are presented, and the experimental results indicate that the fluctuation ranges and systematic errors are significantly reduced. The proposed scheme is simple and appears reliable enough to locate a fire source in large spaces.

  3. Accounting for optical errors in microtensiometry.

    Science.gov (United States)

    Hinton, Zachary R; Alvarez, Nicolas J

    2018-09-15

    and increases experiential accuracy. In a broad sense, this work outlines the importance of optical errors in all DSA techniques. More specifically, these results have important implications for all microscale and microfluidic measurements of interface curvature. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Analytical sensitivity analysis of geometric errors in a three axis machine tool

    International Nuclear Information System (INIS)

    Park, Sung Ryung; Yang, Seung Han

    2012-01-01

    In this paper, an analytical method is used to perform a sensitivity analysis of geometric errors in a three axis machine tool. First, an error synthesis model is constructed for evaluating the position volumetric error due to the geometric errors, and then an output variable is defined, such as the magnitude of the position volumetric error. Next, the global sensitivity analysis is executed using an analytical method. Finally, the sensitivity indices are calculated using the quantitative values of the geometric errors

  5. Learning from Errors

    Directory of Open Access Journals (Sweden)

    MA. Lendita Kryeziu

    2015-06-01

    Full Text Available “Errare humanum est”, a well known and widespread Latin proverb which states that: to err is human, and that people make mistakes all the time. However, what counts is that people must learn from mistakes. On these grounds Steve Jobs stated: “Sometimes when you innovate, you make mistakes. It is best to admit them quickly, and get on with improving your other innovations.” Similarly, in learning new language, learners make mistakes, thus it is important to accept them, learn from them, discover the reason why they make them, improve and move on. The significance of studying errors is described by Corder as: “There have always been two justifications proposed for the study of learners' errors: the pedagogical justification, namely that a good understanding of the nature of error is necessary before a systematic means of eradicating them could be found, and the theoretical justification, which claims that a study of learners' errors is part of the systematic study of the learners' language which is itself necessary to an understanding of the process of second language acquisition” (Corder, 1982; 1. Thus the importance and the aim of this paper is analyzing errors in the process of second language acquisition and the way we teachers can benefit from mistakes to help students improve themselves while giving the proper feedback.

  6. Compact disk error measurements

    Science.gov (United States)

    Howe, D.; Harriman, K.; Tehranchi, B.

    1993-01-01

    The objectives of this project are as follows: provide hardware and software that will perform simple, real-time, high resolution (single-byte) measurement of the error burst and good data gap statistics seen by a photoCD player read channel when recorded CD write-once discs of variable quality (i.e., condition) are being read; extend the above system to enable measurement of the hard decision (i.e., 1-bit error flags) and soft decision (i.e., 2-bit error flags) decoding information that is produced/used by the Cross Interleaved - Reed - Solomon - Code (CIRC) block decoder employed in the photoCD player read channel; construct a model that uses data obtained via the systems described above to produce meaningful estimates of output error rates (due to both uncorrected ECC words and misdecoded ECC words) when a CD disc having specific (measured) error statistics is read (completion date to be determined); and check the hypothesis that current adaptive CIRC block decoders are optimized for pressed (DAD/ROM) CD discs. If warranted, do a conceptual design of an adaptive CIRC decoder that is optimized for write-once CD discs.

  7. Pervasive sensing

    Science.gov (United States)

    Nagel, David J.

    2000-11-01

    The coordinated exploitation of modern communication, micro- sensor and computer technologies makes it possible to give global reach to our senses. Web-cameras for vision, web- microphones for hearing and web-'noses' for smelling, plus the abilities to sense many factors we cannot ordinarily perceive, are either available or will be soon. Applications include (1) determination of weather and environmental conditions on dense grids or over large areas, (2) monitoring of energy usage in buildings, (3) sensing the condition of hardware in electrical power distribution and information systems, (4) improving process control and other manufacturing, (5) development of intelligent terrestrial, marine, aeronautical and space transportation systems, (6) managing the continuum of routine security monitoring, diverse crises and military actions, and (7) medicine, notably the monitoring of the physiology and living conditions of individuals. Some of the emerging capabilities, such as the ability to measure remotely the conditions inside of people in real time, raise interesting social concerns centered on privacy issues. Methods for sensor data fusion and designs for human-computer interfaces are both crucial for the full realization of the potential of pervasive sensing. Computer-generated virtual reality, augmented with real-time sensor data, should be an effective means for presenting information from distributed sensors.

  8. Errors in Neonatology

    Directory of Open Access Journals (Sweden)

    Antonio Boldrini

    2013-06-01

    Full Text Available Introduction: Danger and errors are inherent in human activities. In medical practice errors can lean to adverse events for patients. Mass media echo the whole scenario. Methods: We reviewed recent published papers in PubMed database to focus on the evidence and management of errors in medical practice in general and in Neonatology in particular. We compared the results of the literature with our specific experience in Nina Simulation Centre (Pisa, Italy. Results: In Neonatology the main error domains are: medication and total parenteral nutrition, resuscitation and respiratory care, invasive procedures, nosocomial infections, patient identification, diagnostics. Risk factors include patients’ size, prematurity, vulnerability and underlying disease conditions but also multidisciplinary teams, working conditions providing fatigue, a large variety of treatment and investigative modalities needed. Discussion and Conclusions: In our opinion, it is hardly possible to change the human beings but it is likely possible to change the conditions under they work. Voluntary errors report systems can help in preventing adverse events. Education and re-training by means of simulation can be an effective strategy too. In Pisa (Italy Nina (ceNtro di FormazIone e SimulazioNe NeonAtale is a simulation center that offers the possibility of a continuous retraining for technical and non-technical skills to optimize neonatological care strategies. Furthermore, we have been working on a novel skill trainer for mechanical ventilation (MEchatronic REspiratory System SImulator for Neonatal Applications, MERESSINA. Finally, in our opinion national health policy indirectly influences risk for errors. Proceedings of the 9th International Workshop on Neonatology · Cagliari (Italy · October 23rd-26th, 2013 · Learned lessons, changing practice and cutting-edge research

  9. LIBERTARISMO & ERROR CATEGORIAL

    Directory of Open Access Journals (Sweden)

    Carlos G. Patarroyo G.

    2009-01-01

    Full Text Available En este artículo se ofrece una defensa del libertarismo frente a dos acusaciones según las cuales éste comete un error categorial. Para ello, se utiliza la filosofía de Gilbert Ryle como herramienta para explicar las razones que fundamentan estas acusaciones y para mostrar por qué, pese a que ciertas versiones del libertarismo que acuden a la causalidad de agentes o al dualismo cartesiano cometen estos errores, un libertarismo que busque en el indeterminismo fisicalista la base de la posibilidad de la libertad humana no necesariamente puede ser acusado de incurrir en ellos.

  10. Libertarismo & Error Categorial

    OpenAIRE

    PATARROYO G, CARLOS G

    2009-01-01

    En este artículo se ofrece una defensa del libertarismo frente a dos acusaciones según las cuales éste comete un error categorial. Para ello, se utiliza la filosofía de Gilbert Ryle como herramienta para explicar las razones que fundamentan estas acusaciones y para mostrar por qué, pese a que ciertas versiones del libertarismo que acuden a la causalidad de agentes o al dualismo cartesiano cometen estos errores, un libertarismo que busque en el indeterminismo fisicalista la base de la posibili...

  11. Error Free Software

    Science.gov (United States)

    1985-01-01

    A mathematical theory for development of "higher order" software to catch computer mistakes resulted from a Johnson Space Center contract for Apollo spacecraft navigation. Two women who were involved in the project formed Higher Order Software, Inc. to develop and market the system of error analysis and correction. They designed software which is logically error-free, which, in one instance, was found to increase productivity by 600%. USE.IT defines its objectives using AXES -- a user can write in English and the system converts to computer languages. It is employed by several large corporations.

  12. Error framing effects on performance: cognitive, motivational, and affective pathways.

    Science.gov (United States)

    Steele-Johnson, Debra; Kalinoski, Zachary T

    2014-01-01

    Our purpose was to examine whether positive error framing, that is, making errors salient and cuing individuals to see errors as useful, can benefit learning when task exploration is constrained. Recent research has demonstrated the benefits of a newer approach to training, that is, error management training, that includes the opportunity to actively explore the task and framing errors as beneficial to learning complex tasks (Keith & Frese, 2008). Other research has highlighted the important role of errors in on-the-job learning in complex domains (Hutchins, 1995). Participants (N = 168) from a large undergraduate university performed a class scheduling task. Results provided support for a hypothesized path model in which error framing influenced cognitive, motivational, and affective factors which in turn differentially affected performance quantity and quality. Within this model, error framing had significant direct effects on metacognition and self-efficacy. Our results suggest that positive error framing can have beneficial effects even when tasks cannot be structured to support extensive exploration. Whereas future research can expand our understanding of error framing effects on outcomes, results from the current study suggest that positive error framing can facilitate learning from errors in real-time performance of tasks.

  13. Analyzing temozolomide medication errors: potentially fatal.

    Science.gov (United States)

    Letarte, Nathalie; Gabay, Michael P; Bressler, Linda R; Long, Katie E; Stachnik, Joan M; Villano, J Lee

    2014-10-01

    The EORTC-NCIC regimen for glioblastoma requires different dosing of temozolomide (TMZ) during radiation and maintenance therapy. This complexity is exacerbated by the availability of multiple TMZ capsule strengths. TMZ is an alkylating agent and the major toxicity of this class is dose-related myelosuppression. Inadvertent overdose can be fatal. The websites of the Institute for Safe Medication Practices (ISMP), and the Food and Drug Administration (FDA) MedWatch database were reviewed. We searched the MedWatch database for adverse events associated with TMZ and obtained all reports including hematologic toxicity submitted from 1st November 1997 to 30th May 2012. The ISMP describes errors with TMZ resulting from the positioning of information on the label of the commercial product. The strength and quantity of capsules on the label were in close proximity to each other, and this has been changed by the manufacturer. MedWatch identified 45 medication errors. Patient errors were the most common, accounting for 21 or 47% of errors, followed by dispensing errors, which accounted for 13 or 29%. Seven reports or 16% were errors in the prescribing of TMZ. Reported outcomes ranged from reversible hematological adverse events (13%), to hospitalization for other adverse events (13%) or death (18%). Four error reports lacked detail and could not be categorized. Although the FDA issued a warning in 2003 regarding fatal medication errors and the product label warns of overdosing, errors in TMZ dosing occur for various reasons and involve both healthcare professionals and patients. Overdosing errors can be fatal.

  14. Error Correcting Codes

    Indian Academy of Sciences (India)

    Science and Automation at ... the Reed-Solomon code contained 223 bytes of data, (a byte ... then you have a data storage system with error correction, that ..... practical codes, storing such a table is infeasible, as it is generally too large.

  15. Error Correcting Codes

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 2; Issue 3. Error Correcting Codes - Reed Solomon Codes. Priti Shankar. Series Article Volume 2 Issue 3 March ... Author Affiliations. Priti Shankar1. Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560 012, India ...

  16. Challenge and Error: Critical Events and Attention-Related Errors

    Science.gov (United States)

    Cheyne, James Allan; Carriere, Jonathan S. A.; Solman, Grayden J. F.; Smilek, Daniel

    2011-01-01

    Attention lapses resulting from reactivity to task challenges and their consequences constitute a pervasive factor affecting everyday performance errors and accidents. A bidirectional model of attention lapses (error [image omitted] attention-lapse: Cheyne, Solman, Carriere, & Smilek, 2009) argues that errors beget errors by generating attention…

  17. Team errors: definition and taxonomy

    International Nuclear Information System (INIS)

    Sasou, Kunihide; Reason, James

    1999-01-01

    In error analysis or error management, the focus is usually upon individuals who have made errors. In large complex systems, however, most people work in teams or groups. Considering this working environment, insufficient emphasis has been given to 'team errors'. This paper discusses the definition of team errors and its taxonomy. These notions are also applied to events that have occurred in the nuclear power industry, aviation industry and shipping industry. The paper also discusses the relations between team errors and Performance Shaping Factors (PSFs). As a result, the proposed definition and taxonomy are found to be useful in categorizing team errors. The analysis also reveals that deficiencies in communication, resource/task management, excessive authority gradient, excessive professional courtesy will cause team errors. Handling human errors as team errors provides an opportunity to reduce human errors

  18. Advanced sensing techniques for cognitive radio

    CERN Document Server

    Zhao, Guodong; Li, Shaoqian

    2017-01-01

    This SpringerBrief investigates advanced sensing techniques to detect and estimate the primary receiver for cognitive radio systems. Along with a comprehensive overview of existing spectrum sensing techniques, this brief focuses on the design of new signal processing techniques, including the region-based sensing, jamming-based probing, and relay-based probing. The proposed sensing techniques aim to detect the nearby primary receiver and estimate the cross-channel gain between the cognitive transmitter and primary receiver. The performance of the proposed algorithms is evaluated by simulations in terms of several performance parameters, including detection probability, interference probability, and estimation error. The results show that the proposed sensing techniques can effectively sense the primary receiver and improve the cognitive transmission throughput. Researchers and postgraduate students in electrical engineering will find this an exceptional resource.

  19. Open quantum systems and error correction

    Science.gov (United States)

    Shabani Barzegar, Alireza

    Quantum effects can be harnessed to manipulate information in a desired way. Quantum systems which are designed for this purpose are suffering from harming interaction with their surrounding environment or inaccuracy in control forces. Engineering different methods to combat errors in quantum devices are highly demanding. In this thesis, I focus on realistic formulations of quantum error correction methods. A realistic formulation is the one that incorporates experimental challenges. This thesis is presented in two sections of open quantum system and quantum error correction. Chapters 2 and 3 cover the material on open quantum system theory. It is essential to first study a noise process then to contemplate methods to cancel its effect. In the second chapter, I present the non-completely positive formulation of quantum maps. Most of these results are published in [Shabani and Lidar, 2009b,a], except a subsection on geometric characterization of positivity domain of a quantum map. The real-time formulation of the dynamics is the topic of the third chapter. After introducing the concept of Markovian regime, A new post-Markovian quantum master equation is derived, published in [Shabani and Lidar, 2005a]. The section of quantum error correction is presented in three chapters of 4, 5, 6 and 7. In chapter 4, we introduce a generalized theory of decoherence-free subspaces and subsystems (DFSs), which do not require accurate initialization (published in [Shabani and Lidar, 2005b]). In Chapter 5, we present a semidefinite program optimization approach to quantum error correction that yields codes and recovery procedures that are robust against significant variations in the noise channel. Our approach allows us to optimize the encoding, recovery, or both, and is amenable to approximations that significantly improve computational cost while retaining fidelity (see [Kosut et al., 2008] for a published version). Chapter 6 is devoted to a theory of quantum error correction (QEC

  20. Conversational sensing

    Science.gov (United States)

    Preece, Alun; Gwilliams, Chris; Parizas, Christos; Pizzocaro, Diego; Bakdash, Jonathan Z.; Braines, Dave

    2014-05-01

    Recent developments in sensing technologies, mobile devices and context-aware user interfaces have made it pos- sible to represent information fusion and situational awareness for Intelligence, Surveillance and Reconnaissance (ISR) activities as a conversational process among actors at or near the tactical edges of a network. Motivated by use cases in the domain of Company Intelligence Support Team (CoIST) tasks, this paper presents an approach to information collection, fusion and sense-making based on the use of natural language (NL) and controlled nat- ural language (CNL) to support richer forms of human-machine interaction. The approach uses a conversational protocol to facilitate a ow of collaborative messages from NL to CNL and back again in support of interactions such as: turning eyewitness reports from human observers into actionable information (from both soldier and civilian sources); fusing information from humans and physical sensors (with associated quality metadata); and assisting human analysts to make the best use of available sensing assets in an area of interest (governed by man- agement and security policies). CNL is used as a common formal knowledge representation for both machine and human agents to support reasoning, semantic information fusion and generation of rationale for inferences, in ways that remain transparent to human users. Examples are provided of various alternative styles for user feedback, including NL, CNL and graphical feedback. A pilot experiment with human subjects shows that a prototype conversational agent is able to gather usable CNL information from untrained human subjects.

  1. Systematic sampling with errors in sample locations

    DEFF Research Database (Denmark)

    Ziegel, Johanna; Baddeley, Adrian; Dorph-Petersen, Karl-Anton

    2010-01-01

    analysis using point process methods. We then analyze three different models for the error process, calculate exact expressions for the variances, and derive asymptotic variances. Errors in the placement of sample points can lead to substantial inflation of the variance, dampening of zitterbewegung......Systematic sampling of points in continuous space is widely used in microscopy and spatial surveys. Classical theory provides asymptotic expressions for the variance of estimators based on systematic sampling as the grid spacing decreases. However, the classical theory assumes that the sample grid...... is exactly periodic; real physical sampling procedures may introduce errors in the placement of the sample points. This paper studies the effect of errors in sample positioning on the variance of estimators in the case of one-dimensional systematic sampling. First we sketch a general approach to variance...

  2. Remote RemoteRemoteRemote sensing potential for sensing ...

    African Journals Online (AJOL)

    Remote RemoteRemoteRemote sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing potential for sensing p. A Ngie, F Ahmed, K Abutaleb ...

  3. Analysis of Errors in a Special Perturbations Satellite Orbit Propagator

    Energy Technology Data Exchange (ETDEWEB)

    Beckerman, M.; Jones, J.P.

    1999-02-01

    We performed an analysis of error densities for the Special Perturbations orbit propagator using data for 29 satellites in orbits of interest to Space Shuttle and International Space Station collision avoidance. We find that the along-track errors predominate. These errors increase monotonically over each 36-hour prediction interval. The predicted positions in the along-track direction progressively either leap ahead of or lag behind the actual positions. Unlike the along-track errors the radial and cross-track errors oscillate about their nearly zero mean values. As the number of observations per fit interval decline the along-track prediction errors, and amplitudes of the radial and cross-track errors, increase.

  4. Imagery of Errors in Typing

    Science.gov (United States)

    Rieger, Martina; Martinez, Fanny; Wenke, Dorit

    2011-01-01

    Using a typing task we investigated whether insufficient imagination of errors and error corrections is related to duration differences between execution and imagination. In Experiment 1 spontaneous error imagination was investigated, whereas in Experiment 2 participants were specifically instructed to imagine errors. Further, in Experiment 2 we…

  5. Correction of refractive errors

    Directory of Open Access Journals (Sweden)

    Vladimir Pfeifer

    2005-10-01

    Full Text Available Background: Spectacles and contact lenses are the most frequently used, the safest and the cheapest way to correct refractive errors. The development of keratorefractive surgery has brought new opportunities for correction of refractive errors in patients who have the need to be less dependent of spectacles or contact lenses. Until recently, RK was the most commonly performed refractive procedure for nearsighted patients.Conclusions: The introduction of excimer laser in refractive surgery has given the new opportunities of remodelling the cornea. The laser energy can be delivered on the stromal surface like in PRK or deeper on the corneal stroma by means of lamellar surgery. In LASIK flap is created with microkeratome in LASEK with ethanol and in epi-LASIK the ultra thin flap is created mechanically.

  6. Error-Free Software

    Science.gov (United States)

    1989-01-01

    001 is an integrated tool suited for automatically developing ultra reliable models, simulations and software systems. Developed and marketed by Hamilton Technologies, Inc. (HTI), it has been applied in engineering, manufacturing, banking and software tools development. The software provides the ability to simplify the complex. A system developed with 001 can be a prototype or fully developed with production quality code. It is free of interface errors, consistent, logically complete and has no data or control flow errors. Systems can be designed, developed and maintained with maximum productivity. Margaret Hamilton, President of Hamilton Technologies, also directed the research and development of USE.IT, an earlier product which was the first computer aided software engineering product in the industry to concentrate on automatically supporting the development of an ultrareliable system throughout its life cycle. Both products originated in NASA technology developed under a Johnson Space Center contract.

  7. Minimum Tracking Error Volatility

    OpenAIRE

    Luca RICCETTI

    2010-01-01

    Investors assign part of their funds to asset managers that are given the task of beating a benchmark. The risk management department usually imposes a maximum value of the tracking error volatility (TEV) in order to keep the risk of the portfolio near to that of the selected benchmark. However, risk management does not establish a rule on TEV which enables us to understand whether the asset manager is really active or not and, in practice, asset managers sometimes follow passively the corres...

  8. Error-correction coding

    Science.gov (United States)

    Hinds, Erold W. (Principal Investigator)

    1996-01-01

    This report describes the progress made towards the completion of a specific task on error-correcting coding. The proposed research consisted of investigating the use of modulation block codes as the inner code of a concatenated coding system in order to improve the overall space link communications performance. The study proposed to identify and analyze candidate codes that will complement the performance of the overall coding system which uses the interleaved RS (255,223) code as the outer code.

  9. Satellite Photometric Error Determination

    Science.gov (United States)

    2015-10-18

    Satellite Photometric Error Determination Tamara E. Payne, Philip J. Castro, Stephen A. Gregory Applied Optimization 714 East Monument Ave, Suite...advocate the adoption of new techniques based on in-frame photometric calibrations enabled by newly available all-sky star catalogs that contain highly...filter systems will likely be supplanted by the Sloan based filter systems. The Johnson photometric system is a set of filters in the optical

  10. Dose error analysis for a scanned proton beam delivery system

    International Nuclear Information System (INIS)

    Coutrakon, G; Wang, N; Miller, D W; Yang, Y

    2010-01-01

    All particle beam scanning systems are subject to dose delivery errors due to errors in position, energy and intensity of the delivered beam. In addition, finite scan speeds, beam spill non-uniformities, and delays in detector, detector electronics and magnet responses will all contribute errors in delivery. In this paper, we present dose errors for an 8 x 10 x 8 cm 3 target of uniform water equivalent density with 8 cm spread out Bragg peak and a prescribed dose of 2 Gy. Lower doses are also analyzed and presented later in the paper. Beam energy errors and errors due to limitations of scanning system hardware have been included in the analysis. By using Gaussian shaped pencil beams derived from measurements in the research room of the James M Slater Proton Treatment and Research Center at Loma Linda, CA and executing treatment simulations multiple times, statistical dose errors have been calculated in each 2.5 mm cubic voxel in the target. These errors were calculated by delivering multiple treatments to the same volume and calculating the rms variation in delivered dose at each voxel in the target. The variations in dose were the result of random beam delivery errors such as proton energy, spot position and intensity fluctuations. The results show that with reasonable assumptions of random beam delivery errors, the spot scanning technique yielded an rms dose error in each voxel less than 2% or 3% of the 2 Gy prescribed dose. These calculated errors are within acceptable clinical limits for radiation therapy.

  11. Video Error Correction Using Steganography

    Science.gov (United States)

    Robie, David L.; Mersereau, Russell M.

    2002-12-01

    The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.

  12. Video Error Correction Using Steganography

    Directory of Open Access Journals (Sweden)

    Robie David L

    2002-01-01

    Full Text Available The transmission of any data is always subject to corruption due to errors, but video transmission, because of its real time nature must deal with these errors without retransmission of the corrupted data. The error can be handled using forward error correction in the encoder or error concealment techniques in the decoder. This MPEG-2 compliant codec uses data hiding to transmit error correction information and several error concealment techniques in the decoder. The decoder resynchronizes more quickly with fewer errors than traditional resynchronization techniques. It also allows for perfect recovery of differentially encoded DCT-DC components and motion vectors. This provides for a much higher quality picture in an error-prone environment while creating an almost imperceptible degradation of the picture in an error-free environment.

  13. Effects of variable transformations on errors in FORM results

    International Nuclear Information System (INIS)

    Qin Quan; Lin Daojin; Mei Gang; Chen Hao

    2006-01-01

    On the basis of studies on second partial derivatives of the variable transformation functions for nine different non-normal variables the paper comprehensively discusses the effects of the transformation on FORM results and shows that senses and values of the errors in FORM results depend on distributions of the basic variables, whether resistances or actions basic variables represent, and the design point locations in the standard normal space. The transformations of the exponential or Gamma resistance variables can generate +24% errors in the FORM failure probability, and the transformation of Frechet action variables could generate -31% errors

  14. Entanglement renormalization, quantum error correction, and bulk causality

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Isaac H. [IBM T.J. Watson Research Center,1101 Kitchawan Rd., Yorktown Heights, NY (United States); Kastoryano, Michael J. [NBIA, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen (Denmark)

    2017-04-07

    Entanglement renormalization can be viewed as an encoding circuit for a family of approximate quantum error correcting codes. The logical information becomes progressively more well-protected against erasure errors at larger length scales. In particular, an approximate variant of holographic quantum error correcting code emerges at low energy for critical systems. This implies that two operators that are largely separated in scales behave as if they are spatially separated operators, in the sense that they obey a Lieb-Robinson type locality bound under a time evolution generated by a local Hamiltonian.

  15. Quorum Sensing of Periodontal Pathogens

    Directory of Open Access Journals (Sweden)

    Darije Plančak

    2015-01-01

    Full Text Available The term ‘quorum sensing’ describes intercellular bacterial communication which regulates bacterial gene expression according to population cell density. Bacteria produce and secrete small molecules, named autoinducers, into the intercellular space. The concentration of these molecules increases as a function of population cell density. Once the concentration of the stimulatory threshold is reached, alteration in gene expression occurs. Gram-positive and Gram-negative bacteria possess different types of quorum sensing systems. Canonical LuxI/R-type/acyl homoserine lactone mediated quorum sensing system is the best studied quorum sensing circuit and is described in Gram-negative bacteria which employ it for inter-species communication mostly. Grampositive bacteria possess a peptide-mediated quorum sensing system. Bacteria can communicate within their own species (intra-species but also between species (inter-species, for which they employ an autoinducer-2 quorum sensing system which is called the universal language of the bacteria. Periodontal pathogenic bacteria possess AI-2 quorum sensing systems. It is known that they use it for regulation of biofilm formation, iron uptake, stress response and virulence factor expression. A better understanding of bacterial communication mechanisms will allow the targeting of quorum sensing with quorum sensing inhibitors to prevent and control disease.

  16. Tactile Sensor Array with Fiber Bragg Gratings in Quasi-Distributed Sensing

    Directory of Open Access Journals (Sweden)

    Marcelo A. Pedroso

    2018-01-01

    Full Text Available This work describes the development of a quasi-distributed real-time tactile sensing system with a reduced number of fiber Bragg grating-based sensors and reports its use with a reconstruction method based on differential evolution. The sensing system is comprised of six fiber Bragg gratings encapsulated in silicone elastomer to form a tactile sensor array with total dimensions of 60 × 80 mm, divided into eight sensing cells with dimensions of 20 × 30 mm. Forces applied at the central position of the sensor array resulted in linear response curves for the gratings, highlighting their coupled responses and allowing the application of compressive sensing. The reduced number of sensors regarding the number of sensing cells results in an undetermined inverse problem, solved with a compressive sensing algorithm with the aid of differential evolution method. The system is capable of identifying and quantifying up to four different loads at four different cells with relative errors lower than 10.5% and signal-to-noise ratio better than 12 dB.

  17. Sporadic error probability due to alpha particles in dynamic memories of various technologies

    International Nuclear Information System (INIS)

    Edwards, D.G.

    1980-01-01

    The sensitivity of MOS memory components to errors induced by alpha particles is expected to increase with integration level. The soft error rate of a 65-kbit VMOS memory has been compared experimentally with that of three field-proven 16-kbit designs. The technological and design advantages of the VMOS RAM ensure an error rate which is lower than those of the 16-kbit memories. Calculation of the error probability for the 65-kbit RAM and comparison with the measurements show that for large duty cycles single particle hits lead to sensing errors and for small duty cycles cell errors caused by multiple hits predominate. (Auth.)

  18. Error-related brain activity and error awareness in an error classification paradigm.

    Science.gov (United States)

    Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E

    2016-10-01

    Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. multiangulation position estimation performance analysis using

    African Journals Online (AJOL)

    HOD

    multiangulation PE error is 50% lower than that of the directional rotating antenna system. Furthermore, the ... system is an example of a wireless positioning system that has ..... Table 2: PE error for some selection source locations. No. Range ...

  20. Measuring worst-case errors in a robot workcell

    International Nuclear Information System (INIS)

    Simon, R.W.; Brost, R.C.; Kholwadwala, D.K.

    1997-10-01

    Errors in model parameters, sensing, and control are inevitably present in real robot systems. These errors must be considered in order to automatically plan robust solutions to many manipulation tasks. Lozano-Perez, Mason, and Taylor proposed a formal method for synthesizing robust actions in the presence of uncertainty; this method has been extended by several subsequent researchers. All of these results presume the existence of worst-case error bounds that describe the maximum possible deviation between the robot's model of the world and reality. This paper examines the problem of measuring these error bounds for a real robot workcell. These measurements are difficult, because of the desire to completely contain all possible deviations while avoiding bounds that are overly conservative. The authors present a detailed description of a series of experiments that characterize and quantify the possible errors in visual sensing and motion control for a robot workcell equipped with standard industrial robot hardware. In addition to providing a means for measuring these specific errors, these experiments shed light on the general problem of measuring worst-case errors

  1. Ambiguity resolution for satellite Doppler positioning systems

    Science.gov (United States)

    Argentiero, P.; Marini, J.

    1979-01-01

    The implementation of satellite-based Doppler positioning systems frequently requires the recovery of transmitter position from a single pass of Doppler data. The least-squares approach to the problem yields conjugate solutions on either side of the satellite subtrack. It is important to develop a procedure for choosing the proper solution which is correct in a high percentage of cases. A test for ambiguity resolution which is the most powerful in the sense that it maximizes the probability of a correct decision is derived. When systematic error sources are properly included in the least-squares reduction process to yield an optimal solution the test reduces to choosing the solution which provides the smaller valuation of the least-squares loss function. When systematic error sources are ignored in the least-squares reduction, the most powerful test is a quadratic form comparison with the weighting matrix of the quadratic form obtained by computing the pseudoinverse of a reduced-rank square matrix. A formula for computing the power of the most powerful test is provided. Numerical examples are included in which the power of the test is computed for situations that are relevant to the design of a satellite-aided search and rescue system.

  2. Heat conduction errors and time lag in cryogenic thermometer installations

    Science.gov (United States)

    Warshawsky, I.

    1973-01-01

    Installation practices are recommended that will increase rate of heat exchange between the thermometric sensing element and the cryogenic fluid and that will reduce the rate of undesired heat transfer to higher-temperature objects. Formulas and numerical data are given that help to estimate the magnitude of heat-conduction errors and of time lag in response.

  3. Forecast errors in IEA-countries' energy consumption

    DEFF Research Database (Denmark)

    Linderoth, Hans

    2002-01-01

    Every year Policy of IEA Countries includes a forecast of the energy consumption in the member countries. Forecasts concerning the years 1985,1990 and 1995 can now be compared to actual values. The second oil crisis resulted in big positive forecast errors. The oil price drop in 1986 did not have...... the small value is often the sum of large positive and negative errors. Almost no significant correlation is found between forecast errors in the 3 years. Correspondingly, no significant correlation coefficient is found between forecasts errors in the 3 main energy sectors. Therefore, a relatively small...

  4. Diagnostic errors in pediatric radiology

    International Nuclear Information System (INIS)

    Taylor, George A.; Voss, Stephan D.; Melvin, Patrice R.; Graham, Dionne A.

    2011-01-01

    Little information is known about the frequency, types and causes of diagnostic errors in imaging children. Our goals were to describe the patterns and potential etiologies of diagnostic error in our subspecialty. We reviewed 265 cases with clinically significant diagnostic errors identified during a 10-year period. Errors were defined as a diagnosis that was delayed, wrong or missed; they were classified as perceptual, cognitive, system-related or unavoidable; and they were evaluated by imaging modality and level of training of the physician involved. We identified 484 specific errors in the 265 cases reviewed (mean:1.8 errors/case). Most discrepancies involved staff (45.5%). Two hundred fifty-eight individual cognitive errors were identified in 151 cases (mean = 1.7 errors/case). Of these, 83 cases (55%) had additional perceptual or system-related errors. One hundred sixty-five perceptual errors were identified in 165 cases. Of these, 68 cases (41%) also had cognitive or system-related errors. Fifty-four system-related errors were identified in 46 cases (mean = 1.2 errors/case) of which all were multi-factorial. Seven cases were unavoidable. Our study defines a taxonomy of diagnostic errors in a large academic pediatric radiology practice and suggests that most are multi-factorial in etiology. Further study is needed to define effective strategies for improvement. (orig.)

  5. Self-calibrating solar position sensor

    Science.gov (United States)

    Maxey, Lonnie Curt

    2018-01-30

    A sun positioning sensor and method of accurately tracking the sun are disclosed. The sensor includes a position sensing diode and a disk having a body defining an aperture for accepting solar light. An extension tube having a body that defines a duct spaces the position sensing diode from the disk such that the solar light enters the aperture in the disk, travels through the duct in the extension tube and strikes the position sensing diode. The extension tube has a known length that is fixed. Voltage signals indicative of the location and intensity of the sun are generated by the position sensing diode. If it is determined that the intensity values are unreliable, then historical position values are used from a table. If the intensity values are deemed reliable, then actual position values are used from the position sensing diode.

  6. Minimum Error Entropy Classification

    CERN Document Server

    Marques de Sá, Joaquim P; Santos, Jorge M F; Alexandre, Luís A

    2013-01-01

    This book explains the minimum error entropy (MEE) concept applied to data classification machines. Theoretical results on the inner workings of the MEE concept, in its application to solving a variety of classification problems, are presented in the wider realm of risk functionals. Researchers and practitioners also find in the book a detailed presentation of practical data classifiers using MEE. These include multi‐layer perceptrons, recurrent neural networks, complexvalued neural networks, modular neural networks, and decision trees. A clustering algorithm using a MEE‐like concept is also presented. Examples, tests, evaluation experiments and comparison with similar machines using classic approaches, complement the descriptions.

  7. Maintenance strategies to reduce downtime due to machine positional errors

    OpenAIRE

    Shagluf, Abubaker; Longstaff, A.P.; Fletcher, S.

    2014-01-01

    Proceedings of Maintenance Performance Measurement and Management (MPMM) Conference 2014 Manufacturing strives to reduce waste and increase Overall Equipment Effectiveness (OEE). When managing machine tool maintenance a manufacturer must apply an appropriate decision technique in order to reveal hidden costs associated with production losses, reduce equipment downtime competentely and similiarly identify the machines performance. Total productive maintenance (TPM) is a maintenance progr...

  8. Errors and mistakes in breast ultrasound diagnostics

    Directory of Open Access Journals (Sweden)

    Wiesław Jakubowski

    2012-09-01

    Full Text Available Sonomammography is often the first additional examination performed in the diagnostics of breast diseases. The development of ultrasound imaging techniques, particularly the introduction of high frequency transducers, matrix transducers, harmonic imaging and finally, elastography, influenced the improvement of breast disease diagnostics. Neverthe‑ less, as in each imaging method, there are errors and mistakes resulting from the techni‑ cal limitations of the method, breast anatomy (fibrous remodeling, insufficient sensitivity and, in particular, specificity. Errors in breast ultrasound diagnostics can be divided into impossible to be avoided and potentially possible to be reduced. In this article the most frequently made errors in ultrasound have been presented, including the ones caused by the presence of artifacts resulting from volumetric averaging in the near and far field, artifacts in cysts or in dilated lactiferous ducts (reverberations, comet tail artifacts, lateral beam artifacts, improper setting of general enhancement or time gain curve or range. Errors dependent on the examiner, resulting in the wrong BIRADS‑usg classification, are divided into negative and positive errors. The sources of these errors have been listed. The methods of minimization of the number of errors made have been discussed, includ‑ ing the ones related to the appropriate examination technique, taking into account data from case history and the use of the greatest possible number of additional options such as: harmonic imaging, color and power Doppler and elastography. In the article examples of errors resulting from the technical conditions of the method have been presented, and those dependent on the examiner which are related to the great diversity and variation of ultrasound images of pathological breast lesions.

  9. Standard Errors for Matrix Correlations.

    Science.gov (United States)

    Ogasawara, Haruhiko

    1999-01-01

    Derives the asymptotic standard errors and intercorrelations for several matrix correlations assuming multivariate normality for manifest variables and derives the asymptotic standard errors of the matrix correlations for two factor-loading matrices. (SLD)

  10. Entropy Error Model of Planar Geometry Features in GIS

    Institute of Scientific and Technical Information of China (English)

    LI Dajun; GUAN Yunlan; GONG Jianya; DU Daosheng

    2003-01-01

    Positional error of line segments is usually described by using "g-band", however, its band width is in relation to the confidence level choice. In fact, given different confidence levels, a series of concentric bands can be obtained. To overcome the effect of confidence level on the error indicator, by introducing the union entropy theory, we propose an entropy error ellipse index of point, then extend it to line segment and polygon,and establish an entropy error band of line segment and an entropy error donut of polygon. The research shows that the entropy error index can be determined uniquely and is not influenced by confidence level, and that they are suitable for positional uncertainty of planar geometry features.

  11. Error forecasting schemes of error correction at receiver

    International Nuclear Information System (INIS)

    Bhunia, C.T.

    2007-08-01

    To combat error in computer communication networks, ARQ (Automatic Repeat Request) techniques are used. Recently Chakraborty has proposed a simple technique called the packet combining scheme in which error is corrected at the receiver from the erroneous copies. Packet Combining (PC) scheme fails: (i) when bit error locations in erroneous copies are the same and (ii) when multiple bit errors occur. Both these have been addressed recently by two schemes known as Packet Reversed Packet Combining (PRPC) Scheme, and Modified Packet Combining (MPC) Scheme respectively. In the letter, two error forecasting correction schemes are reported, which in combination with PRPC offer higher throughput. (author)

  12. Evaluating a medical error taxonomy.

    OpenAIRE

    Brixey, Juliana; Johnson, Todd R.; Zhang, Jiajie

    2002-01-01

    Healthcare has been slow in using human factors principles to reduce medical errors. The Center for Devices and Radiological Health (CDRH) recognizes that a lack of attention to human factors during product development may lead to errors that have the potential for patient injury, or even death. In response to the need for reducing medication errors, the National Coordinating Council for Medication Errors Reporting and Prevention (NCC MERP) released the NCC MERP taxonomy that provides a stand...

  13. SPACE-BORNE LASER ALTIMETER GEOLOCATION ERROR ANALYSIS

    Directory of Open Access Journals (Sweden)

    Y. Wang

    2018-05-01

    Full Text Available This paper reviews the development of space-borne laser altimetry technology over the past 40 years. Taking the ICESAT satellite as an example, a rigorous space-borne laser altimeter geolocation model is studied, and an error propagation equation is derived. The influence of the main error sources, such as the platform positioning error, attitude measurement error, pointing angle measurement error and range measurement error, on the geolocation accuracy of the laser spot are analysed by simulated experiments. The reasons for the different influences on geolocation accuracy in different directions are discussed, and to satisfy the accuracy of the laser control point, a design index for each error source is put forward.

  14. Uncertainty quantification and error analysis

    Energy Technology Data Exchange (ETDEWEB)

    Higdon, Dave M [Los Alamos National Laboratory; Anderson, Mark C [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Klein, Richard [Los Alamos National Laboratory; Berliner, Mark [OHIO STATE UNIV.; Covey, Curt [LLNL; Ghattas, Omar [UNIV OF TEXAS; Graziani, Carlo [UNIV OF CHICAGO; Seager, Mark [LLNL; Sefcik, Joseph [LLNL; Stark, Philip [UC/BERKELEY; Stewart, James [SNL

    2010-01-01

    UQ studies all sources of error and uncertainty, including: systematic and stochastic measurement error; ignorance; limitations of theoretical models; limitations of numerical representations of those models; limitations on the accuracy and reliability of computations, approximations, and algorithms; and human error. A more precise definition for UQ is suggested below.

  15. Error Patterns in Problem Solving.

    Science.gov (United States)

    Babbitt, Beatrice C.

    Although many common problem-solving errors within the realm of school mathematics have been previously identified, a compilation of such errors is not readily available within learning disabilities textbooks, mathematics education texts, or teacher's manuals for school mathematics texts. Using data on error frequencies drawn from both the Fourth…

  16. Rotational error in path integration: encoding and execution errors in angle reproduction.

    Science.gov (United States)

    Chrastil, Elizabeth R; Warren, William H

    2017-06-01

    Path integration is fundamental to human navigation. When a navigator leaves home on a complex outbound path, they are able to keep track of their approximate position and orientation and return to their starting location on a direct homebound path. However, there are several sources of error during path integration. Previous research has focused almost exclusively on encoding error-the error in registering the outbound path in memory. Here, we also consider execution error-the error in the response, such as turning and walking a homebound trajectory. In two experiments conducted in ambulatory virtual environments, we examined the contribution of execution error to the rotational component of path integration using angle reproduction tasks. In the reproduction tasks, participants rotated once and then rotated again to face the original direction, either reproducing the initial turn or turning through the supplementary angle. One outstanding difficulty in disentangling encoding and execution error during a typical angle reproduction task is that as the encoding angle increases, so does the required response angle. In Experiment 1, we dissociated these two variables by asking participants to report each encoding angle using two different responses: by turning to walk on a path parallel to the initial facing direction in the same (reproduction) or opposite (supplementary angle) direction. In Experiment 2, participants reported the encoding angle by turning both rightward and leftward onto a path parallel to the initial facing direction, over a larger range of angles. The results suggest that execution error, not encoding error, is the predominant source of error in angular path integration. These findings also imply that the path integrator uses an intrinsic (action-scaled) rather than an extrinsic (objective) metric.

  17. Vehicle Position Estimation Based on Magnetic Markers: Enhanced Accuracy by Compensation of Time Delays

    Directory of Open Access Journals (Sweden)

    Yeun-Sub Byun

    2015-11-01

    Full Text Available The real-time recognition of absolute (or relative position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test.

  18. Performance, postmodernity and errors

    DEFF Research Database (Denmark)

    Harder, Peter

    2013-01-01

    speaker’s competency (note the –y ending!) reflects adaptation to the community langue, including variations. This reversal of perspective also reverses our understanding of the relationship between structure and deviation. In the heyday of structuralism, it was tempting to confuse the invariant system...... with the prestige variety, and conflate non-standard variation with parole/performance and class both as erroneous. Nowadays the anti-structural sentiment of present-day linguistics makes it tempting to confuse the rejection of ideal abstract structure with a rejection of any distinction between grammatical...... as deviant from the perspective of function-based structure and discuss to what extent the recognition of a community langue as a source of adaptive pressure may throw light on different types of deviation, including language handicaps and learner errors....

  19. Errors in causal inference: an organizational schema for systematic error and random error.

    Science.gov (United States)

    Suzuki, Etsuji; Tsuda, Toshihide; Mitsuhashi, Toshiharu; Mansournia, Mohammad Ali; Yamamoto, Eiji

    2016-11-01

    To provide an organizational schema for systematic error and random error in estimating causal measures, aimed at clarifying the concept of errors from the perspective of causal inference. We propose to divide systematic error into structural error and analytic error. With regard to random error, our schema shows its four major sources: nondeterministic counterfactuals, sampling variability, a mechanism that generates exposure events and measurement variability. Structural error is defined from the perspective of counterfactual reasoning and divided into nonexchangeability bias (which comprises confounding bias and selection bias) and measurement bias. Directed acyclic graphs are useful to illustrate this kind of error. Nonexchangeability bias implies a lack of "exchangeability" between the selected exposed and unexposed groups. A lack of exchangeability is not a primary concern of measurement bias, justifying its separation from confounding bias and selection bias. Many forms of analytic errors result from the small-sample properties of the estimator used and vanish asymptotically. Analytic error also results from wrong (misspecified) statistical models and inappropriate statistical methods. Our organizational schema is helpful for understanding the relationship between systematic error and random error from a previously less investigated aspect, enabling us to better understand the relationship between accuracy, validity, and precision. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. DETECTING AND REPORTING THE FRAUDS AND ERRORS BY THE AUDITOR

    OpenAIRE

    Ovidiu Constantin Bunget; Alin Constantin Dumitrescu

    2009-01-01

    Responsibility for preventing and detecting fraud rest with management entities.Although the auditor is not and cannot be held responsible for preventing fraud and errors, in yourwork, he can have a positive role in preventing fraud and errors by deterring their occurrence. Theauditor should plan and perform the audit with an attitude of professional skepticism, recognizingthat condition or events may be found that indicate that fraud or error may exist.Based on the audit risk assessment, aud...

  1. Understanding error generation in fused deposition modeling

    International Nuclear Information System (INIS)

    Bochmann, Lennart; Transchel, Robert; Wegener, Konrad; Bayley, Cindy; Helu, Moneer; Dornfeld, David

    2015-01-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08–0.30 mm) are generally greater than in the x direction (0.12–0.62 mm) and the z direction (0.21–0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology. (paper)

  2. Understanding error generation in fused deposition modeling

    Science.gov (United States)

    Bochmann, Lennart; Bayley, Cindy; Helu, Moneer; Transchel, Robert; Wegener, Konrad; Dornfeld, David

    2015-03-01

    Additive manufacturing offers completely new possibilities for the manufacturing of parts. The advantages of flexibility and convenience of additive manufacturing have had a significant impact on many industries, and optimizing part quality is crucial for expanding its utilization. This research aims to determine the sources of imprecision in fused deposition modeling (FDM). Process errors in terms of surface quality, accuracy and precision are identified and quantified, and an error-budget approach is used to characterize errors of the machine tool. It was determined that accuracy and precision in the y direction (0.08-0.30 mm) are generally greater than in the x direction (0.12-0.62 mm) and the z direction (0.21-0.57 mm). Furthermore, accuracy and precision tend to decrease at increasing axis positions. The results of this work can be used to identify possible process improvements in the design and control of FDM technology.

  3. Asteroid orbital error analysis: Theory and application

    Science.gov (United States)

    Muinonen, K.; Bowell, Edward

    1992-01-01

    We present a rigorous Bayesian theory for asteroid orbital error estimation in which the probability density of the orbital elements is derived from the noise statistics of the observations. For Gaussian noise in a linearized approximation the probability density is also Gaussian, and the errors of the orbital elements at a given epoch are fully described by the covariance matrix. The law of error propagation can then be applied to calculate past and future positional uncertainty ellipsoids (Cappellari et al. 1976, Yeomans et al. 1987, Whipple et al. 1991). To our knowledge, this is the first time a Bayesian approach has been formulated for orbital element estimation. In contrast to the classical Fisherian school of statistics, the Bayesian school allows a priori information to be formally present in the final estimation. However, Bayesian estimation does give the same results as Fisherian estimation when no priori information is assumed (Lehtinen 1988, and reference therein).

  4. Analysis of error-correction constraints in an optical disk

    Science.gov (United States)

    Roberts, Jonathan D.; Ryley, Alan; Jones, David M.; Burke, David

    1996-07-01

    The compact disk read-only memory (CD-ROM) is a mature storage medium with complex error control. It comprises four levels of Reed Solomon codes allied to a sequence of sophisticated interleaving strategies and 8:14 modulation coding. New storage media are being developed and introduced that place still further demands on signal processing for error correction. It is therefore appropriate to explore thoroughly the limit of existing strategies to assess future requirements. We describe a simulation of all stages of the CD-ROM coding, modulation, and decoding. The results of decoding the burst error of a prescribed number of modulation bits are discussed in detail. Measures of residual uncorrected error within a sector are displayed by C1, C2, P, and Q error counts and by the status of the final cyclic redundancy check (CRC). Where each data sector is encoded separately, it is shown that error-correction performance against burst errors depends critically on the position of the burst within a sector. The C1 error measures the burst length, whereas C2 errors reflect the burst position. The performance of Reed Solomon product codes is shown by the P and Q statistics. It is shown that synchronization loss is critical near the limits of error correction. An example is given of miscorrection that is identified by the CRC check.

  5. Organizational safety culture and medical error reporting by Israeli nurses.

    Science.gov (United States)

    Kagan, Ilya; Barnoy, Sivia

    2013-09-01

    To investigate the association between patient safety culture (PSC) and the incidence and reporting rate of medical errors by Israeli nurses. Self-administered structured questionnaires were distributed to a convenience sample of 247 registered nurses enrolled in training programs at Tel Aviv University (response rate = 91%). The questionnaire's three sections examined the incidence of medication mistakes in clinical practice, the reporting rate for these errors, and the participants' views and perceptions of the safety culture in their workplace at three levels (organizational, departmental, and individual performance). Pearson correlation coefficients, t tests, and multiple regression analysis were used to analyze the data. Most nurses encountered medical errors from a daily to a weekly basis. Six percent of the sample never reported their own errors, while half reported their own errors "rarely or sometimes." The level of PSC was positively and significantly correlated with the error reporting rate. PSC, place of birth, error incidence, and not having an academic nursing degree were significant predictors of error reporting, together explaining 28% of variance. This study confirms the influence of an organizational safety climate on readiness to report errors. Senior healthcare executives and managers can make a major impact on safety culture development by creating and promoting a vision and strategy for quality and safety and fostering their employees' motivation to implement improvement programs at the departmental and individual level. A positive, carefully designed organizational safety culture can encourage error reporting by staff and so improve patient safety. © 2013 Sigma Theta Tau International.

  6. Abnormal error monitoring in math-anxious individuals: evidence from error-related brain potentials.

    Directory of Open Access Journals (Sweden)

    Macarena Suárez-Pellicioni

    Full Text Available This study used event-related brain potentials to investigate whether math anxiety is related to abnormal error monitoring processing. Seventeen high math-anxious (HMA and seventeen low math-anxious (LMA individuals were presented with a numerical and a classical Stroop task. Groups did not differ in terms of trait or state anxiety. We found enhanced error-related negativity (ERN in the HMA group when subjects committed an error on the numerical Stroop task, but not on the classical Stroop task. Groups did not differ in terms of the correct-related negativity component (CRN, the error positivity component (Pe, classical behavioral measures or post-error measures. The amplitude of the ERN was negatively related to participants' math anxiety scores, showing a more negative amplitude as the score increased. Moreover, using standardized low resolution electromagnetic tomography (sLORETA we found greater activation of the insula in errors on a numerical task as compared to errors in a non-numerical task only for the HMA group. The results were interpreted according to the motivational significance theory of the ERN.

  7. Controlling errors in unidosis carts

    Directory of Open Access Journals (Sweden)

    Inmaculada Díaz Fernández

    2010-01-01

    Full Text Available Objective: To identify errors in the unidosis system carts. Method: For two months, the Pharmacy Service controlled medication either returned or missing from the unidosis carts both in the pharmacy and in the wards. Results: Uncorrected unidosis carts show a 0.9% of medication errors (264 versus 0.6% (154 which appeared in unidosis carts previously revised. In carts not revised, the error is 70.83% and mainly caused when setting up unidosis carts. The rest are due to a lack of stock or unavailability (21.6%, errors in the transcription of medical orders (6.81% or that the boxes had not been emptied previously (0.76%. The errors found in the units correspond to errors in the transcription of the treatment (3.46%, non-receipt of the unidosis copy (23.14%, the patient did not take the medication (14.36%or was discharged without medication (12.77%, was not provided by nurses (14.09%, was withdrawn from the stocks of the unit (14.62%, and errors of the pharmacy service (17.56% . Conclusions: It is concluded the need to redress unidosis carts and a computerized prescription system to avoid errors in transcription.Discussion: A high percentage of medication errors is caused by human error. If unidosis carts are overlooked before sent to hospitalization units, the error diminishes to 0.3%.

  8. Prioritising interventions against medication errors

    DEFF Research Database (Denmark)

    Lisby, Marianne; Pape-Larsen, Louise; Sørensen, Ann Lykkegaard

    errors are therefore needed. Development of definition: A definition of medication errors including an index of error types for each stage in the medication process was developed from existing terminology and through a modified Delphi-process in 2008. The Delphi panel consisted of 25 interdisciplinary......Abstract Authors: Lisby M, Larsen LP, Soerensen AL, Nielsen LP, Mainz J Title: Prioritising interventions against medication errors – the importance of a definition Objective: To develop and test a restricted definition of medication errors across health care settings in Denmark Methods: Medication...... errors constitute a major quality and safety problem in modern healthcare. However, far from all are clinically important. The prevalence of medication errors ranges from 2-75% indicating a global problem in defining and measuring these [1]. New cut-of levels focusing the clinical impact of medication...

  9. Social aspects of clinical errors.

    Science.gov (United States)

    Richman, Joel; Mason, Tom; Mason-Whitehead, Elizabeth; McIntosh, Annette; Mercer, Dave

    2009-08-01

    Clinical errors, whether committed by doctors, nurses or other professions allied to healthcare, remain a sensitive issue requiring open debate and policy formulation in order to reduce them. The literature suggests that the issues underpinning errors made by healthcare professionals involve concerns about patient safety, professional disclosure, apology, litigation, compensation, processes of recording and policy development to enhance quality service. Anecdotally, we are aware of narratives of minor errors, which may well have been covered up and remain officially undisclosed whilst the major errors resulting in damage and death to patients alarm both professionals and public with resultant litigation and compensation. This paper attempts to unravel some of these issues by highlighting the historical nature of clinical errors and drawing parallels to contemporary times by outlining the 'compensation culture'. We then provide an overview of what constitutes a clinical error and review the healthcare professional strategies for managing such errors.

  10. A slicing-based approach for locating type errors

    NARCIS (Netherlands)

    T.B. Dinesh; F. Tip (Frank)

    1998-01-01

    htmlabstractThe effectiveness of a type checking tool strongly depends on the accuracy of the positional information that is associated with type errors. We present an approach where the location associated with an error message e is defined as a slice P_e of the program P being type checked. We

  11. A slicing-based approach for locating type errors

    NARCIS (Netherlands)

    T.B. Dinesh; F. Tip (Frank)

    1998-01-01

    textabstractThe effectiveness of a type checking tool strongly depends on the accuracy of the positional information that is associated with type errors. We present an approach where the location associated with an error message e is defined as a slice P_e of the program P being type checked. We

  12. The Frame Constraint on Experimentally Elicited Speech Errors in Japanese

    Science.gov (United States)

    Saito, Akie; Inoue, Tomoyoshi

    2017-01-01

    The so-called syllable position effect in speech errors has been interpreted as reflecting constraints posed by the frame structure of a given language, which is separately operating from linguistic content during speech production. The effect refers to the phenomenon that when a speech error occurs, replaced and replacing sounds tend to be in the…

  13. An improved triple collocation algorithm for decomposing autocorrelated and white soil moisture retrieval errors

    Science.gov (United States)

    If not properly account for, auto-correlated errors in observations can lead to inaccurate results in soil moisture data analysis and reanalysis. Here, we propose a more generalized form of the triple collocation algorithm (GTC) capable of decomposing the total error variance of remotely-sensed surf...

  14. Errors in clinical laboratories or errors in laboratory medicine?

    Science.gov (United States)

    Plebani, Mario

    2006-01-01

    Laboratory testing is a highly complex process and, although laboratory services are relatively safe, they are not as safe as they could or should be. Clinical laboratories have long focused their attention on quality control methods and quality assessment programs dealing with analytical aspects of testing. However, a growing body of evidence accumulated in recent decades demonstrates that quality in clinical laboratories cannot be assured by merely focusing on purely analytical aspects. The more recent surveys on errors in laboratory medicine conclude that in the delivery of laboratory testing, mistakes occur more frequently before (pre-analytical) and after (post-analytical) the test has been performed. Most errors are due to pre-analytical factors (46-68.2% of total errors), while a high error rate (18.5-47% of total errors) has also been found in the post-analytical phase. Errors due to analytical problems have been significantly reduced over time, but there is evidence that, particularly for immunoassays, interference may have a serious impact on patients. A description of the most frequent and risky pre-, intra- and post-analytical errors and advice on practical steps for measuring and reducing the risk of errors is therefore given in the present paper. Many mistakes in the Total Testing Process are called "laboratory errors", although these may be due to poor communication, action taken by others involved in the testing process (e.g., physicians, nurses and phlebotomists), or poorly designed processes, all of which are beyond the laboratory's control. Likewise, there is evidence that laboratory information is only partially utilized. A recent document from the International Organization for Standardization (ISO) recommends a new, broader definition of the term "laboratory error" and a classification of errors according to different criteria. In a modern approach to total quality, centered on patients' needs and satisfaction, the risk of errors and mistakes

  15. Bio-inspired sensing and control for disturbance rejection and stabilization

    Science.gov (United States)

    Gremillion, Gregory; Humbert, James S.

    2015-05-01

    The successful operation of small unmanned aircraft systems (sUAS) in dynamic environments demands robust stability in the presence of exogenous disturbances. Flying insects are sensor-rich platforms, with highly redundant arrays of sensors distributed across the insect body that are integrated to extract rich information with diminished noise. This work presents a novel sensing framework in which measurements from an array of accelerometers distributed across a simulated flight vehicle are linearly combined to directly estimate the applied forces and torques with improvements in SNR. In simulation, the estimation performance is quantified as a function of sensor noise level, position estimate error, and sensor quantity.

  16. Errors in abdominal computed tomography

    International Nuclear Information System (INIS)

    Stephens, S.; Marting, I.; Dixon, A.K.

    1989-01-01

    Sixty-nine patients are presented in whom a substantial error was made on the initial abdominal computed tomography report. Certain features of these errors have been analysed. In 30 (43.5%) a lesion was simply not recognised (error of observation); in 39 (56.5%) the wrong conclusions were drawn about the nature of normal or abnormal structures (error of interpretation). The 39 errors of interpretation were more complex; in 7 patients an abnormal structure was noted but interpreted as normal, whereas in four a normal structure was thought to represent a lesion. Other interpretive errors included those where the wrong cause for a lesion had been ascribed (24 patients), and those where the abnormality was substantially under-reported (4 patients). Various features of these errors are presented and discussed. Errors were made just as often in relation to small and large lesions. Consultants made as many errors as senior registrar radiologists. It is like that dual reporting is the best method of avoiding such errors and, indeed, this is widely practised in our unit. (Author). 9 refs.; 5 figs.; 1 tab

  17. Application of Joint Error Maximal Mutual Compensation to hexapod robots

    DEFF Research Database (Denmark)

    Veryha, Yauheni; Petersen, Henrik Gordon

    2008-01-01

    A good practice to ensure high-positioning accuracy in industrial robots is to use joint error maximum mutual compensation (JEMMC). This paper presents an application of JEMMC for positioning of hexapod robots to improve end-effector positioning accuracy. We developed an algorithm and simulation ...

  18. Accuracy of crystal structure error estimates

    International Nuclear Information System (INIS)

    Taylor, R.; Kennard, O.

    1986-01-01

    A statistical analysis of 100 crystal structures retrieved from the Cambridge Structural Database is reported. Each structure has been determined independently by two different research groups. Comparison of the independent results leads to the following conclusions: (a) The e.s.d.'s of non-hydrogen-atom positional parameters are almost invariably too small. Typically, they are underestimated by a factor of 1.4-1.45. (b) The extent to which e.s.d.'s are underestimated varies significantly from structure to structure and from atom to atom within a structure. (c) Errors in the positional parameters of atoms belonging to the same chemical residue tend to be positively correlated. (d) The e.s.d.'s of heavy-atom positions are less reliable than those of light-atom positions. (e) Experimental errors in atomic positional parameters are normally, or approximately normally, distributed. (f) The e.s.d.'s of cell parameters are grossly underestimated, by an average factor of about 5 for cell lengths and 2.5 for cell angles. There is marginal evidence that the accuracy of atomic-coordinate e.s.d.'s also depends on diffractometer geometry, refinement procedure, whether or not the structure has a centre of symmetry, and the degree of precision attained in the structure determination. (orig.)

  19. Cognitive errors: thinking clearly when it could be child maltreatment.

    Science.gov (United States)

    Laskey, Antoinette L

    2014-10-01

    Cognitive errors have been studied in a broad array of fields, including medicine. The more that is understood about how the human mind processes complex information, the more it becomes clear that certain situations are particularly susceptible to less than optimal outcomes because of these errors. This article explores how some of the known cognitive errors may influence the diagnosis of child abuse, resulting in both false-negative and false-positive diagnoses. Suggested remedies for these errors are offered. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Hypnagogic Exploration: Sleep Positions and Personality.

    Science.gov (United States)

    Domino, George; Bohn, Sarah Ann

    1980-01-01

    Sleep positions, particularly the full fetal position, appear to be related to California Psychological Inventory (CPI) variables of sociability, sense of well being, achievement by conformance, femininity, and social maturity. (Author)

  1. Embodying Others in Immersive Virtual Reality: Electro-Cortical Signatures of Monitoring the Errors in the Actions of an Avatar Seen from a First-Person Perspective.

    Science.gov (United States)

    Pavone, Enea Francesco; Tieri, Gaetano; Rizza, Giulia; Tidoni, Emmanuele; Grisoni, Luigi; Aglioti, Salvatore Maria

    2016-01-13

    Brain monitoring of errors in one's own and other's actions is crucial for a variety of processes, ranging from the fine-tuning of motor skill learning to important social functions, such as reading out and anticipating the intentions of others. Here, we combined immersive virtual reality and EEG recording to explore whether embodying the errors of an avatar by seeing it from a first-person perspective may activate the error monitoring system in the brain of an onlooker. We asked healthy participants to observe, from a first- or third-person perspective, an avatar performing a correct or an incorrect reach-to-grasp movement toward one of two virtual mugs placed on a table. At the end of each trial, participants reported verbally how much they embodied the avatar's arm. Ratings were maximal in first-person perspective, indicating that immersive virtual reality can be a powerful tool to induce embodiment of an artificial agent, even through mere visual perception and in the absence of any cross-modal boosting. Observation of erroneous grasping from a first-person perspective enhanced error-related negativity and medial-frontal theta power in the trials where human onlookers embodied the virtual character, hinting at the tight link between early, automatic coding of error detection and sense of embodiment. Error positivity was similar in 1PP and 3PP, suggesting that conscious coding of errors is similar for self and other. Thus, embodiment plays an important role in activating specific components of the action monitoring system when others' errors are coded as if they are one's own errors. Detecting errors in other's actions is crucial for social functions, such as reading out and anticipating the intentions of others. Using immersive virtual reality and EEG recording, we explored how the brain of an onlooker reacted to the errors of an avatar seen from a first-person perspective. We found that mere observation of erroneous actions enhances electrocortical markers of

  2. Laboratory errors and patient safety.

    Science.gov (United States)

    Miligy, Dawlat A

    2015-01-01

    Laboratory data are extensively used in medical practice; consequently, laboratory errors have a tremendous impact on patient safety. Therefore, programs designed to identify and reduce laboratory errors, as well as, setting specific strategies are required to minimize these errors and improve patient safety. The purpose of this paper is to identify part of the commonly encountered laboratory errors throughout our practice in laboratory work, their hazards on patient health care and some measures and recommendations to minimize or to eliminate these errors. Recording the encountered laboratory errors during May 2008 and their statistical evaluation (using simple percent distribution) have been done in the department of laboratory of one of the private hospitals in Egypt. Errors have been classified according to the laboratory phases and according to their implication on patient health. Data obtained out of 1,600 testing procedure revealed that the total number of encountered errors is 14 tests (0.87 percent of total testing procedures). Most of the encountered errors lay in the pre- and post-analytic phases of testing cycle (representing 35.7 and 50 percent, respectively, of total errors). While the number of test errors encountered in the analytic phase represented only 14.3 percent of total errors. About 85.7 percent of total errors were of non-significant implication on patients health being detected before test reports have been submitted to the patients. On the other hand, the number of test errors that have been already submitted to patients and reach the physician represented 14.3 percent of total errors. Only 7.1 percent of the errors could have an impact on patient diagnosis. The findings of this study were concomitant with those published from the USA and other countries. This proves that laboratory problems are universal and need general standardization and bench marking measures. Original being the first data published from Arabic countries that

  3. Statistical errors in Monte Carlo estimates of systematic errors

    Science.gov (United States)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k2. The specific terms unisim and multisim were coined by Peter Meyers and Steve Brice, respectively, for the MiniBooNE experiment. However, the concepts have been developed over time and have been in general use for some time.

  4. Statistical errors in Monte Carlo estimates of systematic errors

    Energy Technology Data Exchange (ETDEWEB)

    Roe, Byron P. [Department of Physics, University of Michigan, Ann Arbor, MI 48109 (United States)]. E-mail: byronroe@umich.edu

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k{sup 2}.

  5. Statistical errors in Monte Carlo estimates of systematic errors

    International Nuclear Information System (INIS)

    Roe, Byron P.

    2007-01-01

    For estimating the effects of a number of systematic errors on a data sample, one can generate Monte Carlo (MC) runs with systematic parameters varied and examine the change in the desired observed result. Two methods are often used. In the unisim method, the systematic parameters are varied one at a time by one standard deviation, each parameter corresponding to a MC run. In the multisim method (see ), each MC run has all of the parameters varied; the amount of variation is chosen from the expected distribution of each systematic parameter, usually assumed to be a normal distribution. The variance of the overall systematic error determination is derived for each of the two methods and comparisons are made between them. If one focuses not on the error in the prediction of an individual systematic error, but on the overall error due to all systematic errors in the error matrix element in data bin m, the number of events needed is strongly reduced because of the averaging effect over all of the errors. For simple models presented here the multisim model was far better if the statistical error in the MC samples was larger than an individual systematic error, while for the reverse case, the unisim model was better. Exact formulas and formulas for the simple toy models are presented so that realistic calculations can be made. The calculations in the present note are valid if the errors are in a linear region. If that region extends sufficiently far, one can have the unisims or multisims correspond to k standard deviations instead of one. This reduces the number of events required by a factor of k 2

  6. Architecture design for soft errors

    CERN Document Server

    Mukherjee, Shubu

    2008-01-01

    This book provides a comprehensive description of the architetural techniques to tackle the soft error problem. It covers the new methodologies for quantitative analysis of soft errors as well as novel, cost-effective architectural techniques to mitigate them. To provide readers with a better grasp of the broader problem deffinition and solution space, this book also delves into the physics of soft errors and reviews current circuit and software mitigation techniques.

  7. Peak-locking centroid bias in Shack-Hartmann wavefront sensing

    Science.gov (United States)

    Anugu, Narsireddy; Garcia, Paulo J. V.; Correia, Carlos M.

    2018-05-01

    Shack-Hartmann wavefront sensing relies on accurate spot centre measurement. Several algorithms were developed with this aim, mostly focused on precision, i.e. minimizing random errors. In the solar and extended scene community, the importance of the accuracy (bias error due to peak-locking, quantization, or sampling) of the centroid determination was identified and solutions proposed. But these solutions only allow partial bias corrections. To date, no systematic study of the bias error was conducted. This article bridges the gap by quantifying the bias error for different correlation peak-finding algorithms and types of sub-aperture images and by proposing a practical solution to minimize its effects. Four classes of sub-aperture images (point source, elongated laser guide star, crowded field, and solar extended scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity, Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-noise conditions. The best performing peak-finding algorithm depends on the sub-aperture image type, but none is satisfactory to both bias and random errors. A practical solution is proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the true centre. The solution decreases the bias by a factor of ˜7 to values of ≲ 0.02 pix. The computational cost is typically twice of current cross-correlation algorithms.

  8. Identifying Error in AUV Communication

    National Research Council Canada - National Science Library

    Coleman, Joseph; Merrill, Kaylani; O'Rourke, Michael; Rajala, Andrew G; Edwards, Dean B

    2006-01-01

    Mine Countermeasures (MCM) involving Autonomous Underwater Vehicles (AUVs) are especially susceptible to error, given the constraints on underwater acoustic communication and the inconstancy of the underwater communication channel...

  9. Human Errors in Decision Making

    OpenAIRE

    Mohamad, Shahriari; Aliandrina, Dessy; Feng, Yan

    2005-01-01

    The aim of this paper was to identify human errors in decision making process. The study was focused on a research question such as: what could be the human error as a potential of decision failure in evaluation of the alternatives in the process of decision making. Two case studies were selected from the literature and analyzed to find the human errors contribute to decision fail. Then the analysis of human errors was linked with mental models in evaluation of alternative step. The results o...

  10. Finding beam focus errors automatically

    International Nuclear Information System (INIS)

    Lee, M.J.; Clearwater, S.H.; Kleban, S.D.

    1987-01-01

    An automated method for finding beam focus errors using an optimization program called COMFORT-PLUS. The steps involved in finding the correction factors using COMFORT-PLUS has been used to find the beam focus errors for two damping rings at the SLAC Linear Collider. The program is to be used as an off-line program to analyze actual measured data for any SLC system. A limitation on the application of this procedure is found to be that it depends on the magnitude of the machine errors. Another is that the program is not totally automated since the user must decide a priori where to look for errors

  11. Heuristic errors in clinical reasoning.

    Science.gov (United States)

    Rylander, Melanie; Guerrasio, Jeannette

    2016-08-01

    Errors in clinical reasoning contribute to patient morbidity and mortality. The purpose of this study was to determine the types of heuristic errors made by third-year medical students and first-year residents. This study surveyed approximately 150 clinical educators inquiring about the types of heuristic errors they observed in third-year medical students and first-year residents. Anchoring and premature closure were the two most common errors observed amongst third-year medical students and first-year residents. There was no difference in the types of errors observed in the two groups. Errors in clinical reasoning contribute to patient morbidity and mortality Clinical educators perceived that both third-year medical students and first-year residents committed similar heuristic errors, implying that additional medical knowledge and clinical experience do not affect the types of heuristic errors made. Further work is needed to help identify methods that can be used to reduce heuristic errors early in a clinician's education. © 2015 John Wiley & Sons Ltd.

  12. Robust tracking of dexterous continuum robots: Fusing FBG shape sensing and stereo vision.

    Science.gov (United States)

    Rumei Zhang; Hao Liu; Jianda Han

    2017-07-01

    Robust and efficient tracking of continuum robots is important for improving patient safety during space-confined minimally invasive surgery, however, it has been a particularly challenging task for researchers. In this paper, we present a novel tracking scheme by fusing fiber Bragg grating (FBG) shape sensing and stereo vision to estimate the position of continuum robots. Previous visual tracking easily suffers from the lack of robustness and leads to failure, while the FBG shape sensor can only reconstruct the local shape with integral cumulative error. The proposed fusion is anticipated to compensate for their shortcomings and improve the tracking accuracy. To verify its effectiveness, the robots' centerline is recognized by morphology operation and reconstructed by stereo matching algorithm. The shape obtained by FBG sensor is transformed into distal tip position with respect to the camera coordinate system through previously calibrated registration matrices. An experimental platform was set up and repeated tracking experiments were carried out. The accuracy estimated by averaging the absolute positioning errors between shape sensing and stereo vision is 0.67±0.65 mm, 0.41±0.25 mm, 0.72±0.43 mm for x, y and z, respectively. Results indicate that the proposed fusion is feasible and can be used for closed-loop control of continuum robots.

  13. A Hybrid Unequal Error Protection / Unequal Error Resilience ...

    African Journals Online (AJOL)

    The quality layers are then assigned an Unequal Error Resilience to synchronization loss by unequally allocating the number of headers available for synchronization to them. Following that Unequal Error Protection against channel noise is provided to the layers by the use of Rate Compatible Punctured Convolutional ...

  14. Error studies for SNS Linac. Part 1: Transverse errors

    International Nuclear Information System (INIS)

    Crandall, K.R.

    1998-01-01

    The SNS linac consist of a radio-frequency quadrupole (RFQ), a drift-tube linac (DTL), a coupled-cavity drift-tube linac (CCDTL) and a coupled-cavity linac (CCL). The RFQ and DTL are operated at 402.5 MHz; the CCDTL and CCL are operated at 805 MHz. Between the RFQ and DTL is a medium-energy beam-transport system (MEBT). This error study is concerned with the DTL, CCDTL and CCL, and each will be analyzed separately. In fact, the CCL is divided into two sections, and each of these will be analyzed separately. The types of errors considered here are those that affect the transverse characteristics of the beam. The errors that cause the beam center to be displaced from the linac axis are quad displacements and quad tilts. The errors that cause mismatches are quad gradient errors and quad rotations (roll)

  15. TACTILE SENSING FOR OBJECT IDENTIFICATION

    DEFF Research Database (Denmark)

    Drimus, Alin; Marian, Nicolae; Bilberg, Arne

    2009-01-01

    The artificial sense of touch is a research area that can be considered still in demand, compared with the human dexterity of grasping a wide variety of shapes and sizes, perform complex tasks, and switch between grasps in response to changing task requirements. For handling unknown objects...... in unstructured environments, tactile sensing can provide more than valuable to complementary vision information about mechanical properties such as recognition and characterization, force, pressure, torque, compliance, friction, and mass as well as object shape, texture, position and pose. In this paper, we...

  16. Measurement Error Estimation for Capacitive Voltage Transformer by Insulation Parameters

    Directory of Open Access Journals (Sweden)

    Bin Chen

    2017-03-01

    Full Text Available Measurement errors of a capacitive voltage transformer (CVT are relevant to its equivalent parameters for which its capacitive divider contributes the most. In daily operation, dielectric aging, moisture, dielectric breakdown, etc., it will exert mixing effects on a capacitive divider’s insulation characteristics, leading to fluctuation in equivalent parameters which result in the measurement error. This paper proposes an equivalent circuit model to represent a CVT which incorporates insulation characteristics of a capacitive divider. After software simulation and laboratory experiments, the relationship between measurement errors and insulation parameters is obtained. It indicates that variation of insulation parameters in a CVT will cause a reasonable measurement error. From field tests and calculation, equivalent capacitance mainly affects magnitude error, while dielectric loss mainly affects phase error. As capacitance changes 0.2%, magnitude error can reach −0.2%. As dielectric loss factor changes 0.2%, phase error can reach 5′. An increase of equivalent capacitance and dielectric loss factor in the high-voltage capacitor will cause a positive real power measurement error. An increase of equivalent capacitance and dielectric loss factor in the low-voltage capacitor will cause a negative real power measurement error.

  17. ACCURACY DIMENSIONS IN REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    Á. Barsi

    2018-04-01

    Full Text Available The technological developments in remote sensing (RS during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS, which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users’ needs. The present paper gives the theoretic overview of the issue, besides

  18. Accuracy Dimensions in Remote Sensing

    Science.gov (United States)

    Barsi, Á.; Kugler, Zs.; László, I.; Szabó, Gy.; Abdulmutalib, H. M.

    2018-04-01

    The technological developments in remote sensing (RS) during the past decade has contributed to a significant increase in the size of data user community. For this reason data quality issues in remote sensing face a significant increase in importance, particularly in the era of Big Earth data. Dozens of available sensors, hundreds of sophisticated data processing techniques, countless software tools assist the processing of RS data and contributes to a major increase in applications and users. In the past decades, scientific and technological community of spatial data environment were focusing on the evaluation of data quality elements computed for point, line, area geometry of vector and raster data. Stakeholders of data production commonly use standardised parameters to characterise the quality of their datasets. Yet their efforts to estimate the quality did not reach the general end-user community running heterogeneous applications who assume that their spatial data is error-free and best fitted to the specification standards. The non-specialist, general user group has very limited knowledge how spatial data meets their needs. These parameters forming the external quality dimensions implies that the same data system can be of different quality to different users. The large collection of the observed information is uncertain in a level that can decry the reliability of the applications. Based on prior paper of the authors (in cooperation within the Remote Sensing Data Quality working group of ISPRS), which established a taxonomy on the dimensions of data quality in GIS and remote sensing domains, this paper is aiming at focusing on measures of uncertainty in remote sensing data lifecycle, focusing on land cover mapping issues. In the paper we try to introduce how quality of the various combination of data and procedures can be summarized and how services fit the users' needs. The present paper gives the theoretic overview of the issue, besides selected, practice

  19. Error begat error: design error analysis and prevention in social infrastructure projects.

    Science.gov (United States)

    Love, Peter E D; Lopez, Robert; Edwards, David J; Goh, Yang M

    2012-09-01

    Design errors contribute significantly to cost and schedule growth in social infrastructure projects and to engineering failures, which can result in accidents and loss of life. Despite considerable research that has addressed their error causation in construction projects they still remain prevalent. This paper identifies the underlying conditions that contribute to design errors in social infrastructure projects (e.g. hospitals, education, law and order type buildings). A systemic model of error causation is propagated and subsequently used to develop a learning framework for design error prevention. The research suggests that a multitude of strategies should be adopted in congruence to prevent design errors from occurring and so ensure that safety and project performance are ameliorated. Copyright © 2011. Published by Elsevier Ltd.

  20. A compressed sensing based method with support refinement for impulse noise cancelation in DSL

    KAUST Repository

    Quadeer, Ahmed Abdul

    2013-06-01

    This paper presents a compressed sensing based method to suppress impulse noise in digital subscriber line (DSL). The proposed algorithm exploits the sparse nature of the impulse noise and utilizes the carriers, already available in all practical DSL systems, for its estimation and cancelation. Specifically, compressed sensing is used for a coarse estimate of the impulse position, an a priori information based maximum aposteriori probability (MAP) metric for its refinement, followed by least squares (LS) or minimum mean square error (MMSE) estimation for estimating the impulse amplitudes. Simulation results show that the proposed scheme achieves higher rate as compared to other known sparse estimation algorithms in literature. The paper also demonstrates the superior performance of the proposed scheme compared to the ITU-T G992.3 standard that utilizes RS-coding for impulse noise refinement in DSL signals. © 2013 IEEE.

  1. Error evaluation method for material accountancy measurement. Evaluation of random and systematic errors based on material accountancy data

    International Nuclear Information System (INIS)

    Nidaira, Kazuo

    2008-01-01

    International Target Values (ITV) shows random and systematic measurement uncertainty components as a reference for routinely achievable measurement quality in the accountancy measurement. The measurement uncertainty, called error henceforth, needs to be periodically evaluated and checked against ITV for consistency as the error varies according to measurement methods, instruments, operators, certified reference samples, frequency of calibration, and so on. In the paper an error evaluation method was developed with focuses on (1) Specifying clearly error calculation model, (2) Getting always positive random and systematic error variances, (3) Obtaining probability density distribution of an error variance and (4) Confirming the evaluation method by simulation. In addition the method was demonstrated by applying real data. (author)

  2. Post-error action control is neurobehaviorally modulated under conditions of constant speeded response

    Directory of Open Access Journals (Sweden)

    Takahiro eSoshi

    2015-01-01

    Full Text Available Post-error slowing is an error recovery strategy that contributes to action control, and occurs after errors in order to prevent future behavioral flaws. Error recovery often malfunctions in clinical populations, but the relationship between behavioral traits and recovery from error is unclear in healthy populations. The present study investigated the relationship between impulsivity and error recovery by simulating a speeded response situation using a Go/No-go paradigm that forced the participants to constantly make accelerated responses prior to stimuli disappearance (stimulus duration: 250 ms. Neural correlates of post-error processing were examined using event-related potentials (ERPs. Impulsivity traits were measured with self-report questionnaires (BIS-11, BIS/BAS. Behavioral results demonstrated that the commission error for No-go trials was 15%, but post-error slowing did not take place immediately. Delayed post-error slowing was negatively correlated with error rates and impulsivity traits, showing that response slowing was associated with reduced error rates and changed with impulsivity. Response-locked error ERPs were clearly observed for the error trials. Contrary to previous studies, error ERPs were not significantly related to post-error slowing. Stimulus-locked N2 was negatively correlated with post-error slowing and positively correlated with impulsivity traits at the second post-error Go trial: larger N2 activity was associated with greater post-error slowing and less impulsivity. In summary, under constant speeded conditions, error monitoring was dissociated from post-error action control, and post-error slowing did not occur quickly. Furthermore, post-error slowing and its neural correlate (N2 were modulated by impulsivity traits. These findings suggest that there may be clinical and practical efficacy of maintaining cognitive control of actions during error recovery under common daily environments that frequently evoke

  3. Dual Processing and Diagnostic Errors

    Science.gov (United States)

    Norman, Geoff

    2009-01-01

    In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical,…

  4. Barriers to medical error reporting

    Directory of Open Access Journals (Sweden)

    Jalal Poorolajal

    2015-01-01

    Full Text Available Background: This study was conducted to explore the prevalence of medical error underreporting and associated barriers. Methods: This cross-sectional study was performed from September to December 2012. Five hospitals, affiliated with Hamadan University of Medical Sciences, in Hamedan,Iran were investigated. A self-administered questionnaire was used for data collection. Participants consisted of physicians, nurses, midwives, residents, interns, and staffs of radiology and laboratory departments. Results: Overall, 50.26% of subjects had committed but not reported medical errors. The main reasons mentioned for underreporting were lack of effective medical error reporting system (60.0%, lack of proper reporting form (51.8%, lack of peer supporting a person who has committed an error (56.0%, and lack of personal attention to the importance of medical errors (62.9%. The rate of committing medical errors was higher in men (71.4%, age of 50-40 years (67.6%, less-experienced personnel (58.7%, educational level of MSc (87.5%, and staff of radiology department (88.9%. Conclusions: This study outlined the main barriers to reporting medical errors and associated factors that may be helpful for healthcare organizations in improving medical error reporting as an essential component for patient safety enhancement.

  5. Averaging in the presence of sliding errors

    International Nuclear Information System (INIS)

    Yost, G.P.

    1991-08-01

    In many cases the precision with which an experiment can measure a physical quantity depends on the value of that quantity. Not having access to the true value, experimental groups are forced to assign their errors based on their own measured value. Procedures which attempt to derive an improved estimate of the true value by a suitable average of such measurements usually weight each experiment's measurement according to the reported variance. However, one is in a position to derive improved error estimates for each experiment from the average itself, provided an approximate idea of the functional dependence of the error on the central value is known. Failing to do so can lead to substantial biases. Techniques which avoid these biases without loss of precision are proposed and their performance is analyzed with examples. These techniques are quite general and can bring about an improvement even when the behavior of the errors is not well understood. Perhaps the most important application of the technique is in fitting curves to histograms

  6. A theory of human error

    Science.gov (United States)

    Mcruer, D. T.; Clement, W. F.; Allen, R. W.

    1981-01-01

    Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.

  7. Correcting AUC for Measurement Error.

    Science.gov (United States)

    Rosner, Bernard; Tworoger, Shelley; Qiu, Weiliang

    2015-12-01

    Diagnostic biomarkers are used frequently in epidemiologic and clinical work. The ability of a diagnostic biomarker to discriminate between subjects who develop disease (cases) and subjects who do not (controls) is often measured by the area under the receiver operating characteristic curve (AUC). The diagnostic biomarkers are usually measured with error. Ignoring measurement error can cause biased estimation of AUC, which results in misleading interpretation of the efficacy of a diagnostic biomarker. Several methods have been proposed to correct AUC for measurement error, most of which required the normality assumption for the distributions of diagnostic biomarkers. In this article, we propose a new method to correct AUC for measurement error and derive approximate confidence limits for the corrected AUC. The proposed method does not require the normality assumption. Both real data analyses and simulation studies show good performance of the proposed measurement error correction method.

  8. Cognitive aspect of diagnostic errors.

    Science.gov (United States)

    Phua, Dong Haur; Tan, Nigel C K

    2013-01-01

    Diagnostic errors can result in tangible harm to patients. Despite our advances in medicine, the mental processes required to make a diagnosis exhibits shortcomings, causing diagnostic errors. Cognitive factors are found to be an important cause of diagnostic errors. With new understanding from psychology and social sciences, clinical medicine is now beginning to appreciate that our clinical reasoning can take the form of analytical reasoning or heuristics. Different factors like cognitive biases and affective influences can also impel unwary clinicians to make diagnostic errors. Various strategies have been proposed to reduce the effect of cognitive biases and affective influences when clinicians make diagnoses; however evidence for the efficacy of these methods is still sparse. This paper aims to introduce the reader to the cognitive aspect of diagnostic errors, in the hope that clinicians can use this knowledge to improve diagnostic accuracy and patient outcomes.

  9. The next organizational challenge: finding and addressing diagnostic error.

    Science.gov (United States)

    Graber, Mark L; Trowbridge, Robert; Myers, Jennifer S; Umscheid, Craig A; Strull, William; Kanter, Michael H

    2014-03-01

    Although health care organizations (HCOs) are intensely focused on improving the safety of health care, efforts to date have almost exclusively targeted treatment-related issues. The literature confirms that the approaches HCOs use to identify adverse medical events are not effective in finding diagnostic errors, so the initial challenge is to identify cases of diagnostic error. WHY HEALTH CARE ORGANIZATIONS NEED TO GET INVOLVED: HCOs are preoccupied with many quality- and safety-related operational and clinical issues, including performance measures. The case for paying attention to diagnostic errors, however, is based on the following four points: (1) diagnostic errors are common and harmful, (2) high-quality health care requires high-quality diagnosis, (3) diagnostic errors are costly, and (4) HCOs are well positioned to lead the way in reducing diagnostic error. FINDING DIAGNOSTIC ERRORS: Current approaches to identifying diagnostic errors, such as occurrence screens, incident reports, autopsy, and peer review, were not designed to detect diagnostic issues (or problems of omission in general) and/or rely on voluntary reporting. The realization that the existing tools are inadequate has spurred efforts to identify novel tools that could be used to discover diagnostic errors or breakdowns in the diagnostic process that are associated with errors. New approaches--Maine Medical Center's case-finding of diagnostic errors by facilitating direct reports from physicians and Kaiser Permanente's electronic health record--based reports that detect process breakdowns in the followup of abnormal findings--are described in case studies. By raising awareness and implementing targeted programs that address diagnostic error, HCOs may begin to play an important role in addressing the problem of diagnostic error.

  10. Position measuring device

    International Nuclear Information System (INIS)

    Maeda, Kazuyuki; Takahashi, Shuichi; Maruyama, Mayumi

    1998-01-01

    The present invention provides a device capable of measuring accurate position and distance easily even at places where operator can not easily access, such as cell facilities for vitrifying radioactive wastes. Referring to a case of the vitrifying cell, an objective equipment settled in the cell is photographed by a photographing device. The image is stored in a position measuring device by way of an image input device. After several years, when the objective equipment is exchanged, a new objective equipment is photographed by a photographing device. The image is also stored in the position measuring device. The position measuring device compares the data of both of the images on the basis of pixel unit. Based on the image of the equipment before the exchange as a reference, extent of the displacement of the installation position of the equipment on the image after the exchange caused by installation error and manufacturing error is determined to decide the position of the equipment after exchange relative to the equipment before exchange. (I.S.)

  11. Sense of humor at work: assessment and associations with health

    NARCIS (Netherlands)

    Doosje, S.

    2010-01-01

    This dissertation is about health-related sense of humor measurement and associations between a sense of humor and health. Two sense of humor measures were developed, the QOHC and the HCL. The QOHC measures four humorous coping styles, aimed at acquiring positive affective states: antecedent-focused

  12. Differentially Private Distributed Sensing

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Glenn A.

    2016-12-11

    The growth of the Internet of Things (IoT) creates the possibility of decentralized systems of sensing and actuation, potentially on a global scale. IoT devices connected to cloud networks can offer Sensing and Actuation as a Service (SAaaS) enabling networks of sensors to grow to a global scale. But extremely large sensor networks can violate privacy, especially in the case where IoT devices are mobile and connected directly to the behaviors of people. The thesis of this paper is that by adapting differential privacy (adding statistically appropriate noise to query results) to groups of geographically distributed sensors privacy could be maintained without ever sending all values up to a central curator and without compromising the overall accuracy of the data collected. This paper outlines such a scheme and performs an analysis of differential privacy techniques adapted to edge computing in a simulated sensor network where ground truth is known. The positive and negative outcomes of employing differential privacy in distributed networks of devices are discussed and a brief research agenda is presented.

  13. Sample positioning effects in x-ray spectrometry

    International Nuclear Information System (INIS)

    Carpenter, D.

    Instrument error due to variation in sample position in a crystal x-ray spectrometer can easily exceed the total instrumental error. Lack of reproducibility in sample position in the x-ray optics is the single largest source of system error. The factors that account for sample positioning error are described, and many of the details of flat crystal x-ray optics are discussed

  14. The effect of monetary punishment on error evaluation in a Go/No-go task.

    Science.gov (United States)

    Maruo, Yuya; Sommer, Werner; Masaki, Hiroaki

    2017-10-01

    Little is known about the effects of the motivational significance of errors in Go/No-go tasks. We investigated the impact of monetary punishment on the error-related negativity (ERN) and error positivity (Pe) for both overt errors and partial errors, that is, no-go trials without overt responses but with covert muscle activities. We compared high and low punishment conditions where errors were penalized with 50 or 5 yen, respectively, and a control condition without monetary consequences for errors. Because we hypothesized that the partial-error ERN might overlap with the no-go N2, we compared ERPs between correct rejections (i.e., successful no-go trials) and partial errors in no-go trials. We also expected that Pe amplitudes should increase with the severity of the penalty for errors. Mean error rates were significantly lower in the high punishment than in the control condition. Monetary punishment did not influence the overt-error ERN and partial-error ERN in no-go trials. The ERN in no-go trials did not differ between partial errors and overt errors; in addition, ERPs for correct rejections in no-go trials without partial errors were of the same size as in go-trial. Therefore the overt-error ERN and the partial-error ERN may share similar error monitoring processes. Monetary punishment increased Pe amplitudes for overt errors, suggesting enhanced error evaluation processes. For partial errors an early Pe was observed, presumably representing inhibition processes. Interestingly, even partial errors elicited the Pe, suggesting that covert erroneous activities could be detected in Go/No-go tasks. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  15. An optically sensed control rod drive system for use at the Nuclear Science Center Reactor

    International Nuclear Information System (INIS)

    Krohn, John L.; Fisher, Thomas H.

    1988-01-01

    The optically sensed rod drive control system, installed and modified at the NSCR is described. It has operated very well and has exhibited improved reliability over the previous system. The system has proven to give stable control rod positions, and the daily reset of the position indication serves to reduce the error between indicated and true rod position. The removal of the microswitches used for carriage up and carriage down indication in the previous system, and especially the 120 VAC motor control portion, has reduced the difficulty, time and uncertainty involved in upkeep of the system and also has removed a potentially dangerous source of personnel injury. As more operational experience is gained with this design, it is felt that other minor adjustments and logic changes may come about, but the present design of the system appears to be a successful and sufficient one

  16. Influence of random setup error on dose distribution

    International Nuclear Information System (INIS)

    Zhai Zhenyu

    2008-01-01

    Objective: To investigate the influence of random setup error on dose distribution in radiotherapy and determine the margin from ITV to PTV. Methods: A random sample approach was used to simulate the fields position in target coordinate system. Cumulative effect of random setup error was the sum of dose distributions of all individual treatment fractions. Study of 100 cumulative effects might get shift sizes of 90% dose point position. Margins from ITV to PTV caused by random setup error were chosen by 95% probability. Spearman's correlation was used to analyze the influence of each factor. Results: The average shift sizes of 90% dose point position was 0.62, 1.84, 3.13, 4.78, 6.34 and 8.03 mm if random setup error was 1,2,3,4,5 and 6 mm,respectively. Univariate analysis showed the size of margin was associated only by the size of random setup error. Conclusions: Margin of ITV to PTV is 1.2 times random setup error for head-and-neck cancer and 1.5 times for thoracic and abdominal cancer. Field size, energy and target depth, unlike random setup error, have no relation with the size of the margin. (authors)

  17. Color extended visual cryptography using error diffusion.

    Science.gov (United States)

    Kang, InKoo; Arce, Gonzalo R; Lee, Heung-Kyu

    2011-01-01

    Color visual cryptography (VC) encrypts a color secret message into n color halftone image shares. Previous methods in the literature show good results for black and white or gray scale VC schemes, however, they are not sufficient to be applied directly to color shares due to different color structures. Some methods for color visual cryptography are not satisfactory in terms of producing either meaningless shares or meaningful shares with low visual quality, leading to suspicion of encryption. This paper introduces the concept of visual information pixel (VIP) synchronization and error diffusion to attain a color visual cryptography encryption method that produces meaningful color shares with high visual quality. VIP synchronization retains the positions of pixels carrying visual information of original images throughout the color channels and error diffusion generates shares pleasant to human eyes. Comparisons with previous approaches show the superior performance of the new method.

  18. Errors, error detection, error correction and hippocampal-region damage: data and theories.

    Science.gov (United States)

    MacKay, Donald G; Johnson, Laura W

    2013-11-01

    This review and perspective article outlines 15 observational constraints on theories of errors, error detection, and error correction, and their relation to hippocampal-region (HR) damage. The core observations come from 10 studies with H.M., an amnesic with cerebellar and HR damage but virtually no neocortical damage. Three studies examined the detection of errors planted in visual scenes (e.g., a bird flying in a fish bowl in a school classroom) and sentences (e.g., I helped themselves to the birthday cake). In all three experiments, H.M. detected reliably fewer errors than carefully matched memory-normal controls. Other studies examined the detection and correction of self-produced errors, with controls for comprehension of the instructions, impaired visual acuity, temporal factors, motoric slowing, forgetting, excessive memory load, lack of motivation, and deficits in visual scanning or attention. In these studies, H.M. corrected reliably fewer errors than memory-normal and cerebellar controls, and his uncorrected errors in speech, object naming, and reading aloud exhibited two consistent features: omission and anomaly. For example, in sentence production tasks, H.M. omitted one or more words in uncorrected encoding errors that rendered his sentences anomalous (incoherent, incomplete, or ungrammatical) reliably more often than controls. Besides explaining these core findings, the theoretical principles discussed here explain H.M.'s retrograde amnesia for once familiar episodic and semantic information; his anterograde amnesia for novel information; his deficits in visual cognition, sentence comprehension, sentence production, sentence reading, and object naming; and effects of aging on his ability to read isolated low frequency words aloud. These theoretical principles also explain a wide range of other data on error detection and correction and generate new predictions for future test. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Human errors in NPP operations

    International Nuclear Information System (INIS)

    Sheng Jufang

    1993-01-01

    Based on the operational experiences of nuclear power plants (NPPs), the importance of studying human performance problems is described. Statistical analysis on the significance or frequency of various root-causes and error-modes from a large number of human-error-related events demonstrate that the defects in operation/maintenance procedures, working place factors, communication and training practices are primary root-causes, while omission, transposition, quantitative mistake are the most frequent among the error-modes. Recommendations about domestic research on human performance problem in NPPs are suggested

  20. Linear network error correction coding

    CERN Document Server

    Guang, Xuan

    2014-01-01

    There are two main approaches in the theory of network error correction coding. In this SpringerBrief, the authors summarize some of the most important contributions following the classic approach, which represents messages by sequences?similar to algebraic coding,?and also briefly discuss the main results following the?other approach,?that uses the theory of rank metric codes for network error correction of representing messages by subspaces. This book starts by establishing the basic linear network error correction (LNEC) model and then characterizes two equivalent descriptions. Distances an

  1. Autonomous Quantum Error Correction with Application to Quantum Metrology

    Science.gov (United States)

    Reiter, Florentin; Sorensen, Anders S.; Zoller, Peter; Muschik, Christine A.

    2017-04-01

    We present a quantum error correction scheme that stabilizes a qubit by coupling it to an engineered environment which protects it against spin- or phase flips. Our scheme uses always-on couplings that run continuously in time and operates in a fully autonomous fashion without the need to perform measurements or feedback operations on the system. The correction of errors takes place entirely at the microscopic level through a build-in feedback mechanism. Our dissipative error correction scheme can be implemented in a system of trapped ions and can be used for improving high precision sensing. We show that the enhanced coherence time that results from the coupling to the engineered environment translates into a significantly enhanced precision for measuring weak fields. In a broader context, this work constitutes a stepping stone towards the paradigm of self-correcting quantum information processing.

  2. Formal Analysis of Soft Errors using Theorem Proving

    Directory of Open Access Journals (Sweden)

    Sofiène Tahar

    2013-07-01

    Full Text Available Modeling and analysis of soft errors in electronic circuits has traditionally been done using computer simulations. Computer simulations cannot guarantee correctness of analysis because they utilize approximate real number representations and pseudo random numbers in the analysis and thus are not well suited for analyzing safety-critical applications. In this paper, we present a higher-order logic theorem proving based method for modeling and analysis of soft errors in electronic circuits. Our developed infrastructure includes formalized continuous random variable pairs, their Cumulative Distribution Function (CDF properties and independent standard uniform and Gaussian random variables. We illustrate the usefulness of our approach by modeling and analyzing soft errors in commonly used dynamic random access memory sense amplifier circuits.

  3. Error sensitivity to refinement: a criterion for optimal grid adaptation

    Science.gov (United States)

    Luchini, Paolo; Giannetti, Flavio; Citro, Vincenzo

    2017-12-01

    Most indicators used for automatic grid refinement are suboptimal, in the sense that they do not really minimize the global solution error. This paper concerns with a new indicator, related to the sensitivity map of global stability problems, suitable for an optimal grid refinement that minimizes the global solution error. The new criterion is derived from the properties of the adjoint operator and provides a map of the sensitivity of the global error (or its estimate) to a local mesh refinement. Examples are presented for both a scalar partial differential equation and for the system of Navier-Stokes equations. In the last case, we also present a grid-adaptation algorithm based on the new estimator and on the FreeFem++ software that improves the accuracy of the solution of almost two order of magnitude by redistributing the nodes of the initial computational mesh.

  4. Calibration/Validation Error Budgets, Uncertainties, Traceability and Their Importance to Imaging Spectrometry

    Science.gov (United States)

    Thome, K.

    2016-01-01

    Knowledge of uncertainties and errors are essential for comparisons of remote sensing data across time, space, and spectral domains. Vicarious radiometric calibration is used to demonstrate the need for uncertainty knowledge and to provide an example error budget. The sample error budget serves as an example of the questions and issues that need to be addressed by the calibrationvalidation community as accuracy requirements for imaging spectroscopy data will continue to become more stringent in the future. Error budgets will also be critical to ensure consistency between the range of imaging spectrometers expected to be launched in the next five years.

  5. Mobile Sensing Systems

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-01-01

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high. PMID:24351637

  6. Mobile sensing systems.

    Science.gov (United States)

    Macias, Elsa; Suarez, Alvaro; Lloret, Jaime

    2013-12-16

    Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  7. Mobile Sensing Systems

    Directory of Open Access Journals (Sweden)

    Elsa Macias

    2013-12-01

    Full Text Available Rich-sensor smart phones have made possible the recent birth of the mobile sensing research area as part of ubiquitous sensing which integrates other areas such as wireless sensor networks and web sensing. There are several types of mobile sensing: individual, participatory, opportunistic, crowd, social, etc. The object of sensing can be people-centered or environment-centered. The sensing domain can be home, urban, vehicular… Currently there are barriers that limit the social acceptance of mobile sensing systems. Examples of social barriers are privacy concerns, restrictive laws in some countries and the absence of economic incentives that might encourage people to participate in a sensing campaign. Several technical barriers are phone energy savings and the variety of sensors and software for their management. Some existing surveys partially tackle the topic of mobile sensing systems. Published papers theoretically or partially solve the above barriers. We complete the above surveys with new works, review the barriers of mobile sensing systems and propose some ideas for efficiently implementing sensing, fusion, learning, security, privacy and energy saving for any type of mobile sensing system, and propose several realistic research challenges. The main objective is to reduce the learning curve in mobile sensing systems where the complexity is very high.

  8. The uncorrected refractive error challenge

    Directory of Open Access Journals (Sweden)

    Kovin Naidoo

    2016-11-01

    Full Text Available Refractive error affects people of all ages, socio-economic status and ethnic groups. The most recent statistics estimate that, worldwide, 32.4 million people are blind and 191 million people have vision impairment. Vision impairment has been defined based on distance visual acuity only, and uncorrected distance refractive error (mainly myopia is the single biggest cause of worldwide vision impairment. However, when we also consider near visual impairment, it is clear that even more people are affected. From research it was estimated that the number of people with vision impairment due to uncorrected distance refractive error was 107.8 million,1 and the number of people affected by uncorrected near refractive error was 517 million, giving a total of 624.8 million people.

  9. Quantile Regression With Measurement Error

    KAUST Repository

    Wei, Ying

    2009-08-27

    Regression quantiles can be substantially biased when the covariates are measured with error. In this paper we propose a new method that produces consistent linear quantile estimation in the presence of covariate measurement error. The method corrects the measurement error induced bias by constructing joint estimating equations that simultaneously hold for all the quantile levels. An iterative EM-type estimation algorithm to obtain the solutions to such joint estimation equations is provided. The finite sample performance of the proposed method is investigated in a simulation study, and compared to the standard regression calibration approach. Finally, we apply our methodology to part of the National Collaborative Perinatal Project growth data, a longitudinal study with an unusual measurement error structure. © 2009 American Statistical Association.

  10. Comprehensive Error Rate Testing (CERT)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Centers for Medicare and Medicaid Services (CMS) implemented the Comprehensive Error Rate Testing (CERT) program to measure improper payments in the Medicare...

  11. Dual processing and diagnostic errors.

    Science.gov (United States)

    Norman, Geoff

    2009-09-01

    In this paper, I review evidence from two theories in psychology relevant to diagnosis and diagnostic errors. "Dual Process" theories of thinking, frequently mentioned with respect to diagnostic error, propose that categorization decisions can be made with either a fast, unconscious, contextual process called System 1 or a slow, analytical, conscious, and conceptual process, called System 2. Exemplar theories of categorization propose that many category decisions in everyday life are made by unconscious matching to a particular example in memory, and these remain available and retrievable individually. I then review studies of clinical reasoning based on these theories, and show that the two processes are equally effective; System 1, despite its reliance in idiosyncratic, individual experience, is no more prone to cognitive bias or diagnostic error than System 2. Further, I review evidence that instructions directed at encouraging the clinician to explicitly use both strategies can lead to consistent reduction in error rates.

  12. Greenness and school-wide test scores are not always positively associated – A replication of "linking student performance in Massachusetts elementary schools with the 'greenness' of school surroundings using remote sensing"

    Science.gov (United States)

    Matthew H.E.M. Browning; Ming Kuo; Sonya Sachdeva; Kangjae Lee; Lynne Westphal

    2018-01-01

    Recent studies find vegetation around schools correlates positively with student test scores. To test this relationship in schools with less green cover and more disadvantaged students, we replicated a leading study, using six years of NDVI-derived greenness data to predict school-level math and reading achievement in 404 Chicago public schools. A direct replication...

  13. Position Information

    Data.gov (United States)

    Social Security Administration — The Position Information Data Asset provides the ability to search for active SSA position descriptions using various search criteria. An individual may search by PD...

  14. Error correcting coding for OTN

    DEFF Research Database (Denmark)

    Justesen, Jørn; Larsen, Knud J.; Pedersen, Lars A.

    2010-01-01

    Forward error correction codes for 100 Gb/s optical transmission are currently receiving much attention from transport network operators and technology providers. We discuss the performance of hard decision decoding using product type codes that cover a single OTN frame or a small number...... of such frames. In particular we argue that a three-error correcting BCH is the best choice for the component code in such systems....

  15. Negligence, genuine error, and litigation

    OpenAIRE

    Sohn DH

    2013-01-01

    David H SohnDepartment of Orthopedic Surgery, University of Toledo Medical Center, Toledo, OH, USAAbstract: Not all medical injuries are the result of negligence. In fact, most medical injuries are the result either of the inherent risk in the practice of medicine, or due to system errors, which cannot be prevented simply through fear of disciplinary action. This paper will discuss the differences between adverse events, negligence, and system errors; the current medical malpractice tort syst...

  16. Eliminating US hospital medical errors.

    Science.gov (United States)

    Kumar, Sameer; Steinebach, Marc

    2008-01-01

    Healthcare costs in the USA have continued to rise steadily since the 1980s. Medical errors are one of the major causes of deaths and injuries of thousands of patients every year, contributing to soaring healthcare costs. The purpose of this study is to examine what has been done to deal with the medical-error problem in the last two decades and present a closed-loop mistake-proof operation system for surgery processes that would likely eliminate preventable medical errors. The design method used is a combination of creating a service blueprint, implementing the six sigma DMAIC cycle, developing cause-and-effect diagrams as well as devising poka-yokes in order to develop a robust surgery operation process for a typical US hospital. In the improve phase of the six sigma DMAIC cycle, a number of poka-yoke techniques are introduced to prevent typical medical errors (identified through cause-and-effect diagrams) that may occur in surgery operation processes in US hospitals. It is the authors' assertion that implementing the new service blueprint along with the poka-yokes, will likely result in the current medical error rate to significantly improve to the six-sigma level. Additionally, designing as many redundancies as possible in the delivery of care will help reduce medical errors. Primary healthcare providers should strongly consider investing in adequate doctor and nurse staffing, and improving their education related to the quality of service delivery to minimize clinical errors. This will lead to an increase in higher fixed costs, especially in the shorter time frame. This paper focuses additional attention needed to make a sound technical and business case for implementing six sigma tools to eliminate medical errors that will enable hospital managers to increase their hospital's profitability in the long run and also ensure patient safety.

  17. Approximation errors during variance propagation

    International Nuclear Information System (INIS)

    Dinsmore, Stephen

    1986-01-01

    Risk and reliability analyses are often performed by constructing and quantifying large fault trees. The inputs to these models are component failure events whose probability of occuring are best represented as random variables. This paper examines the errors inherent in two approximation techniques used to calculate the top event's variance from the inputs' variance. Two sample fault trees are evaluated and several three dimensional plots illustrating the magnitude of the error over a wide range of input means and variances are given

  18. Electrophysiological correlates of error processing in borderline personality disorder.

    Science.gov (United States)

    Ruchsow, Martin; Walter, Henrik; Buchheim, Anna; Martius, Philipp; Spitzer, Manfred; Kächele, Horst; Grön, Georg; Kiefer, Markus

    2006-05-01

    The electrophysiological correlates of error processing were investigated in patients with borderline personality disorder (BPD) using event-related potentials (ERP). Twelve patients with BPD and 12 healthy controls were additionally rated with the Barratt impulsiveness scale (BIS-10). Participants performed a Go/Nogo task while a 64 channel EEG was recorded. Three ERP components were of special interest: error-related negativity (ERN)/error negativity (Ne), early error positivity (early Pe) reflecting automatic error processing, and the late Pe component which is thought to mirror the awareness of erroneous responses. We found smaller amplitudes of the ERN/Ne in patients with BPD compared to controls. Moreover, significant correlations with the BIS-10 non-planning sub-score could be demonstrated for both the entire group and the patient group. No between-group differences were observed for the early and late Pe components. ERP measures appear to be a suitable tool to study clinical time courses in BPD.

  19. [Medical errors: inevitable but preventable].

    Science.gov (United States)

    Giard, R W

    2001-10-27

    Medical errors are increasingly reported in the lay press. Studies have shown dramatic error rates of 10 percent or even higher. From a methodological point of view, studying the frequency and causes of medical errors is far from simple. Clinical decisions on diagnostic or therapeutic interventions are always taken within a clinical context. Reviewing outcomes of interventions without taking into account both the intentions and the arguments for a particular action will limit the conclusions from a study on the rate and preventability of errors. The interpretation of the preventability of medical errors is fraught with difficulties and probably highly subjective. Blaming the doctor personally does not do justice to the actual situation and especially the organisational framework. Attention for and improvement of the organisational aspects of error are far more important then litigating the person. To err is and will remain human and if we want to reduce the incidence of faults we must be able to learn from our mistakes. That requires an open attitude towards medical mistakes, a continuous effort in their detection, a sound analysis and, where feasible, the institution of preventive measures.

  20. Quantum error correction for beginners

    International Nuclear Information System (INIS)

    Devitt, Simon J; Nemoto, Kae; Munro, William J

    2013-01-01

    Quantum error correction (QEC) and fault-tolerant quantum computation represent one of the most vital theoretical aspects of quantum information processing. It was well known from the early developments of this exciting field that the fragility of coherent quantum systems would be a catastrophic obstacle to the development of large-scale quantum computers. The introduction of quantum error correction in 1995 showed that active techniques could be employed to mitigate this fatal problem. However, quantum error correction and fault-tolerant computation is now a much larger field and many new codes, techniques, and methodologies have been developed to implement error correction for large-scale quantum algorithms. In response, we have attempted to summarize the basic aspects of quantum error correction and fault-tolerance, not as a detailed guide, but rather as a basic introduction. The development in this area has been so pronounced that many in the field of quantum information, specifically researchers who are new to quantum information or people focused on the many other important issues in quantum computation, have found it difficult to keep up with the general formalisms and methodologies employed in this area. Rather than introducing these concepts from a rigorous mathematical and computer science framework, we instead examine error correction and fault-tolerance largely through detailed examples, which are more relevant to experimentalists today and in the near future. (review article)