WorldWideScience

Sample records for position detecting device

  1. Control rod position detection device

    International Nuclear Information System (INIS)

    Akita, Haruo; Ogiwara, Sakae.

    1996-01-01

    The device of the present invention is used in a back-up shut down system of an LMFBR type reactor which is easy for maintenance, has high reliability and can recognize the position of control rods accurately. Namely, a permanent magnet is disposed to a control rod extension tube connected to the lower portion of the control rod. The detector guide tube is disposed in the vicinity of the control rod extension tube. A detector having a detection coil is inserted into a detector tube. With such constitution, the control rod can be detected at one position using the following method. (1) the movement of the magnetic field of the permanent magnet is detected by the detection coil. (2) a plurality of grooves are formed on the control rod extension tube, and the movement of the grooves is detected. In addition, the detection coil is inserted into the detector guide tube, and the signals from the detection coil are inputted to a signal processing circuit disposed at the outside of the reactor vessel using an MI cable to enable the maintenance of the detector. Further, if the detector comprises a detection coil and an excitation coil, the position of a dropped control rod can be recognized at a plurality of points. (I.S.)

  2. Failure position detection device for nuclear fuel rod

    International Nuclear Information System (INIS)

    Ishida, Takeshi; Higuchi, Shin-ichi; Ito, Masaru; Matsuda, Yasuhiko

    1987-01-01

    Purpose: To easily detect failure position of a nuclear fuel rod by relatively moving an air-tightly shielded detection portion to a fuel rod. Constitution: For detecting the failure position of a leaked fuel assembly, the fuel assembly is dismantled and a portion of withdrawn fuel rod is air-tightly sealed with an inspection portion. The inside of the inspection portion is maintained at a pressure-reduced state. Then, in a case if failed openings are formed at a portion sealed by the inspection portion in the fuel rod, FP gases in the fuel rod are released based on the reduced pressure and the FP gases are detected in the detection portion. Accordingly, by relatively moving the detection portion to the fuel rod, the failure position can be detected. (Yoshino, Y.)

  3. Failure position detection device for nuclear fuel rod

    Energy Technology Data Exchange (ETDEWEB)

    Ishida, Takeshi; Higuchi, Shin-ichi; Ito, Masaru; Matsuda, Yasuhiko

    1987-03-24

    Purpose: To easily detect failure position of a nuclear fuel rod by relatively moving an air-tightly shielded detection portion to a fuel rod. Constitution: For detecting the failure position of a leaked fuel assembly, the fuel assembly is dismantled and a portion of withdrawn fuel rod is air-tightly sealed with an inspection portion. The inside of the inspection portion is maintained at a pressure-reduced state. Then, in a case if failed openings are formed at a portion sealed by the inspection portion in the fuel rod, FP gases in the fuel rod are released based on the reduced pressure and the FP gases are detected in the detection portion. Accordingly, by relatively moving the detection portion to the fuel rod, the failure position can be detected. (Yoshino, Y.).

  4. Detection device for the failed position in fuels

    International Nuclear Information System (INIS)

    Tokunaga, Kensuke; Nomura, Teiji; Hiruta, Koji

    1985-01-01

    Purpose: To detect the failed position of a fuel assembly with ease and safety. Constitution: A fuel assembly is tightly closed in a sipper tube equipped with a gas supply tube and a gas exhaust tube at the upper portion and a purified water injection tube and a draining tube at the lower end. Then, water in the sipper tube is drained to the lower portion of the fuel assembly by the pressure of gases while opening the gas supply tube and the draining tube, and closing the exhaust tube and the injection tube. Then, after closing the gas supply tube and the draining tube while opening theexhaust tube and the injection tube, purified water is injected into the sipper tube from the injection tube to an optional height till the fuel assembly is immersed. Then, after leaving for a predetermined of time, water is sampled and the radioactive material density therein is measured. By changing the injection level of the purified water, since the radioactive material density changes at the failed position, the failed position can be detected with ease. (Sekiya, K.)

  5. Improved detection of breast cancer on FDG-PET cancer screening using breast positioning device

    International Nuclear Information System (INIS)

    Kaida, Hayato; Ishibashi, Masatoshi; Fujii, Teruhiko; Kurata, Seiji; Ogo, Etsuyo; Hayabuchi, Naofumi; Tanaka, Maki

    2008-01-01

    The aim of this study was to investigate the detection rate of breast cancer by positron emission tomography cancer screening using a breast positioning device. Between January 2004 and January 2006, 1,498 healthy asymptomatic individuals underwent cancer screening by fluorine-18 fluorodeoxyglucose positron emission tomography (FDG-PET) at our institution; 660 of 1498 asymptomatic healthy women underwent breast PET imaging in the prone position using the breast positioning device to examine the mammary glands in addition to whole-body PET imaging. All subjects that showed abnormal 18 F-FDG uptake in the mammary glands were referred for further examination or surgery at our institution or a local hospital. Our data were compared with the histopathological findings or findings of other imaging modalities in our institution and replies from the doctors at another hospital. Of the 660 participants, 7 (1.06%) were found to have breast cancers at a curable stage. All the seven cancers were detected by breast PET imaging, but only five of these were detected by whole-body PET imaging; the other two were detected by breast PET imaging using the breast positioning device. In cancer screening, prone breast imaging using a positioning device may help to improve the detection rate of breast cancer. However, overall cancer including mammography and ultrasonography screening should be performed to investigate the false-negative cases and reduce false-positive cases. The effectiveness of prone breast PET imaging in cancer screening should be investigated using a much larger number of cases in the near future. (author)

  6. Detection device

    Science.gov (United States)

    Smith, J.E.

    1981-02-27

    The present invention is directed to a detection device comprising: (1) an entrance chamber; (2) a central chamber; and (3) an exit chamber. The central chamber includes an ionizing gas, anode, and means for connecting the anode with an external power supply and pulse counter.

  7. Position display device

    International Nuclear Information System (INIS)

    Nishizawa, Yukio.

    1974-01-01

    Object: To provide a device capable of easily and quickly reading mutual mounting relations of control bodies such as control rods mounted on a nuclear reactor and positions to which the control bodies are driven. Structure: A scanning circuit is provided to scan positions of controllably mounted control bodies such as control rods. Values detected by scanning the positions are converted into character signals according to the values and converted into preranked color signals. The character signals and color signals are stored in a memory circuit by synchronous signals in synchronism with the scanning in the scanning circuit. Outputs of the memory circuit are displayed by a display unit such as a color Braun tube in accordance with the synchronous signals to provide color representations according to positions to which control bodies are driven in the same positional relation as the mounting of the control bodies. (Kamimura, M.)

  8. Improvements to a neutral radiation detection and position sensitive process and devices

    International Nuclear Information System (INIS)

    Charpak, Georges; Nguyen, N.H.; Policarpo, Armando.

    1977-01-01

    This invention aims to provide a neutral radiation position sensitive process and device providing a spatial radiation satisfactory for most medical applications and an energy radiation that cannot be reached by gas detectors based on proportional counters or by scintillation counters. Only solid state detectors can compete with respect to energy resolution. The detector described enables large areas to be covered which cannot be reached at accessible costs by solid state detectors. With this aim in view, the invention suggests an incident neutral radiation and position sensitive process, particularly soft gamma and X radiations, whereby photoelectrons are made to form by incident radiation action on gas atoms contained in an enclosure. By means of an electric field, the electrons are diverted towards a space undergoing an electric field high enough in value to create photons by exciting gas atoms and returning them to the de-excited state. The photons are collected, through a transparent window, on a layer of a material for converting such photons into scintillations in the near or visible UV spectrum and the barycentre of the scintillations is positioned on the layer, for instance by photomultipliers or ionization detectors. According to another aspect of the invention, it suggests a detection and position sensitive device comprising (generally downstream of a collimator with a grid of inlet holes) a leak tight containment fitted with an inlet window transparent to incident radiations, filled with a gas producing electrons by interaction with the incident radiation, and fitted with electrodes for generating an electric field to divert the electrons to a space for creating secondary photons [fr

  9. Position measuring device

    International Nuclear Information System (INIS)

    Maeda, Kazuyuki; Takahashi, Shuichi; Maruyama, Mayumi

    1998-01-01

    The present invention provides a device capable of measuring accurate position and distance easily even at places where operator can not easily access, such as cell facilities for vitrifying radioactive wastes. Referring to a case of the vitrifying cell, an objective equipment settled in the cell is photographed by a photographing device. The image is stored in a position measuring device by way of an image input device. After several years, when the objective equipment is exchanged, a new objective equipment is photographed by a photographing device. The image is also stored in the position measuring device. The position measuring device compares the data of both of the images on the basis of pixel unit. Based on the image of the equipment before the exchange as a reference, extent of the displacement of the installation position of the equipment on the image after the exchange caused by installation error and manufacturing error is determined to decide the position of the equipment after exchange relative to the equipment before exchange. (I.S.)

  10. Positioning devices for patients

    International Nuclear Information System (INIS)

    Heavens, M.

    1981-01-01

    It has been suggested that it is very important to position patients reproducibly at different stages of radiotherapy treatment planning and treatment, or similar procedures. Devices have been described for positioning a patient's upper and lower thorax. This invention provides reproducible positioning for a female patient's breasts, for example in planning treatment of and treating breast tumours. The patient is placed prone, using for example an upper thorax device. A support device is placed central to and beneath her breasts to partially displace them outwards. The device may be triangular in section with one apex contacting the chest wall at the sternum. Restraining straps may be provided to hold the breasts against the support device. Means may be provided to take a healthy breast from the path of radiation through the tumour. (author)

  11. Control rod position control device

    International Nuclear Information System (INIS)

    Ubukata, Shinji.

    1997-01-01

    The present invention provides a control rod position control device which stores data such as of position signals and driving control rod instruction before and after occurrence of abnormality in control for the control rod position for controlling reactor power and utilized the data effectively for investigating the cause of abnormality. Namely, a plurality of individual control devices have an operation mismatching detection circuit for outputting signals when difference is caused between a driving instruction given to the control rod position control device and the control rod driving means and signals from a detection means for detecting an actual moving amount. A general control device collectively controls the individual control devices. In addition, there is also disposed a position storing circuit for storing position signals at least before and after the occurrence of the control rod operation mismatching. With such procedures, the cause of the abnormality can be determined based on the position signals before and after the occurrence of control rod mismatching operation stored in the position storing circuit. Accordingly, the abnormality cause can be determined to conduct restoration in an early stage. (I.S.)

  12. Position indicating device

    International Nuclear Information System (INIS)

    Fellchenfeld, M.M.; Connors, G.R.

    1987-01-01

    This patent describes a position indicating device for producing an indication of the position of a displaceable structure comprising: a position representing member mounted for movement in response to displacement of the structure; sensing elements spaced apart along the defined path such that each element is associated with a respective location along the defined path; means operatively coupling the elements into respective pairs of elements, having, for each pair of elements, an output producing a signal only when a single element of its respective pair is responding to the presence of the member; signal producing members each operative for producing a signal representing a predetermined logic state in response to a predetermined input signal, the number of the signal producing members being smaller than the number of the sensing elements; and circuit means operatively connecting the outputs to the signal producing members for causing a signal at each output to produce a predetermined input signal at a corresponding signal producing member and for causing a predetermined input signal to be produced at least one the signal producing member whenever a signal is present at either one of at least two of the outputs

  13. Counterbalanced radiation detection device

    International Nuclear Information System (INIS)

    Platz, W.

    1986-01-01

    A counterbalanced radiation detection device is described which consists of: (a) a base; (b) a radiation detector having a known weight; (c) means connected with the radiation detector and the base for positioning the radiation detector in different heights with respect to the base; (d) electronic component means movably mounted on the base for counterbalancing the weight of the radiation detector; (e) means connected with the electronic component means and the radiation detector positioning means for positioning the electronic component means in different heights with respect to the base opposite to the heights of the radiation detector; (f) means connected with the radiation detector and the base for shifting the radiation detector horizontally with respect to the base; and (g) means connected with the electronic component means and the radiation detector shifting means for shifting the electronic component means horizontally with respect to the base in opposite direction to shifting of the radiation detector

  14. Plasma position control device

    International Nuclear Information System (INIS)

    Takase, Haruhiko.

    1987-01-01

    Purpose: To conduct position control stably to various plasmas and reduce the burden on the control coil power source. Constitution: Among the proportional, integration and differentiation controls, a proportional-differentiation control section and an integration control section are connected in parallel. Then, a signal switching circuit is disposed to the control signal input section for the proportional-differentiation control section such that either a present position of plasmas or deviation between the present plasma position and an aimed value can be selected as a control signal depending on the control procedures or the state of the plasmas. For instance, if a rapid response is required for the control, the deviation between the present plasma position and the aimed value is selected as the input signal to conduct proportional, integration and differentiation controls. While on the other hand, if it is intended to reduce the burden on the control coil power source, it is adapted such that the control signal inputted to the proportional-differentiation control section itself can select the present plasma position. (Yoshihara, H.)

  15. Flaw detection device

    International Nuclear Information System (INIS)

    Sasahara, Toshihiko

    1998-01-01

    The present invention provides a device for detecting welded portions of a reactor pressure vessel. Namely, the device of the present invention comprises (1) a casing to be disposed on the surface to be detected, (2) a probe driving means loaded to the casing, (3) a probe driven along the surface to be detected and (4) a pressure reduction means for keeping the hollow portion in the casing to an evacuated atmosphere. The casing comprises a flexible suction edge to be tightly in contact with the surface to be tested for maintaining the air tight state, (6) a guide wheel for moving the casing along the surface to be tested and (7) a handle for performing transferring operation. The flaw detection device thus constituted has following features. The working efficiency upon conducting detection is improved. The influence of the weight of the device on the detection is small. The device can be applied on the surface of a nonmagnetic material. The efficiency for the flaw detection can be improved. (I.S.)

  16. Failed fuel detection device

    International Nuclear Information System (INIS)

    Sudo, Takayuki.

    1983-01-01

    Purpose: To enable early and sure detection of failed fuels by automatically changing the alarm set value depending on the operation states of a nuclear reactor. Constitution: Gaseous fission products released into coolants are transferred further into cover gases and then introduced through a pipeway to a failed fuel detector. The cover gases introduced from the pipeway to the pipeway or chamber within the detection device are detected by a radiation detector for the radiation dose of the gaseous fission products contained therein. The detected value is converted and amplified as a signal and inputted to a comparator. While on the other hand, a signal corresponding to the reactor power is converted by an alarm setter into a set value and inputted to the comparator. In such a structure, early and sure detection can be made for the fuel failures. (Yoshino, Y.)

  17. Failed fuel detection device

    International Nuclear Information System (INIS)

    Doi, Akira.

    1994-01-01

    The device of the present invention concerns a failed fuel detection device for a nuclear reactor, such as an FBR type reactor, using electroconductive coolants. A sampling port is disposed at the upper portion of the fuel assembly so as to cover the assembly, so that coolants in the fuel assembly are sampled to improve a device for detecting fuel failure. That is, when coolants in the fuel assembly are sampled from the sampling port, the flow of electroconductive coolants in an sampling tube is detected by a flowmeter, to control an electromagnetic pump. The flow of electroconductive coolants is stopped against the waterhead pressure and dynamic pressure of the conductive coolants, and a predetermined amount of the coolants is pumped up to the sampling tank. Gas is supplied to the pumped up coolants so that fissile products are transferred from the coolants to a gas phase. Radiation in the gas in a gas recycling system is measured to detect presence of fuel failure. (I.S.)

  18. Biomolecular detection device

    Science.gov (United States)

    Huo, Qisheng [Albuquerque, NM; Liu, Jun [Albuquerque, NM

    2008-10-21

    A device for detecting and measuring the concentration of biomolecules in solution, utilizing a conducting electrode in contact with a solution containing target biomolecules, with a film with controllable pore size distribution characteristics applied to at least one surface of the conducting electrode. The film is functionalized with probe molecules that chemically interact with the target biomolecules at the film surface, blocking indicator molecules present in solution from diffusing from the solution to the electrode, thereby changing the electrochemical response of the electrode.

  19. Pressure detection device

    International Nuclear Information System (INIS)

    Fuji, Akira.

    1997-01-01

    The present invention provides a pressure detection device having a function of preventing discharge of reactor water in pipelines to the outside of a system when a pipeline for detecting pressure to be connected to a reactor is failed. Namely, a fluid pressure detector is disposed at the downstream of the detection pipeline. A cylindrical member having a shrinkable inner diameter is disposed to the outer circumference at the upstream. A cylindrical member having an outer diameter substantially equal to the inner diameter of the detection pipeline is disposed while restricting the movement of the detection pipeline in the inner circumferential direction. Then, it fasten the detection pipeline from the outside upon failure of the pipeline thereby enabling to suppress the flow rate of the fluid in the detection pipeline. In addition, a shape memory alloy which shrinks upon elevation of temperature is used for the cylindrical member. Then, the discharge of the fluid can be prevented automatically upon rupture of the pipeline. (I.S.)

  20. Coolant leakage detecting device

    International Nuclear Information System (INIS)

    Yamauchi, Kiyoshi; Kawai, Katsunori; Ishihara, Yoshinao.

    1995-01-01

    The device of the present invention judges an amount of leakage of primary coolants of a PWR power plant at high speed. Namely, a mass of coolants contained in a pressurizer, a volume controlling tank and loop regions is obtained based on a preset relational formula and signals of each of process amount, summed up to determine the total mass of coolants for every period of time. The amount of leakage for every period of time is calculated by a formula of Karman's filter based on the total mass of the primary coolants for every predetermined period of time, and displays it on CRT. The Karman's filter is formed on every formula for several kinds of states formed based on the preset amount of the leakage, to calculate forecasting values for every mass of coolants. An adaptable probability for every preset leakage amount is determined based on the difference between the forecast value and the observed value and the scattering thereof. The adaptable probability is compared with a predetermined threshold value, which is displayed on the CRT. This device enables earlier detection of leakage and identification of minute leakage amount as compared with the prior device. (I.S.)

  1. Electronic portal imaging device detection of radioopaque markers for the evaluation of prostate position during megavoltage irradiation: a clinical study

    International Nuclear Information System (INIS)

    Vigneault, Eric; Pouliot, Jean; Laverdiere, Jacques; Roy, Jean; Dorion, Marc

    1997-01-01

    Purpose: This study was designed to assess daily prostatic apex motion relative to pelvic bone structures during megavoltage irradiation. Methods and Materials: Radioopaque markers were implanted under ultrasound guidance near the prostatic apex of 11 patients with localized prostatic carcinoma. Patients were subsequently treated with a four field-box technique at a beam energy of 23 MV. During treatment, on-line images were obtained with an electronic portal imaging device (EPID). The marker was easily identified, even on unprocessed images, and the distance between the marker and a bony landmark was measured. Timelapse movies were also reviewed. After the completion of treatment, a transcrectal ultrasound examination was performed in 8 of 11 patients, to verify the position of the marker. Results: We acquired over 900 digital portal images and analyzed posterioanterior and right lateral views. The quality of portal images obtained with megavoltage irradiation was good. It was possible to evaluate pelvic bone structures even without image histogram equalization. Moreover, the radioopaque marker was easily visible on every online portal image. The review of timelapse movies showed important interfraction motion of the marker while bone structures remained stable. We measured the position of the marker for each fraction. Marker displacements up to 1.6 cm were measured between 2 consecutive days of treatment. Important marker motions were predominantly in the posteroanterior and cephalocaudal directions. In eight patients, we verified the position of the marker relative to the prostatic apex with ultrasound at the end of the treatments. The marker remained in the trapezoid zone. Intratreatment images reviewed in two cases showed no change in marker position. Our results, obtained during the treatment courses, indicate similar or larger prostate motions than previously observed in studies that used intertreatment x-ray films and CT images. Marker implantation under

  2. Failed fuel detection device

    International Nuclear Information System (INIS)

    Kawai, Masayoshi; Hayashida, Yoshihisa; Niidome, Jiro.

    1985-01-01

    Purpose: To prevent intrusion of background neutrons to neutron detectors thereby improve the S/N ratio of the detectors in the failed fuel detection device of LMFBR type reactors. Constitution: Neutrons from the reactor core pass through the gaps around the penetration holes in which the primary pipeways pass through the concrete shielding walls and pass through the gaps between the thermal shielding members and the neutron moderating shielding members of the failed fuel detection device and then intrude into the neutron detectors. In view of the above, inner neutron moderating shielding members and movable or resilient neutron shielding members are disposed to the inside of the neutron moderating shielding member. Graphite or carbon hydrides such as paraffin or synthetic resin with a large neutron moderation effect are used as the outer moderating shielding member and materials such as boron or carbon are used for the inner members. As a result, the background neutrons are shielded by the inner neutron moderating shielding members and the resilient neutron shielding members, by which the S/N ratio of the neutron detectors can be increased to 2 - 4 times. (Moriyama, K.)

  3. Remote detection of electronic devices

    Science.gov (United States)

    Judd, Stephen L [Los Alamos, NM; Fortgang, Clifford M [Los Alamos, NM; Guenther, David C [Los Alamos, NM

    2012-09-25

    An apparatus and method for detecting solid-state electronic devices are described. Non-linear junction detection techniques are combined with spread-spectrum encoding and cross correlation to increase the range and sensitivity of the non-linear junction detection and to permit the determination of the distances of the detected electronics. Nonlinear elements are detected by transmitting a signal at a chosen frequency and detecting higher harmonic signals that are returned from responding devices.

  4. Plasma position control device for thermonuclear device

    Energy Technology Data Exchange (ETDEWEB)

    Onozuka, Masanori [Mitsubishi Heavy Industries Ltd., Tokyo (Japan); Fujita, Jun-ya; Ioki, Kimihiro

    1995-10-03

    The present invention concerns plasma position control coils having a feeder line structure not requiring high strength for the support portion. Namely, the coils are formed by twisting feeder lines extended from plasma position control coils in a vacuum vessel. The twisted feeder lines are supported using an appropriate structural member. Electromagnetic load is generated to the feeder lines being extended from the position control coils and traversing toroidal fields at a current introduction lines and at current delivery lines respectively. However, since the feeder lines have substantially spiral shape consisting of two twisted lines, the electromagnetic load and the moment caused by the generated load which are inversed to each other are off set. Accordingly, only extremely small force is exerted on the fittings which support the feeder lines. Therefore, small strength may suffice for the fittings and the gaps of mounting the fittings may be made longer. (I.S.).

  5. Plasma position control device for thermonuclear device

    International Nuclear Information System (INIS)

    Onozuka, Masanori; Fujita, Jun-ya; Ioki, Kimihiro.

    1995-01-01

    The present invention concerns plasma position control coils having a feeder line structure not requiring high strength for the support portion. Namely, the coils are formed by twisting feeder lines extended from plasma position control coils in a vacuum vessel. The twisted feeder lines are supported using an appropriate structural member. Electromagnetic load is generated to the feeder lines being extended from the position control coils and traversing toroidal fields at a current introduction lines and at current delivery lines respectively. However, since the feeder lines have substantially spiral shape consisting of two twisted lines, the electromagnetic load and the moment caused by the generated load which are inversed to each other are off set. Accordingly, only extremely small force is exerted on the fittings which support the feeder lines. Therefore, small strength may suffice for the fittings and the gaps of mounting the fittings may be made longer. (I.S.)

  6. Remote detection device and detection method therefor

    International Nuclear Information System (INIS)

    Kogure, Sumio; Yoshida, Yoji; Matsuo, Takashiro; Takehara, Hidetoshi; Kojima, Shinsaku.

    1997-01-01

    The present invention provides a non-destructive detection device for collectively, efficiently and effectively conducting maintenance and detection for confirming the integrity of a nuclear reactor by way of a shielding member for shielding radiation rays generated from an objective portion to be detected. Namely, devices for direct visual detection using an under water TV camera as a sensor, an eddy current detection using a coil as a sensor and each magnetic powder flow detection are integrated and applied collectively. Specifically, the visual detection by using the TV camera and the eddy current flaw detection are adopted together. The flaw detection with magnetic powder is applied as a means for confirming the results of the two kinds of detections by other method. With such procedures, detection techniques using respective specific theories are combined thereby enabling to enhance the accuracy for the evaluation of the detection. (I.S.)

  7. Fuel failure detection device

    International Nuclear Information System (INIS)

    Katagiri, Masaki.

    1979-01-01

    Purpose: To improve the SN ratio in the detection. Constitution: Improved precipitator method is provided. Scintillation detectors of a same function are provided respectively by each one before and after a gas reservoir for depositing fission products in the cover gas to detecting wires. The outputs from the two detectors (output from the wire not deposited with the fission products and the output from the wire after deposition) are compared to eliminate background noises resulted from not-decayed nucleides. A subtraction circuit is provided for the elimination. Since the background noises of the detecting wire can thus be measured and corrected on every detection, the SN ratio can be increased. (Ikeda, J.)

  8. Radiation detection device

    International Nuclear Information System (INIS)

    Peschmann, Kristian.

    1982-01-01

    A radiation detector suitable for use in computer tomography device has an ionization chamber which comprises a high voltage electrode, a collector electrode, a high voltage source having two terminals, one connected to the high voltage electrode, current measuring means having two terminals, one connected to the high voltage source and the other to the collector electrode, and an auxilliary electrode near and parallel to the entrance window of the device, having one adjacent to the high voltage electrode and the other adjacent but not connected to the collector electrode. The auxilliary electrode is connected to the high voltage source. In this way the electric field between the high voltage and collector electrodes is made homogeneous in the vicinity of the auxilliary electrode, improving the measuring speed of the detector

  9. Abnormal sound detection device

    International Nuclear Information System (INIS)

    Yamada, Izumi; Matsui, Yuji.

    1995-01-01

    Only components synchronized with rotation of pumps are sampled from detected acoustic sounds, to judge the presence or absence of abnormality based on the magnitude of the synchronized components. A synchronized component sampling means can remove resonance sounds and other acoustic sounds generated at a synchronously with the rotation based on the knowledge that generated acoustic components in a normal state are a sort of resonance sounds and are not precisely synchronized with the number of rotation. On the other hand, abnormal sounds of a rotating body are often caused by compulsory force accompanying the rotation as a generation source, and the abnormal sounds can be detected by extracting only the rotation-synchronized components. Since components of normal acoustic sounds generated at present are discriminated from the detected sounds, reduction of the abnormal sounds due to a signal processing can be avoided and, as a result, abnormal sound detection sensitivity can be improved. Further, since it is adapted to discriminate the occurrence of the abnormal sound from the actually detected sounds, the other frequency components which are forecast but not generated actually are not removed, so that it is further effective for the improvement of detection sensitivity. (N.H.)

  10. Phenomenon detection device

    International Nuclear Information System (INIS)

    Suzuki, Yasuo.

    1994-01-01

    Detection signals for a specific phenomenon outputted from any of detectors are distributed by way of half mirrors and inputted to a logic discrimination circuit by way of a photoelectric convertor. The photoelectric convertor detects the quantity of light corresponding to the optical signals from more than two detectors which detected the phenomenon, and outputs detection signals to the logic discrimination circuit. If the phenomenon is detected, since both inputs turn ON in the logic discrimination circuit in accordance with the predetermined logical sum, the occurrence of a specific phenomenon is detected. Thus, an optical system substantially comprises half mirrors, reflection mirrors and photoelectric convertor in combination provides a logic circuit. Since the circuit which transmits signals of the detectors is constituted with an optical system using the half mirrors, the number of parts constituting the logic circuit can greatly be saved. In addition, since the optical system comprises mirrors or half mirrors which have been used so far, they can be used, once assembled, quasipermanently, and the reliability can be enhanced greatly. (N.H.)

  11. Coolant leakage detection device

    International Nuclear Information System (INIS)

    Ito, Takao.

    1983-01-01

    Purpose: To surely detect the coolant leakage at a time when the leakage amount is still low in the intra-reactor inlet pipeway of FBR type reactor. Constitution: Outside of the intra-reactor inlet piping for introducing coolants at low temperature into a reactor core, an outer closure pipe is furnished. The upper end of the outer closure pipe opens above the liquid level of the coolants in the reactor, and a thermocouple is inserted to the opening of the upper end. In such a structure, if the coolants in the in-reactor piping should leak to the outer closure pipe, coolants over-flows from the opening thereof, at which the thermocouple detects the temperature of the coolants at a low temperature, thereby enabling to detect the leakage of the coolants at a time when it is still low. (Kamimura, M.)

  12. Failed fuel detection device

    International Nuclear Information System (INIS)

    Kasahara, Yoshiyuki; Soroi, Masatoshi.

    1992-01-01

    A pair of coil springs each of different spring rigidity are disposed independently to an interface mechanism which engages a reactor core fuel assembly. The springing reaction of the coil springs is utilized for providing a structure capable of detaching. A driving portion vertically movable in an inner cylinder of a system main body interlocking with the intrface mechanism is disposed, as well as a system separation mechanism is disposed for conducting electromotive remote control when it is required. With such a constitution, although it has been necessary so far that a plurality of operators access the reactor core upper mechanisms, it is not necessary according to the device of the present invention. Accordingly, the problem of operator's exposure can be overcome. (I.S.)

  13. Ultrasonic wave damage detecting device

    International Nuclear Information System (INIS)

    Miura, Yuichi; Nagao, Tetsuya; Nishi, Yuji; Kubota, Keisuke; Maruyama, Takayuki.

    1994-01-01

    Upon detecting a damage for a joint between a connecting nozzle at the outer circumference of a reactor pressure vessel and pipelines, the present invention greatly shortens the operation time. That is, it is noted that the connecting nozzle has a tapered portion and a small-diameter portion in view of strength. A main magnetic wheel supported on a base of a running vehicle is attracted to the small-diameter portion and an auxiliary magnet wheel is attracted to the tapered portion respectively and they are rolled. This regulate the deviation of the position of the base of the running vehicle in axial direction of the nozzle by the small-diameter portion and the tapered portion. Accordingly, the running vehicle can be circulated along a predetermined course on the outer circumference of the connecting nozzle without using tracks such as an existent ring track. The test can be performed conveniently only by placing the damage detecting device on the connecting nozzle. As a result, preparation time required before the test can remarkably be shortened. (I.S.)

  14. Self compensating fire detection device

    International Nuclear Information System (INIS)

    Cholin, J. M.

    1985-01-01

    A device employing ionization principles for fire detection disclosing a configuration which allows compensation for adverse effects due to the flow of the gas through the device or due to the accumulation of dust and dirt therein. The detecting device includes two ionization chambers, each having a first member, such as a cylindrically shaped cup, having first and second conductive surface portions. Each chamber also incudes a second member, such as a circular, electrode disc having two conductive surface portions. There is disposed in each chamber a radioactive source for ionizing the gas in the volumes intervening between respective pairs of surfaces. The area dimensions of the respective pairs of surfaces, the interventing volumes and the distances there between, and the relative orientation of the respective pairs are calculated and placed such that the ionization currents flowing between pairs of conductive surfaces are substantially equal and orthogonal to each other

  15. Flaw detection device for plasma facing wall in thermonuclear device

    International Nuclear Information System (INIS)

    Doi, Akira.

    1996-01-01

    The present invention concerns plasma facing walls of a thermonuclear device and provides a device for detecting a thickness of amour tiles accurately and efficiently with no manual operation. Namely, the position of the plasma facing surface of the amour tile is measured using a structure to which the amour tiles are to be disposed as a reference. Also in a case of disposing new armor tiles, the position of the plasma facing surface of the armor tiles is measured to thereby measure the wearing amount of the amour tiles based on the difference between the reference and the measured value. If a measuring means capable of measuring a plurality of amour tiles at once is used efficiency of the measurement and the detection can be enhanced. Several ten thousands of amour tiles are disposed to the plasma facing wall in a large scaled thermonuclear device, and a plenty of time was required for the detection. However, the present invention can improve the accuracy for the measurement and detection and provide time and labors-saving. (I.S.)

  16. Appearance detection device for fuel assembly

    International Nuclear Information System (INIS)

    Matsuoka, Toshihiro

    1998-01-01

    The prevent invention provides an appearance detection device which improves accuracy of images on a display and facilitates editing and selection of images upon detection of appearance of a reactor fuel assembly. Namely, the device of the present invention comprises (1) television cameras movable along fuel assemblies of a reactor, (2) a detection means for detecting the positions of the television cameras, (3) a convertor for converting analog image signals of the television cameras to digital image signals, (4) a memory means for sampling a predetermined portion of the images of the television camera and storing it together with the position signal obtained by the detection means and (5) a computer for selecting a plurality of images and positions from the above-mentioned means and joining them to one or a plurality of static images of the fuel assembly. At least two television cameras are disposed oppositely with each other. Then, position signals of the television cameras are designated by the stored sampling signals, and the fuel assembly at the position can be displayed quickly. It is scrolled, compressed or enlarged and formed into images. (I.S.)

  17. Precise GNSS Positioning Using Smart Devices

    Directory of Open Access Journals (Sweden)

    Eugenio Realini

    2017-10-01

    Full Text Available The recent access to GNSS (Global Navigation Satellite System phase observations on smart devices, enabled by Google through its Android operating system, opens the possibility to apply precise positioning techniques using off-the-shelf, mass-market devices. The target of this work is to evaluate whether this is feasible, and which positioning accuracy can be achieved by relative positioning of the smart device with respect to a base station. Positioning of a Google/HTC Nexus 9 tablet was performed by means of batch least-squares adjustment of L1 phase double-differenced observations, using the open source goGPS software, over baselines ranging from approximately 10 m to 8 km, with respect to both physical (geodetic or low-cost and virtual base stations. The same positioning procedure was applied also to a co-located u-blox low-cost receiver, to compare the performance between the receiver and antenna embedded in the Nexus 9 and a standard low-cost single-frequency receiver with external patch antenna. The results demonstrate that with a smart device providing raw GNSS phase observations, like the Nexus 9, it is possible to reach decimeter-level accuracy through rapid-static surveys, without phase ambiguity resolution. It is expected that sub-centimeter accuracy could be achieved, as demonstrated for the u-blox case, if integer phase ambiguities were correctly resolved.

  18. Precise GNSS Positioning Using Smart Devices.

    Science.gov (United States)

    Realini, Eugenio; Caldera, Stefano; Pertusini, Lisa; Sampietro, Daniele

    2017-10-24

    The recent access to GNSS (Global Navigation Satellite System) phase observations on smart devices, enabled by Google through its Android operating system, opens the possibility to apply precise positioning techniques using off-the-shelf, mass-market devices. The target of this work is to evaluate whether this is feasible, and which positioning accuracy can be achieved by relative positioning of the smart device with respect to a base station. Positioning of a Google/HTC Nexus 9 tablet was performed by means of batch least-squares adjustment of L1 phase double-differenced observations, using the open source goGPS software, over baselines ranging from approximately 10 m to 8 km, with respect to both physical (geodetic or low-cost) and virtual base stations. The same positioning procedure was applied also to a co-located u-blox low-cost receiver, to compare the performance between the receiver and antenna embedded in the Nexus 9 and a standard low-cost single-frequency receiver with external patch antenna. The results demonstrate that with a smart device providing raw GNSS phase observations, like the Nexus 9, it is possible to reach decimeter-level accuracy through rapid-static surveys, without phase ambiguity resolution. It is expected that sub-centimeter accuracy could be achieved, as demonstrated for the u-blox case, if integer phase ambiguities were correctly resolved.

  19. Supersonic flaw detection device for nozzle

    International Nuclear Information System (INIS)

    Hata, Moriki.

    1996-01-01

    In a supersonic flaw detection device to be attached to a body surface of a reactor pressure vessel for automatically detecting flaws of a welded portion of a horizontally connected nozzle by using supersonic waves, a running vehicle automatically running along a circumferential direction of the nozzle comprises a supersonic flaw detection means for detecting flaws of the welded portion of the nozzle by using supersonic waves, and an inclination angle sensor for detecting the inclination angle of the running vehicle relative to the central axis of the nozzle. The running distance of the vehicle running along the circumference of the nozzle, namely, the position of the running vehicle from a reference point of the nozzle can be detected accurately by dividing the distance around the nozzle by the inclination angle detected by the inclination angle sensor. Accordingly, disadvantages in the prior art, for example, that the detected values obtained by using an encoder are changed by slipping or idle running of the magnet wheels are eliminated, and accurate flaw detection can be conducted. In addition, an operation of visually adjusting the reference point for the device can be eliminated. An operator's exposure dose can be reduced. (N.H.)

  20. A-KAM, bracket positioning device

    Directory of Open Access Journals (Sweden)

    Anand Ambekar

    2018-01-01

    Full Text Available Bracket positioning is the heart of preadjusted edgewise appliance. Accuracy of bracket positioning directly affects the treatment outcome. A number of hand-held instruments are available for bracket positioning accuracy including Boon's gauge, MBT gauges, and various other modifications. However, the most commonly used MBT gauges come in a set of two or four jigs with gauges on each end of the instrument making it difficult to carry in the instrument tray for the orthodontists. Our new bracket positioning instrument, A-KAM, bracket positioning device surpasses these difficulties and can be used for reproducible bracket placement from 2.5 mm to 5.5 mm from the base of bracket.

  1. Plasma position and shape control device for thermonuclear device

    International Nuclear Information System (INIS)

    Takeuchi, Kazuhiro; Abe, Mitsushi; Kinoshita, Shigemi.

    1993-01-01

    A plasma position and shape control system is constituted with a measuring device, a quenching probability calculation section and a control calculation section. A quenching probability is calculated in the quenching probability calculation section by using a measuring data on temperature, electric current and magnetic field of superconductive coils, based on a margin upto a limit value. The control calculation section selects a control method which decreases applied voltage or current instruction value as the quenching probability of the coils is higher. Since the quenching probability of the superconductive coils can be forecast and a state of low quenching danger can be selected, the safety of the device is improved. When the quenching danger is allowed to a predetermined value, a wide operation region can be provided. (N.H.)

  2. False Positives in Exoplanet Detection

    Science.gov (United States)

    Leuquire, Jacob; Kasper, David; Jang-Condell, Hannah; Kar, Aman; Sorber, Rebecca; Suhaimi, Afiq; KELT (Kilodegree Extremely Little Telescope)

    2018-06-01

    Our team at the University of Wyoming uses a 0.6 m telescope at RBO (Red Buttes Observatory) to help confirm results on potential exoplanet candidates from low resolution, wide field surveys shared by the KELT (Kilodegree Extremely Little Telescope) team. False positives are common in this work. We carry out transit photometry, and this method comes with special types of false positives. The most common false positive seen at the confirmation level is an EB (eclipsing binary). Low resolution images are great in detecting multiple sources for photometric dips in light curves, but they lack the precision to decipher single targets at an accurate level. For example, target star KC18C030621 needed RBO’s photometric precision to determine there was a nearby EB causing exoplanet type light curves. Identifying false positives with our telescope is important work because it helps eliminate the waste of time taken by more expensive telescopes trying to rule out negative candidate stars. It also furthers the identification of other types of photometric events, like eclipsing binaries, so they can be studied on their own.

  3. Detecting device of atomic probe

    International Nuclear Information System (INIS)

    Nikonenkov, N.V.

    1979-01-01

    Operation of an atomic-probe recording device is discussed in detail and its flowsheet is given. The basic elements of the atomic-probe recording device intented for microanalysis of metals and alloys in an atomic level are the storage oscillograph with a raster-sweep unit, a two-channel timer using frequency meters, a digital printer, and a control unit. The digital printer records information supplied by four digital devices (two frequency meters and two digital voltmeters) in a four-digit binary-decimal code. The described device provides simultaneous recording of two ions produced per one vaporation event

  4. 46 CFR 28.260 - Electronic position fixing devices.

    Science.gov (United States)

    2010-10-01

    ... Trade § 28.260 Electronic position fixing devices. Each vessel 79 feet (24 meters) or more in length must be equipped with an electronic position fixing device capable of providing accurate fixes for the... 46 Shipping 1 2010-10-01 2010-10-01 false Electronic position fixing devices. 28.260 Section 28...

  5. 21 CFR 872.1740 - Caries detection device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Caries detection device. 872.1740 Section 872.1740...) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1740 Caries detection device. (a) Identification. The caries detection device is a device intended to show the existence of decay in a patient's tooth...

  6. Active mems microbeam device for gas detection

    KAUST Repository

    Bouchaala, Adam M.; Jaber, Nizar; Younis, Mohammad I.

    2017-01-01

    Sensors and active switches for applications in gas detection and other fields are described. The devices are based on the softening and hardening nonlinear response behaviors of microelectromechanical systems (MEMS) clamped-clamped microbeams

  7. MHSP with position detection capability

    Energy Technology Data Exchange (ETDEWEB)

    Natal da Luz, H. [Physics Dept., University of Aveiro, 3810-193 Aveiro (Portugal); Physics Dept., University of Coimbra, 3004-516 Coimbra (Portugal); Veloso, J.F.C.A. [Physics Dept., University of Aveiro, 3810-193 Aveiro (Portugal) and Physics Dept., University of Coimbra, 3004-516 Coimbra (Portugal)]. E-mail: jveloso@fis.ua.pt; Mendes, N.F.C. [Physics Dept., University of Coimbra, 3004-516 Coimbra (Portugal); Santos, J.M.F. dos [Physics Dept., University of Coimbra, 3004-516 Coimbra (Portugal); Mir, J.A. [CCLRC Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)

    2007-04-01

    The first implementation of a position sensitive readout for a Micro Hole and Strip Plate (MHSP) is described and tested. The readout consists on a resistive layer crossing the anodes and connected to a preamplifier on each side. By weighing the charge pulses on both preamplifiers it is possible to determine the interaction point. A 100-200 {omega} resistance layer between consecutive strips was found to be the best compromise between position linearity and energy resolution. Preliminary results using 22.1 keV X-rays present a good linearity between the measured and the actual position with a mean deviation of about 0.15 mm and a position resolution of 1.6 mm full-width at half-maximum (FWHM), being limited by the analogue division electronic circuit. The performance of the MHSP position detector will be presented and discussed for 1D readout.

  8. 21 CFR 872.1745 - Laser fluorescence caries detection device.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Laser fluorescence caries detection device. 872... SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Diagnostic Devices § 872.1745 Laser fluorescence caries detection device. (a) Identification. A laser fluorescence caries detection device is a laser, a...

  9. Leakage detection device for weld portion

    International Nuclear Information System (INIS)

    Shinkawa, Toshio; Setokuchi, Sadayuki.

    1994-01-01

    The present invention concerns leakage detection device for weld portions, for example, in a nuclear reactor cavity, which can rapidly detect by remote control. That is, a detection device capable of self running and stopping on a guide rail along a weld line is disposed. The detection device comprises a coating mechanism for automatically coating soap water to the weld portion, a vacuum box capable of evacuating the coated surface and a camera for detecting the presence or absence of the soap bubbles generated under the evacuation. Such a device can conduct, by remote control, self running/stopping along with the weld line, coating of the soap water, settling of the vacuum box and confirmation and recording of foaming by using a television monitor. Accordingly, leakage in the weld portion in the reactor cavity or the like can be inspected. As a result, it greatly contributes to improvement of danger upon worker's operation at high place, detection accuracy and reliability of detection and shortening of operation period. (I.S.)

  10. Active mems microbeam device for gas detection

    KAUST Repository

    Bouchaala, Adam M.

    2017-10-05

    Sensors and active switches for applications in gas detection and other fields are described. The devices are based on the softening and hardening nonlinear response behaviors of microelectromechanical systems (MEMS) clamped-clamped microbeams. In that context, embodiments of gas-triggered MEMS microbeam sensors and switches are described. The microbeam devices can be coated with a Metal-Organic Framework to achieve high sensitivity. For gas sensing, an amplitude-based tracking algorithm can be used to quantify an amount of gas captured by the devices according to frequency shift. Noise analysis is also conducted according to the embodiments, which shows that the microbeam devices have high stability against thermal noise. The microbeam devices are also suitable for the generation of binary sensing information for alarming, for example.

  11. Silicon solid state devices and radiation detection

    CERN Document Server

    Leroy, Claude

    2012-01-01

    This book addresses the fundamental principles of interaction between radiation and matter, the principles of working and the operation of particle detectors based on silicon solid state devices. It covers a broad scope with respect to the fields of application of radiation detectors based on silicon solid state devices from low to high energy physics experiments including in outer space and in the medical environment. This book covers stateof- the-art detection techniques in the use of radiation detectors based on silicon solid state devices and their readout electronics, including the latest developments on pixelated silicon radiation detector and their application.

  12. Leak detecting and identifying device in a reactor container

    International Nuclear Information System (INIS)

    Ito, Toshiichiro; Tomisawa, Teruaki; Yamada, Minoru.

    1987-01-01

    Purpose: To facilitate early detection and position identification for the leakages in a reactor container, shorten the start-up time for the nuclear power plant and reduce the equipment damages due to leakage. Constitution: Sensor signals from image sensors for obtaining infrared radiation image data are converted into image information and sent to a diagnosis device. While on the other hand, process variant signals from a process computer for obtaining plant status data are sent to a status judging device by which the plant status is judged based on the process variants such as water level, pressure and radioactivity in the reactor. The status judging device retrieves the status image aligned with the present plant status sent from the first memory device and transfers reference image information signals to the diagnosis device as the reference. The diagnosis device compares the present images with the reference images and displays the result of the judgement on CRT. (Yoshino, Y.)

  13. Fuel cladding tube leak detection device

    International Nuclear Information System (INIS)

    Naito, Makoto.

    1992-01-01

    The device of the present invention can detect even a minute leakage or a continuous leakage during reactor operation. That is, the device of the present invention comprises a detector for analyzing nuclides of gases incorporated in a gas waste processing system, and a calculation device connected to the detector and detecting leakage from a fuel cladding tube by calculation for variation coefficient of long-life nuclides. By using theses devices, radioactivity contained in gases incorporated in the gas waste processing system is analyzed for the nuclides. Among the analized nuclides, if the amount of the long-life nuclides exceeds a predetermined value, it is judged as leakage of the fuel cladding tube. For example, the long-life nuclides include Xe-133. The device of the present invention can certainly detect occurrence of leakage even when it is minute or continues leakage. Accordingly, countermeasures can be taken in an early stage, thereby enabling to contribute improvement for the safety of a nuclear power plant. (I.S.)

  14. Nuclear-burst strength detecting and measuring device

    International Nuclear Information System (INIS)

    Balut, J.A.L.G.; Lemaire, P.E.G.K.; Loisy, C.M.

    1976-01-01

    A continuous-operation automatic device is described for detection and accurate measurement of the strength of a burst generating an emission from luminous or infrared sources. This device characterizes and analyzes the maxima and minima of a ''thermal flux/time'' curve. The device comprises a master time element and an assembly of photoelectric detectors, an electronic processing system coupled to the detectors, and a mechanical system securing the rigidity and positioning of the photoelectric detector assembly with respect to an octahedral prism based on a horizontal plane

  15. Scintillation device of X-ray detection

    International Nuclear Information System (INIS)

    Polack, F.; Bigler, E.

    1985-01-01

    The detection device comprises a screen made of microtubes transparent to the light emitted by a scintillator material in the microtube channels. The scintillator material optical index is greater than the microtube material index, so as to constitute optical fiber, with index rise, guiding the light toward the outside [fr

  16. Positioning and locking device for fuel pin to grid attachment

    International Nuclear Information System (INIS)

    Frick, T.M.; Wineman, A.L.

    1976-01-01

    A positioning and locking device for fuel pin to grid attachment provides an inexpensive means of positively positioning and locking the individual fuel pins which make up the driver fuel assemblies used in nuclear reactors. The device can be adapted for use with a currently used attachment grid assembly design and insures that the pins remain in their proper position throughout the in-reactor life of the assembly. This device also simplifies fuel bundle assembly in that a complete row of fuel pins can be added to the bundle during each step of assembly. 8 claims, 8 drawing figures

  17. Correction device for fuel positioning value

    International Nuclear Information System (INIS)

    Nakahara, Toshiro.

    1993-01-01

    In a computer for a fuel exchanger for controlling handling of fuels such as loading and unloading based on the data for settling values of fuels installed in a reactor core or fuel pool, data for burnup degree during reactor operation are inputted from a computer computing the reactor output into a correction device for fuel settling values in which fuel irradiation growth rate is calculated to determine a correction value. This makes it unnecessary for sampling measurement of fuel settling values in the reactor core practiced at the same time with the reactor opening and exchange operation for the stored date of settling values in the computer for the fuel exchanger conducted on every time. New data for settling values can be exchanged automatically based on the data for the burnup degree at the same time with the reactor shutdown, which can be conducted easily over the whole number. Accordingly, it is possible to improve reliability and safety of the fuel exchanging operation including the setting for the interlock of the fuel exchanging operation relevant to the fuel settling values, as well as moderate operator's burden. (N.H.)

  18. Position control device for a control rod

    International Nuclear Information System (INIS)

    Ono, Takehiko; Kusaka, Shuji.

    1976-01-01

    Purpose: To reliably prevent dangerous operation in the control of the position of the control rod by checking for abnormal pulse motor coil excitation voltage and, at the time of occurrence of abnormality, immediately holding the control rod stationary lest it should be moved to an unsafe position, this being accomplished excitation from a compensating excitation system. Constitution: In an FBR reactor, a circuit for memorizing the correct output states of individual drive signals at arbitrary instants and consequtively producing the memorized results is provided, and the output of the circuit and the actual drive signal are compared at all times to discriminate whether the drive signal being compared is normal or not. When the actual drive signal is abnormal, a series signal varying after a predetermined pattern is shifted to enable replacement of the actual drive signal, so that irrespective of whether the problem drive signal is ''on'' or ''off'', a drive signal of the correct pattern may be supplied to the pulse motor to hold the control rod and prevent it from being moved toward the dangerous side due to its own weight or other causes. (Horiuchi, T.)

  19. X ray sensitive area detection device

    Science.gov (United States)

    Carter, Daniel C. (Inventor); Witherow, William K. (Inventor); Pusey, Marc L. (Inventor); Yost, Vaughn H. (Inventor)

    1990-01-01

    A radiation sensitive area detection device is disclosed which comprises a phosphor-containing film capable of receiving and storing an image formed by a pattern of incoming x rays, UV, or other radiation falling on the film. The device is capable of fluorescing in response to stimulation by a light source in a manner directly proportional to the stored radiation pattern. The device includes: (1) a light source capable of projecting light or other appropriate electromagnetic wave on the film so as to cause it to fluoresce; (2) a means to focus the fluoresced light coming from the phosphor-containing film after light stimulation; and (3) at least one charged coupled detector or other detecting element capable of receiving and digitizing the pattern of fluoresced light coming from the phosphor-containing film. The device will be able to generate superior x ray images of high resolution from a crystal or other sample and will be particularly advantageous in that instantaneous near-real-time images of rapidly deteriorating samples can be obtained. Furthermore, the device can be made compact and sturdy, thus capable of carrying out x ray or other radiation imaging under a variety of conditions, including those experienced in space.

  20. Radiation sensitive area detection device and method

    Science.gov (United States)

    Carter, Daniel C. (Inventor); Hecht, Diana L. (Inventor); Witherow, William K. (Inventor)

    1991-01-01

    A radiation sensitive area detection device for use in conjunction with an X ray, ultraviolet or other radiation source is provided which comprises a phosphor containing film which releases a stored diffraction pattern image in response to incoming light or other electromagnetic wave. A light source such as a helium-neon laser, an optical fiber capable of directing light from the laser source onto the phosphor film and also capable of channelling the fluoresced light from the phosphor film to an integrating sphere which directs the light to a signal processing means including a light receiving means such as a photomultiplier tube. The signal processing means allows translation of the fluoresced light in order to detect the original pattern caused by the diffraction of the radiation by the original sample. The optical fiber is retained directly in front of the phosphor screen by a thin metal holder which moves up and down across the phosphor screen and which features a replaceable pinhole which allows easy adjustment of the resolution of the light projected onto the phosphor film. The device produces near real time images with high spatial resolution and without the distortion that accompanies prior art devices employing photomultiplier tubes. A method is also provided for carrying out radiation area detection using the device of the invention.

  1. Experimental Measurement-Device-Independent Entanglement Detection

    Science.gov (United States)

    Nawareg, Mohamed; Muhammad, Sadiq; Amselem, Elias; Bourennane, Mohamed

    2015-02-01

    Entanglement is one of the most puzzling features of quantum theory and of great importance for the new field of quantum information. The determination whether a given state is entangled or not is one of the most challenging open problems of the field. Here we report on the experimental demonstration of measurement-device-independent (MDI) entanglement detection using witness method for general two qubits photon polarization systems. In the MDI settings, there is no requirement to assume perfect implementations or neither to trust the measurement devices. This experimental demonstration can be generalized for the investigation of properties of quantum systems and for the realization of cryptography and communication protocols.

  2. Detection device for inside of space

    International Nuclear Information System (INIS)

    Kojima, Kosuke.

    1996-01-01

    A securing plate is disposed to a support column which can be inserted to a space, and a rotational member on which equipments for detection are loaded is disposed rotatably in the longitudinal direction of the support column at a predetermined distance from the securing plate. Shape memory alloy wires that shrink when current is supplied are stretched circumferentially each at a predetermined distance obliquely relative to the support column between the rotational member and the securing plate. In addition, there are disposed a sensor for detecting the rotational angle of the rotational member, a calculator for determining the deviation of the angle of the rotation based on the difference of the detected rotational angle and a predetermined rotational angle as a reference, a deviation counter for obtaining deviation count signals based on the deviation of the rotational angle, a D-A convertor for converting the deviation count signals to analog signals, a pulse width modulation device for duty ratio control based on the analog signals and output pulse signals, and a power amplifier for amplifying the pulse signals and applying them to the shape memory wires. Since the device is reduced in the size and weight, handling is facilitated, and the rotational angle can be controlled accurately. The device can be used for detection of an end plate in a pressure vessel. (N.H.)

  3. Detection device for control rod scram

    International Nuclear Information System (INIS)

    Ishiyama, Satoshi.

    1989-01-01

    The device of the present invention comprises a control rod dropping separately from a control rod driving mechanism main body, a following tube falling separately accompanying therewith and a guide tube for guiding the dropping of the control rod and the following tube. Further, rare earth permanent magnets are embedded with the pole being axially oriented in the following tube and bobbins each mounted with an inner flange made of high magnetic permeability material are disposed to the guide tube. Coils are wound in the bobbin. In this control rod scram detection device, since magnetic fluxes can effectively be supplied to the coils, it is possible to obtain stable and highly reliable scram detection signals. Further, since the coils and the bobbins can be manufactured separately from the guide tube, their assemblies can be tested independently from the guide tube. (K.M.)

  4. The positioning device of beam probes for accelerator LUE-200

    International Nuclear Information System (INIS)

    Becher, Yu.; Kalmykov, A.V.; Minashkin, M.F.; Sumbaev, A.P.

    2011-01-01

    The description of a device for the positioning of sliding beam probes which is the part of the beam diagnostic system for the LUE-200 electron linac of IREN installation is presented. The device provides remote control of input-output operation of beam probes of five diagnostic stations established in an accelerating tract and in the beam transportation channel of the accelerator

  5. A study of malware detection on smart mobile devices

    Science.gov (United States)

    Yu, Wei; Zhang, Hanlin; Xu, Guobin

    2013-05-01

    The growing in use of smart mobile devices for everyday applications has stimulated the spread of mobile malware, especially on popular mobile platforms. As a consequence, malware detection becomes ever more critical in sustaining the mobile market and providing a better user experience. In this paper, we review the existing malware and detection schemes. Using real-world malware samples with known signatures, we evaluate four popular commercial anti-virus tools and our data shows that these tools can achieve high detection accuracy. To deal with the new malware with unknown signatures, we study the anomaly based detection using decision tree algorithm. We evaluate the effectiveness of our detection scheme using malware and legitimate software samples. Our data shows that the detection scheme using decision tree can achieve a detection rate up to 90% and a false positive rate as low as 10%.

  6. Multi-chamber nucleic acid amplification and detection device

    Science.gov (United States)

    Dugan, Lawrence

    2017-10-25

    A nucleic acid amplification and detection device includes an amplification cartridge with a plurality of reaction chambers for containing an amplification reagent and a visual detection reagent, and a plurality of optically transparent view ports for viewing inside the reaction chambers. The cartridge also includes a sample receiving port which is adapted to receive a fluid sample and fluidically connected to distribute the fluid sample to the reaction chamber, and in one embodiment, a plunger is carried by the cartridge for occluding fluidic communication to the reaction chambers. The device also includes a heating apparatus having a heating element which is activated by controller to generate heat when a trigger event is detected. The heating apparatus includes a cartridge-mounting section which positioned a cartridge in thermal communication with the heating element so that visual changes to the contents of the reaction chambers are viewable through the view ports.

  7. Backscattering position detection for photonic force microscopy

    International Nuclear Information System (INIS)

    Volpe, Giovanni; Kozyreff, Gregory; Petrov, Dmitri

    2007-01-01

    An optically trapped particle is an extremely sensitive probe for the measurement of pico- and femto-Newton forces between the particle and its environment in microscopic systems (photonic force microscopy). A typical setup comprises an optical trap, which holds the probe, and a position sensing system, which uses the scattering of a beam illuminating the probe. Usually the position is accurately determined by measuring the deflection of the forward-scattered light transmitted through the probe. However, geometrical constraints may prevent access to this side of the trap, forcing one to make use of the backscattered light instead. A theory is presented together with numerical results that describes the use of the backscattered light for position detection. With a Mie-Debye approach, we compute the total (incident plus scattered) field and follow its evolution as it is collected by the condenser lenses and projected onto the position detectors and the responses of position sensitive detectors and quadrant photodetectors to the displacement of the probe in the optical trap, both in forward and backward configurations. We find out that in the case of backward detection, for both types of detectors the displacement sensitivity can change sign as a function of the probe size and is null for some critical sizes. In addition, we study the influence of the numerical aperture of the detection system, polarization, and the cross talk between position measurements in orthogonal directions. We finally discuss how these features should be taken into account in experimental designs

  8. Treatment of sleep-disordered breathing with positive airway pressure devices: technology update.

    Science.gov (United States)

    Johnson, Karin Gardner; Johnson, Douglas Clark

    2015-01-01

    Many types of positive airway pressure (PAP) devices are used to treat sleep-disordered breathing including obstructive sleep apnea, central sleep apnea, and sleep-related hypoventilation. These include continuous PAP, autoadjusting CPAP, bilevel PAP, adaptive servoventilation, and volume-assured pressure support. Noninvasive PAP has significant leak by design, which these devices adjust for in different manners. Algorithms to provide pressure, detect events, and respond to events vary greatly between the types of devices, and vary among the same category between companies and different models by the same company. Many devices include features designed to improve effectiveness and patient comfort. Data collection systems can track compliance, pressure, leak, and efficacy. Understanding how each device works allows the clinician to better select the best device and settings for a given patient. This paper reviews PAP devices, including their algorithms, settings, and features.

  9. Leak detection device on flange surface

    International Nuclear Information System (INIS)

    Hanai, Koi.

    1988-01-01

    Purpose: To improve the response to fine leakage thereby enabling to leakage detection at high sensitivity, by detecting the humidity by the use of an inert dry gas. Constitution: Annular grooves are coaxially engraved to a flange and an annular water channel groove is also engraved between each of the annular grooves. Dry nitrogen flown out is blown along the circumferential direction of the water channel grooves, turned there around and then released from the end of the pipeway. If there is any water leakage, the dry nitrogen absorbs leaked water to be wettened and then reach a humidity sensor. The sensor detects the humidity in the nitrogen and delivers an output into a signal processing circuit. The processing circuit judges the absence or presence of the leakage in accordance with the detected humidity to generate an alarm signal. The time required for the blown out dry nitrogen, which turn around the water channel groove and enter the sensor, is about several minutes and the device shows excellent response even for minute leakage. (Yoshino, Y.)

  10. Position detectors, methods of detecting position, and methods of providing positional detectors

    Science.gov (United States)

    Weinberg, David M.; Harding, L. Dean; Larsen, Eric D.

    2002-01-01

    Position detectors, welding system position detectors, methods of detecting various positions, and methods of providing position detectors are described. In one embodiment, a welding system positional detector includes a base that is configured to engage and be moved along a curved surface of a welding work piece. At least one position detection apparatus is provided and is connected with the base and configured to measure angular position of the detector relative to a reference vector. In another embodiment, a welding system positional detector includes a weld head and at least one inclinometer mounted on the weld head. The one inclinometer is configured to develop positional data relative to a reference vector and the position of the weld head on a non-planar weldable work piece.

  11. Continuous positive airway pressure: Physiology and comparison of devices.

    Science.gov (United States)

    Gupta, Samir; Donn, Steven M

    2016-06-01

    Nasal continuous positive airway pressure (CPAP) is increasingly used for respiratory support in preterm babies at birth and after extubation from mechanical ventilation. Various CPAP devices are available for use that can be broadly grouped into continuous flow and variable flow. There are potential physiologic differences between these CPAP systems and the choice of a CPAP device is too often guided by individual expertise and experience rather than by evidence. When interpreting the evidence clinicians should take into account the pressure generation sources, nasal interface, and the factors affecting the delivery of pressure, such as mouth position and respiratory drive. With increasing use of these devices, better monitoring techniques are required to assess the efficacy and early recognition of babies who are failing and in need of escalated support. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Positioning device for fuel rods of nuclear reactor fuel elements

    International Nuclear Information System (INIS)

    1987-01-01

    The positioning device consists of individual containers, similar to cases, for the fuel elements. These cases are arranged vertically next to one another and are held by means of vertical support posts and horizontal arms. The openings of the cases can be individually approached by the trolleys. (DG) [de

  13. Positional device for cinematographic MR of the cervical spine

    International Nuclear Information System (INIS)

    Muhle, C.; Melchert, U.H.; Brossmann, J.; Schroeder, C.; Wiskirchen, J.; Heller, M.

    1995-01-01

    A novel positioning device is explained and the experience obtained so far with its application in cinematic MRI of the cervical spine, allowing an extended range of movement from 60 degrees ante- to 40 degrees retroflexion. The tests were done with volounteers. (orig./MG) [de

  14. Positioning device for screwing or unscrewing screw nut

    International Nuclear Information System (INIS)

    Sevelinge, G.

    1987-01-01

    This automatic positioning device for screwing or unscrewing a screw nut on a closure stud has a drawed socket and means for axially centre and angularly by wedge the socket on the closure stud and generate a continuous spiral between the socket and the closure stud [fr

  15. Supersonic wave detection method and supersonic detection device

    International Nuclear Information System (INIS)

    Machida, Koichi; Seto, Takehiro; Ishizaki, Hideaki; Asano, Rin-ichi.

    1996-01-01

    The present invention provides a method of and device for a detection suitable to a channel box which is used while covering a fuel assembly of a BWR type reactor. Namely, a probe for transmitting/receiving supersonic waves scans on the surface of the channel box. A data processing device determines an index showing a selective orientation degree of crystal direction of the channel box based on the signals received by the probe. A judging device compares the determined index with a previously determined allowable range to judge whether the channel box is satisfactory or not based on the result of the comparison. The judgement are on the basis that (1) the bending of the channel box is caused by the difference of elongation of opposed surfaces, (2) the elongation due to irradiation is caused by the selective orientation of crystal direction, and (3) the bending of the channel box can be suppressed within a predetermined range by suppressing the index determined by the measurement of supersonic waves having a correlation with the selective orientation of the crystal direction. As a result, the performance of the channel box capable of enduring high burnup region can be confirmed in a nondestructive manner. (I.S.)

  16. Positioning device for MRI-guided high intensity focused ultrasound system

    Energy Technology Data Exchange (ETDEWEB)

    Damianou, Christakis [Frederick Institute of Technology (FIT), Limassol (Cyprus); MEDSONIC, LTD, Limassol (Cyprus); Ioannides, Kleanthis [Polikliniki Igia, Limassol (Cyprus); Milonas, Nicos [Frederick Institute of Technology (FIT), Limassol (Cyprus)

    2008-04-15

    A prototype magnetic resonance imaging (MRI)- compatible positioning device was used to move an MRI-guided high intensity focused ultrasound (HIFU) transducer. The positioning device has three user-controlled degrees of freedom that allow access to various targeted lesions. The positioning device was designed and fabricated using construction materials selected for compatibility with high magnetic fields and fast switching magnetic field gradients encountered inside MRI scanners. The positioning device incorporates only MRI compatible materials such as piezoelectric motors, plastic sheets, brass screws, plastic pulleys and timing belts. The HIFU/MRI system includes the multiple subsystems (a) HIFU system, (b) MR imaging, (c) Positioning device (robot) and associate drivers, (d) temperature measurement, (e) cavitation detection, (f) MRI compatible camera, and (g) Soft ware. The MRI compatibility of the system was successfully demonstrated in a clinical high-field MRI scanner. The ability of the robot to accurately move the transducer thus creating discrete and overlapping lesions in biological tissue was tested successfully. A simple, cost effective, portable positioning device has been developed which can be used in virtually any clinical MRI scanner since it can be sited on the scanner's table. The propagation of HIFU can use either a lateral or superior-inferior approach. Discrete and large lesions were created successfully with reproducible results. (orig.)

  17. Radiation sensitive devices and systems for detection of radioactive materials and related methods

    Science.gov (United States)

    Kotter, Dale K

    2014-12-02

    Radiation sensitive devices include a substrate comprising a radiation sensitive material and a plurality of resonance elements coupled to the substrate. Each resonance element is configured to resonate responsive to non-ionizing incident radiation. Systems for detecting radiation from a special nuclear material include a radiation sensitive device and a sensor located remotely from the radiation sensitive device and configured to measure an output signal from the radiation sensitive device. In such systems, the radiation sensitive device includes a radiation sensitive material and a plurality of resonance elements positioned on the radiation sensitive material. Methods for detecting a presence of a special nuclear material include positioning a radiation sensitive device in a location where special nuclear materials are to be detected and remotely interrogating the radiation sensitive device with a sensor.

  18. Design of a leak detection device for marine airtight container

    Science.gov (United States)

    Li, Yuan; Zhu, Faxin; Lu, Jinshu; Li, Yule; Wu, Wenfeng; Zhang, Jianwei; Qin, Beichen

    2018-04-01

    The ship airtight container as the research object, according to the tightness of the traditional detection methods of sealed container from the shortcomings of the design of modern ship sealed container leak detection device based on the requirements of the use of AutoCAD to design a ship leakage detection device using airtight container, and introduces its working principle and main components. Finally, from the aspects of technology, structure, operation and economy, the feasibility analysis of the leak detection device for marine airtight container is designed, and it is concluded that the device has the advantages of simple operation, short detection time, easy maintenance and cost control, and has high feasibility.

  19. Radiation detection device and a radiation detection method

    International Nuclear Information System (INIS)

    Blum, A.

    1975-01-01

    A radiation detection device is described including at least one scintillator in the path of radiation emissions from a distributed radiation source; a plurality of photodetectors for viewing each scintillator; a signal processing means, a storage means, and a data processing means that are interconnected with one another and connected to said photodetectors; and display means connected to the data processing means to locate a plurality of radiation sources in said distributed radiation source and to provide an image of the distributed radiation sources. The storage means includes radiation emission response data and location data from a plurality of known locations for use by the data processing means to derive a more accurate image by comparison of radiation responses from known locations with radiation responses from unknown locations. (auth)

  20. Detecting positive quadrant dependence and positive function dependence

    NARCIS (Netherlands)

    Janic-Wróblewska, A.; Kallenberg, W.C.M.; Ledwina, T.

    2004-01-01

    There is a lot of interest in positive dependence going beyond linear correlation. In this paper three new rank tests for testing independence against positive dependence are introduced. The first one is directed on positive quadrant dependence, the second and third one concentrate on positive

  1. Detecting positive quadrant dependence and positive function dependence

    NARCIS (Netherlands)

    Janic-Wróblewska, A.; Kallenberg, W.C.M.; Ledwina, T.

    2003-01-01

    There is a lot of interest in positive dependence going beyond linear correlation. In this paper three new rank tests for testing independence against positive dependence are introduced. The first one is directed on positive quadrant dependence, the second and third one concentrate on positive

  2. Automatic positioning control device for automatic control rod exchanger

    International Nuclear Information System (INIS)

    Nasu, Seiji; Sasaki, Masayoshi.

    1982-01-01

    Purpose: To attain accurate positioning for a control rod exchanger. Constitution: The present position for an automatic control rod exchanger is detected by a synchro generator. An aimed stopping position for the exchanger, a stop instruction range depending on the distantial operation delay in the control system and the inertia-running distance of the mechanical system, and a coincidence confirmation range depending on the required positioning accuracy are previously set. If there is a difference between the present position and the aimed stopping position, the automatic exchanger is caused to run toward the aimed stopping position. A stop instruction is generated upon arrival at the position within said stop instruction range, and a coincidence confirmation signal is generated upon arrival at the position within the coincidence confirmation range. Since uncertain factors such as operation delay in the control system and the inertia-running distance of the mechanical system that influence the positioning accuracy are made definite by the method of actual measurement or the like and the stop instruction range and the coincidence confirmation range are set based on the measured data, the accuracy for the positioning can be improved. (Ikeda, J.)

  3. Carbon nanotubes for gas detection: materials preparation and device assembly

    International Nuclear Information System (INIS)

    Terranova, M L; Lucci, M; Orlanducci, S; Tamburri, E; Sessa, V; Reale, A; Carlo, A Di

    2007-01-01

    An efficient sensing device for NH 3 and NO x detection has been realized using ordered arrays of single-walled C nanotubes deposited onto an interdigitated electrode platform operating at room temperature. The sensing material has been prepared using several chemical-physical techniques for purification and positioning of the nanotubes inside the electrode gaps. In particular, both DC and AC fields have been applied in order to move and to align the nanostructures by electrophoresis and dielectrophoresis processes. We investigated the effects of different voltages applied to a gate contact on the back side of the substrate on the performances of the device and found that for different gas species (NH 3 , NO x ) a constant gate bias increases the sensitivity for gas detection. Moreover, in this paper we demonstrate that a pulsed bias applied to the gate contact facilitates the gas interaction with the nanotubes, either reducing the absorption times or accelerating the desorption times, thus providing a fast acceleration and a dramatic improvement of the time dependent behaviour of the device

  4. Axis vibration detection device for reactor recycling pump

    International Nuclear Information System (INIS)

    Ide, Katsuki.

    1995-01-01

    The present invention provides a device for detecting, in a contactless manner, vibrations of a recycling pump shaft disposed in a reactor pressure vessel of a BWR type reactor. Namely, the vibration detector comprises an eddy current type displacement gauge having a sensing portion at one end of a linear tube type metal holder. It also comprises a rotational member made of an electroconductive material rotating integrally with a rotational pump shaft. The vibration detector is inserted into an attaching hole passing through a pump casing at a position where the sensing portion faces the outer circumference of the rotational member. The attaching hole is closed by a holder of the oscillation detector and a metal cap integrated to one end of the holder. A high pressure hermetic seal connector is disposed at a position outer side of the attaching hole of the vibration detector for electrically connecting the inside and the outside thereof. The device of the present invention can directly detect the vibration of the pump shaft. As a result, an abnormality, if should occur, in the recycling pump can be found in an early stage. Since the vibration detector is covered with a metal and shielded by the high pressure hermetic seal connector, it can sufficiently ensure pressure resistance. (I.S.)

  5. Device independence for two-party cryptography and position verification with memoryless devices

    Science.gov (United States)

    Ribeiro, Jérémy; Thinh, Le Phuc; Kaniewski, Jedrzej; Helsen, Jonas; Wehner, Stephanie

    2018-06-01

    Quantum communication has demonstrated its usefulness for quantum cryptography far beyond quantum key distribution. One domain is two-party cryptography, whose goal is to allow two parties who may not trust each other to solve joint tasks. Another interesting application is position-based cryptography whose goal is to use the geographical location of an entity as its only identifying credential. Unfortunately, security of these protocols is not possible against an all powerful adversary. However, if we impose some realistic physical constraints on the adversary, there exist protocols for which security can be proven, but these so far relied on the knowledge of the quantum operations performed during the protocols. In this work we improve the device-independent security proofs of Kaniewski and Wehner [New J. Phys. 18, 055004 (2016), 10.1088/1367-2630/18/5/055004] for two-party cryptography (with memoryless devices) and we add a security proof for device-independent position verification (also memoryless devices) under different physical constraints on the adversary. We assess the quality of the devices by observing a Bell violation, and, as for Kaniewski and Wehner [New J. Phys. 18, 055004 (2016), 10.1088/1367-2630/18/5/055004], security can be attained for any violation of the Clauser-Holt-Shimony-Horne inequality.

  6. Treatment of sleep-disordered breathing with positive airway pressure devices: technology update

    Directory of Open Access Journals (Sweden)

    Johnson KG

    2015-10-01

    Full Text Available Karin Gardner Johnson, Douglas Clark Johnson Department of Medicine, Baystate Medical Center, Springfield, MA, USA Abstract: Many types of positive airway pressure (PAP devices are used to treat sleep-disordered breathing including obstructive sleep apnea, central sleep apnea, and sleep-related hypoventilation. These include continuous PAP, autoadjusting CPAP, bilevel PAP, adaptive servoventilation, and volume-assured pressure support. Noninvasive PAP has significant leak by design, which these devices adjust for in different manners. Algorithms to provide pressure, detect events, and respond to events vary greatly between the types of devices, and vary among the same category between companies and different models by the same company. Many devices include features designed to improve effectiveness and patient comfort. Data collection systems can track compliance, pressure, leak, and efficacy. Understanding how each device works allows the clinician to better select the best device and settings for a given patient. This paper reviews PAP devices, including their algorithms, settings, and features. Keywords: BiPAP, CPAP, iVAPS, AVAPS, ASV, positive pressure respiration, instrumentation, treatment algorithm

  7. Development of failure-detecting device for γ radioimmunoassay counter

    International Nuclear Information System (INIS)

    Shao Xianzhi; Zhang Bingfeng

    1997-01-01

    A failures-detecting device based on single chip microcomputer technique for detecting of failures of γ radioimmunoassay counter is developed. The device can output signals of variable amplitude and frequency similar to the pulse of γ particle for shooting problem parts of γ counter's detecting system. By automatically comparing the shapes and amplitudes of the two signals to and from an amplifier unit, the device can distinguish if the amplifier unit works normally. The differential-input amplifier circuit gives 0.1% accuracy for the measurement of the stability of high voltage. The pulse widen circuit of this device allows for middle speed A/D detecting of periodical low-frequency pulse waves of micro-second width. This device is used specifically for the maintaining and failure-detecting of γ radioimmunoassay counter

  8. Position sensitive detection of neutrons in high radiation background field.

    Science.gov (United States)

    Vavrik, D; Jakubek, J; Pospisil, S; Vacik, J

    2014-01-01

    We present the development of a high-resolution position sensitive device for detection of slow neutrons in the environment of extremely high γ and e(-) radiation background. We make use of a planar silicon pixelated (pixel size: 55 × 55 μm(2)) spectroscopic Timepix detector adapted for neutron detection utilizing very thin (10)B converter placed onto detector surface. We demonstrate that electromagnetic radiation background can be discriminated from the neutron signal utilizing the fact that each particle type produces characteristic ionization tracks in the pixelated detector. Particular tracks can be distinguished by their 2D shape (in the detector plane) and spectroscopic response using single event analysis. A Cd sheet served as thermal neutron stopper as well as intensive source of gamma rays and energetic electrons. Highly efficient discrimination was successful even at very low neutron to electromagnetic background ratio about 10(-4).

  9. Photodetection, photon event localization and position tomography device comprising a gammagraphy camera equipped wit such devices

    International Nuclear Information System (INIS)

    Jatteau, M.R.

    1984-01-01

    This device of photodetection and photon event (and noticeably scintillations) localization comprises at least a photomultiplier tube with unique photomultiplying structure and in front of this tube, a net of juxtaposed conduction metal wires excited by voltage pulses. This net comprises only 2n metallic wires to assure the localization of 2sup(2n) possible positions, and that is one of its characteristics [fr

  10. Trial making of a positive drawing phantom and its application to whole-body imaging devices

    International Nuclear Information System (INIS)

    Saegusa, Kenji; Arimizu, Noboru; Nakata, Tsuneo; Toyama, Haruo; Shiina, Isamu.

    1980-01-01

    In whole-body RI imaging, there are more instances of the positive pictures detecting the radioisotopes accumulating in morbid positions, such as Tc-99m bone scanning. The phantoms used to mutually compare RI imaging devices and to test their performance employ negative drawing targets embedded rather than positive ones. A simple positive drawing phantom has been made for trial, and applying this to whole-body scanning devices, the performance and the target drawing ability under different scanning conditions were comparatively examined. Though similar to Rollo's phantom, the phantom made for positive drawing uses acryl plate for its outer structure and target portions. The positive targets are cylindrical, and the diameters are 2, 4, 6, 8, 10, and 20 mm, and the subject contrasts are 5, 2, 1, 0.5 and 0.2. The aqueous solution of Tc-99m of about 2 mCi was injected into the phantom, and this was scanned with a whole-body camera and a multi-detector type whole-body scanner. With the phantom pictures close to actual clinical condition, the positive drawing phantom is conveniently capable of comparing the respective imaging devices for intended purposes. (J.P.N.)

  11. Spatiotemporal electrochemical detection in nanofluidic devices

    NARCIS (Netherlands)

    Cui, Jin

    2016-01-01

    The main focus of this thesis is to explore mass-transport processes for redox-active analytes in concentrated supporting electrolytes when they are driven by external pressure through nanofluidic channels with em-bedded electrodes. The principal devices employed in these experiments are so-called

  12. A safety control device for detecting undesirable conditions

    Energy Technology Data Exchange (ETDEWEB)

    1974-09-26

    The invention relates to safety control devices. It deals with a device adapted to transmit a warning signal and to the detection of an undesirable condition in an associated apparatus, said device comprising switching means comprising transistors mounted in a reaction path, feeding means for opening the switching means whenever an undesirable condition has been detected by sensors, whereby an oscillator is caused to stop oscillating, and an outlet device controlled by the oscillator stoppage. This can be applied to the supervision of nuclear reactor.

  13. Sample preparation and detection device for infectious agents

    Science.gov (United States)

    Miles, Robin R.; Wang, Amy W.; Fuller, Christopher K.; Lemoff, Asuncion V.; Bettencourt, Kerry A.; Yu, June

    2003-06-10

    A sample preparation and analysis device which incorporates both immunoassays and PCR assays in one compact, field-portable microchip. The device provides new capabilities in fluid and particle control which allows the building of a fluidic chip with no moving parts, thus decreasing fabrication cost and increasing the robustness of the device. The device can operate in a true continuous (not batch) mode. The device incorporates magnetohydrodynamic (MHD) pumps to move the fluid through the system, acoustic mixing and fractionation, dielectropheretic (DEP) sample concentration and purification, and on-chip optical detection capabilities.

  14. Device for detecting failure of reactor system

    International Nuclear Information System (INIS)

    Miyazawa, Tatsuo.

    1979-01-01

    Purpose: To make it possible to rapidly detect any failure in a reactor system prior to the leakage of coolants. Constitution: The dose of beta line is computed from the difference between the power of a detector for reacting with both beta and gamma lines and a detector for reacting only with gamma line to detect the failure of a reactor system, thereby to raise the detection speed and improve the detection accuracy. More specifically, a radiation detector A detects gamma and beta lines by means of piezoelectric elements. A radiation detector B caused the opening of the detector A to be covered with a metal, and detects only gamma line. The detected values of detectors A and B are amplified by an amplifier and applied to a rate meter and a counter, the values being converted into DC and introduced into a comparison circuit, where the outputs of the rate meter are compared with each other. When the difference is more than the predetermined range, it is supplied as output to an alarm circuit where an alarm signal is produced. (Nakamura, S.)

  15. Remote flammable gas detection/measuring device.

    CSIR Research Space (South Africa)

    Kononov, VA

    1999-11-01

    Full Text Available This research report presents the results of an evaluation of the existing open path remote flammable gas detection/monitoring technology and provides recommendations on possible limited implementation of this technology and future development...

  16. Novel methods for detecting buried explosive devices

    Energy Technology Data Exchange (ETDEWEB)

    Kercel, S.W.; Burlage, R.S.; Patek, D.R.; Smith, C.M. [Oak Ridge National Lab., TN (United States); Hibbs, A.D.; Rayner, T.J. [Quantum Magnetics, Inc., San Diego, CA (United States)

    1997-04-01

    Oak Ridge National Laboratory (ORNL) and Quantum Magnetics, Inc. (QM) are exploring novel landmine detection technologies. Technologies considered here include bioreporter bacteria, swept acoustic resonance, nuclear quadrupole resonance (NQR), and semiotic data fusion. Bioreporter bacteria look promising for third-world humanitarian applications; they are inexpensive, and deployment does not require high-tech methods. Swept acoustic resonance may be a useful adjunct to magnetometers in humanitarian demining. For military demining, NQR is a promising method for detecting explosive substances; of 50,000 substances that have been tested, none has an NQR signature that can be mistaken for RDX or TNT. For both military and commercial demining, sensor fusion entails two daunting tasks, identifying fusible features in both present-day and emerging technologies, and devising a fusion algorithm that runs in real-time on cheap hardware. Preliminary research in these areas is encouraging. A bioreporter bacterium for TNT detection is under development. Investigation has just started in swept acoustic resonance as an approach to a cheap mine detector for humanitarian use. Real-time wavelet processing appears to be a key to extending NQR bomb detection into mine detection, including TNT-based mines. Recent discoveries in semiotics may be the breakthrough that will lead to a robust fused detection scheme.

  17. Position locating device and method for interstitial radiotherapy

    International Nuclear Information System (INIS)

    Katz, H.R.

    1987-01-01

    A position locating device is described for interstitial radiotherapy of a body portion comprising a flexible sheet member for being received about and conformed with a body portion which is to receive radiotherapy. The sheet member has spaced position locating means and first and second opposite ends, and attachment means for releasably securing the sheet member about the body portion comprising joining means securing bands with the sheet member. The joining means provides first and second clamping units each detachably secured with the sheet member proximate to a respective one of its ends for being replaced and repositioned therewith. The bands comprise first and second sets having first ends pivotably secured with a respective one of the first and second clamping units for allowing their angular adjustment with the second ends of the first set of bands being detachably securable with the second ends of the second set of bands for releasably securing the sheet member about the body portion. Each of the clamping units comprises a flat bar having a slot for receiving therethrough an end of the sheet member and screw elements threadedly engaging a respective one of the bars for clamping and securing the sheet member therewith. The first ends of the bands have an opening for receiving a respective screw element therethrough for securing same with the bar unit and allowing pivotal movement thereabout

  18. Detection device for control rod interference

    International Nuclear Information System (INIS)

    Saito, Noboru.

    1984-01-01

    Purpose: To enable to detect the mechanical interference or friction between a control rod and a channel box automatically, simply and rapidly. Constitution: A signal from a gate circuit and a signal from a comparison mechanism are inputted into an AND circuit if a control rod has not been displaced by a predetermined distance within a prescribed time Δt after the output of an insertion or withdrawal signal for the control rod, by which a control-rod-interference signal is outputted from the AND circuit. Accordingly, the interference between the control rod and the channel box can be detected automatically, easily and rapidly. Furthermore, by properly adjusting the prescribed time Δt set by the gate circuit, the degree of the interference can also be detected, whereby the safety and the reliability of the reactor can be improved significantly. (Horiuchi, T.)

  19. Leak detection device for reactor coolant

    International Nuclear Information System (INIS)

    Oshima, Koichiro.

    1990-01-01

    In a light water cooled reactor, if reactor coolants are leaked from pipelines in a pipeline chamber, activated products (N-16) are diffused together to an atmosphere in the pipeline chamber. N-16 is sucked from an extracting tube which is always sucking the atmosphere in the pipeline chamber to a sucking blower. Then, β-rays released from N-16 are monitored by a radiation monitor in a measuring chamber which is radiation-shielded from the pipeline chamber. Accordingly, since the radiation monitor can detect even slight leakage, the slight leakage of reactor coolants in the pipelines can be detected at an early stage. (I.N.)

  20. Design of temperature detection device for drum of belt conveyor

    Science.gov (United States)

    Zhang, Li; He, Rongjun

    2018-03-01

    For difficult wiring and big measuring error existed in the traditional temperature detection method for drum of belt conveyor, a temperature detection device for drum of belt conveyor based on Radio Frequency(RF) communication is designed. In the device, detection terminal can collect temperature data through tire pressure sensor chip SP370 which integrates temperature detection and RF emission. The receiving terminal which is composed of RF receiver chip and microcontroller receives the temperature data and sends it to Controller Area Network(CAN) bus. The test results show that the device meets requirements of field application with measuring error ±3.73 ° and single button battery can provide continuous current for the detection terminal over 1.5 years.

  1. On Improving the Energy Efficiency and Robustness of Position Tracking for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    An important feature of a modern mobile device is that it can position itself and support remote position tracking. To be useful, such position tracking has to be energy-efficient to avoid having a major impact on the battery life of the mobile device. Furthermore, tracking has to robustly deliver...... of different mobile devices....

  2. Method and device for detecting radiatons

    International Nuclear Information System (INIS)

    Borel, J.; Goascoz, V.

    1979-01-01

    The method consists in fabricating an MOS transistor comprising a drain region and a source region separated from each other by a bulk region of opposite doping type relative to the first two regions, in delivering the radiation to be detected into the carrier-collection region of the MOS transistor, in leaving the bulk region at a floating potential and in collecting the drain-source current of the transistor

  3. Rupture detection device for pipeline in reactor

    International Nuclear Information System (INIS)

    Murakoshi, Toshinori; Kanamori, Shigeru; Shirasawa, Hirofumi.

    1991-01-01

    A difference between each of the pressures in a plurality of pipelines disposed in a shroud a reactor container and a pressure outside of the shroud is detected, thereby enabling safety and reliable detection even for simultaneous rapture and leakage of the pipelines. That is, a difference between the pressure of a steam phase outside of the shroud and a pressure in each of a plurality of low pressure injection pipelines in an emergency core cooling system opened to the inside of the shroud in the reactor container is detected by a difference pressure detector for each of them. Then, an average value for each of the pressure difference is determined, which is compared with the difference pressure obtained from each of the detectors in a comparator. Then, if openings should be caused by rupture, leakage or the like in any of the pipelines, the pressure in that pipeline is lowered to a vicinity of an atmospheric pressure and at the vapor phase pressure at the lowest. If the pressure is compared with the average value by the comparator, a negative difference is caused. Accordingly, an alarming unit generates an alarm based on the pressure difference signal, thereby enabling to specify the failed pipeline and provide an announce of the failure. (I.S.)

  4. Construction of a device for optimal positioning of the patient in studies of breast gammagraphy

    International Nuclear Information System (INIS)

    González López, Dagoberto Eloy; Infante Ginarte, José R.; Paumier Valdés, Yonimiler; Corella San Nicolás, Migdalia; Suárez Rosales, Lisandra

    2016-01-01

    Breast tumors are the most common cause of cancer in women. The ideal way to detect breast cancer is by a mammography examination. But this test may either be questionable or provide inconclusive data on a significant number of cases, leading to invasive biopsy procedures. The aim of this study is to optimize the detection of breast cancer by gammagraphy to improve the complementary diagnosis provided by a mammography. Consequently and for that reason, a device allowing an optimal patient positioning was designed and built. The materials used for its construction had few gamma radiation absorption properties. The effectiveness of breast gammagraphy was evaluated using by the designed device in two study cases. In both, the definite diagnosis obtained through mammography from doubtful cases was conclusively confirmed. A diagnostic protocol mammogram/gammagraphy was recommended to optimize the selection of patients requiring biopsy. (author)

  5. A Framework for Counterfeit Smart Grid Device Detection

    Energy Technology Data Exchange (ETDEWEB)

    Babun, Leonardo [Florida Intl Univ., Miami, FL (United States); Aksu, Hidayet [Florida Intl Univ., Miami, FL (United States); Uluagac, A. Selcuk [Florida Intl Univ., Miami, FL (United States)

    2016-10-19

    The core vision of the smart grid concept is the realization of reliable two-­way communications between smart devices (e.g., IEDs, PLCs, PMUs). The benefits of the smart grid also come with tremendous security risks and new challenges in protecting the smart grid systems from cyber threats. Particularly, the use of untrusted counterfeit smart grid devices represents a real problem. Consequences of propagating false or malicious data, as well as stealing valuable user or smart grid state information from counterfeit devices are costly. Hence, early detection of counterfeit devices is critical for protecting smart grid’s components and users. To address these concerns, in this poster, we introduce our initial design of a configurable framework that utilize system call tracing, library interposition, and statistical techniques for monitoring and detection of counterfeit smart grid devices. In our framework, we consider six different counterfeit device scenarios with different smart grid devices and adversarial seZings. Our initial results on a realistic testbed utilizing actual smart-­grid GOOSE messages with IEC-­61850 communication protocol are very promising. Our framework is showing excellent rates on detection of smart grid counterfeit devices from impostors.

  6. Conducted and radiated noise in detection devices

    International Nuclear Information System (INIS)

    Moisa, D.

    2001-01-01

    Conducted and radiated noise is an external noise which affects the quality of the signals of the detectors. An external noise can be reduced, usually, by shielding. This was the situation with 'older fashion' devices which uses boxes and coaxial cables. As the devices becomes more complex, the shielding of the detectors is more and more difficult and the transmission lines evolves from coaxial cables to twisted pair cables which are no more shielded. In such situation, the conducted and radiated noise (C and R noise) becomes important. Due to complexity of a real detector, the main work is based on experiments with components and simulations of some specific problems, associated with CDC detector. The first experiment was done to understand how the C and R noise is propagated. The emission device was a set of coils (between 3 and 5 turns with diameter from 10 to 50 mm) feed by an 74S140 driver. A pulse of about 8 ns width was generated. A coil of reception of about the same physical characteristics was used to see the emitted pulse. When the two coils are separated by about 80 cm, the receiver generated no signal. But, if along the two coils, a conductive material is introduced (a wire for instance), the receiver senses a signal. This signal is not changed too much if the wire is or not connected to ground. The explanation is simple: the pulse in the emitting coil produces an EM pulse which spreads in space. If a conductive material is around, the EM energy is received by that conductor and it is propagated at tens of meters with small attenuation. When this energy reaches the end of the conductor, it is radiated in space. If some other conductors are around, the energy is received and propagated by that conductors. This experiment was done for about 20 kinds of conductors (different coax cables, twisted-pair ribbons, power cables, metallic bars) and with many coils (different diameters and numbers of turns). It was measured the pk-to-pk level, decay constant and

  7. ARAPUCA a new device for liquid argon scintillation light detection

    International Nuclear Information System (INIS)

    Machado, A.A.; Segreto, E.

    2016-01-01

    We present a totally innovative device for the detection of liquid argon scintillation light, that has been named ARAPUCA (Argon R and D Advanced Program at UniCAmp). It is composed of a passive light collector and of active devices. The latters are standard SiPMs that operate at liquid argon temperature, while the passive collector is based on a new technology, never explored in this field before. It is a photon trap, that allows to collect light with extremely high efficiency. The total detection efficiency of the device can be tuned by modifying the ratio between the area of the active devices (SiPM) and the area of the optical window. For example, it will allow to reach a detection efficiency at the level of 1% on a surface of 50 × 50 cm 2 with an active coverage of 2 × 2 cm 2 (two/three large area SiPM). It is also a cheap device, since the major part of its cost is represented by the active devices. For these reason this appears to be the ideal device for scintillation light detection in large Time Projection Chambers. With appropriate modifications it can be used also in next generation Dark Matter detectors

  8. Real-time change detection for countering improvised explosive devices

    NARCIS (Netherlands)

    Wouw, van de D.W.J.M.; Rens, van K.; Lint, van R.H.; Jaspers, Egbert; With, de P.H.N.; Loce, R.P.; Saber, E.

    2014-01-01

    We explore an automatic real-time change detection system to assist military personnel during transport and surveillance, by detection changes in the environment with respect to a previous operation. Such changes may indicate the presence of Improvised Explosive Devices (IEDs), which can then be

  9. A capacitive device approach to gravitational wave detection

    International Nuclear Information System (INIS)

    Mours, B.; Yvert, M.

    1988-05-01

    The possible use of a capacitive device to detect gravitational waves is discussed. Special emphasis is put on the detection of permanent periodic sources. The intrinsic properties of such a method, its sensitivity, directionality and its wide frequency band, makes it a very appealing one

  10. Position sensitive detector used to detect beam profile

    International Nuclear Information System (INIS)

    Zhao Xiaoyan; Zhao Zhizheng; Zu Kailing; Zheng Jianhua; Wang Yifang

    2003-01-01

    In order to study the detecting system of the residual-gas beam profile, we introduce the principle and construction of the Position Sensitive Detector (PSD). The performance of PSD is tested. Position resolution, position linearity, detection efficiency and background are obtained

  11. Advanced laser-based tracking device for motor vehicle lane position monitoring and steering assistance

    Science.gov (United States)

    Bachalo, William D.; Inenaga, Andrew; Schuler, Carlos A.

    1995-12-01

    Aerometrics is developing an innovative laser-diode based device that provides a warning signal when a motor-vehicle deviates from the center of the lane. The device is based on a sensor that scans the roadway on either side of the vehicle and determines the lateral position relative to the existing painted lines marking the lane. No additional markings are required. A warning is used to alert the driver of excessive weaving or unanticipated departure from the center of the lane. The laser beams are at invisible wavelengths to that operation of the device does not pose a distraction to the driver or other motorists: When appropriate markers are not present on the road, the device is capable of detecting this condition and warn the driver. The sensor system is expected to work well irrespective of ambient light levels, fog and rain. This sensor has enormous commercial potential. It could be marketed as an instrument to warn drivers that they are weaving, used as a research tool to monitor driving patterns, be required equipment for those previously convicted of driving under the influence, or used as a backup sensor for vehicle lateral position control. It can also be used in storage plants to guide robotic delivery vehicles. In this paper, the principles of operation of the sensor, and the results of Aerometrics ongoing testing will be presented.

  12. Transmission environmental scanning electron microscope with scintillation gaseous detection device.

    Science.gov (United States)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-03-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Efficient Signature Based Malware Detection on Mobile Devices

    Directory of Open Access Journals (Sweden)

    Deepak Venugopal

    2008-01-01

    Full Text Available The threat of malware on mobile devices is gaining attention recently. It is important to provide security solutions to these devices before these threats cause widespread damage. However, mobile devices have severe resource constraints in terms of memory and power. Hence, even though there are well developed techniques for malware detection on the PC domain, it requires considerable effort to adapt these techniques for mobile devices. In this paper, we outline the considerations for malware detection on mobile devices and propose a signature based malware detection method. Specifically, we detail a signature matching algorithm that is well suited for use in mobile device scanning due to its low memory requirements. Additionally, the matching algorithm is shown to have high scanning speed which makes it unobtrusive to users. Our evaluation and comparison study with the well known Clam-AV scanner shows that our solution consumes less than 50% of the memory used by Clam-AV while maintaining a fast scanning rate.

  14. Device for acoustic detection in a nuclear reactor

    International Nuclear Information System (INIS)

    Hanff, M.; Lions, N.; Peronnet, J.

    1975-01-01

    A description is given of a device which comprises a first acoustic conductor placed vertically within the coolant liquid contained in a nuclear reactor vessel and a second coaxial acoustic conductor extending to the exterior of the reactor vessel. The device essentially comprises an accelerometer assembly for detecting signals delivered by the second conductor and an amplifier which applies the detected signals to measuring instruments located outside the reactor vessel. The accelerometer comprises an amplifying pressure needle carried by the upper end of the second conductor, a piezoelectric ceramic element, a block fitted with a spring for applying the ceramic element against the needle and a preamplifier connected in series with the amplifier

  15. Detection and response to unauthorized access to a communication device

    Science.gov (United States)

    Smith, Rhett; Gordon, Colin

    2015-09-08

    A communication gateway consistent with the present disclosure may detect unauthorized physical or electronic access and implement security actions in response thereto. A communication gateway may provide a communication path to an intelligent electronic device (IED) using an IED communications port configured to communicate with the IED. The communication gateway may include a physical intrusion detection port and a network port. The communication gateway may further include control logic configured to evaluate physical intrusion detection signal. The control logic may be configured to determine that the physical intrusion detection signal is indicative of an attempt to obtain unauthorized access to one of the communication gateway, the IED, and a device in communication with the gateway; and take a security action based upon the determination that the indication is indicative of the attempt to gain unauthorized access.

  16. Towards Flexibility Detection in Device-Level Energy Consumption

    DEFF Research Database (Denmark)

    Neupane, Bijay; Pedersen, Torben Bach; Thiesson, Bo

    2014-01-01

    The increasing drive towards green energy has boosted the installation of Renewable Energy Sources (RES). Increasing the share of RES in the power grid requires demand management by flexibility in the consumption. In this paper, we perform a state-of-the-art analysis on the flexibility and operat......The increasing drive towards green energy has boosted the installation of Renewable Energy Sources (RES). Increasing the share of RES in the power grid requires demand management by flexibility in the consumption. In this paper, we perform a state-of-the-art analysis on the flexibility...... and operation patterns of the devices in a set of real households. We propose a number of specific pre-processing steps such as operation stage segmentation, and aberrant operation duration removal to clean device level data. Further, we demonstrate various device operation properties such as hourly and daily...... regularities and patterns and the correlation between operating different devices. Subsequently, we show the existence of detectable time and energy flexibility in device operations. Finally, we provide various results providing a foundation for load- and flexibility-detection and -prediction at the device...

  17. Transmission environmental scanning electron microscope with scintillation gaseous detection device

    International Nuclear Information System (INIS)

    Danilatos, Gerasimos; Kollia, Mary; Dracopoulos, Vassileios

    2015-01-01

    A transmission environmental scanning electron microscope with use of a scintillation gaseous detection device has been implemented. This corresponds to a transmission scanning electron microscope but with addition of a gaseous environment acting both as environmental and detection medium. A commercial type of low vacuum machine has been employed together with appropriate modifications to the detection configuration. This involves controlled screening of various emitted signals in conjunction with a scintillation gaseous detection device already provided with the machine for regular surface imaging. Dark field and bright field imaging has been obtained along with other detection conditions. With a progressive series of modifications and tests, the theory and practice of a novel type of microscopy is briefly shown now ushering further significant improvements and developments in electron microscopy as a whole. - Highlights: • Novel scanning transmission electron microscopy (STEM) with an environmental scanning electron microscope (ESEM) called TESEM. • Use of the gaseous detection device (GDD) in scintillation mode that allows high resolution bright and dark field imaging in the TESEM. • Novel approach towards a unification of both vacuum and environmental conditions in both bulk/surface and transmission mode of electron microscopy

  18. Analysis of Android Device-Based Solutions for Fall Detection

    Directory of Open Access Journals (Sweden)

    Eduardo Casilari

    2015-07-01

    Full Text Available Falls are a major cause of health and psychological problems as well as hospitalization costs among older adults. Thus, the investigation on automatic Fall Detection Systems (FDSs has received special attention from the research community during the last decade. In this area, the widespread popularity, decreasing price, computing capabilities, built-in sensors and multiplicity of wireless interfaces of Android-based devices (especially smartphones have fostered the adoption of this technology to deploy wearable and inexpensive architectures for fall detection. This paper presents a critical and thorough analysis of those existing fall detection systems that are based on Android devices. The review systematically classifies and compares the proposals of the literature taking into account different criteria such as the system architecture, the employed sensors, the detection algorithm or the response in case of a fall alarms. The study emphasizes the analysis of the evaluation methods that are employed to assess the effectiveness of the detection process. The review reveals the complete lack of a reference framework to validate and compare the proposals. In addition, the study also shows that most research works do not evaluate the actual applicability of the Android devices (with limited battery and computing resources to fall detection solutions.

  19. Analysis of Android Device-Based Solutions for Fall Detection.

    Science.gov (United States)

    Casilari, Eduardo; Luque, Rafael; Morón, María-José

    2015-07-23

    Falls are a major cause of health and psychological problems as well as hospitalization costs among older adults. Thus, the investigation on automatic Fall Detection Systems (FDSs) has received special attention from the research community during the last decade. In this area, the widespread popularity, decreasing price, computing capabilities, built-in sensors and multiplicity of wireless interfaces of Android-based devices (especially smartphones) have fostered the adoption of this technology to deploy wearable and inexpensive architectures for fall detection. This paper presents a critical and thorough analysis of those existing fall detection systems that are based on Android devices. The review systematically classifies and compares the proposals of the literature taking into account different criteria such as the system architecture, the employed sensors, the detection algorithm or the response in case of a fall alarms. The study emphasizes the analysis of the evaluation methods that are employed to assess the effectiveness of the detection process. The review reveals the complete lack of a reference framework to validate and compare the proposals. In addition, the study also shows that most research works do not evaluate the actual applicability of the Android devices (with limited battery and computing resources) to fall detection solutions.

  20. Analysis of Android Device-Based Solutions for Fall Detection

    Science.gov (United States)

    Casilari, Eduardo; Luque, Rafael; Morón, María-José

    2015-01-01

    Falls are a major cause of health and psychological problems as well as hospitalization costs among older adults. Thus, the investigation on automatic Fall Detection Systems (FDSs) has received special attention from the research community during the last decade. In this area, the widespread popularity, decreasing price, computing capabilities, built-in sensors and multiplicity of wireless interfaces of Android-based devices (especially smartphones) have fostered the adoption of this technology to deploy wearable and inexpensive architectures for fall detection. This paper presents a critical and thorough analysis of those existing fall detection systems that are based on Android devices. The review systematically classifies and compares the proposals of the literature taking into account different criteria such as the system architecture, the employed sensors, the detection algorithm or the response in case of a fall alarms. The study emphasizes the analysis of the evaluation methods that are employed to assess the effectiveness of the detection process. The review reveals the complete lack of a reference framework to validate and compare the proposals. In addition, the study also shows that most research works do not evaluate the actual applicability of the Android devices (with limited battery and computing resources) to fall detection solutions. PMID:26213928

  1. Improved axial position detection in optical tweezers measurements

    DEFF Research Database (Denmark)

    Dreyer, Jakob Kisbye; Berg-Sørensen, Kirstine; Oddershede, Lene

    2004-01-01

    We investigate the axial position detection of a trapped microsphere in an optical trap by using a quadrant photodiode. By replacing the photodiode with a CCD camera, we obtain detailed information on the light scattered by the microsphere. The correlation of the interference pattern with the axial...... position displays complex behavior with regions of positive and negative interference. By analyzing the scattered light intensity as a function of the axial position of the trapped sphere, we propose a simple method to increase the sensitivity and control the linear range of axial position detection....

  2. Data analysis of inertial sensor for train positioning detection system

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Jin; Park, Sung Soo; Lee, Jae Ho; Kang, Dong Hoon [Korea Railroad Research Institute, Uiwang (Korea, Republic of)

    2015-02-15

    Train positioning detection information is fundamental for high-speed railroad inspection, making it possible to simultaneously determine the status and evaluate the integrity of railroad equipment. This paper presents the results of measurements and an analysis of an inertial measurement unit (IMU) used as a positioning detection sensors. Acceleration and angular rate measurements from the IMU were analyzed in the amplitude and frequency domains, with a discussion on vibration and train motions. Using these results and GPS information, the positioning detection of a Korean tilting train express was performed from Naju station to Illo station on the Honam-line. The results of a synchronized analysis of sensor measurements and train motion can help in the design of a train location detection system and improve the positioning detection performance.

  3. Radiation detection and measurement concepts, methods and devices

    CERN Document Server

    McGregor, Douglas

    2019-01-01

    This text on radiation detection and measurement is a response to numerous requests expressed by students at various universities, in which the most popularly used books do not provide adequate background material, nor explain matters in understandable terms. This work provides a modern overview of radiation detection devices and radiation measurement methods. The topics selected in the book have been selected on the basis of the author’s many years of experience designing radiation detectors and teaching radiation detection and measurement in a classroom environment.

  4. Profilographic detection system for single-track scanning device

    International Nuclear Information System (INIS)

    Silar, J.; Kula, J.

    1988-01-01

    A profilographic detection system is claimed for diagnosing the renal function by isotope nephrography, and the bladder filling in small children and infants. The configuration described guarantees good position resolution and sensitivity of the detection system. (E.J.). 2 figs

  5. Researches on Position Detection for Vacuum Switch Electrode

    Science.gov (United States)

    Dong, Huajun; Guo, Yingjie; Li, Jie; Kong, Yihan

    2018-03-01

    Form and transformation character of vacuum arc is important influencing factor on the vacuum switch performance, and the dynamic separations of electrode is the chief effecting factor on the transformation of vacuum arcs forms. Consequently, how to detect the position of electrode to calculate the separations in the arcs image is of great significance. However, gray level distribution of vacuum arcs image isn’t even, the gray level of burning arcs is high, but the gray level of electrode is low, meanwhile, the forms of vacuum arcs changes sharply, the problems above restrict electrode position detection precisely. In this paper, algorithm of detecting electrode position base on vacuum arcs image was proposed. The digital image processing technology was used in vacuum switch arcs image analysis, the upper edge and lower edge were detected respectively, then linear fitting was done using the result of edge detection, the fitting result was the position of electrode, thus, accurate position detection of electrode was realized. From the experimental results, we can see that: algorithm described in this paper detected upper and lower edge of arcs successfully and the position of electrode was obtained through calculation.

  6. Delay-Line Three-Dimensional Position Sensitive Radiation Detection

    Science.gov (United States)

    Jeong, Manhee

    High-resistivity silicon(Si) in large volumes and with good charge carrier transport properties has been produced and achieved success as a radiation detector material over the past few years due to its relatively low cost as well as the availability of well-established processing technologies. One application of that technology is in the fabrication of various position-sensing topologies from which the incident radiation's direction can be determined. We have succeeded in developing the modeling tools for investigating different position-sensing schemes and used those tools to examine both amplitude-based and time-based methods, an assessment that indicates that fine position-sensing can be achieved with simpler readout designs than are conventionally deployed. This realization can make ubiquitous and inexpensive deployment of special nuclear materials (SNM) detecting technology becomes more feasible because if one can deploy position-sensitive semiconductor detectors with only one or two contacts per side. For this purpose, we have described the delay-line radiation detector and its optimized fabrication. The semiconductor physics were simulated, the results from which guided the fabrication of the guard ring structure and the detector electrode, both of which included metal-field-plates. The measured improvement in the leakage current was confirmed with the fabricated devices, and the structures successfully suppressed soft-breakdown. We also demonstrated that fabricating an asymmetric strip-line structure successfully minimizing the pulse shaping and increases the distance through which one can propagate the information of the deposited charge distribution. With fabricated delay-line detectors we can acquire alpha spectra (Am-241) and gamma spectra (Ba-133, Co-57 and Cd-109). The delay-line detectors can therefore be used to extract the charge information from both ion and gamma-ray interactions. Furthermore, standard charge-sensitive circuits yield high SNR

  7. Effects of particle's off-axis position, shape, orientation and entry position on resistance changes of micro Coulter counting devices

    International Nuclear Information System (INIS)

    Qin, Zhenpeng; Zhe, Jiang; Wang, Guo-Xiang

    2011-01-01

    With the recent advance in micro/nano-fabrication technology, micro Coulter counters have been widely used in detecting and characterizing micro- and nanoscale objects. In this paper, the electrical resistance change during translocation of a non-conducting particle through a channel is studied numerically. The numerical results are validated by proven analytical results available in the literature. The effects of particle's off-axis position, shape and orientation, and entry position are studied for particles with a large dynamic range. From the numerical results, a new fitted correlation is proposed that can accurately predict the resistance change caused by off-axis spherical particles regardless of their size. The shape and orientation effects of the electrical resistance change are studied by changing the axis ratio of spheroid particles and their orientation angles. Results show that a particle's shape and orientation have a significant influence on the resistance change. Simulation of an entry effect indicates that a particle starts to induce a resistance change before it enters the channel and still causes a resistance change even after the particle exits the channel completely. This study will offer some guidelines in designing and implementing Coulter counting devices and experiments, and provide insights into explaining experimental results

  8. A miniaturized silicon based device for nucleic acids electrochemical detection

    Directory of Open Access Journals (Sweden)

    Salvatore Petralia

    2015-12-01

    Full Text Available In this paper we describe a novel portable system for nucleic acids electrochemical detection. The core of the system is a miniaturized silicon chip composed by planar microelectrodes. The chip is embedded on PCB board for the electrical driving and reading. The counter, reference and work microelectrodes are manufactured using the VLSI technology, the material is gold for reference and counter electrodes and platinum for working electrode. The device contains also a resistor to control and measuring the temperature for PCR thermal cycling. The reaction chamber has a total volume of 20 μL. It is made in hybrid silicon–plastic technology. Each device contains four independent electrochemical cells.Results show HBV Hepatitis-B virus detection using an unspecific DNA intercalating redox probe based on metal–organic compounds. The recognition event is sensitively detected by square wave voltammetry monitoring the redox signals of the intercalator that strongly binds to the double-stranded DNA. Two approaches were here evaluated: (a intercalation of electrochemical unspecific probe on ds-DNA on homogeneous solution (homogeneous phase; (b grafting of DNA probes on electrode surface (solid phase.The system and the method here reported offer better advantages in term of analytical performances compared to the standard commercial optical-based real-time PCR systems, with the additional incomes of being potentially cheaper and easier to integrate in a miniaturized device. Keywords: Electrochemical detection, Real time PCR, Unspecific DNA intercalator

  9. Demonstrating EnTracked a System for Energy-Efficient Position Tracking for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Jensen, Jakob Langdal; Godsk, Torben

    An important feature of a modern mobile device is that it can position itself. Not only for use on the device but also for remote applications that require tracking of the device. To be useful, such position tracking has to be energy-efficient to avoid having a major impact on the battery life...... of the mobile device. To address this challenge we have build a system named EnTracked that, based on the estimation and prediction of system conditions and mobility, schedules position updates to both minimize energy consumption and optimize robustness. In this demonstration we would like to show how...

  10. Separating positive and negative magnetoresistance in organic semiconductor devices

    NARCIS (Netherlands)

    Bloom, F.L.; Wagemans, W.; Kemerink, M.; Koopmans, B.

    2007-01-01

    We study the transition between positive and negative organic magnetoresistance (OMAR) in tris-(8 hydroxyquinoline) aluminium (Alq3), in order to identify the elementary mechanisms governing this phenomenon. We show how the sign of OMAR changes as function of the applied voltage and temperature. The

  11. An experimental method for detecting blood splatter from retractable phlebotomy and intravascular devices.

    Science.gov (United States)

    Haiduven, Donna; Applegarth, Shawn; Shroff, Miloni

    2009-03-01

    This study was designed to evaluate the safety of retractable intravascular devices in terms of their potential to produce blood splatter. A method for measuring this blood splatter designed by the research team was used to evaluate 3 specific intravascular devices. Scientific filters were positioned around the retraction mechanisms of the devices and weighed with an analytical scale, both before and after activation, in a simulated vein containing mock venous blood. The difference in filter mass was used as the primary unit of analysis to detect blood splatter. In addition, the filters were visually inspected for the presence or absence of blood. A paired t-test revealed significant differences in the prefilter and postfilter groups for 2 of the 3 devices tested (P blood was detected on 23% to 40% of the scientific filters for 2 of the devices. Our findings indicate a potential for bloodborne pathogen exposure with the use of intravascular devices with a retractable mechanism. This experiment may serve as a model in the design and implementation of future sharps device evaluation protocols to validate the threat of bloodborne pathogen exposure.

  12. Modified precision lingual bonding technique: A step-wise approach with torque angulation device-bracket positioning device

    Directory of Open Access Journals (Sweden)

    Rosaline Tina Paul

    2017-01-01

    Full Text Available Objectives: Contemporary preadjusted edgewise appliance is all about the precision in bracket design, prescription and positioning in addition to the orthodontist's skill and training. However, achieving it is a bigger challenge as the anatomy of the lingual surface of a tooth is uneven, dissimilar, and moreover the tooth alignment on the lingual surface is variant. Thus, the need for an accurate method of bracket positioning with predetermined torque and angulation incorporated in the brackets according to the patients' need is of key importance. Materials and Methods: A TAD-BPD machine used to enhance the accuracy of bracket positioning and bioplast accurate tray transfer technique was used. Results: A step-wise procedures in bracket positioning and fabricating an indirect bonding tray for lingual orthodontics using the torque angulation device-bracket positioning device. Conclusions: This technique facilitated unhindered bonding even in severely crowded cases and easy rebonding during mid-treatment stages.

  13. EnTracked: Energy-Efficient Robust Position Tracking for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun; Jensen, Jakob Langdal; Godsk, Torben

    2009-01-01

    conditions and mobility, schedules position updates to both minimize energy consumption and optimize robustness. The realized system tracks pedestrian targets equipped with GPS-enabled devices. The system is configurable to realize different trade-offs between energy consumption and robustness. We provide...... of the mobile device. Furthermore, tracking has to robustly deliver position updates when faced with changing conditions such as delays due to positioning and communication, and changing positioning accuracy. This work proposes EnTracked --- a system that, based on the estimation and prediction of system...... extensive experimental results by profiling how devices consume power, by emulation on collected data and by validation in several real-world deployments. Results from this profiling show how a device consumes power while tracking its position. Results from the emulation indicate that the system can...

  14. CARIES DETECTION WITH LASER FLUORESCENCE DEVICES. LIMITATIONS OF THEIR USE

    Directory of Open Access Journals (Sweden)

    Andreas Spaveras

    2017-03-01

    Data synthesis: DD and DDPen are useful devices for caries detection on the occlusal tooth surfaces. Their main advantages are the very high reproducibility of measurements (>0.90, the ease of handling and the quantification and monitoring capacity. Their main limitations are the relatively low specificity for enamel lesions, the necessity of unstained surfaces and absence of plaque and pastes during measurements and the absence of a universal, clinically functional calibration value (COV. Conclusion: Further studies are required for more reliable data analysis and clinical interpretation of the relevant results.

  15. Positive maps, majorization, entropic inequalities and detection of entanglement

    International Nuclear Information System (INIS)

    Augusiak, R; Stasinska, J

    2009-01-01

    In this paper, we discuss some general connections between the notions of positive map, weak majorization and entropic inequalities in the context of detection of entanglement among bipartite quantum systems. First, basing on the fact that any positive map Λ:M d (C)→M d (C) can be written as the difference between two completely positive maps Λ=Λ 1 -Λ 2 , we propose a possible way to generalize the Nielsen-Kempe majorization criterion. Then, we present two methods of derivation of some general classes of entropic inequalities useful for the detection of entanglement. While the first one follows from the aforementioned generalized majorization relation and the concept of Schur-concave decreasing functions, the second is based on some functional inequalities. What is important is that, contrary to the Nielsen-Kempe majorization criterion and entropic inequalities, our criteria allow for the detection of entangled states with positive partial transposition when using indecomposable positive maps. We also point out that if a state with at least one maximally mixed subsystem is detected by some necessary criterion based on the positive map Λ, then there exist entropic inequalities derived from Λ (by both procedures) that also detect this state. In this sense, they are equivalent to the necessary criterion [IxΛ](rhov AB )≥0. Moreover, our inequalities provide a way of constructing multi-copy entanglement witnesses and therefore are promising from the experimental point of view. Finally, we discuss some of the derived inequalities in the context of the recently introduced protocol of state merging and the possibility of approximating the mean value of a linear entanglement witness.

  16. Accuracy Enhancements for Positioning of Mobile Devices in Wireless Communication Networks

    DEFF Research Database (Denmark)

    Figueiras, Joao

    of the physical length of the communication links. Since these solutions do not require integration of additional hardware into the mobile nodes, they are cheap and simple to implement. As a price to pay, accuracy is typically lower in comparison to dedicated positioning systems. Thus, an important challenge...... communication among users, cooperative positioning strategies aim at localizing devices as a group and not as individuals. In order to reach this goal it is necessary to combine measurements from two domains: device-to-device links and cellular links. Since this combination of information......Positioning of mobile devices in wireless communication networks is nowadays being intensively investigated due to the combined benefit of location information and communication. Typical solutions for such scenario rely on robust algorithms that estimate position from indirect measurements...

  17. Detection of Special Operations Forces Using Night Vision Devices

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.M.

    2001-10-22

    Night vision devices, such image intensifiers and infrared imagers, are readily available to a host of nations, organizations, and individuals through international commerce. Once the trademark of special operations units, these devices are widely advertised to ''turn night into day''. In truth, they cannot accomplish this formidable task, but they do offer impressive enhancement of vision in limited light scenarios through electronically generated images. Image intensifiers and infrared imagers are both electronic devices for enhancing vision in the dark. However, each is based upon a totally different physical phenomenon. Image intensifiers amplify the available light energy whereas infrared imagers detect the thermal energy radiated from all objects. Because of this, each device operates from energy which is present in a different portion of the electromagnetic spectrum. This leads to differences in the ability of each device to detect and/or identify objects. This report is a compilation of the available information on both state-of-the-art image intensifiers and infrared imagers. Image intensifiers developed in the United States, as well as some foreign made image intensifiers, are discussed. Image intensifiers are categorized according to their spectral response and sensitivity using the nomenclature of GEN I, GEN II, and GEN III. As the first generation of image intensifiers, GEN I, were large and of limited performance, this report will deal with only GEN II and GEN III equipment. Infrared imagers are generally categorized according to their spectral response, sensor materials, and related sensor operating temperature using the nomenclature Medium Wavelength Infrared (MWIR) Cooled and Long Wavelength Infrared (LWIR) Uncooled. MWIR Cooled refers to infrared imagers which operate in the 3 to 5 {micro}m wavelength electromagnetic spectral region and require either mechanical or thermoelectric coolers to keep the sensors operating at 77 K

  18. Multilevel electrochemical signal detections of metalloprotein heterolayers for bioelectronic device

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Yong-Ho; Yoo, Si-Youl; Lee, Taek [Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Lee, Hun Joo [Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeomro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Min, Junhong [School of Integrative Engineering, Chung-Ang University, Heukseok-dong, Dongjak-gu, Seoul 156-756 (Korea, Republic of); Choi, Jeong-Woo, E-mail: jwchoi@sogang.ac.kr [Department of Chemical and Biomolecular Engineering, Sogang University, 35 Baekbeom-ro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of); Interdisciplinary Program of Integrated Biotechnology, Sogang University, 35 Baekbeomro(Sinsu-dong), Mapo-gu, Seoul 121-742 (Korea, Republic of)

    2014-01-31

    In the present study, we investigated the simultaneous detection of multilevel electrochemical signals from various metalloprotein heterolayers for the bioelectronic devices. A layer-by-layer assembly method based on simple electrostatic interaction was introduced to form protein bilayers. The gold substrate was modified with poly (ethylene glycol) thiol acid as the precursor, which introduced negative charges to the surface. Based on the isoelectric point, net-charge controlled metalloproteins by pH adjustment were sequentially immobilized on this negatively charged substrate. The degree of protein immobilization on the gold substrate was confirmed by surface plasmon resonance spectroscopy, and the surface topology changes due to the protein immobilization were confirmed by atomic force microscopy. Redox signals in the protein layers were measured by cyclic voltammetry. As a result, various redox signals generated from different metalloproteins on a single electrode were monitored. This proposed method for the detection of multi-level electrochemical signals can be directly applied to bioelectronic devices that store multi-information in a single electrode. - Highlights: • We fabricated heterolayers composed of various metalloproteins. • Metalloproteins were immobilized by layer-by-layer assembly. • The degree of immobilization was controlled by the net charge of metalloproteins. • Various redox signals generated from heterolayers were well monitored.

  19. Leak detection device for nuclear reactor pressure vessel

    International Nuclear Information System (INIS)

    Ikeda, Jun.

    1988-01-01

    Purpose: To test the leakage of a nuclear reactor pressure vessel during stopping for a short period of time with no change to the pressure vessel itself. Constitution: The device of the present invention comprises two O-rings disposed on the flange surface that connects a pressure vessel main body and an upper cover, a leak-off pipeway derived from the gap of the O-rings at the flange surface to the outside of the pressure vessel, a pressure detection means connected to the end of the pipeway, a humidity detection means disposed to the lead-off pipeway, a humidity detection means disposed to the lead-off pipeway, and gas supply means and gas suction means disposed each by way of a check valve to a side pipe branched from the pipeway. After stopping the operation of the nuclear reactor and pressurizing the pressure vessel by filling water, gases supplied to the gap between the O-rings at the flange surface by opening the check valve. In a case where water in the pressure vessel should leak to the flange surface, when gas suction is applied by properly opening the check valve, increase in the humidity due to the steams of leaked water diffused into the gas is detected to recognize the occurrence of leakage. (Kamimura, M.)

  20. ECOPS: Energy-Efficient Collaborative Opportunistic Positioning for Heterogeneous Mobile Devices

    Directory of Open Access Journals (Sweden)

    Kaustubh Dhondge

    2013-01-01

    and prevalent WiFi, broadcasted from a few other devices in the communication range. The position-broadcasting devices in ECOPS have sufficient battery power and up-to-date location information obtained from accurate but energy-inefficient GPS. A position receiver in ECOPS estimates its location using a combination of methods including received signal strength indicators and 2D trilateration. Our field experiments show that ECOPS significantly reduces the total energy consumption of devices while achieving an acceptable level of location accuracy. ECOPS can be especially useful for unique resource scarce, infrastructureless, and mission critical scenarios such as battlefields, border patrol, mountaineering expeditions, and disaster area assistance.

  1. Leakage detecting method and device for water tight vessel of wet-type container apparatus

    International Nuclear Information System (INIS)

    Tanaka, Yoshimi.

    1995-01-01

    The present invention provides a method of and a device for detecting leakage of a water tight vessel of a wet-type container apparatus for containing a reactor pressure vessel while immersing it water in a reactor container. Namely, in the wet-type container apparatus, the periphery of the pressure vessel is coated with a heat insulation material and the periphery of the heat insulation material is coated with a water tight vessel. The water tight vessel is immersed under water in the reactor container. As a method of detecting leakage of the wet-type container apparatus, gases mixed with helium are supplied into the water tight vessel at a pressure higher than the inner pressure of the reactor container at a lowest position of the reactor pressure vessel. A water level in the reactor container is determined so as to form a space at the top portion of the inside of the reactor container. The helium at the top portion is detected to monitor the leakage of the water tight vessel. With such procedures, even if the water tight vessel is ruptured at any position, helium mixed to the gases is released to water in the reactor container and rise up to the top space and detected by a helium leakage detection device. (I.S.)

  2. Medicine Delivery Device with Integrated Sterilization and Detection

    Science.gov (United States)

    Shearn, Michael J.; Greer, Harold F.; Manohara, Harish

    2013-01-01

    Sterile delivery devices can be created by integrating a medicine delivery instrument with surfaces that are coated with germicidal and anti-fouling material. This requires that a large-surface-area template be developed within a constrained volume to ensure good contact between the delivered medicine and the germicidal material. Both of these can be integrated using JPL-developed silicon nanotip or cryo-etch black silicon technologies with atomic layer deposition (ALD) coating of specific germicidal layers. The application of semiconductor processing techniques and technologies to the problems of fluid manipulation and delivery has enabled the integration of chemical, electrical, and mechanical manipulation of samples all within a single microfluidic device. This approach has been successfully applied at JPL to the automated processing, detection, and analysis of minute quantities (parts per trillion level) of biomaterials to develop instruments for in situ exploration or extraterrestrial bodies. The same nanofabrication techniques that are used to produce a microfluidics device are also capable of synthesizing extremely high-surface-area templates in precise locations, and coating those surfaces with conformal films to manipulate their surface properties. This methodology has been successfully applied at JPL to produce patterned and coated silicon nanotips (also known as black silicon) to manipulate the hydrophilicity of surfaces to direct the spreading of fluids in microdevices. JPL's ALD technique is an ideal method to produce the highly conformal coatings required for this type of application. Certain materials, such as TiO2, have germicidal and anti-fouling properties when they are illuminated with UV light. The proposed delivery device contacts medicine with this high-surface-area black silicon surface coated with a thin-film germicidal deposited conformally with ALD. The coating can also be illuminated with ultraviolet light for the purpose of sterilization

  3. Digital micromirror devices in Raman trace detection of explosives

    Science.gov (United States)

    Glimtoft, Martin; Svanqvist, Mattias; Ågren, Matilda; Nordberg, Markus; Östmark, Henric

    2016-05-01

    Imaging Raman spectroscopy based on tunable filters is an established technique for detecting single explosives particles at stand-off distances. However, large light losses are inherent in the design due to sequential imaging at different wavelengths, leading to effective transmission often well below 1 %. The use of digital micromirror devices (DMD) and compressive sensing (CS) in imaging Raman explosives trace detection can improve light throughput and add significant flexibility compared to existing systems. DMDs are based on mature microelectronics technology, and are compact, scalable, and can be customized for specific tasks, including new functions not available with current technologies. This paper has been focusing on investigating how a DMD can be used when applying CS-based imaging Raman spectroscopy on stand-off explosives trace detection, and evaluating the performance in terms of light throughput, image reconstruction ability and potential detection limits. This type of setup also gives the possibility to combine imaging Raman with non-spatially resolved fluorescence suppression techniques, such as Kerr gating. The system used consists of a 2nd harmonics Nd:YAG laser for sample excitation, collection optics, DMD, CMOScamera and a spectrometer with ICCD camera for signal gating and detection. Initial results for compressive sensing imaging Raman shows a stable reconstruction procedure even at low signals and in presence of interfering background signal. It is also shown to give increased effective light transmission without sacrificing molecular specificity or area coverage compared to filter based imaging Raman. At the same time it adds flexibility so the setup can be customized for new functionality.

  4. Permeated defect detecting test method and device in reactor

    International Nuclear Information System (INIS)

    Sakurai, Yoshishige.

    1996-01-01

    The present invention provides a method of and a device capable of performing a test for entire inner surfaces of the reactor upon periodical inspection of a BWR type reactor while sufficiently taking countermeasures for radiation rays into consideration. Namely, the present invention comprises following steps. (1) A provisional step for taking a shroud head of a reactor core shroud and incore structural components above and below the shroud out of the reactor, discharging reactor water and water tightly closing openings such as reactor wall perforation holes, (2) a pretreatment step for washing exposed inner surfaces of the reactor and peeling deteriorated materials, (3) a first drying step for drying portions washed and peeled in the step (2), (4) a permeation step for applying a permeation liquid of a defect detecting medium on the exposed inner surfaces of the reactor, (5) a permeation liquid removing step for removing the an excess permeation liquid in the step (4), (6) a second drying step for drying corresponding portions after performing the step (5), and (7) a flaw detecting step for optically observing the corresponding portions after performing the step (6) and detecting flaws. (I.S.)

  5. Organic materials and devices for detecting ionizing radiation

    Science.gov (United States)

    Doty, F Patrick [Livermore, CA; Chinn, Douglas A [Livermore, CA

    2007-03-06

    A .pi.-conjugated organic material for detecting ionizing radiation, and particularly for detecting low energy fission neutrons. The .pi.-conjugated materials comprise a class of organic materials whose members are intrinsic semiconducting materials. Included in this class are .pi.-conjugated polymers, polyaromatic hydrocarbon molecules, and quinolates. Because of their high resistivities (.gtoreq.10.sup.9 ohmcm), these .pi.-conjugated organic materials exhibit very low leakage currents. A device for detecting and measuring ionizing radiation can be made by applying an electric field to a layer of the .pi.-conjugated polymer material to measure electron/hole pair formation. A layer of the .pi.-conjugated polymer material can be made by conventional polymer fabrication methods and can be cast into sheets capable of covering large areas. These sheets of polymer radiation detector material can be deposited between flexible electrodes and rolled up to form a radiation detector occupying a small volume but having a large surface area. The semiconducting polymer material can be easily fabricated in layers about 10 .mu.m to 100 .mu.m thick. These thin polymer layers and their associated electrodes can be stacked to form unique multi-layer detector arrangements that occupy small volume.

  6. Efficient Device-Independent Entanglement Detection for Multipartite Systems

    Science.gov (United States)

    Baccari, F.; Cavalcanti, D.; Wittek, P.; Acín, A.

    2017-04-01

    Entanglement is one of the most studied properties of quantum mechanics for its application in quantum information protocols. Nevertheless, detecting the presence of entanglement in large multipartite states continues to be a great challenge both from the theoretical and the experimental point of view. Most of the known methods either have computational costs that scale inefficiently with the number of particles or require more information on the state than what is attainable in everyday experiments. We introduce a new technique for entanglement detection that provides several important advantages in these respects. First, it scales efficiently with the number of particles, thus allowing for application to systems composed by up to few tens of particles. Second, it needs only the knowledge of a subset of all possible measurements on the state, therefore being apt for experimental implementation. Moreover, since it is based on the detection of nonlocality, our method is device independent. We report several examples of its implementation for well-known multipartite states, showing that the introduced technique has a promising range of applications.

  7. MDEP Common Position CP-DICWG-07. Common position on selection and use of industrial digital devices of limited functionality

    International Nuclear Information System (INIS)

    2014-01-01

    The nuclear power industry is increasingly interested in using industrial digital devices of limited functionality in systems important to safety, but that have not been developed specifically for use in nuclear power applications. These devices should meet certain specific requirements in order to be selected and used in systems important to safety at nuclear power plants. Typically, some of these devices are found embedded in plant components and actuating devices, e.g. sensing instrumentation, motors, pumps, actuators, breakers. The Digital Instrumentation and Controls Working Group (DICWG) has agreed that a common position on this topic is warranted given the increase of use of Digital I and C in new reactor designs, its safety implications, and the need to develop a common understanding from the perspectives of regulatory authorities. This action follows the DICWG examination of the regulatory requirements of the participating members and of relevant industry standards and IAEA documents. The DICWG proposes a common position based on its recent experience with the new reactor application reviews and operating plant issues

  8. Modeling of detective quantum efficiency considering scatter-reduction devices

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Woong; Kim, Dong Woon; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2016-05-15

    The reduction of signal-to-noise ratio (SNR) cannot be restored and thus has become a severe issue in digital mammography.1 Therefore, antiscatter grids are typically used in mammography. Scatter-cleanup performance of various scatter-reduction devices, such as air gaps,2 linear (1D) or cellular (2D) grids,3, 4 and slot-scanning devices,5 has been extensively investigated by many research groups. In the present time, a digital mammography system with the slotscanning geometry is also commercially available.6 In this study, we theoretically investigate the effect of scattered photons on the detective quantum efficiency (DQE) performance of digital mammography detectors by using the cascaded-systems analysis (CSA) approach. We show a simple DQE formalism describing digital mammography detector systems equipped with scatter reduction devices by regarding the scattered photons as additive noise sources. The LFD increased with increasing PMMA thickness, and the amounts of LFD indicated the corresponding SF. The estimated SFs were 0.13, 0.21, and 0.29 for PMMA thicknesses of 10, 20, and 30 mm, respectively. While the solid line describing the measured MTF for PMMA with 0 mm was the result of least-squares of regression fit using Eq. (14), the other lines were simply resulted from the multiplication of the fit result (for PMMA with 0 mm) with the (1-SF) estimated from the LFDs in the measured MTFs. Spectral noise-power densities over the entire frequency range were not much changed with increasing scatter. On the other hand, the calculation results showed that the spectral noise-power densities increased with increasing scatter. This discrepancy may be explained by that the model developed in this study does not account for the changes in x-ray interaction parameters for varying spectral shapes due to beam hardening with increasing PMMA thicknesses.

  9. Overlapping community detection in networks with positive and negative links

    International Nuclear Information System (INIS)

    Chen, Y; Wang, X L; Yuan, B; Tang, B Z

    2014-01-01

    Complex networks considering both positive and negative links have gained considerable attention during the past several years. Community detection is one of the main challenges for complex network analysis. Most of the existing algorithms for community detection in a signed network aim at providing a hard-partition of the network where any node should belong to a community or not. However, they cannot detect overlapping communities where a node is allowed to belong to multiple communities. The overlapping communities widely exist in many real-world networks. In this paper, we propose a signed probabilistic mixture (SPM) model for overlapping community detection in signed networks. Compared with the existing models, the advantages of our methodology are (i) providing soft-partition solutions for signed networks; (ii) providing soft memberships of nodes. Experiments on a number of signed networks show that our SPM model: (i) can identify assortative structures or disassortative structures as the same as other state-of-the-art models; (ii) can detect overlapping communities; (iii) outperforms other state-of-the-art models at shedding light on the community detection in synthetic signed networks. (paper)

  10. Devices, systems, and methods for detecting nucleic acids using sedimentation

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory J.

    2017-10-24

    Embodiments of the present invention are directed toward devices, systems, and method for conducting nucleic acid purification and quantification using sedimentation. In one example, a method includes generating complexes which bind to a plurality of beads in a fluid sample, individual ones of the complexes comprising a nucleic acid molecule such as DNA or RNA and a labeling agent. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a density lower than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  11. Verification of multileaf collimator leaf positions using an electronic portal imaging device

    International Nuclear Information System (INIS)

    Samant, Sanjiv S.; Zheng Wei; Parra, Nestor Andres; Chandler, Jason; Gopal, Arun; Wu Jian; Jain Jinesh; Zhu Yunping; Sontag, Marc

    2002-01-01

    An automated method is presented for determining individual leaf positions of the Siemens dual focus multileaf collimator (MLC) using the Siemens BEAMVIEW(PLUS) electronic portal imaging device (EPID). Leaf positions are computed with an error of 0.6 mm at one standard deviation (σ) using separate computations of pixel dimensions, image distortion, and radiation center. The pixel dimensions are calculated by superimposing the film image of a graticule with the corresponding EPID image. A spatial correction is used to compensate for the optical distortions of the EPID, reducing the mean distortion from 3.5 pixels (uncorrected) per localized x-ray marker to 2 pixels (1 mm) for a rigid rotation and 1 pixel for a third degree polynomial warp. A correction for a nonuniform dosimetric response across the field of view of the EPID images is not necessary due to the sharp intensity gradients across leaf edges. The radiation center, calculated from the average of the geometric centers of a square field at 0 deg. and 180 deg. collimator angles, is independent of graticule placement error. Its measured location on the EPID image was stable to within 1 pixel based on 3 weeks of repeated extensions/retractions of the EPID. The MLC leaf positions determined from the EPID images agreed to within a pixel of the corresponding values measured using film and ionization chamber. Several edge detection algorithms were tested: contour, Sobel, Roberts, Prewitt, Laplace, morphological, and Canny. These agreed with each other to within ≤1.2 pixels for the in-air EPID images. Using a test pattern, individual MLC leaves were found to be typically within 1 mm of the corresponding record-and-verify values, with a maximum difference of 1.8 mm, and standard deviations of <0.3 mm in the daily reproducibility. This method presents a fast, automatic, and accurate alternative to using film or a light field for the verification and calibration of the MLC

  12. Optoelectronic device for the measurement of the absolute linear position in the micrometric displacement range

    Science.gov (United States)

    Morlanes, Tomas; de la Pena, Jose L.; Sanchez-Brea, Luis M.; Alonso, Jose; Crespo, Daniel; Saez-Landete, Jose B.; Bernabeu, Eusebio

    2005-07-01

    In this work, an optoelectronic device that provides the absolute position of a measurement element with respect to a pattern scale upon switch-on is presented. That means that there is not a need to perform any kind of transversal displacement after the startup of the system. The optoelectronic device is based on the process of light propagation passing through a slit. A light source with a definite size guarantees the relation of distances between the different elements that constitute our system and allows getting a particular optical intensity profile that can be measured by an electronic post-processing device providing the absolute location of the system with a resolution of 1 micron. The accuracy of this measuring device is restricted to the same limitations of any incremental position optical encoder.

  13. Variations in daily quality assurance dosimetry from device levelling, feet position and backscatter material

    International Nuclear Information System (INIS)

    Ceylan, Abdurrahman; Cullen, Ashley; Butson, Martin; Yu, Peter K.N.; Alnawaf, Hani

    2012-01-01

    Daily quality assurance procedures are an essential part of radiotherapy medical physics. Devices such as the Sun Nuclear, DQA3 are effective tools for analysis of daily dosimetry including flatness, symmetry, energy, field size and central axis radiation dose measurement. The DQA3 can be used on the treatment couch of the linear accelerator or on a dedicated table/bed for superficial and orthovoltage x-ray machines. This device is levelled using its dedicated feet. This work has shown that depending on the quantity of backscatter material behind the DQA3 device, the position of the levelling feet can affect the measured central axis dose by up to 1.8 % (250 kVp and 6 MV) and that the introduction of more backscatter material behind the DQA3 can lead to up to 7.2 % (6 MV) variations in measured central axis dose. In conditions where no backscatter material is present, dose measurements can vary up to 1 %. As such this work has highlighted the need to keep the material behind the DQA3 device constant as well as maintaining the accuracy of the feet position on the device to effectively measure the most accurate daily constancy achievable. Results have also shown that variations in symmetry and energy calculations of up to 1 % can occur if the device is not levelled appropriately. As such, we recommend the position of the levelling feet on the device be as close as possible to the device so that a constant distance is kept between the DQA3 and the treatment couch and thus minimal levelling variations also occur. We would also recommend having no extra backscattering material behind the DQA3 device during use to minimise any variations which might occur from these backscattering effects.

  14. Detecting cavitation in vivo from shock-wave therapy devices

    Science.gov (United States)

    Matula, Thomas J.; Yu, Jinfei; Bailey, Michael R.

    2005-04-01

    Extracorporeal shock-wave therapy (ESWT) has been used as a treatment for plantar faciitis, lateral epicondylitis, shoulder tendonitis, non-unions, and other indications where conservative treatments have been unsuccessful. However, in many areas, the efficacy of SW treatment has not been well established, and the mechanism of action, particularly the role of cavitation, is not well understood. Research indicates cavitation plays an important role in other ultrasound therapies, such as lithotripsy and focused ultrasound surgery, and in some instances, cavitation has been used as a means to monitor or detect a biological effect. Although ESWT can generate cavitation easily in vitro, it is unknown whether or not cavitation is a significant factor in vivo. The purpose of this investigation is to use diagnostic ultrasound to detect and monitor cavitation generated by ESWT devices in vivo. Diagnostic images are collected at various times during and after treatment. The images are then post-processed with image-processing algorithms to enhance the contrast between bubbles and surrounding tissue. The ultimate goal of this research is to utilize cavitation as a means for optimizing shock wave parameters such as amplitude and pulse repetition frequency. [Work supported by APL internal funds and NIH DK43881 and DK55674.

  15. Impact on reproducibility of the treatment position by improving immobilization device in image guided radiation therapy

    International Nuclear Information System (INIS)

    Morita, Yuko; Sasaki, Junichi; Shiomi, Hiroya; Oh, Ryoongjin; Inoue, Toshihiko; Tajiri, Shingo

    2012-01-01

    The immobilization device for treatment becomes important to obtain fixation and reproducibility of the treatment position. It was confirmed that reproducibility of the treatment position obtains higher accuracy by the method of using immobilization device. We divided into three terms by the methods of immobilization. An infrared reflective marker performs the setup of a position at the start of treatment, and setup of the patient in a fixed implement is performed by ExacTrac. Difference between coordinates of the immobilization device and the patient position was calculated by the vector in three directions. We estimated the position error index (PE index ) by using the square root of the sum of square of each vectors, and evaluated the amount of differences of patient position at three terms. Mean and standard deviation of index values were 9.53±7.21, 8.50±5.93, and 6.42±3.80 at each three terms. With every passing year, the amount of gap and difference of the patient fixation has decreased. By the improvement of the use of the immobilization device, gap and difference of fixation has decreased. Accordingly, we could obtain better accuracy of fixation. (author)

  16. Reduction of lymph tissue false positives in pulmonary embolism detection

    Science.gov (United States)

    Ghanem, Bernard; Liang, Jianming; Bi, Jinbo; Salganicoff, Marcos; Krishnan, Arun

    2008-03-01

    Pulmonary embolism (PE) is a serious medical condition, characterized by the partial/complete blockage of an artery within the lungs. We have previously developed a fast yet effective approach for computer aided detection of PE in computed topographic pulmonary angiography (CTPA),1 which is capable of detecting both acute and chronic PEs, achieving a benchmark performance of 78% sensitivity at 4 false positives (FPs) per volume. By reviewing the FPs generated by this system, we found the most dominant type of FP, roughly one third of all FPs, to be lymph/connective tissue. In this paper, we propose a novel approach that specifically aims at reducing this FP type. Our idea is to explicitly exploit the anatomical context configuration of PE and lymph tissue in the lungs: a lymph FP connects to the airway and is located outside the artery, while a true PE should not connect to the airway and must be inside the artery. To realize this idea, given a detected candidate (i.e. a cluster of suspicious voxels), we compute a set of contextual features, including its distance to the airway based on local distance transform and its relative position to the artery based on fast tensor voting and Hessian "vesselness" scores. Our tests on unseen cases show that these features can reduce the lymph FPs by 59%, while improving the overall sensitivity by 3.4%.

  17. Device for Detection of Explosives, Nuclear and Other Hazardous Materials in Luggage and Cargo Containers

    Science.gov (United States)

    Kuznetsov, Andrey; Evsenin, Alexey; Gorshkov, Igor; Osetrov, Oleg; Vakhtin, Dmitry

    2009-12-01

    Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types—based on BGO, NaI and LaBr3 crystals is presented.

  18. Device for Detection of Explosives, Nuclear and Other Hazardous Materials in Luggage and Cargo Containers

    International Nuclear Information System (INIS)

    Kuznetsov, Andrey; Evsenin, Alexey; Osetrov, Oleg; Vakhtin, Dmitry; Gorshkov, Igor

    2009-01-01

    Device for detection of explosives, radioactive and heavily shielded nuclear materials in luggage and cargo containers based on Nanosecond Neutron Analysis/Associated Particles Technique (NNA/APT) is under construction. Detection module consists of a small neutron generator with built-in position-sensitive detector of associated alpha-particles, and several scintillator-based gamma-ray detectors. Explosives and other hazardous chemicals are detected by analyzing secondary high-energy gamma-rays from reactions of fast neutrons with materials inside a container. The same gamma-ray detectors are used to detect unshielded radioactive and nuclear materials. An array of several neutron detectors is used to detect fast neutrons from induced fission of nuclear materials. Coincidence and timing analysis allows one to discriminate between fission neutrons and scattered probing neutrons. Mathematical modeling by MCNP5 and MCNP-PoliMi codes was used to estimate the sensitivity of the device and its optimal configuration. Comparison of the features of three gamma detector types--based on BGO, NaI and LaBr 3 crystals is presented.

  19. A device, a system and a method of encoding a position of an object

    DEFF Research Database (Denmark)

    2012-01-01

    The present invention relates to a device for encoding a position of an object, comprising a first light source; a first collimating element adapted to form first collimated light from the first light source; a carrier adapted to guide light and comprising a first primary light redirecting...... structure and a second primary light redirecting structure; and a detector device for encoding the position of an object with respect to an active area of an encoding plane; wherein the first primary light redirecting structure is adapted to redirect at least a part of a first light beam through the active...

  20. 76 FR 69034 - Microbiology Devices; Classification of In Vitro Diagnostic Device for Yersinia Species Detection

    Science.gov (United States)

    2011-11-07

    ... Drug Administration 21 CFR Part 866 Microbiology Devices; Classification of In Vitro Diagnostic Device... CFR Part 866 [Docket No. FDA-2011-N-0729] Microbiology Devices; Classification of In Vitro Diagnostic... of the Microbiology Devices Advisory Panel (the panel). FDA is publishing in this document the...

  1. 76 FR 28689 - Microbiology Devices; Classification of In Vitro Diagnostic Device for Bacillus Species Detection

    Science.gov (United States)

    2011-05-18

    .... FDA-2011-N-0103] Microbiology Devices; Classification of In Vitro Diagnostic Device for Bacillus... of the Microbiology Devices Advisory Panel (the Panel). In addition, the proposed rule would... in the Federal Register. 1. Transcript of the FDA Microbiology Devices Panel meeting, March 7, 2002...

  2. Leak detection device for control rod drive and detection method therefor

    International Nuclear Information System (INIS)

    Imasaki, Yoshio.

    1997-01-01

    The present invention provides a detection device for leak of cooling water from a sealed axial portion of control rod drives (CRD) disposed in a BWR type reactor and a monitoring method therefor. Namely, the CRD transfers rotation at the sealed axial portion and elevates/lowers a piston to insert/withdraw control rod into/from the reactor core. High pressure water is injected upon occurrence of scram to urge the piston upwardly thereby rapidly inserting the control rods. Leak detection pipelines are laid from the sealed axial portion. A flow glass is connected to the leak detection pipelines. Then, cooling water leaked from the sealed axial portion flows in the leak detection pipelines and flows into the flow glass. The flow rate of cooling water leaked from the sealed axial portion of the CRD can thus be detected by monitoring the flow glass. In addition, a flowmeter is connected to the leak detection pipelines, or the flowmeter and the flow glass are connected, and a flowmeter is connected downstream. Then, the flow rate of the leaked cooling water can be detected automatically. (I.S.)

  3. Comparison of Efficacy and Tolerance of Automatic Continuous Positive Airway Pressure Devices With the Optimum Continuous Positive Airway Pressure.

    Science.gov (United States)

    Tommi, George; Aronow, Wilbert S; Sheehan, John C; McCleay, Matthew T; Meyers, Patrick G

    Patients diagnosed with obstructive sleep apnea syndrome were randomly placed on automatic continuous positive airway pressure (ACPAP) for 2 hours followed by manual titration for the rest of the night. One hundred sixty-one patients entered the study, with at least 50 patients titrated with each of 3 ACPAP devices. The optimum continuous positive airway pressure (CPAP) was defined as the lowest pressure with an apnea-hypoxia index of ≤5/hr, which ranged from 4 cm to 18 cm. Success with ACPAP was approximately 60%-80% when the optimum CPAP was 4-6 cm but fell to below 30% if the optimum CPAP was ≥8 cm (P = 0.001). Average ACPAP ranged from 2 to 10 cm below the optimum level if the optimum CPAP was ≥8 cm. Patients who responded to a low CPAP but deteriorated on higher pressures failed to respond to any of the automatic devices. We recommend that CPAP titration be performed manually before initiation of ACPAP in patients with obstructive sleep apnea. The basal pressure for ACPAP should be the optimum pressure obtained by manual titration. Limits on the upper level of ACPAP may be necessary for patients who deteriorate on higher positive pressures.

  4. Detecting false positive sequence homology: a machine learning approach.

    Science.gov (United States)

    Fujimoto, M Stanley; Suvorov, Anton; Jensen, Nicholas O; Clement, Mark J; Bybee, Seth M

    2016-02-24

    Accurate detection of homologous relationships of biological sequences (DNA or amino acid) amongst organisms is an important and often difficult task that is essential to various evolutionary studies, ranging from building phylogenies to predicting functional gene annotations. There are many existing heuristic tools, most commonly based on bidirectional BLAST searches that are used to identify homologous genes and combine them into two fundamentally distinct classes: orthologs and paralogs. Due to only using heuristic filtering based on significance score cutoffs and having no cluster post-processing tools available, these methods can often produce multiple clusters constituting unrelated (non-homologous) sequences. Therefore sequencing data extracted from incomplete genome/transcriptome assemblies originated from low coverage sequencing or produced by de novo processes without a reference genome are susceptible to high false positive rates of homology detection. In this paper we develop biologically informative features that can be extracted from multiple sequence alignments of putative homologous genes (orthologs and paralogs) and further utilized in context of guided experimentation to verify false positive outcomes. We demonstrate that our machine learning method trained on both known homology clusters obtained from OrthoDB and randomly generated sequence alignments (non-homologs), successfully determines apparent false positives inferred by heuristic algorithms especially among proteomes recovered from low-coverage RNA-seq data. Almost ~42 % and ~25 % of predicted putative homologies by InParanoid and HaMStR respectively were classified as false positives on experimental data set. Our process increases the quality of output from other clustering algorithms by providing a novel post-processing method that is both fast and efficient at removing low quality clusters of putative homologous genes recovered by heuristic-based approaches.

  5. Detection device of dangerous radiation for the living beings

    International Nuclear Information System (INIS)

    Lacoste, F.

    1991-01-01

    This invention is about a portable device able to measure dose rates or doses of gamma, ultraviolet and X radiation or charged particles. This device is composed of a radiation detector, a calculator of the accumulate dose and a memory to store the data. This device has a credit card format

  6. Polycrystalline CVD diamond device level modeling for particle detection applications

    Science.gov (United States)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-12-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  7. Polycrystalline CVD diamond device level modeling for particle detection applications

    International Nuclear Information System (INIS)

    Morozzi, A.; Passeri, D.; Kanxheri, K.; Servoli, L.; Lagomarsino, S.; Sciortino, S.

    2016-01-01

    Diamond is a promising material whose excellent physical properties foster its use for radiation detection applications, in particular in those hostile operating environments where the silicon-based detectors behavior is limited due to the high radiation fluence. Within this framework, the application of Technology Computer Aided Design (TCAD) simulation tools is highly envisaged for the study, the optimization and the predictive analysis of sensing devices. Since the novelty of using diamond in electronics, this material is not included in the library of commercial, state-of-the-art TCAD software tools. In this work, we propose the development, the application and the validation of numerical models to simulate the electrical behavior of polycrystalline (pc)CVD diamond conceived for diamond sensors for particle detection. The model focuses on the characterization of a physically-based pcCVD diamond bandgap taking into account deep-level defects acting as recombination centers and/or trap states. While a definite picture of the polycrystalline diamond band-gap is still debated, the effect of the main parameters (e.g. trap densities, capture cross-sections, etc.) can be deeply investigated thanks to the simulated approach. The charge collection efficiency due to β -particle irradiation of diamond materials provided by different vendors and with different electrode configurations has been selected as figure of merit for the model validation. The good agreement between measurements and simulation findings, keeping the traps density as the only one fitting parameter, assesses the suitability of the TCAD modeling approach as a predictive tool for the design and the optimization of diamond-based radiation detectors.

  8. Medical Devices; Immunology and Microbiology Devices; Classification of the Device To Detect and Identify Microbial Pathogen Nucleic Acids in Cerebrospinal Fluid. Final order.

    Science.gov (United States)

    2017-10-20

    The Food and Drug Administration (FDA or we) is classifying the device to detect and identify microbial pathogen nucleic acids in cerebrospinal fluid into class II (special controls). The special controls that will apply to the device type are identified in this order and will be part of the codified language for the device to detect and identify microbial pathogen nucleic acids in cerebrospinal fluid’s classification. We are taking this action because we have determined that classifying the device into class II (special controls) will provide a reasonable assurance of safety and effectiveness of the device. We believe this action will also enhance patients' access to beneficial innovative devices, in part by reducing regulatory burdens.

  9. Biological samples positioning device for irradiations on a radial channel at the nuclear research reactor

    International Nuclear Information System (INIS)

    Rodriguez Gual, Maritza; Mas Milian, Felix; Deppman, Airton; Pinto Coelho, Paulo Rogerio

    2010-01-01

    For the demand of an experimental device for biological samples positioning system for irradiations on a radial channel at the nuclear research reactor in operation was constructed and started up a device for the place and remove of the biological samples from the irradiation channels without interrupting the operation of the reactor. The economical valuations are effected comparing with another type of device with the same functions. This work formed part of an international project between Cuba and Brazil that undertook the study of the induced damages by various types of ionizing radiation in DNA molecules. Was experimentally tested the proposed solution, which demonstrates the practical validity of the device. As a result of the work, the experimental device for biological samples irradiations are installed and operating in the radial beam hole No3(BH3) for more than five years at the IEA-R1 Brazilian research reactor according to the solicited requirements the device. The designed device increases considerably the type of studies can be conducted in this reactor. Its practical application in research taking place in that facility, in the field of radiobiology and dosimetry, and so on is immediate

  10. Optical interconnection for a polymeric PLC device using simple positional alignment.

    Science.gov (United States)

    Ryu, Jin Hwa; Kim, Po Jin; Cho, Cheon Soo; Lee, El-Hang; Kim, Chang-Seok; Jeong, Myung Yung

    2011-04-25

    This study proposes a simple cost-effective method of optical interconnection between a planar lightwave circuit (PLC) device chip and an optical fiber. It was conducted to minimize and overcome the coupling loss caused by lateral offset which is due to the process tolerance and the dimensional limitation existing between PLC device chips and fiber array blocks with groove structures. A PLC device chip and a fiber array block were simultaneously fabricated in a series of polymer replication processes using the original master. The dimensions (i.e., width and thickness) of the under-clad of the PLC device chip were identical to those of the fiber array block. The PLC device chip and optical fiber were aligned by simple positional control for the vertical direction of the PLC device chip under a particular condition. The insertion loss of the proposed 1 x 2 multimode optical splitter device interconnection was 4.0 dB at 850 nm and the coupling loss was below 0.1 dB compared with single-fiber based active alignment.

  11. Development of sensitive holographic devices for physiological metal ion detection

    Science.gov (United States)

    Sabad-e.-Gul; Martin, Suzanne; Cassidy, John; Naydenova, Izabela

    2017-08-01

    The development of selective alkali metal ions sensors in particular is a subject of significant interest. In this respect, the level of blood electrolytes, particularly H+, Na+, K+ and Cl- , is widely used to monitor aberrant physiologies associated with pulmonary emphysema, acute and chronic renal failure, heart failure, diabetes. The sensors reported in this paper are created by holographic recording of surface relief structures in a self-processing photopolymer material. The structures are functionalized by ionophores dibenzo-18-crown-6 (DC) and tetraethyl 4-tert-butylcalix[4]arene (TBC) in plasticised polyvinyl chloride (PVC) matrix. Interrogation of these structures by light allows indirect measurements of chemical analytes' concentration in real time. We present results on the optimisation and testing of the holographic sensor. A self-processing acrylamide-based photopolymer was used to fabricate the required photonic structures. The performance of the sensors for detection of K+ and Na+ was investigated. It was observed that the functionalisation with DC provides a selective response of the devices to K+ over Na+ and TBC coated surface structures are selectively sensitive to Na+. The sensor responds to Na+ within the physiological ranges. Normal levels of Na+ and K+ in human serum lie within the ranges 135-148mM and 3.5-5.3 mM respectively.

  12. Lateral position detection and control for friction stir systems

    Science.gov (United States)

    Fleming, Paul; Lammlein, David; Cook, George E.; Wilkes, Don Mitchell; Strauss, Alvin M.; Delapp, David; Hartman, Daniel A.

    2010-12-14

    A friction stir system for processing at least a first workpiece includes a spindle actuator coupled to a rotary tool comprising a rotating member for contacting and processing the first workpiece. A detection system is provided for obtaining information related to a lateral alignment of the rotating member. The detection system comprises at least one sensor for measuring a force experienced by the rotary tool or a parameter related to the force experienced by the rotary tool during processing, wherein the sensor provides sensor signals. A signal processing system is coupled to receive and analyze the sensor signals and determine a lateral alignment of the rotating member relative to a selected lateral position, a selected path, or a direction to decrease a lateral distance relative to the selected lateral position or selected path. In one embodiment, the friction stir system can be embodied as a closed loop tracking system, such as a robot-based tracked friction stir welding (FSW) or friction stir processing (FSP) system.

  13. Quantum dots for future nanophotonic devices : lateral ordering, position, and number control

    NARCIS (Netherlands)

    Nötzel, R.

    2010-01-01

    After the general aspects of InAs/InP (100) quantum dots (QDs) regarding the formation of QDs versus quantum dashes, wavelength tuning from telecom to mid-infrared region, and device applications, we discuss our recent progress on the lateral ordering, position, and number control of QDs.

  14. Non-contact and contact measurement system for detecting projectile position in electromagnetic launch bore

    Science.gov (United States)

    Xu, Weidong; Yuan, Weiqun; Xu, Rong; Zhao, Hui; Cheng, Wenping; Zhang, Dongdong; Zhao, Ying; Yan, Ping

    2017-12-01

    This paper introduces a new measurement system for measuring the position of a projectile within a rapid fire electromagnetic launching system. The measurement system contains both non-contact laser shading and metal fiber contact measurement devices. Two projectiles are placed in the rapid fire electromagnetic launch bore, one in the main accelerating segment and the other in the pre-loading segment. The projectile placed in the main accelerating segment should be shot first, and then the other is loaded into the main segment from the pre-loading segment. The main driving current (I-main) can only be discharged again when the second projectile has arrived at the key position (the projectile position corresponds to the discharging time) in the main accelerating segment. So, it is important to be able to detect when the second projectile arrives at the key position in the main accelerating segment. The B-dot probe is the most widely used system for detecting the position of the projectile in the electromagnetic launch bore. However, the B-dot signal is affected by the driving current amplitude and the projectile velocity. There is no current in the main accelerating segment when the second projectile moves into this segment in rapid fire mode, so the B-dot signal for detecting the key position is invalid. Due to the presence of a high-intensity magnetic field, a high current, a high-temperature aluminum attachment, smoke and strong vibrations, it is very difficult to detect the projectile position in the bore accurately. So, other measurements need to be researched and developed in order to achieve high reliability. A measurement system based on a laser (non-contact) and metal fibers (contact) has been designed, and the integrated output signal based on this detector is described in the following paper.

  15. The influence of device position on the flow within the Penn State 12 cc pediatric ventricular assist device.

    Science.gov (United States)

    Schönberger, Markus; Deutsch, Steven; Manning, Keefe B

    2012-01-01

    Ventricular assist devices are a commonly used heart failure therapy for adult patients as bridge-to-transplant or bridge-to-recovery tools. The application of adult ventricular assist devices in pediatric patients has led to increased thrombotic events. Therefore, we have been developing a pediatric ventricular assist device (PVAD), the Penn State 12 cc PVAD. It is designed for patients with a body weight of 5-15 kg and has a stroke volume of 12 cc. Clot formation is the major concern. It is correlated to the coagulability of blood, the blood contacting materials and the fluid dynamics within the system. The intent is for the PVAD to be a long term therapy. Therefore, the system may be oriented in different positions according to the patient's behavior. This study evaluates for the first time the impact of position on the flow patterns within the Penn State 12 cc PVAD, which may help to improve the PVAD design concerning chamber and ports geometries. The fluid dynamics are visualized by particle image velocimetry. The evaluation is based on inlet jet behavior and calculated wall shear rates. Vertical and horizontal model orientations are compared, both with a beat rate of 75, outlet pressures of 90/60 mm Hg and a flow rate of 1.3 l/min. The results show a significant change of the inlet jet behavior and the development of a rotational flow pattern. Vertically, the inlet jet is strong along the wall. It initiates a rotational flow pattern with a wandering axis of rotation. In contrast, the horizontal model orientation results show a weaker inlet jet along the wall with a nearly constant center of rotation location, which can be correlated to a higher risk of thrombotic events. In addition, high speed videography illustrates differences in the diaphragm motion during diastole. Diaphragm opening trajectories measurements determine no significant impact of the density of the blood analog fluids. Hence, the results correlate to human blood.

  16. An Optimal Design of Multiple Antenna Positions on Mobile Devices Based on Mutual Coupling Analysis

    Directory of Open Access Journals (Sweden)

    Peerapong Uthansakul

    2011-01-01

    Full Text Available The topic of practical implementation of multiple antenna systems for mobile communications has recently gained a lot of attention. Due to the area constraint on a mobile device, the problem of how to design such a system in order to achieve the best benefit is still a huge challenge. In this paper, genetic algorithm (GA is used to find the optimal antenna positions on a mobile device. Two cases of 3×3 and 4×4 MIMO systems are undertaken. The effect of mutual coupling based on Z-parameter is the main factor to determine the MIMO capacity concerning the objective function of GA search. The results confirm the success of the proposed method to design MIMO antenna positions on a mobile device. Moreover, this paper introduces the method to design the antenna positions for the condition of nondeterministic channel. The concern of channel variation has been included in the process of finding optimal MIMO antenna positions. The results suggest that the averaging position from all GA solutions according to all channel conditions provides the most acceptable benefit.

  17. Positioning indoors with Wi-Fi devices of low-cost

    International Nuclear Information System (INIS)

    Moreira, Fabricio M.; Farias, Marcos S.; Carvalho, Paulo Victor R. de

    2017-01-01

    The rhythm of research development linked to location tracking is highly linked with the advancement of wireless sensor network and wireless technologies. A classic example is the Global Positioning System (GPS), where satellites are used to send signals to receivers on earth that use these signals to compute navigation information. However, as communication between the satellites and GPS receivers require radio propagation in line of sight, the GPS system usually only works outdoors. For the growing interest in research to position tracking indoors, you must use wireless devices based on Bluetooth or Wi-Fi technology (IEEE 802.11). The aim of this work is to show the development of applications using new Wi-Fi devices (ESP8266) for the estimation of positioning and location indoors

  18. Probabilistic Multi-Sensor Fusion Based Indoor Positioning System on a Mobile Device

    Directory of Open Access Journals (Sweden)

    Xiang He

    2015-12-01

    Full Text Available Nowadays, smart mobile devices include more and more sensors on board, such as motion sensors (accelerometer, gyroscope, magnetometer, wireless signal strength indicators (WiFi, Bluetooth, Zigbee, and visual sensors (LiDAR, camera. People have developed various indoor positioning techniques based on these sensors. In this paper, the probabilistic fusion of multiple sensors is investigated in a hidden Markov model (HMM framework for mobile-device user-positioning. We propose a graph structure to store the model constructed by multiple sensors during the offline training phase, and a multimodal particle filter to seamlessly fuse the information during the online tracking phase. Based on our algorithm, we develop an indoor positioning system on the iOS platform. The experiments carried out in a typical indoor environment have shown promising results for our proposed algorithm and system design.

  19. Tube leak detection device and acoustic sensor support device for moisture separating heater

    International Nuclear Information System (INIS)

    Miyabe, Keisuke; Kobayashi, Takefumi.

    1995-01-01

    The device of the present invention comprises an acoustic sensor which detects leak sounds when leak occurs in a heating tube of a moisture separating heater incorporated into a plant, a threshold value memory and switching mechanism containing each of threshold values on every power of a plant, and a leak judging mechanism for judging presence or absence of leaks by comparing a selected threshold value and signals given from the acoustic sensor. Background noises changing currently during operation of a steam turbine plant are compared with a threshold value greater than the background noises in the leak judging mechanism, and they are judged as 'no leak' so as not to recognize them as 'presence of tube leak'. Output values from the acoustic sensor are obtained on every frequency component, and standard frequency spectra are selected by turbine load corresponding signals using a standard spectra memory and switching mechanism. They are sent to a leak judging mechanism to analyze the acoustic signals using a frequency analyzer and compare them with the frequency spectral thereby judging leaks. (N.H.)

  20. Three-dimensional, position-sensitive radiation detection

    Science.gov (United States)

    He, Zhong; Zhang, Feng

    2010-04-06

    Disclosed herein is a method of determining a characteristic of radiation detected by a radiation detector via a multiple-pixel event having a plurality of radiation interactions. The method includes determining a cathode-to-anode signal ratio for a selected interaction of the plurality of radiation interactions based on electron drift time data for the selected interaction, and determining the radiation characteristic for the multiple-pixel event based on both the cathode-to-anode signal ratio and the electron drift time data. In some embodiments, the method further includes determining a correction factor for the radiation characteristic based on an interaction depth of the plurality of radiation interactions, a lateral distance between the selected interaction and a further interaction of the plurality of radiation interactions, and the lateral positioning of the plurality of radiation interactions.

  1. [A novel ship-borne positive pressure solid phase extraction device to enrich organo chlorinated and pyrethroid pesticides in seawater].

    Science.gov (United States)

    Ye, Jianglei

    2017-09-08

    A novel solid phase extraction (SPE) device driven by positive pressure was developed instead of negative pressure from a vacuum pump, in order to enrich organo chlorinated and pyrethroid pesticides in seawater. The water sampling bottles and the pipelines which touch water samples were made of plastic material without chlorine. In order to ensure the sealing and firmness, the whole device were tightened with nut and bolt. The inner pressure (0.1-0.3 MPa) in the water sampling bottle was provided by the small air pump (powered by 12 V cell) controlled by a microprogrammed control unit (MCU) and pressure sensor to keep the water flow rate (4.0-6.0 mL/min). The pre-conditioned SPE column can be used for the enrichment of pesticides within four weeks, and the loaded SPE column can be eluted for detection within six weeks with recoveries greater than 80%. The linearity of the method was good with the correlation coefficient more than 0.9. The limits of quantification (LOQs) were 0.8-6 ng/L. The recoveries of the pesticides at three spiked levels (3 parallel samples) were 86.1%-95.5% with the relative standard deviations less than 10%. The benzene hexachlorides (BHCs) and dichloro-diphenyl-trichloroethanes (DDTs) were detected in seawater samples. The device has good application in enriching organo chlorinated and pyrethroid pesticides in seawater.

  2. Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture

    Science.gov (United States)

    West, Phillip B [Idaho Falls, ID; Novascone, Stephen R [Idaho Falls, ID; Wright, Jerry P [Idaho Falls, ID

    2011-09-27

    Earth analysis methods, subsurface feature detection methods, earth analysis devices, and articles of manufacture are described. According to one embodiment, an earth analysis method includes engaging a device with the earth, analyzing the earth in a single substantially lineal direction using the device during the engaging, and providing information regarding a subsurface feature of the earth using the analysis.

  3. Topological trigger device using scintillating fibers and position-sensitive photomultipliers

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Keiichi; Dufournaud, J; Sillou, D [Laboratoire d' Annecy-le-Vieux de Physique des Particules (LAPP), 74 (France); Agoritsas, V [European Organization for Nuclear Research, Geneva (Switzerland); Bystricky, G; Lehar, F; Lesquen, A de [CEN-Saclay, 91 - Gif-sur-Yvette (France); Giacomich, R; Pauletta, G; Penzo, A; Salvato, G; Schiavon, P; Villari, A [INFN, Messina (Italy) INFN, Trieste (Italy) INFN, Udine (Italy); Gorin, A M; Meschanin, A P; Nurushev, S B; Rakhmatov, V E; Rykalin, V L; Solovyanov, V L; Vasiliev, A N; Vasil' chencko, V G [Institute for High Energy Physics, Serpukhov (USSR); Oshima, N; Yamada, R [Fermi National Accelerator Lab., Batavia, IL (USA); Takeutchi, F [Kyoto-Sanyo Univ., Kyoto (Japan); Yoshida, T [Osaka City Univ. (Japan); Akchurin, N; Onel, Y; Newsom, C

    1991-07-01

    An approach to a high quality of the Level-1 Trigger is investigated on the basis of a topological trigger device. It will be realized by using scintillating fibers and position-sensitive photomultipliers, both considered as potential candidates of new detector-components thanks to their excellent time characteristics and high radiation resistances. The device is characterized in particular by its simple concept and reliable operation supported by the mature technologies emploied. The major interests of such a scheme under LHC environments reside in its capability of selcting high pperpendicular to tracks in real time, its optional immunity against low pperpendicular to tracks and loopers, as well as its effective links to other associated devices in the complex of a vertex detector. (orig.).

  4. Topological trigger device using scintillating fibres and position-sensitive photomultipliers

    CERN Document Server

    Agoritsas, V; Dufournaud, J; Giacomich, R; Gorin, A M; Kuroda, K; Meshchanin, A P; Newsom, C R; Nurushev, S B; Önel, Y M; Oshima, N; Pauletta, G; Penzo, Aldo L; Rakhmatov, V E; Rykalin, V I; Salvato, G; Schiavon, R P; Sillou, D; Solovyanov, V L; Takeutchi, F; Vasilev, V; Vasilchenko, V G; Villari, A C C; Yamada, R; Toshida, T; CERN. Geneva. Detector Research and Development Committee

    1990-01-01

    An approach to a high-quality level-1 trigger is proposed on the basis of a topological device that will be realized by using scintillating fibres and position-sensitive photomultipliers, both of which are considered as potential candidates for new detector components, thanks to their excellent time characteristics and high radiation resistance. The device is characterized, in particular, by its simple concept and reliable functioning, which are a result of the mature technologies employed. In the LHC environment, the major interests of such a scheme reside in its capability to select high ptransv. tracks in real time, in its optional immunity against low ptransv. tracks and loopers, as well as in its effective links to other associated devices within the complex of a vertex detector.

  5. A compact and portable optofluidic device for detection of liquid properties and label-free sensing

    Science.gov (United States)

    Lahoz, F.; Martín, I. R.; Walo, D.; Gil-Rostra, J.; Yubero, F.; Gonzalez-Elipe, A. R.

    2017-06-01

    Optofluidic lasers have been widely investigated over the last few years mainly because they can be easily integrated in sensor devices. However, high power pulse lasers are required as excitation sources, which, in practice, limit the portability of the system. Trying to overcome some of these limitations, in this paper we propose the combined use of a small CW laser with a Fabry-Perot optofluidic planar microcavity showing high sensitivity and versatility for detection of liquid properties and label-free sensing. Firstly, a fluorescein solution in ethanol is used to demonstrate the high performances of the FP microcavity as a temperature sensor both in the laser (high pump power above laser threshold) and in the fluorescence (low pump power) regimes. A shift in the wavelength of the resonant cavity modes is used to detect changes in the temperature and our results show that high sensitivities could be already obtained using cheap and portable CW diode lasers. In the second part of the paper, the demonstration of this portable device for label-free sensing is illustrated under low CW pumping. The wavelength positions of the optofluidic resonant modes are used to detect glucose concentrations in water solutions using a protein labelled with a fluorescent dye as the active medium.

  6. A portable cell-based optical detection device for rapid detection of Listeria and Bacillus toxins

    Science.gov (United States)

    Banerjee, Pratik; Banada, Padmapriya P.; Rickus, Jenna L.; Morgan, Mark T.; Bhunia, Arun K.

    2005-11-01

    A mammalian cell-based optical biosensor was built to detect pathogenic Listeria and Bacillus species. This sensor measures the ability of the pathogens to infect and induce cytotoxicity on hybrid lymphocyte cell line (Ped-2E9) resulting in the release of alkaline phosphatase (ALP) that can be detected optically using a portable spectrophotometer. The Ped-2E9 cells were encapsulated in collagen gel matrices and grown in 48-well plates or in specially designed filtration tube units. Toxin preparations or bacterial cells were introduced and ALP release was assayed after 3-5 h. Pathogenic L. monocytogenes strains or the listeriolysin toxins preparation showed cytotoxicity ranging from 55% - 92%. Toxin preparations (~20 μg/ml) from B. cereus strains showed 24 - 98% cytotoxicity. In contrast, a non-pathogenic L. innocua (F4247) and a B. substilis induced only 2% and 8% cytotoxicity, respectively. This cell-based detection device demonstrates its ability to detect the presence of pathogenic Listeria and Bacillus species and can potentially be used onsite for food safety or in biosecurity application.

  7. Simulation and measurement of short infrared pulses on silicon position sensitive device

    International Nuclear Information System (INIS)

    Krapohl, D; Esebamen, O X; Nilsson, H E; Thungstroem, G

    2011-01-01

    Lateral position sensitive devices (PSD) are important for triangulation, alignment and surface measurements as well as for angle measurements. Large PSDs show a delay on rising and falling edges when irradiated with near infra-red light. This delay is also dependent on the spot position relative to the electrodes. It is however desirable in most applications to have a fast response. We investigated the responsiveness of a Sitek PSD in a mixed mode simulation of a two dimensional full sized detector. For simulation and measurement purposes focused light pulses with a wavelength of 850 nm, duration of 1μs and spot size of 280μm were used. The cause for the slopes of rise and fall time is due to time constants of the device capacitance as well as the photo-generation mechanism itself. To support the simulated results, we conducted measurements of rise and fall times on a physical device. Additionally, we quantified the homogeneity of the device by repositioning a spot of light from a pulsed ir-laser diode on the surface area.

  8. Electro-mechanical probe positioning system for large volume plasma device

    Science.gov (United States)

    Sanyasi, A. K.; Sugandhi, R.; Srivastava, P. K.; Srivastav, Prabhakar; Awasthi, L. M.

    2018-05-01

    An automated electro-mechanical system for the positioning of plasma diagnostics has been designed and implemented in a Large Volume Plasma Device (LVPD). The system consists of 12 electro-mechanical assemblies, which are orchestrated using the Modbus communication protocol on 4-wire RS485 communications to meet the experimental requirements. Each assembly has a lead screw-based mechanical structure, Wilson feed-through-based vacuum interface, bipolar stepper motor, micro-controller-based stepper drive, and optical encoder for online positioning correction of probes. The novelty of the system lies in the orchestration of multiple drives on a single interface, fabrication and installation of the system for a large experimental device like the LVPD, in-house developed software, and adopted architectural practices. The paper discusses the design, description of hardware and software interfaces, and performance results in LVPD.

  9. Device-independence for two-party cryptography and position verification

    DEFF Research Database (Denmark)

    Ribeiro, Jeremy; Thinh, Le Phuc; Kaniewski, Jedrzej

    Quantum communication has demonstrated its usefulness for quantum cryptography far beyond quantum key distribution. One domain is two-party cryptography, whose goal is to allow two parties who may not trust each other to solve joint tasks. Another interesting application is position......-based cryptography whose goal is to use the geographical location of an entity as its only identifying credential. Unfortunately, security of these protocols is not possible against an all powerful adversary. However, if we impose some realistic physical constraints on the adversary, there exist protocols for which...... security can be proven, but these so far relied on the knowledge of the quantum operations performed during the protocols. In this work we give device-independent security proofs of two-party cryptography and Position Verification for memoryless devices under different physical constraints on the adversary...

  10. Liquid electrolyte positioning along the device channel influences the operation of Organic Electro-Chemical Transistors

    KAUST Repository

    D'angelo, Pasquale

    2014-11-01

    In this work, we show the influence of the liquid electrolyte adsorption by porous films made of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), PEDOT:PSS, on the operation of an Organic Electro-Chemical Transistor with an active channel based on these polymeric films. In particular, the effect of film hydration on device performance is evaluated by studying its electrical response as a function of the spatial position between the electrolyte and the channel electrodes. This is done by depositing a PEDOT:PSS film on a super-hydrophobic surface aimed at controlling the electrolyte confinement next to the electrodes. The device response shows that the confinement of ionic liquids near to the drain electrode results in a worsening of the current modulation. This result has been interpreted in the light of studies dealing with the transport of ions in semiconducting polymers, indicating that the electrolyte adsorption by the polymeric film implies the formation of liquid pathways inside its bulk. These pathways, in particular, affect the device response because they are able to assist the drift of ionic species in the electrolyte towards the drain electrode. The effect of electrolyte adsorption on the device operation is confirmed by means of moving-front measurements, and is related to the reproducibility of the device operation curves by measuring repeatedly its electrical response.

  11. Determination of the Optimal Position of Pendulums of an Active Self-balancing Device

    OpenAIRE

    Ziyakaev, Gregory Rakitovich; Kazakova, Oksana Aleksandrovna; Yankov, V. V.; Ivkina, O. P.

    2017-01-01

    The demand of the modern manufacturing industry for machines with high motion speed leads to increased load and vibration activity of the main elements of rotor systems. Vibration reduces operating life of bearings, has adversary effects on human organism, and can cause accidents. One way to compensate for a rotating rotor's imbalance is the use of active self-balancing devices. The aim of this work is to determine the position of their pendulums, in which the imbalance is minimized. As a res...

  12. Robust and unobtrusive algorithm based on position independence for step detection

    Science.gov (United States)

    Qiu, KeCheng; Li, MengYang; Luo, YiHan

    2018-04-01

    Running is becoming one of the most popular exercises among the people, monitoring steps can help users better understand their running process and improve exercise efficiency. In this paper, we design and implement a robust and unobtrusive algorithm based on position independence for step detection under real environment. It applies Butterworth filter to suppress high frequency interference and then employs the projection based on mathematics to transform system to solve the problem of unknown position of smartphone. Finally, using sliding window to suppress the false peak. The algorithm was tested for eight participants on the Android 7.0 platform. In our experiments, the results show that the proposed algorithm can achieve desired effect in spite of device pose.

  13. A Detection Device for the Signs of Human Life in Accident

    Science.gov (United States)

    Ning, Li; Ruilan, Zhang; Jian, Liu; Ruirui, Cheng; Yuhong, Diao

    2017-12-01

    A detection device for the signs of human life in accidents is a device used in emergency situations, such as the crash site. the scene of natural disasters, the battlefield ruins. it designed to detect the life signs of the distress under the injured ambulance vital signs devices. The device can on human vital signs, including pulse, respiration physiological signals to make rapid and accurate response. After some calculations, and after contrast to normal human physiological parameters given warning signals, in order for them to make timely ambulance judgment. In this case the device is required to do gymnastics convenience, ease of movement, power and detection of small flexible easy realization. This device has the maximum protection of the wounded safety significance.

  14. A machine learning approach for indirect human presence detection using IoT devices

    OpenAIRE

    Madeira, Rui Nuno Neves

    2016-01-01

    The recent increased democratization of technology led to the appearance of new devices dedicated to the improvement of our daily living and working spaces, capable of being remotely controlled through the internet and interoperability with other systems. In this context, human presence detection is fundamental for several purposes, such has: further automization, usage pattern learning, problem detection (illness, or intruder), etc. Current intrusion detection devices usual...

  15. SmartMal: a service-oriented behavioral malware detection framework for mobile devices.

    Science.gov (United States)

    Wang, Chao; Wu, Zhizhong; Li, Xi; Zhou, Xuehai; Wang, Aili; Hung, Patrick C K

    2014-01-01

    This paper presents SmartMal--a novel service-oriented behavioral malware detection framework for vehicular and mobile devices. The highlight of SmartMal is to introduce service-oriented architecture (SOA) concepts and behavior analysis into the malware detection paradigms. The proposed framework relies on client-server architecture, the client continuously extracts various features and transfers them to the server, and the server's main task is to detect anomalies using state-of-art detection algorithms. Multiple distributed servers simultaneously analyze the feature vector using various detectors and information fusion is used to concatenate the results of detectors. We also propose a cycle-based statistical approach for mobile device anomaly detection. We accomplish this by analyzing the users' regular usage patterns. Empirical results suggest that the proposed framework and novel anomaly detection algorithm are highly effective in detecting malware on Android devices.

  16. SmartMal: A Service-Oriented Behavioral Malware Detection Framework for Mobile Devices

    Directory of Open Access Journals (Sweden)

    Chao Wang

    2014-01-01

    Full Text Available This paper presents SmartMal—a novel service-oriented behavioral malware detection framework for vehicular and mobile devices. The highlight of SmartMal is to introduce service-oriented architecture (SOA concepts and behavior analysis into the malware detection paradigms. The proposed framework relies on client-server architecture, the client continuously extracts various features and transfers them to the server, and the server’s main task is to detect anomalies using state-of-art detection algorithms. Multiple distributed servers simultaneously analyze the feature vector using various detectors and information fusion is used to concatenate the results of detectors. We also propose a cycle-based statistical approach for mobile device anomaly detection. We accomplish this by analyzing the users’ regular usage patterns. Empirical results suggest that the proposed framework and novel anomaly detection algorithm are highly effective in detecting malware on Android devices.

  17. Development of a large-solid-angle and multi-device detection system for elemental analysis

    International Nuclear Information System (INIS)

    Satoh, T.; Ishii, K.; Kamiya, T.; Sakai, T.; Oikawa, M.; Arakawa, K.; Matsuyama, S.; Yamazaki, H.

    2003-01-01

    A new detection apparatus for both low energy X-rays like 1 keV and back scattered protons of MeV energy was developed. The detection apparatus consists of a large-solid-angle multi-device Si detector and a data acquisition system. The detector has 45 detection devices which are arranged in the shape of a pentagonal pyramid and fully cover a sample. A micro-beam irradiates the sample through the center of the pentagonal pyramid and X-rays emitted from the sample are detected in a solid angle of about 1.0 sr. This novel detection setup has about five times higher sensitivity than a conventional micro-PIXE camera. In addition, not only X-rays but back scattered protons can be detected, since the counting rate of back scattered protons per detection device is small despite lack of a passive absorber

  18. Device for the selective positioning of a component on a tube plate

    International Nuclear Information System (INIS)

    1974-01-01

    The invention relates to a device for the selective positioning of a component on a tube plate. It particularly applies to the positioning of a guide tube head successively opposite all the tubes of the tube bundle of a nuclear reactor steam generator. The large number of tubes in the tube bundle of the steam generator in a pressure water nuclear power station must be checked periodically for any likely corrosion. This check is effected with a Foucault current probe which is inserted in each tube in turn and is connected to a probe signal processing unit. The probe is placed in a flexible guide tube brought in turn in front of each tube of the bundle to be checked. The invention concerns a device to move the opening of a tube guide for a Foucault current detector over the entire surface of the tube plate, thereby providing access to all the tubes whilst limiting the interventions to a single positioning and a single withdrawal of the apparatus for testing all the bundle. Between the two interventions at the beginning and end of the operation, all displacements are remote controlled from outside the dangerous radioacive area [fr

  19. Device for horizontal transfer between two enclosures of nuclear fuel elements stored in vertical position

    International Nuclear Information System (INIS)

    Faucond, J.

    1986-01-01

    The invention involves a device for horizontal transfer between two enclosures of nuclear fuel elements stored in vertical position. This device is specifically applicable to nuclear power plants of the pressurized water type (PWR), in which the fuel elements are in the form of bars with, for example, a length of two meters and a rectangular cross-section of approximately 200 x 100 mm. When they are placed in service, these elements are introduced vertically, using a loading machine, into the reactor core contained in a pressure vessel. When they are spent, they are removed by the same machine and deposited temporarily, element by element, still in the vertical position, in an unloading basin above the reactor vessel. They are then transferred to a spent fuel pit located, for example, at a distance of 10 meters from the unloading basin, at practically the same level, where they are stored in vertical position until the natural decay of their radioactivity allows them to be removed from the power plant. Water, in fact, serves the function of cooling the elements and protecting the external environment against part of the radiation

  20. Device for positioning a component directly opposite the holes in a plate and method of setting up such a device at a distance

    International Nuclear Information System (INIS)

    Pigeon, Michel; Saglio, Robert.

    1982-01-01

    The device includes a hooking finger placed in position at a distance, for example by means of a hooking pole on which the remainder of the device is threaded. A remote controlled locking system makes it possible join firmly the two parts, each of which has a hooking component able to become fixed in a hole. These movements of the device after it has been brought into position are also controlled from a distance. Application to the testing of nuclear power station steam generator tubes by eddy current probe [fr

  1. Determination of the Optimal Position of Pendulums of an Active Self-balancing Device

    Science.gov (United States)

    Ziyakaev, G. R.; Kazakova, O. A.; Yankov, V. V.; Ivkina, O. P.

    2017-04-01

    The demand of the modern manufacturing industry for machines with high motion speed leads to increased load and vibration activity of the main elements of rotor systems. Vibration reduces operating life of bearings, has adversary effects on human organism, and can cause accidents. One way to compensate for a rotating rotor's imbalance is the use of active self-balancing devices. The aim of this work is to determine the position of their pendulums, in which the imbalance is minimized. As a result of the study, a formula for determining the angle of the pendulums was obtained.

  2. Detection device for pipeway water leakage in building

    International Nuclear Information System (INIS)

    Hanawa, Jun.

    1988-01-01

    Purpose: To rapidly detect pipeway leakage at predetermined areas over a wide range in a building. Constitution: If flooding should occur in a power plant building and left as it is, emergency core cooling system, as well as auxiliary equipments and electrical equipments of the system are flooded to make the safety shutdown of the plant impossible. The present invention copes with such a risk. That is, an inlet flow meter and as exit flow meter are disposed to the inlet and the exit of pipeways disposed in a predetermined region in the building and a flow rate difference detector between them is disposed. In this way, pipeway leakage is detected by detecting the flow rate difference between the inlet flow rate and the exit flow rate of the pipeway in the predetermined region. According to the present invention, if a pipeway in a predetermined region is raptured to cause water leakage, the pipeway leakage can rapidly be detected depending on the flow rate difference between the inlet flow rate and the exit flow rate. Further, the water leakage over the entire the predetermined region can be detected rapidly as compared with the conventional case of detecting the leakage at a restricted portion where the leakage detector is disposed. (Kamimura, M.)

  3. Evaluation of novel algorithm embedded in a wearable sEMG device for seizure detection

    DEFF Research Database (Denmark)

    Conradsen, Isa; Beniczky, Sandor; Wolf, Peter

    2012-01-01

    We implemented a modified version of a previously published algorithm for detection of generalized tonic-clonic seizures into a prototype wireless surface electromyography (sEMG) recording device. The method was modified to require minimum computational load, and two parameters were trained...... on prior sEMG data recorded with the device. Along with the normal sEMG recording, the device is able to set an alarm whenever the implemented algorithm detects a seizure. These alarms are annotated in the data file along with the signal. The device was tested at the Epilepsy Monitoring Unit (EMU......) at the Danish Epilepsy Center. Five patients were included in the study and two of them had generalized tonic-clonic seizures. All patients were monitored for 2–5 days. A double-blind study was made on the five patients. The overall result showed that the device detected four of seven seizures and had a false...

  4. Boosting Web Intrusion Detection Systems by Inferring Positive Signatures

    NARCIS (Netherlands)

    Bolzoni, D.; Etalle, Sandro

    2008-01-01

    We present a new approach to anomaly-based network intrusion detection for web applications. This approach is based on dividing the input parameters of the monitored web application in two groups: the "regular" and the "irregular" ones, and applying a new method for anomaly detection on the

  5. Passive measurement-device-independent quantum key distribution with orbital angular momentum and pulse position modulation

    Science.gov (United States)

    Wang, Lian; Zhou, Yuan-yuan; Zhou, Xue-jun; Chen, Xiao

    2018-03-01

    Based on the orbital angular momentum and pulse position modulation, we present a novel passive measurement-device-independent quantum key distribution (MDI-QKD) scheme with the two-mode source. Combining with the tight bounds of the yield and error rate of single-photon pairs given in our paper, we conduct performance analysis on the scheme with heralded single-photon source. The numerical simulations show that the performance of our scheme is significantly superior to the traditional MDI-QKD in the error rate, key generation rate and secure transmission distance, since the application of orbital angular momentum and pulse position modulation can exclude the basis-dependent flaw and increase the information content for each single photon. Moreover, the performance is improved with the rise of the frame length. Therefore, our scheme, without intensity modulation, avoids the source side channels and enhances the key generation rate. It has greatly utility value in the MDI-QKD setups.

  6. Low-power signal processing devices for portable ECG detection.

    Science.gov (United States)

    Lee, Shuenn-Yuh; Cheng, Chih-Jen; Wang, Cheng-Pin; Kao, Wei-Chun

    2008-01-01

    An analog front end for diagnosing and monitoring the behavior of the heart is presented. This sensing front end has two low-power processing devices, including a 5(th)-order Butterworth operational transconductance-C (OTA-C) filter and an 8-bit successive approximation analog-to-digital converter (SAADC). The components fabricated in a 0.18-microm CMOS technology feature with power consumptions of 453 nW (filter) and 940 nW (ADC) at a supply voltage of 1 V, respectively. The system specifications in terms of output noise and linearity associated with the two integrated circuits are described in this paper.

  7. Detection of coherent beam-beam modes with digitized beam position monitor signals

    CERN Document Server

    Stancari, G.; White, S.M.

    2014-01-01

    A system for bunch-by-bunch detection of transverse proton and antiproton coherent oscillations in the Fermilab Tevatron collider is described. It is based on the signal from a single beam-position monitor located in a region of the ring with large amplitude functions. The signal is digitized over a large number of turns and Fourier-analyzed offline with a dedicated algorithm. To enhance the signal, band-limited noise is applied to the beam for about 1 s. This excitation does not adversely affect the circulating beams even at high luminosities. The device has a response time of a few seconds, a frequency resolution of $1.6\\times 10^{-5}$ in fractional tune, and it is sensitive to oscillation amplitudes of 60 nm. It complements Schottky detectors as a diagnostic tool for tunes, tune spreads, and beam-beam effects. Measurements of coherent mode spectra are presented and compared with models of beam-beam oscillations.

  8. Learning-Based Detection of Harmful Data in Mobile Devices

    Directory of Open Access Journals (Sweden)

    Seok-Woo Jang

    2016-01-01

    Full Text Available The Internet has supported diverse types of multimedia content flowing freely on smart phones and tablet PCs based on its easy accessibility. However, multimedia content that can be emotionally harmful for children is also easily spread, causing many social problems. This paper proposes a method to assess the harmfulness of input images automatically based on an artificial neural network. The proposed method first detects human face areas based on the MCT features from the input images. Next, based on color characteristics, this study identifies human skin color areas along with the candidate areas of nipples, one of the human body parts representing harmfulness. Finally, the method removes nonnipple areas among the detected candidate areas using the artificial neural network. The experimental results show that the suggested neural network learning-based method can determine the harmfulness of various types of images more effectively by detecting nipple regions from input images robustly.

  9. Detection device for off-gas system accidents

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Tsuruoka, Ryozo; Yamanari, Shozo.

    1984-01-01

    Purpose: To rapidly isolate the off-gas system by detecting the off-gas system failure accident in a short time. Constitution: Radiation monitors are disposed to ducts connecting an exhaust gas area and an air conditioning system as a portion of a turbine building. The ducts are disposed independently such that they ventilate only the atmosphere in the exhaust gas area and do not mix the atmosphere in the turbine building. Since radioactivity issued upon off-gas accidents to the exhaust gas area is sucked to the duct, it can be detected by radiation detection monitors in a short time after the accident. Further, since the operator judges it as the off-gas system accident, the off-gas system can be isolated in a short time after the accident. (Moriyama, K.)

  10. Catalase-positive microbial detection by using different ultrasonic parameters

    International Nuclear Information System (INIS)

    Shukla, S K; Durán, C; Elvira, L

    2012-01-01

    A method for rapid detection of catalase enzyme activity using ultrasonic parameters is presented in this work. It is based on the detection of the hydrolysis of hydrogen peroxide molecule into water and oxygen induced by the enzyme catalase. A special medium was made to amplify changes produced by catalase enzyme during the hydrolysis process. Enzymatic process can be monitored by means of ultrasonic parameters such as wave amplitude, time of flight (TOF), and backscattering measurements which are sensitive to oxygen bubble production. It is shown that catalase activity of the order of 10 −3 unit/ml can be detected using different ultrasonic parameters. The sensitivity provided by them is discussed.

  11. Pipeline leak detection method and control device therefor

    International Nuclear Information System (INIS)

    Bell, D.A.

    1983-01-01

    Leaks may be located in a pipeline by introducing into the pipeline an assembly that includes a pipe-sealing packer unit, a control unit, and a radioactive source shielded from the control unit. The control unit includes a gamma ray detector that controls the sealing and unsealing of the pipe by the packer in response to the detection of radiation exceeding a preset threshold - a detection event. The assembly is pushed through the pipeline by a relatively low fluid pressure behind it. The progress of the assembly through the pipeline may be monitored externally by a gamma ray detector

  12. The use of silicon devices (diodes, RAMs, etc.) for alpha particle detection

    International Nuclear Information System (INIS)

    Agosteo, S.; Foglio Para, A.

    1993-01-01

    Silicon electronic devices (diodes, random access memories (RAMs), etc.) can be employed in alpha particle detection and spectroscopy with a good energy resolution. The detection mechanisms are first discussed; the performances of these devices operating in the pulse and in the current mode are then described starting from the pioneering works of the last decade. Some peculiar applications of RAMs are finally reported. (author). 7 refs, 5 figs, 1 tab

  13. Automated real-time detection of tonic-clonic seizures using a wearable EMG device

    DEFF Research Database (Denmark)

    Beniczky, Sándor; Conradsen, Isa; Henning, Oliver

    2018-01-01

    OBJECTIVE: To determine the accuracy of automated detection of generalized tonic-clonic seizures (GTCS) using a wearable surface EMG device. METHODS: We prospectively tested the technical performance and diagnostic accuracy of real-time seizure detection using a wearable surface EMG device....... The seizure detection algorithm and the cutoff values were prespecified. A total of 71 patients, referred to long-term video-EEG monitoring, on suspicion of GTCS, were recruited in 3 centers. Seizure detection was real-time and fully automated. The reference standard was the evaluation of video-EEG recordings...

  14. Pinched flow fractionation devices for detection of single nucleotide polymorphisms

    DEFF Research Database (Denmark)

    Larsen, Asger Vig; Poulsen, Lena; Birgens, Henrik

    2008-01-01

    and 5.6 mu m were functionalized with biotin-labeled oligonucleotides for the detection of a mutant (Mt) or wild-type (Wt) DNA sequence in the HBB gene, respectively. Hybridization to functionalized beads was performed with fluorescent targets comprising synthetic DNA oligonucleotides or amplified RNA...

  15. Fire-detection device with an ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Conforti, F J; Ogden, W L

    1974-10-14

    The invention fire-detector in which a detecting circuit of adjustable sensitivity is connected to an ionization chamber sensitive to combustion products. An appropriate circuit is adapted to check the operation and to determine if: the apparatus is duly fed with power; the detector is working; and the apparatus is working at the appropriate sensitivity.

  16. Metabolic volume performs better than SUVmax in the detection of left ventricular assist device driveline infection

    Energy Technology Data Exchange (ETDEWEB)

    Avramovic, Nemanja; Weckesser, Matthias; Milankovic, Danka; Vrachimis, Alexis; Wenning, Christian [University Hospital Muenster, Department of Nuclear Medicine, Muenster (Germany); Dell' Aquila, Angelo Maria; Sindermann, Juergen R. [University Hospital Muenster, Department of Cardiac Surgery, Muenster (Germany)

    2017-10-15

    A continuous-flow left ventricular assist device (LVAD) is a new and highly promising therapy in supporting end-stage heart failure patients, either bridging them to heart transplantation or as a destination therapy. Infection is one of the major complications associated with LVAD implants. {sup 18}F-FDG PET/CT has already been shown to be useful in the detection of LVAD infection. The goal of this study was to compare the diagnostic accuracy of different PET analysis techniques (visual grading versus SUVmax and metabolic volume). We retrospectively analyzed 48 patients with implanted LVAD who underwent an {sup 18}F-FDG PET/CT that were either suspected to have a driveline or device infection or inflammation of unknown origin. PET/CT was analyzed qualitatively (visual grading) and quantitatively (SUVmax and metabolic volume) and matched to the final clinical diagnosis concerning driveline infection. The final diagnosis (standard of reference) was made at the end of clinically recorded follow-up or transplantation and included microbiological cultures of the driveline exit site and/or surgical samples, and clinical signs of infection despite negative cultures as well as recurrence of symptoms. Sensitivity, specificity, positive and negative predictive value were 87.5%, 79%, 81% and 86% for visual score, 87.5%, 87.5%, 87.5% and 87.5% for SUVmax and 96%, 87.5%, 88.5%, 95.5% for metabolic volume, respectively. ROC analysis revealed an AUC of.929 for SUVmax and.969 for metabolic volume. Both SUVmax and metabolic volume had a high detection rate of patients with driveline infection (21/24 = 91.5% true positive vs. 23/26 = 88.5% true positive, respectively). However, metabolic volume detected more patients without any infection correctly (1/22 = 4.5% false negative vs. 3/24 = 12.5% false negative). {sup 18}F-FDG PET/CT is a valuable tool for the diagnosis of LVAD driveline infection with high diagnostic accuracy. Particularly the use of the metabolic volume yields very

  17. Detecting Position Using ARKit II: Generating Position-Time Graphs in Realtime and Further Information on Limitations of ARKit

    Science.gov (United States)

    Dilek, Ufuk; Erol, Mustafa

    2018-01-01

    ARKit is a framework which allows developers to create augmented reality apps for the iPhone and iPad. In a previous study, we had shown that it could be used to detect position in educational physics experiments and emphasized that the ability to provide position data in real-time was one of the prominent features of this newly emerging…

  18. SU-G-201-03: Automation of High Dose Rate Brachytherapy Quality Assurance: Development of a Radioluminescent Detection System for Simultaneous Detection of Activity, Timing, and Positioning

    Energy Technology Data Exchange (ETDEWEB)

    Jenkins, C; Xing, L; Fahimian, B [Stanford University, Stanford, CA (United States)

    2016-06-15

    Purpose: Accuracy of positioning, timing and activity is of critical importance for High Dose Rate (HDR) brachytherapy delivery. Respective measurements via film autoradiography, stop-watches and well chambers can be cumbersome, crude or lack dynamic source evaluation capabilities. To address such limitations, a single device radioluminescent detection system enabling automated real-time quantification of activity, position and timing accuracy is presented and experimentally evaluated. Methods: A radioluminescent sheet was fabricated by mixing Gd?O?S:Tb with PDMS and incorporated into a 3D printed device where it was fixated below a CMOS digital camera. An Ir-192 HDR source (VS2000, VariSource iX) with an effective active length of 5 mm was introduced using a 17-gauge stainless steel needle below the sheet. Pixel intensity values for determining activity were taken from an ROI centered on the source location. A calibration curve relating intensity values to activity was generated and used to evaluate automated activity determination with data gathered over 6 weeks. Positioning measurements were performed by integrating images for an entire delivery and fitting peaks to the resulting profile. Timing measurements were performed by evaluating source location and timestamps from individual images. Results: Average predicted activity error over 6 weeks was .35 ± .5%. The distance between four dwell positions was determined by the automated system to be 1.99 ± .02 cm. The result from autoradiography was 2.00 ± .03 cm. The system achieved a time resolution of 10 msec and determined the dwell time to be 1.01 sec ± .02 sec. Conclusion: The system was able to successfully perform automated detection of activity, positioning and timing concurrently under a single setup. Relative to radiochromic and radiographic film-based autoradiography, which can only provide a static evaluation positioning, optical detection of temporary radiation induced luminescence enables dynamic

  19. Miniaturized bead-beating device to automate full DNA sample preparation processes for gram-positive bacteria.

    Science.gov (United States)

    Hwang, Kyu-Youn; Kwon, Sung Hong; Jung, Sun-Ok; Lim, Hee-Kyun; Jung, Won-Jong; Park, Chin-Sung; Kim, Joon-Ho; Suh, Kahp-Yang; Huh, Nam

    2011-11-07

    We have developed a miniaturized bead-beating device to automate nucleic acids extraction from Gram-positive bacteria for molecular diagnostics. The microfluidic device was fabricated by sandwiching a monolithic flexible polydimethylsiloxane (PDMS) membrane between two glass wafers (i.e., glass-PDMS-glass), which acted as an actuator for bead collision via its pneumatic vibration without additional lysis equipment. The Gram-positive bacteria, S. aureus and methicillin-resistant S. aureus, were captured on surface-modified glass beads from 1 mL of initial sample solution and in situ lyzed by bead-beating operation. Then, 10 μL or 20 μL of bacterial DNA solution was eluted and amplified successfully by real-time PCR. It was found that liquid volume fraction played a crucial role in determining the cell lysis efficiency in a confined chamber by facilitating membrane deflection and bead motion. The miniaturized bead-beating operation disrupted most of S. aureus within 3 min, which turned out to be as efficient as the conventional benchtop vortexing machine or the enzyme-based lysis technique. The effective cell concentration was significantly enhanced with the reduction of initial sample volume by 50 or 100 times. Combination of such analyte enrichment and in situ bead-beating lysis provided an excellent PCR detection sensitivity amounting to ca. 46 CFU even for the Gram-positive bacteria. The proposed bead-beating microdevice is potentially useful as a nucleic acid extraction method toward a PCR-based sample-to-answer system. This journal is © The Royal Society of Chemistry 2011

  20. Device for the position fixing of a rod-type object

    International Nuclear Information System (INIS)

    Maxam, S.; Barzantny, J.; Hans, R.

    1984-01-01

    For determining the position of a fuel element, a cylindrical, ferromagnetic body is mounted on it which is surrounded by a system of coils of known position. The determination is limited to detecting the deviation of the axis of the fuel element from the center of the coil system. This centre consists of a primary coil, a lower coil ring and a coil ring axially displaced with respect to it. For the centric deviation for determining the eccentricity of the ferrite cylinder of the coil system one coil ring is sufficient. For determining the azimuth, i.e. the rotation of the fuel element around its axis, both coil rings are necessary. In order to evaluate the position, amplitude and phase relationship of the signals occuring at the coil rings are fed to a switching arrangement. The signals depend of the inductive coupling of the coil system by the ferrite cylinder. (orig./PW)

  1. Native Fluorescence Detection Methods, Devices, and Systems for Organic Compounds

    Science.gov (United States)

    Hug, William F. (Inventor); Bhartia, Rohit (Inventor); Reid, Ray D. (Inventor); Lane, Arthur L. (Inventor)

    2018-01-01

    Naphthalene, benzene, toluene, xylene, and other volatile organic compounds VOCs have been identified as serious health hazards. Embodiments of the invention are directed to methods and apparatus for near-real-time in-situ detection and accumulated dose measurement of exposure to naphthalene vapor and other hazardous gaseous VOCs. The methods and apparatus employ excitation of fluorophors native or endogenous to compounds of interest using light sources emitting in the ultraviolet below 300 nm and measurement of native fluorescence emissions in distinct wavebands above the excitation wavelength. The apparatus of some embodiments are cell-phone-sized sensor/dosimeter "badges" to be worn by personnel potentially exposed to hazardous VOCs. The badge sensor of some embodiments provides both real time detection and data logging of exposure to naphthalene or other VOCs of interest from which both instantaneous and accumulated dose can be determined.

  2. Device for detecting neutron flux in nuclear reactor. [BWR

    Energy Technology Data Exchange (ETDEWEB)

    Bessho, Y; Nishizawa, Y

    1976-07-30

    The object of the invention is to ensure accuracy in the operation of the nuclear reactor by reducing the difference that results between the readings of a Traversing Incore Probe (TIP) and a Local Power Range Monitor (LPRM) when the neutron flux distribution undergoes a change. In an apparatus for detecting neutrons in a nuclear reactor, an LPRM sensor comprising a layer containing a substance capable of nuclear fission, a section filled with argon gas and a collector is constructed so as to surround a TIP within a TIP guide tube at the height of the reactor axis. In this way, the LPRM detects the average value of neutron distribution in the region surrounding the TIP, so that no great difference between the readings of both the sensors is produced even if the neutron flux distribution is changed.

  3. Process and device for detecting tumours of the eyes

    International Nuclear Information System (INIS)

    Safi, Nour; Thoreson, Elisabeth.

    1975-01-01

    This invention refers to a process and system for detecting tumours of the eye likely to take up radioelements. To this end, the invention proposes a detection process whereby a molecule labelled by a radioelement emitting Beta radiations having an energy spectrum extending beyond the Cerenkov threshold in the vitreous humor of the eye is introduced into the circulatory system of the patient under examination and whereby the Cerenkov emission is measured through the lens and pupil. A β-emitter radioelement and notably 32 P which is taken up energetically by high metabolic activity tissue can be employed in particular. The invention also proposes a system to use the process described above, comprising a dioptric system for transmitting the light produced in the vitreous humor by Cerenkov effect to a light detector of a type enabling the luminous flux it receives to be integrated [fr

  4. Transient photoconductive gain in a-Si:H devices and its applications in radiation detection

    International Nuclear Information System (INIS)

    Lee, H.K.; Suh, T.S.; Choe, B.Y.; Shinn, K.S.; Perez-Mendez, V.

    1997-01-01

    Using the transient behavior of the photoconductive-gain mechanism, a signal gain in radiation detection with a-Si:H devices may be possible. The photoconductive gain mechanism in two types of hydrogenated amorphous silicon devices, p-i-n and n-i-n configurations, was investigated in connection with applications to radiation detection. Photoconductive gain was measured in two time scales: one for short pulses of visible light ( 2 . Various gain results are discussed in terms of the device structure, applied bias and dark-current density. (orig.)

  5. Gamma ray detecting device using dislocation-free crystal

    International Nuclear Information System (INIS)

    Vali, V.; Chang, D.B.

    1991-01-01

    This patent describes a γ-ray detector. It comprises: a dislocation-free single crystal having an input surface and a transmission surface at opposite ends thereof; an active shield surrounding the crystal and functioning as an anticoincidence counter; and γ-ray detector means disposed adjacent the transmission surface of the crystal for receiving and detecting γ-rays of a predetermined wavelength incident on the input surface of the crystal at a specific Bragg angle and transmitted through the crystal

  6. Device for positioning and generation of an element of track model and slice of the MELAS automatic equipment

    International Nuclear Information System (INIS)

    Kryutchenko, E.V.; Fedotov, V.S.

    1979-01-01

    The structure and organization of the device for positioning and generation of element of track model and slice of the MELAS automatic equipment which is developed for measuring films from big bubble chambers, is described. Main features of the device are studied and characteristics are given as well

  7. Suppression background device in neutron detection by a scintillation detector

    International Nuclear Information System (INIS)

    Degtyarev, A.P.; Kozyr', Yu.E.; Prokopets, G.A.

    1980-01-01

    A pulse shape discriminator for suppression of cosmic and gamma background as well as for suppression of intrinsic noises of a photomultiplier is described. Identification of signals of background and neutrons is performed by means of comparison of relative intensity of fast and slow components of scintillator luminescence. Basic discriminator flowsheet which contains integrating and differential RC circuits and time-to-amplitude converter is given. The discriminator provides minimum energy of detected neutrons equal to 500 keV when using a FEhU-36 neutron detector with a stilbene crystal [ru

  8. Non-equilibrium phonon generation and detection in microstructure devices

    KAUST Repository

    Hertzberg, J. B.

    2011-01-01

    We demonstrate a method to excite locally a controllable, non-thermal distribution of acoustic phonon modes ranging from 0 to ∼200 GHz in a silicon microstructure, by decay of excited quasiparticle states in an attached superconducting tunnel junction (STJ). The phonons transiting the structure ballistically are detected by a second STJ, allowing comparison of direct with indirect transport pathways. This method may be applied to study how different phonon modes contribute to the thermal conductivity of nanostructures. © 2011 American Institute of Physics.

  9. Predictable Technique to Register Retruded Contact Position (RCP) Using a Disposable Jaw Relation Recording Device.

    Science.gov (United States)

    Daher, Tony; Lobel, William A; Massad, Joseph; Ahuja, Swati; Danilov, Zarko Jack

    2015-05-01

    The dental literature presents various definitions and techniques to describe and register centric relation (CR) or centric occlusion (CO). Briefly reviewing the literature in relation to CR, this article proposes the use of the term retruded contact position (RCP), clinically defined as retruded, unstrained, repeatable position and where the mandibular movements start when a Gothic arch tracing is used. With this clinical definition, a technique can be easily selected that meets all the requirements of such position. The article discusses the use of a jaw recorder that is an intraorally graphic recording device that results in a tracing of mandibular movements in one plane, with the apex of the tracing indicating the retruded, unstrained, and repeatable relationship. The intersection of the arcs produced by the right and left working movement form the apex of the Gothic arch tracing. Several clinical situations using the jaw recorder are described. Clinicians can now quickly and accurately record RCP, balance complete, partial, or implant dentures, and orthopedically reposition the mandible. The technique achieves highly reliable and reproducible results.

  10. Position Detection Based on Intensities of Reflected Infrared Light

    DEFF Research Database (Denmark)

    Christensen, Henrik Vie

    measurements of reflected light intensities, and includes easy calibration. The method for reconstructing 3D positions has been implemented in a prototype of a “non-Touch Screen” for a computer, so that the user can control a cursor in three dimensions by moving his/hers hand in front of the computer screen....... The 2D position reconstruction method is mplemented in a prototype of a human-machine interface (HMI) for an electrically powered wheelchair, such that the wheelchair user can control the movement of the wheelchair by head movements. Both “non-Touch Screen” prototype and wheelchair HMI has been tested...

  11. An experimental study of UWB device-free person detection and ranging

    NARCIS (Netherlands)

    Kilic, Y.; Wymeersch, Henk; Meijerink, Arjan; Bentum, Marinus Jan; Scanlon, W.G.

    2013-01-01

    Passive person detection and localization is an emerging area in UWB localization systems, whereby people are not required to carry any UWB ranging device. Based on experimental data, we propose a novel method to detect static persons in the absence of template waveforms, and to compute distances to

  12. Continuous Positive Airway Pressure Device Time to Procurement in a Disadvantaged Population

    Directory of Open Access Journals (Sweden)

    Lourdes M. DelRosso

    2015-01-01

    Full Text Available Introduction. The management of obstructive sleep apnea (OSA in patients who cannot afford a continuous positive airway pressure (CPAP device is challenging. In this study we compare time to CPAP procurement in three groups of patients diagnosed with OSA: uninsured subsidized by a humanitarian grant (Group 1, uninsured unsubsidized (Group 2, and those with Medicare or Medicaid (Group 3. We evaluate follow-up and adherence in Group 1. We hypothesize that additional factors, rather than just the ability to obtain CPAP, may uniquely affect follow-up and adherence in uninsured patients. Methods. 30 patients were in Groups 1 and 2, respectively. 12 patients were in Group 3. Time of CPAP procurement from OSA diagnosis to CPAP initiation was assessed in all groups. CPAP adherence data was collected for Group 1 patients at 1, 3, 6, and 9 months. Results. There were no significant differences between groups in gender, age, body mass index, or apnea hypopnea index. The mean time to procurement in Group 1 was shorter compared to Group 2 but not significant. Compared to both Group 1 and Group 2, Group 3 patients had significantly shorter times to device procurement. Conclusion. Time to procurement of CPAP was significantly shorter in those with Medicaid/Medicare insurance compared to the uninsured.

  13. Pin cushion plasmonic device for polarization beam splitting, focusing, and beam position estimation.

    Science.gov (United States)

    Lerman, Gilad M; Levy, Uriel

    2013-03-13

    Great hopes rest on surface plasmon polaritons' (SPPs) potential to bring new functionalities and applications into various branches of optics. In this paper, we demonstrate a pin cushion structure capable of coupling light from free space into SPPs, split them based on the polarization content of the illuminating beam of light, and focus them into small spots. We also show that for a circularly or randomly polarized light, four focal spots will be generated at the center of each quarter circle comprising the pin cushion device. Furthermore, following the relation between the relative intensity of the obtained four focal spots and the relative position of the illuminating beam with respect to the structure, we propose and demonstrate the potential use of our structure as a miniaturized plasmonic version of the well-known four quadrant detector. Additional potential applications may vary from multichannel microscopy and multioptical traps to real time beam tracking systems.

  14. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Energy Technology Data Exchange (ETDEWEB)

    Bandara, R.; Khachan, J. [Plasma Physics, School of Physics, University of Sydney, Camperdown, New South Wales 2006 (Australia)

    2013-07-15

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  15. Spherical ion oscillations in a positive polarity gridded inertial-electrostatic confinement device

    Science.gov (United States)

    Bandara, R.; Khachan, J.

    2013-07-01

    A pulsed, positive polarity gridded inertial electrostatic confinement device has been investigated experimentally, using a differential emissive probe and potential traces as primary diagnostics. Large amplitude oscillations in the plasma current and plasma potential were observed within a microsecond of the discharge onset, which are indicative of coherent ion oscillations about a temporarily confined excess of recirculating electron space charge. The magnitude of the depth of the potential well in the established virtual cathode was determined using a differential emissive Langmuir probe, which correlated well to the potential well inferred from the ion oscillation frequency for both hydrogen and argon experiments. It was found that the timescale for ion oscillation dispersion is strongly dependent on the neutral gas density, and weakly dependent on the peak anode voltage. The cessation of the oscillations was found to be due to charge exchange processes converting ions to high velocity neutrals, causing the abrupt de-coherence of the oscillations through an avalanche dispersion in phase space.

  16. Monolithic integration of optical waveguides for absorbance detection in microfabricated electrophoresis devices

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Petersen, Nickolaj Jacob; Hübner, Jörg

    2001-01-01

    . The waveguides on the device were connected to optical fibers, which enabled alignment free operation due to the absence of free-space optics. A 750 mum long U-shaped detection cell was used to facilitate longitudinal absorption detection. To minimize geometrically induced band broadening at the turn in the U......The fabrication and performance of an electrophoretic separation chip with integrated of optical waveguides for absorption detection is presented. The device was fabricated on a silicon substrate by standard microfabrication techniques with the use of two photolithographic mask steps...

  17. Exploring the capability of wireless near infrared spectroscopy as a portable seizure detection device for epilepsy patients.

    Science.gov (United States)

    Jeppesen, Jesper; Beniczky, Sándor; Johansen, Peter; Sidenius, Per; Fuglsang-Frederiksen, Anders

    2015-03-01

    Near infrared spectroscopy (NIRS) has proved useful in measuring significant hemodynamic changes in the brain during epileptic seizures. The advance of NIRS-technology into wireless and portable devices raises the possibility of using the NIRS-technology for portable seizure detection. This study used NIRS to measure changes in oxygenated (HbO), deoxygenated (HbR), and total hemoglobin (HbT) at left and right side of the frontal lobe in 33 patients with epilepsy undergoing long-term video-EEG monitoring. Fifteen patients had 34 focal seizures (20 temporal-, 11 frontal-, 2 parietal-lobe, one unspecific) recorded and analyzed with NIRS. Twelve parameters consisting of maximum increase and decrease changes of HbO, HbR and HbT during seizures (1 min before- to 3 min after seizure-onset) for left and right side, were compared with the patients' own non-seizure periods (a 2-h period and a 30-min exercise-period). In both non-seizure periods 4 min moving windows with maximum overlapping were applied to find non-seizure maxima of the 12 parameters. Detection was defined as positive when seizure maximum change exceeded non-seizure maximum change. When analyzing the 12 parameters separately the positive seizure detection was in the range of 6-24%. The increase in hemodynamics was in general better at detecting seizures (15-24%) than the decrease in hemodynamics (6-18%) (P=0.02). NIRS did not seem to be a suitable technology for generic seizure detection given the device, settings, and methods used in this study. There are still several challenges to overcome before the NIRS-technology can be used as a home-monitoring seizure detection device. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  18. Device for detecting defective nuclear reactor fuel rods

    International Nuclear Information System (INIS)

    Steven, J.

    1976-01-01

    A moisture sensor is provided for a nuclear fuel rod for water-cooled nuclear reactors wherein moisture can be present. The fuel rod has an end cap and a charge of nuclear fuel. The moisture sensor is disposed between the end cap and the charge and serves to detect a leak in the fuel rod. The moisture sensor includes a capsule-like housing having an inner space and having openings through which moisture can pass into the inner space in the event of a leak in the fuel rod. Ferromagnetic material is disposed in the inner space of the housing together with a moisture detector responsive to moisture for altering the diposition of the ferromagnetic material in the inner space. 5 claims, 6 drawing figures

  19. Development of a New X-Ray Polarization Detection Device

    Science.gov (United States)

    Thompson, Jahreem R.; Hill, Joanne E.; Jahoda, Keith; Black, Kevin; Querrard, Rodney

    2018-01-01

    The aim of this research is to confirm the functionality of a Gas Electron Multiplier made of stainless steel in a detection medium of carbon dioxide and nitromethane through a series of X-ray tests in a vacuum chamber. Utilizing the photoelectric effect with carbon dioxide and nitromethane, we can confirm polarization of X-rays emitted from the most extreme astronomical conditions. We chose to use CO2 because we can confirm that it works well with the stainless-steel detector based on previous tests and nitromethane because we suspect that the ionization electrons created by the photoelectron during the photoelectric effect will experience less diffusion if they are bonded to a large molecule such as nitromethane as they diffuse towards the drift plate. The development of these new X-ray polarimeters will help to further the study of gravitational fields near black holes, their effects on matter they encounter, and the magnetic fields of neutron stars.

  20. In-situ non-invasive device for early detection of fouling in aquatic systems

    KAUST Repository

    Fortunato, Luca

    2017-01-05

    An in-situ, non-destructive sensor device, system and method are provided to detect or assess fouling at a very early stage of development. They can be used to detect or assess fouling on a surface of an aquatic system. They can be used to obtain a depth profile of the fouling. Data concerning the depth profile can be extracted and used to assess the fouling on the surface, in one or more aspects, the method can include providing an optical tomography spectrometer; optically positioning the optical tomography spectrometer in association with a surface of an area to be assessed for fouling in an aqueous system; irradiating the surface; acquiring, from irradiating the surface, a plurality of signals as a function of a distance from the surface at different times; extracting data from the signals as a function of the distance to obtain a depth profile of the surface at the different times; and determining a change in the depth profile between the different times to assess fouling on the surface.

  1. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens

    DEFF Research Database (Denmark)

    Kant, Krishna; Shahbazi, Mohammad-Ali; Dave, Vivek Priy

    2018-01-01

    and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews...... diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices...... recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods...

  2. MedMon: securing medical devices through wireless monitoring and anomaly detection.

    Science.gov (United States)

    Zhang, Meng; Raghunathan, Anand; Jha, Niraj K

    2013-12-01

    Rapid advances in personal healthcare systems based on implantable and wearable medical devices promise to greatly improve the quality of diagnosis and treatment for a range of medical conditions. However, the increasing programmability and wireless connectivity of medical devices also open up opportunities for malicious attackers. Unfortunately, implantable/wearable medical devices come with extreme size and power constraints, and unique usage models, making it infeasible to simply borrow conventional security solutions such as cryptography. We propose a general framework for securing medical devices based on wireless channel monitoring and anomaly detection. Our proposal is based on a medical security monitor (MedMon) that snoops on all the radio-frequency wireless communications to/from medical devices and uses multi-layered anomaly detection to identify potentially malicious transactions. Upon detection of a malicious transaction, MedMon takes appropriate response actions, which could range from passive (notifying the user) to active (jamming the packets so that they do not reach the medical device). A key benefit of MedMon is that it is applicable to existing medical devices that are in use by patients, with no hardware or software modifications to them. Consequently, it also leads to zero power overheads on these devices. We demonstrate the feasibility of our proposal by developing a prototype implementation for an insulin delivery system using off-the-shelf components (USRP software-defined radio). We evaluate its effectiveness under several attack scenarios. Our results show that MedMon can detect virtually all naive attacks and a large fraction of more sophisticated attacks, suggesting that it is an effective approach to enhancing the security of medical devices.

  3. Bio-sample detection on paper-based devices with inkjet printer-sprayed reagents.

    Science.gov (United States)

    Liang, Wun-Hong; Chu, Chien-Hung; Yang, Ruey-Jen

    2015-12-01

    The reagent required for bio-sample detection on paper-based analytical devices is generally introduced manually using a pipette. Such an approach is time-consuming; particularly if a large number of devices are required. Automated methods provide a far more convenient solution for large-scale production, but incur a substantial cost. Accordingly, the present study proposes a low-cost method for the paper-based analytical devices in which the biochemical reagents are sprayed onto the device directly using a modified commercial inkjet printer. The feasibility of the proposed method is demonstrated by performing aspartate aminotransferase (AST) and alanine aminotransferase (ALT) tests using simple two-dimensional (2D) paper-based devices. In both cases, the reaction process is analyzed using an image-processing-based colorimetric method. The experimental results show that for AST detection within the 0-105 U/l concentration range, the optimal observation time is around four minutes, while for ALT detection in the 0-125 U/l concentration range, the optimal observation time is approximately one minute. Finally, for both samples, the detection performance of the sprayed-reagent analytical devices is insensitive to the glucose concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Look Again: An Investigation of False Positive Detections in Combat Models

    National Research Council Canada - National Science Library

    Wainwright, Ryan K

    2008-01-01

    .... Existing combat models tend to overlook or downplay false positive detections. Signal Detection Theory provides the framework for analysis of an observer's hits, misses, correct rejections, and false alarms...

  5. Manufacturing and testing flexible microfluidic devices with optical and electrical detection mechanisms

    OpenAIRE

    Ivan, M.G.; Vivet, F.; Meinders, E.R.

    2010-01-01

    Flexible microfluidic devices made of poly(dimethylsiloxane) (PDMS) were manufactured by soft lithography, and tested in detection of ionic species using optical absorption spectroscopy and electrical measurements. PDMS was chosen due to its flexibility and ease of surface modification by exposure to plasma and UV treatment, its transparency in UV-Vis regions of the light spectrum, and biocompatibility. The dual-detection mechanism allows the user more freedom in choosing the detection tool, ...

  6. Microchip-based electrochemical detection using a 3-D printed wall-jet electrode device.

    Science.gov (United States)

    Munshi, Akash S; Martin, R Scott

    2016-02-07

    Three dimensional (3-D) printing technology has evolved dramatically in the last few years, offering the capability of printing objects with a variety of materials. Printing microfluidic devices using this technology offers various advantages such as ease and uniformity of fabrication, file sharing between laboratories, and increased device-to-device reproducibility. One unique aspect of this technology, when used with electrochemical detection, is the ability to produce a microfluidic device as one unit while also allowing the reuse of the device and electrode for multiple analyses. Here we present an alternate electrode configuration for microfluidic devices, a wall-jet electrode (WJE) approach, created by 3-D printing. Using microchip-based flow injection analysis, we compared the WJE design with the conventionally used thin-layer electrode (TLE) design. It was found that the optimized WJE system enhances analytical performance (as compared to the TLE design), with improvements in sensitivity and the limit of detection. Experiments were conducted using two working electrodes - 500 μm platinum and 1 mm glassy carbon. Using the 500 μm platinum electrode the calibration sensitivity was 16 times higher for the WJE device (as compared to the TLE design). In addition, use of the 1 mm glassy carbon electrode led to limit of detection of 500 nM for catechol, as compared to 6 μM for the TLE device. Finally, to demonstrate the versatility and applicability of the 3-D printed WJE approach, the device was used as an inexpensive electrochemical detector for HPLC. The number of theoretical plates was comparable to the use of commercially available UV and MS detectors, with the WJE device being inexpensive to utilize. These results show that 3-D-printing can be a powerful tool to fabricate reusable and integrated microfluidic detectors in configurations that are not easily achieved with more traditional lithographic methods.

  7. Neutron detection devices with 6LiF converter layers

    Science.gov (United States)

    Finocchiaro, Paolo; Cosentino, Luigi; Meo, Sergio Lo; Nolte, Ralf; Radeck, Desiree

    2018-01-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of art of a promising lowcost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. Several configurations were studied with the GEANT4 simulation code, and then calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  8. Recovery of viral RNA and infectious foot-and-mouth disease virus from positive lateral-flow devices.

    Science.gov (United States)

    Fowler, Veronica L; Bankowski, Bartlomiej M; Armson, Bryony; Di Nardo, Antonello; Valdazo-Gonzalez, Begoña; Reid, Scott M; Barnett, Paul V; Wadsworth, Jemma; Ferris, Nigel P; Mioulet, Valérie; King, Donald P

    2014-01-01

    Foot-and-mouth disease Virus (FMDV) is an economically important, highly contagious picornavirus that affects both wild and domesticated cloven hooved animals. In developing countries, the effective laboratory diagnosis of foot-and-mouth disease (FMD) is often hindered by inadequate sample preservation due to difficulties in the transportation and storage of clinical material. These factors can compromise the ability to detect and characterise FMD virus in countries where the disease is endemic. Furthermore, the high cost of sending infectious virus material and the biosecurity risk it presents emphasises the need for a thermo-stable, non-infectious mode of transporting diagnostic samples. This paper investigates the potential of using FMDV lateral-flow devices (LFDs) for dry transportation of clinical samples for subsequent nucleic acid amplification, sequencing and recovery of infectious virus by electroporation. FMDV positive samples (epithelial suspensions and cell culture isolates) representing four FMDV serotypes were applied to antigen LFDs: after which it was possible to recover viral RNA that could be detected using real-time RT-PCR. Using this nucleic acid, it was also possible to recover VP1 sequences and also successfully utilise protocols for amplification of complete FMD virus genomes. It was not possible to recover infectious FMDV directly from the LFDs, however following electroporation into BHK-21 cells and subsequent cell passage, infectious virus could be recovered. Therefore, these results support the use of the antigen LFD for the dry, non-hazardous transportation of samples from FMD endemic countries to international reference laboratories.

  9. Recent Developments in Optical Detection Technologies in Lab-on-a-Chip Devices for Biosensing Applications

    Directory of Open Access Journals (Sweden)

    Nuno Miguel Matos Pires

    2014-08-01

    Full Text Available The field of microfluidics has yet to develop practical devices that provide real clinical value. One of the main reasons for this is the difficulty in realizing low-cost, sensitive, reproducible, and portable analyte detection microfluidic systems. Previous research has addressed two main approaches for the detection technologies in lab-on-a-chip devices: (a study of the compatibility of conventional instrumentation with microfluidic structures, and (b integration of innovative sensors contained within the microfluidic system. Despite the recent advances in electrochemical and mechanical based sensors, their drawbacks pose important challenges to their application in disposable microfluidic devices. Instead, optical detection remains an attractive solution for lab-on-a-chip devices, because of the ubiquity of the optical methods in the laboratory. Besides, robust and cost-effective devices for use in the field can be realized by integrating proper optical detection technologies on chips. This review examines the recent developments in detection technologies applied to microfluidic biosensors, especially addressing several optical methods, including fluorescence, chemiluminescence, absorbance and surface plasmon resonance.

  10. Plastic scintillators utilization in position sensitive detection systems

    International Nuclear Information System (INIS)

    Garcia, Marcelo Bernardes; Soares, Adalberto Jose; Baptista Filho, Benedito Dias

    2002-01-01

    This paper shows the viability of using a plastic scintillator detector to determine the one dimension position of a radioactive source. The experiments were performed using collimated 99m Tc sources of several activities supplied by the Centro de Radiofarmacia (from IPEN), and a 15 cm long plastic scintillator with diameter 5,08 cm, produced by the Centro de Tecnologia das Radiacoes (also from IPEN). The spectrum was obtained using the Genie 2000 software, and the results processed using a neural network specially developed for the proposed application. The final results demonstrate the viability of the proposed application. (author)

  11. Incore instrumentation device

    International Nuclear Information System (INIS)

    Fujita, Kazuhiko.

    1996-01-01

    A position of a detector is detected by a driving device, and the detected values are sampled by a newly disposed central processing unit for sampling the detected values depending on the sampling position of the detected values. Since the sampling position of the detected values is detected by the driving device, the sampling position for the detection values does not rely on the speed of the driving motor of the driving device. The load on the central processing device for controlling the device is lowered by newly disposing the central processing unit for sampling detected values. When the values for the position of the detector counted after conversion to digital values reach the digital values corresponding to the detection value sampling position outputted from the central processing unit for controlling the device, a counted value comparison circuit causes the central processing unit for controlling the device to sample the detection values outputted from the detector. Then, the processing speed can be increased without interruption processings, which can save the central processing unit for sampling detection values. In addition, software can be simplified and loads can be lowered. (N.H.)

  12. Detection of multiple tumor markers using ultra-long carbon nanotube devices

    Science.gov (United States)

    So, Hye-Mi; Park, Dong-Won; Kim, Beom Soo; Kong, Ki-Jeong; Buh, Gyoung-Ho; Chang, Hyunju; Lee, Jeong-O.; Kong, Jing

    2008-03-01

    For the simultaneous detection of multiple tumor markers, we have fabricated ultra-long carbon nanotube sensors that can detect carcinoembryonic antigen (CEA) and prostate specific antigen (PSA), simultaneously. Ultra-long carbon nanotubes, several millimeters long, were grown by ethanol CVD, and fabricated as FET sensors by using conventional photolithography. To functionalize each segment of a single ultra-long nanotube device with multiple-tumor markers, we first functionalize the entire device with CDI-Tween 20 linking molecules, and then immobilized CEA and PSA antibodies using the microfluidic channel. The electrical conductance from CEA-antibody functionalized and PSA-antibody functionalized segment of a ultra-long carbon nanotube device was monitored simultaneously with Ag/AgCl reference electrode as a liquid gate. We will discuss the advantages of long-nanotube device in detail.

  13. Utilization of photoconductive gain in a-Si:H devices for radiation detection

    International Nuclear Information System (INIS)

    Lee, H.K.; Drewery, J.S.; Hong, W.S.; Jing, T.; Kaplan, S.N.; Perez-Mendez, V.

    1995-05-01

    The photoconductive gain mechanism in a-Si:H was investigated in connection with applications to radiation detection. Various device types such as p-i-n, n-i-n and n-i-p-i-n structures were fabricated and tested. Photoconductive gain was measured in two time scales: one for short pulses of visible light ( 2 . Various gain results are discussed in terms of the device structure, applied bias and dark current

  14. Detecting position using ARKit II: generating position-time graphs in real-time and further information on limitations of ARKit

    Science.gov (United States)

    Dilek, Ufuk; Erol, Mustafa

    2018-05-01

    ARKit is a framework which allows developers to create augmented reality apps for the iPhone and iPad. In a previous study, we had shown that it could be used to detect position in educational physics experiments and emphasized that the ability to provide position data in real-time was one of the prominent features of this newly emerging technology. In this study, we demonstrate an example of how real-time data acquisition can be employed in educational settings, report some of the limitations of ARKit and how we have overcome these limitations. By means of ARKit or a similar framework, ordinary mobile devices can be adapted for use in microcomputer-based lab activities.

  15. Thermal History Devices, Systems For Thermal History Detection, And Methods For Thermal History Detection

    KAUST Repository

    Caraveo Frescas, Jesus Alfonso; Alshareef, Husam N.

    2015-01-01

    Embodiments of the present disclosure include nanowire field-effect transistors, systems for temperature history detection, methods for thermal history detection, a matrix of field effect transistors, and the like.

  16. Thermal History Devices, Systems For Thermal History Detection, And Methods For Thermal History Detection

    KAUST Repository

    Caraveo Frescas, Jesus Alfonso

    2015-05-28

    Embodiments of the present disclosure include nanowire field-effect transistors, systems for temperature history detection, methods for thermal history detection, a matrix of field effect transistors, and the like.

  17. Evaluation of Pressure Generated by Resistors From Different Positive Expiratory Pressure Devices.

    Science.gov (United States)

    Fagevik Olsén, Monika; Carlsson, Maria; Olsén, Erik; Westerdahl, Elisabeth

    2015-10-01

    Breathing exercises with positive expiratory pressure (PEP) are used to improve pulmonary function and airway clearance. Different PEP devices are available, but there have been no studies that describe the pressure generated by different resistors. The purpose of this study was to compare pressures generated from the proprietary resistor components of 4 commercial flow-dependent PEP valves with all other parameters kept constant. Resistors from 4 flow-regulated PEP devices (Pep/Rmt system, Wellspect HealthCare; Pipe P breathing exerciser, Koo Medical Equipment; Mini-PEP, Philips Respironics [including resistors by Rüsch]; and 15-mm endo-adapter, VBM Medizintechnik) were tested randomly by a blinded tester at constant flows of 10 and 18 L/min from an external gas system. All resistors were tested 3 times. Resistors with a similar diameter produced statistically significant different pressures at the same flow. The differences were smaller when the flow was 10 L/min compared with 18 L/min. The differences were also smaller when the diameter of the resistor was increased. The pressures produced by the 4 resistors of the same size were all significantly different when measuring 1.5- and 2.0-mm resistors at a flow of 10 L/min and 2.0-mm resistors at a flow of 18 L/min (P < .001). There were no significant differences between any of the resistors when testing sizes of 4.5 and 5.0 mm at either flow. The Mini-PEP and adapter resistors gave the highest pressures. Pressures generated by the different proprietary resistor components of 4 commercial PEP devices were not comparable, even though the diameter of the resistors is reported to be the same. The pressures generated were significantly different, particularly when using small-diameter resistors at a high flow. Therefore, the resistors may not be interchangeable. This is important information for clinicians, particularly when considering PEP for patients who do not tolerate higher pressures. Copyright © 2015 by

  18. Development of a PMMA Electrochemical Microfluidic Device for Carcinoembryonic Antigen Detection

    Science.gov (United States)

    Van Anh, Nguyen; Van Trung, Hoang; Tien, Bui Quang; Binh, Nguyen Hai; Ha, Cao Hong; Le Huy, Nguyen; Loc, Nguyen Thai; Thu, Vu Thi; Lam, Tran Dai

    2016-05-01

    In this study, a poly(methyl methacrylate) (PMMA) microfluidic device fabricated by an inexpensive CO2 laser etching system was developed for detection of carcino-embryonic antigens (CEA). The device was capable of working in continuous mode and was designed with the aid of numerical simulation. The detection of target CEA was based on immuno-assay via magnetic particles and electrochemical sensing. The as-prepared microfluidic can be used to detect CEA at the relatively low concentration of 150 pg mL-1. The device could be reused many times, since the capture and removal of magnetic particles in the assay could be manipulated by an external magnetic field. The proposed approach appears to be suitable for high-throughput and automated analysis of large biomolecules such as tumor markers and pathogens.

  19. Synthetic mRNA devices that detect endogenous proteins and distinguish mammalian cells.

    Science.gov (United States)

    Kawasaki, Shunsuke; Fujita, Yoshihiko; Nagaike, Takashi; Tomita, Kozo; Saito, Hirohide

    2017-07-07

    Synthetic biology has great potential for future therapeutic applications including autonomous cell programming through the detection of protein signals and the production of desired outputs. Synthetic RNA devices are promising for this purpose. However, the number of available devices is limited due to the difficulty in the detection of endogenous proteins within a cell. Here, we show a strategy to construct synthetic mRNA devices that detect endogenous proteins in living cells, control translation and distinguish cell types. We engineered protein-binding aptamers that have increased stability in the secondary structures of their active conformation. The designed devices can efficiently respond to target proteins including human LIN28A and U1A proteins, while the original aptamers failed to do so. Moreover, mRNA delivery of an LIN28A-responsive device into human induced pluripotent stem cells (hiPSCs) revealed that we can distinguish living hiPSCs and differentiated cells by quantifying endogenous LIN28A protein expression level. Thus, our endogenous protein-driven RNA devices determine live-cell states and program mammalian cells based on intracellular protein information. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Characterization of a direct detection device imaging camera for transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Milazzo, Anna-Clare, E-mail: amilazzo@ncmir.ucsd.edu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Moldovan, Grigore [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Lanman, Jason [Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037 (United States); Jin, Liang; Bouwer, James C. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Klienfelder, Stuart [University of California at Irvine, Irvine, CA 92697 (United States); Peltier, Steven T.; Ellisman, Mark H. [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States); Kirkland, Angus I. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Xuong, Nguyen-Huu [University of California at San Diego, 9500 Gilman Dr., La Jolla, CA 92093 (United States)

    2010-06-15

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  1. Characterization of a direct detection device imaging camera for transmission electron microscopy

    International Nuclear Information System (INIS)

    Milazzo, Anna-Clare; Moldovan, Grigore; Lanman, Jason; Jin, Liang; Bouwer, James C.; Klienfelder, Stuart; Peltier, Steven T.; Ellisman, Mark H.; Kirkland, Angus I.; Xuong, Nguyen-Huu

    2010-01-01

    The complete characterization of a novel direct detection device (DDD) camera for transmission electron microscopy is reported, for the first time at primary electron energies of 120 and 200 keV. Unlike a standard charge coupled device (CCD) camera, this device does not require a scintillator. The DDD transfers signal up to 65 lines/mm providing the basis for a high-performance platform for a new generation of wide field-of-view high-resolution cameras. An image of a thin section of virus particles is presented to illustrate the substantially improved performance of this sensor over current indirectly coupled CCD cameras.

  2. Device for electrochemical detection of metal sample surface resistance and passivation against corrosion in electrolyte

    International Nuclear Information System (INIS)

    Urbancik, L.; Bar, J.; Nemec, J.; Sima, A.

    1986-01-01

    The device consists of a teflon vessel with sealing and an opening below the electrolyte level. Into it is submerged an electrode connected to a dc voltage supply whose other pole is connected to a sample of the metal which is pressed to the opening in the sealing with a flexible strap. The teflon vessel and the sealing are integral. The device is simpler and less costly than those manufactured so far. The operating capability of damaged sealing may be renewed by simple mechanical working. The device may be used for detecting the resistance and passivation of steam generator metal tubes. (J.B.). 1 fig

  3. Asymmetric devices based on carbon nanotubes for terahertz-range radiation detection

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, G. E., E-mail: gefedorov@mail.ru; Stepanova, T. S.; Gazaliev, A. Sh.; Gaiduchenko, I. A.; Kaurova, N. S.; Voronov, B. M.; Goltzman, G. N. [Moscow State Pedagogical University (Russian Federation)

    2016-12-15

    Various asymmetric detecting devices based on carbon nanotubes (CNTs) are studied. The asymmetry is understood as inhomogeneous properties along the conducting channel. In the first type of devices, an inhomogeneous morphology of the CNT grid is used. In the second type of devices, metals with highly varying work functions are used as the contact material. The relation between the sensitivity and detector configuration is analyzed. Based on the data obtained, approaches to the development of an efficient detector of terahertz radiation, based on carbon nanotubes are proposed.

  4. Can validated wrist devices with position sensors replace arm devices for self-home blood pressure monitoring? A randomized crossover trial using ambulatory monitoring as reference.

    Science.gov (United States)

    Stergiou, George S; Christodoulakis, George R; Nasothimiou, Efthimia G; Giovas, Periklis P; Kalogeropoulos, Petros G

    2008-07-01

    Electronic devices that measure blood pressure (BP) at the arm level are regarded as more accurate than wrist devices and are preferred for home BP (HBP) monitoring. Recently, wrist devices with position sensors have been successfully validated using established protocols. This study assessed whether HBP values measured with validated wrist devices are sufficiently reliable to be used for making patient-related decisions in clinical practice. This randomized crossover study compared HBP measurements taken using validated wrist devices (wrist-HBP, Omron R7 with position sensor) with those taken using arm devices (arm-HBP, Omron 705IT), and also with measurements of awake ambulatory BP (ABP, SpaceLabs), in 79 subjects (36 men and 43 women) with hypertension. The mean age of the study population was 56.7 +/- 11.8 years, and 33 of the subjects were not under treatment for hypertension. The average arm-HBP was higher than the average wrist-HBP (mean difference, systolic 5.2 +/- 9.1 mm Hg, P or =10 mm Hg difference between systolic wrist-HBP and arm-HBP and twelve subjects (15%) showed similar levels of disparity in diastolic HBP readings. Strong correlations were found between arm-HBP and wrist-HBP (r 0.74/0.74, systolic/diastolic, P arm-HBP (r 0.73/0.76) than with wrist-HBP (0.55/0.69). The wrist-arm HBP difference was associated with systolic ABP (r 0.34) and pulse pressure (r 0.29), but not with diastolic ABP, sex, age, arm circumference, and wrist circumference. There might be important differences in HBP measured using validated wrist devices with position sensor vs. arm devices, and these could impact decisions relating to the patient in clinical practice. Measurements taken using arm devices are more closely related to ABP values than those recorded by wrist devices. More research is needed before recommending the widespread use of wrist monitors in clinical practice. American Journal of Hypertension doi:10.1038/ajh.2008.176American Journal of Hypertension (2008

  5. Percutaneous left atrial appendage occlusion: Effect of device positioning on outcome.

    Science.gov (United States)

    Wolfrum, Mathias; Attinger-Toller, Adrian; Shakir, Samera; Gloekler, Steffen; Seifert, Burkhardt; Moschovitis, Aris; Khattab, Ahmed; Maisano, Francesco; Meier, Bernhard; Nietlispach, Fabian

    2016-10-01

    The study in patients with percutaneous left atrial appendage (LAA) occlusion investigates clinical outcomes according to the position of the Amplatzer Cardiac Plug (ACP) disc. The ACP consists of a disc and an anchoring lobe. The disc is meant to cover the ostium of the LAA, but frequently retracts partially or completely into the neck of the LAA. It is not known whether a retracted disc affects outcome. Outcomes of 169 consecutive patients (age 73.1 ± 10.4 years; 76% male) with successful LAA closure were analyzed according to the position of the ACP disc: group A had complete coverage of the LAA ostium; in group B the disc prolapsed partially or completely into the LAA-neck. Transesophageal echocardiography was performed 1-6 months after ACP implantation. The safety endpoint was the composite of clinically significant pericardial effusion, device embolization, procedure-related stroke/transient ischemic attack (TIA), major bleeding, or device thrombus. The efficacy endpoint was the composite of death, neurological events (ischemic and hemorrhagic stroke, TIA), or systemic embolism during follow-up. Group A comprised 76 patients (age 73.0 ± 9.9 years; 74% male) and group B 93 patients (age 73.3 ± 10.9 years; 79% male). Mean CHA 2 DS 2 -Vasc score and HASBLED score were 4.2 ± 1.7 (group A 4.3 ± 1.6; group B 4.2 ± 1.8) and 2.9 ± 1.1 (group A 2.9 ± 1.0; group B 3.0 ± 1.2), respectively. Mean follow-up of the study population was 13.0 ± 10.4 months. Overall, the composite safety and efficacy endpoints occurred in 20 (12%) and 6 patients (4%), respectively. There was no significant difference between groups A and B in the occurrence of the safety endpoint (13% vs. 11%, P = 0.64), or the efficacy endpoint (4% vs. 3%, P = 1.0). No evidence for a difference in the occurrence of the safety and efficacy endpoint was found between patients with complete vs. incomplete ACP disc coverage of the LAA ostium. The risk of

  6. Device for detecting the water leak within a feedwater nozzle in water cooled reactors

    International Nuclear Information System (INIS)

    Hattori, Tsunekazu.

    1984-01-01

    Purpose: To enable exact recognition and detection for the state of water leak. Constitution: The detection device comprises a thermocouple disposed to the outer surface of a feedwater nozzle, a distortion meter for detecting the change in the outer diameter of a nozzle and an acoustic emission generator disposed to the inside of the nozzle for generating a signal upon temperature change. These sensors previously monitor the states during normal operation, and thus detect the change in each of the states upon occurrence of water leakage to issue an alarm. (Kamimura, M.)

  7. Device for detecting imminent failure of high-dielectric stress capacitors. [Patent application

    Science.gov (United States)

    McDuff, G.G.

    1980-11-05

    A device is described for detecting imminent failure of a high-dielectric stress capacitor utilizing circuitry for detecting pulse width variations and pulse magnitude variations. Inexpensive microprocessor circuitry is utilized to make numerical calculations of digital data supplied by detection circuitry for comparison of pulse width data and magnitude data to determine if preselected ranges have been exceeded, thereby indicating imminent failure of a capacitor. Detection circuitry may be incorporated in transmission lines, pulse power circuitry, including laser pulse circuitry or any circuitry where capacitors or capacitor banks are utilized.

  8. Prospective study of device-related complications in intensive care unit detected by virtual autopsy.

    Science.gov (United States)

    Wichmann, D; Heinemann, A; Zähler, S; Vogel, H; Höpker, W; Püschel, K; Kluge, S

    2018-06-01

    There has been increasing use of invasive techniques, such as extracorporeal organ support, in intensive care units (ICU), and declining autopsy rates. Thus, new measures are needed to maintain high-quality standards. We investigated the potential of computed tomography (CT)-based virtual autopsy to substitute for medical autopsy in this setting. We investigated the potential of virtual autopsy by post-mortem CT to identify complications associated with medical devices in a prospective study of patients who had died in the ICU. Clinical records were reviewed to determine the number and types of medical devices used, and findings from medical and virtual autopsies, related and unrelated to the medical devices, were compared. Medical and virtual autopsies could be performed in 61 patients (Group M/V), and virtual autopsy only in 101 patients (Group V). In Group M/V, 41 device-related complications and 30 device malpositions were identified, but only with a low inter-method agreement. Major findings unrelated to a device were identified in about 25% of patients with a high level of agreement between methods. In Group V, 8 device complications and 36 device malpositions were identified. Device-related complications are frequent in ICU patients. Virtual and medical autopsies showed clear differences in the detection of complications and device malpositions. Both methods should supplement each other rather than one alone for quality control of medical devices in the ICU. Further studies should focus on the identification of special patient populations in which virtual autopsy might be of particular benefit. NCT01541982. Copyright © 2018 British Journal of Anaesthesia. Published by Elsevier Ltd. All rights reserved.

  9. HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs

    Directory of Open Access Journals (Sweden)

    Thibaut Raharijaona

    2015-07-01

    Full Text Available An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

  10. HyperCube: A Small Lensless Position Sensing Device for the Tracking of Flickering Infrared LEDs.

    Science.gov (United States)

    Raharijaona, Thibaut; Mignon, Paul; Juston, Raphaël; Kerhuel, Lubin; Viollet, Stéphane

    2015-07-08

    An innovative insect-based visual sensor is designed to perform active marker tracking. Without any optics and a field-of-view of about 60°, a novel miniature visual sensor is able to locate flickering markers (LEDs) with an accuracy much greater than the one dictated by the pixel pitch. With a size of only 1 cm3 and a mass of only 0.33 g, the lensless sensor, called HyperCube, is dedicated to 3D motion tracking and fits perfectly with the drastic constraints imposed by micro-aerial vehicles. Only three photosensors are placed on each side of the cubic configuration of the sensing device, making this sensor very inexpensive and light. HyperCube provides the azimuth and elevation of infrared LEDs flickering at a high frequency (>1 kHz) with a precision of 0.5°. The minimalistic design in terms of small size, low mass and low power consumption of this visual sensor makes it suitable for many applications in the field of the cooperative flight of unmanned aerial vehicles and, more generally, robotic applications requiring active beacons. Experimental results show that HyperCube provides useful angular measurements that can be used to estimate the relative position between the sensor and the flickering infrared markers.

  11. Rapid Detection of Salmonella enterica in Food Using a Compact Disc-Shaped Device

    Directory of Open Access Journals (Sweden)

    Shunsuke Furutani

    2016-01-01

    Full Text Available Rapid detection of food-borne pathogens is essential to public health and the food industry. Although the conventional culture method is highly sensitive, it takes at least a few days to detect food-borne pathogens. Even though polymerase chain reaction (PCR can detect food-borne pathogens in a few hours, it is more expensive and unsatisfactorily sensitive relative to the culture method. We have developed a method to rapidly detect Salmonella enterica by using a compact disc (CD-shaped device that can reduce reagent consumption in conventional PCR. The detection method, which combines culture and PCR, is more rapid than the conventional culture method and is more sensitive and cheaper than PCR. In this study, we also examined a sample preparation method that involved collecting bacterial cells from food. The bacteria collected from chicken meat spiked with S. enterica were mixed with PCR reagents, and PCR was performed on the device. At a low concentration of S. enterica, the collected S. enterica was cultured before PCR for sensitive detection. After cultivation for 4 h, S. enterica at 1.7 × 104 colony-forming units (CFUs·g−1 was detected within 8 h, which included the time needed for sample preparation and detection. Furthermore, the detection of 30 CFUs·g−1 of S. enterica was possible within 12 h including 8 h for cultivation.

  12. Implanted cardiac devices are reliably detected by commercially available metal detectors

    DEFF Research Database (Denmark)

    Holm, Katja Fiedler; Hjortshøj, Søren Pihlkjær; Pehrson, Steen

    2013-01-01

    Explosions of Cardiovascular Implantable Electronic Devices (CIEDs) (pacemakers, defibrillators, and loop recorders) are a well-recognized problem during cremation, due to lithium-iodine batteries. In addition, burial of the deceased with a CIED can present a potential risk for environmental...... contamination. Therefore, detection of CIEDs in the deceased would be of value. This study evaluated a commercially available metal detector for detecting CIEDs....

  13. An Instantaneous Low-Cost Point-of-Care Anemia Detection Device

    Directory of Open Access Journals (Sweden)

    Jaime Punter-Villagrasa

    2015-02-01

    Full Text Available We present a small, compact and portable device for point-of-care instantaneous early detection of anemia. The method used is based on direct hematocrit measurement from whole blood samples by means of impedance analysis. This device consists of a custom electronic instrumentation and a plug-and-play disposable sensor. The designed electronics rely on straightforward standards for low power consumption, resulting in a robust and low consumption device making it completely mobile with a long battery life. Another approach could be powering the system based on other solutions like indoor solar cells, or applying energy-harvesting solutions in order to remove the batteries. The sensing system is based on a disposable low-cost label-free three gold electrode commercial sensor for 50 µL blood samples. The device capability for anemia detection has been validated through 24 blood samples, obtained from four hospitalized patients at Hospital Clínic. As a result, the response, effectiveness and robustness of the portable point-of-care device to detect anemia has been proved with an accuracy error of 2.83% and a mean coefficient of variation of 2.57% without any particular case above 5%.

  14. Set-membership fault detection under noisy environment with application to the detection of abnormal aircraft control surface positions

    Science.gov (United States)

    El Houda Thabet, Rihab; Combastel, Christophe; Raïssi, Tarek; Zolghadri, Ali

    2015-09-01

    The paper develops a set membership detection methodology which is applied to the detection of abnormal positions of aircraft control surfaces. Robust and early detection of such abnormal positions is an important issue for early system reconfiguration and overall optimisation of aircraft design. In order to improve fault sensitivity while ensuring a high level of robustness, the method combines a data-driven characterisation of noise and a model-driven approach based on interval prediction. The efficiency of the proposed methodology is illustrated through simulation results obtained based on data recorded in several flight scenarios of a highly representative aircraft benchmark.

  15. Novel protease-based diagnostic devices for detection of wound infection

    NARCIS (Netherlands)

    Heinzle, A.; Papen-Botterhuis, N.E.; Schiffer, D.; Schneider, K.P.; Binder, B.; Schintler, M.; Haaksman, I.K.; Lenting, H.B.; Gübitz, G.M.; Sigl, E.

    2013-01-01

    A gelatinase-based device for fast detection of wound infection was developed. Collective gelatinolytic activity in infected wounds was 23 times higher (p ≤ 0.001) than in noninfected wounds and blisters according to the clinical and microbiological description of the wounds. Enzyme activities of

  16. Manufacturing and testing flexible microfluidic devices with optical and electrical detection mechanisms

    NARCIS (Netherlands)

    Ivan, M.G.; Vivet, F.; Meinders, E.R.

    2010-01-01

    Flexible microfluidic devices made of poly(dimethylsiloxane) (PDMS) were manufactured by soft lithography, and tested in detection of ionic species using optical absorption spectroscopy and electrical measurements. PDMS was chosen due to its flexibility and ease of surface modification by exposure

  17. 78 FR 18988 - Establishing the Performance Characteristics of In Vitro Diagnostic Devices for the Detection of...

    Science.gov (United States)

    2013-03-28

    ... either electronic or written comments on this guidance at any time. General comments on Agency guidance... INFORMATION section for information on electronic access to the guidance. Submit electronic comments on the... diagnostic devices for the detection of antibodies to B. burgdorferi in human serum, plasma, and blood. These...

  18. Automatic Defect Detection of Fasteners on the Catenary Support Device Using Deep Convolutional Neural Network

    NARCIS (Netherlands)

    Chen, Junwen; Liu, Zhigang; Wang, H.; Nunez Vicencio, Alfredo; Han, Zhiwei

    2018-01-01

    The excitation and vibration triggered by the long-term operation of railway vehicles inevitably result in defective states of catenary support devices. With the massive construction of high-speed electrified railways, automatic defect detection of diverse and plentiful fasteners on the catenary

  19. Development of a Hard X-ray Beam Position Monitor for Insertion Device Beams at the APS

    Science.gov (United States)

    Decker, Glenn; Rosenbaum, Gerd; Singh, Om

    2006-11-01

    Long-term pointing stability requirements at the Advanced Photon Source (APS) are very stringent, at the level of 500 nanoradians peak-to-peak or better over a one-week time frame. Conventional rf beam position monitors (BPMs) close to the insertion device source points are incapable of assuring this level of stability, owing to mechanical, thermal, and electronic stability limitations. Insertion device gap-dependent systematic errors associated with the present ultraviolet photon beam position monitors similarly limit their ability to control long-term pointing stability. We report on the development of a new BPM design sensitive only to hard x-rays. Early experimental results will be presented.

  20. 3D Printed "Earable" Smart Devices for Real-Time Detection of Core Body Temperature.

    Science.gov (United States)

    Ota, Hiroki; Chao, Minghan; Gao, Yuji; Wu, Eric; Tai, Li-Chia; Chen, Kevin; Matsuoka, Yasutomo; Iwai, Kosuke; Fahad, Hossain M; Gao, Wei; Nyein, Hnin Yin Yin; Lin, Liwei; Javey, Ali

    2017-07-28

    Real-time detection of basic physiological parameters such as blood pressure and heart rate is an important target in wearable smart devices for healthcare. Among these, the core body temperature is one of the most important basic medical indicators of fever, insomnia, fatigue, metabolic functionality, and depression. However, traditional wearable temperature sensors are based upon the measurement of skin temperature, which can vary dramatically from the true core body temperature. Here, we demonstrate a three-dimensional (3D) printed wearable "earable" smart device that is designed to be worn on the ear to track core body temperature from the tympanic membrane (i.e., ear drum) based on an infrared sensor. The device is fully integrated with data processing circuits and a wireless module for standalone functionality. Using this smart earable device, we demonstrate that the core body temperature can be accurately monitored regardless of the environment and activity of the user. In addition, a microphone and actuator are also integrated so that the device can also function as a bone conduction hearing aid. Using 3D printing as the fabrication method enables the device to be customized for the wearer for more personalized healthcare. This smart device provides an important advance in realizing personalized health care by enabling real-time monitoring of one of the most important medical parameters, core body temperature, employed in preliminary medical screening tests.

  1. Microfluidic devices for sample preparation and rapid detection of foodborne pathogens.

    Science.gov (United States)

    Kant, Krishna; Shahbazi, Mohammad-Ali; Dave, Vivek Priy; Ngo, Tien Anh; Chidambara, Vinayaka Aaydha; Than, Linh Quyen; Bang, Dang Duong; Wolff, Anders

    2018-03-10

    Rapid detection of foodborne pathogens at an early stage is imperative for preventing the outbreak of foodborne diseases, known as serious threats to human health. Conventional bacterial culturing methods for foodborne pathogen detection are time consuming, laborious, and with poor pathogen diagnosis competences. This has prompted researchers to call the current status of detection approaches into question and leverage new technologies for superior pathogen sensing outcomes. Novel strategies mainly rely on incorporating all the steps from sample preparation to detection in miniaturized devices for online monitoring of pathogens with high accuracy and sensitivity in a time-saving and cost effective manner. Lab on chip is a blooming area in diagnosis, which exploits different mechanical and biological techniques to detect very low concentrations of pathogens in food samples. This is achieved through streamlining the sample handling and concentrating procedures, which will subsequently reduce human errors and enhance the accuracy of the sensing methods. Integration of sample preparation techniques into these devices can effectively minimize the impact of complex food matrix on pathogen diagnosis and improve the limit of detections. Integration of pathogen capturing bio-receptors on microfluidic devices is a crucial step, which can facilitate recognition abilities in harsh chemical and physical conditions, offering a great commercial benefit to the food-manufacturing sector. This article reviews recent advances in current state-of-the-art of sample preparation and concentration from food matrices with focus on bacterial capturing methods and sensing technologies, along with their advantages and limitations when integrated into microfluidic devices for online rapid detection of pathogens in foods and food production line. Copyright © 2018. Published by Elsevier Inc.

  2. Automatic Detection and Reproduction of Natural Head Position in Stereo-Photogrammetry.

    Science.gov (United States)

    Hsung, Tai-Chiu; Lo, John; Li, Tik-Shun; Cheung, Lim-Kwong

    2015-01-01

    The aim of this study was to develop an automatic orientation calibration and reproduction method for recording the natural head position (NHP) in stereo-photogrammetry (SP). A board was used as the physical reference carrier for true verticals and NHP alignment mirror orientation. Orientation axes were detected and saved from the digital mesh model of the board. They were used for correcting the pitch, roll and yaw angles of the subsequent captures of patients' facial surfaces, which were obtained without any markings or sensors attached onto the patient. We tested the proposed method on two commercial active (3dMD) and passive (DI3D) SP devices. The reliability of the pitch, roll and yaw for the board placement were within ±0.039904°, ±0.081623°, and ±0.062320°; where standard deviations were 0.020234°, 0.045645° and 0.027211° respectively. Orientation-calibrated stereo-photogrammetry is the most accurate method (angulation deviation within ±0.1°) reported for complete NHP recording with insignificant clinical error.

  3. Statistical Study on Respiratory Stability Through RPM Signal Analysis according to Patient Position Under Radiation Therapy and Device

    International Nuclear Information System (INIS)

    Park, Myung Hwan; Seo, Jeong Min; Choi, Byeong Gi; Shin, Eun Hyeok; Song, Gi Won

    2011-01-01

    This study statistically analyzed the difference of the stability of maintaining a respiratory period shown according to position and use of a device to search the tendency and usefulness of a device. The study obtained respiratory signals which maintained a respiratory period for 20 minutes each supine and prone position for 11 subjects. The study obtained respiratory signals in a state of using a belly board for 7 patients in a bad condition of a respiratory period in a prone position to analyze a change in respiration and the stability before and after the use of a device. The supine part showed 54.5%, better than the prone part of 36.4% in a case that the stability for maintaining a respiratory period was in a good condition as a fixed respiratory period was well maintained according to the position. 6 patients (85%) showed a maintenance pattern of a respiratory period significantly different before the use and 4 patients showed a significantly good change in the stability for maintaining a respiratory period as a result that belly boards were used for 7 patients that the maintenance of a respiratory period was not in a good condition on a prone position. It seemed that this study could contribute to the maintenance of respiratory period and of respiratory stability as the optimal position for maintenance of respiration and the use of a device such as a belly board were decided through statistic analysis of respiratory signals and its application even if patient position and use of device were decided by the beam arrangement a treatment part of a patient, location of a target, and an expected plan.

  4. Recovery of viral RNA and infectious foot-and-mouth disease virus from positive lateral-flow devices.

    Directory of Open Access Journals (Sweden)

    Veronica L Fowler

    Full Text Available Foot-and-mouth disease Virus (FMDV is an economically important, highly contagious picornavirus that affects both wild and domesticated cloven hooved animals. In developing countries, the effective laboratory diagnosis of foot-and-mouth disease (FMD is often hindered by inadequate sample preservation due to difficulties in the transportation and storage of clinical material. These factors can compromise the ability to detect and characterise FMD virus in countries where the disease is endemic. Furthermore, the high cost of sending infectious virus material and the biosecurity risk it presents emphasises the need for a thermo-stable, non-infectious mode of transporting diagnostic samples. This paper investigates the potential of using FMDV lateral-flow devices (LFDs for dry transportation of clinical samples for subsequent nucleic acid amplification, sequencing and recovery of infectious virus by electroporation. FMDV positive samples (epithelial suspensions and cell culture isolates representing four FMDV serotypes were applied to antigen LFDs: after which it was possible to recover viral RNA that could be detected using real-time RT-PCR. Using this nucleic acid, it was also possible to recover VP1 sequences and also successfully utilise protocols for amplification of complete FMD virus genomes. It was not possible to recover infectious FMDV directly from the LFDs, however following electroporation into BHK-21 cells and subsequent cell passage, infectious virus could be recovered. Therefore, these results support the use of the antigen LFD for the dry, non-hazardous transportation of samples from FMD endemic countries to international reference laboratories.

  5. Development of a sub-nanometer positioning device: combining a new linear motor with linear motion ball guide ways

    International Nuclear Information System (INIS)

    Otsuka, J; Tanaka, T; Masuda, I

    2010-01-01

    A new type of linear motor described in this note has some advantages compared with conventional motors. The attractive magnetic force between the stator (permanent magnets) and mover (armature) is diminished almost to zero. The efficiency is better because the magnetic flux leakage is very small, the size of motor is smaller and detent (force ripple) is smaller than for conventional motors. Therefore, we think that this motor is greatly suitable for ultra-precision positioning as an actuator. An ultra-precision positioning device using this motor and linear motion ball guide ways is newly developed by making the device very rigid and using a suitable control method. Moreover, the positioning performance is evaluated by a positioning resolution, and deviation and dispersion errors. As a result of repeated step response tests, the positioning resolution is 0.3 nm, with the deviation error and dispersion error (3σ) being sub-nanometer. Consequently, the positioning device achieves sub-nanometer positioning. (technical design note)

  6. Manufacturing and testing flexible microfluidic devices with optical and electrical detection mechanisms

    Science.gov (United States)

    Ivan, Marius G.; Vivet, Frédéric; Meinders, Erwin R.

    2010-06-01

    Flexible microfluidic devices made of poly(dimethylsiloxane) (PDMS) were manufactured by soft lithography, and tested in detection of ionic species using optical absorption spectroscopy and electrical measurements. PDMS was chosen due to its flexibility and ease of surface modification by exposure to plasma and UV treatment, its transparency in UV-Vis regions of the light spectrum, and biocompatibility. The dual-detection mechanism allows the user more freedom in choosing the detection tool, and a functional device was successfully tested. Optical lithography was employed for manufacturing templates, which were subsequently used for imprinting liquid PDMS by thermal curing. Gold electrodes having various widths and distances among them were patterned with optical lithography on the top part which sealed the microchannels, and the devices were employed for detection of ionic species in aqueous salt solutions as well as micro-electrolysis cells. Due to the transparency of PDMS in UV-Vis the microfluidics were also used as photoreactors, and the in-situ formed charged species were monitored by applying a voltage between electrodes. Upon addition of a colorimetric pH sensor, acid was detected with absorption spectroscopy.

  7. Carbon nanotube-based sensing devices for human Arginase-1 detection

    Directory of Open Access Journals (Sweden)

    S. Baldo

    2016-03-01

    Full Text Available A new carbon nanotube-based device for detection of Arginase 1 (ARG-1 was produced. Multi-walled carbon nanotubes (MWCNTs were deposited between electrodes by dielectrophoresis (DEP in an accurate and reproducible way. This deposition method has the advantages of low cost and room temperature conditions and therefore, can be used on different kinds of substrates (silicon, glass, plastics allowing for large scale production of chemical or biological sensors. Scanning electrical microscope (SEM and electrical characterization have been performed on the biosensors before and after protein exposure. The devices were tested in the present work for the detection of ARG-1. They show high sensitivity and reproducibility, and can be easily and suitably modified to detect other proteins. Keywords: Carbon nanotube, Biosensor, Arginase, Dielectrophoresis, Biomarker, Protein

  8. Radiation transmission type pipe wall thinning detection device and measuring instruments utilizing ionizing radiation

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2009-01-01

    We developed the device to detect thinning of pipe thorough heat insulation in Power Plant, etc, even while the plant is under operation. It is necessary to test many parts of many pipes for pipe wall thinning management, but it is difficult within a limited time of the routine test. This device consists of detector and radiation source, which can detect the pipe (less than 500 mm in external diameter, less than 50 mm in thickness) with 1.6%-reproducibility (in a few-minutes measurement), based on the attenuation rate. Operation is easy and effective without removing the heat insulation. We will expand this thinning detection system, and contribute the safety of the Plant. (author)

  9. Simple device for the positioning and fixation of the head in radiotherapy of cerebral tumors in frontal and lateral position

    International Nuclear Information System (INIS)

    Niewald, M.; Uhlmann, U.; Schnabel, K.; Lehmann, W.; Leetz, H.K.

    1988-01-01

    In radiotherapy of cerebral tumors in the occipital, central and parietal area it can be favourable to fix the patient's head in frontal or lateral position. It is true that this problem can be solved by manufacturing individual face masks of PVC with the vacuum deep-drawing method, but this method is very time- and cost-consuming. The present study suggests a simplified method using the thermoplastic polyester 'Orifit'. Such a mask provides a good immobilization and can be manufactured in 10 to 15 minutes without bothering much the patient. Simulation and computed tomography are not substantially affected by the material. (orig.) [de

  10. A real-world comparison of apnea-hypopnea indices of positive airway pressure device and polysomnography.

    Directory of Open Access Journals (Sweden)

    Ritwick Agrawal

    Full Text Available The apnea hypopnea index (AHI reported by positive airway pressure (PAP device is widely used in clinical practice, yet its correlation with standardized AHI obtained during the sleep study is not established. The current study was conducted to investigate the correlation between AHI estimated by the PAP device and reported on the smart card with the AHI found during the PAP polysomnography (PSG in the "real world" setting at an academic sleep center. We retrospectively reviewed the medical records of 280 patients who underwent a PAP titration PSG at Drexel sleep center, and were later prescribed a PAP device. The AHI was categorized in clinically relevant subgroups (as AHI ≤5 and AHI >5. The AHI at the final pressure on the PSG and the average AHI from the prescribed PAP device were compared. The results showed that in the majority (77.3% of patients (126 of 163, the AHI from both PAP device and PSG correlated well and were in the same category (AHI ≤5 and AHI >5 respectively. The majority of patients (80.7% with PSG AHI of 5, 61.5% patients reported good control, with AHI <5 on PAP device AHI. We conclude that in a majority of patients who were optimally titrated in the sleep laboratory, the PAP device continued to show optimal control at home.

  11. Heart Rate Detection Using Microsoft Kinect: Validation and Comparison to Wearable Devices.

    Science.gov (United States)

    Gambi, Ennio; Agostinelli, Angela; Belli, Alberto; Burattini, Laura; Cippitelli, Enea; Fioretti, Sandro; Pierleoni, Paola; Ricciuti, Manola; Sbrollini, Agnese; Spinsante, Susanna

    2017-08-02

    Contactless detection is one of the new frontiers of technological innovation in the field of healthcare, enabling unobtrusive measurements of biomedical parameters. Compared to conventional methods for Heart Rate (HR) detection that employ expensive and/or uncomfortable devices, such as the Electrocardiograph (ECG) or pulse oximeter, contactless HR detection offers fast and continuous monitoring of heart activities and provides support for clinical analysis without the need for the user to wear a device. This paper presents a validation study for a contactless HR estimation method exploiting RGB (Red, Green, Blue) data from a Microsoft Kinect v2 device. This method, based on Eulerian Video Magnification (EVM), Photoplethysmography (PPG) and Videoplethysmography (VPG), can achieve performance comparable to classical approaches exploiting wearable systems, under specific test conditions. The output given by a Holter, which represents the gold-standard device used in the test for ECG extraction, is considered as the ground-truth, while a comparison with a commercial smartwatch is also included. The validation process is conducted with two modalities that differ for the availability of a priori knowledge about the subjects' normal HR. The two test modalities provide different results. In particular, the HR estimation differs from the ground-truth by 2% when the knowledge about the subject's lifestyle and his/her HR is considered and by 3.4% if no information about the person is taken into account.

  12. Development of acoustic partial discharge detection device; Bubun hoden kenshutsusochi wo riyo shita onkyo niyoru hendensetsubi no zetsuen rekka shindan gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Suenaga, Kiyoka [Kawasaki Steel Corp., Tokyo (Japan)

    1999-06-15

    This paper introduces an acoustic partial discharge detection device, consisting of a microphone, amplifier circuit for analog signals, A/D (Digital Signal Processor). This device has the following unique characteristics: (1) Judging whether or not there is partial discharge by analyzing supersonic signals. (2) High sensitivity for detecting discharge ; 100 pC from a distance of 1.2 m. (3)Locating the position of discharge occurrence by using a sharpe directional parabola microphone and laser beam pointer. The detector was used in the steel works to detect partial discharge on high-voltage electrical apparatus, where faults due to partial discharge were found in the potential transformer and current transformer. The effectiveness of the device was thus verified. (author)

  13. A custom-made guide-wire positioning device for Hip Surface Replacement Arthroplasty: description and first results

    Directory of Open Access Journals (Sweden)

    Clijmans Tim

    2010-07-01

    Full Text Available Abstract Background Hip surface replacement arthroplasty (SRA can be an alternative for total hip arthroplasty. The short and long-term outcome of hip surface replacement arthroplasty mainly relies on the optimal size and position of the femoral component. This can be defined before surgery with pre-operative templating. Reproducing the optimal, templated femoral implant position during surgery relies on guide wire positioning devices in combination with visual inspection and experience of the surgeon. Another method of transferring the templated position into surgery is by navigation or Computer Assisted Surgery (CAS. Though CAS is documented to increase accurate placement particularly in case of normal hip anatomy, it requires bulky equipment that is not readily available in each centre. Methods A custom made neck jig device is presented as well as the results of a pilot study. The device is produced based on data pre-operatively acquired with CT-scan. The position of the guide wire is chosen as the anatomical axis of the femoral neck. Adjustments to the design of the jig are made based on the orthopedic surgeon's recommendations for the drill direction. The SRA jig is designed as a slightly more-than-hemispherical cage to fit the anterior part of the femoral head. The cage is connected to an anterior neck support. Four knifes are attached on the central arch of the cage. A drill guide cylinder is attached to the cage, thus allowing guide wire positioning as pre-operatively planned. Custom made devices were tested in 5 patients scheduled for total hip arthroplasty. The orthopedic surgeons reported the practical aspects of the use of the neck-jig device. The retrieved femoral heads were analyzed to assess the achieved drill place in mm deviation from the predefined location and orientation compared to the predefined orientation. Results The orthopedic surgeons rated the passive stability, full contact with neck portion of the jig and knife

  14. Experimental model of the device for detection of nuclear cycle materials by photoneutron technology

    International Nuclear Information System (INIS)

    Bakalyarov, A.M.; Karetnikov, M.D.; Kozlov, K.N.; Lebedev, V.I.; Meleshko, E.A.; Obinyakov, B.A.; Ostashev, I.E.; Tupikin, N.A.; Yakovlev, G.V.

    2007-01-01

    The inherent complexity of sea container control makes them potentially dangerous for smuggling nuclear materials. The experts believe that only active technologies based on recording the products of induced radiation from sensitive materials might solve the problem. The paper reports on the experimental model of the device on the basis of the electron LINAC U-28 for detection of nuclear materials by photonuclear technology. The preliminary numerical optimization of output units (converter, filter, collimator) for shaping the bremsstrahlung was carried out. The setup of experimental device and initial results of recording the prompt and delayed fission products are discussed

  15. Medical devices; immunology and microbiology devices; classification of nucleic acid-based devices for the detection of Mycobacterium tuberculosis complex and the genetic mutations associated with antibiotic resistance. Final order.

    Science.gov (United States)

    2014-10-22

    The Food and Drug Administration (FDA) is classifying nucleic acid-based in vitro diagnostic devices for the detection of Mycobacterium tuberculosis complex (MTB-complex) and the genetic mutations associated with MTB-complex antibiotic resistance in respiratory specimens devices into class II (special controls). The Agency is classifying the device into class II (special controls) because special controls, in addition to general controls, will provide a reasonable assurance of safety and effectiveness of the device.

  16. A Microfluidic Love-Wave Biosensing Device for PSA Detection Based on an Aptamer Beacon Probe.

    Science.gov (United States)

    Zhang, Feng; Li, Shuangming; Cao, Kang; Wang, Pengjuan; Su, Yan; Zhu, Xinhua; Wan, Ying

    2015-06-11

    A label-free and selective aptamer beacon-based Love-wave biosensing device was developed for prostate specific antigen (PSA) detection. The device consists of the following parts: LiTaO3 substrate with SiO2 film as wave guide layer, two set of inter-digital transducers (IDT), gold film for immobilization of the biorecongniton layer and a polydimethylsiloxane (PDMS) microfluidic channels. DNA aptamer, or "artificial antibody", was used as the specific biorecognition probe for PSA capture. Some nucleotides were added to the 3'-end of the aptamer to form a duplex with the 3'-end, turning the aptamer into an aptamer-beacon. Taking advantage of the selective target-induced assembly changes arising from the "aptamer beacon", highly selective and specific detection of PSA was achieved. Furthermore, PDMS microfluidic channels were designed and fabricated to realize automated quantitative sample injection. After optimization of the experimental conditions, the established device showed good performance for PSA detection between 10 ng/mL to 1 μg/mL, with a detection limit of 10 ng/mL. The proposed sensor might be a promising alternative for point of care diagnostics.

  17. Electrical Impedance Spectroscopy for Detection of Cells in Suspensions Using Microfluidic Device with Integrated Microneedles

    Directory of Open Access Journals (Sweden)

    Muhammad Asraf Mansor

    2017-02-01

    Full Text Available In this study, we introduce novel method of flow cytometry for cell detection based on impedance measurements. The state of the art method for impedance flow cytometry detection utilizes an embedded electrode in the microfluidic to perform measurement of electrical impedance of the presence of cells at the sensing area. Nonetheless, this method requires an expensive and complicated electrode fabrication process. Furthermore, reuse of the fabricated electrode also requires an intensive and tedious cleaning process. Due to that, we present a microfluidic device with integrated microneedles. The two microneedles are placed at the half height of the microchannel for cell detection and electrical measurement. A commercially-available Tungsten needle was utilized for the microneedles. The microneedles are easily removed from the disposable PDMS (Polydimethylsiloxane microchannel and can be reused with a simple cleaning process, such as washing by ultrasonic cleaning. Although this device was low cost, it preserves the core functionality of the sensor, which is capable of detecting passing cells at the sensing area. Therefore, this device is suitable for low-cost medical and food safety screening and testing process in developing countries.

  18. Detection of chaotic dynamics in human gait signals from mobile devices

    Science.gov (United States)

    DelMarco, Stephen; Deng, Yunbin

    2017-05-01

    The ubiquity of mobile devices offers the opportunity to exploit device-generated signal data for biometric identification, health monitoring, and activity recognition. In particular, mobile devices contain an Inertial Measurement Unit (IMU) that produces acceleration and rotational rate information from the IMU accelerometers and gyros. These signals reflect motion properties of the human carrier. It is well-known that the complexity of bio-dynamical systems gives rise to chaotic dynamics. Knowledge of chaotic properties of these systems has shown utility, for example, in detecting abnormal medical conditions and neurological disorders. Chaotic dynamics has been found, in the lab, in bio-dynamical systems data such as electrocardiogram (heart), electroencephalogram (brain), and gait data. In this paper, we investigate the following question: can we detect chaotic dynamics in human gait as measured by IMU acceleration and gyro data from mobile phones? To detect chaotic dynamics, we perform recurrence analysis on real gyro and accelerometer signal data obtained from mobile devices. We apply the delay coordinate embedding approach from Takens' theorem to reconstruct the phase space trajectory of the multi-dimensional gait dynamical system. We use mutual information properties of the signal to estimate the appropriate delay value, and the false nearest neighbor approach to determine the phase space embedding dimension. We use a correlation dimension-based approach together with estimation of the largest Lyapunov exponent to make the chaotic dynamics detection decision. We investigate the ability to detect chaotic dynamics for the different one-dimensional IMU signals, across human subject and walking modes, and as a function of different phone locations on the human carrier.

  19. A new wireless detection device for the in-situ identification of Salmonella Typhimurium

    Science.gov (United States)

    Chai, Yating; Wikle, Howard C.; Park, Mi-kyung; Horikawa, Shin; Hong, Xie; Chin, Bryan A.

    2013-05-01

    This paper presents a new device and method for the in-situ detection of Salmonella Typhimurium on tomato surfaces. This real-time in-situ detection was accomplished with phage-based magnetoelastic (ME) biosensors on fresh food surfaces. The E2 phage from a landscape phage library serves as the bio-recognition element that has the capability of binding specifically with S. Typhimurium. This mass-sensitive ME biosensor is wirelessly actuated into mechanical resonance by an externally applied time-varying magnetic field. When the biosensor binds with S. Typhimurium, the mass of the sensor increases, resulting in a decrease in the sensor's resonant frequency. Until now, ME sensors had to be collected from the tomato surface where they are exposed to S. Typhimurium and inserted into a measurement coil for the detection of the bacterium. In contrast, the newly designed test device allows the whole detection process to take place directly on the tomato. Changes in resonant frequency over time due to the accumulation of S. Typhimurium on the sensor were measured and are presented. Real-time in-situ detection of 20 minutes was achieved. In addition, this new methodology effectively decreases the measurement error and enables the simultaneous detection of multiple pathogens.

  20. Direct Detection and Imaging of Low-Energy Electrons with Delta-Doped Charge-Coupled Devices

    Science.gov (United States)

    Nikzad, S.; Yu, Q.; Smith, A. L.; Jones, T. J.; Tombrello, T. A.; Elliott, S. T.

    1998-01-01

    We report the use fo delta-doped charge-coupled devices (CCDs) for direct detection of electrons in the 50-1500 eV energy range. These are the first measurements with a solid state device to detect electrons in this energy range.

  1. 10 CFR 32.103 - Schedule D-prototype tests for ice detection devices containing strontium-90.

    Science.gov (United States)

    2010-01-01

    ... water and the strontium-90 shall be considered leakage. (e) Observations. After each of the tests... 10 Energy 1 2010-01-01 2010-01-01 false Schedule D-prototype tests for ice detection devices... § 32.103 Schedule D—prototype tests for ice detection devices containing strontium-90. An applicant for...

  2. Remote device to detect the neutrons and gamma-ray activity

    International Nuclear Information System (INIS)

    Ermakov, G.; Korolev, M.; Lopatin, Yu.; Rtishchev, A.

    1999-01-01

    The device for monitoring of gamma activity and neutrons with the following advantages was successfully developed and manufactured: extremely low power consumption which allow the long time of monitoring (up to one year or even more for GM device); high level of the intellect (build in processor); a big memory to remember results (512 Kb) including the date of events (min, hour, day, month, year); extremely simple and highly automated mode of operating; infrared interface to pass information to the external computer; high level of the IP protection; wide range of possible application. The devices could be used as follows: detection of unauthorized movement (removal) of the nuclear material and/or radioactive sources from the facility, monitoring of the radioactivity for different purposes in places with harsh climatic conditions [ru

  3. Device for positioning ultrasonic probes and/or television cameras on the outer surface of reactor pressure vessels

    International Nuclear Information System (INIS)

    Zipser, R.; Dose, G.F.

    1977-01-01

    The device makes possible periodical in-service inspections of welding seams and material of a reactor pressure vessel without local human presence. A 'support ring' encloses the pressure vessel in a horizontal plane with free space. It is vertically moved up and down in the space between pressure vessel and thermal shield by means of tackles. At a control desk placed in a protected area its movement is controlled and its vertical position is indicated. A 'rotating track' with its own drive is rotating remote-controlled on the 'support ring'. By a combination of the vertical with the rotating movement, an ultrasonic probe placed removably on the 'rotating hack', or a television camera will be brought to any position on the cylindrical circumference of the pressure vessel. Special devices extend the radius of action, in upward direction for inspecting the welding seams of the coolant nozzles, and in downward direction for the inspection of welds on the hemispherical bottom of the pressure vessel or on the outlet pipe nozzle placed there. The device remains installed during reactor operation, but is moved down to the lower horizontal surface of the thermal shield. Parts which are sensible to radiation like probes or television cameras and special devices will then be removed respectively mounted before beginning an inspection compaign. This position may be reached by the lower access in the biological shield and through an opening in the horizontal surface of the thermal shield. (HP) [de

  4. Rapid detection of the positive side reactions in vanadium flow batteries

    International Nuclear Information System (INIS)

    Liu, Le; Li, Zhaohua; Xi, Jingyu; Zhou, Haipeng; Wu, Zenghua; Qiu, Xinping

    2017-01-01

    Highlights: • A method for rapid measurement of the positive side reactions in VFB is presented. • The SOC of positive electrolytes can be detected with resolution of 0.002%. • Side reaction ratios at different charge currents, flow rates are obtained. - Abstract: We present an optical detection method for rapid measurement of the positive side reactions in vanadium flow batteries (VFB). By measuring the transmittance of the positive electrolytes in VFB, the states of charge (SOC) of the positive electrolytes can be detected at very high resolution (better than 0.002% in the SOC range from 98% to 100%), due to the nonlinear transmittance spectra caused by the interactions between V(IV) and V(V) ions. The intensity of the positive side reactions of a VFB can be rapidly measured by a few steps, attributing to the fact that the positive side reactions occur only during the high voltage charging process. The ratios of the positive side reactions at different charge currents and different flow rates are obtained while causing no damage to the battery. This optical detection method can rapidly determine the optimal parameters of the VFB system, providing new means for studying the electrochemical reactions in the VFB system and rapid test in industrial production of VFBs.

  5. Development of Quantum Devices and Algorithms for Radiation Detection and Radiation Signal Processing

    International Nuclear Information System (INIS)

    El Tokhy, M.E.S.M.E.S.

    2012-01-01

    The main functions of spectroscopy system are signal detection, filtering and amplification, pileup detection and recovery, dead time correction, amplitude analysis and energy spectrum analysis. Safeguards isotopic measurements require the best spectrometer systems with excellent resolution, stability, efficiency and throughput. However, the resolution and throughput, which depend mainly on the detector, amplifier and the analog-to-digital converter (ADC), can still be improved. These modules have been in continuous development and improvement. For this reason we are interested with both the development of quantum detectors and efficient algorithms of the digital processing measurement. Therefore, the main objective of this thesis is concentrated on both 1. Study quantum dot (QD) devices behaviors under gamma radiation 2. Development of efficient algorithms for handling problems of gamma-ray spectroscopy For gamma radiation detection, a detailed study of nanotechnology QD sources and infrared photodetectors (QDIP) for gamma radiation detection is introduced. There are two different types of quantum scintillator detectors, which dominate the area of ionizing radiation measurements. These detectors are QD scintillator detectors and QDIP scintillator detectors. By comparison with traditional systems, quantum systems have less mass, require less volume, and consume less power. These factors are increasing the need for efficient detector for gamma-ray applications such as gamma-ray spectroscopy. Consequently, the nanocomposite materials based on semiconductor quantum dots has potential for radiation detection via scintillation was demonstrated in the literature. Therefore, this thesis presents a theoretical analysis for the characteristics of QD sources and infrared photodetectors (QDIPs). A model of QD sources under incident gamma radiation detection is developed. A novel methodology is introduced to characterize the effect of gamma radiation on QD devices. The rate

  6. Digital-to-analog device for continuous detection of neutron damping decrement in logging

    International Nuclear Information System (INIS)

    Sokolov, Yu.I.; Zinchenko, A.I.; Rudenko, Eh.L.

    1976-01-01

    Algorithms are analyzed for a continuous detection of the damping decrement (DD) of the thermal neutron density in time, characterizing absorptive and diffusion properties of a bed; an an automated measuring device has been developed. The design of a digital calculator involving reguired mathematical and logical operations in the DD measurement by the specified algorithms necessitated the use of a system of elements with a diode-transistor RC logic. Following laboratory tests the mock-up of the calculator was subjected to borehole tests as part of the pulsed neutron logging apparatus of the IGN-4 type. A continuous detection of the DD reciprocal with a parallel recording of the differential and integral curves of pulsed neutron-neutron logging has been performed. The borehole tests revealed the efficiency of the new device and the possibility of its use together with the apparatus of the IGN-4 type

  7. Detection of fecal contamination on beef meat surfaces using handheld fluorescence imaging device (HFID)

    Science.gov (United States)

    Oh, Mirae; Lee, Hoonsoo; Cho, Hyunjeong; Moon, Sang-Ho; Kim, Eun-Kyung; Kim, Moon S.

    2016-05-01

    Current meat inspection in slaughter plants, for food safety and quality attributes including potential fecal contamination, is conducted through by visual examination human inspectors. A handheld fluorescence-based imaging device (HFID) was developed to be an assistive tool for human inspectors by highlighting contaminated food and food contact surfaces on a display monitor. It can be used under ambient lighting conditions in food processing plants. Critical components of the imaging device includes four 405-nm 10-W LEDs for fluorescence excitation, a charge-coupled device (CCD) camera, optical filter (670 nm used for this study), and Wi-Fi transmitter for broadcasting real-time video/images to monitoring devices such as smartphone and tablet. This study aimed to investigate the effectiveness of HFID in enhancing visual detection of fecal contamination on red meat, fat, and bone surfaces of beef under varying ambient luminous intensities (0, 10, 30, 50 and 70 foot-candles). Overall, diluted feces on fat, red meat and bone areas of beef surfaces were detectable in the 670-nm single-band fluorescence images when using the HFID under 0 to 50 foot-candle ambient lighting.

  8. An efficient enzyme-powered micromotor device fabricated by cyclic alternate hybridization assembly for DNA detection.

    Science.gov (United States)

    Fu, Shizhe; Zhang, Xueqing; Xie, Yuzhe; Wu, Jie; Ju, Huangxian

    2017-07-06

    An efficient enzyme-powered micromotor device was fabricated by assembling multiple layers of catalase on the inner surface of a poly(3,4-ethylenedioxythiophene and sodium 4-styrenesulfonate)/Au microtube (PEDOT-PSS/Au). The catalase assembly was achieved by programmed DNA hybridization, which was performed by immobilizing a designed sandwich DNA structure as the sensing unit on the PEDOT-PSS/Au, and then alternately hybridizing with two assisting DNA to bind the enzyme for efficient motor motion. The micromotor device showed unique features of good reproducibility, stability and motion performance. Under optimal conditions, it showed a speed of 420 μm s -1 in 2% H 2 O 2 and even 51 μm s -1 in 0.25% H 2 O 2 . In the presence of target DNA, the sensing unit hybridized with target DNA to release the multi-layer DNA as well as the multi-catalase, resulting in a decrease of the motion speed. By using the speed as a signal, the micromotor device could detect DNA from 10 nM to 1 μM. The proposed micromotor device along with the cyclic alternate DNA hybridization assembly technique provided a new path to fabricate efficient and versatile micromotors, which would be an exceptional tool for rapid and simple detection of biomolecules.

  9. Discrete Event Simulation Model of the Polaris 2.1 Gamma Ray Imaging Radiation Detection Device

    Science.gov (United States)

    2016-06-01

    release; distribution is unlimited DISCRETE EVENT SIMULATION MODEL OF THE POLARIS 2.1 GAMMA RAY IMAGING RADIATION DETECTION DEVICE by Andres T...ONLY (Leave blank) 2. REPORT DATE June 2016 3. REPORT TYPE AND DATES COVERED Master’s thesis 4. TITLE AND SUBTITLE DISCRETE EVENT SIMULATION MODEL...modeled. The platform, Simkit, was utilized to create a discrete event simulation (DES) model of the Polaris. After carefully constructing the DES

  10. Magnetic Shape Memory Alloys as smart materials for micro-positioning devices

    Directory of Open Access Journals (Sweden)

    A. Hubert

    2012-10-01

    Full Text Available In the field of microrobotics, actuators based on smart materials are predominant because of very good precision, integration capabilities and high compactness. This paper presents the main characteristics of Magnetic Shape Memory Alloys as new candidates for the design of micromechatronic devices. The thermo-magneto-mechanical energy conversion process is first presented followed by the adequate modeling procedure required to design actuators. Finally, some actuators prototypes realized at the Femto-ST institute are presented, including a push-pull bidirectional actuator. Some results on the control and performances of these devices conclude the paper.

  11. A System of Driving Fatigue Detection Based on Machine Vision and Its Application on Smart Device

    Directory of Open Access Journals (Sweden)

    Wanzeng Kong

    2015-01-01

    Full Text Available Driving fatigue is one of the most important factors in traffic accidents. In this paper, we proposed an improved strategy and practical system to detect driving fatigue based on machine vision and Adaboost algorithm. Kinds of face and eye classifiers are well trained by Adaboost algorithm in advance. The proposed strategy firstly detects face efficiently by classifiers of front face and deflected face. Then, candidate region of eye is determined according to geometric distribution of facial organs. Finally, trained classifiers of open eyes and closed eyes are used to detect eyes in the candidate region quickly and accurately. The indexes which consist of PERCLOS and duration of closed-state are extracted in video frames real time. Moreover, the system is transplanted into smart device, that is, smartphone or tablet, due to its own camera and powerful calculation performance. Practical tests demonstrated that the proposed system can detect driver fatigue with real time and high accuracy. As the system has been planted into portable smart device, it could be widely used for driving fatigue detection in daily life.

  12. A system and a method for detecting the position of an object

    International Nuclear Information System (INIS)

    Brown, M.H.; Harrison, J.G.

    1982-01-01

    The position of an object e.g. a manipulator, in an enclosure is detected by two video cameras from which signals representative of images in the cameras are supplied to a mini-computer. The mini-computer scans the signals to detect the position of the object in the signals, and relates this position to the spatial coordinates of the object in the enclosure. Means are provided for controlling the movement of the object within the enclosure, which may be a hostile environment e.g. radio-active. (author)

  13. Reproducibility of positive results for the detection of serum galactomannan by Platelia™ aspergillus EIA.

    Science.gov (United States)

    Pedroza, Kelly C M C; de Matos, Sócrates B; de Moura, Daniel L; Oliveira, Mônica B B; Araújo, Marco A S; Nascimento, Roberto J M; Lima, Fernanda W M

    2013-10-01

    Galactomannan (GM) was recently included in consensus guidelines as an indirect mycological criterion for the diagnosis of invasive aspergillosis. Currently, there is an enzyme immunoassay available to detect GM in biological samples, the Platelia™ Aspergillus EIA. In this study, the reproducibility of positive results obtained using this assay was evaluated using serum samples from neutropenic patients. A trend toward lower values was observed, and 55 %(27/49) of positive results were negative after retesting. A low reproducibility of positive results for the detection of GM in serum was observed.

  14. A portable device for rapid nondestructive detection of fresh meat quality

    Science.gov (United States)

    Lin, Wan; Peng, Yankun

    2014-05-01

    Quality attributes of fresh meat influence nutritional value and consumers' purchasing power. In order to meet the demand of inspection department for portable device, a rapid and nondestructive detection device for fresh meat quality based on ARM (Advanced RISC Machines) processor and VIS/NIR technology was designed. Working principal, hardware composition, software system and functional test were introduced. Hardware system consisted of ARM processing unit, light source unit, detection probe unit, spectral data acquisition unit, LCD (Liquid Crystal Display) touch screen display unit, power unit and the cooling unit. Linux operating system and quality parameters acquisition processing application were designed. This system has realized collecting spectral signal, storing, displaying and processing as integration with the weight of 3.5 kg. 40 pieces of beef were used in experiment to validate the stability and reliability. The results indicated that prediction model developed using PLSR method using SNV as pre-processing method had good performance, with the correlation coefficient of 0.90 and root mean square error of 1.56 for validation set for L*, 0.95 and 1.74 for a*,0.94 and 0.59 for b*, 0.88 and 0.13 for pH, 0.79 and 12.46 for tenderness, 0.89 and 0.91 for water content, respectively. The experimental result shows that this device can be a useful tool for detecting quality of meat.

  15. Cost and detection rate of glaucoma screening with imaging devices in a primary care center

    Directory of Open Access Journals (Sweden)

    Anton A

    2017-02-01

    Full Text Available Alfonso Anton,1–4 Monica Fallon,3,5 Francesc Cots,2 María A Sebastian,6 Antonio Morilla-Grasa,4 Sergi Mojal,3 Xavier Castells2 1Medicine School, Universidad Internacional de Cataluña, 2Servei d’Estudies, Parc de Salut Mar, 3Instituto Hospital del Mar de Investigaciones Médicas (IMIM, 4Glaucoma Department, Instituto Catalán de Retina (ICR, 5Universidad Autónoma de Barcelona, 6Centro de Atención Primaria Larrard, Barcelona, Spain Purpose: To analyze the cost and detection rate of a screening program for detecting glaucoma with imaging devices. Materials and methods: In this cross-sectional study, a glaucoma screening program was applied in a population-based sample randomly selected from a population of 23,527. Screening targeted the population at risk of glaucoma. Examinations included optic disk tomography (Heidelberg retina tomograph [HRT], nerve fiber analysis, and tonometry. Subjects who met at least 2 of 3 endpoints (HRT outside normal limits, nerve fiber index ≥30, or tonometry ≥21 mmHg were referred for glaucoma consultation. The currently established (“conventional” detection method was evaluated by recording data from primary care and ophthalmic consultations in the same population. The direct costs of screening and conventional detection were calculated by adding the unit costs generated during the diagnostic process. The detection rate of new glaucoma cases was assessed. Results: The screening program evaluated 414 subjects; 32 cases were referred for glaucoma consultation, 7 had glaucoma, and 10 had probable glaucoma. The current detection method assessed 677 glaucoma suspects in the population, of whom 29 were diagnosed with glaucoma or probable glaucoma. Glaucoma screening and the conventional detection method had detection rates of 4.1% and 3.1%, respectively, and the cost per case detected was 1,410 and 1,435€, respectively. The cost of screening 1 million inhabitants would be 5.1 million euros and would allow

  16. On Improving the Energy Efficiency and Robustness of Position Tracking for Mobile Devices

    DEFF Research Database (Denmark)

    Kjærgaard, Mikkel Baun

    2010-01-01

    position updates when faced with changing conditions such as delays and changing positioning conditions. Previous work has established dynamic tracking systems, such as our EnTracked system, as a solution to address these issues. In this paper we propose a responsibility division for position tracking...... into sensor management strategies and position update protocols and combine the sensor management strategy of EnTracked with position update protocols, which enables the system to further reduce the power consumption with up to 268 mW extending the battery life with up to 36\\%. As our evaluation identify...... that classical position update protocols have robustness weaknesses we propose a method to improve their robustness. Furthermore, we analyze the dependency of tracking systems on the pedestrian movement patterns and positioning environment, and how the power savings depend on the power characteristics...

  17. Nonimaging speckle interferometry for high-speed nanometer-scale position detection.

    Science.gov (United States)

    van Putten, E G; Lagendijk, A; Mosk, A P

    2012-03-15

    We experimentally demonstrate a nonimaging approach to displacement measurement for complex scattering materials. By spatially controlling the wavefront of the light that incidents on the material, we concentrate the scattered light in a focus on a designated position. This wavefront acts as a unique optical fingerprint that enables precise position detection of the illuminated material by simply measuring the intensity in the focus. By combining two fingerprints we demonstrate position detection along one in-plane dimension with a displacement resolution of 2.1 nm. As our approach does not require an image of the scattered field, it is possible to employ fast nonimaging detectors to enable high-speed position detection of scattering materials.

  18. Mover Position Detection for PMTLM Based on Linear Hall Sensors through EKF Processing.

    Science.gov (United States)

    Yan, Leyang; Zhang, Hui; Ye, Peiqing

    2017-04-06

    Accurate mover position is vital for a permanent magnet tubular linear motor (PMTLM) control system. In this paper, two linear Hall sensors are utilized to detect the mover position. However, Hall sensor signals contain third-order harmonics, creating errors in mover position detection. To filter out the third-order harmonics, a signal processing method based on the extended Kalman filter (EKF) is presented. The limitation of conventional processing method is first analyzed, and then EKF is adopted to detect the mover position. In the EKF model, the amplitude of the fundamental component and the percentage of the harmonic component are taken as state variables, and they can be estimated based solely on the measured sensor signals. Then, the harmonic component can be calculated and eliminated. The proposed method has the advantages of faster convergence, better stability and higher accuracy. Finally, experimental results validate the effectiveness and superiority of the proposed method.

  19. Time course of radiometric detection of positive blood cultures in childhood

    International Nuclear Information System (INIS)

    Meadow, W.L.; Schwartz, I.K.

    1986-01-01

    We have determined the time course of radiometric detection of microbial growth in 2348 positive blood culture specimens obtained at Wyler Children's Hospital during a 5-year interval. Overall 72 and 88% of isolates were detected within 48 and 72 hours after sampling, respectively. For pathogenic organisms aerobic detection was generally more rapid and more inclusive than anaerobic detection. At 48 hours of incubation the detection of six potential pathogens (Salmonella sp., Haemophilus influenzae, Group D streptococci, Neisseria meningitidis, coagulase-negative staphylococci, Candida sp.) was significantly delayed compared with detection of other pathogenic organisms recovered from blood. At 72 hours of incubation the detection rates remained less than 95% for H. influenzae, Staphylococcus aureus, Klebsiella sp., coagulase-negative staphylococci, Group D streptococci and Candida sp. These data should assist clinical decisions regarding duration of antibiotic therapy for the presumptive diagnosis of bacteremia in children

  20. Time course of radiometric detection of positive blood cultures in childhood

    Energy Technology Data Exchange (ETDEWEB)

    Meadow, W.L.; Schwartz, I.K.

    1986-05-01

    We have determined the time course of radiometric detection of microbial growth in 2348 positive blood culture specimens obtained at Wyler Children's Hospital during a 5-year interval. Overall 72 and 88% of isolates were detected within 48 and 72 hours after sampling, respectively. For pathogenic organisms aerobic detection was generally more rapid and more inclusive than anaerobic detection. At 48 hours of incubation the detection of six potential pathogens (Salmonella sp., Haemophilus influenzae, Group D streptococci, Neisseria meningitidis, coagulase-negative staphylococci, Candida sp.) was significantly delayed compared with detection of other pathogenic organisms recovered from blood. At 72 hours of incubation the detection rates remained less than 95% for H. influenzae, Staphylococcus aureus, Klebsiella sp., coagulase-negative staphylococci, Group D streptococci and Candida sp. These data should assist clinical decisions regarding duration of antibiotic therapy for the presumptive diagnosis of bacteremia in children.

  1. One-Sided Device Independent QKD and Position-Based Cryptography from Monogamy Games

    NARCIS (Netherlands)

    M. Tomamichel; S. Fehr (Serge); J. Kaniewski; S.D.C. Wehner (Stephanie); T. Johansson; P.Q. Nguyen

    2013-01-01

    htmlabstractA serious concern with quantum key distribution (QKD) schemes is that, when under attack, the quantum devices in a real-life implementation may behave differently than modeled in the security proof. This can lead to real-life attacks against provably secure QKD schemes. In this work,

  2. Open table-top device positioning technique to reduce small bowel obstruction. Positioning accuracy and impact on conformal radiation therapy techniques

    International Nuclear Information System (INIS)

    Rudat, V.; Flentje, M.; Engenhart, R.; Metzger, M.; Wannenmacher, M.

    1995-01-01

    The immobilization error of patients positioned on the opern table-top device in prone prosition as well as the movement of the small bowel out of the pelvis by this positioning technique was determined. The positioning error is of special importance for the 3-dimensional treatment planning for conformal radiotherapy. The positioning error was determined by superposing 106 portal films with the corresponding simultor films from 21 patients with carcinoma of the rectum who received 3D-planned conformal radiotherapy (o-field technique with irregular blocks). The movement of the small bowel out of the pelvis was studied by comparing simulator films after barium swallow in supine and open table-top position as well with 3D-treatment plans of the same patient in both positions in 3 cases. The positioning error along the medio-lateral, dorso-ventral und cranio-caudal axis was 1.4/-0.6/1.8 mm and the standard deviation 4.4/6.8/6.3 mm, respectively. In comparison to the supine position more rotation errors in the sagittal view were observed (37% and 9% respectively) with a media of 5.1 . Six out of 22 patients showed no adhesions of the small bowel and a complete movement out of the tratment field was achieved. 14 out of 16 Patients with adhesions revealed a partial movement of the small bowel out of the treatment field. Comparing 3D-treatment plans in both positions again demonstrated a marked reduction of the irradiated small bowel volume with the use of the open table-top decive. (orig.) [de

  3. Comparison of real-time classification systems for arrhythmia detection on Android-based mobile devices.

    Science.gov (United States)

    Leutheuser, Heike; Gradl, Stefan; Kugler, Patrick; Anneken, Lars; Arnold, Martin; Achenbach, Stephan; Eskofier, Bjoern M

    2014-01-01

    The electrocardiogram (ECG) is a key diagnostic tool in heart disease and may serve to detect ischemia, arrhythmias, and other conditions. Automatic, low cost monitoring of the ECG signal could be used to provide instantaneous analysis in case of symptoms and may trigger the presentation to the emergency department. Currently, since mobile devices (smartphones, tablets) are an integral part of daily life, they could form an ideal basis for automatic and low cost monitoring solution of the ECG signal. In this work, we aim for a realtime classification system for arrhythmia detection that is able to run on Android-based mobile devices. Our analysis is based on 70% of the MIT-BIH Arrhythmia and on 70% of the MIT-BIH Supraventricular Arrhythmia databases. The remaining 30% are reserved for the final evaluation. We detected the R-peaks with a QRS detection algorithm and based on the detected R-peaks, we calculated 16 features (statistical, heartbeat, and template-based). With these features and four different feature subsets we trained 8 classifiers using the Embedded Classification Software Toolbox (ECST) and compared the computational costs for each classification decision and the memory demand for each classifier. We conclude that the C4.5 classifier is best for our two-class classification problem (distinction of normal and abnormal heartbeats) with an accuracy of 91.6%. This classifier still needs a detailed feature selection evaluation. Our next steps are implementing the C4.5 classifier for Android-based mobile devices and evaluating the final system using the remaining 30% of the two used databases.

  4. Performances of different global positioning system devices for time-location tracking in air pollution epidemiological studies.

    Science.gov (United States)

    Wu, Jun; Jiang, Chengsheng; Liu, Zhen; Houston, Douglas; Jaimes, Guillermo; McConnell, Rob

    2010-11-23

    People's time-location patterns are important in air pollution exposure assessment because pollution levels may vary considerably by location. A growing number of studies are using global positioning systems (GPS) to track people's time-location patterns. Many portable GPS units that archive location are commercially available at a cost that makes their use feasible for epidemiological studies. We evaluated the performance of five portable GPS data loggers and two GPS cell phones by examining positional accuracy in typical locations (indoor, outdoor, in-vehicle) and factors that influence satellite reception (building material, building type), acquisition time (cold and warm start), battery life, and adequacy of memory for data storage. We examined stationary locations (eg, indoor, outdoor) and mobile environments (eg, walking, traveling by vehicle or bus) and compared GPS locations to highly-resolved US Geological Survey (USGS) and Digital Orthophoto Quarter Quadrangle (DOQQ) maps. The battery life of our tested instruments ranged from acquisition of location time after startup ranged from a few seconds to >20 minutes and varied significantly by building structure type and by cold or warm start. No GPS device was found to have consistently superior performance with regard to spatial accuracy and signal loss. At fixed outdoor locations, 65%-95% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices. At fixed indoor locations, 50%-80% of GPS points fell within 20-m of the corresponding DOQQ locations for all the devices except one. Most of the GPS devices performed well during commuting on a freeway, with >80% of points within 10-m of the DOQQ route, but the performance was significantly impacted by surrounding structures on surface streets in highly urbanized areas. All the tested GPS devices had limitations, but we identified several devices which showed promising performance for tracking subjects' time location patterns in

  5. Evaluation of the positional accuracy and dosimetric properties of a three-dimensional printed device for head and neck immobilization

    International Nuclear Information System (INIS)

    Sato, Kiyokazu; Yanagawa, Isao; Takeda, Ken; Dobashi, Suguru; Kadoya, Noriyuki; Ito, Kengo; Chiba, Mizuki; Jingu, Keiichi; Kishi, Kazuma

    2017-01-01

    Our aim was to investigate the feasibility of a three-dimensional (3D)-printed head-and-neck (HN) immobilization device by comparing its positional accuracy and dosimetric properties with those of a conventional immobilization device (CID). We prepared a 3D-printed immobilization device (3DID) consisting of a mask and headrest with acrylonitrile-butadiene-styrene resin developed from the computed tomography data obtained by imaging a HN phantom. For comparison, a CID comprising a thermoplastic mask and headrest was prepared using the same HN phantom. We measured the setup error using the ExacTrac X-ray image system. Furthermore, using the ionization chamber and the water-equivalent phantom, we measured the changes in the dose due to the difference in the immobilization device material from the photon of 4 MV and 6 MV. The positional accuracy of the two devices were almost similar in each direction except in the vertical, lateral, and pitch directions (t-test, p<0.0001), and the maximum difference was 1 mm, and 1deg. The standard deviations were not statistically different in each direction except in the longitudinal (F-test, p=0.034) and roll directions (F-test, p<0.0001). When the thickness was the same, the dose difference was almost similar at a 50 mm depth. At a 1 mm depth, the 3DID-plate had a 2.9-4.2% lower dose than the CID-plate. This study suggested that the positional accuracy and dosimetric properties of 3DID were almost similar to those of CID. (author)

  6. Feasibility and Acceptability of a Real-Time Adherence Device among HIV-Positive IDU Patients in China

    Directory of Open Access Journals (Sweden)

    Mary Bachman DeSilva

    2013-01-01

    Full Text Available We collected data on feasibility and acceptability of a real-time web-linked adherence monitoring container among HIV-positive injection drug users (IDU in China. “Wisepill” uses wireless technology to track on-time medication dosing. Ten patients on antiretroviral therapy (ART at the Guangxi CDC HIV clinic in Nanning, China, used Wisepill for one ART medication for one month. We monitored device use and adherence and explored acceptability of the device among patients. Mean adherence was 89.2% (SD 10.6%. Half of the subjects reported a positive overall experience with Wisepill. Seven said that it was inconvenient, supported by comments that it was large and conspicuous. Five worried about disclosure of HIV status due to the device; no disclosures were reported. Twelve signal lapses occurred (5.4% of prescribed doses, of which one was due to technical reasons, nine to behavioral reasons (both intentional and unintentional, and two to unclear reasons. Although the technical components must be monitored carefully, and acceptability to patients presents challenges which warrant further exploration, the Wisepill device has potential for adherence interventions that deliver rapid adherence-support behavioral feedback directly to patients, including IDU. The use of wireless technology appears uniquely promising for providing time-sensitive communication on patient behavior that can be harnessed to maximize the benefits of HIV treatment.

  7. Hybrid Synthetic Receptors on MOSFET Devices for Detection of Prostate Specific Antigen in Human Plasma.

    Science.gov (United States)

    Tamboli, Vibha K; Bhalla, Nikhil; Jolly, Pawan; Bowen, Chris R; Taylor, John T; Bowen, Jenna L; Allender, Chris J; Estrela, Pedro

    2016-12-06

    The study reports the use of extended gate field-effect transistors (FET) for the label-free and sensitive detection of prostate cancer (PCa) biomarkers in human plasma. The approach integrates for the first time hybrid synthetic receptors comprising of highly selective aptamer-lined pockets (apta-MIP) with FETs for sensitive detection of prostate specific antigen (PSA) at clinically relevant concentrations. The hybrid synthetic receptors were constructed by immobilizing an aptamer-PSA complex on gold and subjecting it to 13 cycles of dopamine electropolymerization. The polymerization resulted in the creation of highly selective polymeric cavities that retained the ability to recognize PSA post removal of the protein. The hybrid synthetic receptors were subsequently used in an extended gate FET setup for electrochemical detection of PSA. The sensor was reported to have a limit of detection of 0.1 pg/mL with a linear detection range from 0.1 pg/mL to 1 ng/mL PSA. Detection of 1-10 pg/mL PSA was also achieved in diluted human plasma. The present apta-MIP sensor developed in conjunction with FET devices demonstrates the potential for clinical application of synthetic hybrid receptors for the detection of clinically relevant biomarkers in complex samples.

  8. Microfluidics & nanotechnology: Towards fully integrated analytical devices for the detection of cancer biomarkers

    KAUST Repository

    Perozziello, Gerardo; Candeloro, Patrizio; Gentile, Francesco T.; Nicastri, Annalisa; Perri, Angela Mena; Coluccio, Maria Laura; Adamo, A.; Pardeo, Francesca; Catalano, Rossella; Parrotta, Elvira; Espinosa, Horacio Dante; Cuda, Giovanni; Di Fabrizio, Enzo M.

    2014-01-01

    In this paper, we describe an innovative modular microfluidic platform allowing filtering, concentration and analysis of peptides from a complex mixture. The platform is composed of a microfluidic filtering device and a superhydrophobic surface integrating surface enhanced Raman scattering (SERS) sensors. The microfluidic device was used to filter specific peptides (MW 1553.73 D) derived from the BRCA1 protein, a tumor-suppressor molecule which plays a pivotal role in the development of breast cancers, from albumin (66.5 KD), the most represented protein in human plasma. The filtering process consisted of driving the complex mixture through a porous membrane having a cut-off of 12-14 kD by hydrodynamic flow. The filtered samples coming out of the microfluidic device were subsequently deposited on a superhydrophobic surface formed by micro pillars on top of which nanograins were fabricated. The nanograins coupled to a Raman spectroscopy instrument acted as a SERS sensor and allowed analysis of the filtered sample on top of the surface once it evaporated. By using the presented platform, we demonstrate being able to sort small peptides from bigger proteins and to detect them by using a label-free technique at a resolution down to 0.1 ng μL-1. The combination of microfluidics and nanotechnology to develop the presented microfluidic platform may give rise to a new generation of biosensors capable of detecting low concentration samples from complex mixtures without the need for any sample pretreatment or labelling. The developed devices could have future applications in the field of early diagnosis of severe illnesses, e.g. early cancer detection. This journal is

  9. Device to position selectively a tool carried by a vehicle moving on the perforated plate of a tube bundle

    International Nuclear Information System (INIS)

    Bernardin, M.

    1985-01-01

    The aim of the invention is an examination device for a tube bundle of an apparatus such as, but not restrictively, a steam generator, situated in a dangerous zone, e.g. radioactive and designed to be introduced into the water box of the said and placed against the perforated plate of the tube bundle by an operator working outside of the said apparatus and able to operate whatever the vertical or horizontal position of the tube plate. The device has a selectively positionable tool - carrying vehicle comprising pistons positioning fingers extendable into the tubes and mounted on extendable supports perpendicular to the pistons and to each other, and an articulated telescopic arm fixed at one end to a rotary mounting on the vehicle and at the other end to an access opening in the vessel containing the tube plate, to hold the vehicle against the plate [fr

  10. Effect of different substitution position on the switching behavior in single-molecule device with carbon nanotube electrodes

    Science.gov (United States)

    Yang, Jingjuan; Han, Xiaoxiao; Yuan, Peipei; Bian, Baoan; Wang, Yixiang

    2018-01-01

    We investigate the electronic transport properties of dihydroazulene (DHA) and vinylheptafulvene (VHF) molecule sandwiched between two carbon nanotubes using density functional theory and non-equilibrium Green's function. The device displays significantly switching behavior between DHA and VHF isomerizations. It is found the different substitution position of F in the molecule influences the switching ratio of device, which is analyzed by transmission spectra and molecular projected self-consistent Hamiltonian. The observed negative differential resistance effect is explained by transmission spectra and transmission eigenstates of transmission peak in the bias window. The observed reverse of current in VHF form in which two H atoms on the right side of the benzene ring of the molecule are replaced by F is explained by transmission spectra and molecule-electrode coupling with the varied bias. The results suggest that the reasonable substitution position of molecule may improve the switching ratio, displaying a potential application in future molecular circuit.

  11. Titration effectiveness of two autoadjustable continuous positive airway pressure devices driven by different algorithms in patients with obstructive sleep apnoea.

    Science.gov (United States)

    Damiani, Mario Francesco; Quaranta, Vitaliano Nicola; Tedeschi, Ersilia; Drigo, Riccardo; Ranieri, Teresa; Carratù, Pierluigi; Resta, Onofrio

    2013-08-01

    Nocturnal application of continuous positive airway pressure (CPAP) is the standard treatment for patients with obstructive sleep apnoea (OSA). Determination of the therapeutic pressure (CPAP titration) is usually performed by a technician in the sleep laboratory during attended polysomnography. One possible alternative to manual titration is automated titration. Indeed, during the last 15 years, devices have been developed that deliver autoadjustable CPAP (A-CPAP). The aim of the present study was to compare the titration effectiveness of two A-CPAP devices using different flow-based algorithms in patients with OSA. This is a randomized study; 79 subjects underwent two consecutive unattended home A-CPAP titration nights with two different devices (Autoset Resmed; Remstar Auto Respironics); during the third and the fourth night, patients underwent portable monitoring in the sleep laboratory during fixed CPAP at the A-CPAP recommended pressure. Bland Altman plots showed good agreement between the recommended median and maximal pressure levels obtained with the two devices. A significant improvement was observed in all the sleep parameters by both A-CPAP machines to a similar degree. It was observed that the two A-CPAP devices using different algorithms are equally effective in initial titration of CPAP. © 2013 The Authors. Respirology © 2013 Asian Pacific Society of Respirology.

  12. Full On-Device Stay Points Detection in Smartphones for Location-Based Mobile Applications

    Directory of Open Access Journals (Sweden)

    Rafael Pérez-Torres

    2016-10-01

    Full Text Available The tracking of frequently visited places, also known as stay points, is a critical feature in location-aware mobile applications as a way to adapt the information and services provided to smartphones users according to their moving patterns. Location based applications usually employ the GPS receiver along with Wi-Fi hot-spots and cellular cell tower mechanisms for estimating user location. Typically, fine-grained GPS location data are collected by the smartphone and transferred to dedicated servers for trajectory analysis and stay points detection. Such Mobile Cloud Computing approach has been successfully employed for extending smartphone’s battery lifetime by exchanging computation costs, assuming that on-device stay points detection is prohibitive. In this article, we propose and validate the feasibility of having an alternative event-driven mechanism for stay points detection that is executed fully on-device, and that provides higher energy savings by avoiding communication costs. Our solution is encapsulated in a sensing middleware for Android smartphones, where a stream of GPS location updates is collected in the background, supporting duty cycling schemes, and incrementally analyzed following an event-driven paradigm for stay points detection. To evaluate the performance of the proposed middleware, real world experiments were conducted under different stress levels, validating its power efficiency when compared against a Mobile Cloud Computing oriented solution.

  13. Sensitive paper-based analytical device for fast colorimetric detection of nitrite with smartphone.

    Science.gov (United States)

    Zhang, Xiu-Xiu; Song, Yi-Zhen; Fang, Fang; Wu, Zhi-Yong

    2018-04-01

    On-site rapid monitoring of nitrite as an assessment indicator of the environment, food, and physiological systems has drawn extensive attention. Here, electrokinetic stacking (ES) was combined with colorimetric reaction on a paper-based device (PAD) to achieve colorless nitrite detection with smartphone. In this paper, nitrite was stacked on the paper fluidic channel as a narrow band by electrokinetic stacking. Then, Griess reagent was introduced to visualize the stacking band. Under optimal conditions, the sensitivity of nitrite was 160-fold increased within 5 min. A linear response in the range of 0.075 to 1.0 μg mL -1 (R 2  = 0.99) and a limit of detection (LOD) of 73 ng mL -1 (0.86 μM) were obtained. The LOD was 10 times lower than the reported PAD, and close to that achieved by a desktop spectrophotometer. The applicability was demonstrated by nitrite detection from saliva and water with good selectivity, adding 100 times more concentrated co-ions. High recovery (91.0~108.7%) and reasonable intra-day and inter-day reproducibility (RSD work shows that the sensitivity of colorless analyte detection-based colorimetric reaction can be effectively enhanced by integration of ES on a PAD. Graphical abstract Schematic of the experimental setups (left) and the corresponding images (right) of the actual portable device.

  14. Full On-Device Stay Points Detection in Smartphones for Location-Based Mobile Applications.

    Science.gov (United States)

    Pérez-Torres, Rafael; Torres-Huitzil, César; Galeana-Zapién, Hiram

    2016-10-13

    The tracking of frequently visited places, also known as stay points, is a critical feature in location-aware mobile applications as a way to adapt the information and services provided to smartphones users according to their moving patterns. Location based applications usually employ the GPS receiver along with Wi-Fi hot-spots and cellular cell tower mechanisms for estimating user location. Typically, fine-grained GPS location data are collected by the smartphone and transferred to dedicated servers for trajectory analysis and stay points detection. Such Mobile Cloud Computing approach has been successfully employed for extending smartphone's battery lifetime by exchanging computation costs, assuming that on-device stay points detection is prohibitive. In this article, we propose and validate the feasibility of having an alternative event-driven mechanism for stay points detection that is executed fully on-device, and that provides higher energy savings by avoiding communication costs. Our solution is encapsulated in a sensing middleware for Android smartphones, where a stream of GPS location updates is collected in the background, supporting duty cycling schemes, and incrementally analyzed following an event-driven paradigm for stay points detection. To evaluate the performance of the proposed middleware, real world experiments were conducted under different stress levels, validating its power efficiency when compared against a Mobile Cloud Computing oriented solution.

  15. Development and Test of a Contactless Position and Angular Sensor Device for the Application in Synchronous Micro Motors

    Directory of Open Access Journals (Sweden)

    Andreas WALDSCHIK

    2009-09-01

    Full Text Available In this work, we present a contactless micro position and angular sensor system which consists of fixed commercial magnetic sensor elements, such as hall sensors and a movable part with integrated micro structured polymer magnets. This system serves particularly for linear and rotatory synchronous micro motors which we have developed and successfully tested. In order to achieve high precision and control of these motors an integration of the special micro position and angular sensors is pursued to increase the resolution and accuracy of the devices.

  16. Self-treatment of benign paroxysmal positional vertigo with DizzyFix, a new dynamic visual device.

    Science.gov (United States)

    Brehmer, Detlef

    2010-09-01

    Benign paroxysmal positional vertigo is one of the most common disorders of the vestibular system. It is characterized by episodes of recurrent vertigo triggered by head movements or position changes associated with nystagmus. There is scientific evidence that in the majority of cases this condition responds well to the particle repositioning maneuver (PRM) correctly performed by the physician. However, the PRM needs to be repeated in approximately 30% of the cases. Although the maneuver is simple, patients often find it difficult to perform correctly as self-treatment, with the result that it fails to bring about an improvement in the symptoms. DizzyFix (Clearwater Clinical Limited, Canada) is the name given to a new dynamic visual device designed to provide a visual representation of the PRM based on the canalith theory. The DizzyFiX consists of a specially curved acrylic tube containing a nontoxic viscous fluid and a bead, the purpose of which is to help the patient and the inexperienced physician to perform the PRM correctly. A randomized clinical trial has shown that it reliably enables the maneuver to be performed correctly, and a study investigating the effectiveness of patient self-treatment of benign paroxysmal positional vertigo with the device in comparison with standard office treatment revealed both techniques to be equally effective. The device has now been approved by the US FDA.

  17. Detection of cadmium sulphide nanoparticles by using screen-printed electrodes and a handheld device

    International Nuclear Information System (INIS)

    Merkoci, Arben; Marcolino-Junior, Luiz Humberto; MarIn, Sergio; Fatibello-Filho, Orlando; Alegret, Salvador

    2007-01-01

    A simple method based on screen-printed electrodes and a handheld potentiostatic device is reported for the detection of water soluble CdS quantum dots modified with glutathione. The detection method is based on the stripping of electrochemically reduced cadmium at pH 7.0 by using square wave voltammetry. Various parameters that affect the sensitivity of the method are optimized. QD suspension volumes of 20 μl and a number of around 2 x 10 11 CdS quantum dots have been able to be detected. The proposed method should be of special interest for bioanalytical assays, where CdS quantum dots can be used as electrochemical tracers

  18. Development and Validation of a Spike Detection and Classification Algorithm Aimed at Implementation on Hardware Devices

    Directory of Open Access Journals (Sweden)

    E. Biffi

    2010-01-01

    Full Text Available Neurons cultured in vitro on MicroElectrode Array (MEA devices connect to each other, forming a network. To study electrophysiological activity and long term plasticity effects, long period recording and spike sorter methods are needed. Therefore, on-line and real time analysis, optimization of memory use and data transmission rate improvement become necessary. We developed an algorithm for amplitude-threshold spikes detection, whose performances were verified with (a statistical analysis on both simulated and real signal and (b Big O Notation. Moreover, we developed a PCA-hierarchical classifier, evaluated on simulated and real signal. Finally we proposed a spike detection hardware design on FPGA, whose feasibility was verified in terms of CLBs number, memory occupation and temporal requirements; once realized, it will be able to execute on-line detection and real time waveform analysis, reducing data storage problems.

  19. Performance of handheld electrocardiogram devices to detect atrial fibrillation in a cardiology and geriatric ward setting.

    Science.gov (United States)

    Desteghe, Lien; Raymaekers, Zina; Lutin, Mark; Vijgen, Johan; Dilling-Boer, Dagmara; Koopman, Pieter; Schurmans, Joris; Vanduynhoven, Philippe; Dendale, Paul; Heidbuchel, Hein

    2017-01-01

    To determine the usability, accuracy, and cost-effectiveness of two handheld single-lead electrocardiogram (ECG) devices for atrial fibrillation (AF) screening in a hospital population with an increased risk for AF. Hospitalized patients (n = 445) at cardiological or geriatric wards were screened for AF by two handheld ECG devices (MyDiagnostick and AliveCor). The performance of the automated algorithm of each device was evaluated against a full 12-lead or 6-lead ECG recording. All ECGs and monitor tracings were also independently reviewed in a blinded fashion by two electrophysiologists. Time investments by nurses and physicians were tracked and used to estimate cost-effectiveness of different screening strategies. Handheld recordings were not possible in 7 and 21.4% of cardiology and geriatric patients, respectively, because they were not able to hold the devices properly. Even after the exclusion of patients with an implanted device, sensitivity and specificity of the automated algorithms were suboptimal (Cardiology: 81.8 and 94.2%, respectively, for MyDiagnostick; 54.5 and 97.5%, respectively, for AliveCor; Geriatrics: 89.5 and 95.7%, respectively, for MyDiagnostick; 78.9 and 97.9%, respectively, for AliveCor). A scenario based on automated AliveCor evaluation in patients without AF history and without an implanted device proved to be the most cost-effective method, with a provider cost to identify one new AF patient of €193 and €82 at cardiology and geriatrics, respectively. The cost to detect one preventable stroke per year would be €7535 and €1916, respectively (based on average CHA 2 DS 2 -VASc of 3.9 ± 2.0 and 5.0 ± 1.5, respectively). Manual interpretation increases sensitivity, but decreases specificity, doubling the cost per detected patient, but remains cheaper than sole 12-lead ECG screening. Using AliveCor or MyDiagnostick handheld recorders requires a structured screening strategy to be effective and cost-effective in a hospital setting

  20. Residual position errors of lymph node surrogates in breast cancer adjuvant radiotherapy: Comparison of two arm fixation devices and the effect of arm position correction

    International Nuclear Information System (INIS)

    Kapanen, Mika; Laaksomaa, Marko; Skyttä, Tanja; Haltamo, Mikko; Pehkonen, Jani; Lehtonen, Turkka; Kellokumpu-Lehtinen, Pirkko-Liisa; Hyödynmaa, Simo

    2016-01-01

    Residual position errors of the lymph node (LN) surrogates and humeral head (HH) were determined for 2 different arm fixation devices in radiotherapy (RT) of breast cancer: a standard wrist-hold (WH) and a house-made rod-hold (RH). The effect of arm position correction (APC) based on setup images was also investigated. A total of 113 consecutive patients with early-stage breast cancer with LN irradiation were retrospectively analyzed (53 and 60 using the WH and RH, respectively). Residual position errors of the LN surrogates (Th1-2 and clavicle) and the HH were investigated to compare the 2 fixation devices. The position errors and setup margins were determined before and after the APC to investigate the efficacy of the APC in the treatment situation. A threshold of 5 mm was used for the residual errors of the clavicle and Th1-2 to perform the APC, and a threshold of 7 mm was used for the HH. The setup margins were calculated with the van Herk formula. Irradiated volumes of the HH were determined from RT treatment plans. With the WH and the RH, setup margins up to 8.1 and 6.7 mm should be used for the LN surrogates, and margins up to 4.6 and 3.6 mm should be used to spare the HH, respectively, without the APC. After the APC, the margins of the LN surrogates were equal to or less than 7.5/6.0 mm with the WH/RH, but margins up to 4.2/2.9 mm were required for the HH. The APC was needed at least once with both the devices for approximately 60% of the patients. With the RH, irradiated volume of the HH was approximately 2 times more than with the WH, without any dose constraints. Use of the RH together with the APC resulted in minimal residual position errors and setup margins for all the investigated bony landmarks. Based on the obtained results, we prefer the house-made RH. However, more attention should be given to minimize the irradiation of the HH with the RH than with the WH.

  1. Design, building and evaluation of a neutron detection device based on boron loaded plastic scintillator

    International Nuclear Information System (INIS)

    Normand, St.

    2001-10-01

    This work focuses on the study, the characterization and the fabrication of Boron-loaded plastic scintillators. Their use in thermal and fast neutron detection devices is also investigated. Fabrication process, especially boron doping, is explained in the first part of this work. Several FTIR, UV-visible and NMR analysis methods were used in order to characterize the material and to check its structure and stoichiometry. Experiences were done using alpha particles and proton beams to measure the scintillation characteristics. Light emission could therefore be completely determined by the Birks semi-empirical relation. In the second part, the whole detector simulation is undergone: interaction between material and radiation, light generation, paths and signal generation. Neutron simulation by MCNP (Monte Carlo N-Particles) is coupled to a light generation and propagation code developed especially during this work. These simulation tools allow us to optimize the detector geometry for neutron detection and to determine the geometry influence to the photon collection efficiency. Neutron detection efficiency and mean lifetime in this scintillator are also simulated. The close fit obtained between experimental measurements and simulations demonstrate the reliability of the method used. The third part deals with the discrimination methods between neutron and gamma, such as analog (zero crossing) and digital (charge comparison) ones. Their performances were explained and compared. The last part of this work reports on few applications where neutron detection is essential and can be improved with the use of boron loaded plastic scintillators. In particular, the cases of doped scintillation fibers, neutron spectrometry devices and more over neutron multiplicity counting devices are presented. (author)

  2. Study of hydrogenated amorphous silicon devices under intense electric field: application to nuclear detection

    International Nuclear Information System (INIS)

    Ilie, A.

    1996-01-01

    The goal of this work was the study, development and optimization of hydrogenated amorphous silicon (a-Si:H) devices for use in detection of ionizing radiation in applications connected to the nuclear industry. Thick p-i-n devices, capable of withstanding large electric fields (up to 10 6 V/cm) with small currents (nA/cm 2 ), were proposed and developed. In order to decrease fabrication time, films were made using the 'He diluted' PECVD process and compared to standard a-Si:H films. Aspects connected to specific detector applications as well as to the fundamental physics of a-Si:H were considered: the internal electric field technique, in which the depletion charge was measured as a function of the applied bias voltage; study of the leakage current of p-i-n devices permitted us to demonstrate different regimes: depletion, field-enhanced thermal generation and electronic injection across the p layer. The effect of the electric field on the thermal generation of the carriers was studied considering the Poole-Frenkel and tunneling mechanisms. A model was developed taking under consideration the statistics of the correlated states and electron-phonon coupling. The results suggest that mechanisms not included in the 'standard model' of a Si:h need to be considered, such as defect relaxation, a filed-dependent mobility edge etc...; a new metastable phenomenon, called 'forming', induced by prolonged exposure to a strong electric field, was observed and studied. It is characterized by marked decrease of the leakage current and the detector noise, and increase in the breakdown voltage, as well as an improvement of carrier collection efficiency. This forming process appears to be principally due to an activation of the dopants in the p layer; finally, the capacity of thick p-i-n a Si:H devices to detect ionizing radiation has been evaluated. We show that it is possible, with 20-50 micron thick p-i-n devices, to detect the full spectrum of alpha and beta particles. With an

  3. Field Prototype of the ENEA Neutron Active Interrogation Device for the Detection of Dirty Bombs

    Directory of Open Access Journals (Sweden)

    Nadia Cherubini

    2016-10-01

    Full Text Available The Italian National Agency for New Technologies, Energy, and Sustainable Economic Development (ENEA Neutron Active Interrogation (NAI device is a tool designed to improve CBRNE defense. It is designed to uncover radioactive and nuclear threats including those in the form of Improvised Explosive Devices (IEDs, the so-called “dirty bombs”. The NAI device, at its current development stage, allows to detect 6 g of 235U hidden in a package. It is easily transportable, light in weight, and with a real-time response. Its working principle is based on two stages: (1 an “active” stage in which neutrons are emitted by a neutron generator to interact with the item under inspection, and (2 a “passive” stage in which secondary neutrons are detected originating a signal that, once processed, allows recognition of the offence. In particular, a clear indication of the potential threat is obtained by a dedicated software based on the Differential Die-Away Time Analysis method.

  4. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces.

    Science.gov (United States)

    Rams, Thomas E; Alwaqyan, Abdulaziz Y

    2017-10-01

    This study assessed the reproducibility of a red diode laser device, and its capability to detect dental calculus in vitro on human tooth root surfaces. On each of 50 extracted teeth, a calculus-positive and calculus-free root surface was evaluated by two independent examiners with a low-power indium gallium arsenide phosphide diode laser (DIAGNOdent) fitted with a periodontal probe-like sapphire tip and emitting visible red light at 655 nm wavelength. Laser autofluorescence intensity readings of examined root surfaces were scored on a 0-99 scale, with duplicate assessments performed using the laser probe tip directed both perpendicular and parallel to evaluated tooth root surfaces. Pearson correlation coefficients of untransformed measurements, and kappa analysis of data dichotomized with a >40 autofluorescence intensity threshold, were calculated to assess intra- and inter-examiner reproducibility of the laser device. Mean autofluorescence intensity scores of calculus-positive and calculus-free root surfaces were evaluated with the Student's t -test. Excellent intra- and inter-examiner reproducibility was found for DIAGNOdent laser autofluorescence intensity measurements, with Pearson correlation coefficients above 94%, and kappa values ranging between 0.96 and 1.0, for duplicate readings taken with both laser probe tip orientations. Significantly higher autofluorescence intensity values were measured when the laser probe tip was directed perpendicular, rather than parallel, to tooth root surfaces. However, calculus-positive roots, particularly with calculus in markedly-raised ledges, yielded significantly greater mean DIAGNOdent laser autofluorescence intensity scores than calculus-free surfaces, regardless of probe tip orientation. DIAGNOdent autofluorescence intensity values >40 exhibited a stronger association with calculus (36.6 odds ratio) then measurements of ≥5 (20.1 odds ratio) when the laser probe tip was advanced parallel to root surfaces. Excellent

  5. Visible light communication and indoor positioning using a-SiCH device as receiver

    Science.gov (United States)

    Vieira, M. A.; Vieira, M.; Louro, P.; Vieira, P.; Fantoni, A.

    2017-08-01

    An indoor positioning system were trichromatic white LEDs are used both for illumination proposes and as transmitters and an optical processor, based on a-SiC:H technology, as mobile receiver is presented. OOK modulation scheme is used, and it provides a good trade-off between system performance and implementation complexity. The relationship between the transmitted data and the received digital output levels is decoded. The system topology for positioning is a self-positioning system in which the measuring unit is mobile. This unit receives the signals of several transmitters in known locations, and has the capability to compute its location based on the measured signals. LED bulbs work as transmitters, sending information together with different IDs related to their physical locations. A triangular topology for the unit cell is analysed. A 2D localization design, demonstrated by a prototype implementation is presented. Fine-grained indoor localization is tested. The received signal is used in coded multiplexing techniques for supporting communications and navigation concomitantly on the same channel. The position is estimated through the visible multilateration metodh using several non-collinear transmitters. The location and motion information is found by mapping position and estimates the location areas. Data analysis showed that by using a pinpin double photodiode based on a a-SiC:H heterostucture as receiver, and RBGLEDs as transmitters it is possible not only to determine the mobile target's position but also to infer the motion direction over time, along with the received information in each position.

  6. The ligase chain reaction as a primary screening tool for the detection of culture positive tuberculosis.

    LENUS (Irish Health Repository)

    O'Connor, T M

    2012-02-03

    BACKGROUND: The ligase chain reaction Mycobacterium tuberculosis assay uses ligase chain reaction technology to detect tuberculous DNA sequences in clinical specimens. A study was undertaken to determine its sensitivity and specificity as a primary screening tool for the detection of culture positive tuberculosis. METHODS: The study was conducted on 2420 clinical specimens (sputum, bronchoalveolar lavage fluid, pleural fluid, urine) submitted for primary screening for Mycobacterium tuberculosis to a regional medical microbiology laboratory. Specimens were tested in parallel with smear, ligase chain reaction, and culture. RESULTS: Thirty nine patients had specimens testing positive by the ligase chain reaction assay. Thirty two patients had newly diagnosed tuberculosis, one had a tuberculosis relapse, three had tuberculosis (on antituberculous therapy when tested), and three had healed tuberculosis. In the newly diagnosed group specimens were smear positive in 21 cases (66%), ligase chain reaction positive in 30 cases (94%), and culture positive in 32 cases (100%). Using a positive culture to diagnose active tuberculosis, the ligase chain reaction assay had a sensitivity of 93.9%, a specificity of 99.8%, a positive predictive value of 83.8%, and a negative predictive value of 99.9%. CONCLUSIONS: This study is the largest clinical trial to date to report the efficacy of the ligase chain reaction as a primary screening tool to detect Mycobacterium tuberculosis infection. The authors conclude that ligase chain reaction is a useful primary screening test for tuberculosis, offering speed and discrimination in the early stages of diagnosis and complementing traditional smear and culture techniques.

  7. Efficient examination to detect the location of cancer in cases with positive sputum cytology

    International Nuclear Information System (INIS)

    Moriya, Hiroshi; Yaginuma, Koji; Shibuya, Hiroko

    1993-01-01

    In order to localize cancers in 55 cases with positive sputum cytology, we examined chest CT and otolaryngeal findings, in addition to performing bronchoscopic examinations. Consequently, 30 cases had lung cancer, 5 had laryngopharyngeal cancer and 3 had cancer of the oral cavity. Otolaryngeal observation was useful for detection of these cancers of the upper respiratory tract. In 30 lung cancers, 23 were roentgenographically occult cancers. But, among these 23, 12 had positive findings on chest CT. CT was useful for the cases of roentgenographically occult lung cancer. Especially, CT was very effective for detection of small cancer lesions in the peripheral lung, which were undetectable bronchofiberscopically. Three of 20 cases, in which no cancers were detected after the initial examination, had cancer lesions 1-2 years later. These results suggest that CT, otolaryngeal observation and intensive follow-up of undetectable cases are useful for localizing cancer in cases with positive sputum cytology. (author)

  8. SU-E-J-15: Automatically Detect Patient Treatment Position and Orientation in KV Portal Images

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, J [Washington University in St Louis, Taian, Shandong (China); Yang, D [Washington University School of Medicine, St Louis, MO (United States)

    2015-06-15

    Purpose: In the course of radiation therapy, the complex information processing workflow will Result in potential errors, such as incorrect or inaccurate patient setups. With automatic image check and patient identification, such errors could be effectively reduced. For this purpose, we developed a simple and rapid image processing method, to automatically detect the patient position and orientation in 2D portal images, so to allow automatic check of positions and orientations for patient daily RT treatments. Methods: Based on the principle of portal image formation, a set of whole body DRR images were reconstructed from multiple whole body CT volume datasets, and fused together to be used as the matching template. To identify the patient setup position and orientation shown in a 2D portal image, the 2D portal image was preprocessed (contrast enhancement, down-sampling and couch table detection), then matched to the template image so to identify the laterality (left or right), position, orientation and treatment site. Results: Five day’s clinical qualified portal images were gathered randomly, then were processed by the automatic detection and matching method without any additional information. The detection results were visually checked by physicists. 182 images were correct detection in a total of 200kV portal images. The correct rate was 91%. Conclusion: The proposed method can detect patient setup and orientation quickly and automatically. It only requires the image intensity information in KV portal images. This method can be useful in the framework of Electronic Chart Check (ECCK) to reduce the potential errors in workflow of radiation therapy and so to improve patient safety. In addition, the auto-detection results, as the patient treatment site position and patient orientation, could be useful to guide the sequential image processing procedures, e.g. verification of patient daily setup accuracy. This work was partially supported by research grant from

  9. SU-E-J-15: Automatically Detect Patient Treatment Position and Orientation in KV Portal Images

    International Nuclear Information System (INIS)

    Qiu, J; Yang, D

    2015-01-01

    Purpose: In the course of radiation therapy, the complex information processing workflow will Result in potential errors, such as incorrect or inaccurate patient setups. With automatic image check and patient identification, such errors could be effectively reduced. For this purpose, we developed a simple and rapid image processing method, to automatically detect the patient position and orientation in 2D portal images, so to allow automatic check of positions and orientations for patient daily RT treatments. Methods: Based on the principle of portal image formation, a set of whole body DRR images were reconstructed from multiple whole body CT volume datasets, and fused together to be used as the matching template. To identify the patient setup position and orientation shown in a 2D portal image, the 2D portal image was preprocessed (contrast enhancement, down-sampling and couch table detection), then matched to the template image so to identify the laterality (left or right), position, orientation and treatment site. Results: Five day’s clinical qualified portal images were gathered randomly, then were processed by the automatic detection and matching method without any additional information. The detection results were visually checked by physicists. 182 images were correct detection in a total of 200kV portal images. The correct rate was 91%. Conclusion: The proposed method can detect patient setup and orientation quickly and automatically. It only requires the image intensity information in KV portal images. This method can be useful in the framework of Electronic Chart Check (ECCK) to reduce the potential errors in workflow of radiation therapy and so to improve patient safety. In addition, the auto-detection results, as the patient treatment site position and patient orientation, could be useful to guide the sequential image processing procedures, e.g. verification of patient daily setup accuracy. This work was partially supported by research grant from

  10. The Role of the Propagation Environment in RSS-Based Indoor Positioning Using Mass Market Devices

    DEFF Research Database (Denmark)

    Pelosi, Mauro; Pedersen, Gert Frølund; Della Rosa, Francescantonio

    2012-01-01

    This paper deals with the propagation channel challenges affecting indoor positioning. Several methods are reviewed and experimental results are provided, showing that the pathloss method is preferable with respect to fingerprinting because of its intrinsic complexity and uncertain effective reli...

  11. Quantum dots for future nanophotonic devices : lateral ordering, position, and number control

    NARCIS (Netherlands)

    Nötzel, R.; Sritirawisarn, N.; Selçuk, E.; Wang, H.; Yuan, J.

    2009-01-01

    We review our recent advances in the lateral ordering, position, and number control of self-organized epitaxial semiconductor quantum dots based on self-organized anisotropic strain engineering, growth on patterned substrates, and selective area growth.

  12. An ontology-based annotation of cardiac implantable electronic devices to detect therapy changes in a national registry.

    Science.gov (United States)

    Rosier, Arnaud; Mabo, Philippe; Chauvin, Michel; Burgun, Anita

    2015-05-01

    The patient population benefitting from cardiac implantable electronic devices (CIEDs) is increasing. This study introduces a device annotation method that supports the consistent description of the functional attributes of cardiac devices and evaluates how this method can detect device changes from a CIED registry. We designed the Cardiac Device Ontology, an ontology of CIEDs and device functions. We annotated 146 cardiac devices with this ontology and used it to detect therapy changes with respect to atrioventricular pacing, cardiac resynchronization therapy, and defibrillation capability in a French national registry of patients with implants (STIDEFIX). We then analyzed a set of 6905 device replacements from the STIDEFIX registry. Ontology-based identification of therapy changes (upgraded, downgraded, or similar) was accurate (6905 cases) and performed better than straightforward analysis of the registry codes (F-measure 1.00 versus 0.75 to 0.97). This study demonstrates the feasibility and effectiveness of ontology-based functional annotation of devices in the cardiac domain. Such annotation allowed a better description and in-depth analysis of STIDEFIX. This method was useful for the automatic detection of therapy changes and may be reused for analyzing data from other device registries.

  13. High-Speed Device-Independent Quantum Random Number Generation without a Detection Loophole

    Science.gov (United States)

    Liu, Yang; Yuan, Xiao; Li, Ming-Han; Zhang, Weijun; Zhao, Qi; Zhong, Jiaqiang; Cao, Yuan; Li, Yu-Huai; Chen, Luo-Kan; Li, Hao; Peng, Tianyi; Chen, Yu-Ao; Peng, Cheng-Zhi; Shi, Sheng-Cai; Wang, Zhen; You, Lixing; Ma, Xiongfeng; Fan, Jingyun; Zhang, Qiang; Pan, Jian-Wei

    2018-01-01

    Quantum mechanics provides the means of generating genuine randomness that is impossible with deterministic classical processes. Remarkably, the unpredictability of randomness can be certified in a manner that is independent of implementation devices. Here, we present an experimental study of device-independent quantum random number generation based on a detection-loophole-free Bell test with entangled photons. In the randomness analysis, without the independent identical distribution assumption, we consider the worst case scenario that the adversary launches the most powerful attacks against the quantum adversary. After considering statistical fluctuations and applying an 80 Gb ×45.6 Mb Toeplitz matrix hashing, we achieve a final random bit rate of 114 bits /s , with a failure probability less than 10-5. This marks a critical step towards realistic applications in cryptography and fundamental physics tests.

  14. Research on the Filtering Algorithm in Speed and Position Detection of Maglev Trains

    Directory of Open Access Journals (Sweden)

    Chunhui Dai

    2011-07-01

    Full Text Available This paper introduces in brief the traction system of a permanent magnet electrodynamic suspension (EDS train. The synchronous traction mode based on long stators and track cable is described. A speed and position detection system is recommended. It is installed on board and is used as the feedback end. Restricted by the maglev train’s structure, the permanent magnet electrodynamic suspension (EDS train uses the non-contact method to detect its position. Because of the shake and the track joints, the position signal sent by the position sensor is always aberrant and noisy. To solve this problem, a linear discrete track-differentiator filtering algorithm is proposed. The filtering characters of the track-differentiator (TD and track-differentiator group are analyzed. The four series of TD are used in the signal processing unit. The result shows that the track-differentiator could have a good effect and make the traction system run normally.

  15. Research on the filtering algorithm in speed and position detection of maglev trains.

    Science.gov (United States)

    Dai, Chunhui; Long, Zhiqiang; Xie, Yunde; Xue, Song

    2011-01-01

    This paper introduces in brief the traction system of a permanent magnet electrodynamic suspension (EDS) train. The synchronous traction mode based on long stators and track cable is described. A speed and position detection system is recommended. It is installed on board and is used as the feedback end. Restricted by the maglev train's structure, the permanent magnet electrodynamic suspension (EDS) train uses the non-contact method to detect its position. Because of the shake and the track joints, the position signal sent by the position sensor is always aberrant and noisy. To solve this problem, a linear discrete track-differentiator filtering algorithm is proposed. The filtering characters of the track-differentiator (TD) and track-differentiator group are analyzed. The four series of TD are used in the signal processing unit. The result shows that the track-differentiator could have a good effect and make the traction system run normally.

  16. Microfluidic biosensing device for controlled trapping and detection of magnetic microparticles

    KAUST Repository

    Giouroudi, Ioanna

    2013-05-01

    A magnetic microfluidic device is proposed to transport and trap magnetic microparticles (MPs) to a sensing area. Once the MPs are concentrated in the vicinity of the sensing area, a spin valve type giant magnetoresistance (GMR) sensor is used to detect their presence. The device is used for the detection of biological targets once they are labeled with functionalized MPs. Manipulation of the MPs is achieved by employing a microstructure which consists of planar ringshaped conducting microloops. These microloops are designed to produce high magnetic field gradients which are directly proportional to the force applied to manipulate the MPs. Upon sequential application of current, starting from the outermost loop, MPs are directed to move from the outermost to the innermost loop. The speed with which the MPs move towards the sensing area is controlled by the speed with which current is switched between the loops. On top of the microstructure, a microfluidic channel is fabricated using a standard photolithography technique and a dry film resist layer (Ordyl SY355). Experimental results showed that MPs of different diameters were successfully trapped at the sensing area and detected by the GMR sensor located directly under the innermost square loop. © 2013 IEEE.

  17. Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch.

    Science.gov (United States)

    Du, Yi-Chun; Lim, Bee-Yen; Ciou, Wei-Siang; Wu, Ming-Jui

    2016-06-09

    Hemodialysis (HD) is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients.

  18. Novel Wearable Device for Blood Leakage Detection during Hemodialysis Using an Array Sensing Patch

    Directory of Open Access Journals (Sweden)

    Yi-Chun Du

    2016-06-01

    Full Text Available Hemodialysis (HD is a clinical treatment that requires the puncturing of the body surface. However, needle dislodgement can cause a high risk of blood leakage and can be fatal to patients. Previous studies proposed several devices for blood leakage detection using optical or electrical techniques. Nonetheless, these methods used single-point detection and the design was not suitable for multi-bed monitoring. This study proposed a novel wearable device for blood leakage monitoring during HD using an array sensing patch. The array sensing patch combined with a mapping circuit and a wireless module could measure and transmit risk levels. The different risk levels could improve the working process of healthcare workers, and enhance their work efficiency and reduce inconvenience due to false alarms. Experimental results showed that each point of the sensing array could detect up to 0.1 mL of blood leakage and the array sensing patch supports a risk level monitoring system up to 8 h to alert healthcare personnel of pertinent danger to the patients.

  19. A device for the color measurement and detection of spots on the skin

    Science.gov (United States)

    Pladellorens, Josep; Pintó, Agusti; Segura, Jordi; Cadevall, Cristina; Antó, Joan; Pujol, Jaume; Vilaseca, Meritxell; Coll, Joaquín

    2006-08-01

    In this work we present a new and fast easyâ€``to-use device which allows the measurement of color and the detection of spots on the human skin. The developed device is highly practical for relatively untrained operators and uses inexpensive consumer equipment, such as a CCD color camera, a light source composed of LEDs and a laptop. In order to perform these measurements the system takes a picture of the skin. After that, the operator selects the region of the skin to be analyzed on the image displayed and the system provides the CIELAB color coordinates, the chroma and the ITA parameter (Individual Tipology Angle), allowing the comparison with other reference images by means of the CIELAB color differences. The system also detects the spots, such as freckles, age spots, sun spots, pimples, black heads, etc., in a determined region, allowing the objective measurement of their size and area. The knowledge of the color of the skin and the detection of spots can be useful in several areas such as in dermatology applications, the cosmetics industry, the biometrics field, health care etc.

  20. Anti-theft device staining on banknotes detected by mass spectrometry imaging.

    Science.gov (United States)

    Correa, Deleon Nascimento; Zacca, Jorge Jardim; Rocha, Werickson Fortunato de Carvalho; Borges, Rodrigo; de Souza, Wanderley; Augusti, Rodinei; Eberlin, Marcos Nogueira; Vendramini, Pedro Henrique

    2016-03-01

    We describe the identification and limits of detection of ink staining by mass spectrometry imaging (MSI), as used in anti-theft devices (ATDs). Such ink staining is applied to banknotes during automated teller machine (ATM) explosions. Desorption electrospray ionization (DESI) coupled with high-resolution and high-accuracy orbitrap mass spectrometry (MS) and a moving stage device were applied to obtain 2D molecular images of the major dyes used for staining, that is, 1-methylaminoanthraquinone (MAAQ), rhodamine B (RB) and rhodamine 6G (R6G). MAAQ could not be detected because of its inefficient desorption by DESI from the banknote cellulose surface. By contrast, ATD staining on banknotes is perceptible by the human naked eye only at concentrations higher than 0.2 μg cm(-2), whereas both RB and R6G at concentrations 200 times lower (as low as 0.001 μg cm(-2)) could be easily detected and imaged by DESI-MSI, with selective and specific identification of each analyte and their spatial distribution on samples from suspects. This technique is non-destructive, and no sample preparation is required, which ensures sample preservation for further forensic investigations. Copyright © 2016. Published by Elsevier Ireland Ltd.

  1. Dynamic detection of spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance (Conference Presentation)

    Science.gov (United States)

    Crowell, Paul A.; Liu, Changjiang; Patel, Sahil; Peterson, Tim; Geppert, Chad C.; Christie, Kevin; Stecklein, Gordon; Palmstrøm, Chris J.

    2016-10-01

    A distinguishing feature of spin accumulation in ferromagnet-semiconductor devices is its precession in a magnetic field. This is the basis for detection techniques such as the Hanle effect, but these approaches become ineffective as the spin lifetime in the semiconductor decreases. For this reason, no electrical Hanle measurement has been demonstrated in GaAs at room temperature. We show here that by forcing the magnetization in the ferromagnet to precess at resonance instead of relying only on the Larmor precession of the spin accumulation in the semiconductor, an electrically generated spin accumulation can be detected up to 300 K. The injection bias and temperature dependence of the measured spin signal agree with those obtained using traditional methods. We further show that this new approach enables a measurement of short spin lifetimes (C. Liu, S. J. Patel, T. A. Peterson, C. C. Geppert, K. D. Christie, C. J. Palmstrøm, and P. A. Crowell, "Dynamic detection of electron spin accumulation in ferromagnet-semiconductor devices by ferromagnetic resonance," Nature Communications 7, 10296 (2016). http://dx.doi.org/10.1038/ncomms10296

  2. Non-Imaging Speckle Interferometry forHigh Speed Nanometer-Scale Position Detection

    OpenAIRE

    van Putten, E. G.; Lagendijk, A.; Mosk, A. P.

    2011-01-01

    We experimentally demonstrate a non-imaging approach to displacement measurement for complex scattering materials. By spatially controlling the wave front of the light that incidents on the material we concentrate the scattered light in a focus on a designated position. This wave front acts as an unique optical fingerprint that enables precise position detection of the illuminated material by simply measuring the intensity in the focus. By combining two optical fingerprints we demonstrate pos...

  3. Computerized Neuropsychological Assessment Devices: Joint Position Paper of the American Academy of Clinical Neuropsychology and the National Academy of Neuropsychology†

    Science.gov (United States)

    Bauer, Russell M.; Iverson, Grant L.; Cernich, Alison N.; Binder, Laurence M.; Ruff, Ronald M.; Naugle, Richard I.

    2012-01-01

    This joint position paper of the American Academy of Clinical Neuropsychology and the National Academy of Neuropsychology sets forth our position on appropriate standards and conventions for computerized neuropsychological assessment devices (CNADs). In this paper, we first define CNADs and distinguish them from examiner-administered neuropsychological instruments. We then set forth position statements on eight key issues relevant to the development and use of CNADs in the healthcare setting. These statements address (a) device marketing and performance claims made by developers of CNADs; (b) issues involved in appropriate end-users for administration and interpretation of CNADs; (c) technical (hardware/software/firmware) issues; (d) privacy, data security, identity verification, and testing environment; (e) psychometric development issues, especially reliability, and validity; (f) cultural, experiential, and disability factors affecting examinee interaction with CNADs; (g) use of computerized testing and reporting services; and (h) the need for checks on response validity and effort in the CNAD environment. This paper is intended to provide guidance for test developers and users of CNADs that will promote accurate and appropriate use of computerized tests in a way that maximizes clinical utility and minimizes risks of misuse. The positions taken in this paper are put forth with an eye toward balancing the need to make validated CNADs accessible to otherwise underserved patients with the need to ensure that such tests are developed and utilized competently, appropriately, and with due concern for patient welfare and quality of care. PMID:22382386

  4. A device for the color measurement and detection of spots on the skin.

    Science.gov (United States)

    Pladellorens, Josep; Pintó, Agustí; Segura, Jordi; Cadevall, Cristina; Antó, Joan; Pujol, Jaume; Vilaseca, Meritxell; Coll, Joaquín

    2008-02-01

    In this work, we present a new and fast easy-to-use device that allows the measurement of color and the detection of spots on the human skin. The developed device is highly practical for relatively untrained operators and uses inexpensive consumer equipment, such as a CCD color camera, a light source composed of LEDs and a laptop. The knowledge of the color of the skin and the detection of spots can be useful in several areas such as in dermatology applications, the cosmetics industry, the biometrics field, health care, etc. In order to perform these measurements the system takes a picture of the skin. After that, the operator selects the region of the skin to be analyzed on the displayed image and the system provides the CIELAB color coordinates, the chroma and the ITA parameter (Individual Tipology Angle), allowing the comparison with other reference images by means of CIELAB color differences. The system also detects spots, such as freckles, age spots, sunspots, pimples, black heads, etc., in a determined region, allowing the objective measurement of their size and area. The colorimetric information provided by a conventional spectrophotometer for the tested samples and the computed values obtained with the new developed system are quite similar, meaning that the developed system can be used to perform color measurements with relatively high accuracy. On the other hand, the feasibility of the system in order to detect and measure spots on the human skin has also been checked over a great amount of images, obtaining results with high precision. In this work, we present a new system that may be very useful in order to measure the color and to detect spots of the skin. Its portability and easy applicability will be very useful in dermatologic and cosmetic studies.

  5. Reliability of recordings of subgingival calculus detected using an ultrasonic device.

    Science.gov (United States)

    Corraini, Priscila; López, Rodrigo

    2015-04-01

    To assess the intra-examiner reliability of recordings of subgingival calculus detected using an ultrasonic device, and to investigate the influence of subject-, tooth- and site-level factors on the reliability of these subgingival calculus recordings. On two occasions, within a 1-week interval, 147 adult periodontitis patients received a full-mouth clinical periodontal examination by a single trained examiner. Duplicate subgingival calculus recordings, in six sites per tooth, were obtained using an ultrasonic device for calculus detection and removal. Agreement was observed in 65 % of the 22,584 duplicate subgingival calculus recordings, ranging 45 % to 83 % according to subject. Using hierarchical modeling, disagreements in the subgingival calculus duplicate recordings were more likely in all other sites than the mid-buccal, and in sites harboring supragingival calculus. Disagreements were less likely in sites with PD ≥  4 mm and with furcation involvement  ≥  degree 2. Bleeding on probing or suppuration did not influence the reliability of subgingival calculus. At the subject-level, disagreements were less likely in patients presenting with the highest and lowest extent categories of the covariate subgingival calculus. The reliability of subgingival calculus recordings using the ultrasound technology is reasonable. The results of the present study suggest that the reliability of subgingival calculus recordings is not influenced by the presence of inflammation. Moreover, subgingival calculus can be more reliably detected using the ultrasound device at sites with higher need for periodontal therapy, i.e., sites presenting with deep pockets and premolars and molars with furcation involvement.

  6. Multiparameter double hole contrast detail phantom: Ability to detect image displacement due to off position anode stem

    International Nuclear Information System (INIS)

    Pauzi, Nur Farahana; Majid, Zafri Azran Abdul; Sapuan, Abdul Halim; Junet, Laila Kalidah; Azemin, Mohd Zulfaezal Che

    2015-01-01

    Contrast Detail phantom is a quality control tool to analyze the performance of imaging devices. Currently, its function is solely to evaluate the contrast detail characteristic of imaging system. It consists of drilled hole which gives effect to the penetration of x-ray beam divergence to pass through the base of each hole. This effect will lead to false appearance of image from its original location but it does not being visualized in the radiograph. In this study, a new design of Contrast Detail phantom’s hole which consists of double hole construction has been developed. It can detect the image displacement which is due to off position of anode stem from its original location. The double hole differs from previous milled hole, whereby it consists of combination of different hole diameters. Small hole diameter (3 mm) is positioned on top of larger hole diameter (10 mm). The thickness of double hole acrylic blocks is 13 mm. Result revealed that Multiparameter Double Hole Contrast Detail phantom can visualize the shifted flaw image quality produced by x-ray machine due to improper position of the anode stem which is attached to rotor and stator. The effective focal spot of x-ray beam also has been shifted from the center of collimator as a result of off-position anode stem. As a conclusion, the new design of double hole Contrast Detail phantom able to measure those parameters in a well manner

  7. Multiparameter double hole contrast detail phantom: Ability to detect image displacement due to off position anode stem

    Energy Technology Data Exchange (ETDEWEB)

    Pauzi, Nur Farahana; Majid, Zafri Azran Abdul; Sapuan, Abdul Halim; Junet, Laila Kalidah [Department of Diagnostic Imaging and Radiotherapy, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Istana, 25200, Kuantan, Pahang (Malaysia); Azemin, Mohd Zulfaezal Che [Department of Optometry and Visual Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Jalan Istana, 25200, Kuantan, Pahang (Malaysia)

    2015-04-24

    Contrast Detail phantom is a quality control tool to analyze the performance of imaging devices. Currently, its function is solely to evaluate the contrast detail characteristic of imaging system. It consists of drilled hole which gives effect to the penetration of x-ray beam divergence to pass through the base of each hole. This effect will lead to false appearance of image from its original location but it does not being visualized in the radiograph. In this study, a new design of Contrast Detail phantom’s hole which consists of double hole construction has been developed. It can detect the image displacement which is due to off position of anode stem from its original location. The double hole differs from previous milled hole, whereby it consists of combination of different hole diameters. Small hole diameter (3 mm) is positioned on top of larger hole diameter (10 mm). The thickness of double hole acrylic blocks is 13 mm. Result revealed that Multiparameter Double Hole Contrast Detail phantom can visualize the shifted flaw image quality produced by x-ray machine due to improper position of the anode stem which is attached to rotor and stator. The effective focal spot of x-ray beam also has been shifted from the center of collimator as a result of off-position anode stem. As a conclusion, the new design of double hole Contrast Detail phantom able to measure those parameters in a well manner.

  8. Positive dielectrophoresis used for selective trapping of nanoparticles from flue gas in a gradient field electrodes device

    Energy Technology Data Exchange (ETDEWEB)

    Lungu, Mihail, E-mail: lmihai@physics.uvt.ro; Neculae, Adrian; Lungu, Antoanetta [West University of Timisoara, Faculty of Physics (Romania)

    2015-12-15

    This paper investigates the possibility to use positive dielectrophoresis (pDEP) for selective trapping of nanoparticle dispersed in flue gas in a vertical pDEP-based microfluidic system. The experimental gradient field electrodes device contains as main part a vertical deposition plate with parallel planar electrodes in single connection on an insulating substrate, parallel to the reference electrode—a dielectric plate with a metalized side. The performances of the device were described and analyzed by numerical simulations and experimental tests in terms of two new specific parameters, called Retention rate and Filtration, related to the trapping of nanoparticles in suspension inside the device and the consequent purification of flue gas. It is outlined, both numerically and experimentally, that the concentration of particles trapped inside the device decreases as they are moving away from the inlet zone. The experimental results also highlight the nanoparticle size distribution of the particles collected from the deposition plate, using a nanoparticle tracking analysis method, and their selective capture on the deposition plate, depending on the amplitude and shape of the applied voltage, in a good agreement with the numerical simulations results.

  9. Analysis of an ultrasonic level device for in-core Pressurized Water Reactor coolant detection

    International Nuclear Information System (INIS)

    Johnson, K.R.

    1981-01-01

    A rigorous semi-empirical approach was undertaken to model the response of an ultrasonic level device (ULD) for application to in-core coolant detection in Pressurized Water Reactors (PWRs). An equation is derived for the torsional wave velocity v/sub t phi/ in the ULD. Existing data reduction techniques were analyzed and compared to results from use of the derived equation. Both methods yield liquid level measurements with errors of approx. 5%. A sensitivity study on probe performance at reactor conditions predicts reduced level responsivity from data at lower temperatures

  10. Device for the detection of a gaseous phase inside a nuclear reactor

    International Nuclear Information System (INIS)

    Marini, Jean; Weilbacher, J.C.

    1982-01-01

    The detection device includes a multiplicity of ultrasonic emitters secured to the upper side of the closures of at least some of the adaptor tubes so that each emitter receiver directs a beam of ultrasonic sounds inside the vessel in parallel with the axis of the corresponding tube, the latter being fitted with at least one receiver placed inside the tube on the path of the ultrasonic beam. The presence of a gaseous phase in the vessel results in the generation of bubbles some of which reach the inside of the instrumented adaptors. The ultrasonic beam is therefore occulted by this gas, thereby producting a reduced echo [fr

  11. Methods, microfluidic devices, and systems for detection of an active enzymatic agent

    Science.gov (United States)

    Sommer, Gregory J; Hatch, Anson V; Singh, Anup K; Wang, Ying-Chih

    2014-10-28

    Embodiments of the present invention provide methods, microfluidic devices, and systems for the detection of an active target agent in a fluid sample. A substrate molecule is used that contains a sequence which may cleave in the presence of an active target agent. A SNAP25 sequence is described, for example, that may be cleaved in the presence of Botulinum Neurotoxin. The substrate molecule includes a reporter moiety. The substrate molecule is exposed to the sample, and resulting reaction products separated using electrophoretic separation. The elution time of the reporter moiety may be utilized to identify the presence or absence of the active target agent.

  12. Inadequate peak expiratory flow meter characteristics detected by a computerised explosive decompression device

    DEFF Research Database (Denmark)

    Miller, M.R.; Atkins, P.R.; Pedersen, O.F.

    2003-01-01

    Methods: The dynamic response of mini-Wright (MW), Vitalograph (V), TruZone (TZ), MultiSpiro (MS) and pneumotachograph (PT) flow meters was tested by delivering two differently shaped flow-time profiles from a computer controlled explosive decompression device fitted with a fast response solenoid.......1) and 257 (39.2), respectively, and at ≈200 l/min they were 51 (23.9) and 1 (0.5). All the meters met ATS accuracy requirements when tested with their waveforms. Conclusions: An improved method for testing the dynamic response of flow meters detects marked overshoot (underdamping) of TZ and MS responses...

  13. Serological profile of incidentally detected asymptomatic HBsAg positive subjects (IDAHS)

    International Nuclear Information System (INIS)

    Khokhar, N.; Gill, M.L.

    2004-01-01

    Objective: To evaluate the serological profile of patients with incidentally detected positive hepatitis-B surface antigen (HBsAg) and to asses the risk factors. Design: An observational study. Place and Duration of Study: This study was conducted at Shifa International Hospital, Islamabad from 1999 to 2003. Patients and Methods: All patients who presented to gastroenterology clinic of Shifa Intentional Hospital, Islamabad with positive HBsAg, detected incidentally, were tested for alamine transaminase (ALT), hepatitis Beantigen (HBeAg) and in certain cases hepatitis-B virus DNA (HBV DNA) by polymerase chain reaction (PCR). Their risk factors for acquisition of infection were assessed with specific questions. Results: A total of 224 patients were examined. One hundred sixty-four (73.2%) were male and 60 (26.8%) female. Mean age of all the subjects was 32.45 plus minus 11.85 years. Out of 224 patients, 48 (21.4%) were positive for HBeAg and 176 (78.6%) were negative. Out of 48 subjects who were positive for HBeAg, 36 underwent HBV DNA determination and 32 (88.8%) were positive for HBV DNA. Out of 176 subjects who had negative HBeAg, 46 had elevated ALT and in those HBV DNA was performed and 14 had positive HBV DNA. Most common risk factors detected in these patients were intramuscular injections and surgery, however, in a large number, risk factors were unknown. Conclusion: Twenty-one percent asymptomatic subjects with positive HBsAg were found to be HBeAg positive. A large number of subjects with negative HBeAg had HBV DNA positive suggesting presence of precore mutants. Intramuscular injections and surgery were noted to be frequent risk factors in these subjects. (author)

  14. Detection of drugs in 275 alcohol-positive blood samples of Korean drivers.

    Science.gov (United States)

    Kim, Eunmi; Choe, Sanggil; Lee, Juseon; Jang, Moonhee; Choi, Hyeyoung; Chung, Heesun

    2016-08-01

    Since driving under the influence of drugs (DUID) is as dangerous as drink-driving, many countries regulate DUID by law. However, laws against the use of drugs while driving are not yet established in Korea. In order to investigate the type and frequency of drugs used by drivers in Korea, we analyzed controlled and non-controlled drugs in alcohol-positive blood samples. Total 275 blood samples were taken from Korean drivers, which were positive in roadside alcohol testing. The following analyses were performed: blood alcohol concentrations by GC; screening for controlled drugs by immunoassay and confirmation for positive samples by GC-MS. For the detection of DUID related drugs in blood samples, a total of 49 drugs were selected and were examined by GC-MS. For a rapid detection of these drugs, an automated identification software called "DrugMan" was used. Concentrations of alcohol in 275 blood samples ranged from 0.011 to 0.249% (average 0.119%). Six specimens showed positive results by immunoassay: one methamphetamine and five benzodiazepines I. By GC-MS confirmation, only benzodiazepines in four cases were identified, while methamphetamine and benzodiazepine in two cases were not detected from the presumptive positive blood samples. Using DrugMan, four drugs were detected; chlorpheniramine (5)*, diazepam (4), dextromethorphan (1) and doxylamine (1). In addition, ibuprofen (1), lidocaine (1) and topiramate (1) were also detected as general drugs in blood samples ('*' indicates frequency). The frequency of drug abuse by Korean drivers was relatively low and a total 14 cases were positive in 275 blood samples with a ratio of 5%. However it is necessary to analyze more samples including alcohol negative blood, and to expand the range of drug lists to get the detailed information. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices.

    Science.gov (United States)

    Chen, Guan-Hua; Chen, Wei-Yu; Yen, Yu-Chun; Wang, Chia-Wei; Chang, Huan-Tsung; Chen, Chien-Fu

    2014-07-15

    An on-field colorimetric sensing strategy employing gold nanoparticles (AuNPs) and a paper-based analytical platform was investigated for mercury ion (Hg(2+)) detection at water sources. By utilizing thymine-Hg(2+)-thymine (T-Hg(2+)-T) coordination chemistry, label-free detection oligonucleotide sequences were attached to unmodified gold nanoparticles to provide rapid mercury ion sensing without complicated and time-consuming thiolated or other costly labeled probe preparation processes. Not only is this strategy's sensing mechanism specific toward Hg(2+), rather than other metal ions, but also the conformational change in the detection oligonucleotide sequences introduces different degrees of AuNP aggregation that causes the color of AuNPs to exhibit a mixture variance. To eliminate the use of sophisticated equipment and minimize the power requirement for data analysis and transmission, the color variance of multiple detection results were transferred and concentrated on cellulose-based paper analytical devices, and the data were subsequently transmitted for the readout and storage of results using cloud computing via a smartphone. As a result, a detection limit of 50 nM for Hg(2+) spiked pond and river water could be achieved. Furthermore, multiple tests could be performed simultaneously with a 40 min turnaround time. These results suggest that the proposed platform possesses the capability for sensitive and high-throughput on-site mercury pollution monitoring in resource-constrained settings.

  16. Detection of bacteria in suspension using a superconducting Quantum interference device

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, H.L.; Myers, W.R.; Vreeland, V.J.; Alper, J.D.; Bertozzi, C.R.; Clarke, J.

    2003-06-09

    We demonstrate a technique for detecting magnetically-labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This assay, which is both sensitive and straightforward to perform, can quantify specific bacteria in a sample without the need to immobilize the bacteria or wash away unbound magnetic particles. In the measurement, we add 50 nm diameter superparamagnetic particles, coated with antibodies, to a liquid sample containing L. monocytogenes. We apply a pulsed magnetic field to align the magnetic dipole moments and use a high transition temperature Superconducting Quantum Interference Device (SQUID), an extremely sensitive detector of magnetic flux, to measure the magnetic relaxation signal when the field is turned off. Unbound particles randomize direction by Brownian rotation too quickly to be detected. In contrast, particles bound to L. monocytogenes are effectively immobilized and relax in about 1 s by rotation of the internal dipole moment. This Neel relaxation process is detected by the SQUID. The measurements indicate a detection limit of (5.6 {+-} 1.1) x 10{sup 6} L. monocytogenes for a 20 {micro}L sample volume. If the sample volume were reduced to 1 nL, we estimate that the detection limit could be improved to 230 {+-} 40 L. monocytogenes cells. Time-resolved measurements yield the binding rate between the particles and bacteria.

  17. Detection of bacteria in suspension using a superconducting Quantum interference device

    International Nuclear Information System (INIS)

    Grossman, H.L.; Myers, W.R.; Vreeland, V.J.; Alper, J.D.; Bertozzi, C.R.; Clarke, J.

    2003-01-01

    We demonstrate a technique for detecting magnetically-labeled Listeria monocytogenes and for measuring the binding rate between antibody-linked magnetic particles and bacteria. This assay, which is both sensitive and straightforward to perform, can quantify specific bacteria in a sample without the need to immobilize the bacteria or wash away unbound magnetic particles. In the measurement, we add 50 nm diameter superparamagnetic particles, coated with antibodies, to a liquid sample containing L. monocytogenes. We apply a pulsed magnetic field to align the magnetic dipole moments and use a high transition temperature Superconducting Quantum Interference Device (SQUID), an extremely sensitive detector of magnetic flux, to measure the magnetic relaxation signal when the field is turned off. Unbound particles randomize direction by Brownian rotation too quickly to be detected. In contrast, particles bound to L. monocytogenes are effectively immobilized and relax in about 1 s by rotation of the internal dipole moment. This Neel relaxation process is detected by the SQUID. The measurements indicate a detection limit of (5.6 ± 1.1) x 10 6 L. monocytogenes for a 20 (micro)L sample volume. If the sample volume were reduced to 1 nL, we estimate that the detection limit could be improved to 230 ± 40 L. monocytogenes cells. Time-resolved measurements yield the binding rate between the particles and bacteria

  18. The acceptance of virtual reality devices for cognitive rehabilitation: a report of positive results with schizophrenia.

    Science.gov (United States)

    da Costa, Rosa Maria Esteves Moreira; de Carvalho, Luís Alfredo Vidal

    2004-03-01

    This study presents a process of virtual environment development supported by a cognitive model that is specific to cognitive deficits of diverse disorders or traumatic brain injury, and evaluates the acceptance of computer devices by a group of schizophrenic patients. The subjects that participated in this experiment accepted to work with computers and immersive glasses and demonstrated a high level of interest in the proposed tasks. No problems of illness have been observed. This experiment indicated that further research projects must be carried out to verify the value of virtual reality technology for cognitive rehabilitation of psychiatric patients. The results of the current study represent a small but necessary step in the realization of that potential.

  19. Optimal position of the transmitter coil for wireless power transfer to the implantable device.

    Science.gov (United States)

    Jinghui Jian; Stanaćević, Milutin

    2014-01-01

    The maximum deliverable power through inductive link to the implantable device is limited by the tissue exposure to the electromagnetic field radiation. By moving away the transmitter coil from the body, the maximum deliverable power is increased as the magnitude of the electrical field at the interface with the body is kept constant. We demonstrate that the optimal distance between the transmitter coil and the body is on the order of 1 cm when the current of the transmitter coil is limited to 1 A. We also confirm that the conditions on the optimal frequency of the power transmission and the topology of the transmission coil remain the same as if the coil was directly adjacent to the body.

  20. Position sensitive detection of nuclear radiation mediated by non equilibrium phonons at low temperatures

    Science.gov (United States)

    Pröbst, F.; Peterreins, Th.; Feilitzsch, F. v.; Kraus, H.

    1990-03-01

    Many experiments in nuclear and particle physics would benefit from the development of a device capable of detecting non-ionizing events with a low energy threshold. In this context, we report on experimental tests of a detector based on the registration of nonequilibrium phonons. The device is composed of a silicon single crystal (size: 20×10×3 mm 3) and of an array of superconducting tunnel junctions evaporated onto the surface of the crystal. The junctions serve as sensors for phonons created by absorption of nuclear radiation in the crystal. We show how pulse height analysis and the investigation of time differences between correlated pulses in different junctions can be used to obtain information about the point of absorption.

  1. A pilot study using global positioning systems (GPS) devices and surveys to ascertain older adults' travel patterns.

    Science.gov (United States)

    Yen, Irene H; Leung, Cindy W; Lan, Mars; Sarrafzadeh, Majid; Kayekjian, Karen C; Duru, O Kenrik

    2015-04-01

    Some studies indicate that older adults lead active lives and travel to many destinations including those not in their immediate residential neighborhoods. We used global positioning system (GPS) devices to track the travel patterns of 40 older adults (mean age: 69) in San Francisco and Los Angeles. Study participants wore the GPS devices for 7 days in fall 2010 and winter 2011. We collected survey responses concurrently about travel patterns. GPS data showed a mean of four trips/day, and a mean trip distance of 7.6 km. Survey data indicated that older adults commonly made trips for four activities (e.g., volunteering, work, visiting friends) at least once each week. Older adults regularly travel outside their residential neighborhoods. GPS can document the mode of travel, the path of travel, and the destinations. Surveys can document the purpose of the travel and the impressions or experiences in the specific locations. © The Author(s) 2013.

  2. Necrobiosis lipoidica associated with Hashimoto's thyroiditis and positive detection of ANA and ASMA autoantibodies.

    Science.gov (United States)

    Borgia, Francesco; Russo, Giuseppina T; Villari, Provvidenza; Guarneri, Fabrizio; Cucinotta, Domenico; Cannavò, Serafinella P

    2015-07-01

    Necrobiosis lipoidica (NL) is a rare idiopathic cutaneous condition exceptionally associated with autoimmune thyroiditis. We describe the first case of NL, Hashimoto's thyroiditis and positive detection of autoantibodies. Appropriate screening for NL in patients with autoimmune thyroiditis may clarify its real incidence and the existence of a common pathogenetic pathway.

  3. Multilevel Contextual 3-D CNNs for False Positive Reduction in Pulmonary Nodule Detection.

    Science.gov (United States)

    Dou, Qi; Chen, Hao; Yu, Lequan; Qin, Jing; Heng, Pheng-Ann

    2017-07-01

    False positive reduction is one of the most crucial components in an automated pulmonary nodule detection system, which plays an important role in lung cancer diagnosis and early treatment. The objective of this paper is to effectively address the challenges in this task and therefore to accurately discriminate the true nodules from a large number of candidates. We propose a novel method employing three-dimensional (3-D) convolutional neural networks (CNNs) for false positive reduction in automated pulmonary nodule detection from volumetric computed tomography (CT) scans. Compared with its 2-D counterparts, the 3-D CNNs can encode richer spatial information and extract more representative features via their hierarchical architecture trained with 3-D samples. More importantly, we further propose a simple yet effective strategy to encode multilevel contextual information to meet the challenges coming with the large variations and hard mimics of pulmonary nodules. The proposed framework has been extensively validated in the LUNA16 challenge held in conjunction with ISBI 2016, where we achieved the highest competition performance metric (CPM) score in the false positive reduction track. Experimental results demonstrated the importance and effectiveness of integrating multilevel contextual information into 3-D CNN framework for automated pulmonary nodule detection in volumetric CT data. While our method is tailored for pulmonary nodule detection, the proposed framework is general and can be easily extended to many other 3-D object detection tasks from volumetric medical images, where the targeting objects have large variations and are accompanied by a number of hard mimics.

  4. Study of a charge-coupled device for high-energy-particle detection

    International Nuclear Information System (INIS)

    Bhuiya, A.H.

    1983-05-01

    This presentation is based on measurements made to evaluate the application of charge-coupled devices as detectors of high-energy particles. The experiment was performed with a Fairchild Linear 256-Cell CCD111 array (size 8μm x 17 μm/cell), utilizing a light source instead of a particle beam. It was observed that the minimum detectable signal was limited to approx. 488 electrons at -50 0 C, where the readout and exposure times were about 260 ms and 400 ms respectively. The transfer inefficiency of the CCD111 was determined to be approx. 10 -4 . It has been concluded that at a lower temperature (approx. -100 0 C) or with faster readout (approx. 10 ms), the CCD111 would be able to detect the total deposited energy of minimum-ionizing charged particles

  5. Low-Power Implantable Device for Onset Detection and Subsequent Treatment of Epileptic Seizures: A Review

    Directory of Open Access Journals (Sweden)

    Muhammad Tariqus Salam

    2010-01-01

    Full Text Available Over the past few years, there has been growing interest in neuro-responsive intracerebral local treatments of seizures, such as focal drug delivery, focal cooling, or electrical stimulation. This mode of treatment requires an effective intracerebral electroencephalographic acquisition system, seizure detector, brain stimulator, and wireless system that consume ultra-low power. This review focuses on alternative brain stimulation treatments for medically intractable epilepsy patients. We mainly discuss clinical studies of long-term responsive stimulation and suggest safer optimized therapeutic options for epilepsy. Finally, we conclude our study with the proposed low-power, implantable fully integrated device that automatically detects low-voltage fast activity ictal onsets and triggers focal treatment to disrupt seizure progression. The detection performance was verified using intracerebral electroencephalographic recordings from two patients with epilepsy. Further experimental validation of this prototype is underway.

  6. Chemiresistor Devices for Chemical Warfare Agent Detection Based on Polymer Wrapped Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Fennell, John F; Hamaguchi, Hitoshi; Yoon, Bora; Swager, Timothy M

    2017-04-28

    Chemical warfare agents (CWA) continue to present a threat to civilian populations and military personnel in operational areas all over the world. Reliable measurements of CWAs are critical to contamination detection, avoidance, and remediation. The current deployed systems in United States and foreign militaries, as well as those in the private sector offer accurate detection of CWAs, but are still limited by size, portability and fabrication cost. Herein, we report a chemiresistive CWA sensor using single-walled carbon nanotubes (SWCNTs) wrapped with poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives. We demonstrate that a pendant hexafluoroisopropanol group on the polymer that enhances sensitivity to a nerve agent mimic, dimethyl methylphosphonate, in both nitrogen and air environments to concentrations as low as 5 ppm and 11 ppm, respectively. Additionally, these PEDOT/SWCNT derivative sensor systems experience negligible device performance over the course of two weeks under ambient conditions.

  7. Chemical Detection Based on Adsorption-Induced and Photo-Induced Stresses in MEMS Devices

    Energy Technology Data Exchange (ETDEWEB)

    Datskos, P.G.

    1999-04-05

    Recently there has been an increasing demand to perform real-time in-situ chemical detection of hazardous materials, contraband chemicals, and explosive chemicals. Currently, real-time chemical detection requires rather large analytical instrumentation that are expensive and complicated to use. The advent of inexpensive mass produced MEMS (micro-electromechanical systems) devices opened-up new possibilities for chemical detection. For example, microcantilevers were found to respond to chemical stimuli by undergoing changes in their bending and resonance frequency even when a small number of molecules adsorb on their surface. In our present studies, we extended this concept by studying changes in both the adsorption-induced stress and photo-induced stress as target chemicals adsorb on the surface of microcantilevers. For example, microcantilevers that have adsorbed molecules will undergo photo-induced bending that depends on the number of absorbed molecules on the surface. However, microcantilevers that have undergone photo-induced bending will adsorb molecules on their surfaces in a distinctly different way. Depending on the photon wavelength and microcantilever material, the microcantilever can be made to bend by expanding or contracting the irradiated surface. This is important in cases where the photo-induced stresses can be used to counter any adsorption-induced stresses and increase the dynamic range. Coating the surface of the microstructure with a different material can provide chemical specificity for the target chemicals. However, by selecting appropriate photon wavelengths we can change the chemical selectivity due to the introduction of new surface states in the MEMS device. We will present and discuss our results on the use of adsorption-induced and photo-induced bending of microcantilevers for chemical detection.

  8. Radial Photonic Crystal for detection of frequency and position of radiation sources.

    Science.gov (United States)

    Carbonell, J; Díaz-Rubio, A; Torrent, D; Cervera, F; Kirleis, M A; Piqué, A; Sánchez-Dehesa, J

    2012-01-01

    Based on the concepts of artificially microstructured materials, i.e. metamaterials, we present here the first practical realization of a radial wave crystal. This type of device was introduced as a theoretical proposal in the field of acoustics, and can be briefly defined as a structured medium with radial symmetry, where the constitutive parameters are invariant under radial geometrical translations. Our practical demonstration is realized in the electromagnetic microwave spectrum, because of the equivalence between the wave problems in both fields. A device has been designed, fabricated and experimentally characterized. It is able to perform beam shaping of punctual wave sources, and also to sense position and frequency of external radiators. Owing to the flexibility offered by the design concept, other possible applications are discussed.

  9. Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection

    International Nuclear Information System (INIS)

    Seena, V; Fernandes, Avil; Ramgopal Rao, V; Pant, Prita; Mukherji, Soumyo

    2011-01-01

    This paper reports an optimized and highly sensitive piezoresistive SU-8 nanocomposite microcantilever sensor and its application for detection of explosives in vapour phase. The optimization has been in improving its electrical, mechanical and transduction characteristics. We have achieved a better dispersion of carbon black (CB) in the SU-8/CB nanocomposite piezoresistor and arrived at an optimal range of 8-9 vol% CB concentration by performing a systematic mechanical and electrical characterization of polymer nanocomposites. Mechanical characterization of SU-8/CB nanocomposite thin films was performed using the nanoindentation technique with an appropriate substrate effect analysis. Piezoresistive microcantilevers having an optimum carbon black concentration were fabricated using a design aimed at surface stress measurements with reduced fabrication process complexity. The optimal range of 8-9 vol% CB concentration has resulted in an improved sensitivity, low device variability and low noise level. The resonant frequency and spring constant of the microcantilever were found to be 22 kHz and 0.4 N m -1 respectively. The devices exhibited a surface stress sensitivity of 7.6 ppm (mN m -1 ) -1 and the noise characterization results support their suitability for biochemical sensing applications. This paper also reports the ability of the sensor in detecting TNT vapour concentration down to less than six parts per billion with a sensitivity of 1 mV/ppb.

  10. Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection

    Energy Technology Data Exchange (ETDEWEB)

    Seena, V; Fernandes, Avil; Ramgopal Rao, V [Centre for Excellence in Nanoelectronics, Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra (India); Pant, Prita [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Mumbai, Maharashtra (India); Mukherji, Soumyo, E-mail: seenapradeep@iitb.ac.in, E-mail: rrao@ee.iitb.ac.in [Department of Biosciences and Bio-engineering, Indian Institute of Technology Bombay, Mumbai, Maharashtra (India)

    2011-07-22

    This paper reports an optimized and highly sensitive piezoresistive SU-8 nanocomposite microcantilever sensor and its application for detection of explosives in vapour phase. The optimization has been in improving its electrical, mechanical and transduction characteristics. We have achieved a better dispersion of carbon black (CB) in the SU-8/CB nanocomposite piezoresistor and arrived at an optimal range of 8-9 vol% CB concentration by performing a systematic mechanical and electrical characterization of polymer nanocomposites. Mechanical characterization of SU-8/CB nanocomposite thin films was performed using the nanoindentation technique with an appropriate substrate effect analysis. Piezoresistive microcantilevers having an optimum carbon black concentration were fabricated using a design aimed at surface stress measurements with reduced fabrication process complexity. The optimal range of 8-9 vol% CB concentration has resulted in an improved sensitivity, low device variability and low noise level. The resonant frequency and spring constant of the microcantilever were found to be 22 kHz and 0.4 N m{sup -1} respectively. The devices exhibited a surface stress sensitivity of 7.6 ppm (mN m{sup -1}){sup -1} and the noise characterization results support their suitability for biochemical sensing applications. This paper also reports the ability of the sensor in detecting TNT vapour concentration down to less than six parts per billion with a sensitivity of 1 mV/ppb.

  11. Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection.

    Science.gov (United States)

    Seena, V; Fernandes, Avil; Pant, Prita; Mukherji, Soumyo; Rao, V Ramgopal

    2011-07-22

    This paper reports an optimized and highly sensitive piezoresistive SU-8 nanocomposite microcantilever sensor and its application for detection of explosives in vapour phase. The optimization has been in improving its electrical, mechanical and transduction characteristics. We have achieved a better dispersion of carbon black (CB) in the SU-8/CB nanocomposite piezoresistor and arrived at an optimal range of 8-9 vol% CB concentration by performing a systematic mechanical and electrical characterization of polymer nanocomposites. Mechanical characterization of SU-8/CB nanocomposite thin films was performed using the nanoindentation technique with an appropriate substrate effect analysis. Piezoresistive microcantilevers having an optimum carbon black concentration were fabricated using a design aimed at surface stress measurements with reduced fabrication process complexity. The optimal range of 8-9 vol% CB concentration has resulted in an improved sensitivity, low device variability and low noise level. The resonant frequency and spring constant of the microcantilever were found to be 22 kHz and 0.4 N m(-1) respectively. The devices exhibited a surface stress sensitivity of 7.6 ppm (mN m(-1))(-1) and the noise characterization results support their suitability for biochemical sensing applications. This paper also reports the ability of the sensor in detecting TNT vapour concentration down to less than six parts per billion with a sensitivity of 1 mV/ppb.

  12. Detective studies of soft X-ray tomography on controlled thermonuclear fusion device

    International Nuclear Information System (INIS)

    Li Linzhong; Su Fei

    2004-01-01

    In is necessary to design tomographic detective system with very high accuracy and high quality. It is such a detective system that its five resolutions are all very high quality. The five resolutions are: the radial resolution, the angular resolution, the spatial resolution of detector, the resolution of detector array, and the time resolution. The radial resolution is decided by the number of detectors in detector array. The angular resolutions depend on the number of detector arrays. According to the concrete condition of controlled device, through making special rectangular detector the optimum spatial resolution of detector and the optimum spatial resolution of detector array can be obtained. The high time resolution can be got by making wide-band ampli-filter circuit system. The tomographic system with high quality can use the multi-angle multi-array mode or perfect single array mode. The soft X-ray tomographic system with high sensitivity can measure the stable signal and perform the tomography under the conditions of Te ∼150 eV, ne ∼1013 cm-3 on the small Tokamak devices. (authors)

  13. Device for detecting the specific gravity of a liquid. [Patent application

    Science.gov (United States)

    Derouin, C.R.; Kerwin, W.J.; McCormick, J.B.; Bobbett, R.E.

    1980-11-18

    A device for detecting the specific gravity of a liquid and a device for detecting the state of charge of a liquid phase electrolyte battery are described. In one embodiment of the present invention, a change in the critical angle of total internal reflection is utilized to determine the index of refraction of the liquid to be measured. It is shown that the index of refraction of the liquid is a function of the specific gravity of the liquid. In applications for measuring the state of charge of a battery, the specific gravity is proportional to the state of charge of the battery. A change in intensity of rays intersecting an interface surface indicates the critical angle which is a direct indication of the specific gravity of the liquid and the state of charge of a battery. In another embodiment, a light beam is projected through a transparent medium and then through a portion of the liquid to be measured. A change in refraction due to a change in the index of refraction of the liquid produces a deflection of the beam which is measured by a detector. The magnitude of deflection of the beam is directly proportional to the specific gravity of the liquid and the state of charge of a battery.

  14. Lab-on-paper micro- and nano-analytical devices: Fabrication, modification, detection and emerging applications

    International Nuclear Information System (INIS)

    Xu, Yuanhong; Liu, Mengli; Kong, Na; Liu, Jingquan

    2016-01-01

    Paper-based chips (PB-chips; also referred to as lab-on-paper chips) are using patterned paper as a substrate in a lab-on-a-chip platform. They represent an outstanding technique for fabrication of analytical devices for multiplex analyte assays. Typical features include low-cost, portability, disposability and small sample consumption. This review (with 211 refs.) gives a comprehensive and critical insight into current trends in terms of materials and techniques for use in fabrication, modification and detection. Following an introduction into the principles of PB-chips, we discuss features of using paper in lab-on-a-chip devices and the proper choice of paper. We then discuss the versatile methods known for fabrication of PB-chips (ranging from photolithography, plasma treatment, ink jet etching, plotting, to printing including flexographic printing). The modification of PB-chips with micro- and nano-materials possessing superior optical or electronic properties is then reviewed, and the final section covers detection techniques (such as colorimetry, electrochemistry, electrochemiluminescence and chemiluminescence) along with specific (bio)analytical examples. A conclusion and outlook section discusses the challenges and future prospectives in this field. (author)

  15. [A capillary blood flow velocity detection system based on linear array charge-coupled devices].

    Science.gov (United States)

    Zhou, Houming; Wang, Ruofeng; Dang, Qi; Yang, Li; Wang, Xiang

    2017-12-01

    In order to detect the flow characteristics of blood samples in the capillary, this paper introduces a blood flow velocity measurement system based on field-programmable gate array (FPGA), linear charge-coupled devices (CCD) and personal computer (PC) software structure. Based on the analysis of the TCD1703C and AD9826 device data sheets, Verilog HDL hardware description language was used to design and simulate the driver. Image signal acquisition and the extraction of the real-time edge information of the blood sample were carried out synchronously in the FPGA. Then a series of discrete displacement were performed in a differential operation to scan each of the blood samples displacement, so that the sample flow rate could be obtained. Finally, the feasibility of the blood flow velocity detection system was verified by simulation and debugging. After drawing the flow velocity curve and analyzing the velocity characteristics, the significance of measuring blood flow velocity is analyzed. The results show that the measurement of the system is less time-consuming and less complex than other flow rate monitoring schemes.

  16. Detecting the Use of Intentionally Transmitting Personal Electronic Devices Onboard Commercial Aircraft

    Science.gov (United States)

    Woods, Randy; Ely, Jay J.; Vahala, Linda

    2003-01-01

    The need to detect unauthorized usage of intentionally transmitting portable electronic devices (PEDs) onboard commercial aircraft is growing, while still allowing passengers to use selected unintentionally transmitting devices, such as laptop computers and CD players during non-critical stages of flight. The following paper presents an installed system for detecting PEDs over multiple frequency bands. Additionally, the advantages of a fixed verses mobile system are discussed. While data is presented to cover the frequency range of 20 MHz to 6.5 GHz, special attention was given to the Cellular/PCS bands as well as Bluetooth and the FRS radio bands. Measurement data from both the semi-anechoic and reverberation chambers are then analyzed and correlated with data collected onboard a commercial aircraft to determine the dominant mode of coupling inside the passenger cabin of the aircraft versus distance from the source. As a final check of system feasibility, several PEDs transmission signatures were recorded and compared with the expected levels.

  17. Root Exploit Detection and Features Optimization: Mobile Device and Blockchain Based Medical Data Management.

    Science.gov (United States)

    Firdaus, Ahmad; Anuar, Nor Badrul; Razak, Mohd Faizal Ab; Hashem, Ibrahim Abaker Targio; Bachok, Syafiq; Sangaiah, Arun Kumar

    2018-05-04

    The increasing demand for Android mobile devices and blockchain has motivated malware creators to develop mobile malware to compromise the blockchain. Although the blockchain is secure, attackers have managed to gain access into the blockchain as legal users, thereby comprising important and crucial information. Examples of mobile malware include root exploit, botnets, and Trojans and root exploit is one of the most dangerous malware. It compromises the operating system kernel in order to gain root privileges which are then used by attackers to bypass the security mechanisms, to gain complete control of the operating system, to install other possible types of malware to the devices, and finally, to steal victims' private keys linked to the blockchain. For the purpose of maximizing the security of the blockchain-based medical data management (BMDM), it is crucial to investigate the novel features and approaches contained in root exploit malware. This study proposes to use the bio-inspired method of practical swarm optimization (PSO) which automatically select the exclusive features that contain the novel android debug bridge (ADB). This study also adopts boosting (adaboost, realadaboost, logitboost, and multiboost) to enhance the machine learning prediction that detects unknown root exploit, and scrutinized three categories of features including (1) system command, (2) directory path and (3) code-based. The evaluation gathered from this study suggests a marked accuracy value of 93% with Logitboost in the simulation. Logitboost also helped to predicted all the root exploit samples in our developed system, the root exploit detection system (RODS).

  18. Incipient Fault Detection and Isolation of Field Devices in Nuclear Power Systems Using Principal Component Analysis

    International Nuclear Information System (INIS)

    Kaistha, Nitin; Upadhyaya, Belle R.

    2001-01-01

    An integrated method for the detection and isolation of incipient faults in common field devices, such as sensors and actuators, using plant operational data is presented. The approach is based on the premise that data for normal operation lie on a surface and abnormal situations lead to deviations from the surface in a particular way. Statistically significant deviations from the surface result in the detection of faults, and the characteristic directions of deviations are used for isolation of one or more faults from the set of typical faults. Principal component analysis (PCA), a multivariate data-driven technique, is used to capture the relationships in the data and fit a hyperplane to the data. The fault direction for each of the scenarios is obtained using the singular value decomposition on the state and control function prediction errors, and fault isolation is then accomplished from projections on the fault directions. This approach is demonstrated for a simulated pressurized water reactor steam generator system and for a laboratory process control system under single device fault conditions. Enhanced fault isolation capability is also illustrated by incorporating realistic nonlinear terms in the PCA data matrix

  19. Intrinsic fluorescence for cervical precancer detection using polarized light based in-house fabricated portable device

    Science.gov (United States)

    Meena, Bharat Lal; Singh, Pankaj; Sah, Amar Nath; Pandey, Kiran; Agarwal, Asha; Pantola, Chayanika; Pradhan, Asima

    2018-01-01

    An in-house fabricated portable device has been tested to detect cervical precancer through the intrinsic fluorescence from human cervix of the whole uterus in a clinical setting. A previously validated technique based on simultaneously acquired polarized fluorescence and polarized elastic scattering spectra from a turbid medium is used to extract the intrinsic fluorescence. Using a diode laser at 405 nm, intrinsic fluorescence of flavin adenine dinucleotide, which is the dominant fluorophore and other contributing fluorophores in the epithelium of cervical tissue, has been extracted. Different grades of cervical precancer (cervical intraepithelial neoplasia; CIN) have been discriminated using principal component analysis-based Mahalanobis distance and linear discriminant analysis. Normal, CIN I and CIN II samples have been discriminated from one another with high sensitivity and specificity at 95% confidence level. This ex vivo study with cervix of whole uterus samples immediately after hysterectomy in a clinical environment indicates that the in-house fabricated portable device has the potential to be used as a screening tool for in vivo precancer detection using intrinsic fluorescence.

  20. [Development of molecular detection of food-borne pathogenic bacteria using miniaturized microfluidic devices].

    Science.gov (United States)

    Iván, Kristóf; Maráz, Anna

    2015-12-20

    Detection and identification of food-borne pathogenic bacteria are key points for the assurance of microbiological food safety. Traditional culture-based methods are more and more replaced by or supplemented with nucleic acid based molecular techniques, targeting specific (preferably virulence) genes in the genomes. Internationally validated DNA amplification - most frequently real-time polymerase chain reaction - methods are applied by the food microbiological testing laboratories for routine analysis, which will result not only in shortening the time for results but they also improve the performance characteristics (e.g. sensitivity, specificity) of the methods. Beside numerous advantages of the polymerase chain reaction based techniques for routine microbiological analysis certain drawbacks have to be mentioned, such as the high cost of the equipment and reagents, as well as the risk of contamination of the laboratory environment by the polymerase chain reaction amplicons, which require construction of an isolated laboratory system. Lab-on-a-chip systems can integrate most of these laboratory processes within a miniaturized device that delivers the same specificity and reliability as the standard protocols. The benefits of miniaturized devices are: simple - often automated - use, small overall size, portability, sterility due to single use possibility. These miniaturized rapid diagnostic tests are being researched and developed at the best research centers around the globe implementing various sample preparation and molecular DNA amplification methods on-chip. In parallel, the aim of the authors' research is to develop microfluidic Lab-on-a-chip devices for the detection and identification of food-borne pathogenic bacteria.

  1. A Capacitive Touch Screen Sensor for Detection of Urinary Tract Infections in Portable Biomedical Devices

    Science.gov (United States)

    Honrado, Carlos; Dong, Tao

    2014-01-01

    Incidence of urinary tract infections (UTIs) is the second highest among all infections; thus, there is a high demand for bacteriuria detection. Escherichia coli are the main cause of UTIs, with microscopy methods and urine culture being the detection standard of these bacteria. However, the urine sampling and analysis required for these methods can be both time-consuming and complex. This work proposes a capacitive touch screen sensor (CTSS) concept as feasible alternative for a portable UTI detection device. Finite element method (FEM) simulations were conducted with a CTSS model. An exponential response of the model to increasing amounts of E. coli and liquid samples was observed. A measurable capacitance change due to E. coli presence and a tangible difference in the response given to urine and water samples were also detected. Preliminary experimental studies were also conducted on a commercial CTSS using liquid solutions with increasing amounts of dissolved ions. The CTSS was capable of distinguishing different volumes of liquids, also giving an exponential response. Furthermore, the CTSS gave higher responses to solutions with a superior amount of ions. Urine samples gave the top response among tested liquids. Thus, the CTSS showed the capability to differentiate solutions by their ionic content. PMID:25196109

  2. Rapid, Sensitive, and Reusable Detection of Glucose by a Robust Radiofrequency Integrated Passive Device Biosensor Chip

    Science.gov (United States)

    Kim, Nam-Young; Adhikari, Kishor Kumar; Dhakal, Rajendra; Chuluunbaatar, Zorigt; Wang, Cong; Kim, Eun-Soo

    2015-01-01

    Tremendous demands for sensitive and reliable label-free biosensors have stimulated intensive research into developing miniaturized radiofrequency resonators for a wide range of biomedical applications. Here, we report the development of a robust, reusable radiofrequency resonator based integrated passive device biosensor chip fabricated on a gallium arsenide substrate for the detection of glucose in water-glucose solutions and sera. As a result of the highly concentrated electromagnetic energy between the two divisions of an intertwined spiral inductor coupled with an interdigital capacitor, the proposed glucose biosensor chip exhibits linear detection ranges with high sensitivity at center frequency. This biosensor, which has a sensitivity of up to 199 MHz/mgmL−1 and a short response time of less than 2 sec, exhibited an ultralow detection limit of 0.033 μM and a reproducibility of 0.61% relative standard deviation. In addition, the quantities derived from the measured S-parameters, such as the propagation constant (γ), impedance (Z), resistance (R), inductance (L), conductance (G) and capacitance (C), enabled the effective multi-dimensional detection of glucose. PMID:25588958

  3. Reducing false positives of microcalcification detection systems by removal of breast arterial calcifications.

    Science.gov (United States)

    Mordang, Jan-Jurre; Gubern-Mérida, Albert; den Heeten, Gerard; Karssemeijer, Nico

    2016-04-01

    In the past decades, computer-aided detection (CADe) systems have been developed to aid screening radiologists in the detection of malignant microcalcifications. These systems are useful to avoid perceptual oversights and can increase the radiologists' detection rate. However, due to the high number of false positives marked by these CADe systems, they are not yet suitable as an independent reader. Breast arterial calcifications (BACs) are one of the most frequent false positives marked by CADe systems. In this study, a method is proposed for the elimination of BACs as positive findings. Removal of these false positives will increase the performance of the CADe system in finding malignant microcalcifications. A multistage method is proposed for the removal of BAC findings. The first stage consists of a microcalcification candidate selection, segmentation and grouping of the microcalcifications, and classification to remove obvious false positives. In the second stage, a case-based selection is applied where cases are selected which contain BACs. In the final stage, BACs are removed from the selected cases. The BACs removal stage consists of a GentleBoost classifier trained on microcalcification features describing their shape, topology, and texture. Additionally, novel features are introduced to discriminate BACs from other positive findings. The CADe system was evaluated with and without BACs removal. Here, both systems were applied on a validation set containing 1088 cases of which 95 cases contained malignant microcalcifications. After bootstrapping, free-response receiver operating characteristics and receiver operating characteristics analyses were carried out. Performance between the two systems was compared at 0.98 and 0.95 specificity. At a specificity of 0.98, the sensitivity increased from 37% to 52% and the sensitivity increased from 62% up to 76% at a specificity of 0.95. Partial areas under the curve in the specificity range of 0.8-1.0 were

  4. Method for reducing x-ray background signals from insertion device x-ray beam position monitors

    Directory of Open Access Journals (Sweden)

    Glenn Decker

    1999-11-01

    Full Text Available A method is described that provides a solution to the long-standing problem of stray radiation-induced signals on photoemission-based x-ray beam position monitors (BPMs located on insertion device x-ray beam lines. The method involves the introduction of a chicane into the accelerator lattice that directs unwanted x radiation away from the photosensitive x-ray BPM blades. This technique has been implemented at the Advanced Photon Source, and experimental confirmation of the technique is provided.

  5. Contribution to the study of position sensitive detectors with high spatial resolution for thermal neutron detection

    International Nuclear Information System (INIS)

    Idrissi Fakhr-Eddine, Abdellah.

    1978-01-01

    With a view to improving the spatial resolution of the localization of thermal neutrons, the work covers four position sensitive detectors: - 800 cell multi-detectors (1 dimension), - linear 'Jeu de Jacquet' detectors (1 dimension) - Multi-detector XYP 128x128 (2 dimensions), - 'Jeu de Jacquet' detector with 2 dimensions. Mention is made of the various position finding methods known so far, as well as the reasons for selecting BF 3 as detector gas. A study is then made of the parameters of the multiwire chamber whose principle will form the basis of most of the position detecting appliances subsequently dealt with. Finally, a description is given of the detection tests of the thermal neutrons in the multiwire chamber depending on the pressure, a parameter that greatly affects the accuracy of the position finding. The single dimension position tests on two kinds of appliance, the 800 cell multi-detector for the wide angle diffraction studies, and the linear 'Jeu de Jacquet' detector designed for small angle diffraction are mentioned. A description is then given of two position appliances with two dimensions; the multi-detector XYP 128x128 and the two dimensional 'Jeu de Jacquet' detector. In the case of this latter detector, only the hoped for characteristics are indicated [fr

  6. Device fabrication, characterization, and thermal neutron detection response of LiZnP and LiZnAs semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Montag, Benjamin W., E-mail: bmontag@ksu.edu; Ugorowski, Philip B.; Nelson, Kyle A.; Edwards, Nathaniel S.; McGregor, Douglas S.

    2016-11-11

    Nowotny-Juza compounds continue to be explored as candidates for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled {sup 3}He and {sup 10}BF{sub 3} detectors. The {sup 6}Li(n,t){sup 4}He reaction yields a total Q-value of 4.78 MeV, larger than {sup 10}B, an energy easily identified above background radiations. Hence, devices fabricated from semiconductor compounds having either natural Li (nominally 7.5% {sup 6}Li) or enriched {sup 6}Li (usually 95% {sup 6}Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10{sup −6} Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The raw synthesized material indicated the presence high impurity levels (material and electrical property characterizations). A static vacuum sublimation in quartz was performed to help purify the synthesized material [2,3]. Bulk crystalline samples were grown from the purified material [4,5]. Samples were cut using a diamond wire saw, and processed into devices. Bulk resistivity was determined from I–V curve measurements, ranging from 10{sup 6}–10{sup 11} Ω cm. Devices were characterized for sensitivity to 5.48 MeV alpha particles, 337 nm laser light, and neutron sensitivity in a thermal neutron diffracted beam at the Kansas State University TRIGA Mark II nuclear reactor. Thermal neutron reaction product charge induction was measured with a LiZnP device, and the reaction product spectral response was observed. - Highlights: • Devices were fabricated from in-house synthesized and purified LiZnAs and LiZnP. • Devices ranged in bulk resistivity from 10{sup 6}–10{sup 11} Ω cm. • Devices showed sensitivity to 5.48 MeV alpha particles. • Devices were characterized with a 337 nm laser light. • Devices were evaluated

  7. A pulse stacking method of particle counting applied to position sensitive detection

    International Nuclear Information System (INIS)

    Basilier, E.

    1976-03-01

    A position sensitive particle counting system is described. A cyclic readout imaging device serves as an intermediate information buffer. Pulses are allowed to stack in the imager at very high counting rates. Imager noise is completely discriminated to provide very wide dynamic range. The system has been applied to a detector using cascaded microchannel plates. Pulse height spread produced by the plates causes some loss of information. The loss is comparable to the input loss of the plates. The improvement in maximum counting rate is several hundred times over previous systems that do not permit pulse stacking. (Auth.)

  8. A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection.

    Science.gov (United States)

    Jin, Hongsheng; Li, Zongyao; Tong, Ruofeng; Lin, Lanfen

    2018-05-01

    The automatic detection of pulmonary nodules using CT scans improves the efficiency of lung cancer diagnosis, and false-positive reduction plays a significant role in the detection. In this paper, we focus on the false-positive reduction task and propose an effective method for this task. We construct a deep 3D residual CNN (convolution neural network) to reduce false-positive nodules from candidate nodules. The proposed network is much deeper than the traditional 3D CNNs used in medical image processing. Specifically, in the network, we design a spatial pooling and cropping (SPC) layer to extract multilevel contextual information of CT data. Moreover, we employ an online hard sample selection strategy in the training process to make the network better fit hard samples (e.g., nodules with irregular shapes). Our method is evaluated on 888 CT scans from the dataset of the LUNA16 Challenge. The free-response receiver operating characteristic (FROC) curve shows that the proposed method achieves a high detection performance. Our experiments confirm that our method is robust and that the SPC layer helps increase the prediction accuracy. Additionally, the proposed method can easily be extended to other 3D object detection tasks in medical image processing. © 2018 American Association of Physicists in Medicine.

  9. Innovative optical power detection array system for relative positioning of inner-formation flying system

    Science.gov (United States)

    Hou, Zhendong; Wang, Zhaokui; Zhang, Yulin

    2016-09-01

    The Inner-formation flying system (IFFS) is conceived to feature a spherical proof mass falling freely within a large cavity for space gravity detection, of which first application focuses on the Earth's gravity field recovery. For the IFFS, it is the relative position of the proof mass to its surrounding cavity that is feedback into thrusters for tracking control, even as part of data to detect gravity. Since the demonstration and verification of demanding technologies using small satellite platforms is a very sensible choice prior to detection mission, an optical power detection array system (OPDAS) is proposed to measure the relative position with advantages of low cost and high adaptability. Besides that, its large dynamic range can reduce the requirement for satellite platform and releasing mechanism, which is also an attracting trait for small satellite application. The concept of the OPDAS is firstly presented, followed by the algorithm to position the proof mass. Then the radiation pressure caused by the measuring beam is modeled, and its disturbance on the proof mass is simulated. The experimental system to test the performance of a prototype of the OPDAS is established, and the preliminary results show that a precision of less than 0.4 mm across a dynamic range of several centimeters can be reached by the prototype of the OPDAS.

  10. Multiview face detection based on position estimation over multicamera surveillance system

    Science.gov (United States)

    Huang, Ching-chun; Chou, Jay; Shiu, Jia-Hou; Wang, Sheng-Jyh

    2012-02-01

    In this paper, we propose a multi-view face detection system that locates head positions and indicates the direction of each face in 3-D space over a multi-camera surveillance system. To locate 3-D head positions, conventional methods relied on face detection in 2-D images and projected the face regions back to 3-D space for correspondence. However, the inevitable false face detection and rejection usually degrades the system performance. Instead, our system searches for the heads and face directions over the 3-D space using a sliding cube. Each searched 3-D cube is projected onto the 2-D camera views to determine the existence and direction of human faces. Moreover, a pre-process to estimate the locations of candidate targets is illustrated to speed-up the searching process over the 3-D space. In summary, our proposed method can efficiently fuse multi-camera information and suppress the ambiguity caused by detection errors. Our evaluation shows that the proposed approach can efficiently indicate the head position and face direction on real video sequences even under serious occlusion.

  11. Chemical detection with nano/bio hybrid devices based on carbon nanotubes and graphene

    Science.gov (United States)

    Lerner, Mitchell Bryant

    Carbon nanotube field-effect transistors (NT-FETs) and graphene field effect transistors (GFETs) provide a unique transduction platform for chemical and biomolecular detection. The work presented in this thesis describes the fabrication, characterization, and investigation of operational mechanisms of carbon-based biosensors. In the first set of experiments, we used carbon nanotubes as fast, all-electronic readout elements in novel vapor sensors, suitable for applications in environmental monitoring and medicine. Molecules bound to the hybrid alter the electrical properties of the NT-FET via several mechanisms, allowing direct detection as a change in the transistor conduction properties. Vapor sensors suitable for more complex system architectures characteristic of mammalian olfaction were demonstrated using NT-FETs functionalized with mouse olfactory receptor (mOR) proteins or single stranded DNA (ssDNA). Substitution of graphene as the channel material enabled production of hundreds of electronically similar devices with high yield. Etching large scale chemical vapor deposition (CVD)-grown graphene into small channels is itself a challenging problem, and we have developed novel fabrication methods to this end without sacrificing the inherent electrical quality that makes graphene such an attractive material. Large arrays of such devices have potential utility for understanding the physics of ligand-receptor interactions and contributing to the development of a new generation of devices for electronic olfaction. Tailored and specific detection was accomplished by chemically functionalizing the NT-FET or GFET with biomolecules, such as proteins or small molecules, to create a hybrid nanostructures. Targets for detection were widely varied, indicating the utility of these techniques, such as 1) live Salmonella cells in nutrient broth, 2) a biomarker protein indicative of prostate cancer, 3) antigen protein from the bacterium that causes Lyme disease, and 4) glucose

  12. Method of detecting fuel failure in FBR type reactor and method of estimating fuel failure position

    International Nuclear Information System (INIS)

    Sonoda, Yukio; Tamaoki, Tetsuo

    1989-01-01

    Noise components in a normal state contained in detection signals from delayed neutron monitors disposed to a coolant inlet, etc. of an intermediate heat exchanger are forecast by self-recurring model and eliminated, and resultant detection signals are monitored thereby detecting fuel failure high sensitivity. Subsequently, the reactor is controlled to a low power operation state and a new self-recurring model to the detection signals from the delayed neutron monitors are prepared. Then, noise components in this state are removed and control rods near the delayed neutron monitors are extracted in a short stroke successively to examine the change of response of the delayed neutron monitors. Accordingly, the failed position for each of the fuels can be estimated at a level of one fuel assembly or a level of several assemblies containing the above-mentioned fuel assembly. Since the fuel failure can be detected at a high sensitivity and the position can be estimated, diffusion of abnormality can be prevented and plant shutdown for fuel exchange can be minimized. (I.S.)

  13. Body position reproducibility and joint alignment stability criticality on a muscular strength research device

    Science.gov (United States)

    Nunez, F.; Romero, A.; Clua, J.; Mas, J.; Tomas, A.; Catalan, A.; Castellsaguer, J.

    2005-08-01

    MARES (Muscle Atrophy Research and Exercise System) is a computerized ergometer for neuromuscular research to be flown and installed onboard the International Space Station in 2007. Validity of data acquired depends on controlling and reducing all significant error sources. One of them is the misalignment of the joint rotation axis with respect to the motor axis.The error induced on the measurements is proportional to the misalignment between both axis. Therefore, the restraint system's performance is critical [1]. MARES HRS (Human Restraint System) assures alignment within an acceptable range while performing the exercise (results: elbow movement:13.94mm+/-5.45, Knee movement: 22.36mm+/- 6.06 ) and reproducibility of human positioning (results: elbow movement: 2.82mm+/-1.56, Knee movement 7.45mm+/-4.8 ). These results allow limiting measurement errors induced by misalignment.

  14. A mechanical design for positioning of gm detector for system of avian flu virus detection equipment

    International Nuclear Information System (INIS)

    Rahmat; Budi Santoso; Krismawan; Abdul Jalil

    2010-01-01

    Mechanical design for positioning of GM detector system has been done. It is used for avian flu detection equipment. The requirements for the design are to protect detection system against shock, portable, and easy to maintain. The mechanical system consists of connectors, cable assemblies, holders, casing, housing and detectors cover. The selected material should have small gamma radiation absorption property in order to give optimum counts for the detector. The design result should give a system that is easy to operate, cheap and easy to assemble. (author)

  15. Mechanical design for positioning of GM detector for system of avian flu virus detection equipment

    International Nuclear Information System (INIS)

    Rahmat; Budi Santoso; Krismawan; Abdul Jalil

    2010-01-01

    Mechanical design for positioning of GM detector system has been done. It is used for avian flu detection equipment. The requirements for the design are to protect detection system against shock, portable, and easy to maintain. The mechanical system consists of connectors, cable assemblies, holders, casing, housing and detectors cover. The selected material should have small gamma radiation absorption property in order to give optimum counts for the detector. The design result should give a system that is easy to operate, cheap and easy to assemble. (author)

  16. Detection of shielded radionuclides from weak and poorly resolved spectra using group positive RIVAL

    International Nuclear Information System (INIS)

    Kump, Paul; Bai, Er-Wei; Chan, Kung-Sik; Eichinger, William

    2013-01-01

    This paper is concerned with the identification of nuclides from weak and poorly resolved spectra in the presence of unknown radiation shielding materials such as carbon, water, concrete and lead. Since a shield will attenuate lower energies more so than higher ones, isotope sub-spectra must be introduced into models and into detection algorithms. We propose a new algorithm for detection, called group positive RIVAL, that encourages the selection of groups of sub-spectra rather than the selection of individual sub-spectra that may be from the same parent isotope. Indeed, the proposed algorithm incorporates group positive LASSO, and, as such, we supply the consistency results of group positive LASSO and adaptive group positive LASSO. In an example employing various shielding materials and material thicknesses, group positive RIVAL is shown to perform well in all scenarios with the exception of ones in which the shielding material is lead. - Highlights: ► Identification of nuclides from weak and poorly resolved spectra. ► Shielding materials such as carbon, water, concrete, and lead are considered. ► Isotope spectra are decomposed into their sub-spectra. ► A variable selection algorithm is proposed that encourages group selection. ► Simulations demonstrate the proposed method's performance when nuclides have been shielded

  17. Crowdsourcing seizure detection: algorithm development and validation on human implanted device recordings.

    Science.gov (United States)

    Baldassano, Steven N; Brinkmann, Benjamin H; Ung, Hoameng; Blevins, Tyler; Conrad, Erin C; Leyde, Kent; Cook, Mark J; Khambhati, Ankit N; Wagenaar, Joost B; Worrell, Gregory A; Litt, Brian

    2017-06-01

    There exist significant clinical and basic research needs for accurate, automated seizure detection algorithms. These algorithms have translational potential in responsive neurostimulation devices and in automatic parsing of continuous intracranial electroencephalography data. An important barrier to developing accurate, validated algorithms for seizure detection is limited access to high-quality, expertly annotated seizure data from prolonged recordings. To overcome this, we hosted a kaggle.com competition to crowdsource the development of seizure detection algorithms using intracranial electroencephalography from canines and humans with epilepsy. The top three performing algorithms from the contest were then validated on out-of-sample patient data including standard clinical data and continuous ambulatory human data obtained over several years using the implantable NeuroVista seizure advisory system. Two hundred teams of data scientists from all over the world participated in the kaggle.com competition. The top performing teams submitted highly accurate algorithms with consistent performance in the out-of-sample validation study. The performance of these seizure detection algorithms, achieved using freely available code and data, sets a new reproducible benchmark for personalized seizure detection. We have also shared a 'plug and play' pipeline to allow other researchers to easily use these algorithms on their own datasets. The success of this competition demonstrates how sharing code and high quality data results in the creation of powerful translational tools with significant potential to impact patient care. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Low-cost and reagent-free paper-based device to detect chloride ions in serum and sweat.

    Science.gov (United States)

    Cinti, Stefano; Fiore, Luca; Massoud, Renato; Cortese, Claudio; Moscone, Danila; Palleschi, Giuseppe; Arduini, Fabiana

    2018-03-01

    The recent goal of sustainability in analytical chemistry has boosted the development of eco-designed analytical tools to deliver fast and cost-effective analysis with low economic and environmental impact. Due to the recent focus in sustainability, we report the use of low-cost filter paper as a sustainable material to print silver electrodes and to load reagents for a reagent-free electrochemical detection of chloride in biological samples, namely serum and sweat. The electrochemical detection of chloride ions was carried out by exploiting the reaction of the analyte (i.e. chloride) with the silver working electrode. During the oxidation wave in cyclic voltammetry the silver ions are produced, thus they react with chloride ions to form AgCl, while in the reduction wave, the following reaction occurs: AgCl + e - -->Ag + Cl - . These reactions at the electrode surface resulted in anodic/cathodic peaks directly proportional to the chloride ions in solution. Chloride ions were detected with the addition of only 10μL of the sample on the paper-based electrochemical cell, obtaining linearity up to 200mM with a detection limit equal to 1mM and relative standard deviation lower than 10%. The accuracy of the sensor was evaluated in serum and sweat samples, with percentage recoveries between 93 ± 10 and 108 ± 8%. Moreover, the results achieved with the paper-based device were positively compared with those obtained by using the gold standard method (Ion Selective Electrode) adopted in routine clinical analyses. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Aerosol delivery and humidification with the Boussignac continuous positive airway pressure device.

    Science.gov (United States)

    Thille, Arnaud W; Bertholon, Jean-François; Becquemin, Marie-Hélène; Roy, Monique; Lyazidi, Aissam; Lellouche, François; Pertusini, Esther; Boussignac, Georges; Maître, Bernard; Brochard, Laurent

    2011-10-01

    A simple method for effective bronchodilator aerosol delivery while administering continuing continuous positive airway pressure (CPAP) would be useful in patients with severe bronchial obstruction. To assess the effectiveness of bronchodilator aerosol delivery during CPAP generated by the Boussignac CPAP system and its optimal humidification system. First we assessed the relationship between flow and pressure generated in the mask with the Boussignac CPAP system. Next we measured the inspired-gas humidity during CPAP, with several humidification strategies, in 9 healthy volunteers. We then measured the bronchodilator aerosol particle size during CPAP, with and without heat-and-moisture exchanger, in a bench study. Finally, in 7 patients with acute respiratory failure and airway obstruction, we measured work of breathing and gas exchange after a β(2)-agonist bronchodilator aerosol (terbutaline) delivered during CPAP or via standard nebulization. Optimal humidity was obtained only with the heat-and-moisture exchanger or heated humidifier. The heat-and-moisture exchanger had no influence on bronchodilator aerosol particle size. Work of breathing decreased similarly after bronchodilator via either standard nebulization or CPAP, but P(aO(2)) increased significantly only after CPAP aerosol delivery. CPAP bronchodilator delivery decreases the work of breathing as effectively as does standard nebulization, but produces a greater oxygenation improvement in patients with airway obstruction. To optimize airway humidification, a heat-and-moisture exchanger could be used with the Boussignac CPAP system, without modifying aerosol delivery.

  20. Research on propane leak detection system and device based on mid infrared laser

    Science.gov (United States)

    Jiang, Meng; Wang, Xuefeng; Wang, Junlong; Wang, Yizhao; Li, Pan; Feng, Qiaoling

    2017-10-01

    Propane is a key component of liquefied petroleum gas (LPG) and crude oil volatile. This issue summarizes the recent progress of propane detection technology. Meanwhile, base on the development trend, our latest progress is also provided. We demonstrated a mid infrared propane sensor system, which is based on wavelength modulation spectroscopy (WMS) technique with a CW interband cascade laser (ICL) emitting at 3370.4nm. The ICL laser scanned over a sharp feature in the broader spectrum of propane, and harmonic signals are obtained by lock-in amplifier for gas concentration deduction. The surrounding gas is extracted into the fine optical absorption cell through the pump to realize online detection. The absorption cell is designed in mid infrared windows range. An example experimental setup is shown. The second harmonic signals 2f and first harmonic signals1f are obtained. We present the sensor performance test data including dynamic precision and temperature stability. The propane detection sensor system and device is portable can carried on the mobile inspection vehicle platforms or intelligent robot inspection platform to realize the leakage monitoring of whole oil gas tank area.

  1. Charge coupled devices for detection of coherent neutrino-nucleus scattering

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Moroni, Guillermo; Estrada, Juan; Paolini, Eduardo E.; Cancelo, Gustavo; Tiffenberg, Javier; Molina, Jorge

    2015-04-01

    In this article the feasibility of using charge coupled devices (CCD) to detect low-energy neutrinos through their coherent scattering with nuclei is analyzed. The detection of neutrinos through this standard model process has been elusive because of the small energy deposited in such interaction. Typical particle detectors have thresholds of a few keV, and most of the energy deposition expected from coherent scattering is well below this level. The CCD detectors discussed in this paper can operate at a threshold of approximately 30 eV, making them ideal for observing this signal. On a CCD array of 500 g located next to a power nuclear reactor the number of coherent scattering events expected is about 3000 events/year. Our results shows that a detection with a confidence level of 99% can be reached within 16 days of continuous operation; with the current 52 g detector prototype this time lapse extends to five months.

  2. Home-made Detection Device for a Mixture of Ethanol and Acetone

    Directory of Open Access Journals (Sweden)

    Sukon Phanichphant

    2007-02-01

    Full Text Available A device for the detection and determination of ethanol and acetone wasconstructed, consisting of a packed column, a chamber with a sensor head, 2 dc powersupplies, a multimeter and a computer. A commercially available TGS 822 detector head(Figaro Company Limited was used as the sensor head. The TGS 822 detector consists of aSnO2 thick film deposited on the surface of an alumina ceramic tube which contains aheating element inside. An analytical column was coupled with the setup to enhance theseparation of ethanol and acetone before they reached the sensor head. Optimum systemconditions for detection of ethanol and acetone were achieved by varying the flow rate of thecarrier gas, voltage of the heating coil (VH, voltage of the circuit sensor (VC, loadresistance of the circuit sensor (RL and the injector port temperature. The flow of the carriergas was 15 mL/min; the circuit conditions were VH = 5.5 V, VC = 20 V, RL = 68 k ; and theinjection port temperature was 150°C. Under these conditions the retention times (tR forethanol and acetone were 1.95 and 0.57 minutes, respectively. Calibration graphs wereobtained for ethanol and acetone over the concentration range of 10 to 160 mg/L. The limitsof detection (LOD for ethanol and acetone were 9.25 mg/L and 4.41 mg/L respectively.

  3. The signature-based radiation-scanning approach to standoff detection of improvised explosive devices

    International Nuclear Information System (INIS)

    Brewer, R.L.; Dunn, W.L.; Heider, S.; Matthew, C.; Yang, X.

    2012-01-01

    The signature-based radiation-scanning technique for detection of improvised explosive devices is described. The technique seeks to detect nitrogen-rich chemical explosives present in a target. The technology compares a set of “signatures” obtained from a test target to a collection of “templates”, sets of signatures for a target that contain an explosive in a specific configuration. Interrogation of nitrogen-rich fertilizer samples, which serve as surrogates for explosives, is shown experimentally to be able to discriminate samples of 3.8 L and larger. - Highlights: ► Signature-based radiation-scanning techniques applied to detection of explosives. ► Nitrogen-rich fertilizer samples served as surrogate explosive samples. ► Signatures of a target compared to collections of templates of surrogate explosives. ► Figure-of-merit determined for neutron and neutron-induced gamma-ray signatures. ► Discrimination of surrogate explosive from inert samples of 3.8 L and larger.

  4. Heavy ion elastic recoil detection analysis of optoelectronic and semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N; Cohen, D D [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Johnston, P; Walker, S [Royal Melbourne Inst. of Tech., VIC (Australia); Whitlow, H; Hult, M [Lund Univ. (Sweden); Oestling, M; Zaring, C [Royal Inst. of Tech., Stockholm (Sweden)

    1994-12-31

    In recent years, the use of heavy ion time-of-flight elastic recoil spectrometry (HIERDA) has been applied to analyse multi-phase, thin layer devices used in optoelectronics, semiconductors and solar power generation. HIERDA gives simultaneously, mass resolved elemental concentration vs depth profiles of the matrix constituents, and is particularly suited to the determination of light elements in a heavy matrix. The beam/target interaction process is similar to RBS, but has the difference that the recoiling target atoms are detected instead of the scattered projectile. High energy, heavy ions beams bombard the sample, ejecting recoil atoms which are detected at a forward angle of 45 deg. A time-of-flight and total energy detection system enables the ejected particle`s mass to be identified, and allows energy spectra to be obtained and interpreted in an analogous way to RBS, but with the important difference that the elemental spectra are separated, and not superimposed on a background as in RBS. Some of the measurements made with a HIERDA system on the ANTARES Tandem Accelerator at ANSTO are described. 1 refs., 4 figs.

  5. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    International Nuclear Information System (INIS)

    Luís, R.; Fleta, C.; Balbuena, J.; Baptista, M.; Barros, S.; Disch, C.; Jumilla, C.; Lozano, M.; Marques, J.G.; Vaz, P.

    2016-01-01

    The objective of the REWARD project consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send the data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. The main objective of this work consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using experimental data and the Monte Carlo simulation program MCNP6. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades. The response of the REWARD detection system to the presence of an RDD is predicted and discussed. - Highlights: • A prototype mobile system for real-time, wide-area radiation surveillance was built. • Experimental measurements and Monte Carlo simulations were used to test the system. • The system is suitable to detect and identify radiation sources in threat scenarios.

  6. High temperature radio-frequency superconducting quantum interference device system for detection of magnetic nanoparticles

    International Nuclear Information System (INIS)

    Pretzell, Alf

    2012-01-01

    This doctoral thesis was aimed at establishing a set-up with high-temperature superconductor (HTS) radio-frequency (rf) superconducting quantum interference device (SQUID) technology for the detection of magnetic nanoparticles and in particular for testing applications of magnetic nanoparticle immunoassays. It was part of the EU-project ''Biodiagnostics'' running from 2005 to 2008. The method of magnetic binding assays was developed as an alternative to other methods of concentration determination like enzyme linked immunosorbent assay (ELISA), or fluorescent immunoassay. The ELISA has sensitivities down to analyte-concentrations of pg/ml. Multiple incubation and washing steps have to be performed for these techniques, the analyte has to diffuse to the site of binding. The magnetic assay uses magnetic nanoparticles as markers for the substance to be detected. It is being explored by current research and shows similar sensitivity compared to ELISA but in contrast - does not need any washing and can be read out directly after binding - can be applied in solution with opaque media, e.g. blood or muddy water - additionally allows magnetic separation or concentration - in combination with small magnetoresistive or Hall sensors, allows detection of only a few particles or even single beads. For medical or environmental samples, maybe opaque and containing a multitude of substances, it would be advantageous to devise an instrument, which allows to be read out quickly and with high sensitivity. Due to the mentioned items the magnetic assay might be a possibility here.

  7. Heavy ion elastic recoil detection analysis of optoelectronic and semiconductor devices

    Energy Technology Data Exchange (ETDEWEB)

    Dytlewski, N.; Cohen, D.D. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Johnston, P.; Walker, S. [Royal Melbourne Inst. of Tech., VIC (Australia); Whitlow, H.; Hult, M. [Lund Univ. (Sweden); Oestling, M.; Zaring, C. [Royal Inst. of Tech., Stockholm (Sweden)

    1993-12-31

    In recent years, the use of heavy ion time-of-flight elastic recoil spectrometry (HIERDA) has been applied to analyse multi-phase, thin layer devices used in optoelectronics, semiconductors and solar power generation. HIERDA gives simultaneously, mass resolved elemental concentration vs depth profiles of the matrix constituents, and is particularly suited to the determination of light elements in a heavy matrix. The beam/target interaction process is similar to RBS, but has the difference that the recoiling target atoms are detected instead of the scattered projectile. High energy, heavy ions beams bombard the sample, ejecting recoil atoms which are detected at a forward angle of 45 deg. A time-of-flight and total energy detection system enables the ejected particle`s mass to be identified, and allows energy spectra to be obtained and interpreted in an analogous way to RBS, but with the important difference that the elemental spectra are separated, and not superimposed on a background as in RBS. Some of the measurements made with a HIERDA system on the ANTARES Tandem Accelerator at ANSTO are described. 1 refs., 4 figs.

  8. Relative position vectors: an alternative approach to conflict detection in air traffic control.

    Science.gov (United States)

    Vuckovic, Anita; Sanderson, Penelope; Neal, Andrew; Gaukrodger, Stephen; Wong, B L William

    2013-10-01

    We explore whether the visual presentation of relative position vectors (RPVs) improves conflict detection in conditions representing some aspects of future airspace concepts. To help air traffic controllers manage increasing traffic, new tools and systems can automate more cognitively demanding processes, such as conflict detection. However, some studies reveal adverse effects of such tools, such as reduced situation awareness and increased workload. New displays are needed that help air traffic controllers handle increasing traffic loads. A new display tool based on the display of RPVs, the Multi-Conflict Display (MCD), is evaluated in a series of simulated conflict detection tasks. The conflict detection performance of air traffic controllers with the MCD plus a conventional plan-view radar display is compared with their performance with a conventional plan-view radar display alone. Performance with the MCD plus radar was better than with radar alone in complex scenarios requiring controllers to find all actual or potential conflicts, especially when the number of aircraft on the screen was large. However performance with radar alone was better for static scenarios in which conflicts for a target aircraft, or target pair of aircraft, were the focus. Complementing the conventional plan-view display with an RPV display may help controllers detect conflicts more accurately with extremely high aircraft counts. We provide an initial proof of concept that RPVs may be useful for supporting conflict detection in situations that are partially representative of conditions in which controllers will be working in the future.

  9. DETECTION OF MYCOBACTERIUM TUBERCULOSIS IN BLOOD FOR DIAGNOSIS OF GENERALISED TUBERCULOSIS IN HIV-POSITIVE PATIENTS

    Directory of Open Access Journals (Sweden)

    V. N. Zimina

    2017-01-01

    Full Text Available Objective: To study the informative value of the detection of mycobacteria in blood with the cultural method in patients with suspected tuberculous sepsis and to determine the most significant clinical and laboratory criteria for testing. Materials and methods: The investigation to detect M.tuberculosis was fulfilled in 159 HIV-positive patients with suspected tuberculosis sepsis. Blood culture was completed with culture medium Myco/F Lytic Culture Vials and analyzer BACTEC 9050. Results: Mycobacteria were detected in blood of 19 patients (11,9% of all patients: in 18 patients the growth of М. tuberculosis complex was detected (25,3% of all patients with diagnosed tuberculosis and in 1 patient it was Mycobacterium avium complex (0,6% of all patients. It was shown, that the probability of M.tuberculosis detection was especially associated with the severity of the disease, immunosupression (less than 100 cells/mkl, hemoglobin quantity less than 90 g/l (levels were determined through the seeking for the most significant cutoffs. It was not proofed, that meningoencephalitis develops more often in patients with proven bacteremia. There were no evident differences in detection frequency of mycobacteria in sputum between patients with tuberculous sepsis and without it.

  10. Position controlled Knee Rehabilitation Orthotic Device for Patients after Total Knee Replacement Arthroplasty

    Science.gov (United States)

    Wannaphan, Patsiri; Chanthasopeephan, Teeranoot

    2016-11-01

    Knee rehabilitation after total knee replacement arthroplasty is essential for patients during their post-surgery recovery period. This study is about designing one degree of freedom knee rehabilitation equipment to assist patients for their post-surgery exercise. The equipment is designed to be used in sitting position with flexion/extension of knee in sagittal plane. The range of knee joint motion is starting from 0 to 90 degrees angle for knee rehabilitation motion. The feature includes adjustable link for different human proportions and the torque feedback control at knee joint during rehabilitation and the control of flexion/extension speed. The motion of the rehabilitation equipment was set to move at low speed (18 degrees/sec) for knee rehabilitation. The rehabilitation link without additional load took one second to move from vertical hanging up to 90° while the corresponding torque increased from 0 Nm to 2 Nm at 90°. When extra load is added, the link took 1.5 seconds to move to 90° The torque is then increased from 0 Nm to 4 Nm. After a period of time, the speed of the motion can be varied. User can adjust the motion to 40 degrees/sec during recovery activity of the knee and users can increase the level of exercise or motion up to 60 degrees/sec to strengthen the muscles during throughout their rehabilitation program depends on each patient. Torque control is included to prevent injury. Patients can use the equipment for home exercise to help reduce the number of hospital visit while the patients can receive an appropriate therapy for their knee recovery program.

  11. Detecting Output Pressure Change of Positive-Displacement Pump by Phase Trajectory Method

    Directory of Open Access Journals (Sweden)

    Jerzy Stojek

    2010-06-01

    Full Text Available The monitoring of hydraulic system condition change during its exploitation ran its complex problem. The main task is to identifyearly phase damage of hydraulic system elements (pumps, valves, ect. in order to take decision which can avoid hydraulic system breakdown. This paper presents the possibility of phase trajectories use in detecting output pressure change of hydraulic system causedby positive-displacement pump wear.

  12. Binocular Vision-Based Position and Pose of Hand Detection and Tracking in Space

    Science.gov (United States)

    Jun, Chen; Wenjun, Hou; Qing, Sheng

    After the study of image segmentation, CamShift target tracking algorithm and stereo vision model of space, an improved algorithm based of Frames Difference and a new space point positioning model were proposed, a binocular visual motion tracking system was constructed to verify the improved algorithm and the new model. The problem of the spatial location and pose of the hand detection and tracking have been solved.

  13. Shape based automated detection of pulmonary nodules with surface feature based false positive reduction

    International Nuclear Information System (INIS)

    Nomura, Y.; Itoh, H.; Masutani, Y.; Ohtomo, K.; Maeda, E.; Yoshikawa, T.; Hayashi, N.

    2007-01-01

    We proposed a shape based automated detection of pulmonary nodules with surface feature based false positive (FP) reduction. In the proposed system, the FP existing in internal of vessel bifurcation is removed using extracted surface of vessels and nodules. From the validation with 16 chest CT scans, we find that the proposed CAD system achieves 18.7 FPs/scan at 90% sensitivity, and 7.8 FPs/scan at 80% sensitivity. (orig.)

  14. A field test of substance use screening devices as part of routine drunk-driving spot detection operating procedures in South Africa.

    Science.gov (United States)

    Matzopoulos, Richard; Lasarow, Avi; Bowman, Brett

    2013-10-01

    This pilot study aimed to test four substance use screening devices developed in Germany under local South African conditions and assess their utility for detecting driving under the influence of drugs (DUID) as part of the standard roadblock operations of local law enforcement agencies. The devices were used to screen a sample of motorists in the Gauteng and Western Cape provinces. The motorists were diverted for screening at roadblocks at the discretion of the law enforcement agencies involved, as per their standard operating procedures. Fieldworkers also administered a questionnaire that described the screening procedure, as well as information about vehicles, demographic information about the motorists and their attitudes to the screening process during testing. Motorists tested positive for breath alcohol in 28% of the 261 cases tested. Oral fluid was screened for drugs as per the standard calibrated cut-offs of all four devices. There were 14 cases where the under-influence drivers tested positive for alcohol and drugs simultaneously, but 14% of the 269 drivers drug-screened tested positive for drugs only. After alcohol, amphetamine, methamphetamine and cocaine were the most common drugs of impairment detected. The results suggest that under normal enforcement procedures only 76% of drivers impaired by alcohol and other drugs would have been detected. In more than 70% of cases the tests were administered within 5 min and this is likely to improve with more regular use. It was clear that the pilot screening process meets global testing standards. Although use of the screening devices alone would not serve as a basis for prosecution and provisions would need to be made for the confirmation of results through laboratory testing, rollout of this screening process would improve operational efficiency in at least two ways. Firstly, the accuracy of the tests will substantially decrease confirmatory test loads. Secondly, laboratory drug testing can be restricted to

  15. Repeatability in Color Measurements of a Spectrophotometer using Different Positioning Devices.

    Science.gov (United States)

    Hemming, Michael; Kwon, So Ran; Qian, Fang

    2015-12-01

    This study aimed to evaluate the repeatability of color measurements of an intraoral spectrophotometer with the use of three different methods by two operators. A total of 60 teeth were obtained, comprising 30 human maxillary teeth [central incisors (n = 10); canines (n = 10); molars (n = 10)] and 30 artificial teeth [lateral incisors (n = 10); premolar (n = 20)]. Multiple repeated color measurements were obtained from each tooth using three measuring methods by each of the two operators. Five typodonts with alternating artificial and human teeth were made. Measurements were taken by two operators with the Vita EasyShade spectrophotometer using the custom tray (CT), custom jig (CJ) and free hand (FH) method, twice, at an interval of 2 to 7 days. Friedman test was used to detect difference among the three color measuring methods. Post hoc Wilcoxon signed-rank test with Bonferroni correction applied was used for pair-wise comparison of color measurements among the three methods. Additionally, a paired-sample t-test was used to assess a significant difference between the two duplicated measurements made on the same tooth by the same operator for each color parameter and measuring method. For operator A, mean (SD) overall color change-ΔE* (SD) perceived for FH, CT and CJ were 2.21(2.00), 2.39 (1.58) and 2.86 (1.92), respectively. There was statistically significant difference in perceived ΔE* in FH vs CJ (p = 0.0107). However, there were no significant differences between FH and CT (p = 0.2829) or between CT and CJ (p = 0.1159). For operator B mean ΔE* (SD) for FH, CT and CJ were 3.24 (3.46), 1.95 (1.19) and 2.45 (1.56), respectively. There was a significant difference between FH and CT (p = 0.0031). However, there were no statistically significant differences in ΔE* in FH vs CJ (p = 0.3696) or CT vs CJ (p = 0.0809). The repeatability of color measurements was different among the three measuring methods by operators. Overall, the CT method worked well for both

  16. Device fabrication, characterization, and thermal neutron detection response of LiZnP and LiZnAs semiconductor devices

    Science.gov (United States)

    Montag, Benjamin W.; Ugorowski, Philip B.; Nelson, Kyle A.; Edwards, Nathaniel S.; McGregor, Douglas S.

    2016-11-01

    Nowotny-Juza compounds continue to be explored as candidates for solid-state neutron detectors. Such a device would have greater efficiency, in a compact form, than present day gas-filled 3He and 10BF3 detectors. The 6Li(n,t)4He reaction yields a total Q-value of 4.78 MeV, larger than 10B, an energy easily identified above background radiations. Hence, devices fabricated from semiconductor compounds having either natural Li (nominally 7.5% 6Li) or enriched 6Li (usually 95% 6Li) as constituent atoms may provide a material for compact high efficiency neutron detectors. Starting material was synthesized by preparing equimolar portions of Li, Zn, and As sealed under vacuum (10-6 Torr) in quartz ampoules lined with boron nitride and subsequently reacted in a compounding furnace [1]. The raw synthesized material indicated the presence high impurity levels (material and electrical property characterizations). A static vacuum sublimation in quartz was performed to help purify the synthesized material [2,3]. Bulk crystalline samples were grown from the purified material [4,5]. Samples were cut using a diamond wire saw, and processed into devices. Bulk resistivity was determined from I-V curve measurements, ranging from 106-1011 Ω cm. Devices were characterized for sensitivity to 5.48 MeV alpha particles, 337 nm laser light, and neutron sensitivity in a thermal neutron diffracted beam at the Kansas State University TRIGA Mark II nuclear reactor. Thermal neutron reaction product charge induction was measured with a LiZnP device, and the reaction product spectral response was observed.

  17. Direct detection of Trichomonas vaginalis virus in Trichomonas vaginalis positive clinical samples from the Netherlands.

    Science.gov (United States)

    Jehee, Ivo; van der Veer, Charlotte; Himschoot, Michelle; Hermans, Mirjam; Bruisten, Sylvia

    2017-12-01

    Trichomonas vaginalis is the most common sexually transmitted parasitical infection worldwide. T. vaginalis can carry a virus: Trichomonas vaginalis virus (TVV). To date, four TVV species have been described. Few studies have investigated TVV prevalence and its clinical importance. We have developed a nested reverse-transcriptase PCR, with novel, type specific primers to directly detect TVV RNA in T. vaginalis positive clinical samples. A total of 119T. vaginalis positive clinical samples were collected in Amsterdam and "s-Hertogenbosch, the Netherlands, from 2012 to 2016. For all samples T. vaginalis was genotyped using multi-locus sequence typing. The T. vaginalis positive samples segregated into a two-genotype population: type I (n=64) and type II (n=55). All were tested for TVV with the new TVV PCR. We detected 3 of the 4 TVV species. Sequencing of the amplified products showed high homology with published TVV genomes (82-100%). Half of the T. vaginalis clinical samples (n=60, 50.4%) were infected with one or more TVV species, with a preponderance for TVV infections in T. vaginalis type I (n=44, 73.3%). Clinical data was available for a subset of samples (n=34) and we observed an association between testing positive for (any) TVV and reporting urogenital symptoms (p=0.023). The nested RT-PCR allowed for direct detection of TVV in T. vaginalis positive clinical samples. This may be helpful in studies and clinical settings, since T. vaginalis disease and/or treatment outcome may be influenced by the protozoa"s virus. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Sensitivity of the Positive and Negative Syndrome Scale (PANSS) in Detecting Treatment Effects via Network Analysis.

    Science.gov (United States)

    Esfahlani, Farnaz Zamani; Sayama, Hiroki; Visser, Katherine Frost; Strauss, Gregory P

    2017-12-01

    Objective: The Positive and Negative Syndrome Scale is a primary outcome measure in clinical trials examining the efficacy of antipsychotic medications. Although the Positive and Negative Syndrome Scale has demonstrated sensitivity as a measure of treatment change in studies using traditional univariate statistical approaches, its sensitivity to detecting network-level changes in dynamic relationships among symptoms has yet to be demonstrated using more sophisticated multivariate analyses. In the current study, we examined the sensitivity of the Positive and Negative Syndrome Scale to detecting antipsychotic treatment effects as revealed through network analysis. Design: Participants included 1,049 individuals diagnosed with psychotic disorders from the Phase I portion of the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) study. Of these participants, 733 were clinically determined to be treatment-responsive and 316 were found to be treatment-resistant. Item level data from the Positive and Negative Syndrome Scale were submitted to network analysis, and macroscopic, mesoscopic, and microscopic network properties were evaluated for the treatment-responsive and treatment-resistant groups at baseline and post-phase I antipsychotic treatment. Results: Network analysis indicated that treatment-responsive patients had more densely connected symptom networks after antipsychotic treatment than did treatment-responsive patients at baseline, and that symptom centralities increased following treatment. In contrast, symptom networks of treatment-resistant patients behaved more randomly before and after treatment. Conclusions: These results suggest that the Positive and Negative Syndrome Scale is sensitive to detecting treatment effects as revealed through network analysis. Its findings also provide compelling new evidence that strongly interconnected symptom networks confer an overall greater probability of treatment responsiveness in patients with

  19. Near instrument-free, simple molecular device for rapid detection of herpes simplex viruses.

    Science.gov (United States)

    Lemieux, Bertrand; Li, Ying; Kong, Huimin; Tang, Yi-Wei

    2012-06-01

    The first near instrument-free, inexpensive and simple molecular diagnostic device (IsoAmp HSV, BioHelix Corp., MA, USA) recently received US FDA clearance for use in the detection of herpes simplex viruses (HSV) in genital and oral lesion specimens. The IsoAmp HSV assay uses isothermal helicase-dependent amplification in combination with a disposable, hermetically-sealed, vertical-flow strip identification. The IsoAmp HSV assay has a total test-to-result time of less than 1.5 h by omitting the time-consuming nucleic acid extraction. The diagnostic sensitivity and specificity are comparable to PCR and are superior to culture-based methods. The near instrument-free, rapid and simple characteristics of the IsoAmp HSV assay make it potentially suitable for point-of-care testing.

  20. Opto-Electromechanical Devices for Low-Noise Detection of Radio Waves

    DEFF Research Database (Denmark)

    Bagci, Tolga

    factors. For example, a hybrid system like this, would enable the use of well-established shot-noise limited optical sensing technologies for detecting weak radio-frequency (rf) signals, rf-to-optical photon conversion and transmission of information in low-loss fiber-optic links over long distances......There is currently an increasing interest in developing hybrid devices that unite the desirable features of different systems. Opto-electromechanics has emerged as one of these promising hybrid fields, where the functionality of conventional electrical circuits can be combined with the salient...... features of optical systems for various technological and sensing applications. Nanomechanical resonators stand as promising candidates in terms of linking the two systems, primarily thanks to their versatility in coupling to various physical systems, together with their excellent mechanical quality...

  1. Efficient coding and detection of ultra-long IDs for visible light positioning systems.

    Science.gov (United States)

    Zhang, Hualong; Yang, Chuanchuan

    2018-05-14

    Visible light positioning (VLP) is a promising technique to complement Global Navigation Satellite System (GNSS) such as Global positioning system (GPS) and BeiDou Navigation Satellite System (BDS) which features the advantage of low-cost and high accuracy. The situation becomes even more crucial for indoor environments, where satellite signals are weak or even unavailable. For large-scale application of VLP, there would be a considerable number of Light emitting diode (LED) IDs, which bring forward the demand of long LED ID detection. In particular, to provision indoor localization globally, a convenient way is to program a unique ID into each LED during manufacture. This poses a big challenge for image sensors, such as the CMOS camera in everybody's hands since the long ID covers the span of multiple frames. In this paper, we investigate the detection of ultra-long ID using rolling shutter cameras. By analyzing the pattern of data loss in each frame, we proposed a novel coding technique to improve the efficiency of LED ID detection. We studied the performance of Reed-Solomon (RS) code in this system and designed a new coding method which considered the trade-off between performance and decoding complexity. Coding technique decreases the number of frames needed in data processing, significantly reduces the detection time, and improves the accuracy of detection. Numerical and experimental results show that the detected LED ID can be much longer with the coding technique. Besides, our proposed coding method is proved to achieve a performance close to that of RS code while the decoding complexity is much lower.

  2. A fast large-area position-sensitive time-of-flight neutron detection system

    International Nuclear Information System (INIS)

    Crawford, R.K.; Haumann, J.R.

    1989-01-01

    A new position-sensitive time-of-flight neutron detection and histograming system has been developed for use at the Intense Pulsed Neutron Source. Spatial resolution of roughly 1 cm x 1 cm and time-of-flight resolution of ∼1 μsec are combined in a detection system which can ultimately be expanded to cover several square meters of active detector area. This system is based on the use of arrays of cylindrical one-dimensional position-sensitive proportional counters, and is capable of collecting the x-y-t data and sorting them into histograms at time-averaged data rates up to ∼300,000 events/sec over the full detector area and with instantaneous data rates up to more than fifty times that. Numerous hardware features have been incorporated to facilitate initial tuning of the position encoding, absolute calibration of the encoded positions, and automatic testing for drifts. 7 refs., 11 figs., 1 tabs

  3. Detection of premature ventricular contractions on a ventricular electrocardiogram for patients with left ventricular assist devices.

    Science.gov (United States)

    Park, Sung Min; Lee, Jin Hong; Choi, Seong Wook

    2014-12-01

    The ventricular electrocardiogram (v-ECG) was developed for long-term monitoring of heartbeats in patients with a left ventricular assist device (LVAD) and does not normally have the functionality necessary to detect additional heart irregularities that can progress to critical arrhythmias. Although the v-ECG has the benefits of physiological optimization and counterpulsation control, when abnormal heartbeats occur, the v-ECG does not show the distinct abnormal waveform that enables easy detection of an abnormal heartbeat among normal heartbeats on the conventional ECG. In this study, the v-ECGs of normal and abnormal heartbeats are compared with each other with respect to peak-to-peak voltage, area, and maximal slopes, and a new method to detect abnormal heartbeats is suggested. In a series of animal experiments with three porcine models (Yorkshire pigs weighing 30-40 kg), a v-ECG and conventional ECG were taken simultaneously during LVAD perfusion. Clinical experts found 104 abnormal heartbeats from the saved conventional ECG data and confirmed that the other 3159 heartbeats were normal. Almost all of the abnormal heartbeats were premature ventricular contractions (PVCs), and there was short-term tachycardia for 3 s. A personal computer was used to automatically detect abnormal heartbeats with the v-ECG according to the new method, and its results were compared with the clinicians' results. The new method found abnormal heartbeats with 90% accuracy, and less than 15% of the total PVCs were missed. Copyright © 2014 International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  4. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    International Nuclear Information System (INIS)

    Luis, R.; Baptista, M.; Barros, S.; Marques, J.; Vaz, P.; Balbuena, J.; Disch, C.; Fleta, C.; Jumilla, C.; Lozano, M.

    2015-01-01

    In recent years an increased international concern has emerged about the radiological and nuclear (RN) threats associated with the illicit trafficking of nuclear and radioactive materials that could be potentially used for terrorist attacks. The objective of the REWARD (Real Time Wide Area Radiation Surveillance System) project, co-funded by the European Union 7. Framework Programme Security, consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send the data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. Due to its portability and accuracy, the system will be extremely useful in many different scenarios such as nuclear terrorism, lost radioactive sources, radioactive contamination or nuclear accidents. This paper shortly introduces the REWARD detection system, depicts some terrorist threat scenarios involving radioactive sources and special nuclear materials and summarizes the simulation work undertaken during the past three years in the framework of the REWARD project. The main objective consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using the Monte Carlo simulation program MCNP6. The reference scenario is characterized in detail, from the i) radiological protection, ii) radiation detection requirements and iii) communications points of view. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades, and the results, which validate the simulation work, are presented and analyzed. The response of the REWARD

  5. Non-contact detection of cardiac rate based on visible light imaging device

    Science.gov (United States)

    Zhu, Huishi; Zhao, Yuejin; Dong, Liquan

    2012-10-01

    We have developed a non-contact method to detect human cardiac rate at a distance. This detection is based on the general lighting condition. Using the video signal of human face region captured by webcam, we acquire the cardiac rate based on the PhotoPlethysmoGraphy theory. In this paper, the cardiac rate detecting method is mainly in view of the blood's different absorptivities of the lights various wavelengths. Firstly, we discompose the video signal into RGB three color signal channels and choose the face region as region of interest to take average gray value. Then, we draw three gray-mean curves on each color channel with time as variable. When the imaging device has good fidelity of color, the green channel signal shows the PhotoPlethysmoGraphy information most clearly. But the red and blue channel signals can provide more other physiological information on the account of their light absorptive characteristics of blood. We divide red channel signal by green channel signal to acquire the pulse wave. With the passband from 0.67Hz to 3Hz as a filter of the pulse wave signal and the frequency spectrum superimposed algorithm, we design frequency extracted algorithm to achieve the cardiac rate. Finally, we experiment with 30 volunteers, containing different genders and different ages. The results of the experiments are all relatively agreeable. The difference is about 2bmp. Through the experiment, we deduce that the PhotoPlethysmoGraphy theory based on visible light can also be used to detect other physiological information.

  6. Response of the REWARD detection system to the presence of a Radiological Dispersal Device

    Energy Technology Data Exchange (ETDEWEB)

    Luis, R.; Baptista, M.; Barros, S.; Marques, J.; Vaz, P. [IST - Campus Tecnologico e Nuclear, Estrada Nacional 10 - km 139.7, 2695-066, Bobadela LRS (Portugal); Balbuena, J.; Disch, C. [Physical Institut, University of Freiburg Hermann-Herder-Str. 3 D-79104 Freiburg (Germany); Fleta, C.; Jumilla, C.; Lozano, M. [Instituto de Microelectronica de Barcelona - IMB-CNM, CSIC, E-08193 Bellaterra, Barcelona (Spain)

    2015-07-01

    In recent years an increased international concern has emerged about the radiological and nuclear (RN) threats associated with the illicit trafficking of nuclear and radioactive materials that could be potentially used for terrorist attacks. The objective of the REWARD (Real Time Wide Area Radiation Surveillance System) project, co-funded by the European Union 7. Framework Programme Security, consisted in building a mobile system for real time, wide area radiation surveillance, using a CdZnTe detector for gamma radiation and a neutron detector based on novel silicon technologies. The sensing unit includes a GPS system and a wireless communication interface to send the data remotely to a monitoring base station, where it will be analyzed in real time and correlated with historical data from the tag location, in order to generate an alarm when an abnormal situation is detected. Due to its portability and accuracy, the system will be extremely useful in many different scenarios such as nuclear terrorism, lost radioactive sources, radioactive contamination or nuclear accidents. This paper shortly introduces the REWARD detection system, depicts some terrorist threat scenarios involving radioactive sources and special nuclear materials and summarizes the simulation work undertaken during the past three years in the framework of the REWARD project. The main objective consisted in making predictions regarding the behavior of the REWARD system in the presence of a Radiological Dispersion Device (RDD), one of the reference scenarios foreseen for REWARD, using the Monte Carlo simulation program MCNP6. The reference scenario is characterized in detail, from the i) radiological protection, ii) radiation detection requirements and iii) communications points of view. Experimental tests were performed at the Fire Brigades Facilities in Rome and at the Naples Fire Brigades, and the results, which validate the simulation work, are presented and analyzed. The response of the REWARD

  7. Reducing false positives of microcalcification detection systems by removal of breast arterial calcifications

    International Nuclear Information System (INIS)

    Mordang, Jan-Jurre; Gubern-Mérida, Albert; Karssemeijer, Nico; Heeten, Gerard den

    2016-01-01

    Purpose: In the past decades, computer-aided detection (CADe) systems have been developed to aid screening radiologists in the detection of malignant microcalcifications. These systems are useful to avoid perceptual oversights and can increase the radiologists’ detection rate. However, due to the high number of false positives marked by these CADe systems, they are not yet suitable as an independent reader. Breast arterial calcifications (BACs) are one of the most frequent false positives marked by CADe systems. In this study, a method is proposed for the elimination of BACs as positive findings. Removal of these false positives will increase the performance of the CADe system in finding malignant microcalcifications. Methods: A multistage method is proposed for the removal of BAC findings. The first stage consists of a microcalcification candidate selection, segmentation and grouping of the microcalcifications, and classification to remove obvious false positives. In the second stage, a case-based selection is applied where cases are selected which contain BACs. In the final stage, BACs are removed from the selected cases. The BACs removal stage consists of a GentleBoost classifier trained on microcalcification features describing their shape, topology, and texture. Additionally, novel features are introduced to discriminate BACs from other positive findings. Results: The CADe system was evaluated with and without BACs removal. Here, both systems were applied on a validation set containing 1088 cases of which 95 cases contained malignant microcalcifications. After bootstrapping, free-response receiver operating characteristics and receiver operating characteristics analyses were carried out. Performance between the two systems was compared at 0.98 and 0.95 specificity. At a specificity of 0.98, the sensitivity increased from 37% to 52% and the sensitivity increased from 62% up to 76% at a specificity of 0.95. Partial areas under the curve in the specificity

  8. Utility of Acridine Orange staining for detection of bacteria from positive blood cultures.

    Science.gov (United States)

    Neeraja, M; Lakshmi, V; Padmasri, C; Padmaja, K

    2017-08-01

    The diagnostic performance of AO stain was evaluated for the detection of bacteria and or fungi from positive blood cultures. The sensitivity of Gram stain (GS) was 98.26% while Acridine Orange (AO) stain proved to be more sensitive (100%) with a Positive and Negative Predictive Value of 100% each. The specificity of both the stains was 100%. Overall agreement between the two stains was 98.23% (688/700). The organisms that were missed by GS and positive by AO were Candida species (Sutton, 2006) and Gram negative bacilli (GNB) (Sutton, 2006). Sensitivity of GS was 82.35% and AO was 100% among mixed cultures. Immediate reporting of the results of AO stain would have a significant impact on clinical management of patients with serious blood stream infections. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Reducing false positives of microcalcification detection systems by removal of breast arterial calcifications

    Energy Technology Data Exchange (ETDEWEB)

    Mordang, Jan-Jurre, E-mail: Jan-Jurre.Mordang@radboudumc.nl; Gubern-Mérida, Albert; Karssemeijer, Nico [Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen 6525 GA (Netherlands); Heeten, Gerard den [The National Training Centre for Breast Cancer Screening, Nijmegen 6503 GJ, The Netherlands and Department of Radiology, Amsterdam Medical Center, Amsterdam 1100 DD (Netherlands)

    2016-04-15

    Purpose: In the past decades, computer-aided detection (CADe) systems have been developed to aid screening radiologists in the detection of malignant microcalcifications. These systems are useful to avoid perceptual oversights and can increase the radiologists’ detection rate. However, due to the high number of false positives marked by these CADe systems, they are not yet suitable as an independent reader. Breast arterial calcifications (BACs) are one of the most frequent false positives marked by CADe systems. In this study, a method is proposed for the elimination of BACs as positive findings. Removal of these false positives will increase the performance of the CADe system in finding malignant microcalcifications. Methods: A multistage method is proposed for the removal of BAC findings. The first stage consists of a microcalcification candidate selection, segmentation and grouping of the microcalcifications, and classification to remove obvious false positives. In the second stage, a case-based selection is applied where cases are selected which contain BACs. In the final stage, BACs are removed from the selected cases. The BACs removal stage consists of a GentleBoost classifier trained on microcalcification features describing their shape, topology, and texture. Additionally, novel features are introduced to discriminate BACs from other positive findings. Results: The CADe system was evaluated with and without BACs removal. Here, both systems were applied on a validation set containing 1088 cases of which 95 cases contained malignant microcalcifications. After bootstrapping, free-response receiver operating characteristics and receiver operating characteristics analyses were carried out. Performance between the two systems was compared at 0.98 and 0.95 specificity. At a specificity of 0.98, the sensitivity increased from 37% to 52% and the sensitivity increased from 62% up to 76% at a specificity of 0.95. Partial areas under the curve in the specificity

  10. ′An avant-garde indirect bonding technique for lingual orthodontics using the first complete digital "tad" (torque angulation device, & "BPD" (bracket positioning device′

    Directory of Open Access Journals (Sweden)

    Tushar Hegde

    2010-01-01

    This article covers an Indirect Bonding Technique using the Torque Angulation Device (TAD and the Bracket Positioning Device (BPD which ensure great accuracy while minimizing the poten- tial for error as compared to most methods available to the orthodontist today. This technique has been developed by taking into account the advantages and pitfalls of indirect bonding.

  11. Safety by design: effects of operating room floor marking on the position of surgical devices to promote clean air flow compliance and minimise infection risks

    NARCIS (Netherlands)

    de Korne, Dirk F.; van Wijngaarden, Jeroen D. H.; van Rooij, Jeroen; Wauben, Linda S. G. L.; Hiddema, U. Frans; Klazinga, Niek S.

    2012-01-01

    To evaluate the use of floor marking on the positioning of surgical devices within the clean air flow in an operating room (OR) to minimise infection risk. Laminar flow clean air systems are important in preventing infection in ORs but, for optimal results, surgical devices must be correctly

  12. MDEP Generic Common Position No DICWG-05. Common position on the treatment of hardware description language (HDL) programmed devices for use in nuclear safety systems

    International Nuclear Information System (INIS)

    2013-01-01

    Following other industries, the nuclear industry developed increasing interest in the use of programmable logic components that are implemented using hardware description language (HDL) such as such as FPGAs, CPLDs or ASICs. HDL programmed devices (HPD) has both characteristics of software and hardware. Therefore applications using HPDs has many similarities with the traditional software (in particular the design may be affected by errors) and characteristics of traditional electronic design (e.g. electronic-level timing and electrical issues). However, due to the unique nature of HPDs, there exist several differences between HPDs and traditional software. Some key differences include: - HPDs use parallel processing with dedicated hardware for each function instead of executing instructions sequentially as in the case of traditional software. - Safety critical software uses imperative languages which specify each instruction of the program whereas HPDs use declarative languages. - The target of software is a microprocessor, which guarantees properties such as memory consistency after each instruction. Such properties are not inherent in HPDs and thus the design process needs different steps to build and guarantee behavioural properties. - Translation of the HDL description to bit-streams in HPDs is much more involved than the translation of source code to binary in software compilation. In the HPD case, this process is not fully automatic, and therefore designer must guide the tools, which may result in undetectable errors. The Digital Instrumentation and Controls Working Group (DICWG) has agreed that a common position on this topic is warranted given the increase of use of Digital I and C in new reactor designs, its safety implications, and the need to develop a common understanding from the perspectives of regulatory authorities. This action follows the DICWG examination of the regulatory requirements of the participating members and of relevant industry

  13. Sensitivity and specificity of oral HPV detection for HPV-positive head and neck cancer.

    Science.gov (United States)

    Gipson, Brooke J; Robbins, Hilary A; Fakhry, Carole; D'Souza, Gypsyamber

    2018-02-01

    The incidence of HPV-related head and neck squamous cell carcinoma (HPV-HNSCC) is increasing. Oral samples are easy and non-invasive to collect, but the diagnostic accuracy of oral HPV detection methods for classifying HPV-positive HNSCC tumors has not been well explored. In a systematic review, we identified eight studies of HNSCC patients meeting our eligibility criteria of having: (1) HPV detection in oral rinse or oral swab samples, (2) tumor HPV or p16 testing, (3) a publication date within the last 10 years (January 2007-May 2017, as laboratory methods change), and (4) at least 15 HNSCC cases. Data were abstracted from each study and a meta-analysis performed to calculate sensitivity and specificity. Eight articles meeting inclusion criteria were identified. Among people diagnosed with HNSCC, oral HPV detection has good specificity (92%, 95% CI = 82-97%) and moderate sensitivity (72%, 95% CI = 45-89%) for HPV-positive HNSCC tumor. Results were similar when restricted to studies with only oropharyngeal cancer cases, with oral rinse samples, or testing for HPV16 DNA (instead of any oncogenic HPV) in the oral samples. Among those who already have HNSCC, oral HPV detection has few false-positives but may miss one-half to one-quarter of HPV-related cases (false-negatives). Given these findings in cancer patients, the utility of oral rinses and swabs as screening tests for HPV-HNSCC among healthy populations is probably limited. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. A new device for administration of continuous positive airway pressure in preterm infants: comparison with a standard nasal CPAP continuous positive airway pressure system.

    Science.gov (United States)

    Trevisanuto, Daniele; Grazzina, Nicoletta; Doglioni, Nicoletta; Ferrarese, Paola; Marzari, Francesco; Zanardo, Vincenzo

    2005-06-01

    We compared the effectiveness of a new continuous positive airway pressure (CPAP) device (neonatal helmet CPAP) with a conventional nasal CPAP system in preterm neonates needing continuous distending pressure. Randomized, physiological, cross-over study in a tertiary referral, neonatal intensive care unit in a university teaching hospital. Twenty very low birth weight infants with a postnatal age greater than 24 h who were receiving nasal CPAP for apnea and/or mild respiratory distress were enrolled. CPAP delivered by neonatal helmet CPAP and nasal CPAP in random order for two subsequent 90-min periods. Were continuously measured the Neonatal Infant Pain Scale (NIPS) score, oxygen requirements, respiratory rate, heart rate, oxygen saturation, transcutaneous PO(2) (tcPO(2)) and PCO(2) (tcPCO(2)), blood pressure, and desaturations. NIPS scores were significantly lower when the infants were on the neonatal helmet CPAP than when they were on nasal CPAP (0.26+/-0.07 vs. 0.63+/-0.12). The other studied parameters did not differ between the two CPAP modes. The number of desaturations was reduced during the neonatal helmet CPAP treatment (18 vs. 32), although this difference was not significant. In this short-term physiological study the neonatal helmet CPAP appears to be as good as the golden standard for managing preterm infants needing continuous distending pressure, with enhanced tolerability. Further evaluation in a randomized clinical trial is needed to confirm these findings.

  15. Statistical Metadata Analysis of the Variability of Latency, Device Transfer Time, and Coordinate Position from Smartphone-Recorded Infrasound Data

    Science.gov (United States)

    Garces, E. L.; Garces, M. A.; Christe, A.

    2017-12-01

    The RedVox infrasound recorder app uses microphones and barometers in smartphones to record infrasound, low-frequency sound below the threshold of human hearing. We study a device's metadata, which includes position, latency time, the differences between the device's internal times and the server times, and the machine time, searching for patterns and possible errors or discontinuities in these scaled parameters. We highlight metadata variability through scaled multivariate displays (histograms, distribution curves, scatter plots), all created and organized through software development in Python. This project is helpful in ascertaining variability and honing the accuracy of smartphones, aiding the emergence of portable devices as viable geophysical data collection instruments. It can also improve the app and cloud service by increasing efficiency and accuracy, allowing to better document and foresee drastic natural movements like tsunamis, earthquakes, volcanic eruptions, storms, rocket launches, and meteor impacts; recorded data can later be used for studies and analysis by a variety of professions. We expect our final results to produce insight on how to counteract problematic issues in data mining and improve accuracy in smartphone data-collection. By eliminating lurking variables and minimizing the effect of confounding variables, we hope to discover efficient processes to reduce superfluous precision, unnecessary errors, and data artifacts. These methods should conceivably be transferable to other areas of software development, data analytics, and statistics-based experiments, contributing a precedent of smartphone metadata studies from geophysical rather than societal data. The results should facilitate the rise of civilian-accessible, hand-held, data-gathering mobile sensor networks and yield more straightforward data mining techniques.

  16. Flange surface detection device for upper lid of reactor pressure vessel

    International Nuclear Information System (INIS)

    Kobayashi, Teruo.

    1996-01-01

    The present invention provide a device for detecting a flatness of an O-ring groove formed on a flange surface simply and at a high accuracy in a state where the upper lid of a reactor pressure vessel is removed as it is. Namely, a running truck provided with magnetic wheels is caused to run while being adsorbed along the outer circumferential surface of a downward flange surface and the lower surface of the flange in a state where the upper lid is removed. A sensor attaching stand equipped with spring-biased wheels is mounted to the running truck. The sensor attaching stand is provided with a flange surface sensor for measuring the distance to the lower surface of the flange and a groove sensor for measuring the distance to the bottom surface of an O-ring groove. Relative displacement of the groove sensor is determined by a calculator based on the measured value on the flange surface sensor. A flatness is obtained from the maximum value and the minimum value. In addition, presence of flaws on the bottom surface of the groove is detected based on the relative change of both measured values at the same time. As a result, all of the errors caused by the running are off-set thereby capable of performing a measurement at high accuracy. (I.S.)

  17. Determination of aminoglycoside antibiotics using an on-chip microfluidic device with chemiluminescence detection

    International Nuclear Information System (INIS)

    Sierra-Rodero, M.; Fernandez-Romero, J.M.; Gomez-Hens, A.

    2012-01-01

    We describe an on-chip microflow injection (μFI) approach for the determination of aminoglycoside antibiotics using chemiluminescence (CL) detection. The method is based on the inhibition of the Cu(II)-catalyzed CL reaction of luminol and hydrogen peroxide by the aminoglycosides due to the formation of a complex between the antibiotic and Cu(II). The main features of the method include small sample volumes and a fast response. Syringe pumps were used to insert the sample and the reagents into the microfluidic device. CL was collected using a fiber optic bundle connected to a luminescence detector. All instrumental, hydrodynamic and chemical variables involved in the system were optimized using neomycin as the aminoglycoside model. Inhibition is proportional to the concentration of the antibiotics. The dynamic ranges of the calibration graphs obtained for neomycin, streptomycin and amikacin are 0.3-3.3, 0.9-13.7, and 0.8-8.5 μmol L -1 , and the detection limits are 0.09, 0.28 and 0.24 μmol L -1 , respectively. The precision of the methods, expressed as relative standard deviation, is in the range from 0.8 to 5.0 %. The method was successfully applied to the determination of neomycin in water samples, with recoveries ranging from 80 to 120 %. (author)

  18. Metallic Contaminant Detection using a High-Temperature Superconducting Quantum Interference Devices Gradiometer

    International Nuclear Information System (INIS)

    Tanaka, Saburo; Akai, Tomohiro; Takemoto, Makoto; Hatsukade, Yoshimi; Ohtani, Takeyoshi; Ikeda, Yoshio; Suzuki, Shuichi

    2010-01-01

    We develop magnetic metallic contaminant detectors using high-temperature superconducting quantum interference devices (HTS-SQUIDs) for industrial products. Finding ultra-small metallic contaminants is an important issue for manufacturers producing commercial products such as lithium ion batteries. If such contaminants cause damages, the manufacturer of the product suffers a big financial loss due to having to recall the faulty products. Previously, we described a system for finding such ultra-small particles in food. In this study, we describe further developments of the system, for the reduction of the effect of the remnant field of the products, and we test the parallel magnetization of the products to generate the remnant field only at both ends of the products. In addition, we use an SQUID gradiometer in place of the magnetometer to reduce the edge effect by measuring the magnetic field gradient. We test the performances of the system and find that tiny iron particles as small as 50 × 50 μm 2 on the electrode of a lithium ion battery could be clearly detected. This detection level is difficult to achieve when using other methods. (cross-disciplinary physics and related areas of science and technology)

  19. A contraband detection system proof-of-principle device using electrostatic acceleration

    International Nuclear Information System (INIS)

    Sredniawski, Joseph J.; Debiak, T.W.; Kamykowski, E.; Rathke, J.; Milton, B.; Rogers, J.; Schmor, P.; Stanford, G.; Brando, J.

    1996-01-01

    A new Contraband Detection System (CDS) Proof-of- Principle (POP) device is nearing completion at Northrop Grumman's Advanced Technology and Development Center. We employ gamma resonance absorption (GRA) to detect nitrogen or chlorine in explosives and certain forms of illegal drugs. Using tomography, 3-D images of the total density and selected element density are generated. These characteristics together may be utilized with considerable confidence in determining if contraband is present in baggage or cargo. The CDS employs a high current (10 mA) DC electrostatic accelerator that provides a beam of protons at either 1.75 or 1.89 MeV. These high energy particles impinge upon a target coated with 13 C or 34 S. The resultant resonant gamma rays are preferentially absorbed in either 14 N or 35 Cl. Because of the penetrating power of the gamma rays, this approach can be utilized for inspection of fully loaded aircraft containers such as the LD3. Our current program calls for testing of the POP CDS by late 1996. This paper presents the overall design and characteristics of the CDS POP. (author)

  20. [Clinical relevance of ESR1 circulating mutations detection in hormone receptor positive metastatic breast cancer].

    Science.gov (United States)

    Clatot, Florian; Perdrix, Anne; Sefrioui, David; Sarafan-Vasseur, Nasrin; Di Fiore, Frédéric

    2018-01-01

    If hormone therapy is a key treatment for hormone receptor positive advanced breast cancers, secondary resistance occurs as a rule. Recently, acquired alterations of the ESR1 gene have been identified as a mechanism of resistance on aromatase inhibitor (AI) treatment. The selective pressure by AI exposure during the metastatic setting triggers the emergence of ESR1 activating mutations. In that context, the "liquid biopsy" concept has been used to detect this molecular resistance before progression. Thus, the ESR1 circulating mutation detection will soon be used in daily practice to help monitoring patients on AI treatment and provide an early change for specific therapies that still have to be determined in prospective clinical trials. This review will present the acquired ESR1 mutations, as well as the methods used for their detection in blood and the potential clinical impact of this approach for hormone receptor positive breast cancer management. Copyright © 2017 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  1. Detecting groups of coevolving positions in a molecule: a clustering approach

    Directory of Open Access Journals (Sweden)

    Galtier Nicolas

    2007-11-01

    Full Text Available Abstract Background Although the patterns of co-substitutions in RNA is now well characterized, detection of coevolving positions in proteins remains a difficult task. It has been recognized that the signal is typically weak, due to the fact that (i amino-acid are characterized by various biochemical properties, so that distinct amino acids changes are not functionally equivalent, and (ii a given mutation can be compensated by more than one mutation, at more than one position. Results We present a new method based on phylogenetic substitution mapping. The two above-mentioned problems are addressed by (i the introduction of a weighted mapping, which accounts for the biochemical effects (volume, polarity, charge of amino-acid changes, (ii the use of a clustering approach to detect groups of coevolving sites of virtually any size, and (iii the distinction between biochemical compensation and other coevolutionary mechanisms. We apply this methodology to a previously studied data set of bacterial ribosomal RNA, and to three protein data sets (myoglobin of vertebrates, S-locus Receptor Kinase and Methionine Amino-Peptidase. Conclusion We succeed in detecting groups of sites which significantly depart the null hypothesis of independence. Group sizes range from pairs to groups of size ≃ 10, depending on the substitution weights used. The structural and functional relevance of these groups of sites are assessed, and the various evolutionary processes potentially generating correlated substitution patterns are discussed.

  2. Depth of interaction detection with enhanced position-sensitive proportional resistor network

    International Nuclear Information System (INIS)

    Lerche, Ch.W.; Benlloch, J.M.; Sanchez, F.; Pavon, N.; Gimenez, N.; Fernandez, M.; Gimenez, M.; Sebastia, A.; Martinez, J.; Mora, F.J.

    2005-01-01

    A new method of determining the depth of interaction of γ-rays in thick inorganic scintillation crystals was tested experimentally. The method uses the strong correlation between the width of the scintillation light distribution within large continuous crystals and the γ-ray's interaction depth. This behavior was successfully reproduced by a theoretical model distribution based on the inverse square law. For the determination of the distribution's width, its standard deviation σ is computed using an enhanced position-sensitive proportional resistor network which is often used in γ-ray-imaging devices. Minor changes of this known resistor network allow the analog and real-time determination of the light distribution's 2nd moment without impairing the measurement of the energy and centroid. First experimental results are presented that confirm that the described method works correctly. Since only some cheap electronic components, but no additional detectors or crystals are required, the main advantage of this method is its low cost

  3. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    Science.gov (United States)

    Schmidt, H.; Kirschner, O.; Riedelbauch, S.; Necker, J.; Kopf, E.; Rieg, M.; Arantes, G.; Wessiak, M.; Mayrhuber, J.

    2014-03-01

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation.

  4. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    International Nuclear Information System (INIS)

    Schmidt, H; Kirschner, O; Riedelbauch, S; Necker, J; Kopf, E; Rieg, M; Arantes, G; Wessiak, M; Mayrhuber, J

    2014-01-01

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation

  5. Potential Applications of Microtesla Magnetic Resonance Imaging Detected Using a Superconducting Quantum Interference Device

    International Nuclear Information System (INIS)

    Myers, Whittier R.

    2006-01-01

    This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 (micro)T. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz -1/2 referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm 3 resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm 3 images of bell peppers and 3 x 3 x 26 mm 3 in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T 1 ) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The measured T 1 of ex vivo normal and cancerous

  6. Potential Applications of Microtesla Magnetic Resonance ImagingDetected Using a Superconducting Quantum Interference Device

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Whittier Ryan [Univ. of California, Berkeley, CA (United States)

    2006-01-01

    This dissertation describes magnetic resonance imaging (MRI) of protons performed in a precession field of 132 μT. In order to increase the signal-to-noise ratio (SNR), a pulsed 40-300 mT magnetic field prepolarizes the sample spins and an untuned second-order superconducting gradiometer coupled to a low transition temperature superconducting quantum interference device (SQUID) detects the subsequent 5.6-kHz spin precession. Imaging sequences including multiple echoes and partial Fourier reconstruction are developed. Calculating the SNR of prepolarized SQUID-detected MRI shows that three-dimensional Fourier imaging yields higher SNR than slice-selection imaging. An experimentally demonstrated field-cycling pulse sequence and post-processing algorithm mitigate image artifacts caused by concomitant gradients in low-field MRI. The magnetic field noise of SQUID untuned detection is compared to the noise of SQUID tuned detection, conventional Faraday detection, and the Nyquist noise generated by conducting biological samples. A second-generation microtesla MRI system employing a low-noise SQUID is constructed to increase SNR. A 2.4-m cubic, eddy-current shield with 6-mm thick aluminum walls encloses the experiment to attenuate external noise. The measured noise is 0.75 fT Hz-1/2 referred to the bottom gradiometer loop. Solenoids wound from 30-strand braided wire to decrease Nyquist noise and cooled by either liquid nitrogen or water polarize the spins. Copper wire coils wound on wooden supports produce the imaging magnetic fields and field gradients. Water phantom images with 0.8 x 0.8 x 10 mm3 resolution have a SNR of 6. Three-dimensional 1.6 x 1.9 x 14 mm3 images of bell peppers and 3 x 3 x 26 mm3 in vivo images of the human arm are presented. Since contrast based on the transverse spin relaxation rate (T1) is enhanced at low magnetic fields, microtesla MRI could potentially be used for tumor imaging. The

  7. The intracavitary ECG method for positioning the tip of central venous access devices in pediatric patients: results of an Italian multicenter study.

    Science.gov (United States)

    Rossetti, Francesca; Pittiruti, Mauro; Lamperti, Massimo; Graziano, Ugo; Celentano, Davide; Capozzoli, Giuseppe

    2015-01-01

    The Italian Group for Venous Access Devices (GAVeCeLT) has carried out a multicenter study investigating the safety and accuracy of intracavitary electrocardiography (IC-ECG) in pediatric patients. We enrolled 309 patients (age 1 month-18 years) candidate to different central venous access devices (VAD) - 56 peripherally inserted central catheters (PICC), 178 short term centrally inserted central catheters (CICC), 65 long term VADs, 10 VADs for dialysis - in five Italian Hospitals. Three age groups were considered: A (ECG was applicable in 307 cases. The increase of the P wave on IC-ECG was detected in all cases but two. The tip of the catheter was positioned at the cavo-atrial junction (CAJ) (i.e., at the maximal height of the P wave on IC-ECG) and the position was checked during the procedure by fluoroscopy or chest x-ray, considering the CAJ at 1-2 cm (group A), 1.5-3 cm (group B), or 2-4 cm (group C) below the carina. There were no complications related to IC-ECG. The overall match between IC-ECG and x-ray was 95.8% (96.2% in group A, 95% in group B, and 96.8% in group C). In 95 cases, the IC-ECG was performed with a dedicated ECG monitor, specifically designed for IC-ECG (Nautilus, Romedex): in this group, the match between IC-ECG and x-ray was 98.8%. We conclude that the IC-ECG method is safe and accurate in the pediatric patients. The applicability of the method is 99.4% and its feasibility is 99.4%. The accuracy is 95.8% and even higher (98.8%) when using a dedicated ECG monitor.

  8. In vitro performance of DIAGNOdent laser fluorescence device for dental calculus detection on human tooth root surfaces

    Directory of Open Access Journals (Sweden)

    Thomas E. Rams

    2017-10-01

    Conclusions: Excellent intra- and inter-examiner reproducibility of autofluorescence intensity measurements was obtained with the DIAGNOdent laser fluorescence device on human tooth roots. Calculus-positive root surfaces exhibited significantly greater DIAGNOdent laser autofluorescence than calculus-free tooth roots, even with the laser probe tip directed parallel to root surfaces. These findings provide further in vitro validation of the potential utility of a DIAGNOdent laser fluorescence device for identifying dental calculus on human tooth root surfaces.

  9. Detection of vehicle parts based on Faster R-CNN and relative position information

    Science.gov (United States)

    Zhang, Mingwen; Sang, Nong; Chen, Youbin; Gao, Changxin; Wang, Yongzhong

    2018-03-01

    Detection and recognition of vehicles are two essential tasks in intelligent transportation system (ITS). Currently, a prevalent method is to detect vehicle body, logo or license plate at first, and then recognize them. So the detection task is the most basic, but also the most important work. Besides the logo and license plate, some other parts, such as vehicle face, lamp, windshield and rearview mirror, are also key parts which can reflect the characteristics of vehicle and be used to improve the accuracy of recognition task. In this paper, the detection of vehicle parts is studied, and the work is novel. We choose Faster R-CNN as the basic algorithm, and take the local area of an image where vehicle body locates as input, then can get multiple bounding boxes with their own scores. If the box with maximum score is chosen as final result directly, it is often not the best one, especially for small objects. This paper presents a method which corrects original score with relative position information between two parts. Then we choose the box with maximum comprehensive score as the final result. Compared with original output strategy, the proposed method performs better.

  10. Intrinsic spatial resolution limitations due to differences between positron emission position and annihilation detection localization

    International Nuclear Information System (INIS)

    Perez, Pedro; Malano, Francisco; Valente, Mauro

    2012-01-01

    Since its successful implementation for clinical diagnostic, positron emission tomography (PET) represents the most promising medical imaging technique. The recent major growth of PET imaging is mainly due to its ability to trace the biologic pathways of different compounds in the patient's body, assuming the patient can be labeled with some PET isotope. Regardless of the type of isotope, the PET imaging method is based on the detection of two 511-keV gamma photons being emitted in opposite directions, with almost 180 deg between them, as a consequence of electron-positron annihilation. Therefore, this imaging method is intrinsically limited by random uncertainties in spatial resolutions, related with differences between the actual position of positron emission and the location of the detected annihilation. This study presents an approach with the Monte Carlo method to analyze the influence of this effect on different isotopes of potential implementation in PET. (author)

  11. False-positive reduction in CAD mass detection using a competitive classification strategy

    International Nuclear Information System (INIS)

    Li Lihua; Zheng Yang; Zhang Lei; Clark, Robert A.

    2001-01-01

    High false-positive (FP) rate remains to be one of the major problems to be solved in CAD study because too many false-positively cued signals will potentially degrade the performance of detecting true-positive regions and increase the call-back rate in CAD environment. In this paper, we proposed a novel classification method for FP reduction, where the conventional 'hard' decision classifier is cascaded with a 'soft' decision classification with the objective to reduce false-positives in the cases with multiple FPs retained after the 'hard' decision classification. The 'soft' classification takes a competitive classification strategy in which only the 'best' ones are selected from the pre-classified suspicious regions as the true mass in each case. A neural network structure is designed to implement the proposed competitive classification. Comparative studies of FP reduction on a database of 79 images by a 'hard' decision classification and a combined 'hard'-'soft' classification method demonstrated the efficiency of the proposed classification strategy. For example, for the high FP sub-database which has only 31.7% of total images but accounts for 63.5% of whole FPs generated in single 'hard' classification, the FPs can be reduced for 56% (from 8.36 to 3.72 per image) by using the proposed method at the cost of 1% TP loss (from 69% to 68%) in whole database, while it can only be reduced for 27% (from 8.36 to 6.08 per image) by simply increasing the threshold of 'hard' classifier with a cost of TP loss as high as 14% (from 69% to 55%). On the average in whole database, the FP reduction by hybrid 'hard'-'soft' classification is 1.58 per image as compared to 1.11 by 'hard' classification at the TP costs described above. Because the cases with high dense tissue are of higher risk of cancer incidence and false-negative detection in mammogram screening, and usually generate more FPs in CAD detection, the method proposed in this paper will be very helpful in improving

  12. Filtration Device for On-Site Collection, Storage and Shipment of Cells from Urine and Its Application to DNA-Based Detection of Bladder Cancer.

    Science.gov (United States)

    Andersson, Elin; Dahmcke, Christina M; Steven, Kenneth; Larsen, Louise K; Guldberg, Per

    2015-01-01

    Molecular analysis of cells from urine provides a convenient approach to non-invasive detection of bladder cancer. The practical use of urinary cell-based tests is often hampered by difficulties in handling and analyzing large sample volumes, the need for rapid sample processing to avoid degradation of cellular content, and low sensitivity due to a high background of normal cells. We present a filtration device, designed for home or point-of-care use, which enables collection, storage and shipment of urinary cells. A special feature of this device is a removable cartridge housing a membrane filter, which after filtration of urine can be transferred to a storage unit containing an appropriate preserving solution. In spiking experiments, the use of this device provided efficient recovery of bladder cancer cells with elimination of >99% of excess smaller-sized cells. The performance of the device was further evaluated by DNA-based analysis of urinary cells collected from 57 patients subjected to transurethral resection following flexible cystoscopy indicating the presence of a tumor. All samples were tested for FGFR3 mutations and seven DNA methylation markers (BCL2, CCNA1, EOMES, HOXA9, POU4F2, SALL3 and VIM). In the group of patients where a transitional cell tumor was confirmed at histopathological evaluation, urine DNA was positive for one or more markers in 29 out of 31 cases (94%), including 19 with FGFR3 mutation (61%). In the group of patients with benign histopathology, urine DNA was positive for methylation markers in 13 out of 26 cases (50%). Only one patient in this group was positive for a FGFR3 mutation. This patient had a stage Ta tumor resected 6 months later. The ability to easily collect, store and ship diagnostic cells from urine using the presented device may facilitate non-invasive testing for bladder cancer.

  13. Filtration Device for On-Site Collection, Storage and Shipment of Cells from Urine and Its Application to DNA-Based Detection of Bladder Cancer.

    Directory of Open Access Journals (Sweden)

    Elin Andersson

    Full Text Available Molecular analysis of cells from urine provides a convenient approach to non-invasive detection of bladder cancer. The practical use of urinary cell-based tests is often hampered by difficulties in handling and analyzing large sample volumes, the need for rapid sample processing to avoid degradation of cellular content, and low sensitivity due to a high background of normal cells. We present a filtration device, designed for home or point-of-care use, which enables collection, storage and shipment of urinary cells. A special feature of this device is a removable cartridge housing a membrane filter, which after filtration of urine can be transferred to a storage unit containing an appropriate preserving solution. In spiking experiments, the use of this device provided efficient recovery of bladder cancer cells with elimination of >99% of excess smaller-sized cells. The performance of the device was further evaluated by DNA-based analysis of urinary cells collected from 57 patients subjected to transurethral resection following flexible cystoscopy indicating the presence of a tumor. All samples were tested for FGFR3 mutations and seven DNA methylation markers (BCL2, CCNA1, EOMES, HOXA9, POU4F2, SALL3 and VIM. In the group of patients where a transitional cell tumor was confirmed at histopathological evaluation, urine DNA was positive for one or more markers in 29 out of 31 cases (94%, including 19 with FGFR3 mutation (61%. In the group of patients with benign histopathology, urine DNA was positive for methylation markers in 13 out of 26 cases (50%. Only one patient in this group was positive for a FGFR3 mutation. This patient had a stage Ta tumor resected 6 months later. The ability to easily collect, store and ship diagnostic cells from urine using the presented device may facilitate non-invasive testing for bladder cancer.

  14. A simple method to accurately position Port-A-Cath without the aid of intraoperative fluoroscopy or other localizing devices.

    Science.gov (United States)

    Horng, Huann-Cheng; Yuan, Chiou-Chung; Chao, Kuan-Chong; Cheng, Ming-Huei; Wang, Peng-Hui

    2007-06-01

    To evaluate the efficacy and acceptability of the Port-A-Cath (PAC) insertion method with (conventional group as II) and without (modified group as I) the aid of intraoperative fluoroscopy or other localizing devices. A total of 158 women with various kinds of gynecological cancers warranting PAC insertion (n = 86 in group I and n = 72 in group II, respectively) were evaluated. Data for analyses included patient age, main disease, dislocation site, surgical time, complications, and catheter outcome. There was no statistical difference between the two groups in terms of age, main disease, complications, and the experiencing of patent catheters. However, appropriate positioning (100% in group I, and 82% in group II) in the superior vena cava (SVC) showed statistical differences between the two groups (P = 0.001). In addition, the surgical time in group I was statistically shorter than that in group II (P < 0.001). The modified method for inserting the PAC offered the following benefits: including avoiding X-ray exposure for both the operator and the patient, defining the appropriate position in the SVC, and less surgical time. (c) 2007 Wiley-Liss, Inc.

  15. Evaluation of a portable markerless finger position capture device: accuracy of the Leap Motion controller in healthy adults.

    Science.gov (United States)

    Tung, James Y; Lulic, Tea; Gonzalez, Dave A; Tran, Johnathan; Dickerson, Clark R; Roy, Eric A

    2015-05-01

    Although motion analysis is frequently employed in upper limb motor assessment (e.g. visually-guided reaching), they are resource-intensive and limited to laboratory settings. This study evaluated the reliability and accuracy of a new markerless motion capture device, the Leap Motion controller, to measure finger position. Testing conditions that influence reliability and agreement between the Leap and a research-grade motion capture system were examined. Nine healthy young adults pointed to 15 targets on a computer screen under two conditions: (1) touching the target (touch) and (2) 4 cm away from the target (no-touch). Leap data was compared to an Optotrak marker attached to the index finger. Across all trials, root mean square (RMS) error of the Leap system was 17.30  ±  9.56 mm (mean ± SD), sampled at 65.47  ±  21.53 Hz. The % viable trials and mean sampling rate were significantly lower in the touch condition (44% versus 64%, p motion capture systems, the Leap Motion controller is sufficiently reliable for measuring motor performance in pointing tasks that do not require high positional accuracy (e.g. reaction time, Fitt's, trails, bimanual coordination).

  16. Objective-lens-free Fiber-based Position Detection with Nanometer Resolution in a Fiber Optical Trapping System.

    Science.gov (United States)

    Ti, Chaoyang; Ho-Thanh, Minh-Tri; Wen, Qi; Liu, Yuxiang

    2017-10-13

    Position detection with high accuracy is crucial for force calibration of optical trapping systems. Most existing position detection methods require high-numerical-aperture objective lenses, which are bulky, expensive, and difficult to miniaturize. Here, we report an affordable objective-lens-free, fiber-based position detection scheme with 2 nm spatial resolution and 150 MHz bandwidth. This fiber based detection mechanism enables simultaneous trapping and force measurements in a compact fiber optical tweezers system. In addition, we achieved more reliable signal acquisition with less distortion compared with objective based position detection methods, thanks to the light guiding in optical fibers and small distance between the fiber tips and trapped particle. As a demonstration of the fiber based detection, we used the fiber optical tweezers to apply a force on a cell membrane and simultaneously measure the cellular response.

  17. An application to estimate the cyber-risk detection skill of mobile device users

    NARCIS (Netherlands)

    Schaff, Guillaume; Harpes, Carlo; Martin, Romain; Junger, Marianne; Berntzen, Lasse; Böhm, Stephan

    2013-01-01

    According to experts’ predictions, mobile devices (smartphones, tablet computers) will replace the widespread personal computer by 2017 for personal and work tasks (emergence of BYOD). In parallel, the expert community has observed an increase of cyber-attacks against mobile devices. Mobile device

  18. Infrared detection and photon energy up-conversion in graphene layer infrared photodetectors integrated with LEDs based on van der Waals heterostructures: Concept, device model, and characteristics

    Science.gov (United States)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Karasik, V. E.; Shur, M. S.

    2017-09-01

    We propose the concept of the infrared detection and photon energy up-conversion in the devices using the integration of the graphene layer infrared detectors (GLIPs) and the light emitting diodes (LEDs) based on van der Waals (vdW) heterostructures. Using the developed device model of the GLIP-LEDs, we calculate their characteristics. The GLIP-LED devices can operate as the detectors of far- and mid infrared radiation (FIR and MIR) with an electrical output or with near-infrared radiation (NIR) or visible radiation (VIR) output. In the latter case, GLIP-LED devices function as the photon energy up-converters of FIR and MIR to NIR or VIR. The operation of GLIP-LED devices is associated with the injection of the electron photocurrent produced due to the interband absorption of the FIR/MIR photons in the GLIP part into the LED emitting NIR/VIR photons. We calculate the GLIP-LED responsivity and up-conversion efficiency as functions the structure parameters and the energies of the incident FIR/MIR photons and the output NIR/VIR photons. The advantages of the GLs in the vdW heterostructures (relatively high photoexcitation rate from and low capture efficiency into GLs) combined with the reabsorption of a fraction of the NIR/FIR photon flux in the GLIP (which can enable an effective photonic feedback) result in the elevated GLIP-LED device responsivity and up-conversion efficiency. The positive optical feedback from the LED section of the device lead to increasing current injection enabling the appearance of the S-type current-voltage characteristic with a greatly enhanced responsivity near the switching point and current filamentation.

  19. Poster - 46: Intra-fraction tumor position assessment for lung SBRT in patients treated without customized immobilization devices

    Energy Technology Data Exchange (ETDEWEB)

    Alamri, Iqbal; Faria, Sergio; Gluszko, Jessica; Patrocinio, Horacio [McGill University Health Centre (Canada)

    2016-08-15

    Purpose: To assess intra-fraction positional stability of lung cancer tumours in patients treated by kilo-voltage cone-beam computed tomography (CBCT)-guided stereotactic body radiotherapy (SBRT) without the use of customized immobilization devices. Material and Methods: Twenty-two patients underwent 4D-CT in the supine position with the arms in a wing board but without customized immobilization. The PTV was the internal target volume based on maximum intensity projections and a 5mm symmetric setup margin. Treatments were planned using 7–9 static fields or two volumetric modulated arcs. At treatment, the patient position was adjusted using pre-treatment CBCT. A post-treatment CBCT was taken immediately after the treatment ended. The 41 CBCT pairs were automatically matched and the transitional shifts between the two CBCTs recorded. The mean values and standard deviations were calculated for these displacements. Results and conclusions: The mean time between CBCTs (treatment time) was 16.5 ± 6 minutes (range: 10 to 34 minutes). In all cases the tumour remained inside the PTV in the post-treatment CBCT. The mean shifts between pre and post-treatment CBCTs were −0.7 ± 1.6 mm (range −5.0 to 3.0 mm) vertically, −0.3 ± 1.7 mm (range −4.8 to 3.0 mm) longitudinally, and −0.4 ± 1.5 mm (range −4.0 to 2.0 mm) laterally. Our results suggest little systematic shifting during treatment, and standard deviations that are consistent with another published report for treatments where customized immobilization was used. This result is encouraging for SBRT programs in clinics with limited resources.

  20. Poster - 46: Intra-fraction tumor position assessment for lung SBRT in patients treated without customized immobilization devices

    International Nuclear Information System (INIS)

    Alamri, Iqbal; Faria, Sergio; Gluszko, Jessica; Patrocinio, Horacio

    2016-01-01

    Purpose: To assess intra-fraction positional stability of lung cancer tumours in patients treated by kilo-voltage cone-beam computed tomography (CBCT)-guided stereotactic body radiotherapy (SBRT) without the use of customized immobilization devices. Material and Methods: Twenty-two patients underwent 4D-CT in the supine position with the arms in a wing board but without customized immobilization. The PTV was the internal target volume based on maximum intensity projections and a 5mm symmetric setup margin. Treatments were planned using 7–9 static fields or two volumetric modulated arcs. At treatment, the patient position was adjusted using pre-treatment CBCT. A post-treatment CBCT was taken immediately after the treatment ended. The 41 CBCT pairs were automatically matched and the transitional shifts between the two CBCTs recorded. The mean values and standard deviations were calculated for these displacements. Results and conclusions: The mean time between CBCTs (treatment time) was 16.5 ± 6 minutes (range: 10 to 34 minutes). In all cases the tumour remained inside the PTV in the post-treatment CBCT. The mean shifts between pre and post-treatment CBCTs were −0.7 ± 1.6 mm (range −5.0 to 3.0 mm) vertically, −0.3 ± 1.7 mm (range −4.8 to 3.0 mm) longitudinally, and −0.4 ± 1.5 mm (range −4.0 to 2.0 mm) laterally. Our results suggest little systematic shifting during treatment, and standard deviations that are consistent with another published report for treatments where customized immobilization was used. This result is encouraging for SBRT programs in clinics with limited resources.

  1. Study of the detective quantum efficiency for the kinestatic charge detector as a megavoltage imaging device

    Science.gov (United States)

    Samant, Sanjiv S.; Gopal, Arun; DiBianca, Frank A.

    2003-06-01

    Megavoltage x-ray imaging suffers from relatively poor contrast and spatial resolution compared to diagnostic kilovoltage x-ray imaging due to the dominant Compton scattering in the former. Recently available amorphous silicon/selenium based flat-panel imagers overcome many of the limitations of poor contrast and spatial resolution that affect conventional video based electronic portal imaging devices (EPIDs). An alternative technology is presented here: kinestatic charge detection (KCD). The KCD uses a slot photon beam, high-pressure gas (xenon, 100 atm) and a multi-ion rectangular chamber in scanning mode. An electric field is used to regulate the cation drift velocity. By matching the scanning speed with that of the cation drift, the cations remain static in the object frame of reference, allowing temporal integration of the signal. KCD imaging is characterized by reduced scatter and a high signal-to-noise ratio. Measurements and Monte Carlo simulations of modulation transfer function (MTF), noise power spectrum (NPS) and the detective quantum efficiency (DQE) of a prototype small field of view KCD detector (384 channels, 0.5 mm spacing) were carried out. Measurements yield DQE[0]=0.19 and DQE[0.5cy/mm]=0.01. KCD imaging is compared to film and commercial EPID systems using phantoms, with the KCD requiring an extremely low dose (0.1 cGy) per image. A proposed cylindrical chamber design with a higher ion-collection depth is expected to further improve image quality (DQE[0]>0.25).

  2. Peptide Functionalized Gold Nanorods for the Sensitive Detection of a Cardiac Biomarker Using Plasmonic Paper Devices (Postprint)

    Science.gov (United States)

    2015-11-10

    Albumin to saturate the non-specific binding sites on the paper substrate prior to troponin exposure. For testing the biosensor, troponin of various...AFRL-RX-WP-JA-2016-0191 PEPTIDE FUNCTIONALIZED GOLD NANORODS FOR THE SENSITIVE DETECTION OF A CARDIAC BIOMARKER USING PLASMONIC PAPER ...SENSITIVE DETECTION OF A CARDIAC BIOMARKER USING PLASMONIC PAPER DEVICES (POSTPRINT) 5a. CONTRACT NUMBER FA8650-15-D-5405-0001 5b. GRANT NUMBER 5c

  3. Plant abnormality inspection device

    International Nuclear Information System (INIS)

    Takenaka, Toshio.

    1990-01-01

    The present invention concerns a plant abnormality inspection device for conducting remote or automatic patrolling inspection in a plant and, more particularly, relates to such a device as capable of detecting abnormal odors. That is, the device comprises a moving device for moving to a predetermined position in the plant, a plurality of gas sensors for different kind of gases to be inspected mounted thereon, a comparator for comparing the concentration of a gas detected by the gas sensor with the normal gas concentration at the predetermined position and a judging means for judging the absence or presence of abnormality depending on the combination of the result of the comparison and deliverying a signal if the state is abnormal. As a result, a slight amount of gas responsible to odors released upon abnormality of the plant can be detected by a plurality of gas sensors for different kinds gases to rapidly and easily find abnormal portions in the plant. (I.S.)

  4. Coherent optical communication detection device based on modified balanced optical phase-locked loop

    Science.gov (United States)

    Zhang, Bo; Sun, Jianfeng; Xu, Mengmeng; Li, Guangyuan; Zhang, Guo; Lao, Chenzhe; He, Hongyu; Lu, Zhiyong

    2017-08-01

    In the field of satellite communication, space laser communication technology is famous for its high communication rate, good confidentiality, small size, low power consumption and so on. The design of coherent optical communication detection device based on modified balanced optical phase-locked loop (OPLL) is presented in the paper. It combined by local oscillator beam, modulator, voltage controlled oscillator, signal beam, optical filter, 180 degree hybrid, balanced detector, loop filter and signal receiver. Local oscillator beam and voltage controlled oscillator trace the phase variation of signal beam simultaneously. That taking the advantage of voltage controlled oscillator which responses sensitively and tunable local oscillator laser source with large tuning range can trace the phase variation of signal beam rapidly and achieve phase locking. The demand of the phase deviation is very low, and the system is easy to adjust. When the transmitter transmits the binary phase shift keying (BPSK) signal, the receiver can demodulate the baseband signal quickly, which has important significance for the free space coherent laser communication.

  5. Optical Dependence of Electrically Detected Magnetic Resonance in Lightly Doped Si:P Devices

    Science.gov (United States)

    Zhu, Lihuang; van Schooten, Kipp J.; Guy, Mallory L.; Ramanathan, Chandrasekhar

    2017-06-01

    Using frequency-modulated electrically detected magnetic resonance (EDMR), we show that signals measured from lightly doped (1.2 - 5 ×1 015 cm-3 ) silicon devices vary significantly with the wavelength of the optical excitation used to generate the mobile carriers. We measure EDMR spectra at 4.2 K as a function of modulation frequency and applied microwave power using a 980-nm laser, a 405-nm laser, and a broadband white-light source. EDMR signals are observed from the phosphorus donor and two distinct defect species in all of the experiments. With near-infrared irradiation, we find that the EDMR signal primarily arises from donor-defect pairs, while, at higher photon energies, there are significant additional contributions from defect-defect pairs. The contribution of spins from different spatial regions to the EDMR signal is seen to vary as the optical penetration depth changes from about 120 nm at 405-nm illumination to 100 μ m at 980-nm illumination. The modulation frequency dependence of the EDMR signal shows that the energy of the optical excitation strongly modulates the kinetics of the underlying spin-dependent recombination (SDR) process. Careful tuning of the optical photon energy could therefore be used to control both the subset of spin pairs contributing to the EDMR signal and the dynamics of the SDR process.

  6. Automatic detection of patient position for incorporation in exact 3D reconstruction for emission tomography

    International Nuclear Information System (INIS)

    Kyme, A.; Hutton, B.; Hatton, R.; Skerrett, D.

    2000-01-01

    Full text: SPECT involves acquiring a set of projection images using one or more rotating gamma cameras. The projections are then reconstructed to create transverse slices. Patient motion during the scan can introduce inconsistencies into the data leading to artifacts. There remains a need for robust and effective motion correction. One approach uses the (corrupt) data itself to derive the patient position at each projection angle. Corrected data is periodically incorporated into a 3-D reconstruction. Fundamental aspects of the algorithm mechanics, particularly performance in the presence of Poisson noise, have been examined. Brain SPECT studies were simulated using a digital version of the Huffman brain phantom. Projection datasets with Poisson noise imposed, generated for different positions of the phantom, were combined and reconstructed to produce motion-corrupted reconstructions. To examine the behaviour of the cost function as the object position was changed, the corrupted re-construction was forward projected and the mean square difference (MSD) between the resulting re-projections and corresponding original projections was calculated. The ability to detect mis-positioned projections for different degrees of freedom, the importance of using dual-head camera geometry, and the effect of smoothing the original projections prior to the MSD calculation were assessed. Re-projection of the corrupt reconstruction was able to correctly identify mis-positioned projection data. The degree of movement as defined by MSD was more easily identified for translations than for rotations. Noise resulted in an increasing bias that made it difficult to distinguish the minimum MSD, particularly for z-axis rotations. This was improved by median filtering of projections. Right-angled dual-head geometry is necessary to provide stability to the algorithm and to better identify motion in all 6 degrees of freedom. These findings will assist the optimisation of a fully automated motion

  7. Improving computer-aided detection assistance in breast cancer screening by removal of obviously false-positive findings

    NARCIS (Netherlands)

    Mordang, Jan-Jurre; Gubern-Merida, Albert; Bria, Alessandro; Tortorella, Francesco; den Heeten, Gerard; Karssemeijer, Nico

    2017-01-01

    Purpose: Computer-aided detection (CADe) systems for mammography screening still mark many false positives. This can cause radiologists to lose confidence in CADe, especially when many false positives are obviously not suspicious to them. In this study, we focus on obvious false positives generated

  8. Improving computer-aided detection assistance in breast cancer screening by removal of obviously false-positive findings

    NARCIS (Netherlands)

    Mordang, J.J.; Gubern Merida, A.; Bria, A.; Tortorella, F.; Heeten, G.; Karssemeijer, N.

    2017-01-01

    PURPOSE: Computer-aided detection (CADe) systems for mammography screening still mark many false positives. This can cause radiologists to lose confidence in CADe, especially when many false positives are obviously not suspicious to them. In this study, we focus on obvious false positives generated

  9. Electrical detection of spin transport in lateral ferromagnet-semiconductor devices

    Science.gov (United States)

    Lou, Xiaohua

    2007-03-01

    A fully electrical scheme of spin injection, transport, and detection in a single ferromagnet-semiconductor structure has been a long-standing goal in the field of spintronics. In this talk, we report on an experimental demonstration of such a scheme. The devices are fabricated from epitaxial Fe/GaAs (100) heterostructures with highly doped GaAs as a Schottky tunnel barrier. A set of closely spaced Fe contacts on the top of an n-GaAs channel are used as spin injectors and detectors. Reference electrodes are placed at the far ends of the channel, allowing for non-local spin detection [1]. The electro-chemical potential of the detector is sensitive to the relative magnetizations of the injector and detector. In spin-valve measurements, a magnetic field is applied along the Fe easy axis to switch the relative magnetizations of injector and detector from parallel to antiparallel, resulting in a voltage jump that is proportional to the non-equilibrium spin polarization in the channel. A more rigorous test of electrical spin detection is the observation of the Hanle effect, in which an out-of-plane magnetic field is used to modulate and dephase the spin polarization in the channel. The magnitudes of the observed Hanle curves agree with the results of the spin-valve measurements. The dependence of the Hanle curves on temperature and contact separation is studied in detail and is consistent with a drift-diffusion model incorporating spin precession and relaxation. The spin polarization generated by spin injection (reverse bias at the injector) or spin accumulation (forward bias at the injector) is measured using the magneto-optical Kerr effect and is found to be in good agreement with the spin-dependent non-local voltage. Both the transport and optical measurements show a non-linear relationship between the bias voltage at the injector and the spin polarization in the channel. [1] M. Johnson and R. H. Silsbee, Phys. Rev. Lett. 55, 1790 (1985).

  10. Rapid detection of Pseudomonas aeruginosa from positive blood cultures by quantitative PCR

    Directory of Open Access Journals (Sweden)

    Cattoir Vincent

    2010-08-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is responsible for numerous bloodstream infections associated with severe adverse outcomes in case of inappropriate initial antimicrobial therapy. The present study was aimed to develop a novel quantitative PCR (qPCR assay, using ecfX as the specific target gene, for the rapid and accurate identification of P. aeruginosa from positive blood cultures (BCs. Methods Over the period August 2008 to June 2009, 100 BC bottles positive for gram-negative bacilli were tested in order to evaluate performances of the qPCR technique with conventional methods as gold standard (i.e. culture and phenotypic identification. Results Thirty-three strains of P. aeruginosa, 53 strains of Enterobactericaeae, nine strains of Stenotrophomonas maltophilia and two other gram-negative species were isolated while 3 BCs were polymicrobial including one mixture containing P. aeruginosa. All P. aeruginosa clinical isolates were detected by qPCR except a single strain in mixed culture. Performances of the qPCR technique were: specificity, 100%; positive predictive value, 100%; negative predictive value, 98.5%; and sensitivity, 97%. Conclusions This reliable technique may offer a rapid (

  11. Genome-wide detection and characterization of positive selection in human populations.

    Science.gov (United States)

    Sabeti, Pardis C; Varilly, Patrick; Fry, Ben; Lohmueller, Jason; Hostetter, Elizabeth; Cotsapas, Chris; Xie, Xiaohui; Byrne, Elizabeth H; McCarroll, Steven A; Gaudet, Rachelle; Schaffner, Stephen F; Lander, Eric S; Frazer, Kelly A; Ballinger, Dennis G; Cox, David R; Hinds, David A; Stuve, Laura L; Gibbs, Richard A; Belmont, John W; Boudreau, Andrew; Hardenbol, Paul; Leal, Suzanne M; Pasternak, Shiran; Wheeler, David A; Willis, Thomas D; Yu, Fuli; Yang, Huanming; Zeng, Changqing; Gao, Yang; Hu, Haoran; Hu, Weitao; Li, Chaohua; Lin, Wei; Liu, Siqi; Pan, Hao; Tang, Xiaoli; Wang, Jian; Wang, Wei; Yu, Jun; Zhang, Bo; Zhang, Qingrun; Zhao, Hongbin; Zhao, Hui; Zhou, Jun; Gabriel, Stacey B; Barry, Rachel; Blumenstiel, Brendan; Camargo, Amy; Defelice, Matthew; Faggart, Maura; Goyette, Mary; Gupta, Supriya; Moore, Jamie; Nguyen, Huy; Onofrio, Robert C; Parkin, Melissa; Roy, Jessica; Stahl, Erich; Winchester, Ellen; Ziaugra, Liuda; Altshuler, David; Shen, Yan; Yao, Zhijian; Huang, Wei; Chu, Xun; He, Yungang; Jin, Li; Liu, Yangfan; Shen, Yayun; Sun, Weiwei; Wang, Haifeng; Wang, Yi; Wang, Ying; Xiong, Xiaoyan; Xu, Liang; Waye, Mary M Y; Tsui, Stephen K W; Xue, Hong; Wong, J Tze-Fei; Galver, Luana M; Fan, Jian-Bing; Gunderson, Kevin; Murray, Sarah S; Oliphant, Arnold R; Chee, Mark S; Montpetit, Alexandre; Chagnon, Fanny; Ferretti, Vincent; Leboeuf, Martin; Olivier, Jean-François; Phillips, Michael S; Roumy, Stéphanie; Sallée, Clémentine; Verner, Andrei; Hudson, Thomas J; Kwok, Pui-Yan; Cai, Dongmei; Koboldt, Daniel C; Miller, Raymond D; Pawlikowska, Ludmila; Taillon-Miller, Patricia; Xiao, Ming; Tsui, Lap-Chee; Mak, William; Song, You Qiang; Tam, Paul K H; Nakamura, Yusuke; Kawaguchi, Takahisa; Kitamoto, Takuya; Morizono, Takashi; Nagashima, Atsushi; Ohnishi, Yozo; Sekine, Akihiro; Tanaka, Toshihiro; Tsunoda, Tatsuhiko; Deloukas, Panos; Bird, Christine P; Delgado, Marcos; Dermitzakis, Emmanouil T; Gwilliam, Rhian; Hunt, Sarah; Morrison, Jonathan; Powell, Don; Stranger, Barbara E; Whittaker, Pamela; Bentley, David R; Daly, Mark J; de Bakker, Paul I W; Barrett, Jeff; Chretien, Yves R; Maller, Julian; McCarroll, Steve; Patterson, Nick; Pe'er, Itsik; Price, Alkes; Purcell, Shaun; Richter, Daniel J; Sabeti, Pardis; Saxena, Richa; Schaffner, Stephen F; Sham, Pak C; Varilly, Patrick; Altshuler, David; Stein, Lincoln D; Krishnan, Lalitha; Smith, Albert Vernon; Tello-Ruiz, Marcela K; Thorisson, Gudmundur A; Chakravarti, Aravinda; Chen, Peter E; Cutler, David J; Kashuk, Carl S; Lin, Shin; Abecasis, Gonçalo R; Guan, Weihua; Li, Yun; Munro, Heather M; Qin, Zhaohui Steve; Thomas, Daryl J; McVean, Gilean; Auton, Adam; Bottolo, Leonardo; Cardin, Niall; Eyheramendy, Susana; Freeman, Colin; Marchini, Jonathan; Myers, Simon; Spencer, Chris; Stephens, Matthew; Donnelly, Peter; Cardon, Lon R; Clarke, Geraldine; Evans, David M; Morris, Andrew P; Weir, Bruce S; Tsunoda, Tatsuhiko; Johnson, Todd A; Mullikin, James C; Sherry, Stephen T; Feolo, Michael; Skol, Andrew; Zhang, Houcan; Zeng, Changqing; Zhao, Hui; Matsuda, Ichiro; Fukushima, Yoshimitsu; Macer, Darryl R; Suda, Eiko; Rotimi, Charles N; Adebamowo, Clement A; Ajayi, Ike; Aniagwu, Toyin; Marshall, Patricia A; Nkwodimmah, Chibuzor; Royal, Charmaine D M; Leppert, Mark F; Dixon, Missy; Peiffer, Andy; Qiu, Renzong; Kent, Alastair; Kato, Kazuto; Niikawa, Norio; Adewole, Isaac F; Knoppers, Bartha M; Foster, Morris W; Clayton, Ellen Wright; Watkin, Jessica; Gibbs, Richard A; Belmont, John W; Muzny, Donna; Nazareth, Lynne; Sodergren, Erica; Weinstock, George M; Wheeler, David A; Yakub, Imtaz; Gabriel, Stacey B; Onofrio, Robert C; Richter, Daniel J; Ziaugra, Liuda; Birren, Bruce W; Daly, Mark J; Altshuler, David; Wilson, Richard K; Fulton, Lucinda L; Rogers, Jane; Burton, John; Carter, Nigel P; Clee, Christopher M; Griffiths, Mark; Jones, Matthew C; McLay, Kirsten; Plumb, Robert W; Ross, Mark T; Sims, Sarah K; Willey, David L; Chen, Zhu; Han, Hua; Kang, Le; Godbout, Martin; Wallenburg, John C; L'Archevêque, Paul; Bellemare, Guy; Saeki, Koji; Wang, Hongguang; An, Daochang; Fu, Hongbo; Li, Qing; Wang, Zhen; Wang, Renwu; Holden, Arthur L; Brooks, Lisa D; McEwen, Jean E; Guyer, Mark S; Wang, Vivian Ota; Peterson, Jane L; Shi, Michael; Spiegel, Jack; Sung, Lawrence M; Zacharia, Lynn F; Collins, Francis S; Kennedy, Karen; Jamieson, Ruth; Stewart, John

    2007-10-18

    With the advent of dense maps of human genetic variation, it is now possible to detect positive natural selection across the human genome. Here we report an analysis of over 3 million polymorphisms from the International HapMap Project Phase 2 (HapMap2). We used 'long-range haplotype' methods, which were developed to identify alleles segregating in a population that have undergone recent selection, and we also developed new methods that are based on cross-population comparisons to discover alleles that have swept to near-fixation within a population. The analysis reveals more than 300 strong candidate regions. Focusing on the strongest 22 regions, we develop a heuristic for scrutinizing these regions to identify candidate targets of selection. In a complementary analysis, we identify 26 non-synonymous, coding, single nucleotide polymorphisms showing regional evidence of positive selection. Examination of these candidates highlights three cases in which two genes in a common biological process have apparently undergone positive selection in the same population:LARGE and DMD, both related to infection by the Lassa virus, in West Africa;SLC24A5 and SLC45A2, both involved in skin pigmentation, in Europe; and EDAR and EDA2R, both involved in development of hair follicles, in Asia.

  12. Extended Kalman Filter Channel Estimation for Line-of-Sight Detection in WCDMA Mobile Positioning

    Directory of Open Access Journals (Sweden)

    Abdelmonaem Lakhzouri

    2003-12-01

    Full Text Available In mobile positioning, it is very important to estimate correctly the delay between the transmitter and the receiver. When the receiver is in line-of-sight (LOS condition with the transmitter, the computation of the mobile position in two dimensions becomes straightforward. In this paper, the problem of LOS detection in WCDMA for mobile positioning is considered, together with joint estimation of the delays and channel coefficients. These are very challenging topics in multipath fading channels because LOS component is not always present, and when it is present, it might be severely affected by interfering paths spaced at less than one chip distance (closely spaced paths. The extended Kalman filter (EKF is used to estimate jointly the delays and complex channel coefficients. The decision whether the LOS component is present or not is based on statistical tests to determine the distribution of the channel coefficient corresponding to the first path. The statistical test-based techniques are practical, simple, and of low computation complexity, which is suitable for WCDMA receivers. These techniques can provide an accurate decision whether LOS component is present or not.

  13. Field-test of a date-rape drug detection device.

    Science.gov (United States)

    Quest, Dale W; Horsley, Joanne

    2007-01-01

    Drink Safe Technology Version 1.2 is an inexpensive color-change reagent test marketed internationally for use by consumers in settings such as a night club to detect potentially incapacitating concentrations of gamma-hydroxybutyric acid (GHB) and ketamine in beverages. The objective of this study was to compare product performance in the laboratory and performance in the hands of consumers in the field. Product performance in the laboratory adhered to the protocol defined by the manufacturer. Product performance in the hands of consumers in field settings allowed browsing participants to pipette an aliquot of their own drinks into randomly coded vials containing authentic drugs, or pure water, so as to yield the same concentrations of GHB or ketamine specified in the manufacturer-defined protocol, or blanks. Consumers were to proceed according to the directions printed on the product, and to record their results on a card with a code corresponding with the vial to which they had added an aliquot of their beverage. Diagnostic performance was calculated using two-way analysis. In the laboratory, Drink Safe Technology Version 1.2 reliably detected GHB and ketamine at concentrations specified by the manufacturer's protocol. The reactive color change denoting a positive test for GHB was rapid, but a positive test for ketamine required substantially more time to resolve. Nonetheless, test accuracy following the manufacturer's protocol in the laboratory was 100%. In the field, based on 101 paired-test results recorded by consumers, the test efficiency was 65.1%, sensitivity 50%, and specificity 91.6%. The product performed much better in the laboratory than it did in the hand of consumers in the field. There seems to be considerable potential for consumers to misinterpret a test result. The potential for consumers to record a false-negative test result for a spiked drink is cause for concern.

  14. Reactor noise monitoring device

    International Nuclear Information System (INIS)

    Yamanaka, Hiroto.

    1990-01-01

    The present invention concerns a reactor noise monitoring device by detecting abnormal sounds in background noises. Vibration sounds detected by accelerometers are applied to a loose parts detector. The detector generates high alarm if there are sudden impact sounds in the background noises and applies output signals to an accumulation device. If there is slight impact sounds in the vicinity of any of the accelerometers, the accumulation device accumulates the abnormal sounds assumed to be generated from an identical site while synchronizing the waveforms for all of the channels. Then, the device outputs signals in which the background noises are cancelled, as detection signals. Therefore, S/N ratio can be improved and the abnormal sounds contained in the background noises can be detected, to thereby improve the accuracy for estimating the position where the abnormal sounds are generated. (I.S.)

  15. Time-of-flight position-sensitive x-ray detection

    International Nuclear Information System (INIS)

    Mowat, J.W.

    1981-01-01

    A new method for recording beam-foil time-of-flight data is described. A stationary, side-window, position-senstive proportional counter, oriented with anode wire parallel to the ion beam, views the decay in flight of excited ions through a Soller slit x-ray collimator. In contrast to the standard method, the exciter foil, placed within or upstream from the field of view, is not moved during the acquisition of a decay curve. Each point on the anode acts like an independent detector seeing a unique segment of the ion beam. The correspondence between the downstream distance at which an ion decays and the position along the anode at which the x-ray is detected makes a pulse-height spectrum of position pulses equivalent to a time-of-flight decay curve. Thus an entire decay curve can now be acquired without moving the foil. Increased efficiency is the most significant improvement over the standard method in which the radiation detector views only a small segment of the flight path at any one time. Experiments using translating foils are subject to a spurious dependence of x-ray intensity on foil position if the foil is non-uniform (or non-uniformly aged) and wobbles as it moves. This effect is eliminated here. Foil aging effects which influence excitation rates and introduce a slowly varying time dependence of the x-ray intensity are automatically normalized by this multichannel technique. The application of this method to metastable x-ray emitting states of low-Z ions are discussed

  16. Band Gap Engineering of Boron Nitride by Graphene and Its Application as Positive Electrode Material in Asymmetric Supercapacitor Device.

    Science.gov (United States)

    Saha, Sanjit; Jana, Milan; Khanra, Partha; Samanta, Pranab; Koo, Hyeyoung; Murmu, Naresh Chandra; Kuila, Tapas

    2015-07-08

    Nanostructured hexagonal boron nitride (h-BN)/reduced graphene oxide (RGO) composite is prepared by insertion of h-BN into the graphene oxide through hydrothermal reaction. Formation of the super lattice is confirmed by the existence of two separate UV-visible absorption edges corresponding to two different band gaps. The composite materials show enhanced electrical conductivity as compared to the bulk h-BN. A high specific capacitance of ∼824 F g(-1) is achieved at a current density of 4 A g(-1) for the composite in three-electrode electrochemical measurement. The potential window of the composite electrode lies in the range from -0.1 to 0.5 V in 6 M aqueous KOH electrolyte. The operating voltage is increased to 1.4 V in asymmetric supercapacitor (ASC) device where the thermally reduced graphene oxide is used as the negative electrode and the h-BN/RGO composite as the positive electrode. The ASC exhibits a specific capacitance of 145.7 F g(-1) at a current density of 6 A g(-1) and high energy density of 39.6 W h kg(-1) corresponding to a large power density of ∼4200 W kg(-1). Therefore, a facile hydrothermal route is demonstrated for the first time to utilize h-BN-based composite materials as energy storage electrode materials for supercapacitor applications.

  17. Lab-on-fiber electrophoretic trace mixture separating and detecting an optofluidic device based on a microstructured optical fiber.

    Science.gov (United States)

    Yang, Xinghua; Guo, Xiaohui; Li, Song; Kong, Depeng; Liu, Zhihai; Yang, Jun; Yuan, Libo

    2016-04-15

    We report an in-fiber integrated electrophoretic trace mixture separating and detecting an optofluidic optical fiber sensor based on a specially designed optical fiber. In this design, rapid in situ separation and simultaneous detection of mixed analytes can be realized under electro-osmotic flow in the microstructured optical fiber. To visually display the in-fiber separating and detecting process, two common fluorescent indicators are adopted as the optofluidic analytes in the optical fiber. Results show that a trace amount of the mixture (0.15 μL) can be completely separated within 3.5 min under a high voltage of 5 kV. Simultaneously, the distributed information of the separated analytes in the optical fiber can be clearly obtained by scanning along the optical fiber using a 355 nm laser. The emission from the analytes can be efficiently coupled into the inner core and guides to the remote end of the optical fiber. In addition, the thin cladding around the inner core in the optical fiber can prevent the fluorescent cross talk between the analytes in this design. Compared to previous optical fiber optofluidic devices, this device first realizes simultaneously separating treatment and the detection of the mixed samples in an optical fiber. Significantly, such an in-fiber integrated separating and detecting optofluidic device can find wide applications in various analysis fields involves mixed samples, such as biology, chemistry, and environment.

  18. Computational simulation of biomolecules transport with multi-physics near microchannel surface for development of biomolecules-detection devices.

    Science.gov (United States)

    Suzuki, Yuma; Shimizu, Tetsuhide; Yang, Ming

    2017-01-01

    The quantitative evaluation of the biomolecules transport with multi-physics in nano/micro scale is demanded in order to optimize the design of microfluidics device for the biomolecules detection with high detection sensitivity and rapid diagnosis. This paper aimed to investigate the effectivity of the computational simulation using the numerical model of the biomolecules transport with multi-physics near a microchannel surface on the development of biomolecules-detection devices. The biomolecules transport with fluid drag force, electric double layer (EDL) force, and van der Waals force was modeled by Newtonian Equation of motion. The model validity was verified in the influence of ion strength and flow velocity on biomolecules distribution near the surface compared with experimental results of previous studies. The influence of acting forces on its distribution near the surface was investigated by the simulation. The trend of its distribution to ion strength and flow velocity was agreement with the experimental result by the combination of all acting forces. Furthermore, EDL force dominantly influenced its distribution near its surface compared with fluid drag force except for the case of high velocity and low ion strength. The knowledges from the simulation might be useful for the design of biomolecules-detection devices and the simulation can be expected to be applied on its development as the design tool for high detection sensitivity and rapid diagnosis in the future.

  19. An application to estimate the cyber-risk detection skill of mobile device users

    OpenAIRE

    Schaff, Guillaume; Harpes, Carlo; Martin, Romain; Junger, Marianne; Berntzen, Lasse; Böhm, Stephan

    2013-01-01

    According to experts’ predictions, mobile devices (smartphones, tablet computers) will replace the widespread personal computer by 2017 for personal and work tasks (emergence of BYOD). In parallel, the expert community has observed an increase of cyber-attacks against mobile devices. Mobile device users are increasingly required to develop new skills to manage their equipment correctly. Towards this goal, the 21st Century Skills framework redefines the essential knowledge and skills, which pe...

  20. Detection of Traffic Initiated by Mobile Malware Targeting Android Devices in 3GPP Networks

    OpenAIRE

    Kühnel, Marián

    2017-01-01

    Android devices have become the most popular of mobile devices; omnipresent in both business and private use. They are virtually always on and offer functionalities exceeding those of desktop computers. These properties, as well as sensitive information stored on Android devices, render them an attractive target for mobile malware authors. As the volume of mobile malware increases, analysis is becoming challenging and, sometimes, infeasible. Additionally, current network-based intrusion detec...