WorldWideScience

Sample records for portland cement-based composites

  1. Preparation and Physical Assessment of Portland Cement Base Composites Containing Nano Particles

    OpenAIRE

    Amir Mahmoudi

    2015-01-01

    In this research the effects of adding silica and alumina nanoparticles on flow ability and compressive strength of cementitious composites based on Portland cement were investigated. In the first stage, the rheological behavior of different samples containing nanosilica, nanoalumina and polypropylene, polyvinyl alcohol and polyethylene fibers were evaluated. With increasing of nanoparticles in fresh samples, the slump flow diameter reduced. Fibers reduced the flow abilit...

  2. Effect of Nanosilica on the Fresh Properties of Cement-Based Grouting Material in the Portland-Sulphoaluminate Composite System

    Directory of Open Access Journals (Sweden)

    Shengli Li

    2016-01-01

    Full Text Available The effect of NS particle size and content on the fresh properties of the grouting material based on the portland-sulphoaluminate composite system was analyzed. The experimental results indicated that air content increased and apparent density decreased, with increased NS content, but the NS particle sizes have minimal effect on the air content and apparent density. The setting time of mortar was significantly shortened, with increased NS content; however, NS particle sizes had little influence on the setting time. The effect of fluidity on the mortars adding NS with particle size of 30 nm is larger than NS with particle sizes of 15 and 50 nm and the fluidity decreased with increased NS content, but the fluidity of mortars with the particle sizes of 15 and 50 nm is almost not affected by the NS content. XRD analysis shows that the formation of ettringite was promoted and the process of hydration reaction of cement was accelerated with the addition of NS. At the microscopic level, the interfacial transition zone (ITZ of the grouting material became denser and the formation of C-S-H gel was promoted after adding NS.

  3. Effects of cement particle size distribution on performance properties of Portland cement-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, D.P.; Garboczi, E.J.; Haecker, C.J.; Jensen, O.M.

    1999-10-01

    The original size, spatial distribution, and composition of Portland cement particles have a large influence on hydration kinetics, microstructure development, and ultimate properties of cement-based materials. In this paper, the effects of cement particle size distribution on a variety of performance properties are explored via computer simulation and a few experimental studies. Properties examined include setting time, heat release, capillary porosity percolation, diffusivity, chemical shrinkage, autogenous shrinkage, internal relative humidity evolution, and interfacial transition zone microstructure. The effects of flocculation and dispersion of the cement particles in the starting microstructures on resultant properties are also briefly evaluated. The computer simulations are conducted using two cement particle size distributions that bound those commonly in use today and three different water-to-cement ratios: 0.5, 0.3, and 0.246. For lower water-to-cement ratio systems, the use of coarser cements may offer equivalent or superior performance, as well as reducing production costs for the manufacturer.

  4. Comparative Study of Portland Cement-based and Zeolite-based Concretes in Terms of Hexavalent Chromium Leaching

    Directory of Open Access Journals (Sweden)

    Oravec Jozef

    2016-12-01

    Full Text Available The paper presents the results of the leaching study of Portland cement-based and zeolite-based concretes regarding water soluble hexavalent chromium. Three leaching water media (distilled water, rain water, and Britton-Robinson buffer of various pH values were under investigation. The correlation between pH and leached-out concentrations of chromium was not confirmed. The content of hexavalent water-soluble chromium in leachates of zeolite-based concretes was found to be higher than that in leachates of Portland cement-based samples.

  5. Sisal organosolv pulp as reinforcement for cement based composites

    OpenAIRE

    Joaquim, Ana Paula; Tonoli, Gustavo Henrique Denzin; Santos, Sérgio Francisco Dos; Savastano Junior, Holmer

    2009-01-01

    The present work describes non-conventional sisal (Agave sisalana) chemical (organosolv) pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP) fibres were produced by the slurry de-watering and pressin...

  6. Physicochemical and mechanical properties of zirconium oxide and niobium oxide modified Portland cement-based experimental endodontic sealers.

    Science.gov (United States)

    Viapiana, R; Flumignan, D L; Guerreiro-Tanomaru, J M; Camilleri, J; Tanomaru-Filho, M

    2014-05-01

    To evaluate the physicochemical and mechanical properties of Portland cement-based experimental sealers (ES) with different radiopacifying agents (zirconium oxide and niobium oxide micro- and nanoparticles) in comparison with the following conventional sealers: AH Plus, MTA Fillapex and Sealapex. The materials were tested for setting time, compressive strength, flow, film thickness, radiopacity, solubility, dimensional stability and formaldehyde release. Data were subjected to anova and Tukey tests (P 0.05) and lower solubility when compared with MTA Fillapex and Sealapex (P Portland cement-based experimental endodontic sealers presented physicochemical properties according to the specifications no 57 ANSI/ADA (ADA Professional Product Review, 2008) and ISO 6876 (Dentistry - Root Canal Sealing Materials, 2012, British Standards Institution, London, UK). The sealers had setting times and flow ability that was adequate for clinical use, satisfactory compressive strength and low solubility. Additional studies should be carried out with the purpose of decreasing the film thickness and to determine the ideal ratio of radiopacifying agents in Portland cement-based root canal sealers. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Applications of solid-state Nuclear Magnetic Resonance (NMR) in studies of Portland cements-based materials

    DEFF Research Database (Denmark)

    Skibsted, Jørgen; Andersen, Morten Daugaard; Jakobsen, Hans Jørgen

    2007-01-01

    Solid-state NMR spectroscopy represents an important research tool in the characterization of a range of structural properties for cement-based materials. Different approaches of the technique can be used to obtain information on hydration kinetics, mobile and bound water, porosity, and local...... atomic structures. After a short introduction to these NMR techniques, it is exemplified how magic-angle spinning (MAS) NMR can provide quantitative and structural information about specific phases in anhydrous and hydrated Portland cements with main emphasis on the incorporation of Al3+ ions...

  8. Sisal organosolv pulp as reinforcement for cement based composites

    Directory of Open Access Journals (Sweden)

    Ana Paula Joaquim

    2009-09-01

    Full Text Available The present work describes non-conventional sisal (Agave sisalana chemical (organosolv pulp from residues of cordage as reinforcement to cement based materials. Sisal organosolv pulp was produced in a 1:1 ethanol/water mixture and post chemically and physically characterized in order to compare its properties with sisal kraft pulp. Cement based composites reinforced with organosolv or kraft pulps and combined with polypropylene (PP fibres were produced by the slurry de-watering and pressing method as a crude simulation of the Hatschek process. Composites were evaluated at 28 days of age, after exposition to accelerated carbonation and after 100 soak/dry cycles. Composites containing organosolv pulp presented lower mechanical strength, water absorption and apparent porosity than composites reinforced with kraft pulp. The best mechanical performance after ageing was also achieved by samples reinforced with kraft pulp. The addition of PP fibres favoured the maintenance of toughness after ageing. Accelerated carbonation promoted the densification of the composites reinforced with sisal organosolv + PP fibres.

  9. Degradation of recycled PET fibers in Portland cement-based materials

    International Nuclear Information System (INIS)

    Silva, D.A.; Betioli, A.M.; Gleize, P.J.P.; Roman, H.R.; Gomez, L.A.; Ribeiro, J.L.D.

    2005-01-01

    In order to investigate the durability of recycled PET fibers embedded in cement-based materials, fiber-reinforced mortar specimens were tested until 164 days after mixing. Compressive, tensile, and flexural strengths, elasticity modulus, and toughness of the specimens were determined. The mortars were also analyzed by SEM. The results have shown that PET fibers have no significant influence on mortars strengths and elasticity modulus. However, the toughness indexes I 5 , I 10 , and I 20 decreased with time due to the degradation of PET fibers by alkaline hydrolysis when embedded in the cement matrix. Fourier transform infrared spectroscopy (FT-IR) and SEM analysis of PET fibers immersed and kept for 150 days in alkaline solutions supported the conclusions

  10. Pullout behavior of steel fibers from cement-based composites

    DEFF Research Database (Denmark)

    Shannag, M. Jamal; Brincker, Rune; Hansen, Will

    1997-01-01

    A comprehensive experimental program on pullout tests of steel fibers from cement based matrices is described. A specially designed single fiber pullout apparatus was used to provide a quantitative determination of interfacial properties that are relevant to toughening brittle materials through...... fiber reinforcement. The parameters investigated included a specially designed high strength cement based matrix called Densified Small Particles system (DSP), a conventional mortar matrix, fiber embeddment length, and the fiber volume fraction. The mediums from which the fiber was pulled included...... fraction in the cement matrix increase the peak pullout load and the pullout work. (3) The major bond mechanism in both systems is frictional sliding. ...

  11. Strengthening of Concrete Structures with cement based bonded composites

    DEFF Research Database (Denmark)

    Täljsten, Björn; Blanksvärd, Thomas

    2008-01-01

    Polymers). The method is very efficient and has achieved world wide attention. However, there are some drawbacks with the use of epoxy, e.g. working environment, compatibility and permeability. Substituting the epoxy adherent with a cement based bonding agent will render a strengthening system...... with improved working environment and better compatibility to the base concrete structure. This study gives an overview of different cement based systems, all with very promising results for structural upgrading. Studied parameters are structural retrofit for bending, shear and confinement. It is concluded...

  12. Properties of cement based composites modified using diatomaceous earth

    Science.gov (United States)

    Pokorný, Jaroslav; Pavlíková, Milena; Záleská, Martina; Pavlík, Zbyšek

    2017-07-01

    Diatomite belongs among natural materials rich on amorphous silica (a-SiO2). When finely milled, it can potentially substitute part of cement binder and positively support formation of more dense composite structure. In this connection, two types of diatomaceous earth applied as a partial substitution of 5, 10, 15, and 20 mass% of Portland cement in the composition of cement paste were studied. In the tested mixtures with cement blends, the amount of batch water remained same, with water/binder ratio 0.5. For fresh paste mixtures, initial and final setting times were measured. First, hardened pastes cured 28 days in water were characterized by their physical properties such as bulk density, matrix density and open porosity. Then, their mechanical and thermophysical parameters were assessed. Obtained results gave clear evidence of setting time shortening for pastes with diatomite what brought negative effect with respect to the impaired workability of fresh mixtures. On the other hand, there was observed strength improvement for mixtures containing diatomite with higher amount of SiO2. Here, the increase in mechanical resistivity was distinct up to 15 mass% of cement replacement. Higher cement substitution by diatomite resulted in an increase in porosity and thus improvement of thermal insulation properties.

  13. Cell attachment properties of Portland cement-based endodontic materials: biological and methodological considerations.

    Science.gov (United States)

    Ahmed, Hany Mohamed Aly; Luddin, Norhayati; Kannan, Thirumulu Ponnuraj; Mokhtar, Khairani Idah; Ahmad, Azlina

    2014-10-01

    The attachment and spreading of mammalian cells on endodontic biomaterials are an area of active research. The purpose of this review is to discuss the cell attachment properties of Portland cement (PC)-based materials by using scanning electron microscope (SEM). In addition, methodological aspects and technical challenges are discussed. A PubMed electronic search was conducted by using appropriate key words to identify the available investigations on the cell attachment properties of PC-based endodontic materials. After retrieving the full text of related articles, the cross citations were also identified. A total of 23 articles published between January 1993 and October 2013 were identified. This review summarizes the cell attachment properties of commercial and experimental PC-based materials on different cell cultures by using SEM. Methodological procedures, technical challenges, and relevance of SEM in determining the biological profile of PC-based materials are discussed. SEM observations demonstrate that commercial MTA formulations show favorable cell attachment properties, which is consistent with their successful clinical outcomes. The favorable cell attachment properties of PC and its modified formulations support its potential use as a substitute for mineral trioxide aggregate. However, researchers should carefully select cell types for their SEM investigations that would be in contact with the proposed PC-based combinations in the clinical situation. Despite being a technical challenge, SEM provides useful information on the cell attachment properties of PC-based materials; however, other assays for cell proliferation and viability are essential to come up with an accurate in vitro biological profile of any given PC-based formulation. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  14. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications

    Science.gov (United States)

    Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi

    2017-01-01

    Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural–functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles. PMID:28772823

  15. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications.

    Science.gov (United States)

    Bao, Xiaohua; Memon, Shazim Ali; Yang, Haibin; Dong, Zhijun; Cui, Hongzhi

    2017-04-27

    Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural-functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs). Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.

  16. Interfacial morphology and domain configurations in 0-3 PZT-Portland cement composites

    International Nuclear Information System (INIS)

    Jaitanong, N.; Zeng, H.R.; Li, G.R.; Yin, Q.R.; Vittayakorn, W.C.; Yimnirun, R.; Chaipanich, A.

    2010-01-01

    Cement-based piezoelectric composites have attracted great attention recently due to their promising applications as sensors in smart structures. Lead zirconate titanate (PZT) and Portland cement (PC) composite were fabricated using 60% of PZT by volume. Scanning Electron Microscope and piezoresponse force microscope were used to investigate the morphology and domain configurations at the interfacial zone of PZT-Portland cement composites. Angular PZT ceramic grains were found to bind well with the cement matrix. The submicro-scale domains were clearly observed by piezoresponse force microscope at the interfacial regions between the piezoelectric PZT phase and Portland cement phase, and are clearer than the images obtained for pure PZT. This is thought to be due to the applied internal stress of cement to the PZT ceramic particle which resulted to clearer images.

  17. Improved microstructure of cement-based composites through the addition of rock wool particles

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Wei-Ting [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Institute of Nuclear Energy Research, Atomic Energy Council, Taoyuan 32546, Taiwan (China); Cheng, An, E-mail: ancheng@niu.edu.tw [Dept. of Civil Engineering, National Ilan University, Ilan 26047, Taiwan (China); Huang, Ran; Zou, Si-Yu [Dept. of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan (China)

    2013-10-15

    Rock wool is an inorganic fibrous substance produced by steam blasting and cooling molten glass. As with other industrial by-products, rock wool particles can be used as cementitious materials or ultra fine fillers in cement-based composites. This study investigated the microstructure of mortar specimens produced with cement-based composites that include various forms of rock wool particles. It conducted compressive strength testing, rapid chloride penetration tests, X-ray diffraction analysis, thermo-gravimetric analysis, and scanning electronic microscopy to evaluate the macro- and micro-properties of the cement-based composites. Test results indicate that inclusion of rock wool particles in composites improved compressive strength and reduced chloride ion penetration at the age of 91 days due to the reduction of calcium hydroxide content. Microscopic analysis confirms that the use of rock wool particles contributed to the formation of a denser, more compact microstructure within the hardened paste. In addition, X-ray diffraction analysis shows few changes in formation of pozzolanic reaction products and no new hydrations are formed with incorporating rock wool particles. - Highlights: • We report the microstructural characterization of cement-based composites. • Different mixes produced with various rock wool particles have been tested. • The influence of different mixes on macro and micro properties has been discussed. • The macro properties are included compressive strength and permeability. • XRD and SEM observations confirm the pozzolanic reaction in the resulting pastes.

  18. THE USE OF SISAL FIBRE AS REINFORCEMENT IN CEMENT BASED COMPOSITES

    Directory of Open Access Journals (Sweden)

    Romildo Dias Tolêdo Filho

    1999-08-01

    Full Text Available ABSTRACT The inclusion of fibre reinforcement in concrete, mortar and cement paste can enhance many of the engineering properties of the basic materials, such as fracture toughness, flexural strength and resistance to fatigue, impact, thermal shock and spalling. In recent years, a great deal of interest has been created worldwide on the potential applications of natural fibre reinforced, cement based composites. Investigations have been carried out in many countries on various mechanical properties, physical performance and durability of cement based matrices reinforced with naturally occurring fibres including sisal, coconut, jute, bamboo and wood fibres. These fibres have always been considered promising as reinforcement of cement based matrices because of their availability, low cost and low consumption of energy. In this review, the general properties of the composites are described in relation to fibre content, length, strength and stiffness. A chronological development of sisal fibre reinforced, cement based matrices is reported and experimental data are provided to illustrate the performance of sisal fibre reinforced cement composites. A brief description on the use of these composite materials as building products has been included. The influence of sisal fibres on the development of plastic shrinkage in the pre-hardened state, on tensile, compressive and bending strength in the hardened state of mortar mixes is discussed. Creep and drying shrinkage of the composites and the durability of natural fibres in cement based matrices are of particular interest and are also highlighted. The results show that the composites reinforced with sisal fibres are reliable materials to be used in practice for the production of structural elements to be used in rural and civil construction. This material could be a substitute asbestos-cement composite, which is a serious hazard to human and animal health and is prohibited in industrialized countries. The

  19. Thermophysical properties of cement based composites and their changes after artificial ageing

    Science.gov (United States)

    Šín, Peter; Pavlendová, Gabriela; Lukovičová, Jozefa; Kopčok, Michal

    2017-07-01

    The usage of recycled plastic materials in concrete mix gained increased attention. The behaviour of such environmental friendly material is studied. In this paper an investigation of the thermophysical properties of cement based composites containing plastic waste particles with different percentage is presented. Measurements were carried out using pulse transient method before and after artificial ageing in climatic chamber BINDER MKF (E3).

  20. Chemical composition influence of cement based mortars on algal biofouling

    Science.gov (United States)

    Estelle, Dalod; Alexandre, Govin; Philippe, Grosseau; Christine, Lors; René, Guyonnet; Denis, Damidot

    2013-04-01

    The main cause of building-facade biodegradation is the growth of microorganisms. This phenomenon depends on several parameters such as the geographical situation, the environmental conditions and the surface state of the substrate. Several researches have been devoted to the study of the effect of porosity and roughness on the biofouling of stones and mortars. However, none of them have addressed the influence of the mortar chemistry on the microorganism growth kinetic. The main objective of this study is to highlight the influence of the mortar chemistry in relationship with its physical properties on biological weathering. Earlier work showed a good resistance of Calcium Aluminate Cements to biodeterioration by acidogenic bacteria (Thiobacillus) and fungi (Alternaria alternata, Aspergillus Niger and Coniosporium uncinatum). In order to characterize the influence of the mortar chemistry on biofouling, two Portland cements and two alumina cements are used. Among micro-organisms able to grow, green algae are most involved in the aesthetic deterioration of facades. Indeed, they can colonize any type of media and can be a source of nutrients for other micro-organisms such as fungi. The green algae Klebsormidium flaccidum is chosen because of its representativeness. It is indeed the species the most frequently identified and isolated from samples taken on sites. The biofouling kinetic is followed on samples exposed outdoor and on samples tested in a laboratory bench which consists in spraying an algae culture on mortar specimens. The results obtained by in situ trials are compared with the results obtained on the laboratory bench. The microorganism growth kinetic is measured by image analysis. To improve the detection of algae on the surface of the cementitious samples, the raw image is converted in the YIQ color space. Y, I and Q correspond respectively to luminance, in-phase, and quadrature. On the Q channel, the areas covered by algae and the areas of clean mortar

  1. Thermal Properties of Cement-Based Composites for Geothermal Energy Applications

    Directory of Open Access Journals (Sweden)

    Xiaohua Bao

    2017-04-01

    Full Text Available Geothermal energy piles are a quite recent renewable energy technique where geothermal energy in the foundation of a building is used to transport and store geothermal energy. In this paper, a structural–functional integrated cement-based composite, which can be used for energy piles, was developed using expanded graphite and graphite nanoplatelet-based composite phase change materials (CPCMs. Its mechanical properties, thermal-regulatory performance, and heat of hydration were evaluated. Test results showed that the compressive strength of GNP-Paraffin cement-based composites at 28 days was more than 25 MPa. The flexural strength and density of thermal energy storage cement paste composite decreased with increases in the percentage of CPCM in the cement paste. The infrared thermal image analysis results showed superior thermal control capability of cement based materials with CPCMs. Hence, the carbon-based CPCMs are promising thermal energy storage materials and can be used to improve the durability of energy piles.

  2. New biodegradable air-entraining admixture based on LAS for cement-based composites

    International Nuclear Information System (INIS)

    Mendes, J.C.; Moro, T.K.; Dias, L.S.; Campos, P.A.M.; Silva, G.J.B.; Peixoto, R.A.F.; Cury, A.A.

    2016-01-01

    The active principle of Air Entraining Admixtures (AEA) are surfactants, analogously to washing up liquids. Washing up (or dishwashing) liquids are widely available products, relatively inexpensive, non-toxic and biodegradable, thus presenting smaller environmental impact. Therefore, the present work proposes the use of a biodegradable surfactant comprised in washing up liquids, Linear Alkylbenzene Sulfonate (LAS), as sustainable air entraining agent for cement-based composites. In this sense, a performance evaluation of the proposed AEA is carried out, by comparing the properties of mortars with proposed AEA, commercial AEA and ones without any admixture. Through the physical, mechanical and microstructural analysis, it was possible to determine the efficiency of the proposed AEA, as well as its optimum range of dosage. As a result, we seek to contribute to the technical development of cement-based composites in Brazil and in the world. (author)

  3. Cement based composites for thin building elements: Fracture and fatigue parameters

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Bílek, V.; Keršner, Z.; Veselý, J.

    2010-01-01

    Roč. 2, č. 1 (2010), s. 911-916 E-ISSN 1877-7058. [Fatigue 2010. Praha, 06.06.2010-11.06.2010] R&D Projects: GA ČR GA103/08/0963 Institutional research plan: CEZ:AV0Z20410507 Keywords : Cement-based composites * Fatigue concrete * Wöhler curve * Fibers Subject RIV: JL - Materials Fatigue, Friction Mechanics

  4. Characterization and treatment of sisal fiber residues for cement-based composite application

    OpenAIRE

    Lima,Paulo R. L.; Santos,Rogério J.; Ferreira,Saulo R.; Toledo Filho,Romildo D.

    2014-01-01

    Sisal fiber is an important agricultural product used in the manufacture of ropes, rugs and also as a reinforcement of polymeric or cement-based composites. However, during the fiber production process a large amount of residues is generated which currently have a low potential for commercial use. The aim of this study is to characterize the agricultural residues by the production and improvement of sisal fiber, called field bush and refugo and verify the potentiality of their use in the rein...

  5. THE USE OF SISAL FIBRE AS REINFORCEMENT IN CEMENT BASED COMPOSITES

    OpenAIRE

    Tolêdo Filho,Romildo Dias; Joseph,Kuruvilla; Ghavami,Khosrow; England,George Leslie

    1999-01-01

    ABSTRACT The inclusion of fibre reinforcement in concrete, mortar and cement paste can enhance many of the engineering properties of the basic materials, such as fracture toughness, flexural strength and resistance to fatigue, impact, thermal shock and spalling. In recent years, a great deal of interest has been created worldwide on the potential applications of natural fibre reinforced, cement based composites. Investigations have been carried out in many countries on various mechanical prop...

  6. Study of behavior of concrete and cement based composite materials exposed to high temperatures

    OpenAIRE

    Bodnárová, L.; Horák, D.; Válek, J.; Hela, R.; Sitek, L. (Libor)

    2013-01-01

    The paper describes possibilities of observation of behaviour of concrete and cement based composite material exposed to high temperatures. Nowadays, for large-scale tests of behaviour of concrete exposed to high temperatures, testing devices of certified fire testing stations in the Czech Republic and surrounding states are used. These tests are quite expensive. For experimental verification of smaller test specimens, a testing device was built at the Technical University in Brno, wher...

  7. State of the art of durability-performance evaluation of hardened cement based on phase compositions

    International Nuclear Information System (INIS)

    Kurashige, Isao; Imoto, Harutake; Yamamoto, Takeshi; Hironaga, Michihiko

    2006-01-01

    Upgrading durability-performance evaluation technique for concrete is urgently demanded in connection to its application to radio-active waste repository which needs ultra long-term durability. Common concrete structures also require an advanced method for minimizing the life-cycle cost. The purpose of this research is to investigate current problems and future tasks on durability-performance evaluation of hardened cement from the view point of phase composition. Although the phase composition of hardened cement has not fully been reflected to durability-performance evaluation, it influences concrete durability as well as its pore structure. This report reviews state of the art of the factors affecting phase composition, analytical and experimental evaluation techniques for phase composition, and durability-performance evaluation methods of hardened cement based on phase composition. (author)

  8. Influence of polyolefin fibers on the engineering properties of cement-based composites containing silica fume

    International Nuclear Information System (INIS)

    Han, Ta-Yuan; Lin, Wei-Ting; Cheng, An; Huang, Ran; Huang, Chin-Cheng

    2012-01-01

    Highlights: ► Experimental study is focus on the engineering properties of cement-based composites. ► Different mixes containing fiber and silica fume proportions have been tested. ► The influence of different mixes on the engineering properties has been discussed. ► The properties are included strength, ductility, permeability and microstructure. -- Abstract: This study evaluated the mechanical properties of cement-based composites produced with added polyolefin fibers and silica fume. Material variables included the water-cementitious ratio, the dosage of silica fume, and the length and dosage of polyolefin fiber. Researchers conducted tests on compressive strength, splitting tensile strength, direct tensile strength, resistivity, rapid chloride penetration, and initial surface absorption, and performed microscopic observation. Test results indicate that the specimens containing silica fume have higher compressive strength than the control and specimen made with fibers. The specimens with polyolefin fiber and silica fume have considerably higher tensile strength and ductility than the control and specimens made with silica fume. The specimens containing silica fume and polyolefin fiber demonstrated better resistance to chloride penetration than composites with polyolefin fiber or silica fume. For a given volume fraction, short polyolefin fiber performs better than its long counterpart in improving the properties of concrete. Specimens containing silica fume demonstrated a significant increase in resistivity and decrease in the total charge passed and absorption. Scanning electron microscopy illustrates that the polyolefin fiber acts to arrest the propagation of internal cracks.

  9. Strain sensitivity of carbon nanotube cement-based composites for structural health monitoring

    Science.gov (United States)

    D'Alessandro, Antonella; Ubertini, Filippo; Laflamme, Simon; Rallini, Marco; Materazzi, Annibale L.; Kenny, Josè M.

    2016-04-01

    Cement-based smart sensors appear particularly suitable for monitoring applications, due to their self-sensing abilities, their ease of use, and their numerous possible field applications. The addition of conductive carbon nanofillers into a cementitious matrix provides the material with piezoresistive characteristics and enhanced sensitivity to mechanical alterations. The strain-sensing ability is achieved by correlating the variation of external loads or deformations with the variation of specific electrical parameters, such as the electrical resistance. Among conductive nanofillers, carbon nanotubes (CNTs) have shown promise for the fabrication of self-monitoring composites. However, some issues related to the filler dispersion and the mix design of cementitious nanoadded materials need to be further investigated. For instance, a small difference in the added quantity of a specific nanofiller in a cement-matrix composite can substantially change the quality of the dispersion and the strain sensitivity of the resulting material. The present research focuses on the strain sensitivity of concrete, mortar and cement paste sensors fabricated with different amounts of carbon nanotube inclusions. The aim of the work is to investigate the quality of dispersion of the CNTs in the aqueous solutions, the physical properties of the fresh mixtures, the electromechanical properties of the hardened materials, and the sensing properties of the obtained transducers. Results show that cement-based sensors with CNT inclusions, if properly implemented, can be favorably applied to structural health monitoring.

  10. Calcium phosphate composite cements based on simple mixture of brushite and apatite phases

    Science.gov (United States)

    Egorov, A. A.; Fedotov, A. Yu; Pereloma, I. S.; Teterina, A. Yu; Sergeeva, N. S.; Sviridova, I. K.; Kirsanova, V. A.; Akhmedova, S. A.; Nesterova, A. V.; Reshetov, I. V.; Barinov, S. M.; Komlev, V. S.

    2018-04-01

    The composite cements based on simple mixtures brishite and apatite with ratio 70/30, 50/50, 30/70 were developed. The processes of phase formation, microstructure and mechanical properties were studied. The kinetics of degradation in simulated body fluid depending on the microstructure and the materials phase composition was carried out. The biological test in vitro were performed using the MTT-test on the human fibroblast immortalized (hFB) cell line and the human osteosarcoma cell line MG-63. The materials didn’t have acute cytoxicity and possessed surface matrix properties. It was determined that the both line of cells actively proliferated, with viable cells values higher 20-60 % then control at all observation periods.

  11. Environmentally Friendly Utilization of Wheat Straw Ash in Cement-Based Composites

    Directory of Open Access Journals (Sweden)

    Shazim Ali Memon

    2018-04-01

    Full Text Available The open burning of biomass residue constitutes a major portion of biomass burning and leads to air pollution, smog, and health hazards. Various alternatives have been suggested for open burning of crop residue; however, each of them has few inherent drawbacks. This research suggests an alternative method to dispose wheat straw, i.e., to calcine it in a controlled environment and use the resulting ash as a replacement of cement by some percentage in cement-based composites. When wheat straw, an agricultural product, is burned, it is very rich in SiO2, which has a pozzolanic character. However, the pozzolanic character is sensitive to calcination temperature and grinding conditions. According to the authors’ best knowledge, until now, no systematic study has been devised to assess the most favorable conditions of burning and grinding for pozzolanic activity of wheat straw ash (WSA. Hence, a systematic experimental program was designed. In Phase I, calcination of WS was carried out at 500 °C, 600 °C, 700 °C, and 800 °C for 2 h. The resulting ashes were tested for color change, weight loss, XRD, XRF, Chapelle activity, Fratini, and pozzolanic activity index (PAI tests. From test results, it was found that beyond 600 °C, the amorphous silica transformed into crystalline silica. The WSA calcined at 600 °C was found to satisfy Chapelle and Fratini tests requirements, as well as the PAI requirement of ASTM at 28 days. Therefore, WSA produced at 600 °C (WSA600 showed the best pozzolanic performance. In Phase II, WSA600 was ground for various intervals (15–240 min. These ground ashes were tested for SEM, Blaine fineness, Chapelle activity, Fratini, and PAI tests. From test results, it was observed that after 120 min of grinding, there was an increase of 48% in Blaine surface area, with a consequence that WSA-replaced cement cubes achieved a compressive strength almost similar to that of the control mix. Conclusively, wheat straw calcined at

  12. Effects on Mechanical Properties of Recycled PET in Cement-Based Composites

    Directory of Open Access Journals (Sweden)

    Liliana Ávila Córdoba

    2013-01-01

    Full Text Available Concretes consisting of portland cement (OPC, silica sand, gravel, water, and recycled PET particles were developed. Specimens without PET particles were prepared for comparison. Curing times, PET particle sizes, and aggregate concentrations were varied. The compressive strength, compressive strain at yield point, and Young modulus were determined. Morphological and chemical compositions of recycled PET particles were seen in a scanning electron microscopy. Results show that smaller PET particle sizes in lower concentrations generate improvements on compressive strength and strain, and Young’s modulus decreases when the size of PET particles used was increased.

  13. Structural Phenomenon of Cement-Based Composite Elements in Ultimate Limit State

    Directory of Open Access Journals (Sweden)

    I. Iskhakov

    2016-01-01

    Full Text Available Cement-based composite materials have minimum of two components, one of which has higher strength compared to the other. Such materials include concrete, reinforced concrete (RC, and ferrocement, applied in single- or two-layer RC elements. This paper discusses experimental and theoretical results, obtained by the authors in the recent three decades. The authors have payed attention to a structural phenomenon that many design features (parameters, properties, etc. at ultimate limit state (ULS of a structure are twice higher (or lower than at initial loading state. This phenomenon is evident at material properties, structures (or their elements, and static and/or dynamic structural response. The phenomenon is based on two ideas that were developed by first author: quasi-isotropic state of a structure at ULS and minimax principle. This phenomenon is supported by experimental and theoretical results, obtained for various structures, like beams, frames, spatial structures, and structural joints under static or/and dynamic loadings. This study provides valuable indicators for experiments’ planning and estimation of structural state. The phenomenon provides additional equation(s for calculating parameters that are usually obtained experimentally and can lead to developing design concepts and RC theory, in which the number of empirical design coefficients will be minimal.

  14. Influence of Graphene Nanosheets on Rheology, Microstructure, Strength Development and Self-Sensing Properties of Cement Based Composites

    Directory of Open Access Journals (Sweden)

    Sardar Kashif Ur Rehman

    2018-03-01

    Full Text Available In this research, Graphene oxide (GO, prepared by modified hammer method, is characterized using X-ray Diffraction (XRD, Fourier Transform Infrared (FT-IR Spectrometry and Raman spectra. The dispersion efficiency of GO in aqueous solution is examined by Ultraviolet–visible spectroscopy and it is found that GO sheets are well dispersed. Thereafter, rheological properties, flow diameter, hardened density, compressive strength and electrical properties of GO based cement composite are investigated by incorporating 0.03% GO in cement matrix. The reasons for improvement in strength are also discussed. Rheological results confirm that GO influenced the flow behavior and enhanced the viscosity of the cement based system. From XRD and Thermogravimetric Analysis (TGA results, it is found that more hydration occurred when GO was incorporated in cement based composite. The GO based cement composite improves the compressive strength and density of mortar by 27% and 1.43%, respectively. Electrical properties results showed that GO–cement based composite possesses self-sensing characteristics. Hence, GO is a potential nano-reinforcement candidate and can be used as self-sensing sustainable construction material.

  15. Effect of carbon fiber dispersion on the mechanical properties of carbon fiber-reinforced cement-based composites

    International Nuclear Information System (INIS)

    Wang Chuang; Li Kezhi; Li Hejun; Jiao Gengsheng; Lu Jinhua; Hou Dangshe

    2008-01-01

    The preparation of carbon fiber-reinforced cement-based composites involved two-step dispersions of carbon fibers. Both steps affected greatly the mechanical properties of the composites. With the aid of ultrasonic wave, a new dispersant hydroxyethyl cellulose was used to help fiber dispersion in the first step. The fracture surface of the composites was observed by scanning electron microscopy. The distribution of major elements was analyzed by the energy dispersive spectroscopy and the composition was analyzed through X-ray diffraction. The flexural strength, tensile strength, modulus, and compression strength were measured. Results showed that the distribution of major elements varied with the variation of the fiber dispersion status. The compressive strength increased by 20%, the tensile strength was 2.4 times that of the material without carbon fibers, the modulus increased by 26.8%, whereas the flexure stress decreased by 12.9%

  16. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    Energy Technology Data Exchange (ETDEWEB)

    Schroefl, Christof, E-mail: christof.schroefl@tu-dresden.de [Technische Universität Dresden, Fakultät Bauingenieurwesen, Institut für Baustoffe, DE-01062 Dresden (Germany); Mechtcherine, Viktor [Technische Universität Dresden, Fakultät Bauingenieurwesen, Institut für Baustoffe, DE-01062 Dresden (Germany); Vontobel, Peter; Hovind, Jan; Lehmann, Eberhard [Paul Scherrer Institut, Laboratory for Neutron Scattering and Imaging, CH-5232 Villigen/AG (Switzerland)

    2015-09-15

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. In the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1.

  17. Sorption kinetics of superabsorbent polymers (SAPs) in fresh Portland cement-based pastes visualized and quantified by neutron radiography and correlated to the progress of cement hydration

    International Nuclear Information System (INIS)

    Schroefl, Christof; Mechtcherine, Viktor; Vontobel, Peter; Hovind, Jan; Lehmann, Eberhard

    2015-01-01

    Water sorption of two superabsorbent polymers in cement-based pastes has been characterized by neutron radiography. Cement pastes with W/C of 0.25 and 0.50 and one additionally containing silica fume (W/C = 0.42) were investigated. The SAPs differed in their inherent sorption kinetics in extracted cement pore solution (SAP 1: self-releasing; SAP 2: retentive). Desorption from SAP 1 started very early after paste preparation. Hence, its individual non-retentiveness governs its behavior only. SAP 2 released water into all matrices, but its kinetics were different. In the paste with the highest W/C, some moderate water release was recorded from the beginning. In the other two pastes, SAP 2 retained its stored liquid during the dormant period, i.e., up to the percolation threshold. Intense desorption then set in and continued throughout the acceleration period. These findings explain the pronouncedly higher efficiency of SAP 2 as internal curing admixture as compared to SAP 1

  18. Improving the performance of cement-based composites containing superabsorbent polymers by utilization of nano-SiO2 particles

    International Nuclear Information System (INIS)

    Pourjavadi, Ali; Fakoorpoor, Seyed Mahmoud; Khaloo, Alireza; Hosseini, Payam

    2012-01-01

    Highlights: ► Nano-SiO 2 fully compensates compressive but not flexural strength. ► Nano-SiO 2 has the major contribution both to yield stress and viscosity. ► Lower dosages of SAP could reduce viscosity and yield stress of pastes. -- Abstract: The application of superabsorbent polymer (SAP) as an internal curing agent for cement based composites results in benefits such as reduced autogenous shrinkage and cracking. However, a reduction in compressive and flexural strength usually occurs due to the empty voids remained in the matrix after deswelling of SAP particles. Nanoparticles are good candidates for improving the mechanical performance of cementitious materials, due to their multiple mechanisms of action, not the least their high pozzolanic activity. In the present work, the capability of amorphous nano-SiO 2 (NS) as the most widely used nanoparticle in cementitious materials, for retrieving mechanical properties of SAP-containing pastes was evaluated, and its impact on setting time and rheological properties was measured. It was found that small dosages of NS could offset the negative effect of SAP on compressive strength but flexural strength was not fully compensated. Optimization of the dosages of NS and SAP could reduce the negative influences on the yield stress and viscosity whilst improving mechanical performance. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy were used to monitor the changes in microstructure and composition.

  19. Analysis of Chemical Composition of Portland Cement in Ghana: A Key to Understand the Behavior of Cement

    OpenAIRE

    Bediako, Mark; Amankwah, Eric Opoku

    2015-01-01

    The performance of Portland cement in concrete or mortar formation is very well influenced by chemical compositions among other factors. Many engineers usually have little information on the chemical compositions of cement in making decisions for the choice of commercially available Portland cement in Ghana. This work analyzed five different brands of Portland cement in Ghana, namely, Ghacem ordinary Portland cement (OPC) and Portland limestone cement (PLC), CSIR-BRRI Pozzomix, Dangote OPC, a...

  20. Implementation of recycled cellulosic fibres into cement based composites and testing their influence on resulting properties

    Science.gov (United States)

    Hospodarova, V.; Stevulova, N.; Vaclavik, V.; Dvorsky, T.

    2017-10-01

    Nowadays, the application of raw materials from renewable sources such as wood, plants and waste paper to building materials preparing has gained a significant interest in this research area. The aim of this paper is to investigate the impact of the selected plasticizer on properties of fibres composites made of cellulosic fibres coming from recycled waste paper and cement. Investigations were performed on specimens with 0.5 wt. % of fibre addition without and with plasticizer. A comparative study did not show positive influence of plasticizer on the density and thermal conductivity of 28 days hardened composite. The specimens after 1, 3 and 7 days of hardening with plasticizer exhibited the highest impact on compressive strength in comparison to composite without plasticizer but 28 days hardened specimens reached the same value of strength characteristic (41 MPa).

  1. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers.

    Science.gov (United States)

    Yoo, Doo-Yeol; You, Ilhwan; Lee, Seung-Jung

    2017-05-08

    This study was conducted to evaluate the effect of the carbon-based nanomaterial type on the electrical properties of cement paste. Three different nanomaterials, multi-walled carbon nanotubes (MWCNTs), graphite nanofibers (GNFs), and graphene (G), were incorporated into the cement paste at a volume fraction of 1%. The self-sensing capacity of the cement composites was also investigated by comparing the compressive stress/strain behaviors by evaluating the fractional change of resistivity (FCR). The electrical resistivity of the plain cement paste was slightly reduced by adding 1 vol % GNFs and G, whereas a significant decrease of the resistivity was achieved by adding 1 vol % MWCNTs. At an identical volume fraction of 1%, the composites with MWCNTs provided the best self-sensing capacity with insignificant noise, followed by the composites containing GNFs and G. Therefore, the addition of MWCNTs was considered to be the most effective to improve the self-sensing capacity of the cement paste. Finally, the composites with 1 vol % MWCNTs exhibited a gauge factor of 113.2, which is much higher than commercially available strain gauges.

  2. Electrical Properties of Cement-Based Composites with Carbon Nanotubes, Graphene, and Graphite Nanofibers

    Directory of Open Access Journals (Sweden)

    Doo-Yeol Yoo

    2017-05-01

    Full Text Available This study was conducted to evaluate the effect of the carbon-based nanomaterial type on the electrical properties of cement paste. Three different nanomaterials, multi-walled carbon nanotubes (MWCNTs, graphite nanofibers (GNFs, and graphene (G, were incorporated into the cement paste at a volume fraction of 1%. The self-sensing capacity of the cement composites was also investigated by comparing the compressive stress/strain behaviors by evaluating the fractional change of resistivity (FCR. The electrical resistivity of the plain cement paste was slightly reduced by adding 1 vol % GNFs and G, whereas a significant decrease of the resistivity was achieved by adding 1 vol % MWCNTs. At an identical volume fraction of 1%, the composites with MWCNTs provided the best self-sensing capacity with insignificant noise, followed by the composites containing GNFs and G. Therefore, the addition of MWCNTs was considered to be the most effective to improve the self-sensing capacity of the cement paste. Finally, the composites with 1 vol % MWCNTs exhibited a gauge factor of 113.2, which is much higher than commercially available strain gauges.

  3. Wedge-Splitting Test – Determination of Minimal Starting Notch Length for Various Cement Based Composites

    Czech Academy of Sciences Publication Activity Database

    Seitl, Stanislav; Klusák, Jan; Veselý, V.; Řoutil, L.

    452-453, - (2011), s. 81-84 ISSN 1013-9826 R&D Projects: GA AV ČR KJB200410901; GA ČR GA103/08/0963 Institutional research plan: CEZ:AV0Z20410507 Keywords : wedge-splitting test, cementitious composites, quasi-brittle fracture, brittle fracture Subject RIV: JL - Materials Fatigue, Friction Mechanics www.scientific.net

  4. Microstructure and durability of Portland cement-carbon nanotube composites

    OpenAIRE

    MacLeod, Alastair James Neil

    2017-01-01

    The incorporation of carbon nanotubes (CNTs), fibres with diameters less than 100 nanometres that exhibit a tensile strength in excess of ten times greater than steel, into Portland cement (OPC) is a relatively novel, yet promising, development for next-generation construction materials exhibiting enhanced strength and ductility, even multifunctionality. When added to Portland cement, creating a Portland cement-CNT nanocomposite material (OPC-CNT), CNTs promote the nucleation of the princi...

  5. A cement based syntactic foam

    International Nuclear Information System (INIS)

    Li Guoqiang; Muthyala, Venkata D.

    2008-01-01

    In this study, a cement based syntactic foam core was proposed and experimentally investigated for composite sandwich structures. This was a multi-phase composite material with microballoon dispersed in a rubber latex toughened cement paste matrix. A trace amount of microfiber was also incorporated to increase the number of mechanisms for energy absorption and a small amount of nanoclay was added to improve the crystal structure of the hydrates. Three groups of cement based syntactic foams with varying cement content were investigated. A fourth group of specimens containing pure cement paste were also prepared as control. Each group contained 24 beam specimens. The total number of beam specimens was 96. The dimension of each beam was 30.5 cm x 5.1 cm x 1.5 cm. Twelve foam specimens from each group were wrapped with plain woven 7715 style glass fabric reinforced epoxy to prepare sandwich beams. Twelve cubic foam specimens, three from each group, with a side length of 5.1 cm, were also prepared. Three types of testing, low velocity impact test and four-point bending test on the beam specimens and compression test on the cubic specimens, were conducted to evaluate the impact energy dissipation, stress-strain behavior, and residual strength. Scanning electron microscope (SEM) was also used to examine the energy dissipation mechanisms in the micro-length scale. It was found that the cement based syntactic foam has a higher capacity for dissipating impact energy with an insignificant reduction in strength as compared to the control cement paste core. When compared to a polymer based foam core having similar compositions, it was found that the cement based foam has a comparable energy dissipation capacity. The developed cement based syntactic foam would be a viable alternative for core materials in impact-tolerant composite sandwich structures

  6. Research on the nanolevel influence of surfactants on structure formation of the hydrated Portland cement compositions

    Directory of Open Access Journals (Sweden)

    Guryanov Alexander

    2016-01-01

    Full Text Available The research of the structure formation process on a nanolevel of the samples of hydrated Portland cement compositions containing the modifying additives has been conducted with the help of small angle neutron scattering method. Carbonate and aluminum alkaline slimes as well as the complex additives containing surfactants were used as additives. The influence of slimes and surfactants on structural parameters change of Portland cement compositions of the average size of the disseminating objects, fractal dimension samples is considered. These Portland cement compositions are shown to be fractal clusters.

  7. Observation and quantification of water penetration into Strain Hardening Cement-based Composites (SHCC) with multiple cracks by means of neutron radiography

    International Nuclear Information System (INIS)

    Zhang, P.; Wittmann, F.H.; Zhao, T.J.; Lehmann, E.H.; Tian, L.; Vontobel, P.

    2010-01-01

    Durability of reinforced concrete structures has become a crucial issue with respect to economy, ecology and sustainability. One major reason for durability problems of concrete structures is the limited strain capacity of cement-based materials under imposed tensile stress. By adding PVA fibers, a new material named Strain Hardening Cement-based Composites (SHCC) with high strain capacity can be produced. Due to the formation of multiple micro-cracks, wide cracks can be avoided in SHCC under an imposed strain. The high strain capacity, however, is beneficial with respect to durability only if the multi-crack formation in SHCC does not lead to significantly increased water penetration. If water and aggressive chemical compounds such as chlorides and sulfates dissolved in water penetrate into the cement-based matrix and reach the steel reinforcement service-life of reinforced concrete structures will be reduced significantly. In this project, neutron radiography was applied to observe and quantify the process of water penetration into uncracked SHCC and after the multi-crack formation. In addition, water penetration into integral water repellent cracked and uncracked SHCC, which has been produced by adding a silane-based water repellent agent to the fresh SHCC mortar has been investigated. Results will be discussed with respect to durability.

  8. Cement-based materials' characterization using ultrasonic attenuation

    Science.gov (United States)

    Punurai, Wonsiri

    The quantitative nondestructive evaluation (NDE) of cement-based materials is a critical area of research that is leading to advances in the health monitoring and condition assessment of the civil infrastructure. Ultrasonic NDE has been implemented with varying levels of success to characterize cement-based materials with complex microstructure and damage. A major issue with the application of ultrasonic techniques to characterize cement-based materials is their inherent inhomogeneity at multiple length scales. Ultrasonic waves propagating in these materials exhibit a high degree of attenuation losses, making quantitative interpretations difficult. Physically, these attenuation losses are a combination of internal friction in a viscoelastic material (ultrasonic absorption), and the scattering losses due to the material heterogeneity. The objective of this research is to use ultrasonic attenuation to characterize the microstructure of heterogeneous cement-based materials. The study considers a real, but simplified cement-based material, cement paste---a common bonding matrix of all cement-based composites. Cement paste consists of Portland cement and water but does not include aggregates. First, this research presents the findings of a theoretical study that uses a set of existing acoustics models to quantify the scattered ultrasonic wavefield from a known distribution of entrained air voids. These attenuation results are then coupled with experimental measurements to develop an inversion procedure that directly predicts the size and volume fraction of entrained air voids in a cement paste specimen. Optical studies verify the accuracy of the proposed inversion scheme. These results demonstrate the effectiveness of using attenuation to measure the average size, volume fraction of entrained air voids and the existence of additional larger entrapped air voids in hardened cement paste. Finally, coherent and diffuse ultrasonic waves are used to develop a direct

  9. Study of the Microstructure Evolution of Low-pH Cements Based on Ordinary Portland Cement (OPC by Mid- and Near-Infrared Spectroscopy, and Their Influence on Corrosion of Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Juan García Olmo

    2013-06-01

    Full Text Available Low-pH cements are designed to be used in underground repositories for high level waste. When they are based on Ordinary Portland Cements (OPC, high mineral admixture contents must be used which significantly modify their microstructure properties and performance. This paper evaluates the microstructure evolution of low-pH cement pastes based on OPC plus silica fume and/or fly ashes, using Mid-Infrared and Near-Infrared spectroscopy to detect cement pastes mainly composed of high polymerized C-A-S-H gels with low C/S ratios. In addition, the lower pore solution pH of these special cementitious materials have been monitored with embedded metallic sensors. Besides, as the use of reinforced concrete can be required in underground repositories, the influence of low-pH cementitious materials on steel reinforcement corrosion was analysed. Due to their lower pore solution pH and their different pore solution chemical composition a clear influence on steel reinforcement corrosion was detected.

  10. Cement based grouts - longevity laboratory studies: leaching behaviour

    International Nuclear Information System (INIS)

    Onofrei, M.; Gray, M.; Roe, L.

    1991-12-01

    This report describes a series of laboratory tests carried out to determine the possible leaching behaviour of cement-based grouts in repository environments. A reference high-performance cement-based grout, comprised of Canadian Type 50 (U.S. Type V) Sulphate Resisting Portland Cement, silica fume, potable water and superplasticizer, and a commercially available cement grout were subjected to leaching in distilled water and three simulated groundwaters of different ionic strength. Hardened, monolithic specimens of the grout were leached in static, pulsed-flow and continuous flow conditions at temperatures from 10 degrees C to 150 degrees C for periods of up to 56 days. The changes in concentration of ions in the leachants with time were determined and the changes in the morphology of the surfaces of the grout specimens were examined using electron microscopy. After a review of possible mechanisms of degradation of cement-based materials, the data from these experiments are presented. The data show that the grouts will leach when in contact with water through dissolution of more soluble phases. Comparison of the leaching performance of the two grouts indicates that, while there are some minor differences, they behaved quite similarly. The rate of the leaching processes were found to tend to decrease with time and to be accompanied by precipitation and/or growth of an assemblage of secondary alteration phases (i.e., CaCO 3 , Mg(OH) 2 ). The mechanisms of leaching depended on the environmental conditions of temperature, groundwater composition and water flow rate. Matrix dissolution occurred. However, in many of the tests leaching was shown to be limited by the precipitated/reaction layers which acted as protective surface coatings. (37 refs.) (au)

  11. Use of coir pith particles in composites with Portland cement.

    Science.gov (United States)

    Brasileiro, Gisela Azevedo Menezes; Vieira, Jhonatas Augusto Rocha; Barreto, Ledjane Silva

    2013-12-15

    Brazil is the fourth largest world's producer of coconut (Cocos nucifera L.). Coconut crops generate several wastes, including, coir pith. Coir pith and short fibers are the byproducts of extracting the long fibers and account for approximately 70% of the mature coconut husk. The main use of coir pith is as an agricultural substrate. Due to its shape and small size (0.075-1.2 mm), this material can be considered as a particulate material. The aim of this study was to evaluate the use of coir pith as an aggregate in cementitious composites and to evaluate the effect of the presence of sand in the performance of these composites. Some composites were produced exclusively with coir pith particles and other composites with coir pith partially substituting the natural sand. The cementitious composites developed were tested for their physical and mechanical properties and characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy to evaluate the effect of coir pith particles addition in cement paste and sand-cement-mortar. The statistical significance of the results was evaluated by one-way analysis of variance (ANOVA) test followed by multiple comparisons of the means by Tukey's test that showed that the composites with coir pith particles, with or without natural sand, had similar mechanical results, i.e., means were not statistically different at 5% significance level. There was a reduction in bulk density and an improved post-cracking behavior in the composites with coir pith particles compared to conventional mortar and to cement paste. These composites can be used for the production of lightweight, nonstructural building materials, according to the values of compressive strength (3.97-4.35 MPa) and low bulk density (0.99-1.26 g/cm(3)). Copyright © 2013 Elsevier Ltd. All rights reserved.

  12. The Effect of Resin-modified Glass-ionomer Cement Base and Bulk-fill Resin Composite on Cuspal Deformation.

    Science.gov (United States)

    Nguyen, K V; Wong, R H; Palamara, J; Burrow, M F

    2016-01-01

    This study investigated cuspal deformation in teeth restored with different types of adhesive materials with and without a base. Mesio-occluso-distal slot cavities of moderately large dimension were prepared on extracted maxillary premolars (n=24). Teeth were assigned to one of four groups and restored with either a sonic-activated bulk-fill resin composite (RC) (SonicFill), or a conventional nanohybrid RC (Herculite Ultra). The base materials used were a flowable nanofilled RC (Premise Flowable) and a high-viscosity resin-modified glass-ionomer cement (RMGIC) (Riva Light-Cure HV). Cuspal deflection was measured with two direct current differential transformers, each contacting a buccal and palatal cusp. Cuspal movements were recorded during and after restoration placement. Data for the buccal and palatal cusp deflections were combined to give the net cuspal deflection. Data varied widely. All teeth experienced net inward cuspal movement. No statistically significant differences in cuspal deflection were found among the four test groups. The use of a flowable RC or an RMGIC in closed-laminate restorations produced the same degree of cuspal movement as restorations filled with only a conventional nanohybrid or bulk-fill RC.

  13. Non-conventional cement-based composites reinforced with vegetable fibers: A review of strategies to improve durability

    Directory of Open Access Journals (Sweden)

    Santos, S. F.

    2015-03-01

    Full Text Available The present review shows the state-of-art on the approachs about improving the processing, physical- mechanical performance and durability of non-conventional fiber-cement composites. The objective of this review is to show some of these strategies to mitigate the degradation of the vegetable fibers used as reinforcement in cost-effective and non-conventional fiber-cement and, consequently, to improve their mechanical and durability properties for applications in the housing construction. Beyond the introduction about vegetable fibers, the content of this review is divided in the following sections: (i surface modification of the fibers; (ii improving fiber-to-cement interface; (iii natural pozzolans; (iv accelerated carbonation; (v applications of nanoscience; and (vi principles of functionally graded materials and extrusion process were briefly discussed with focus on future research needs.La presente revisión explora la actualidad en el campo de los compuestos de fibrocemento no convencionales en relación a mejoras en el proceso productivo, el rendimiento físico-mecánico y la durabilidad. El objetivo de esta revisión es exponer algunas estrategias para mitigar la degradación de las fibras vegetales utilizadas como refuerzo en fibrocementos no convencionales y rentables, obteniendo en consecuencia una mejoría en el rendimiento de sus propiedades mecánicas y durabilidad para su aplicación en el área de la construcción de viviendas. Además de la introducción en relación a las fibras vegetales, el contenido de esta revisión se divide en las siguientes secciones: (i modificación de la superficie de las fibras; (ii mejoramiento de la interfaz fibra-cemento; (iii puzolanas naturales; (iv carbonatación acelerada; (v aplicaciones de la nanociencia; y (vi principios de los materiales funcionalmente graduados y el proceso de extrusión fueron discutidos brevemente con un enfoque a investigaciones futuras.

  14. Ultrafine portland cement performance

    Directory of Open Access Journals (Sweden)

    C. Argiz

    2018-04-01

    Full Text Available By mixing several binder materials and additions with different degrees of fineness, the packing density of the final product may be improved. In this work, ultrafine cement and silica fume mixes were studied to optimize the properties of cement-based materials. This research was performed in mortars made of two types of cement (ultrafine Portland cement and common Portland cement and two types of silica fume with different particle-size distributions. Two Portland cement replacement ratios of 4% and 10% of silica fume were selected and added by means of a mechanical blending method. The results revealed that the effect of the finer silica fume mixed with the coarse cement enhances the mechanical properties and pore structure refinement at a later age. This improvement is somewhat lower in the case of ultrafine cement with silica fume.

  15. Properties of Portland-Composite Cements with metakaolin: Commercial and manufactured by Thermal Activation of Serbian Kaolin Clay

    Directory of Open Access Journals (Sweden)

    Mitrovic A.

    2012-09-01

    Full Text Available Portland-composite cements (CEM II were prepared with addition of 5 to 35% of metakaolin (MK, manufactured by thermal activation/calcination of Serbian kaolin clay, and commercial matakaolin (CMK. Performance of the composite cements was evaluated, through the setting time (initial and final, compressive strengths (for ages 2, 7, 28, 90 and 180 days and soundness, and compared with control cement (Portland cement – CEM I. Setting time (initial and final is accelerated in Portlandcomposite cements, for both metakaolins used. The acceleration is higher in cement with addition of commercial metakaolin. Lower compressive strength is obtained after 2 days of curing for all Portland-composite cements in comparison with control cement, since pozzolanic reaction still did not show its effect. After 7 days, pozzolanic reaction show its effect, manifested as compressive strength increase of Portland-composite cements with addition of up to 35% of CMK, and 25% in the case of cements with MK. After 28 days compressive strength was higher than that for control cement for cements prepared with addition of CMK, and with addition of up to 25% MK. After 90 days increased compressive strength was noticed with addition of 10 - 20% of CMK, and with 10 and 15% of MK, while after 180 days addition of both metakaolins influences compressive strength decrease. The results of the soundness, 0.5 mm for CEM I, and 1.0 mm in most Portland-composite cements indicate soundness increase with addition of metakaolins. Generally, better performance of Portland-composite cements was obtained with addition of commercial metakaolin, which may be attributed to the differences in the pozzolanic activity of the applied metakaolins, 20.5 MPa and 14.9 MPa for CMK and MK, respectively. By our previous findings pozzolanic activity of the thermally activated clay may be increased by subsequent milling of the metakaolin manufactured by thermal activation process.

  16. BLENDED CALCIUM ALUMINATE-CALCIUM SULFATE CEMENT-BASED GROUT FOR P-REACTOR VESSEL IN-SITU DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.; Stefanko, D.

    2011-03-10

    The objective of this report is to document laboratory testing of blended calcium aluminate - calcium hemihydrate grouts for P-Reactor vessel in-situ decommissioning. Blended calcium aluminate - calcium hemihydrate cement-based grout was identified as candidate material for filling (physically stabilizing) the 105-P Reactor vessel (RV) because it is less alkaline than portland cement-based grout which has a pH greater than 12.4. In addition, blended calcium aluminate - calcium hemihydrate cement compositions can be formulated such that the primary cementitious phase is a stable crystalline material. A less alkaline material (pH {<=} 10.5) was desired to address a potential materials compatibility issue caused by corrosion of aluminum metal in highly alkaline environments such as that encountered in portland cement grouts [Wiersma, 2009a and b, Wiersma, 2010, and Serrato and Langton, 2010]. Information concerning access points into the P-Reactor vessel and amount of aluminum metal in the vessel is provided elsewhere [Griffin, 2010, Stefanko, 2009 and Wiersma, 2009 and 2010, Bobbitt, 2010, respectively]. Radiolysis calculations are also provided in a separate document [Reyes-Jimenez, 2010].

  17. Continuous and embedded solutions for SHM of concrete structures using changing electrical potential in self-sensing cement-based composites

    Science.gov (United States)

    Downey, Austin; Garcia-Macias, Enrique; D'Alessandro, Antonella; Laflamme, Simon; Castro-Triguero, Rafael; Ubertini, Filippo

    2017-04-01

    Interest in the concept of self-sensing structural materials has grown in recent years due to its potential to enable continuous low-cost monitoring of next-generation smart-structures. The development of cement-based smart sensors appears particularly well suited for monitoring applications due to their numerous possible field applications, their ease of use and long-term stability. Additionally, cement-based sensors offer a unique opportunity for structural health monitoring of civil structures because of their compatibility with new or existing infrastructure. Particularly, the addition of conductive carbon nanofillers into a cementitious matrix provides a self-sensing structural material with piezoresistive characteristics sensitive to deformations. The strain-sensing ability is achieved by correlating the external loads with the variation of specific electrical parameters, such as the electrical resistance or impedance. Selection of the correct electrical parameter for measurement to correlate with features of interest is required for the condition assessment task. In this paper, we investigate the potential of using altering electrical potential in cement-based materials doped with carbon nanotubes to measure strain and detect damage in concrete structures. Experimental validation is conducted on small-scale specimens including a steel-reinforced beam of conductive cement paste. Comparisons are made with constant electrical potential and current methods commonly found in the literature. Experimental results demonstrate the ability of the changing electrical potential at detecting features important for assessing the condition of a structure.

  18. Early-age hydration and volume change of calcium sulfoaluminate cement-based binders

    Science.gov (United States)

    Chaunsali, Piyush

    Shrinkage cracking is a predominant deterioration mechanism in structures with high surface-to-volume ratio. One way to allay shrinkage-induced stresses is to use calcium sulfoaluminate (CSA) cement whose early-age expansion in restrained condition induces compressive stress that can be utilized to counter the tensile stresses due to shrinkage. In addition to enhancing the resistance against shrinkage cracking, CSA cement also has lower carbon footprint than that of Portland cement. This dissertation aims at improving the understanding of early-age volume change of CSA cement-based binders. For the first time, interaction between mineral admixtures (Class F fly ash, Class C fly ash, and silica fume) and OPC-CSA binder was studied. Various physico-chemical factors such as the hydration of ye'elimite (main component in CSA cement), amount of ettringite (the main phase responsible for expansion in CSA cement), supersaturation with respect to ettringite in cement pore solution, total pore volume, and material stiffness were monitored to examine early-age expansion characteristics. This research validated the crystallization stress theory by showing the presence of higher supersaturation level of ettringite, and therefore, higher crystallization stress in CSA cement-based binders. Supersaturation with respect to ettringite was found to increase with CSA dosage and external supply of gypsum. Mineral admixtures (MA) altered the expansion characteristics in OPC-CSA-MA binders with fixed CSA cement. This study reports that fly ash (FA) behaves differently depending on its phase composition. The Class C FA-based binder (OPC-CSA-CFA) ceased expanding beyond two days unlike other OPC-CSA-MA binders. Three factors were found to govern expansion of CSA cement-based binders: 1) volume fraction of ettringite in given pore volume, 2) saturation level of ettringite, and 3) dynamic modulus. Various models were utilized to estimate the macroscopic tensile stress in CSA cement-based

  19. Formulation of portland composite cement using waste glass as a supplementary cementitious material

    Science.gov (United States)

    Manullang, Ria Julyana; Samadhi, Tjokorde Walmiki; Purbasari, Aprilina

    2017-09-01

    Utilization of waste glass in cement is an attractive options because of its pozzolanic behaviour and the market of glass-composite cement is potentially available. The objective of this research is to evaluate the formulation of waste glass as supplementary cementitious material (SCM) by an extreme vertices mixture experiment, in which clinker, waste glass and gypsum proportions are chosen as experimental variables. The composite cements were synthesized by mixing all of powder materials in jar mill. The compressive strength of the composite cement mortars after being cured for 28 days ranges between 229 to 268 kg/cm2. Composite cement mortars exhibit lower compressive strength than ordinary Portland cement (OPC) mortars but is still capable of meeting the SNI 15-7064-2004 standards. The highest compressive strength is obtained by shifting the cement blend composition to the direction of increasing clinker and gypsum proportions as well as reducing glass proportion. The lower compressive strength of composite cement is caused by expansion due to ettringite and ASR gel. Based on the experimental result, the composite cement containing 80% clinker, 15% glass and 5% gypsum has the highest compressive strength. As such, the preliminary technical feasibility of reuse of waste glass as SCM has been confirmed.

  20. Effect of water curing duration on strength behaviour of portland composite cement (PCC) mortar

    Science.gov (United States)

    Caronge, M. A.; Tjaronge, M. W.; Hamada, H.; Irmawaty, R.

    2017-11-01

    Cement manufacturing of Indonesia has been introduced Portland Composite Cement (PCC) to minimize the rising production cost of cement which contains 80% clinker and 20% mineral admixture. A proper curing is very important when the cement contains mineral admixture materials. This paper reports the results of an experimental study conducted to evaluate the effect of water curing duration on strength behaviour of PCC mortar. Mortar specimens with water to cement ratio of (W/C) 0.5 were casted. Compressive strength, flexural strength and concrete resistance were tested at 7, 28 and 91 days cured water. The results indicated that water curing duration is essential to continue the pozzolanic reaction in mortar which contributes to the development of strength of mortar made with PCC.

  1. Preparation of composites of national rubber latex (NRL) - portland cement mould. Vol. 3

    International Nuclear Information System (INIS)

    Dessouki, A.M.; Taher, N.H.; El-Nahas, H.H.

    1996-01-01

    The aim of this study is to prepare some polymeric mould using national rubber latex (NRL) - portland cement composites based on a delayed- action mechanism. Factors affecting the preparation process such as concentration, mixing percentage, additives and their effect on what is regarded as a delayed action coacervant combination was studied. Composites of national latex (NRL) - portland cement would were prepared as two separate parts. The stabilized natural rubber latex (NRL) 100 parts with hydroxy ethyl cellulose (HEC) 2 parts as stabilizer and a delayed - action coacervant (sodium meta silicate as a delaying agent) 5 parts on one hand and the dry blend of cement 65 parts soluble in 65 parts of water as a paste on the other hand were mixed thoroughly on site. (HEC) was added to the rubber latex to prevent the coagulation of the rubber latex with the electrolyte (sodium meta silicate) present in the rubber mixture. Two kinds of stabilization occurred in the rubber part, namely steric stabilization and the stabilization against electrolyte. The effect of delayed - action coacervant (sodium meta silicate) on the initial setting time of rubber - cement mould showed that the molding process did not occur at sodium meta silicate concentration less than 2.66 parts per 100 parts of rubber latex (phr), and the optimum concentration used was 5% parts of rubber latex. It was observed that addition of a delaying agent (Sodium meta silicate) to the rubber part enhanced the delaying mechanism in the time needed for the molding process, while the addition of the delaying agent to the cement part did not have any effect on retardation of the molding process. Chemical coacervants function mainly by reducing the ζ potential which is associated with the electrical double layer surrounding the latex particle. This reduction may brought about in at least three distinct ways which take place in the system studied. 5 figs., 3 tabs

  2. Preparation of composites of national rubber latex (NRL) - portland cement mould. Vol. 3

    Energy Technology Data Exchange (ETDEWEB)

    Dessouki, A M; Taher, N H; El-Nahas, H H [National Center for Radiation Research and Technology, Atomic Energy Athority, Cairo (Egypt)

    1996-03-01

    The aim of this study is to prepare some polymeric mould using national rubber latex (NRL) - portland cement composites based on a delayed- action mechanism. Factors affecting the preparation process such as concentration, mixing percentage, additives and their effect on what is regarded as a delayed action coacervant combination was studied. Composites of national latex (NRL) - portland cement would were prepared as two separate parts. The stabilized natural rubber latex (NRL) 100 parts with hydroxy ethyl cellulose (HEC) 2 parts as stabilizer and a delayed - action coacervant (sodium meta silicate as a delaying agent) 5 parts on one hand and the dry blend of cement 65 parts soluble in 65 parts of water as a paste on the other hand were mixed thoroughly on site. (HEC) was added to the rubber latex to prevent the coagulation of the rubber latex with the electrolyte (sodium meta silicate) present in the rubber mixture. Two kinds of stabilization occurred in the rubber part, namely steric stabilization and the stabilization against electrolyte. The effect of delayed - action coacervant (sodium meta silicate) on the initial setting time of rubber - cement mould showed that the molding process did not occur at sodium meta silicate concentration less than 2.66 parts per 100 parts of rubber latex (phr), and the optimum concentration used was 5% parts of rubber latex. It was observed that addition of a delaying agent (Sodium meta silicate) to the rubber part enhanced the delaying mechanism in the time needed for the molding process, while the addition of the delaying agent to the cement part did not have any effect on retardation of the molding process. Chemical coacervants function mainly by reducing the {zeta} potential which is associated with the electrical double layer surrounding the latex particle. This reduction may brought about in at least three distinct ways which take place in the system studied. 5 figs., 3 tabs.

  3. Comparison of mineral trioxide aggregate's composition with Portland cements and a new endodontic cement.

    Science.gov (United States)

    Asgary, Saeed; Eghbal, Mohammad Jafar; Parirokh, Masoud; Ghoddusi, Jamileh; Kheirieh, Sanam; Brink, Frank

    2009-02-01

    The aim of this study was to compare the compositions of mineral trioxide aggregates (MTAs), Portland cements (PCs), and a new endodontic cement (NEC). Our study also investigated the surface characteristics of MTA and NEC root-end fillings when immersed in normal saline. For part I, we prepared samples of 9 brands of MTAs, PCs, and NEC. The materials were imaged and analyzed by scanning electron microscopy (SEM) and energy dispersive x-ray analysis (EDXA). In part II, 3-mm-deep root-end preparations were filled with MTA or NEC and stored in normal saline for 1 week. Samples were imaged and analyzed by SEM and electron probe microanalysis (EPMA). EDXA investigations revealed differences in the dominant compounds of NEC, PCs, and MTAs. The major components of MTA and PC are the same except for bismuth. The most significant difference was the presence of higher concentrations of Fe (minor element) in gray MTA and PC when compared with white ones. EPMA results revealed remarkably different elements in MTA compared with surrounding dentin, whereas in the NEC group the distribution patterns of calcium, phosphorous, and oxygen were comparable. NEC differs chemically from MTAs and PCs and demonstrates comparable surface composition with adjacent dentin as a root-end filling material.

  4. EFFECT OF SEA WATER ON THE STRENGTH OF POROUS CONCRETE CONTAINING PORTLAND COMPOSITE CEMENT AND MICROFILAMENT POLYPROPYLENE FIBER

    OpenAIRE

    TJARONGE, M.W

    2011-01-01

    The aim of this research is to study the influence of sea water on the strength of porous concrete containing Portland Composite cement and micro monofilament polypropylene fibre. The specimens of porous concrete were immersed in the sea water up to 28 days. The compressive strength test and flexural strength test were carried out at 3, 7 and 28 days in order to investigate the strength development. The test result indicated that the strength of porous concrete can develop in t...

  5. Immobilization of technetium and nitrate in cement-based materials

    International Nuclear Information System (INIS)

    Tallent, O.K.; McDaniel, E.W.; Del Cul, G.D.; Dodson, K.E.; Trotter, D.R.

    1987-01-01

    The leachabilities of technetium and nitrate wastes immobilized in cement-based grouts have been investigated. Factors found to affect the leachabilities include grout mix ratio, grout fluid density, dry solid blend composition, and waste concentration. 10 refs., 7 figs., 3 tabs

  6. Reinforcement of cement-based matrices with graphite nanomaterials

    Science.gov (United States)

    Sadiq, Muhammad Maqbool

    Cement-based materials offer a desirable balance of compressive strength, moisture resistance, durability, economy and energy-efficiency; their tensile strength, fracture energy and durability in aggressive environments, however, could benefit from further improvements. An option for realizing some of these improvements involves introduction of discrete fibers into concrete. When compared with today's micro-scale (steel, polypropylene, glass, etc.) fibers, graphite nanomaterials (carbon nanotube, nanofiber and graphite nanoplatelet) offer superior geometric, mechanical and physical characteristics. Graphite nanomaterials would realize their reinforcement potential as far as they are thoroughly dispersed within cement-based matrices, and effectively bond to cement hydrates. The research reported herein developed non-covalent and covalent surface modification techniques to improve the dispersion and interfacial interactions of graphite nanomaterials in cement-based matrices with a dense and well graded micro-structure. The most successful approach involved polymer wrapping of nanomaterials for increasing the density of hydrophilic groups on the nanomaterial surface without causing any damage to the their structure. The nanomaterials were characterized using various spectrometry techniques, and SEM (Scanning Electron Microscopy). The graphite nanomaterials were dispersed via selected sonication procedures in the mixing water of the cement-based matrix; conventional mixing and sample preparation techniques were then employed to prepare the cement-based nanocomposite samples, which were subjected to steam curing. Comprehensive engineering and durability characteristics of cement-based nanocomposites were determined and their chemical composition, microstructure and failure mechanisms were also assessed through various spectrometry, thermogravimetry, electron microscopy and elemental analyses. Both functionalized and non-functionalized nanomaterials as well as different

  7. Solidification/stabilization of technetium in cement-based grouts

    International Nuclear Information System (INIS)

    Gilliam, T.M.; Bostick, W.D.; Spence, R.D.; Shoemaker, J.L.

    1990-01-01

    Mixed low-level radioactive and chemically hazardous process treatment wastes from the Portsmouth Gaseous Diffusion Plant are stabilized by solidification in cement-based grouts. Conventional portland cement and fly ash grouts have been shown to be effective for retention of hydrolyzable metals (e.g., lead, cadmium, uranium and nickel) but are marginally acceptable for retention of radioactive Tc-99, which is present in the waste as the highly mobile pertechnate anion. Addition of ground blast furnace slag to the grout is shown to reduce the leachability of technetium by several orders of magnitude. The selective effect of slag is believed to be due to its ability to reduce Tc(VII) to the less soluble Tc(IV) species. 12 refs., 4 tabs

  8. Wedge-Splitting Test – Determination of Minimal Starting Notch Length for Various Cement Based Composites. Part I: Cohesive Crack Modelling

    Czech Academy of Sciences Publication Activity Database

    Veselý, V.; Řoutil, L.; Seitl, Stanislav

    2011-01-01

    Roč. 452-453, - (2011), s. 77-80 ISSN 1013-9826 R&D Projects: GA AV ČR KJB200410901 Institutional research plan: CEZ:AV0Z20410507 Keywords : wedge-splitting test * cementitious composites * quasi-brittle fracture * brittleness Subject RIV: JL - Materials Fatigue, Friction Mechanics

  9. Interaction of Water with Cement Based Repository Materials - Application of Neutron Imaging

    International Nuclear Information System (INIS)

    Mcglinn, P.J.; Brew, D.R.M.; Beer, F.C. De; Radebe, M.J.; Nshimirimana, R.

    2013-01-01

    Cementitious materials are conventionally used in conditioning intermediate and low level radioactive waste. In this study, a candidate cement-based wasteform and a series of barrier materials have been investigated using neutron imaging to: 1) characterise the wasteform for disposal in a repository for radioactive materials, and 2) characterise the compositon of the barrier materials in assessing their potential to transmit water. Imaging showed both the pore size distribution and the extent of the cracking that had occurred in the wasteform samples. The rate of the water penetration measured both by conventional sorptivity measurements and neutron imaging was greater than in pastes made from Ordinary Portland Cement. The ability of the cracks to distribute the water through the sample in a very short time was also evident. Macro-pore volume distributions of barrier samples, also acquired using neutron tomography, are shown to relate to water/cement ratio, composition and sorptivity data. The study highlights the significant potential of neutron imaging in the investigation of cementitious materials. The technique has the advantage of visualising and measuring, non-destructively, material distribution within macroscopic samples and is particularly useful in defining movement of water through the cementitious materials. (author)

  10. Chemical composition, radiopacity, and biocompatibility of Portland cement with bismuth oxide.

    Science.gov (United States)

    Hwang, Yun-Chan; Lee, Song-Hee; Hwang, In-Nam; Kang, In-Chol; Kim, Min-Seok; Kim, Sun-Hun; Son, Ho-Hyun; Oh, Won-Mann

    2009-03-01

    This study compared the chemical constitution, radiopacity, and biocompatibility of Portland cement containing bismuth oxide (experimental cement) with those of Portland cement and mineral trioxide aggregate (MTA). The chemical constitution of materials was determined by scanning electron microscopy and energy-dispersive X-ray analysis. The radiopacity of the materials was determined using the ISO/6876 method. The biocompatibility of the materials was tested by MTT assay and tissue reaction. The constitution of all materials was similar. However, the Portland cement and experimental cement were more irregular and had a larger particle size than MTA. The radiopacity of the experimental cement was similar to MTA. The MTT assay revealed MTA to have slightly higher cell viability than the other materials. However, there were no statistically significant differences between the materials, with the exception of MTA at 24 h. There was no significant difference in the tissue reaction between the experimental groups. These results suggest that the experimental cement may be used as a substitute for MTA.

  11. Experimental and numerical analysis of short sisal fiber-cement composites produced with recycled matrix

    OpenAIRE

    Lima, Paulo Roberto Lopes; Barros, Joaquim A. O.; Santos, Daniele Justo; Fontes, Cintia Maria; Lima, José Mário F.; Toledo Filho, Romildo

    2016-01-01

    "Published online: 02 Jan 2017" The proper use of renewable or recycled source materials can contribute significantly to reducing the environmental impact of construction industry. In this work, cement based composites reinforced with natural fibers were developed and their mechanical behavior was characterized. To ensure the composite sustainability and durability, the ordinary Portland cement matrix was modified by adding metakaolin and the natural aggregate was substitute...

  12. Environmental interactions of cement-based products

    NARCIS (Netherlands)

    Florea, M.V.A.; Schmidt, W.; Msinjili, N.S.

    2016-01-01

    The environmental interactions of concrete and other cement-based products encompasses both the influence of such materials on their environment, as well as the effects of the environment on the materials in time. There are a number of ways in which the environmental impact of concrete can be

  13. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash.

    Science.gov (United States)

    Wu, Mengxue; Li, Chen; Yao, Wu

    2017-01-11

    In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the "gel/space ratio" descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system) by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM) replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD). The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio) is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  14. Gel/Space Ratio Evolution in Ternary Composite System Consisting of Portland Cement, Silica Fume, and Fly Ash

    Directory of Open Access Journals (Sweden)

    Mengxue Wu

    2017-01-01

    Full Text Available In cement-based pastes, the relationship between the complex phase assemblage and mechanical properties is usually described by the “gel/space ratio” descriptor. The gel/space ratio is defined as the volume ratio of the gel to the available space in the composite system, and it has been widely studied in the cement unary system. This work determines the gel/space ratio in the cement-silica fume-fly ash ternary system (C-SF-FA system by measuring the reaction degrees of the cement, SF, and FA. The effects that the supplementary cementitious material (SCM replacements exert on the evolution of the gel/space ratio are discussed both theoretically and practically. The relationship between the gel/space ratio and compressive strength is then explored, and the relationship disparities for different mix proportions are analyzed in detail. The results demonstrate that the SCM replacements promote the gel/space ratio evolution only when the SCM reaction degree is higher than a certain value, which is calculated and defined as the critical reaction degree (CRD. The effects of the SCM replacements can be predicted based on the CRD, and the theological predictions agree with the test results quite well. At low gel/space ratios, disparities in the relationship between the gel/space ratio and the compressive strength are caused by porosity, which has also been studied in cement unary systems. The ratio of cement-produced gel to SCM-produced gel ( G C to G S C M ratio is introduced for use in analyzing high gel/space ratios, in which it plays a major role in creating relationship disparities.

  15. Sealing properties of cement-based grout materials. Final report on the Rock sealing project

    International Nuclear Information System (INIS)

    Onofrei, M.; Gray, Malcolm; Shenton, B.; Walker, Brad; Pusch, R.; Boergesson, L.; Karnland, O.

    1992-10-01

    This report presents the results of laboratory studies of material properties. A number of different high performance grouts were investigated. The laboratory studies focused on mixtures of sulphate resistant portland cement, silica fume, superplasticizer and water. The ability of the thin films to self seal was confirmed. The surface reactions were studied in specimens of hardened grouts. The leach rates were found to vary with grout and water composition and with temperature. The short-term hydraulic and strength or properties of the hardened grout were determined. These properties were determined for the grouts both in-bulk and as thin-films. The hydraulic conductivities of the bulk, hardened material were found to be less than 10 -14 m/s. The hydraulic conductivities of thin films were found to be less than 10 -11 m/s. Broken, the hydraulic conductivity of the thin films could be increased to 10 -7 m/s. Examination of the leached grout specimens revealed a trend for the pore sizes to decrease with time. The propensity for fractured grouts to self seal was also observed in tests in which the hydraulic conductivity of recompacted mechanically disrupted, granulated grouts was determined. These tests showed that the hydraulic conductivity decreased rapidly with time. The decreases were associated with decreases in mean pore size. In view of the very low hydraulic conductivity it is likely that surface leaching at the grout/groundwater interface will be that major process by which bulk high-performance grouts may degrade. With the completion of the laboratory, in situ and modelling studies it appears that high-performance cement based grouts can be considered as viable materials for some repository sealing applications. Some of the uncertainties that remain are identified in this report. (54 refs.)

  16. Transportation of ions through cement based materials

    International Nuclear Information System (INIS)

    Chatterji, S.

    1994-01-01

    Transportation of ions, both anions and cations, through cement based materials is one of the important processes in their durability and as such has been studied very extensively. It has been studied from the point of view of the reinforcement corrosion, alkali-silica reaction, sulfate attack on cement and concrete, as well as in the context of the use of the cement based materials in the disposal of nuclear waste. In this paper the fundamental equations of diffusion, i.e. Fick's two equations, Nernst and Nernst-Planck equations have been collected. Attention has been drawn to the fact that Fick's two equations are valid for non-ionic diffusants and that for ions the relevant equations are those of Nernst and Nernst-Planck. The basic measurement techniques have also been commented upon

  17. Study of the relation between hydrated portland cement composition and leaching resistance

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    1998-01-01

    The present paper addresses cement compositions that have an optimal resistance against acid attack and hence, low leaching rates and optimal waste containment. To this end a shrinking core leaching model is used that describes the leaching of metals from a cement sample. This process is directly

  18. Study of hydrated Portland cement composition in regard to leaching resistance

    NARCIS (Netherlands)

    Eijk, van R.J.; Brouwers, H.J.H.

    1997-01-01

    The present paper addresses cement compositions that have an optimal resistance against acid attack and hence, low leaching rates and optimal waste containment. To this end a shrinking core leaching model is used that describes the leaching of metals from a cement sample. This process is directly

  19. Propriedades mecânicas de materiais compósitos à base de cimento Portland e resina epoxi Mechanical properties of composite materials based on portland cement and epoxy resin

    Directory of Open Access Journals (Sweden)

    T. H. Panzera

    2010-03-01

    Full Text Available O estudo de materiais de alto desempenho e multifuncionais, como os compósitos poliméricos cimentícios, tem sido o foco de inúmeras pesquisas na indústria da construção civil. Este trabalho investiga o efeito da combinação de uma fase polimérica termorrígida, uma resina epóxi, com cimento Portland branco estrutural, seguido da avaliação da resistência à compressão e módulo de elasticidade. Este compósito, quando comparado individualmente com as suas matérias-prima originais, promove um aumento da resistência mecânica à compressão, redução da massa específica e, também uma mudança significativa do comportamento mecânico. As mudanças nas propriedades mecânicas estão associadas à hidratação da fase cimentícia na presença da resina, fato comprovado através da análise espectroscópica na região do infravermelho.The study of multi-functional materials of high performance, as the polymeric-cementitious composites, has been the focus of several researches in the industry of the civil engineering. This work investigates the effect of the combination of a thermorigid epoxy phase and the white Portland cement, followed by the evaluation of its compressive strength and modulus of elasticity. This composite, when the phases are individually compared, provides an increase of the compressive strength, a reduction of the density, and a significant change of the mechanical behaviour. The changes in mechanical behaviour are associated with the hydration of cement in the presence of resin, which was evident after infrared spectroscopy analysis.

  20. Consolidation behavior of cement-based systems

    DEFF Research Database (Denmark)

    Kjeldsen, Ane Mette

    2007-01-01

    partikler på pakning og middelporestørrelse i frisk beton. Modellen er beskrevet og eftervist for Portland cement pasta med og uden silicastøv og såkaldte superplastificerende stoffer. Superplastificerende stoffer anvendes for at mindske de attraktive kræfter mellem de fine partikler og dermed øge...

  1. Practical Model of Cement Based Grout Mix Design, for Use into Low Level Radiation Waste Management

    Directory of Open Access Journals (Sweden)

    Radu Lidia

    2015-12-01

    Full Text Available The cement based grouts, as functional performance composite materials, are widely used for both immobilisation and encapsulation as well as for stabilization in the field of inorganic waste management. Also, to ensure that low level radioactive waste (LLW are contained for storage and ultimate disposal, they are encapsulated or immobilized in monolithic waste forms, with cement –based grouts.

  2. Hospital waste ashes in Portland cement mortars

    International Nuclear Information System (INIS)

    Genazzini, C.; Zerbino, R.; Ronco, A.; Batic, O.; Giaccio, G.

    2003-01-01

    Nowadays, most concretes incorporate mineral additions such as pozzolans, fly ash, silica fume, blast furnace slag, and calcareous filler among others. Although the technological and economical benefits were the main reasons for the use of mineral additions, the prevention of environmental contamination by means of proper waste disposal becomes a priority. The chance of incorporating hospital waste ashes in Portland cement-based materials is presented here. Ash characterization was performed by chemical analysis, X-ray diffraction, radioactive material detection, and fineness and density tests. Conduction calorimetry and setting time tests were developed on pastes including ash contents from 0% to 100%. Mortars were prepared including ash contents up to 50% of cement. The results of setting time, temperature development, flexural and compressive strengths, water absorption, density, and leachability are analyzed. Results indicate that Portland cement systems could become an alternative for the disposal of this type of ashes

  3. A literature review of mixed waste components: Sensitivities and effects upon solidification/stabilization in cement-based matrices

    International Nuclear Information System (INIS)

    Mattus, C.H.; Gilliam, T.M.

    1994-03-01

    The US DOE Oak Ridge Field Office has signed a Federal Facility Compliance Agreement (FFCA) regarding Oak Ridge Reservation (ORR) mixed wastes subject to the land disposal restriction (LDR) provisions of the Resource conservation and Recovery Act. The LDR FFCA establishes an aggressive schedule for conducting treatability studies and developing treatment methods for those ORR mixed (radioactive and hazardous) wastes listed in Appendix B to the Agreement. A development, demonstration, testing, and evaluation program has been initiated to provide those efforts necessary to identify treatment methods for all of the wastes that meet Appendix B criteria. The program has assembled project teams to address treatment development needs in a variety of areas, including that of final waste forms (i.e., stabilization/solidification processes). A literature research has been performed, with the objective of determining waste characterization needs to support cement-based waste-form development. The goal was to determine which waste species are problematic in terms of consistent production of an acceptable cement-based waste form and at what concentrations these species become intolerable. The report discusses the following: hydration mechanisms of Portland cement; mechanisms of retardation and acceleration of cement set-factors affecting the durability of waste forms; regulatory limits as they apply to mixed wastes; review of inorganic species that interfere with the development of cement-based waste forms; review of radioactive species that can be immobilized in cement-based waste forms; and review of organic species that may interfere with various waste-form properties

  4. Chemical composition, effective atomic number and electron density study of trommel sieve waste (TSW), Portland cement, lime, pointing and their admixtures with TSW in different proportions

    International Nuclear Information System (INIS)

    Kurudirek, Murat; Aygun, Murat; Erzeneoglu, Salih Zeki

    2010-01-01

    The trommel sieve waste (TSW) which forms during the boron ore production is considered to be a promising building material with its use as an admixture with Portland cement and is considered to be an alternative radiation shielding material, also. Thus, having knowledge on the chemical composition and radiation interaction properties of TSW as compared to other building materials is of importance. In the present study, chemical compositions of the materials used have been determined using a wavelength dispersive X-ray fluorescence spectrometer (WDXRFS). Also, TSW, some commonly used building materials (Portland cement, lime and pointing) and their admixtures with TSW have been investigated in terms of total mass attenuation coefficients (μ/ρ), photon interaction cross sections (σ t ), effective atomic numbers (Z eff ) and effective electron densities (N e ) by using X-rays at 22.1, 25 keV and γ-rays at 88 keV photon energies. Possible conclusions were drawn with respect to the variations in photon energy and chemical composition.

  5. A new smart traffic monitoring method using embedded cement-based piezoelectric sensors

    International Nuclear Information System (INIS)

    Zhang, Jinrui; Lu, Youyuan; Lu, Zeyu; Liu, Chao; Sun, Guoxing; Li, Zongjin

    2015-01-01

    Cement-based piezoelectric composites are employed as the sensing elements of a new smart traffic monitoring system. The piezoelectricity of the cement-based piezoelectric sensors enables powerful and accurate real-time detection of the pressure induced by the traffic flow. To describe the mechanical-electrical conversion mechanism between traffic flow and the electrical output of the embedded piezoelectric sensors, a mathematical model is established based on Duhamel’s integral, the constitutive law and the charge-leakage characteristics of the piezoelectric composite. Laboratory tests show that the voltage magnitude of the sensor is linearly proportional to the applied pressure, which ensures the reliability of the cement-based piezoelectric sensors for traffic monitoring. A series of on-site road tests by a 10 tonne truck and a 6.8 tonne van show that vehicle weight-in-motion can be predicted based on the mechanical-electrical model by taking into account the vehicle speed and the charge-leakage property of the piezoelectric sensor. In the speed range from 20 km h −1 to 70 km h −1 , the error of the repeated weigh-in-motion measurements of the 6.8 tonne van is less than 1 tonne. The results indicate that the embedded cement-based piezoelectric sensors and associated measurement setup have good capability of smart traffic monitoring, such as traffic flow detection, vehicle speed detection and weigh-in-motion measurement. (paper)

  6. Densified ultra-light cement-based materials

    DEFF Research Database (Denmark)

    Esteves, Luis Pedro

    2015-01-01

    be used as a “clean technology” in the production of cement-based materials for structural applications with a low carbon footprint. This paper describes the principles of this concept coupled with experimental results on the basic properties of this enhanced type of cement-based materials with combined...

  7. LEACHING BOUNDARY IN CEMENT-BASED WASTE FORMS

    Science.gov (United States)

    Cement-based fixation systems are among the most commonly employed stabilization/solidification techniques. These cement haste mixtures, however, are vulnerable to ardic leaching solutions. Leaching of cement-based waste forms in acetic acid solutions with different acidic streng...

  8. Effects of Leaching Behavior of Calcium Ions on Compression and Durability of Cement-Based Materials with Mineral Admixtures

    Science.gov (United States)

    Cheng, An; Chao, Sao-Jeng; Lin, Wei-Ting

    2013-01-01

    Leaching of calcium ions increases the porosity of cement-based materials, consequently resulting in a negative effect on durability since it provides an entry for aggressive harmful ions, causing reinforcing steel corrosion. This study investigates the effects of leaching behavior of calcium ions on the compression and durability of cement-based materials. Since the parameters influencing the leaching behavior of cement-based materials are unclear and diverse, this paper focuses on the influence of added mineral admixtures (fly ash, slag and silica fume) on the leaching behavior of calcium ions regarding compression and durability of cemented-based materials. Ammonium nitrate solution was used to accelerate the leaching process in this study. Scanning electron microscopy, X-ray diffraction analysis, and thermogravimetric analysis were employed to analyze and compare the cement-based material compositions prior to and after calcium ion leaching. The experimental results show that the mineral admixtures reduce calcium hydroxide quantity and refine pore structure through pozzolanic reaction, thus enhancing the compressive strength and durability of cement-based materials. PMID:28809247

  9. Estimation of Frost Resistance of the Tile Adhesive on a Cement Based with Application of Amorphous Aluminosilicates as a Modifying Additive

    Science.gov (United States)

    Ivanovna Loganina, Valentina; Vladimirovna Zhegera, Christina

    2017-10-01

    In the article given information on the possibility of using amorphous aluminosilicates as a modifying additive in the offered tile cement adhesive. In the article, the data on the preparation of an additive based on amorphous aluminosilicates, on its microstructure and chemical composition. Presented information on the change in the porosity of cement stone when introduced of amorphous aluminosilicates in the his composition. The formulation of a dry building mix on a cement base is proposed with use of an additive based on amorphous aluminosilicates as a modifying additive. Recipe of dry adhesive mixes include Portland cement M400, mineral aggregate in proportion fraction 0.63-0.315:0.315-0.14 respectively 80:20 (%) and filling density of 1538.2 kg/m3, a plasticizer Kratasol, redispersible powder Neolith P4400 and amorphous alumnosilicates. The developed formulation can be used as a tile adhesive for finishing walls of buildings and structure with tiles. Presented results of the evaluation of frost resistance of adhesives based on cement with using of amorphous aluminosilicates as a modifying additive. Installed the mark on the frost resistance of tile glue and frost resistance of the contact zone of adhesive. Established, that the adhesive layer based on developed formulation dry mixture is crack-resistant and frost-resistant for conditions city Penza and dry humidity zone - zone 3 and climatic subarea IIB (accordance with Building codes and regulations 23-01-99Ȋ) cities Russia’s.

  10. Overview of the applications of cement-based immobilization technologies developed at US DOE facilities

    International Nuclear Information System (INIS)

    Dole, L.R.

    1985-01-01

    This paper briefly reviews seven cement-based waste form development programs at six of the US Department of Energy (DOE) sites. These sites have developed a variety of processes that range from producing 25-mm-(1-in.-) diam pellets in a glove box to producing 240-m-(800-ft-) diam grout sheets within the bedding planes of a deep shale formation. These successful applications of cement-based waste forms to the many radioactive waste streams from nuclear facilities bear witness to the flexibility and reliability of this class of immobilization materials. The US DOE sites and their programs are: (1) Oak Ridge National Laboratory (ORNL), Hydrofracture Grout; (2) Hanford, Transportable Grout Facility (TGF); (3) Savannah River Plant (SRP), Nitrate Saltcrete; (4) EG and G Idaho, Process Experimental Pilot Plant (PREPP); (5) Mound Laboratory (ML), Waste Pelletization Process; (6) ORNL, FUETAP Concretes, and (7) Rocky Flats Plant (RFP), Inert Carrier Concrete Process (ICCP). The major issues regarding the application of cement-based waste forms to radioactive waste management problems are also presented. These issues are (1) leachability, (2) radiation stability, (3) thermal stability, (4) phase complexity of the matrix, and (5) effects of the waste stream composition. A cursory review of current research in each of these areas is included along with a discussion of future trends in cement-based waste form developments and applications. 35 refs., 12 figs

  11. Mechanical behavior of cementitious composites with processed sugar cane bagasse ashes; Comportamento mecanico de cimento Portland com cinza de bagaco de cana-de-acucar processada

    Energy Technology Data Exchange (ETDEWEB)

    Bezerra, Augusto C.S.; Saraiva, Sergio L.C.; Sena, Natalia O.; Pereira, Gabriela M.; Rodrigues, Conrado S.; Ferreira, Maria C.N.F., E-mail: augustobezerra@des.cefetmg.br [Centro Federal de Educacao Tecnologica Minas Gerais (CEFET-MG), MG (Brazil); Castro, Laurenn W.A.; Silva, Marcos V.M.S. [Companhia Energetica de Minas Gerais, MG (Brazil); Gomes, Romero C. [Universidade Federal de Ouro Preto (UFOP), MG (Brazil); Aguilar, Maria T.P. [Universidade Federal de Minas Gerais (UFMG), MG (Brazil)

    2014-07-01

    Sugar cane bagasse is waste from the sugar and ethanol industry and is primarily intended for burning in boilers to generate energy. As waste from the cogeneration of energy, sugar cane bagasse ashes (SCBA) are produced with no honorable destination. This paper studies the use of SCBA to partially replace Portland cement in producing cementitious composites. The ashes were processed by reburning and grinding, and after processing were characterized by a scanning electron microscope, x-ray diffraction, laser granulometry, and x-ray fluorescence spectrometry. After characterization, cement compounds were fashioned, replacing 0, 10, 20 and 30% of the cement with SCBA. The composites were mechanically evaluated by means of compression strength tests, tensile strength tests by bending. The results proved significant, indicating the possible use of SCBA when added to the cement on manufacture. (author)

  12. Characterization of composite materials based on cement-ceramic powder blended binder

    Science.gov (United States)

    Kulovaná, Tereza; Pavlík, Zbyšek

    2016-06-01

    Characterization of newly developed composite mortars with incorporated ceramic powder coming from precise brick cutting as partial Portland cement replacement up to 40 mass% is presented in the paper. Fine ceramic powder belongs to the pozzolanic materials. Utilization of pozzolanic materials is accompanied by lower request on energy needed for Portland clinker production which generally results in lower production costs of blended binder and lower CO2 emission. In this paper, the ceramic powder is used in cement based mortar composition in amount of 8, 16, 24, 32, and 40 mass% of cement. Chemical composition of ceramic powder is analyzed by X-Ray Fluorescence and X-Ray Diffraction. The particle size distribution of ceramics is accessed on laser diffraction principle. For 28 days cured mortar samples, basic physical and mechanical properties are experimentally determined. The obtained results demonstrate that ceramic powder has potential to replace a part of Portland cement in composition of cement based composites and to reduce negative environmental impact of their production.

  13. Autogenous healing properties of cement-based grouts

    International Nuclear Information System (INIS)

    Onofrei, M.; Roe, L.; Shenton, B.

    1997-05-01

    This report presents the results of a study conducted to provide information on the ability of cement-based grouts to self-seal. Autogenous sealing was investigated both on bulk grouts and in thin films of grouts. In both cases, the self-sealing capabilities of the cement-based grouts were investigated with water flowing through the grout. Autogenous sealing was studied through changes in pore structure (decrease in pore radius and volume of pores) and changes in the rate of water flow through the cement-based grouts. (author)

  14. Analysis of an Orthotropic Deck Stiffened with a Cement-Based Overlay

    DEFF Research Database (Denmark)

    Walter, Rasmus; Olesen, John Forbes; Stang, Henrik

    2007-01-01

    decks. A solution might be to enhance the stiffness of the traditional orthotropic bridge deck by using a cement-based overlay. In this paper, an orthotropic steel bridge deck stiffened with a cement-based overlay is analyzed. The analysis is based on nonlinear fracture mechanics, and utilizes......Over the past years, with increasing traffic volumes and higher wheel loads, fatigue damage in steel parts of typical orthotropic steel bridge decks has been experienced on heavily trafficked routes. A demand exists to find a durable system to increase the fatigue safety of orthotropic steel bridge...... the finite-element method. The stiffness of the steel deck reinforced with an overlay depends highly on the composite action. The composite action is closely related to cracking of the overlay and interfacial cracking between the overlay and underlying steel plate (debonding). As an example, a real size...

  15. The effects of cement-based and cement-ash-based mortar slabs on indoor air quality

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Kolarik, Jakub; Wargocki, Pawel

    2018-01-01

    The effects of emissions from cement-based and cement-ash-based mortar slabs were studied. In the latter, 30% of the cement content had been replaced by sewage sludge ash. They were tested singly and together with either carpet or linoleum. The air exhausted from the chambers was assessed by means...... of odour intensity and chemical characterization of emissions. Odour intensity increased with the increased exposed area of the slabs. It did not differ significantly between cement-based or cement-ash-based mortar and neither did the chemical composition of the exhaust air. A significant sink effect...

  16. Long-term chloride migration coefficient in slag cement-based concrete and resistivity as an alternative test method

    NARCIS (Netherlands)

    van Noort, R.; Hunger, M.; Spiesz, P.R.

    2016-01-01

    This article reports on investigations of the resistivity and chloride migration coefficient (DRCM) obtained in the accelerated Rapid Chloride Migration test for slag cement-based concretes. Determinations of the resistivity and DRCM were performed on 47 different concrete compositions, up to the

  17. Immobilization and leaching mechanisms of radwaste in cement-based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Crawford, R.W.; McCullough, C.E.; Angus, M.J.

    1983-01-01

    The effect of potential sorbers including silicas, titania, calcined kaolin, zirconium phosphate and two crystalline calcium silicates, tobermorite and xonotlite, have been used to improve the Cs-retention capacity of cement-based systems. The analysis of the pore fluid compositions of equilibrated cement-radwaste composites provides evidence concerning the leach mechanisms whereby Cs is removed. The reactions occurring between cement and clinoptilolite are elucidated and results of kinetic studies presented. Simulate Magnox waste is shown to react with cement, leading to a carbonate exchange. (author)

  18. Radiolytic gas generation from cement-based waste hosts for DOE low-level radioactive wastes

    International Nuclear Information System (INIS)

    Dole, L.R.; Friedman, H.A.

    1986-01-01

    Using cement-based immobilization binders with simulated radioactive waste containing sulfate, nitrate, nitrite, phosphate, and fluoride anions, the gamma- and alpha-radiolytic gas generation factors (G/sub t/, molecules/100 eV) and gas compositions were measured on specimens of cured grouts. These tests studied the effects of; (1) waste composition; (2) the sample surface-to-volume ratio; (3) the waste slurry particle size; and (4) the water content of the waste host formula. The radiolysis test vessels were designed to minimize the ''dead'' volume and to simulate the configuration of waste packages

  19. Development programs in the United States of America for the application of cement-based grouts in radioactive waste management

    Energy Technology Data Exchange (ETDEWEB)

    Dole, L.R.; Row, T.H.

    1984-01-01

    This paper briefly reviews seven cement-based waste form development programs at six of the US Department of Energy (DOE) sites. These sites have developed a variety of processes that range from producing 25 mm (1 in.) diameter pellets in a glove box to producing 240 m (800 ft.) diameter grout sheets within the bedding planes of a deep shale formation. These successful applications of cement-based waste forms to the many radioactive waste streams from nuclear facilities bear witness to the flexibility and reliability of this class of materials. This paper also discusses the major issues regarding the application of cement-based waste forms to radioactive waste management problems. These issues are (1) leachability, (2) radiation stability, (3) thermal stability, (4) phase complexity of the matrix, and (5) effects of the waste stream composition. A cursory review of current research in each of these areas is given This paper also discusses future trends in cement-based waste form development and applications. 31 references, 11 figures.

  20. Development programs in the United States of America for the application of cement-based grouts in radioactive waste management

    International Nuclear Information System (INIS)

    Dole, L.R.; Row, T.H.

    1984-01-01

    This paper briefly reviews seven cement-based waste form development programs at six of the US Department of Energy (DOE) sites. These sites have developed a variety of processes that range from producing 25 mm (1 in.) diameter pellets in a glove box to producing 240 m (800 ft.) diameter grout sheets within the bedding planes of a deep shale formation. These successful applications of cement-based waste forms to the many radioactive waste streams from nuclear facilities bear witness to the flexibility and reliability of this class of materials. This paper also discusses the major issues regarding the application of cement-based waste forms to radioactive waste management problems. These issues are (1) leachability, (2) radiation stability, (3) thermal stability, (4) phase complexity of the matrix, and (5) effects of the waste stream composition. A cursory review of current research in each of these areas is given This paper also discusses future trends in cement-based waste form development and applications. 31 references, 11 figures

  1. Poet Portland Approval

    Science.gov (United States)

    This update August 9, 2016 letter from EPA approves the petition, with modifications, from Poet Biorefining-Portland, LLC, regarding non-grandfathered ethanol produced through a dry mill process, qualifying under the Clean Air Act for renewable fuel

  2. Dynamic leaching behavior of geogenic As in soils after cement-based stabilization/solidification.

    Science.gov (United States)

    Li, Jiang-Shan; Wang, Lei; Tsang, Daniel C W; Beiyuan, Jingzi; Poon, Chi Sun

    2017-12-01

    Cement-based stabilization/solidification (S/S) is a practical treatment approach for hazardous waste with anthropogenic As sources; however, its applicability for geogenic As-containing soil and the long-term leaching potential remain uncertain. In this study, semi-dynamic leaching test was performed to investigate the influence of S/S binders (cement blended with fuel ash (FA), furnace bottom ash (FBA), or ground granulated blast furnace slag (GGBS)) on the long-term leaching characteristics of geogenic As. The results showed that mineral admixtures with higher Ca content and pozzolanic activity were more effective in reducing the leached As concentrations. Thus, cement blended with FBA was inferior to other binders in suppressing the As leaching, while 20% replacement of ordinary Portland cement by GGBS was considered most feasible for the S/S treatment of As-containing soils. The leachability of geogenic As was suppressed by the encapsulation effect of solidified matrix and interlocking network of hydration products that were supported by scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) results. The long-term leaching of geogenic As from the monolithic samples was diffusion-controlled. Increasing the Ca content in the samples led to a decrease in diffusion coefficient and an increase in feasibility for "controlled utilization" of the S/S-treated soils.

  3. Influence of silica fume and fly ash on hydration, microstructure and strength of cement based mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Weng, Kaimao

    1992-10-01

    The influence of fly ash and silica fume on the hydration, microstructure and strength of cement-based mixtures was investigated. A literature review of the hydration processes, compressive strength development, and microstructure of Portland cement is presented, followed by description of materials and specimens preparation and experimental methodology. It was found that silica fume retards cement hydration at low water/concrete ratios. It reduces calcium hydroxide significantly and increases the amount of hydrates at early ages. Fly ash retards hydration more significantly at high water/concrete ratios than at low ratios. The combination of silica fume and fly ash further retards hydration at one day. Silica fume dominates the reaction with calcium hydroxide. Silica fume significantly increases early strength of mortars and concrete, while fly ash reduces early strength. Silica fume can substantially increase strength of fly ash mortar and concrete after 7 days. Silica fume refines pores in the range 100-500 A, while fly ash mortars exhibit gradual pore refinement as hydration proceeds. Silica fume dominates the pore refinement if used with fly ash. 89 refs., 74 figs., 16 tabs.

  4. Experimental investigation of the long term dissolution properties of a cement-based vault backfill

    International Nuclear Information System (INIS)

    Butcher, E.J.; Borwick, J.; Thorburn, A.A.; Williams, S.J.

    2012-01-01

    One concept for the long-term management of packages of intermediate-level radioactive waste (ILW) is to place them in underground vaults in a Geological Disposal Facility (GDF). After the packaged waste is placed in the vault it is planned to fill the space around the waste packages with a cement-based backfill prior to closure of the facility. The currently specified backfill is the NRVB (Nirex Reference Vault Backfill), composed of a blend of Portland cement, limestone flour and hydrated lime. Leaching trials are ongoing at the UK National Nuclear Laboratory (NNL) to investigate the dissolution of NRVB until pH values typical of calcium carbonate are achieved. The objective of this work is to determine the buffering capacity of samples of the NRVB, and to allow the sequential release of the alkalinity from the intact samples to be monitored. Leaching is being performed utilising three leachants: deionised water and two saline solutions. Trials have been performed in duplicate for each leachant to allow an initial assessment to be made of the reproducibility of the data produced. In order to simulate the conditions expected in the GDF the approach being used in the trials is a flow through experiment utilising a flexible wall permeameter, within a 35 deg temperature-controlled cell

  5. Rheology of Carbon Fibre Reinforced Cement-Based Mortar

    International Nuclear Information System (INIS)

    Banfill, Phillip F. G.; Starrs, Gerry; McCarter, W. John

    2008-01-01

    Carbon fibre reinforced cement based materials (CFRCs) offer the possibility of fabricating 'smart' electrically conductive materials. Rheology of the fresh mix is crucial to satisfactory moulding and fresh CFRC conforms to the Bingham model with slight structural breakdown. Both yield stress and plastic viscosity increase with increasing fibre length and volume concentration. Using a modified Viskomat NT, the concentration dependence of CFRC rheology up to 1.5% fibre volume is reported

  6. Rheology of Carbon Fibre Reinforced Cement-Based Mortar

    Science.gov (United States)

    Banfill, Phillip F. G.; Starrs, Gerry; McCarter, W. John

    2008-07-01

    Carbon fibre reinforced cement based materials (CFRCs) offer the possibility of fabricating "smart" electrically conductive materials. Rheology of the fresh mix is crucial to satisfactory moulding and fresh CFRC conforms to the Bingham model with slight structural breakdown. Both yield stress and plastic viscosity increase with increasing fibre length and volume concentration. Using a modified Viskomat NT, the concentration dependence of CFRC rheology up to 1.5% fibre volume is reported.

  7. Synthesis of pure Portland cement phases

    DEFF Research Database (Denmark)

    Wesselsky, Andreas; Jensen, Ole Mejlhede

    2009-01-01

    Pure phases commonly found in Portland cement clinkers are often used to test cement hydration behaviour in simplified experimental conditions. The synthesis of these phases is covered in this paper, starting with a description of phase relations and possible polymorphs of the four main phases...... in Portland cement, i.e. tricalcium silicate, dicalcium silicate, tricalcium aluminate and tetracalcium alumino ferrite. Details of the The process of solid state synthesis are is described in general including practical advice on equipment and techniques. Finally In addition, some exemplary mix compositions...

  8. Sealing properties of cement-based grout materials used in the rock sealing project

    International Nuclear Information System (INIS)

    Onofrei, M.; Gray, M.N.; Pusch, R.; Boergesson, L.; Karnland, O.; Shenton, B.; Walker, B.

    1993-12-01

    The Task Force on Sealing Materials and Techniques of the Stripa Project recommended that work be undertaken to study the sealing properties of cement-based grout materials. A new class of cement-based grouts (high-performance grouts) with the ability to penetrate and seal fine fractures in granite was investigated. The materials were selected for their small mean particle size and the ability to be made fluid by a superplasticizer at low water/cementitious-materials ratios. The fundamental physical and chemical properties (such as the particle size and chemical composition) of the materials were evaluated. The rheological properties of freshly mixed grouts, which control the workability of the grouts, were determined together with the properties of hardened materials, which largely control the long-term performance (longevity) of the materials in repository settings. The materials selected were shown to remain gel-like during the setting period, and so the grouts may be expected to remain largely homogenous during and after injection into the rock without separating into solid and liquid phases. The hydraulic conductivity and strength of hardened grouts were determined. The microstructure of the bulk grouts was characterized by a high degree of homogeneity with extremely fine porosity. The low hydraulic conductivity and good mechanical properties are consistent with the extremely fine porosity. The ability of the fractured grouts to self-seal was also observed in tests in which the hydraulic conductivity of recompacted granulated grouts was determined. The laboratory tests were carried out in parallel with investigations of the in situ performance of the materials and with the development of geochemical and theoretical models for cement-based grout longevity. (author). 56 refs., 15 tabs., 98 figs

  9. Sealing properties of cement-based grout materials used in the rock sealing project

    Energy Technology Data Exchange (ETDEWEB)

    Onofrei, M; Gray, M N; Pusch, R; Boergesson, L; Karnland, O; Shenton, B; Walker, B

    1993-12-01

    The Task Force on Sealing Materials and Techniques of the Stripa Project recommended that work be undertaken to study the sealing properties of cement-based grout materials. A new class of cement-based grouts (high-performance grouts) with the ability to penetrate and seal fine fractures in granite was investigated. The materials were selected for their small mean particle size and the ability to be made fluid by a superplasticizer at low water/cementitious-materials ratios. The fundamental physical and chemical properties (such as the particle size and chemical composition) of the materials were evaluated. The rheological properties of freshly mixed grouts, which control the workability of the grouts, were determined together with the properties of hardened materials, which largely control the long-term performance (longevity) of the materials in repository settings. The materials selected were shown to remain gel-like during the setting period, and so the grouts may be expected to remain largely homogenous during and after injection into the rock without separating into solid and liquid phases. The hydraulic conductivity and strength of hardened grouts were determined. The microstructure of the bulk grouts was characterized by a high degree of homogeneity with extremely fine porosity. The low hydraulic conductivity and good mechanical properties are consistent with the extremely fine porosity. The ability of the fractured grouts to self-seal was also observed in tests in which the hydraulic conductivity of recompacted granulated grouts was determined. The laboratory tests were carried out in parallel with investigations of the in situ performance of the materials and with the development of geochemical and theoretical models for cement-based grout longevity. (author). 56 refs., 15 tabs., 98 figs.

  10. Production and characterization of setting hydraulic cements based on calcium phosphate

    International Nuclear Information System (INIS)

    Oliveira, Luci C. de; Rigo, Eliana C.S.; Santos, Luis A dos; Boschi, Anselmo Ortega; Carrodeguas, Raul G.

    1997-01-01

    Setting hydraulic cements based on calcium phosphate has risen great interest in scientific literature during recent years due to their total bio compatibility and to the fact that they harden 'in situ', providing easy handling and adaptation to the shape and dimensions of the defect which requires correction, differently from the predecessors, the calcium phosphate ceramics (Hydroxy apatite, β-tri calcium phosphate, biphasic, etc) in the shape of dense or porous blocks and grains. In the work, three calcium-phosphate cement compositions were studied. The resulting compositions were characterized according to the following aspects: setting times, pH, mechanical resistance, crystalline phases, microstructure and solubility in SBF (Simulated Body Fluid). The results show a potential use for the compositions. (author)

  11. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    Energy Technology Data Exchange (ETDEWEB)

    Nochaiya, Thanongsak [Department of Physics, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Sekine, Yoshika [Department of Chemistry, School of Science, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292 (Japan); Choopun, Supab [Applied Physics Research Laboratory, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand); Chaipanich, Arnon, E-mail: arnon.chaipanich@cmu.ac.th [Advanced Cement-Based Materials Research Unit, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200 (Thailand)

    2015-05-05

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes.

  12. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive

    International Nuclear Information System (INIS)

    Nochaiya, Thanongsak; Sekine, Yoshika; Choopun, Supab; Chaipanich, Arnon

    2015-01-01

    Highlights: • Nano zinc oxide was used as an additive material. • Microstructure and phase characterization of pastes were characterized using SEM and XRD. • TGA and FTIR were also used to determine the hydration reaction. • Compressive strength of ZnO mixes was found to increase at 28 days. - Abstract: Zinc oxide nanoparticles as a nanophotocatalyst has great potential for self-cleaning applications in concrete structures, its effects on the cement hydration, setting time and compressive strength are also important when using it in practice. This paper reports the effects of zinc oxide nanoparticles, as an additive material, on properties of cement-based materials. Setting time, compressive strength and porosity of mortars were investigated. Microstructure and morphology of pastes were characterized using scanning electron microscope and X-ray diffraction (XRD), respectively. Moreover, thermal gravimetric analysis (TGA) and Fourier-transform infrared spectrometer (FTIR) were also used to determine the hydration reaction. The results show that Portland cement paste with additional ZnO was found to slightly increase the water requirement while the setting time presented prolongation period than the control mix. However, compressive strength of ZnO mixes was found to be higher than that of PC mix up to 15% (at 28 days) via filler effect. Microstructure, XRD and TGA results of ZnO pastes show less hydration products before 28 days but similar at 28 days. In addition, FTIR results confirmed the retardation when ZnO was partially added in Portland cement pastes

  13. Effect of Cement Type on Autogenous Deformation of Cement-Based Materials

    DEFF Research Database (Denmark)

    Pietro, Lura; Ye, Guang; van Breugel, Klaas

    2004-01-01

    In this paper, measurements of non-evaporable water content, chemical shrinkage, autogenous deformation, internal relative humidity (RH), pore solution composition, and early-age elastic modulus are presented and discussed. All experiments were performed on Portland cement and blast-furnace slag...... (BFS) cement pastes. Self-desiccation shrinkage of the BFS cement paste was modeled based on the RH measurements, following the capillary-tension approach. The main findings of this study are: 1) self-desiccation shrinkage can be related to self-desiccation both for Portland and for BFS cement pastes......, taking into account the influence of the dissolved salts in the pore solution, 2) the BFS cement paste studied shows pronounced self-desiccation and self-desiccation shrinkage, mainly caused by its very fine pore structure....

  14. Investigation on the Mechanical Properties of a Cement-Based Material Containing Carbon Nanotube under Drying and Freeze-Thaw Conditions

    Directory of Open Access Journals (Sweden)

    Wei-Wen Li

    2015-12-01

    Full Text Available This paper aimed to explore the mechanical properties of a cement-based material with carbon nanotube (CNT under drying and freeze-thaw environments. Mercury Intrusion Porosimetry and Scanning Electron Microscopy were used to analyze the pore structure and microstructure of CNT/cement composite, respectively. The experimental results showed that multi-walled CNT (MWCNT could improve to different degrees the mechanical properties (compressive and flexural strengths and physical performances (shrinkage and water loss of cement-based materials under drying and freeze-thaw conditions. This paper also demonstrated that MWCNT could interconnect hydration products to enhance the performance of anti-microcracks for cement-based materials, as well as the density of materials due to CNT’s filling action.

  15. Elastoplastic cup model for cement-based materials

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2010-03-01

    Full Text Available Based on experimental data obtained from triaxial tests and a hydrostatic test, a cup model was formulated. Two plastic mechanisms, respectively a deviatoric shearing and a pore collapse, are taken into account. This model also considers the influence of confining pressure. In this paper, the calibration of the model is detailed and numerical simulations of the main mechanical behavior of cement paste over a large range of stress are described, showing good agreement with experimental results. The case study shows that this cup model has extensive applicability for cement-based materials and other quasi-brittle and high-porosity materials in a complex stress state.

  16. Transport of nitrate from a large cement based waste form

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1986-01-01

    A finite-element model is used to calculate the time-dependent transport of nitrate from a cement-based (saltstone) monolith with and without a clay cap. Model predictions agree well with data from two lysimeter field experiments begun in 1984. The clay cap effectively reduces the flux of nitrate from the monolith. Predictions for a landfill monolith design show a peak concentration occurring within 25 years; however, the drinking water guideline is exceeded for 1200 years. Alternate designs and various restrictive liners are being considered

  17. Chemical constitution, physical properties, and biocompatibility of experimentally manufactured Portland cement.

    Science.gov (United States)

    Hwang, Yun-Chan; Kim, Do-Hee; Hwang, In-Nam; Song, Sun-Ju; Park, Yeong-Joon; Koh, Jeong-Tae; Son, Ho-Hyun; Oh, Won-Mann

    2011-01-01

    An experimental Portland cement was manufactured with pure raw materials under controlled laboratory conditions. The aim of this study was to compare the chemical constitution, physical properties, and biocompatibility of experimentally manufactured Portland cement with those of mineral trioxide aggregate (MTA) and Portland cement. The composition of the cements was determined by scanning electron microscopy (SEM) and energy-dispersive x-ray analysis (EDAX). The setting time and compressive strength were tested. The biocompatibility was evaluated by using SEM and XTT assay. SEM and EDAX revealed the experimental Portland cement to have a similar composition to Portland cement. The setting time of the experimental Portland cement was significantly shorter than that of MTA and Portland cement. The compressive strength of the experimental Portland cement was lower than that of MTA and Portland cement. The experimental Portland cement showed a similar biocompatibility to MTA. The experimental Portland cement might be considered as a possible substitute for MTA in clinical usage after further testing. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  18. Cement-based grouts in geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Onofrei, M.

    1996-01-01

    The behavior and performance of a specially developed high-performance cement-based grout has been studied through a combined laboratory and in situ research program conducted under the auspices of the Canadian Nuclear Fuel Waste Management Program (CNFWMP). A new class of cement-based grouts - high-performance grouts-with the ability to penetrate and seal fine fractures was developed and investigated. These high-performance grouts, which were injected into fractures in the granitic rock at the Underground Research Laboratory (URL) in Canada, are shown to successfully reduce the hydraulic conductivity of the rock mass from -7 m s -1 to 10 -9 m s -1 and to penetrate fissures in the rock with apertures as small as 10 μm. Furthermore, the laboratory studies have shown that this high - performance grout has very low hydraulic conductivity and is highly leach resistant under repository conditions. Microcracks generated in this materials from shrinkage, overstressing or thermal loads are likely to self-seal. The results of these studies suggest that the high-performance grouts can be considered as viable materials in disposal-vault sealing applications. Further work is needed to fully justify extrapolation of the results of the laboratory studies to time scales relevant to performance assessment

  19. Research needs in cement-based waste forms

    International Nuclear Information System (INIS)

    McDaniel, E.W.; Spence, R.D.; Tallent, O.K.

    1990-01-01

    Cement-based waste forms are one of the most widely used waste disposal options, yet definitive knowledge of the fate of the waste species inside the waste form is lacking. A fundamental understanding of the chemistry and microstructure of the waste forms would lead to a better understanding of the mass transfer of the waste species, more confidence in predicting and extrapolating waste form performance, and design of better waste forms. Better and cheaper leach tests would lead to quicker and more cost effective screening of waste form alternatives. In addition, assessment of durability may be important to predicting waste form performance in the field. It should be noted that the research needs discussed in this report are from the perspective of investigators working in applied waste management areas, while the proposed investigations are fundamental or basic. Details as to experimental methods and tools to be used in achieving the objectives of the proposed are research beyond the scope of this paper and are better filled in by others. In broad terms, the research topics discussed are correlation of cement-based waste form physical properties to performance, waste-form fundamental chemistry and microstructure, and product performance testing

  20. Immobilisation of heavy metal in cement-based solidification/stabilisation: A review

    International Nuclear Information System (INIS)

    Chen, Q.Y.; Tyrer, M.; Hills, C.D.; Yang, X.M.; Carey, P.

    2009-01-01

    Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C 3 S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H + attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition of C 3 S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of 29 Si solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research on the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique

  1. Formula of Moulding Sand, Bentonite and Portland Cement toImprove The Quality of Al-Si Cast Alloy

    OpenAIRE

    Andoko Andoko; Poppy Puspitasari; Avita Ayu Permanasari; Didin Zakaria Lubis

    2017-01-01

    A binder is any material used to strengthen the bonding of moulding sand grains. The primary function of the binder is to hold the moulding sand and other materialstogether to produce high-quality casts. In this study, there were four binder compositions being tested, i.e. 5% bentonite + 5% Portland cement, 4% bentonite + 6% Portland cement, 6% bentonite + 4% Portland cement, and 7% bentonite + 3% Portland cement. Each specimen was measured for its compressive strength, shear strength, tensil...

  2. Cement-Based Materials for Nuclear Waste Storage

    CERN Document Server

    Cau-di-Coumes, Céline; Frizon, Fabien; Lorente, Sylvie

    2013-01-01

    As the re-emergence of nuclear power as an acceptable energy source on an international basis continues, the need for safe and reliable ways to dispose of radioactive waste becomes ever more critical. The ultimate goal for designing a predisposal waste-management system depends on producing waste containers suitable for storage, transportation and permanent disposal. Cement-Based Materials for Nuclear-Waste Storage provides a roadmap for the use of cementation as an applied technique for the treatment of low- and intermediate-level radioactive wastes.Coverage includes, but is not limited to, a comparison of cementation with other solidification techniques, advantages of calcium-silicate cements over other materials and a discussion of the long-term suitability and safety of waste packages as well as cement barriers. This book also: Discusses the formulation and production of cement waste forms for storing radioactive material Assesses the potential of emerging binders to improve the conditioning of problemati...

  3. The C-S-H gel of Portland cement mortars: Part I. The interpretation of energy-dispersive X-ray microanalyses from scanning electron microscopy, with some observations on C-S-H, AFm and AFt phase compositions

    International Nuclear Information System (INIS)

    Famy, C.; Brough, A.R.; Taylor, H.F.W.

    2003-01-01

    Scanning electron microscopy (SEM) microanalyses of the calcium-silicate-hydrate (C-S-H) gel in Portland cement pastes rarely represent single phases. Essential experimental requirements are summarised and new procedures for interpreting the data are described. These include, notably, plots of Si/Ca against other atom ratios, 3D plots to allow three such ratios to be correlated and solution of linear simultaneous equations to test and quantify hypotheses regarding the phases contributing to individual microanalyses. Application of these methods to the C-S-H gel of a 1-day-old mortar identified a phase with Al/Ca=0.67 and S/Ca=0.33, which we consider to be a highly substituted ettringite of probable composition C 6 A 2 S-bar 2 H 34 or {Ca 6 [Al(OH) 6 ] 2 ·24H 2 O}(SO 4 ) 2 [Al(OH) 4 ] 2 . If this is true for Portland cements in general, it might explain observed discrepancies between observed and calculated aluminate concentrations in the pore solution. The C-S-H gel of a similar mortar aged 600 days contained unsubstituted ettringite and an AFm phase with S/Ca=0.125

  4. Using bio-based polymers for curing cement-based materials

    NARCIS (Netherlands)

    Zlopasa, J.; Koenders, E.A.B.; Picken, S.J.

    2014-01-01

    Curing is the process of controlling the rate and extent of moisture loss from the surface of cement based materials. It is the final stage in the production of cement-based materials and it is the essential part for achieving continuous hydration of cement, while avoiding cracking due to drying

  5. New Portland cement-based materials for endodontics mixed with articaine solution: a study of cellular response.

    Science.gov (United States)

    Gandolfi, Maria Giovanna; Perut, Francesca; Ciapetti, Gabriela; Mongiorgi, Romano; Prati, Carlo

    2008-01-01

    The biocompatibility of innovative tetrasilicate cements proposed for root-end filling restorations was tested. White ProRoot-MTA and AH Plus were used as control. The new cements were mixed with a local anesthetic solution (4% articaine) to form a paste. Human osteoblast-like cells Saos-2 were challenged in short-term cultures (72 hours) with solid materials and with material extracts prepared in culture medium. Cell growth and viability, cellular attachment, and morphologic features were assessed to verify cell/material interactions. No acute toxicity was exerted by the experimental cements in the assay systems. On solid samples Saos-2 adhered and proliferated on all the experimental cements and on MTA. The ultrastructural findings revealed that Saos-2 were able to adhere and to spread. The maintenance of the osteoblastic phenotype on the innovative cements was confirmed by the alkaline phosphatase assay. All experimental cements prepared with articaine supported the growth of bone-like cells, showing suitable properties to be used as canal sealers and root-end filling materials.

  6. Friedel's salt profiles from thermogravimetric analysis and thermodynamic modelling of Portland cement-based mortars exposed to sodium chloride solution

    DEFF Research Database (Denmark)

    Shi, Zhenguo; Geiker, Mette Rica; Lothenbach, Barbara

    2017-01-01

    Thermogravimetric analysis (TGA), powder X-ray diffraction (XRD) and thermodynamic modelling have been used to obtain Friedel's salt profiles for saturated mortar cylinders exposed to a 2.8 M NaCl solution. Comparison of the measured Friedel's salt profiles with the total chloride profiles...

  7. Industrial Wastes as Alternative Mineral Addition in Portland Cement and as Aggregate in Coating Mortars

    OpenAIRE

    Oliveira, Kamilla Almeida; Nazário, Bruna Inácio; Oliveira, Antonio Pedro Novaes de; Hotza, Dachamir; Raupp-Pereira, Fabiano

    2017-01-01

    This paper presents an evaluation study of wastes from pulp and paper as well as construction and demolition industries for application in cement-based materials. The alternative raw materials were used as a source of calcium carbonate (CaCO3) and as pozzolanic material (water-reactive SiO2) in partial replacement of Portland cement. In addition to the hydraulic binder, coating mortars were composed by combining the pulp and paper fluidized bed sand residue with construction and demolition wa...

  8. Modelling porewater chemistry in hydrated Portland cement

    International Nuclear Information System (INIS)

    Berner, U.R.

    1987-01-01

    Extensive employment of concrete is foreseen in radioactive waste repositories. A prerequisite for modelling the interactions between concrete and formation waters is characterization of the concrete system. Available experimental data from high pressure squeezing of cement pore-water indicate that, besides the high pH due to alkali hydroxide dissolution, cement composition itself influences the solubility determining solid phases. A model which simulates the hydration of Portland cement assuming complete hydration of the main clinker minerals is presented. The model also includes parameters describing the reactions between the cement and blending agents. Comparison with measured pore-water data generally gives a consistent picture and, as expected, the model gives correct predictions for pure Portland cements. For blended cements, the required additional parameters can, to some extent, be derived from pore-water analysis. 14 references, 1 figure, 4 tables

  9. In situ grouting of low-level burial trenches with a cement-based grout at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Francis, C.W.; Spence, R.D.; Tamura, T.; Spalding, B.P.

    1993-01-01

    A technology being evaluated for use in the closure of one of the low-level radwaste burial grounds at ORNL is trench stabilization using a cement-based grout. To demonstrate the applicability and effectiveness of this technology, two interconnecting trenches in SWSA 6 were selected as candidates for in situ grouting with a particulate grout. The primary objective was to demonstrate the increased trench stability (characterized by trench penetration tests) and the decreased potential for leachate migration (characterized by hydraulic conductivity tests) following in situ injection of a particulate grout into the waste trenches. Stability against trench subsidence is a critical issue. For example, construction of impermeable covers to seal the trenches will be ineffectual unless subsequent trench subsidence is permanently suspended. A grout composed of 39% Type 1 Portland cement, 55.5% Class F fly ash, and 5.5% bentonite mixed at 12.5 lb/gal of water was selected. Before the trenches were grouted, the primary characteristics relating to physical stability, hydraulic conductivity, and void volume of the trenches were determined. Their physical stability was evaluated using soil-penetration tests

  10. Optimum permeability for a cement based backfill material

    International Nuclear Information System (INIS)

    Jacobs, F.; Wittmann, F.H.; Iriya, K.

    1989-01-01

    In Switzerland it is planned to dispose low- and intermediate radioactive waste (LLW/ILW) in an underground repository. Between the materials present in a repository different chemical reactions may occur. Due to radiolytic decomposition, microbiological degradation and corrosion gas (mainly hydrogen) may be produced. The release of gas can cause the build-up of pressure in the cavern and finally lead to the formation of cracks and/or serious damage in the concrete structure or host rock. Through cracks a contamination of the groundwater and the biosphere could be possible. This investigation develops a suitable cement based material which can be used as backfill for the repository. Besides other aspects mentioned later a suitable backfill material has to be characterized by a certain minimum gas permeability and a as low as possible hydraulic conductivity. On the one hand gas permeability is necessary to release gas overpressure and on the other hand a low hydraulic conductivity should prevent leaching of backfill materials and contamination of the environment

  11. Transport of nitrate from a large cement-based wasteform

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1986-10-01

    A two-dimensional finite element model has been developed to calculate the time-dependent transport of nitrate from a cement-based (saltstone) monolith. A steady-state velocity field is also calculated, based on saturated ground water flow and Darcy's law. Model predictions are compared with data from two lysimeter field experiments begun in 1984. The model results agree very well with data from the uncapped and clay-capped monoliths. A peak concentration of 140 ppM is predicted for the uncapped case within four years; the clay-capped case shows a rather flat peak of 70 ppM occurring within approximately 20 years. The clay cap effectively reduces the groundwater velocity and dispersion coefficient adjacent to the exposed monolith surface. The cap also significantly reduces the flux of nitrate out the top surface of the monolith, in contrast to the uncapped monolith. Predictions for a landfill monolith design show a peak concentration of approximately 280 ppM occurring within 25 years. Results indicate that the 44 ppM drinking water guideline would be exceeded for over 1000 years. Alternate designs and various restrictive liners are being considered. 9 refs., 8 figs

  12. Immobilization of radioactive waste in cement based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Macphee, D.; McCulloch, C.E.; Angus, M.J.

    1985-06-01

    The kinetics of reaction between cement and clinoptilolite are elucidated and rate equations containing temperature dependent constants derived for this reaction. Variations in clinoptilolite particle size and their consequences to reactivity are assessed. The presence of pozzolanic agents more reactive than clinoptilolite provides sacrificial agents which are partially effective in lowering the clinoptilolite reactivity. Blast furnace slag-cements have been evaluated and the background literature summarized. Experimental studies of the pore fluid in matured slag-cements show that they provide significantly more immobilization for Cs than Portland cement. The distribution of Sr in cemented waste forms has been examined, and it is shown that most of the chemical immobilization potential in the short term is likely to be associated with the aluminate phases. The chemical and structural nature of these are described. Carbonation studies on real cements are summarized. (author)

  13. Superplasticizer function and sorption in high performance cement based grouts

    International Nuclear Information System (INIS)

    Onofrei, M.; Gray, M.N.; Roe, L.H.

    1991-08-01

    This report describes laboratory studies undertaken to determine interactions between the main components of high-performance cement-based grout. These interactions were studied with the grouts in both their unset and hardened states with the specific intention of determining the following: the mechanistic function of superplasticizer; the phase of residence of the superplasticizer in hardened materials; and the permanence of the superplasticizer in hardened grouts. In unset pastes attempts were made to extract superplasticizer by mechanical processes. In hardened grout the superplasticizer was leached from the grouts. A microautoradiographic method was developed to investigate the phases of residence of superplasticizer in hardened grouts and confirm the inferences from the leaching studies. In hardened grout the superplasticizer was located on the hydrated phases formed during the early stages of cement hydration. These include tricalcium aluminate hydrates and tricalcium silicate phases. There is some tendency for the superplasticizer to sorb on ettringite. The presence of superplasticizer did not coincide with the locations of unreacted silica fume and high silica content phases such as C 2 S-H. The observations explain the findings of the studies of unset pastes which also showed that the sorption of superplasticizer is likely to be enhanced with increased mixing water content and, hence, distribution in and exposure to the hydration reaction surfaces in the grout. Superplasticizer can be leached in very small quantities from the hardened grouts. Rapid release takes place from the unsorbed superplasticizer contained in the accessible pore space. Subsequent release likely occurs with dissolution of the cement phases and the exposure of isolated pores to groundwater. (au) (37 refs.)

  14. Cement-base bearing pads mortar for connections in the precast concrete: study of surface roughness

    Directory of Open Access Journals (Sweden)

    M. K. El Debs

    Full Text Available Bearing pads are used in precast concrete connections to avoid concentrated stresses in the contact area between the precast elements. In the present research, the bearing pads are Portland cement mortar with styrene-butadiene latex (SB, lightweight aggregate (expanded vermiculite-term and short fibers (polypropylene, glass and PVA, in order to obtain a material with low modulus of elasticity and high tenacity, compared with normal Portland cement mortar. The objective of this paper is to analyze the influence of surface roughness on the pads and test other types of polypropylene fibers. Tests were carried out to characterize the composite and test on bearing pads. Characterization tests show compressive strength of 41MPa and modulus of elasticity of 12.8GPa. The bearing pads tests present 30% reduction of stiffness in relation to a reference mortar. The bearing pads with roughness on both sides present a reduction up to 30% in stiffness and an increase in accumulated deformation of more than 120%, regarding bearing pads with both sides smooth.

  15. Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

    KAUST Repository

    Chae, Sejung R.; Moon, Juhyuk; Yoon, Seyoon; Bae, Sungchul; Levitz, Pierre; Winarski, Robert; Monteiro, Paulo J. M.

    2013-01-01

    We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three

  16. Summary report on the development of a cement-based formula to immobilize Hanford facility waste

    International Nuclear Information System (INIS)

    Gilliam, T.M.; McDaniel, E.W.; Dole, L.R.; Friedman, H.A.; Loflin, J.A.; Mattus, A.J.; Morgan, I.L.; Tallent, O.K.; West, G.A.

    1987-09-01

    This report recommends a cement-based grout formula to immobilize Hanford Facility Waste in the Transportable Grout Facility (TGF). Supporting data confirming compliance with all TGF performance criteria are presented. 9 refs., 24 figs., 50 tabs

  17. Effect of nylon fiber on mechanical properties of cement based mortar

    Science.gov (United States)

    Hanif, I. M.; Syuhaili, M. R. Noor; Hasmori, M. F.; Shahmi, S. M.

    2017-11-01

    An investigation has been carried out to study the effect of nylon fiber on the mechanical properties of cement based mortar after receiving large quantities of nylon waste. Subsequently, this research was conducted to compare the compressive, tensile and flexural strength of normal cement based mortar with nylon fiber cement based mortar. All samples using constant water-cement ratio of 0.63 and three different percentages of nylon fiber were added in the mixture during the samples preparation period which consists of 0.5%, 1.5% and 2.5% by total weight of cement based mortar. The results obtained with different nylon percentage marked an increases in compressive strength (up to 17%), tensile strength (up to 21%) and flexural strength (up to 13%) when compared with control cement based mortar samples. Therefore, the results obtained from this study shows that by using nylon fiber as additive material can improve the mechanical properties of the cement based mortar and at the same time produce a good sustainable product that can protects and conserve the marine environment.

  18. EFFECTS OF MINERAL ADMIXTURE ON THE CARBONIC ACID LEACHING RESISTANCE OF CEMENT-BASED MATERIALS

    Directory of Open Access Journals (Sweden)

    Yun Dong

    2017-07-01

    Full Text Available In order to reveal the degradation process and deterioration mechanism of cement-based materials, this paper analyzes the effects of carbonic acid leaching on the mechanical strength of mortars, as well as relative mass loss, microstructure, and composition of various cement pastes. The results indicate that cement pastes containing less than 20 % fly ash have higher carbonic acid leaching resistance than cement pastes without fly ash. However, after carbonic acid leaching, the compressive strength of the samples with fly ash is lower than that of the cement pastes without fly ash. The leaching resistance is good for samples cured at an early age before leaching. Carbonic acid leaching proceeds from the paste surface to the interior. The incorporation of an appropriate amount of slag powder helps to increase the density of the paste. Due to the pozzolanic activity of fly ash at late-stage leaching, a mixture of fly ash (≤ 20 % and slag powder (≤ 20 % effectively improves carbonic acid leaching resistance. The products of early-stage leaching were mainly CaCO₃ and small amounts of SiO₂ and Fe₂O₃. The C-S-H phase at the paste surface suffered serious damage after long periods of leaching, and the main products of leaching were SiO₂ and Fe₂O₃.

  19. The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement

    International Nuclear Information System (INIS)

    Coleman, Nichola J.; Li, Qiu

    2013-01-01

    Zirconium oxide has been identified as a candidate radiopacifying agent for use in Portland cement-based biomaterials. During this study, the impact of 20 wt.% zirconium oxide on the hydration and setting reactions of white Portland cement (WPC) was monitored by powder X-ray diffraction (XRD), 29 Si and 27 Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), transmission electron microscopy (TEM) and Vicat apparatus. The presence of 20 wt.% zirconium oxide particles in the size-range of 0.2 to 5 μm was found to reduce the initial and final setting times of WPC from 172 to 147 min and 213 to 191 min, respectively. Zirconium oxide did not formally participate in the chemical reactions of the hydrating cement; however, the surface of the zirconium oxide particles presented heterogeneous nucleation sites for the precipitation and growth of the early C-S-H gel products which accelerated the initial setting reactions. The presence of zirconium oxide was found to have little impact on the development of the calcium (sulpho)aluminate hydrate phases. - Highlights: ► This is the first study of Portland cement-based biomaterials by 27 Al and 29 Si NMR. ► 20 wt.% ZrO 2 radiopacifier accelerates the early cement hydration reactions. ► Extent of hydration after 6 h is increased from 5.7% to 15% in the presence of ZrO 2 . ► Initial and final setting times are reduced by 25 and 22 min, respectively. ► ZrO 2 provides nucleation sites for the precipitation of early hydration products.

  20. INFLUENCE OF SUBSTITUTION OF ORDINARY PORTLAND CEMENT BY SILICA FUME ON THE HYDRATION OF SLAG-PORTLAND CEMENT PASTES

    Directory of Open Access Journals (Sweden)

    E.A. El-Alfi

    2011-06-01

    Full Text Available Effect of gradual substitution of ordinary Portland cement by a few percent of silica fume (0.0, 2.5, 5.0 and 7.5 wt.% on the hydration properties of slag-Portland cement pastes up to 12 months was investigated. The results show that the composite cement pastes containing silica fume give the higher physico-mechanical properties than that of the slag-Portland cement. Also, the XRD results reveal that the peak of Ca(OH2 shows higher intensity in the sample without silica fume and completely disappears in the sample containing 7.5 wt.% silica fume content. Also, the intensity peaks of C4AH13 sharply increase with silica fume content.

  1. Physical chemistry of portland-cement hydrate, radioactive-waste hosts: Final report, January 16, 1987--December 31, 1987

    International Nuclear Information System (INIS)

    Grutzeck, M.W.

    1989-01-01

    This is a final report summarizing the results of a study of the physical and crystal chemistry of potential hydroxylated radioactive waste hosts compatible with portland cement. Research has focussed on the identification and evaluation of hydrated host phases for four ions: cesium, strontium, iodine and boron. These ions were chosen because they are among the most long lived of the radioactive waste ions as well as the most difficult to immobilize with cement-based materials. Results show that such phases do indeed exist, and that they are excellent host phases for the above ions

  2. 75 FR 20778 - Security Zone; Portland Rose Festival Fleet Week, Willamette River, Portland, OR

    Science.gov (United States)

    2010-04-21

    ...-AA87 Security Zone; Portland Rose Festival Fleet Week, Willamette River, Portland, OR AGENCY: Coast... during the Portland Rose Festival Fleet Week from June 2, 2010, through June 7, 2010. The security zone... is a need to provide a security zone for the 2010 Portland Rose Festival Fleet Week, and there is...

  3. 77 FR 15263 - Security Zone; Portland Rose Festival on Willamette River; Portland, OR

    Science.gov (United States)

    2012-03-15

    ... Zone; Portland Rose Festival on Willamette River; Portland, OR AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Portland Rose Festival... Willamette River during the Portland Rose festival. During the enforcement period, no person or vessel may...

  4. Cement-Based Renders Manufactured with Phase-Change Materials: Applications and Feasibility

    Directory of Open Access Journals (Sweden)

    Luigi Coppola

    2016-01-01

    Full Text Available The paper focuses on the evaluation of the rheological and mechanical performances of cement-based renders manufactured with phase-change materials (PCM in form of microencapsulated paraffin for innovative and ecofriendly residential buildings. Specifically, cement-based renders were manufactured by incorporating different amount of paraffin microcapsules—ranging from 5% to 20% by weight with respect to binder. Specific mass, entrained or entrapped air, and setting time were evaluated on fresh mortars. Compressive strength was measured over time to evaluate the effect of the PCM addition on the hydration kinetics of cement. Drying shrinkage was also evaluated. Experimental results confirmed that the compressive strength decreases as the amount of PCM increases. Furthermore, the higher the PCM content, the higher the drying shrinkage. The results confirm the possibility of manufacturing cement-based renders containing up to 20% by weight of PCM microcapsules with respect to binder.

  5. Electrically conductive Portland cement concrete.

    Science.gov (United States)

    1986-01-01

    There is a need for an effective, simple-to-install secondary anode system for use in the cathodic protection of reinforced concrete bridge decks. In pursuit of such a system, carbon fibers and carbon black were incorporated in portland cement concre...

  6. Micro- and nano-scale characterization to study the thermal degradation of cement-based materials

    International Nuclear Information System (INIS)

    Lim, Seungmin; Mondal, Paramita

    2014-01-01

    The degradation of hydration products of cement is known to cause changes in the micro- and nano-structure, which ultimately drive thermo-mechanical degradation of cement-based composite materials at elevated temperatures. However, a detailed characterization of these changes is still incomplete. This paper presents results of an extensive experimental study carried out to investigate micro- and nano-structural changes that occur due to exposure of cement paste to high temperatures. Following heat treatment of cement paste up to 1000 °C, damage states were studied by compressive strength test, thermogravimetric analysis (TGA), scanning electron microscopy (SEM) atomic force microscopy (AFM) and AFM image analysis. Using experimental results and research from existing literature, new degradation processes that drive the loss of mechanical properties of cement paste are proposed. The development of micro-cracks at the interface between unhydrated cement particles and paste matrix, a change in C–S–H nano-structure and shrinkage of C–S–H, are considered as important factors that cause the thermal degradation of cement paste. - Highlights: • The thermal degradation of hydration products of cement is characterized at micro- and nano-scale using scanning electron microscopy (SEM) and atomic force microscopy (AFM). • The interface between unhydrated cement particles and the paste matrix is considered the origin of micro-cracks. • When cement paste is exposed to temperatures above 300 ºC, the nano-structure of C-S-H becomes a more loosely packed globular structure, which could be indicative of C-S-H shrinkage

  7. DEVELOPMENT and TESTING OF A CEMENT-BASED SOLID WASTE FORM USING SYNTHETIC UP-1 GROUNDWATER

    International Nuclear Information System (INIS)

    COOKE, G.A.; LOCKREM, L.L.

    2006-01-01

    The Effluent Treatment Facility (ETF) in the 200 East Area of the Hanford Site is investigating the conversion of several liquid waste streams from evaporator operations into solid cement-based waste forms. The cement/waste mixture will be poured into plastic-lined mold boxes. After solidification the bags will be removed from the molds and sealed for land disposal at the Hanford Site. The RJ Lee Group, Inc. Center for Laboratory Sciences (CLS) at Columbia Basin College (CBC) was requested to develop and test a cementitious solids (CS) formulation to solidify evaporated groundwater brine, identified as UP-1, from Basin 43. Laboratory testing of cement/simulant mixtures is required to demonstrate the viability of cement formulations that reduce the overall cost, minimize bleed water and expansion, and provide suitable strength and cure temperature. Technical support provided mixing, testing, and reporting of values for a defined composite solid waste form. In this task, formulations utilizing Basin 43 simulant at varying wt% solids were explored. The initial mixing consisted of making small (∼ 300 g) batches and casting into 500-mL Nalgene(reg s ign) jars. The mixes were cured under adiabatic conditions and checked for bleed water and consistency at recorded time intervals over a 1-week period. After the results from the preliminary mixing, four formulations were selected for further study. The testing documentation included workability, bleed water analysis (volume and pH) after 24 hours, expansivity/shrinkage, compressive strength, and selected Toxicity Characteristic Leaching Procedure (TCLP) leach analytes of the resulting solid waste form

  8. Immobilization of radioactive waste in cement based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Macphee, D.; Atkins, M.; Beckley, N.; Carson, S.; McHugh, G.; Mattingley, N.J.; Naish, C.C.; Wilding, C.R.

    1988-01-01

    The modelling of cement behaviour at longer ages is reported. Factors studied include composition, pH and Esub(h). The stresses arising from irradiation are evaluated. The behaviour of two elements in cement - U and I has been studied; new experimental data are reported including solubility measurements. Some additional data are given on Sr. Results of desk studies relevant to lifetime predictions are presented. (author)

  9. The Integration of EIS parameters and bulk matrix characterization in studying reinforced cement-based materials

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2012-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g.

  10. The integration of eis parameters and bulk matrix characteristics in studying reinforced cement-based materials

    NARCIS (Netherlands)

    Koleva, D.A.; Van Breugel, K.

    2011-01-01

    Corrosion in reinforced concrete is a major and costly concern, arising from the higher complexity of involved phenomena on different levels of material science (e.g. electrochemistry, concrete material science) and material properties (macro/micro/ nano). Reinforced cement-based systems (e.g.

  11. Modelling Inter-Particle Forces and Resulting Agglomerate Sizes in Cement-Based Materials

    DEFF Research Database (Denmark)

    Kjeldsen, Ane Mette; Geiker, Mette Rica

    2005-01-01

    The theory of inter-particle forces versus external shear in cement-based materials is reviewed. On this basis, calculations on maximum agglomerate size present after the combined action of superplasticizers and shear are carried out. Qualitative experimental results indicate that external shear ...

  12. Stabilization techniques for reactive aggregate in soil-cement base course : technical summary.

    Science.gov (United States)

    2003-01-01

    The objectives of this research are 1) to identify the mineralogical properties of soil-cement bases which have heaved or can potentially heave, 2) to simulate expansion of cement-stabilized soil in the laboratory, 3) to correlate expansion with the ...

  13. Systematic approach for the design of pumpable cement-based grouts for immobilization of hazardous wastes

    International Nuclear Information System (INIS)

    Sams, T.L.; Gilliam, T.M.

    1987-01-01

    Cement-based grouts have been proven to be an economical and environmentally acceptable means of waste disposal. Costs can be reduced if the grout is pumped to the disposal site. This paper presents a systematic approach to guide the development of pumpable grouts. 20 refs., 2 figs

  14. Measurement with corrugated tubes of early-age autogenous shrinkage of cement-based material

    DEFF Research Database (Denmark)

    Tian, Qian; Jensen, Ole Mejlhede

    2009-01-01

    The use of a special corrugated mould enables transformation of volume strain into horizontal, linear strain measurement in the fluid stage. This allows continuous measurement of the autogenous shrinkage of cement-based materials since casting, and also effectively eliminates unwanted influence...

  15. Electrical Current Flow and Cement Hydration : Implications on Cement-Based Microstructure

    NARCIS (Netherlands)

    Susanto, A.; Peng, G; Koleva, D.A.; van Breugel, K.

    2016-01-01

    Stray current is an electrical current “leakage” from metal conductors and electrical installations. When it flows through cement-based materials, electrical energy is converted to thermal energy that causes increasing temperature due to Joule heating phenomena. The aim of this paper is to shed

  16. Mechanical, electrical and microstructural properties of cement-based materials in conditions of current flow

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Copuroglu, O.; Van Beek, C.; Van Breugel, K.

    2012-01-01

    Corrosion in reinforced concrete structures is not only induced by the penetration of aggressive substances (e.g. chlorides and/or CO2) but also influenced by stray currents. Further, the degradation mechanisms in reinforced cement-based systems due to the combined effect of stray current and

  17. Healing agent in cement-based materials and structures, and process for its preparation

    NARCIS (Netherlands)

    Jonkers, H.M.

    2009-01-01

    The present invention relates to healing agent in cement-based materials and structures, wherein said healing agent comprises organic compounds and/or bacteria-loaded porous particles, which porous particles comprise expanded clay- or sintered fly ash. Furthermore, said porous particles are intact

  18. Immobilization of radioactive waste in cement based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Macphee, S.; Atkins, M.; Beckley, N.; Carson, S.

    1986-11-01

    Experimental and theoretical studies of hydrated cement systems are described. The behaviour of slag-based cement is described with a view to predicting their long term pH, Esub(n) and mineralogical balance. Modelling studies which enable the prediction at long ages of cement composites are advanced and a base model of the CaO-SiO 2 -H 2 O system presented. The behaviour of U and I in cements is explored. The tolerance of cement systems for a wide range of miscellaneous waste stream components and environmental hazards is described. The redox potential in cements is effectively lowered by irradiation. (author)

  19. Immobilization of radioactive waste in cement based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Macphee, D.; Atkins, M.; Beckley, N.; Lachowski, E.E.

    1986-04-01

    A mathematical and thermodynamic model of the Ca0-Si0 2 -H 2 0 system is presented to enable the solubility and pH relationships in cement and blended cement systems to be predicted. The Esub(h) function has been explored particularly in respect of slag rich systems. The stability of Sr in cements is shown to be influenced by both precipitation and lattice incorporation into the ettringite-like phase. Quality assurance parameters especially for aggregate materials and blast furnace slags are reviewed and recommendations made. It is shown that the latter fluctuate considerably in composition; additional measures for monitoring are recommended and additional research suggested to determine their long-term performance. (author)

  20. Immobilization of radioactive waste in cement-based matrices

    International Nuclear Information System (INIS)

    Glasser, F.P.; Rahman, A.A.; Macphee, D.; McCulloch, C.E.; Angus, M.J.

    1984-01-01

    Model studies of the behaviour of cement systems have been advanced by considering the nature of the phases formed during hydration and deriving pH-composition models for the CaO-SiO 2 -H 2 O system. Preliminary results of Esub(h) measurements are also reported. Leach tests on Sr from cements are interpreted in terms of Sr retention mechanisms. Present results indicate that the aluminate phases in OPC contribute to the chemical retentivity. Studies on cement-clinoptilolite reactions, made using coarse grained clinoptilolite are reported: ferrierite also reacts chemically with cement. Two critical surveys are presented, together with new data: one on the potential of blended cements, the other on cement durability in CO 2 -containing environments. (author)

  1. Characterization of cement-based ancient building materials in support of repository seal materials studies

    International Nuclear Information System (INIS)

    Roy, D.M.; Langton, C.A.

    1983-12-01

    Ancient mortars and plasters collected from Greek and Cypriot structures dating to about 5500 BC have been investigated because of their remarkable durability. The characteristics and performance of these and other ancient cementitious materials have been considered in the light of providing information on longevity of concrete materials for sealing nuclear waste geological repositories. The matrices of these composite materials have been characterized and classified into four categories: (1) gypsum cements; (2) hydraulic hydrated lime and hydrated-lime cements; (3) hydraulic aluminous and ferruginous hydrated-lime cements (+- siliceous components); and (4) pozzolana/hydrated-lime cements. Most of the materials investigated, including linings of ore-washing basins and cisterns used to hold water, are in categories (2) and (3). The aggregates used included carbonates, sandstones, shales, schists, volcanic and pyroclastic rocks, and ore minerals, many of which represent host rock types of stratigraphic components of a salt repository. Numerous methods were used to characterize the materials chemically, mineralogically, and microstructurally and to elucidate aspects of both the technology that produced them and their response to the environmental exposure throughout their centuries of existence. Their remarkable properties are the result of a combination of chemical (mineralogical) and microstructural factors. Durability was found to be affected by matrix mineralogy, particle size and porosity, and aggregate type, grading, and proportioning, as well as method of placement and exposure conditions. Similar factors govern the potential for durability of modern portland cement-containing materials, which are candidates for repository sealing. 29 references, 29 figures, 6 tables

  2. Modeling the degradation of Portland cement pastes by biogenic organic acids

    International Nuclear Information System (INIS)

    De Windt, Laurent; Devillers, Philippe

    2010-01-01

    Reactive transport models can be used to assess the long-term performance of cement-based materials subjected to biodegradation. A bioleaching test (with Aspergillus niger fungi) applied to ordinary Portland cement pastes during 15 months is modeled with HYTEC. Modeling indicates that the biogenic organic acids (acetic, butyric, lactic and oxalic) strongly accelerate hydrate dissolution by acidic hydrolysis whilst their complexation of aluminum has an effect on the secondary gel stability only. The deepest degradation front corresponds to portlandite dissolution and decalcification of calcium silicate hydrates. A complex pattern of sulfate phases dissolution and precipitation takes place in an intermediate zone. The outermost degraded zone consists of alumina and silica gels. The modeling accurateness of calcium leaching, pH evolution and degradation thickness is consistently enhanced whilst considering increase of diffusivity in the degraded zones. Precipitation of calcium oxalate is predicted by modeling but was hindered in the bioleaching reactor.

  3. Application progress of solid 29Si, 27Al NMR in the research of cement-based materials

    International Nuclear Information System (INIS)

    Feng Chunhua; Wang Xijian; Li Dongxu

    2014-01-01

    Background: The solid-state Nuclear Magnetic Resonance (NMR) is an effective method for the research of cement-based materials. Now it focuses on using solid 29 Si and 27 Al NMR to research the hydration structure of the cement-based materials in cement chemistry. Purpose: A theoretical guidance is proposed for solid 29 Si and 27 Al NMR technology used in cement chemistry research. Methods: We reviewed the application of solid 29 Si and 27 Al NMR in the cement-based materials and analyzed the problem among the researches. Results: This paper introduced an fundamental, relevant-conditions and basic parameters of NMR, and studied the technical parameters of solid 29 Si and 27 Ai NMR together with the relationship among the hydration structure of cement based material. Moreover, this paper reviewed the related domestic and overseas achievements in the research of hydration structure of the cement-based materials using solid 29 Si and 27 Al NMR. Conclusion: There were some problems in the research on cement-based materials by technology of solid 29 Si and 27 Al NMR. NMR will promote the Hydration theory of cement-based material greatly. (authors)

  4. Synthesis of Portland cement and calcium sulfoaluminate-belite cement for sustainable development and performance

    Science.gov (United States)

    Chen, Irvin Allen

    Portland cement concrete, the most widely used manufactured material in the world, is made primarily from water, mineral aggregates, and portland cement. The production of portland cement is energy intensive, accounting for 2% of primary energy consumption and 5% of industrial energy consumption globally. Moreover, portland cement manufacturing contributes significantly to greenhouse gases and accounts for 5% of the global CO2 emissions resulting from human activity. The primary objective of this research was to explore methods of reducing the environmental impact of cement production while maintaining or improving current performance standards. Two approaches were taken, (1) incorporation of waste materials in portland cement synthesis, and (2) optimization of an alternative environmental friendly binder, calcium sulfoaluminate-belite cement. These approaches can lead to less energy consumption, less emission of CO2, and more reuse of industrial waste materials for cement manufacturing. In the portland cement part of the research, portland cement clinkers conforming to the compositional specifications in ASTM C 150 for Type I cement were successfully synthesized from reagent-grade chemicals with 0% to 40% fly ash and 0% to 60% slag incorporation (with 10% intervals), 72.5% limestone with 27.5% fly ash, and 65% limestone with 35% slag. The synthesized portland cements had similar early-age hydration behavior to commercial portland cement. However, waste materials significantly affected cement phase formation. The C3S--C2S ratio decreased with increasing amounts of waste materials incorporated. These differences could have implications on proportioning of raw materials for cement production when using waste materials. In the calcium sulfoaluminate-belite cement part of the research, three calcium sulfoaluminate-belite cement clinkers with a range of phase compositions were successfully synthesized from reagent-grade chemicals. The synthesized calcium sulfoaluminate

  5. Compósitos à base de cimento reforçados com polpa celulósica de bambu. Parte I: Determinação do teor de reforço ótimo Cement-based composite reinforced with bamboo pulp. Part I: Determination of optimum reinforcement percentage

    Directory of Open Access Journals (Sweden)

    Marcos A. S. dos Anjos

    2003-08-01

    Full Text Available Este trabalho apresenta os resultados experimentais de um estudo em que se procurou desenvolver compósitos de matriz cimentícia reforçada com polpa de bambu. Foram usados dois tipos de polpa: refinada e sem refino. Fez-se variar o teor de fibras de 0 a 16% em massa de cimento e se desenvolveu um processo com sucção, moldagem e prensagem para fabricação dos compósitos. As relações constitutivas dos compósitos foram definidas através de ensaio a compressão e tração de corpos-de-prova cilíndricos de 5x10 cm e do ensaio de flexão em três pontos. A partir delas, foi obtida a capacidade de absorção de energia. Determinaram-se, também, algumas propriedades físicas, como absorção, porosidade aparente, densidade seca e úmida dos compósitos. Os resultados mostraram melhor performance dos compósitos com fibras refinadas em relação àquelas com fibras sem refino e também indicaram que o teor ótimo de fibras refinadas se situou em torno de 8%, quando promoveram notáveis melhoramentos das propriedades mecânicas dos compósitos em relação à matriz plena.This work presents the experimental results of a study which intended to develop a composite with cementations matrix reinforced with bamboo pulp. Two types of pulps were used: refined and unrefined pulps. The fibre content varied between 0 and 16% cement (weight basis. After the preparation of fresh composite mix the experimental specimens were prepared applying a specially developed process based on Hastshek method using suction then moulding and pressing. The compression, tension and the flexural behavior and their constitutive relations were established using 5 cm diameter by 10 cm high cylindrical specimens and three point bending tests at respectively. The energy absorbing capacity of the new composites was also established. Physical properties such as water absorption, apparent porosity, dry and humid density were also obtained. The results showed a better performance

  6. Evaluation of leaching behavior and immobilization of zinc in cement-based solidified products

    Directory of Open Access Journals (Sweden)

    Krolo Petar

    2012-01-01

    Full Text Available This study has examined leaching behavior of monolithic stabilized/solidified products contaminated with zinc by performing modified dynamic leaching test. The effectiveness of cement-based stabilization/solidification treatment was evaluated by determining the cumulative release of Zn and diffusion coefficients, De. The experimental results indicated that the cumulative release of Zn decreases as the addition of binder increases. The values of the Zn diffusion coefficients for all samples ranged from 1.210-8 to 1.1610-12 cm2 s-1. The samples with higher amounts of binder had lower De values. The test results showed that cement-based stabilization/solidification treatment was effective in immobilization of electroplating sludge and waste zeolite. A model developed by de Groot and van der Sloot was used to clarify the controlling mechanisms. The controlling leaching mechanism was found to be diffusion for samples with small amounts of waste material, and dissolution for higher waste contents.

  7. NTERACTION BETWEEN SURFACE CHARGE PHENOMENA AND MULTI-SPECIES DIFFUSION IN CEMENT BASED MATERIALS

    DEFF Research Database (Denmark)

    Johannesson, Björn

    2008-01-01

    Measurements strongly indicate that the ‘inner’ surface of the microscopic structure of cement based materials has a fixed negative charge. This charge contributes to the formation of so-called electrical double layers. In the case of cement based materials the ionic species located in such layers...... are typically potassium -, sodium - and calcium ions. Due to the high specific surface area of hydrated cement, a large amount of ions can be located in theses double layers even if the surface charge is relatively low. The attraction force, caused by the fixed surface charge on ions located close to surfaces......, is one possible explanation for the observed low global diffusion rates in the pore system of positively charged ions compared to the negatively charged ones. Here it is of interest to simulate the multi ionic diffusion behavior when assigning positively charged ions a comparably lower diffusion constant...

  8. Cement-based processes for the immobilization of intermediate level radioactive waste

    International Nuclear Information System (INIS)

    Brown, D.J.; Lee, D.J.; Price, M.S.T.; Smith, D.L.G.

    1985-01-01

    Increasing attention is being paid to the use of cement-based materials for the immobilisation of intermediate level wastes. Various cementitious materials are surveyed and the use of blast furnace slag is shown to be advantageous. The properties of cemented wastes are surveyed both during processing and as solid products. The application of Winfrith Cementation Laboratory technology to plant and flowsheet development for Winfrith Reactor sludge immobilisation is described. (author)

  9. Terahertz non-destructive imaging of cracks and cracking in structures of cement-based materials

    Directory of Open Access Journals (Sweden)

    Shujie Fan

    2017-11-01

    Full Text Available Cracks and crack propagation in cement-based materials are key factors leading to failure of structures, affecting safety in construction engineering. This work investigated the application of terahertz (THz non-destructive imaging to inspections on structures of cement-based materials, so as to explore the potential of THz imaging in crack detection. Two kinds of disk specimens made of plain cement mortar and UHMWPE fiber concrete were prepared respectively. A mechanical expansion load device was deployed to generate cracks and control the whole process of cracking. Experimental tests were carried out on cracked specimens by using a commercial THz time domain spectroscopy (THz-TDS during loading. The results show that crack opening and propagation could be examined by THz clearly and the material factors influence the ability of crack resistance significantly. It was found that the THz imaging of crack initiation and propagation agrees with the practical phenomenon and supplies more information about damage of samples. It is demonstrated that the damage behavior of structures of cement-based materials can be successfully detected by THz imaging.

  10. Sensitivity of acoustic nonlinearity parameter to the microstructural changes in cement-based materials

    Science.gov (United States)

    Kim, Gun; Kim, Jin-Yeon; Kurtis, Kimberly E.; Jacobs, Laurence J.

    2015-03-01

    This research experimentally investigates the sensitivity of the acoustic nonlinearity parameter to microcracks in cement-based materials. Based on the second harmonic generation (SHG) technique, an experimental setup using non-contact, air-coupled detection is used to receive the consistent Rayleigh surface waves. To induce variations in the extent of microscale cracking in two types of specimens (concrete and mortar), shrinkage reducing admixture (SRA), is used in one set, while a companion specimen is prepared without SRA. A 50 kHz wedge transducer and a 100 kHz air-coupled transducer are implemented for the generation and detection of nonlinear Rayleigh waves. It is shown that the air-coupled detection method provides more repeatable fundamental and second harmonic amplitudes of the propagating Rayleigh waves. The obtained amplitudes are then used to calculate the relative nonlinearity parameter βre, the ratio of the second harmonic amplitude to the square of the fundamental amplitude. The experimental results clearly demonstrate that the nonlinearity parameter (βre) is highly sensitive to the microstructural changes in cement-based materials than the Rayleigh phase velocity and attenuation and that SRA has great potential to avoid shrinkage cracking in cement-based materials.

  11. Terahertz non-destructive imaging of cracks and cracking in structures of cement-based materials

    Science.gov (United States)

    Fan, Shujie; Li, Tongchun; Zhou, Jun; Liu, Xiaoqing; Liu, Xiaoming; Qi, Huijun; Mu, Zhiyong

    2017-11-01

    Cracks and crack propagation in cement-based materials are key factors leading to failure of structures, affecting safety in construction engineering. This work investigated the application of terahertz (THz) non-destructive imaging to inspections on structures of cement-based materials, so as to explore the potential of THz imaging in crack detection. Two kinds of disk specimens made of plain cement mortar and UHMWPE fiber concrete were prepared respectively. A mechanical expansion load device was deployed to generate cracks and control the whole process of cracking. Experimental tests were carried out on cracked specimens by using a commercial THz time domain spectroscopy (THz-TDS) during loading. The results show that crack opening and propagation could be examined by THz clearly and the material factors influence the ability of crack resistance significantly. It was found that the THz imaging of crack initiation and propagation agrees with the practical phenomenon and supplies more information about damage of samples. It is demonstrated that the damage behavior of structures of cement-based materials can be successfully detected by THz imaging.

  12. Nuevos conglomerantes complementarios del cemento portland

    OpenAIRE

    Argiz, Cristina; Menéndez, Esperanza; Moragues, Amparo; Sanjuan-Barbudo, Miguel

    2012-01-01

    El desarrollo de nuevos conglomerantes complementarios al cemento portland se presenta como una alternativa que permitirá reciclar residuos, entre otros posibles beneficios. Estos nuevos materiales difícilmente podrán competir con el cemento portland ya que sus aplicaciones son limitadas y su coste, en general, más elevado.

  13. Production and characterization of setting hydraulic cements based on calcium phosphate; Obtencao e caracterizacao de cimentos de fosfato de calcio de pega hidraulica

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luci C. de; Rigo, Eliana C.S.; Santos, Luis A dos; Boschi, Anselmo Ortega [Sao Carlos Univ., SP (Brazil). Dept. de Engenharia de Materiais; Carrodeguas, Raul G. [Universidad de La Habana, Habana (Cuba). Centro de Biomateriales

    1997-12-31

    Setting hydraulic cements based on calcium phosphate has risen great interest in scientific literature during recent years due to their total bio compatibility and to the fact that they harden `in situ`, providing easy handling and adaptation to the shape and dimensions of the defect which requires correction, differently from the predecessors, the calcium phosphate ceramics (Hydroxy apatite, {beta}-tri calcium phosphate, biphasic, etc) in the shape of dense or porous blocks and grains. In the work, three calcium-phosphate cement compositions were studied. The resulting compositions were characterized according to the following aspects: setting times, pH, mechanical resistance, crystalline phases, microstructure and solubility in SBF (Simulated Body Fluid). The results show a potential use for the compositions. (author) 6 figs., 4 tabs.

  14. The impact of zirconium oxide radiopacifier on the early hydration behaviour of white Portland cement.

    Science.gov (United States)

    Coleman, Nichola J; Li, Qiu

    2013-01-01

    Zirconium oxide has been identified as a candidate radiopacifying agent for use in Portland cement-based biomaterials. During this study, the impact of 20 wt.% zirconium oxide on the hydration and setting reactions of white Portland cement (WPC) was monitored by powder X-ray diffraction (XRD), (29)Si and (27)Al magic angle spinning nuclear magnetic resonance spectroscopy (MAS NMR), transmission electron microscopy (TEM) and Vicat apparatus. The presence of 20 wt.% zirconium oxide particles in the size-range of 0.2 to 5 μm was found to reduce the initial and final setting times of WPC from 172 to 147 min and 213 to 191 min, respectively. Zirconium oxide did not formally participate in the chemical reactions of the hydrating cement; however, the surface of the zirconium oxide particles presented heterogeneous nucleation sites for the precipitation and growth of the early C-S-H gel products which accelerated the initial setting reactions. The presence of zirconium oxide was found to have little impact on the development of the calcium (sulpho)aluminate hydrate phases. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Effect of blastfurnace slag addition to Portland cement for cationic exchange resins encapsulation

    Directory of Open Access Journals (Sweden)

    Stefan L.

    2013-07-01

    Full Text Available In the nuclear industry, cement-based materials are extensively used to encapsulate spent ion exchange resins (IERs before their final disposal in a repository. It is well known that the cement has to be carefully selected to prevent any deleterious expansion of the solidified waste form, but the reasons for this possible expansion are not clearly established. This work aims at filling the gap. The swelling pressure of IERs is first investigated as a function of ions exchange and ionic strength. It is shown that pressures of a few tenths of MPa can be produced by decreases in the ionic strength of the bulk solution, or by ion exchanges (2Na+ instead of Ca2+, Na+ instead of K+. Then, the chemical evolution of cationic resins initially in the Na+ form is characterized in CEM I (Portland cement and CEM III (Portland cement + blastfurnace slag cements at early age and an explanation is proposed for the better stability of CEM III material.

  16. Photocurable bioactive bone cement based on hydroxyethyl methacrylate-poly(acrylic/maleic) acid resin and mesoporous sol gel-derived bioactive glass

    Energy Technology Data Exchange (ETDEWEB)

    Hesaraki, S., E-mail: S-hesaraki@merc.ac.ir

    2016-06-01

    This paper reports on strong and bioactive bone cement based on ternary bioactive SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass particles and a photocurable resin comprising hydroxyethyl methacrylate (HEMA) and poly(acrylic/maleic) acid. The as-cured composite represented a compressive strength of about 95 MPa but it weakened during soaking in simulated body fluid, SBF, qua its compressive strength reached to about 20 MPa after immersing for 30 days. Biodegradability of the composite was confirmed by reducing its initial weight (~ 32%) as well as decreasing the molecular weight of early cured resin during the soaking procedure. The composite exhibited in vitro calcium phosphate precipitation in the form of nanosized carbonated hydroxyapatite, which indicates its bone bonding ability. Proliferation of calvarium-derived newborn rat osteoblasts seeded on top of the composite was observed during incubation at 37 °C, meanwhile, an adequate cell supporting ability was found. Consequently, it seems that the produced composite is an appropriate alternative for bone defect injuries, because of its good cell responses, high compressive strength and ongoing biodegradability, though more in vivo experiments are essential to confirm this assumption. - Highlights: • Light cure cement based on SiO{sub 2}-CaO-P{sub 2}O{sub 5} glass and polymer-like matrix was formed. • The matrix includes poly(acrylic/maleic acid) and poly(hydroxyethyl methacrylate). • The cement is as strong as polymethylmethacrylate bone cement. • The cement exhibits apatite formation ability in simulated body fluid. • The cement is biodegradable and supports proliferation of osteoblastic cells.

  17. Determination of the effective diffusion coefficient of water through cement-based materials when applying an electrical field

    International Nuclear Information System (INIS)

    Wattez, T.

    2013-01-01

    The safety and the reliability of a radioactive waste repository rely essentially on the confinement ability of the waste package and the storing structure. In the case of the low-level and intermediate level short-lived radioactive waste, the confinement property, relying on solid matrices made of cement-based materials, is assessed through a natural diffusion test, using a radioactive tracer, from which an effective diffusion coefficient is deduced. The evolution of the materials and more particularly the enhancement of the confinement properties of cement-based materials lead to test duration from a couple of months to a couple of years. The main objective of the present work involves the determination of the effective diffusion coefficient of reference chemical species, in our case the tritiated water, within a shorter time. The theoretical foundation is based on the description of ionic species mass transfer under the effects of an electrical field. With the definitions of a precise experimental protocol and of a formation factor, considered as an intrinsic topological feature of the porous network, it is possible to determine the effective diffusion coefficient of tritiated water for various types of concretes and mortars, and this within a few hours only. The comparison between the developed accelerated test, based on the application of a constant electrical field, and the normed natural diffusion test, using tritiated water, underlined two critical issues. First, omitting the impact of the radioactive decay of tritium during a natural diffusion test, leads to a non-negligible underestimation of the effective diffusion coefficient. Second, maintaining samples in high relative humidity conditions after casting is essential in order to avoid contrasted and unrelated results when performing the electrokinetic tests. Eventually, the validation of the electrokinetics technique, main objective of this work, rests on the assessment of the theoretical hypothesis

  18. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  19. Root perforations treatment using mineral trioxide aggregate and Portland cements.

    Science.gov (United States)

    Silva Neto, José Dias da; Brito, Rafael Horácio de; Schnaider, Taylor Brandão; Gragnani, Alfredo; Engelman, Mírian; Ferreira, Lydia Masako

    2010-12-01

    Clinical, radiological and histological evaluation of root perforations treated with mineral trioxide aggregate (MTA) or Portland cements, and calcium sulfate barrier. One molar and 11 premolar teeth of a male mongrel dog received endodontic treatment and furcations were perforated with a high-speed round bur and treated with a calcium sulfate barrier. MTA, Portland cement type II (PCII) and type V (PCV), and white Portland cement (WPC) were used as obturation materials. The teeth were restored with composite resin and periapical radiographs were taken. The animal was euthanized 120 days post-surgery for treatment evaluation. Right lower first premolar (MTA), right lower third premolar (PCV), left lower second premolar (MTA), and right lower second premolar (WPC): clinically normal, slightly radio-transparent area on the furcation, little inflammatory infiltrate, and new-bone formation. Left lower third premolar (PCII), right upper first premolar (WPC), right upper third premolar (PCII), and left upper first molar (PCV): clinically normal, radiopaque area on the furcation, and new-bone formation. Right upper second premolar (MTA), left upper second premolar (WPC), left upper third premolar (PCII): presence of furcation lesion, large radiolucent area, and intense inflammatory infiltrate. All obturation materials used in this study induced new-bone formation.

  20. Energy costs and Portland water supply system

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, W.M.; Hawley, R.P.

    1981-10-01

    The changing role of electrical energy on the Portland, Oregon, municipal-water-supply system is presented. Portland's actions in energy conservation include improved operating procedures, pump modifications, and modifications to the water system to eliminate pumping. Portland is implementing a small hydroelectric project at existing water-supply dams to produce an additional source of power for the area. Special precautions in construction and operation are necessary to protect the high quality of the water supply. 2 references, 7 figures.

  1. Electrical conductivity and transport properties of cement-based materials measured by impedance spectroscopy

    Science.gov (United States)

    Shane, John David

    The use of Impedance Spectroscopy (IS) as a tool to evaluate the electrical and transport properties of cement-based materials was critically evaluated. Emphasis was placed on determining the efficacy of IS by applying it as a tool to investigate several families of cement-based materials. Also, the functional aspects of electroding and null corrections were also addressed. The technique was found to be advantageous for these analyses, especially as a non-destructive, in-situ, rapid test. Moreover, key insights were gained into several cement-based systems (e.g., cement mortars and oil-well grouts) as well as the effect that certain testing techniques can have on materials (e.g., the rapid chloride permeability test). However, some limitations of IS were identified. For instance, improper electroding of samples can lead to erroneous results and incorrect interpretations for both two-point and multi-point measurements. This is an area of great importance, but it has received very little attention in the literature. Although the analysis of cement/electrode techniques is in its infancy, much progress was made in gaining a full understand of how to properly and reliably connect electrodes to cement-based materials. Through the application of IS to materials such as oil-well grouts, cement mortars and concretes, a great deal of valuable information about the effectiveness of IS has been gained. Oil-well cementing is somewhat limited by the inability to make measurements in the well-bore. By applying IS to oil-well grouts in a laboratory environment, it was demonstrated that IS is a viable technique with which to test the electrical and transport properties of these materials in-situ. Also, IS was shown to have the ability to measure the electrical conductivity of cement mortars with such accuracy, that very subtle changes in properties can be monitored and quantified. Through the use of IS and theoretical models, the complex interplay between the interfacial transition

  2. Incinerated sewage sludge ash as alternative binder in cement-based materials

    DEFF Research Database (Denmark)

    Krejcirikova, Barbora; Goltermann, Per; Hodicky, Kamil

    2013-01-01

    Sewage sludge ash is characterized by its pozzolanic properties, as cement is. This predetermines its use in a substitution of cement and cementitious materials. Utilization of sewage sludge ash does not only decrease the consumption of cement, one of the largest cause of CO2 emissions, but also...... it can minimize the need of ash landfill disposal. The objective of this study is to show potential use of incinerated sewage sludge ash (ISSA), an industrial byproduct, as possible binder in cement-based materials. Chemical and mechanical characteristics are presented and compared with results obtained...

  3. An ongoing investigation on modeling the strength properties of water-entrained cement-based materials

    DEFF Research Database (Denmark)

    Esteves, L.P.

    2012-01-01

    Water-entrained cement based materials by superabsorbent polymers is a concept that was introduced in the research agenda about a decade ago. However, a recent application in the production of high performance concrete revealed potential weaknesses when the proportioning of this intelligent......-based materials. Beyond the discussion of whether or not the introduction of superabsorbent polymers leads to a strength reduction, this paper uses both experimental and theoretical background to separate the effect of SAP in both pore structure and internal relative humidity and the effect from the active...

  4. Effect of Processing Parameters on 3D Printing of Cement - based Materials

    Science.gov (United States)

    Lin, Jia Chao; Wang, Jun; Wu, Xiong; Yang, Wen; Zhao, Ri Xu; Bao, Ming

    2018-06-01

    3D printing is a new study direction of building method in recent years. The applicability of 3D printing equipment and cement based materials is analyzed, and the influence of 3D printing operation parameters on the printing effect is explored in this paper. Results showed that the appropriate range of 3D printing operation parameters: print height/nozzle diameter is between 0.4 to 0.6, the printing speed 4-8 cm/s with pumpage 9 * 10-2 m 3/ h.

  5. Research on cement-based grouts for the OECD/NEA international Stripa project

    International Nuclear Information System (INIS)

    Onofrei, M.

    1994-01-01

    This paper deals with the work that has been carried out on cement-based by AECL research in Canada. The results indicate that it is possible to manufacture low water content high-performance cement-grouts, the performance of which would be acceptable for at least thousands of years and probably for much longer periods. Moreover, these grouts were shown to have negligible hydraulic conductivity, associated with very low porosity and to be highly leach resistant in repository conditions. (TEC). 18 refs., 1 tab., 6 figs

  6. In situ grouting of low-level burial trenches with a cement-based grout

    International Nuclear Information System (INIS)

    Francis, C.W.; Spalding, B.P.

    1991-01-01

    A restoration technology being evaluated for use in the closure of one of the low-level radwaste burial grounds at Oak Ridge National Laboratory (ORNL) is trench stabilization using a cement-based grout. To demonstrate the applicability and effectiveness of this technology, two interconnecting trenches in Solid Waste Storage Area 6 (SWSA 6) were selected as candidates for in situ grouting with a particulate grout. The primary objective was to demonstrate the increased trench stability and decreased potential for leachate migration following in situ injection of a particulate grout into the waste trenches. Stability against trench subsidence is a critical issue. 7 refs., 3 figs., 5 tabs

  7. Perbandingan Sifat Fisik Beton Yang Menggunakan Semen Portland Pozzolan Dan Semen Portland Tipe I

    OpenAIRE

    Yusnita, Heni

    2011-01-01

    The research about concrete by using the Portland pozzolan cement and Portland cement type I has been done with the variation of submersion time is 7, 14, 21, and 28 days. The test is done for physics of the concrete. The sample is made from the ingredients 1 cement : 2 sand : 3 pebble. The result of the researching shows that the used of the Portland pozzolan cement can raise the impact of the concrete as much as 9,15% from concrete which uses the Portland cement type I. Orther side for the ...

  8. The AFm phase in Portland cement

    International Nuclear Information System (INIS)

    Matschei, T.; Lothenbach, B.; Glasser, F.P.

    2007-01-01

    The AFm phase of Portland cements refers to a family of hydrated calcium aluminates based on the hydrocalumite-like structure of 4CaO.Al 2 O 3 .13-19 H 2 O. However OH - may be replaced by SO 4 2- and CO 3 2- . Except for limited replacement (50 mol%, maximum) of sulfate by hydroxide, these compositions do not form solid solutions and, from the mineralogical standpoint, behave as separate phases. Therefore many hydrated cements will contain mixtures of AFm phases. AFm phases have been made from precursors and experimentally-determined phase relationships are depicted at 25 deg. C. Solubility data are reported and thermodynamic data are derived. The 25 deg. C stability of AFm phases is much affected by the nature of the anion: carbonate stabilises AFm and displaces OH and SO 4 at species activities commonly encountered in cement systems. However in the presence of portlandite, and as carbonate displaces sulfate in AFm, the reaction results in changes in the amount of both portlandite and ettringite: specimen calculations are presented to quantify these changes. The scheme of phase balances enables calculation of the mineralogical balances of a hydrated cement paste with greater accuracy than hitherto practicable

  9. Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure

    International Nuclear Information System (INIS)

    Lin Feng; Meyer, Christian

    2009-01-01

    A hydration kinetics model for Portland cement is formulated based on thermodynamics of multiphase porous media. The mechanism of cement hydration is discussed based on literature review. The model is then developed considering the effects of chemical composition and fineness of cement, water-cement ratio, curing temperature and applied pressure. The ultimate degree of hydration of Portland cement is also analyzed and a corresponding formula is established. The model is calibrated against the experimental data for eight different Portland cements. Simple relations between the model parameters and cement composition are obtained and used to predict hydration kinetics. The model is used to reproduce experimental results on hydration kinetics, adiabatic temperature rise, and chemical shrinkage of different cement pastes. The comparisons between the model reproductions and the different experimental results demonstrate the applicability of the proposed model, especially for cement hydration at elevated temperature and high pressure.

  10. Gravity Data for the Greater Portland Area

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The gravity station data (1,522 records) were compiled by the Portland State University. This data base was received in August 1990. Principal gravity parameters...

  11. Basalt waste added to Portland cement

    Directory of Open Access Journals (Sweden)

    Thiago Melanda Mendes

    2016-08-01

    Full Text Available Portland cement is widely used as a building material and more than 4.3 billion tons were produced in 2014, with increasing environmental impacts by this industry, mainly through CO2 emissions and consumption of non-removable raw materials. Several by-products have been used as raw materials or fuels to reduce environmental impacts. Basaltic waste collected by filters was employed as a mineral mixture to Portland cement and two fractions were tested. The compression strength of mortars was measured after 7 days and Scanning Electron Microscopy (SEM and Electron Diffraction Scattering (EDS were carried out on Portland cement paste with the basaltic residue. Gains in compression strength were observed for mixtures containing 2.5 wt.% of basaltic residue. Hydration products observed on surface of basaltic particles show the nucleation effect of mineral mixtures. Clinker substitution by mineral mixtures reduces CO2 emission per ton of Portland cement.

  12. Lift : Special Needs Transportation in Portland, Oregon

    Science.gov (United States)

    1978-01-01

    The report covers Portland, Oregon's Special Needs Transportation (SNT) project - the Lift - during its first year of operation. The purposes of this UMTA Service and Methods Demonstration (SMD) is to: (1) test a transit operator's ability to provide...

  13. Recycled materials in Portland cement concrete

    Science.gov (United States)

    2000-06-01

    This report pertains to a comprehensive study involving the use of recycled materials in Portland cement concrete. Three different materials were studied including crushed glass (CG), street sweepings (SS), and recycled concrete (RC). Blast furnace s...

  14. 2015 City of Portland, Maine, Lidar

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — 2015 City of Portland Maine Lidar Data Acquisition and Processing Woolpert Order No. 75564 Contractor: Woolpert, Inc. This task is for a high resolution data set of...

  15. A sorption model for alkalis in cement-based materials - Correlations with solubility and electrokinetic properties

    Science.gov (United States)

    Henocq, Pierre

    2017-06-01

    In cement-based materials, radionuclide uptake is mainly controlled by calcium silicate hydrates (C-S-H). This work presents an approach for defining a unique set of parameters of a surface complexation model describing the sorption behavior of alkali ions on the C-S-H surface. Alkali sorption processes are modeled using the CD-MUSIC function integrated in the Phreeqc V.3.0.6 geochemical code. Parameterization of the model was performed based on (1) retention, (2) zeta potential, and (3) solubility experimental data from the literature. This paper shows an application of this model to sodium ions. It was shown that retention, i.e. surface interactions, and solubility are closely related, and a consistent sorption model for radionuclides in cement-based materials requires a coupled surface interaction/chemical equilibrium model. In case of C-S-H with low calcium-to-silicon ratios, sorption of sodium ions on the C-S-H surface strongly influences the chemical equilibrium of the C-S-H + NaCl system by significantly increasing the aqueous calcium concentration. The close relationship between sorption and chemical equilibrium was successfully illustrated by modeling the effect of the solid-to-liquid ratio on the calcium content in solution in the case of C-S-H + NaCl systems.

  16. Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor

    Science.gov (United States)

    Tawie, R.; Lee, H. K.

    2011-08-01

    This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials.

  17. Characterization of cement-based materials using a reusable piezoelectric impedance-based sensor

    International Nuclear Information System (INIS)

    Tawie, R; Lee, H K

    2011-01-01

    This paper proposes a reusable sensor, which employs a piezoceramic (PZT) plate as an active sensing transducer, for non-destructive monitoring of cement-based materials based on the electromechanical impedance (EMI) sensing technique. The advantage of the sensor design is that the PZT can be easily removed from the set-up and re-used for repetitive tests. The applicability of the sensor was demonstrated for monitoring of the setting of cement mortar. EMI measurements were performed using an impedance analyzer and the transformation of the specimen from the plastic to solid state was monitored by automatically measuring the changes in the PZT conductance spectra with respect to curing time using the root mean square deviation (RMSD) algorithm. In another experiment, drying-induced moisture loss of a hardened mortar specimen at saturated surface dry (SSD) condition was measured, and monitored using the reusable sensor to establish a correlation between the RMSD values and moisture loss rate. The reusable sensor was also demonstrated for detecting progressive damages imparted on a mortar specimen attached with the sensor under several loading levels before allowing it to load to failure. Overall, the reusable sensor is an effective and efficient monitoring device that could possibly be used for field application in characterization of cement-based materials

  18. High-performance cement-based grouts for use in a nuclear waste disposal facility

    International Nuclear Information System (INIS)

    Onofrei, M.; Gray, M.N.

    1992-12-01

    National and international agencies have identified cement-based materials as prime candidates for sealing vaults that would isolate nuclear fuel wastes from the biosphere. Insufficient information is currently available to allow a reasonable analysis of the long-term performance of these sealing materials in a vault. A combined laboratory and modelling research program was undertaken to provide the necessary information for a specially developed high-performance cement grout. The results indicate that acceptable performance is likely for at least thousands of years and probably for much longer periods. The materials, which have been proven to be effective in field applications, are shown to be virtually impermeable and highly leach resistant under vault conditions. Special plasticizing additives used in the material formulation enhance the physical characteristics of the grout without detriment to its chemical durability. Neither modelling nor laboratory testing have yet provided a definitive assessment of the grout's longevity. However, none of the results of these studies has contraindicated the use of high-performance cement-based grouts in vault sealing applications. (Author) (24 figs., 6 tabs., 21 refs.)

  19. Combined Use of Shrinkage Reducing Admixture and CaO in Cement Based Materials

    Science.gov (United States)

    Tittarelli, Francesca; Giosuè, Chiara; Monosi, Saveria

    2017-10-01

    The combined addition of a Shrinkage-Reducing Admixture (SRA) with a CaO-based expansive agent (CaO) has been found to have a synergistic effect to improve the dimensional stability of cement based materials. In this work, aimed to further investigate the effect, mortar and self-compacting concrete specimens were prepared either without admixtures, as reference, or with SRA alone and/or CaO. Their performance was compared in terms of compressive strength and free shrinkage measurements. Results showed that the synergistic effect in reducing shrinkage is confirmed in the specimens manufactured with SRA and CaO. In order to clarify this phenomenon, the effect of SRA on the hydration of CaO as well as cement was evaluated through different techniques. The obtained results show that SRA induces a finer microstructure of the CaO hydration products and a retarding effect on the microstructure development of cement based materials. A more deformable mortar or concrete, due to the delay in microstructure development by SRA, coupled with a finer microstructure of CaO hydration products could allow higher early expansion, which might contribute in contrasting better the successive drying shrinkage.

  20. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall.

    Science.gov (United States)

    Huang, Shiping; Hu, Mengyu; Huang, Yonghui; Cui, Nannan; Wang, Weifeng

    2018-04-17

    The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.

  1. A New Model for Optimal Mechanical and Thermal Performance of Cement-Based Partition Wall

    Directory of Open Access Journals (Sweden)

    Shiping Huang

    2018-04-01

    Full Text Available The prefabricated cement-based partition wall has been widely used in assembled buildings because of its high manufacturing efficiency, high-quality surface, and simple and convenient construction process. In this paper, a general porous partition wall that is made from cement-based materials was proposed to meet the optimal mechanical and thermal performance during transportation, construction and its service life. The porosity of the proposed partition wall is formed by elliptic-cylinder-type cavities. The finite element method was used to investigate the mechanical and thermal behaviour, which shows that the proposed model has distinct advantages over the current partition wall that is used in the building industry. It is found that, by controlling the eccentricity of the elliptic-cylinder cavities, the proposed wall stiffness can be adjusted to respond to the imposed loads and to improve the thermal performance, which can be used for the optimum design. Finally, design guidance is provided to obtain the optimal mechanical and thermal performance. The proposed model could be used as a promising candidate for partition wall in the building industry.

  2. Durability of cement-based materials: modeling of the influence of physical and chemical equilibria on the microstructure and the residual mechanical properties

    International Nuclear Information System (INIS)

    Guillon, E.

    2004-09-01

    A large part of mechanical and durability characteristics of cement-based materials comes from the performances of the hydrated cement, cohesive matrix surrounding the granular skeleton. Experimental studies, in situ or in laboratory, associated to models, have notably enhanced knowledge on the cement material and led to adapted formulations to specific applications or particularly aggressive environments. Nevertheless, these models, developed for precise cases, do not permit to specifically conclude for other experimental conclusions. To extend its applicability domain, we propose a new evolutive approach, based on reactive transport expressed at the microstructure scale of the cement. In a general point of view, the evolution of the solid compounds of the cement matrix, by dissolutions or precipitations, during chemical aggressions can be related to the pore solution evolution, and this one relied to the ionic exchanges with the external environment. By the utilization of a geochemical code associated to a thermodynamical database and coupled to a 3D transport model, this approach authorizes the study of all aggressive solution. The approach has been validated by the comparison of experimental observations to simulated degradations for three different environments (pure water, mineralized water, seawater) and on three different materials (CEM I Portland cement with 0.25, 0.4 and 0.5 water-to cement ratio). The microstructural approach permits also to have access to mechanical properties evolutions. During chemical aggressions, the cement matrix evolution is traduced in a microstructure evolution. This one is represented from 3D images similarly to the models developed at NIST (National Institute of Standards and Technology). A new finite-element model, validated on previous tests or models, evaluates the stiffness of the cement paste, using as a mesh these microstructures. Our approach identifies and quantifies the major influence of porosity and its spatial

  3. Longevity of borehole and shaft sealing materials: characterization of cement-based ancient building materials

    International Nuclear Information System (INIS)

    Roy, D.M.; Langton, C.A.

    1982-09-01

    Durability and long-term stability of cements, mortars, and/or concretes utilized as borehole plugging and shaft sealing materials are of present concern in the national effort to isolate and contain nuclear waste within deep geological repositories. The present study consists of a preliminary examination of selected ancient, old, and modern building materials (14 specimens) and was intended to document and explain the remarkable durability of these portland cement-related materials. This study has provided insights into reasons for the durability of certain structures and also into the long-term stability of calcium silicate binders (cements) used in archaeologic materials. These data were combined with knowledge obtained from the behavior of modern portland cements and natural materials to evaluate the potential for longevity of such materials in a borehole environment. A multimethod analysis was used and included: macroscopic and microscopic (petrographic and SEM) analyses, chemical analyses, and x-ray diffraction analyses. 61 figures, 11 tables

  4. Utilization of Iron Ore Tailings as Raw Material for Portland Cement Clinker Production

    Directory of Open Access Journals (Sweden)

    Li Luo

    2016-01-01

    Full Text Available The cement industry has for some time been seeking alternative raw material for the Portland cement clinker production. The aim of this research was to investigate the possibility of utilizing iron ore tailings (IOT to replace clay as alumina-silicate raw material for the production of Portland cement clinker. For this purpose, two kinds of clinkers were prepared: one was prepared by IOT; the other was prepared by clay as a reference. The reactivity and burnability of raw meal, mineralogical composition and physical properties of clinker, and hydration characteristic of cement were studied by burnability analysis, differential thermal analysis, X-ray diffraction, and hydration analysis. The results showed that the raw meal containing IOT had higher reactivity and burnability than the raw meal containing clay, and the use of IOT did not affect the formation of characteristic mineralogical phases of Portland cement clinker. Furthermore, the physical and mechanical performance of two cement clinkers were similar. In addition, the use of IOT was found to improve the grindability of clinker and lower the hydration heat of Portland cement. These findings suggest that IOT can replace the clay as alumina-silicate raw material for the preparation of Portland cement clinker.

  5. Deflection hardening behaviour of short fibre reinforced fly ash based geopolymer composites

    International Nuclear Information System (INIS)

    Shaikh, F.U.A.

    2013-01-01

    Highlights: • Deflection hardening behaviour is achieved in the DFRGC similar to that observed in DFRCC. • The first crack load or in other word the limit of proportionality (LOP) of DFRGC is similar to that of DFRCC. • The DFRGC also exhibited higher deflection at peak load than DFRCC. • The toughness at peak load of DFRGC is also high than that of DFRCC. • The ductility of DFRGC is also higher than that of DFRCC. - Abstract: This paper reports the newly developed ductile fibre reinforced geopolymer composite (DFRGC) exhibiting deflection hardening and multiple cracking behaviour. The binder of the above composite is different from that used in conventional cement based system. The class F fly ash is used instead of Portland cement in DFRGC and is activated by alkaline liquids (sodium hydroxide and sodium silicate). In this study, two types of fibres namely steel (ST) and polyvinyl alcohol (PVA) fibres are used in mono as well as in ST–PVA hybrid form, with a total volume fraction of 2%. The deflection hardening behaviour of newly developed DFRGC is also compared with that of conventional ductile fibre reinforced cementitious composites (DFRCC). The effects of two different sizes of sand (1.18 mm, and 0.6 mm) and sand/binder ratios of 0.5 and 0.75 on the deflection hardening and multiple cracking behaviour of both DFRGC and DFRCC are also evaluated. Results revel that the deflection hardening and multiple cracking behaviour is achieved in geopolymer based DFRGC similar to that of cement based system. For a given sand size and sand content, comparable deflection hardening behaviour, ultimate flexural strength and the deflection at peak load are observed in both cement and geopolymer based composites irrespective of fibre types and combination. The deflection hardening behaviour of DFRGC is also confirmed by the calculated toughness index values of I 20 > 20. The scanning electron microscope (SEM) study shows no degradation of PVA and steel fibres in the

  6. Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Matschei, Thomas; Moeschner, Goeril; Glasser, Fred P.

    2008-01-01

    The composition of the phase assemblage and the pore solution of Portland cements hydrated between 0 and 60 deg. C were modelled as a function of time and temperature. The results of thermodynamic modelling showed a good agreement with the experimental data gained at 5, 20, and 50 deg. C. At 5 and at 20 deg. C, a similar phase assemblage was calculated to be present, while at approximately 50 deg. C, thermodynamic calculations predicted the conversion of ettringite and monocarbonate to monosulphate. Modelling showed that in Portland cements which have an Al 2 O 3 /SO 3 ratio of > 1.3 (bulk weight), above 50 deg. C monosulphate and monocarbonate are present. In Portland cements which contain less Al (Al 2 O 3 /SO 3 < 1.3), above 50 deg. C monosulphate and small amounts of ettringite are expected to persist. A good correlation between calculated porosity and measured compressive strength was observed

  7. A Coupled Transport and Chemical Model for Durability Predictions of Cement Based Materials

    DEFF Research Database (Denmark)

    Jensen, Mads Mønster; Johannesson, Björn; Geiker, Mette Rica

    The use of multi-physics numerical models to estimate different durability indicators and determine the service life of cement based materials is increasing. Service life documentation for concrete used in new infrastructure structures is required and the service life requirement....... The differential equations includes exchange terms between the phases and species accounting for the exchange of physical quantities which are essential for a stringent physical description of concrete. Balance postulates for, mass, momentum and energy, together with an entropy inequality are studied within...... mixture theories. Special attention is paid to the criteria for the exchange terms in the studied balance postulates. A simple case of mixture theory is used to demonstrate how constitutive assumptions are used to obtain the governing equations for a specific model. The governing equation system used...

  8. Mechanical damage of a cement-based matrix subjected to a bio leaching test

    International Nuclear Information System (INIS)

    Lajili, H.; Grambin-Lapeyre, C.; Lajili, H.; Devillers, Ph.; Lajili, H.; Degorce-Dumas, J.R.; Roussy, J.; Bournazel, J.P.

    2007-01-01

    Waste packages are often embedded in concrete containers and placed in storage sites. Cement-based materials due to their favourable physical properties, are commonly used for the solidification and stabilisation of these wastes. Waste repositories can be situated in geological formations where microorganisms capable of degrading cement matrices are present. In such situations, the stability of concrete used in underground repositories for immobilization of nuclear waste may be impaired by Inter alia filamentous fungi. Fungal growth on cement matrices leads to physicochemical and mechanical degradations which considerably affects their durability, thus bio-leaching scenario must be seriously considered. This paper outlines the detrimental impact of Aspergillus niger fungus on the integrity of cement paste and describes the associated mechanisms of biodegradation. (authors)

  9. Effect of brief heat-curing on microstructure and mechanical properties in fresh cement based mortars

    International Nuclear Information System (INIS)

    Ballester, P.; Hidalgo, A.; Marmol, I.; Morales, J.; Sanchez, L.

    2009-01-01

    The effect of temperature on fresh mortar and cement paste was evaluated by simulating the curing conditions of external buildings plastering applied under extremely hot weather. The specimens were heated at controlled temperatures in the 40-80 o C range by exposure to IR radiation over short periods. The effect of soaking for a short time was also examined. The results of compressive strength tests, scanning electron microscopy, infrared spectroscopy and mercury porosimetry helped to characterize the mechanical and physico-chemical properties of the studied sample. Early age behaviour (28 days) in neat cement was barely affected by the temperature. By contrast, exposure to high temperatures caused significant microstructural changes in the mortar. However, successive soaking over short periods was found to reactivate the mechanism of curing and restore the expected mechanical properties. Based on the results, application of cement based mortar at high temperatures is effective when followed by a short, specific soaking process.

  10. FRCM and FRP composites for the repair of damaged PC girders.

    Science.gov (United States)

    2015-01-01

    Fabric-reinforced-cementitious-matrix (FRCM) and fiber-reinforced polymer (FRP) composites have : emerged as novel strengthening technologies. FRCM is a composite material consisting of a sequence of : one or more layers of cement-based matrix reinfo...

  11. Influence of agglomeration of a recycled cement additive on the hydration and microstructure development of cement based materials

    NARCIS (Netherlands)

    Yu, R.; Shui, Z.H.

    2013-01-01

    This paper presents a study, including experimental and mechanism analysis, on investigating the effect of agglomeration of a recycled cement additive on the hydration and microstructure development of cement based materials. The recycled additive is firstly produced form waste hardened cement paste

  12. Influence of frost damage and sample preconditioning on the porosity characterization of cement based materials using low temperature calorimetry

    DEFF Research Database (Denmark)

    Wu, Min; Fridh, Katja; Johannesson, Björn

    2015-01-01

    Low temperature calorimetry (LTC) can be used to study the meso-porosity of cement based materials. The influence of frost damage on the meso-porosity determination by LTC was explored on a model material MCM-41 and two cement pastes by conducting repeated cycles of freezing and melting measureme...

  13. Early hydration of portland cement with crystalline mineral additions

    International Nuclear Information System (INIS)

    Rahhal, V.; Talero, R.

    2005-01-01

    This research presents the effects of finely divided crystalline mineral additions (quartz and limestone), commonly known as filler, on the early hydration of portland cements with very different mineralogical composition. The used techniques to study the early hydration of blended cements were conduction calorimeter, hydraulicity (Fratini's test), non-evaporable water and X-ray diffraction. Results showed that the stimulation and the dilution effects increase when the percentage of crystalline mineral additions used is increased. Depending on the replacement proportion, the mineralogical cement composition and the type of crystalline addition, at 2 days, the prevalence of the dilution effect or the stimulation effect shows that crystalline mineral additions could act as sites of heat dissipation or heat stimulation, respectively

  14. Hydration of Portland cement with additions of calcium sulfoaluminates

    International Nuclear Information System (INIS)

    Le Saoût, Gwenn; Lothenbach, Barbara; Hori, Akihiro; Higuchi, Takayuki; Winnefeld, Frank

    2013-01-01

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C–S–H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA–OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  15. Longevity of borehole and shaft sealing materials: characterization of ancient cement based building materials

    International Nuclear Information System (INIS)

    Langton, C.A.; Roy, D.M.

    1983-01-01

    Durability and long-term stability of cements in plasters, mortars, and/or concretes utilized as borehole plugging and shaft sealing materials are of present concern in the national effort to isolate nuclear waste within deep geological repositories. The present study consists of an examination of selected ancient building materials and provides insights into the durability of certain ancient structures. These data were combined with knowledge obtained from the behavior of modern portland cements and natural materials to evaluate the potential for longevity of such materials in a borehold environment. Analyses were conducted by petrographic, SEM, chemical, and x-ray diffraction techniques. 7 references, 5 figures, 2 tables

  16. Waste-form development for conversion to portland cement at Los Alamos National Laboratory (LANL) Technical Area 55 (TA-55)

    International Nuclear Information System (INIS)

    Veazey, G.W.; Schake, A.R.; Shalek, P.D.; Romero, D.A.; Smith, C.A.

    1996-10-01

    The process used at TA-55 to cement transuranic (TRU) waste has experienced several problems with the gypsum-based cement currently being used. Specifically, the waste form could not reliably pass the Waste Isolation Pilot Plant (WIPP) prohibition for free liquid and the Environmental Protection Agency (EPA)-Toxicity Characteristic Leaching Procedure (TCLP) standard for chromium. This report describes the project to develop a portland cement-based waste form that ensures compliance to these standards, as well as other performance standards consisting of homogeneous mixing, moderate hydration temperature, timely initial set, and structural durability. Testing was conducted using the two most common waste streams requiring cementation as of February 1994, lean residue (LR)- and oxalate filtrate (OX)-based evaporator bottoms (EV). A formulation with a pH of 10.3 to 12.1 and a minimum cement-to-liquid (C/L) ratio of 0.80 kg/l for OX-based EV and 0.94 kg/L for LR-based EV was found to pass the performance standards chosen for this project. The implementation of the portland process should result in a yearly cost savings for raw materials of approximately $27,000 over the gypsum process

  17. Portland cement concrete air content study.

    Science.gov (United States)

    1987-04-20

    This study took the analysis of Portland cement concrete air content. Based on the information gathered, this study hold the results were : 1) air-entrained concrete was more durable than non-air entrained concrete all other factors being equal; 2) A...

  18. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos

    2010-01-01

    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  19. Effect of three natural pozzolans in portland cement hydration

    Directory of Open Access Journals (Sweden)

    Rahhal, V.

    2003-03-01

    Full Text Available Natural pozzolans have been used since ancient times and continues to be used today. The chemistry and morphological composition of natural pozzolans and their particle size distribution allows classifying them as more or less reactive pozzolan. In this research several techniques have been used to study the influence of pozzolan on portland cement hydration as much as to evaluate the mechanical and durable properties of concretes, mortars and pastes containing pozzolans. This paper describes the effect of incorporating three natural pozzolans to two cements with very different mineralogical composition. The techniques used were: conduction calorimetry and Fratini test. Results proved that pozzolanic activity and the acceleration and retardation of hydration reaction depend on the mineralogical composition of the portland cernent used. Effects of dilution, stimulation, acceleration or retardation reactions, behavior into areas of heat dissipation and pozzolanic activity depend on the percentage of pozzolan used and the age in which it has been analyzed.

    El uso de las puzolanas naturales se remonta a la antigüedad, no obstante, actualmente continúa su utilización. La composición química y morfológica de las puzolanas naturales, sumado al tamaño de sus partículas, las califican como más o menos reactivas. En el estudio de las mismas, se han aplicado variadas técnicas para el análisis de sus interferencias en las reacciones de hidratación de los cementos portland; así como para la evaluación de las propiedades resistentes y duraderas que pueden conferirle a los hormigones, morteros o pastas de los que formen parte. Este trabajo versará sobre los efectos que produce la incorporación de tres puzolanas naturales a dos cementos portland de muy diferente composición mineralógica. Las técnicas aplicadas para su estudio han sido: la calorimetría de conducción y el ensayo de Fratini. Los resultados obtenidos permiten determinar

  20. Influence of limestone on the hydration of Portland cements

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Le Saout, Gwenn; Gallucci, Emmanuel; Scrivener, Karen

    2008-01-01

    The influence of the presence of limestone on the hydration of Portland cement was investigated. Blending of Portland cement with limestone was found to influence the hydrate assemblage of the hydrated cement. Thermodynamic calculations as well as experimental observations indicated that in the presence of limestone, monocarbonate instead of monosulfate was stable. Thermodynamic modelling showed that the stabilisation of monocarbonate in the presence of limestone indirectly stabilised ettringite leading to a corresponding increase of the total volume of the hydrate phase and a decrease of porosity. The measured difference in porosity between the 'limestone-free' cement, which contained less than 0.3% CO 2 , and a cement containing 4% limestone, however, was much smaller than calculated. Coupling of thermodynamic modelling with a set of kinetic equations which described the dissolution of the clinker, predicted quantitatively the amount of hydrates. The quantities of ettringite, portlandite and amorphous phase as determined by TGA and XRD agreed well with the calculated amounts of these phases after different periods of time. The findings in this paper show that changes in the bulk composition of hydrating cements can be followed by coupled thermodynamic models. Comparison between experimental and modelled data helps to understand in more detail the dominating processes during cement hydration

  1. Modeling of multi-species ion transport in cement-based materials for radioactive waste container

    International Nuclear Information System (INIS)

    Pang, X.Y.; Li, K.F.; Dangla, P.

    2015-01-01

    Through the conservations of heat and ions mass, a thermo-hydro-ionic model is established for radionuclide ions transport in cement-based porous barrier materials in radwaste disposal. This model is applied to the design and the safety assessment of a high-integrity container (HIC) used for near surface disposal of low- and intermediate-level radwaste. Five working cases are investigated in the safety assessment considering the internal nuclide ion release, internal heating and pressure accumulation, and external leaching. Comparative analysis shows that leaching increases concrete porosity from external side of container, internal heating of 10 K increase can considerably accelerate the nuclide transport process, and the internal pressure increases the transport rate to limited extent. It is shown that each increment of 10 mm in wall thickness will reduce the radioactivity release by 1.5 to 2 times. Together with the mechanical resistance of HIC under impact actions, the thickness of 100 mm is finally retained for design

  2. The Effect of Water Repellent Surface Impregnation on Durability of Cement-Based Materials

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2017-01-01

    Full Text Available In many cases, service life of reinforced concrete structures is severely limited by chloride penetration until the steel reinforcement or by carbonation of the covercrete. Water repellent treatment on the surfaces of cement-based materials has often been considered to protect concrete from these deteriorations. In this paper, three types of water repellent agents have been applied on the surface of concrete specimens. Penetration profiles of silicon resin in treated concrete have been determined by FT-IR spectroscopy. Water capillary suction, chloride penetration, carbonation, and reinforcement corrosion in both surface impregnated and untreated specimens have been measured. Results indicate that surface impregnation reduced the coefficient of capillary suction of concrete substantially. An efficient chloride barrier can be established by deep impregnation. Water repellent surface impregnation by silanes also can make the process of carbonation action slow. In addition, it also has been concluded that surface impregnation can provide effective corrosion protection to reinforcing steel in concrete with migrating chloride. The improvement of durability and extension of service life for reinforced concrete structures, therefore, can be expected through the applications of appropriate water repellent surface impregnation.

  3. Study on Strength and Microstructure of Cement-Based Materials Containing Combination Mineral Admixtures

    Directory of Open Access Journals (Sweden)

    Meijuan Rao

    2016-01-01

    Full Text Available The compressive strength of complex binders containing two or three blended mineral admixtures in terms of glass powder (GP, limestone powder (LP, and steel slag powder (SP was determined by a battery solution type compressive testing machine. The morphology and microstructure characteristics of complex binder hydration products were also studied by microscopic analysis methods, such as XRD, TG-DTA, and SEM. The mechanical properties of the cement-based materials were analyzed to reveal the most appropriate mineral admixture type and content. The early sample strength development with GP was very slow, but it rapidly grew at later stages. The micro aggregate effect and pozzolanic reaction mutually occurred in the mineral admixture. In the early stage, the micro aggregate effect reduced paste porosity and the small particles connected with the cement hydration products to enhance its strength. In the later stage, the pozzolanic reaction of some components in the complex powder occurred and consumed part of the calcium hydroxide to form C-S-H gel, thus improving the hydration environment. Also, the produced C-S-H gel made the structure more compact, which improved the structure’s strength.

  4. Advanced Nanoscale Characterization of Cement Based Materials Using X-Ray Synchrotron Radiation: A Review

    KAUST Repository

    Chae, Sejung R.

    2013-05-22

    We report various synchrotron radiation laboratory based techniques used to characterize cement based materials in nanometer scale. High resolution X-ray transmission imaging combined with a rotational axis allows for rendering of samples in three dimensions revealing volumetric details. Scanning transmission X-ray microscope combines high spatial resolution imaging with high spectral resolution of the incident beam to reveal X-ray absorption near edge structure variations in the material nanostructure. Microdiffraction scans the surface of a sample to map its high order reflection or crystallographic variations with a micron-sized incident beam. High pressure X-ray diffraction measures compressibility of pure phase materials. Unique results of studies using the above tools are discussed-a study of pores, connectivity, and morphology of a 2,000 year old concrete using nanotomography; detection of localized and varying silicate chain depolymerization in Al-substituted tobermorite, and quantification of monosulfate distribution in tricalcium aluminate hydration using scanning transmission X-ray microscopy; detection and mapping of hydration products in high volume fly ash paste using microdiffraction; and determination of mechanical properties of various AFm phases using high pressure X-ray diffraction. © 2013 The Author(s).

  5. Cement Based Batteries and their Potential for Use in Low Power Operations

    Science.gov (United States)

    Byrne, A.; Holmes, N.; Norton, B.

    2015-11-01

    This paper presents the development of an innovative cement-electrolyte battery for low power operations such as cathodic protection of reinforced concrete. A battery design was refined by altering different constituents and examining the open circuit voltage, resistor loaded current and lifespan. The final design consisted of a copper plate cathode, aluminium plate anode, and a cement electrolyte which included additives of carbon black, plasticiser, Alum salt and Epsom salt. A relationship between age, temperature and hydration of the cell and the current it produced was determined. It was found that sealing the battery using varnish increased the moisture retention and current output. Current was also found to increase with internal temperature of the electrolyte and connecting two cells in parallel further doubled or even tripled the current. Parallel-connected cells could sustain an average current of 0.35mA through a 10Ω resistor over two weeks of recording. The preliminary findings demonstrate that cement-based batteries can produce sufficient sustainable electrical outputs with the correct materials and arrangement of components. Work is ongoing to determine how these batteries can be recharged using photovoltaics which will further enhance their sustainability properties.

  6. Confirmation of the applicability of low alkaline cement-based material in the Horonobe Underground Research Laboratory

    International Nuclear Information System (INIS)

    Nakayama, Masashi; Niunoya, Sumio; Minamide, Masashi

    2016-01-01

    In Japan, high-level radioactive waste repository will be constructed in a stable host rock formation more than 300 m underground. Tunnel support is used for safety during the construction and operation, so, shotcrete and concrete lining are used as the tunnel support. Concrete is a composite material comprised of aggregate, cement, water and various additives. Low alkaline cement has been developed for the long term stability of the barrier systems whose performance could be negatively affected by highly alkaline conditions arising due to cement used in a repository. Japan Atomic Energy Agency (JAEA) has developed the low alkaline cement, named as HFSC (Highly fly-ash contained silicafume cement), containing over 60wt% of silicafume (SF) and Fly-ash (FA). JAEA is presently constructing the underground research laboratory (URL) at Horonobe for research and development in the geosciences and repository engineering technology. HFSC was used experimentally as the shotcrete material in construction of part of the 350 m deep gallery in the Horonobe URL in 2013. The objective of this experiment was to assess the performance of HFSC shotcrete in terms of mechanics, workability, durability, and so on. HFSC used in this experiment is composed of 40wt% OPC (Ordinary Portland Cement), 20wt% SF, and 40wt% FA. This composition was determined based on mechanical testing of various mixes of the above components. Because of the low OPC content, the strength of HFSC tends to be lower than that of OPC in normal concrete. The total length of tunnel constructed using HFSC shotcrete is about 112 m at 350 m deep drift. The workability of HFSC shotcrete was confirmed by this experimental construction. In this report, we present detailed results of the in-situ construction test. (author)

  7. Evaluation of kaolinite clays of Moa for the production of cement based clinker-calcined clay-limestone (LC3

    Directory of Open Access Journals (Sweden)

    Roger S. Almenares-Reyes

    2016-12-01

    Full Text Available Clay materials from two outcrops of the Moa region were analyzed to determine their potential use as supplementary cementitious material in the production of ternary cements based on limestone-calcined clay. The clays were characterized by atomic absorption spectroscopy (EAA, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and thermogravimetric analysis (ATG. These methods revealed high aluminum in clays, moderate kaolinite content, a disordered structure and the presence of impurities. The solubility of aluminum and silicon in alkali and the compressive strength of LC3 systems is proportional to their content in clay, being higher for the one with higher kaolinite content and greater structural disorder (outcrop D1, although the clay of both outcrops may constitute supplementary cementitious materials in the production of ternary cements based clinker-calcined clay-limestone. The suitable thermal activation range for both clays is between 650 ° C and 850 ° C.

  8. Protective or damage promoting effect of calcium carbonate layers on the surface of cement based materials in aqueous environments

    International Nuclear Information System (INIS)

    Schwotzer, M.; Scherer, T.; Gerdes, A.

    2010-01-01

    Cement based materials permanently exposed to aggressive aqueous environments are subject to chemical changes affecting their durability. However, this holds also for tap water that is considered to be not aggressive to cementitious materials, although in that case a formation of covering layers of CaCO 3 on the alkaline surfaces is commonly supposed to provide protection against reactive transport processes. Thus, investigations of the structural and chemical properties of the material/water interface were carried out in laboratory experiments and case studies to elucidate the consequences of surface reactions for the durability of cement based materials exposed to tap water. Focused Ion Beam investigations revealed that a protective effect of a CaCO 3 covering layer depends on its structural properties, which are in turn affected by the hydro-chemical conditions during crystallization. Surface precipitation of CaCO 3 can trigger further chemical degradation, if the required calcium is supplied by the pore solution of the material.

  9. Stabilization of marly soils with portland cement

    Science.gov (United States)

    Piskunov, Maksim; Karzin, Evgeny; Lukina, Valentina; Lukinov, Vitaly; Kholkin, Anatolii

    2017-10-01

    Stabilization of marlous soils with Portland cement will increase the service life of motor roads in areas where marl is used as a local road construction material. The result of the conducted research is the conclusion about the principal possibility of stabilization of marlous soils with Portland cement, and about the optimal percentage of the mineral part and the binding agent. When planning the experiment, a simplex-lattice plan was implemented, which makes it possible to obtain a mathematical model for changing the properties of a material in the form of polynomials of incomplete third order. Brands were determined for compressive strength according to GOST 23558-94 and variants of stabilized soils were proposed for road construction.

  10. On the Relation of Setting and Early-Age Strength Development to Porosity and Hydration in Cement-Based Materials

    OpenAIRE

    Lootens, Didier; Bentz, Dale P.

    2016-01-01

    Previous research has demonstrated a linear relationship between compressive strength (mortar cubes and concrete cylinders) and cumulative heat release normalized per unit volume of (mixing) water for a wide variety of cement-based mixtures at ages of 1 d and beyond. This paper utilizes concurrent ultrasonic reflection and calorimetry measurements to further explore this relationship from the time of specimen casting to 3 d. The ultrasonic measurements permit a continuous evaluation of thicke...

  11. Static and Dynamic Strain Monitoring of Reinforced Concrete Components through Embedded Carbon Nanotube Cement-Based Sensors

    Directory of Open Access Journals (Sweden)

    Antonella D’Alessandro

    2017-01-01

    Full Text Available The paper presents a study on the use of cement-based sensors doped with carbon nanotubes as embedded smart sensors for static and dynamic strain monitoring of reinforced concrete (RC elements. Such novel sensors can be used for the monitoring of civil infrastructures. Because they are fabricated from a structural material and are easy to utilize, these sensors can be integrated into structural elements for monitoring of different types of constructions during their service life. Despite the scientific attention that such sensors have received in recent years, further research is needed to understand (i the repeatability and accuracy of sensors’ behavior over a meaningful number of sensors, (ii testing configurations and calibration methods, and (iii the sensors’ ability to provide static and dynamic strain measurements when actually embedded in RC elements. To address these research needs, this paper presents a preliminary characterization of the self-sensing capabilities and the dynamic properties of a meaningful number of cement-based sensors and studies their application as embedded sensors in a full-scale RC beam. Results from electrical and electromechanical tests conducted on small and full-scale specimens using different electrical measurement methods confirm that smart cement-based sensors show promise for both static and vibration-based structural health monitoring applications of concrete elements but that calibration of each sensor seems to be necessary.

  12. Can Electrical Resistance Tomography be used for imaging unsaturated moisture flow in cement-based materials with discrete cracks?

    International Nuclear Information System (INIS)

    Smyl, Danny; Rashetnia, Reza; Seppänen, Aku; Pour-Ghaz, Mohammad

    2017-01-01

    Previously, it has been shown that Electrical Resistance Tomography (ERT) can be used for monitoring moisture flow in undamaged cement-based materials. In this work, we investigate whether ERT could be used for imaging three-dimensional (3D) unsaturated moisture flow in cement-based materials that contain discrete cracks. Novel computational methods based on the so-called absolute imaging framework are developed and used in ERT image reconstructions, aiming at a better tolerance of the reconstructed images with respect to the complexity of the conductivity distribution in cracked material. ERT is first tested using specimens with physically simulated cracks of known geometries, and corroborated with numerical simulations of unsaturated moisture flow. Next, specimens with loading-induced cracks are imaged; here, ERT reconstructions are evaluated qualitatively based on visual observations and known properties of unsaturated moisture flow. Results indicate that ERT is a viable method of visualizing 3D unsaturated moisture flow in cement-based materials with discrete cracks. - Highlights: • 3D EIT is developed to visualize water ingress in cracked mortar. • Mortar with different size discrete cracks are used. • The EIT results are corroborated with numerical simulations. • EIT results accurately show the temporal and spatial variation of water content. • EIT is shown to be a viable method to monitor flow in cracks and matrix.

  13. In situ grouting of low-level burial trenches with a cement-based grout

    International Nuclear Information System (INIS)

    Francis, C.W.; Spalding, B.P.

    1991-01-01

    A restoration technology being evaluated for use in the closure of one of the low-level radwaste burial grounds at Oak Ridge National Laboratory (ORNL) is trench stabilization using a cement-based grout. To demonstrate the applicability and effectiveness of this technology, two interconnecting trenches in Solid Waste Storage Area 6 (SWSA 6) were selected as candidates for in situ grouting with a particulate grout. The primary objective was to demonstrate the increased trench stability and decreased potential for leachate migration following in situ injection of a particulate grout into the waste trenches. Stability against trench subsidence is a critical issue. After grouting, soil-penetration tests disclosed that stability had been improved greatly. For example, refusal (defined as > 100 blows to penetrate 1 ft) was encountered in 17 of the 22 tests conducted within the trench area. Mean refusal depths for the two trenches were 3.5 and 2.6 m. Stability of the trench was significantly better than pregrout conditions, and at depths > 2.4 m, the stability was very near that observed in the native soil formation outside the trench. Tests within the trench showed lower stability within this range probably because of the presence of intermediate-sized soil voids (formed during backfilling) that were too small to be penetrated and filled by the conventional cement grout formulation. Hydraulic conductivity within the trench remained very high (>0.1 cm/s) and significantly greater than outside the trench. Postgrout air pressurization tests also revealed a large degree of intervoid linkage within and between the two trenches. To effectively reduce hydraulic conductivity and to develop stability within the upper level of the trench, injection of a clay/microfine cement grout into the upper level of the grouted trench is planned

  14. Impact of carbonation on water transport properties of cement-based materials

    International Nuclear Information System (INIS)

    Auroy, M.; Poyet, S.; Le Bescop, P.; Torrenti, J.M.

    2015-01-01

    Cement-based materials would be commonly used for nuclear waste management and, particularly for geological disposal vaults as well as containers in France. Under service conditions, the structures would be subjected to simultaneous drying and carbonation. Carbonation relates to the reaction between CO 2 and the hydrated cement phases (mainly portlandite and C-S-H). It induces mineralogical and microstructural changes (due to hydrates dissolution and calcium carbonate precipitation). It results in transport properties modifications, which can have important consequences on the durability of reinforced concrete structures. Concrete durability is greatly influenced by water: water is necessary for chemical reactions to occur and significantly impacts transport. The evaluation of the unsaturated water transport properties in carbonated materials is then an important issue. That is the aim of this study. A program has been established to assess the water transport properties in carbonated materials. In this context, four mature hardened cement pastes (CEM I, CEM III/A, CEM V/A according to European standards and a Low-pH blend) are carbonated. Accelerated carbonation tests are performed in a specific device, controlling environmental conditions: (i) CO 2 content of 3%, to ensure representativeness of the mineralogical evolution compared to natural carbonation and (ii) 25 C. degrees and 55% RH, to optimize carbonation rate. After carbonation, the data needed to describe water transport are evaluated in the framework of simplified approach. Three physical parameters are required: (1) the concrete porosity, (2) the water retention curve and, (3) the effective permeability. The obtained results allow creating link between water transport properties of non-carbonated materials to carbonated ones. They also provide a better understanding of the effect of carbonation on water transport in cementitious materials and thus, complement literature data. (authors)

  15. Possibility of using waste tire rubber and fly ash with Portland cement as construction materials.

    Science.gov (United States)

    Yilmaz, Arin; Degirmenci, Nurhayat

    2009-05-01

    The growing amount of waste rubber produced from used tires has resulted in an environmental problem. Recycling waste tires has been widely studied for the last 20 years in applications such as asphalt pavement, waterproofing systems and membrane liners. The aim of this study is to evaluate the feasibility of utilizing fly ash and rubber waste with Portland cement as a composite material for masonry applications. Class C fly ash and waste automobile tires in three different sizes were used with Portland cement. Compressive and flexural strength, dry unit weight and water absorption tests were performed on the composite specimens containing waste tire rubber. The compressive strength decreased by increasing the rubber content while increased by increasing the fly ash content for all curing periods. This trend is slightly influenced by particle size. For flexural strength, the specimens with waste tire rubber showed higher values than the control mix probably due to the effect of rubber fibers. The dry unit weight of all specimens decreased with increasing rubber content, which can be explained by the low specific gravity of rubber particles. Water absorption decreased slightly with the increase in rubber particles size. These composite materials containing 10% Portland cement, 70% and 60% fly ash and 20% and 30% tire rubber particles have sufficient strength for masonry applications.

  16. Presence of arsenic in different types of MTA and white and gray Portland cement.

    Science.gov (United States)

    Monteiro Bramante, Clóvis; Demarchi, Ana Claudia Cardoso Oliveira; de Moraes, Ivaldo Gomes; Bernadineli, Norberti; Garcia, Roberto Brandão; Spångberg, Lars S W; Duarte, Marco Antonio Hungaro

    2008-12-01

    The presence of arsenic in various types of mineral trioxide aggregate (MTA) and Portland cements were evaluated to verify if they comply with the ISO-recommended limit for water-based cements of 2 mg arsenic/kg material. An amount of 5 mL of hydrochloric acid was added to 2 g each of MTA and Portland cement to be analyzed. After 15 minutes, the material was filtered and the volume of supernatant was diluted with reagent-grade water up to 40 mL. Atomic absorption spectrophotometry readings were performed in triplicate. The following mean values were obtained: CPM (Egeo, Buenos Aires, Argentina) 11.06 mg/kg; CPM sealer (Egeo) 10.30 mg/kg; MTA-Obtura (Angelus, Londrina, PR, Brazil) 0.39 mg/kg; Experimental MTA: 10.30 mg/kg; White MTA-Angelus (Angelus) 1.03 mg/kg; Gray MTA-Angelus (Angelus) 5.91 mg/kg; ProRoot-MTA (Dentsply/Tulsa Dental Specialties, Tulsa, OK) 5.25 mg/kg; Gray Portland cement (Votorantim Cimentos, Cubatão, SP, Brazil): 34.27 mg/kg; and White Portland cement (Cimento Rio Branco, Rio de Janeiro, RJ, Brazil) 0.52 mg/kg. All tested materials presented arsenic in their composition. The form of arsenic was not analyzed nor the toxicity of the arsenic found. Only MTA-Obtura, White MTA-Angelus, and White Portland cement presented arsenic levels below the limit set in the ISO 9917-1 standard.

  17. Self-sensing piezoresistive cement composite loaded with carbon black particles

    KAUST Repository

    Monteiro, André O.; Cachim, Paulo B.; Da Costa, Pedro M. F. J.

    2017-01-01

    Strain sensors can be embedded in civil engineering infrastructures to perform real-time service life monitoring. Here, the sensing capability of piezoresistive cement-based composites loaded with carbon black (CB) particles is investigated. Several

  18. Strength, leachability and microstructure characteristics of cement-based solidified plating sludge

    International Nuclear Information System (INIS)

    Asavapisit, Suwimol; Naksrichum, Siripat; Harnwajanawong, Naraporn

    2005-01-01

    The solidification of the stabilized zinc-cyanide plating sludge was carried out using ordinary Portland cement (OPC) and pulverized fuel ash (PFA) as solidification binders. The plating sludge were used at the level of 0%, 10%, 20% and 30% dry weight, and PFA was used to replace OPC at 0%, 10%, 20% and 30% dry weight, respectively. Experimental results showed that a significant reduction in strength was observed when the plating sludge was added to both the OPC and OPC/PFA binders, but the negative effect was minimized when PFA was used as part substitute for OPC. SEM observation reveals that the deposition of the plating sludge on the surface of the clinkers and PFA could be the cause for hydration retardation. In addition, calcium zinc hydroxide hydrate complex and the unreacted di- and tricalcium silicates were the major phases in X-ray diffraction (XRD) patterns of the solidified plating waste hydrated for 28 days, although the retardation effect on hydration reactions but Cr concentration in toxicity characteristic leaching procedure (TCLP) leachates was lower than the U.S. EPA regulatory limit

  19. Optimization of compressive strength in admixture-reinforced cement-based grouts

    Directory of Open Access Journals (Sweden)

    Sahin Zaimoglu, A.

    2007-12-01

    Full Text Available The Taguchi method was used in this study to optimize the unconfined (7-, 14- and 28-day compressive strength of cement-based grouts with bentonite, fly ash and silica fume admixtures. The experiments were designed using an L16 orthogonal array in which the three factors considered were bentonite (0%, 0.5%, 1.0% and 3%, fly ash (10%, 20%, 30% and 40% and silica fume (0%, 5%, 10% and 20% content. The experimental results, which were analyzed by ANOVA and the Taguchi method, showed that fly ash and silica fume content play a significant role in unconfined compressive strength. The optimum conditions were found to be: 0% bentonite, 10% fly ash, 20% silica fume and 28 days of curing time. The maximum unconfined compressive strength reached under the above optimum conditions was 17.1 MPa.En el presente trabajo se ha intentado optimizar, mediante el método de Taguchi, las resistencias a compresión (a las edades de 7, 14 y 28 días de lechadas de cemento reforzadas con bentonita, cenizas volantes y humo de sílice. Se diseñaron los experimentos de acuerdo con un arreglo ortogonal tipo L16 en el que se contemplaban tres factores: la bentonita (0, 0,5, 1 y 3%, las cenizas volantes (10, 20, 30 y 40% y el humo de sílice (0, 5, 10 y 20% (porcentajes en peso del sólido. Los datos obtenidos se analizaron con mediante ANOVA y el método de Taguchi. De acuerdo con los resultados experimentales, el contenido tanto de cenizas volantes como de humo de sílice desempeña un papel significativo en la resistencia a compresión. Por otra parte, las condiciones óptimas que se han identificado son: 0% bentonita, 10% cenizas volantes, 20% humo de sílice y 28 días de tiempo de curado. La resistencia a compresión máxima conseguida en las anteriores condiciones era de 17,1 MPa.

  20. Radiolysis in cement-based materials ; application to radioactive waste-forms

    International Nuclear Information System (INIS)

    Bouniol, P.

    2014-01-01

    Cement-based materials appear to be an original environment with respect to radiolysis, due to their intrinsic complexity (porous, multiphasic and evolutional medium) or their very specific physico-chemical conditions (hyper-alkaline medium with pH ≥ 13, high content in calcium) or by the fact of numerous couplings existing between different phenomenologies. At the level of a radioactive cemented wasteform, a high degree of complexity is reached, in particular if the system communicates with the atmosphere (open system allowing regulation of the pressures but also the admission of O 2 , strong reactive with regards to radiolysis). Then, the radiolysis description exceeds widely the only one aspect of the decomposition of alkaline water under irradiation and makes necessary a global phenomenological approach. In this context, some 'outlying' phenomena, highly coupled with radiation chemistry, have to be taken into account because they contribute to deeply modify the net result of the radiolysis: radioactive decay of multiple αβγ emitters with filiation, phase changes (for example H 2 aq → H 2 gas) within the pores, gas transport by convection (Darcy law) and by diffusion (Fick law), precipitation/dissolution of solid phases, effect of the ionic strength and the temperature, disturbances connected to the presence of some solutes with redox potentialities (iron, sulphur). The integration work carried out on the previous points leads to an operational model (DOREMI) allowing the estimate of H 2 amounts produced by radiolysis in different cemented radioactive waste-forms. As the final expression of the model, numerical simulations constitute a relevant tool of expertise and prospecting, contributing to accompany the thought on radiolysis in cement matrices in general and in cemented waste-forms in particular. Starting from different examples, simulations can be so used in order to test some hypotheses or illustrate the greatest influence of gas transport, dose

  1. Portland blended cements: demolition ceramic waste management

    International Nuclear Information System (INIS)

    Trezza, M.A.; Zito, S.; Tironi, A.; Irassar, E.F.; Rahhal, V.F.

    2017-01-01

    Demolition ceramic wastes (DCWs) were investigated in order to determine their potential use as supplementary cementitious materials in Portland Blended Cements (PBCs). For this purpose, three ceramic wastes were investigated. After characterization of the materials used, the effect of ceramic waste replacement (8, 24 and 40% by mass) was analyzed. Pozzolanic activity, hydration progress, workability and compressive strength were determined at 2, 7 and 28 days. The results showed that the ground wastes behave as filler at an early age, but as hydration progresses, the pozzolanic activity of ceramic waste contributes to the strength requirement. [es

  2. Development of Mix Design Method in Efforts to Increase Concrete Performance Using Portland Pozzolana Cement (PPC)

    Science.gov (United States)

    Krisnamurti; Soehardjono, A.; Zacoeb, A.; Wibowo, A.

    2018-01-01

    Earthquake disaster can cause infrastructure damage. Prevention of human casualties from disasters should do. Prevention efforts can do through improving the mechanical performance of building materials. To achieve high-performance concrete (HPC), usually used Ordinary Portland Cement (OPC). However, the most widely circulating cement types today are Portland Pozzolana Cement (PPC) or Portland Composite Cement (PCC). Therefore, the proportion of materials used in the HPC mix design needs to adjust to achieve the expected performance. This study aims to develop a concrete mix design method using PPC to fulfil the criteria of HPC. The study refers to the code/regulation of concrete mixtures that use OPC based on the results of laboratory testing. This research uses PPC material, gravel from Malang area, Lumajang sand, water, silica fume and superplasticizer of a polycarboxylate copolymer. The analyzed information includes the investigation results of aggregate properties, concrete mixed composition, water-binder ratio variation, specimen dimension, compressive strength and elasticity modulus of the specimen. The test results show that the concrete compressive strength achieves value between 25 MPa to 55 MPa. The mix design method that has developed can simplify the process of concrete mix design using PPC to achieve the certain desired performance of concrete.

  3. Hydration characteristics of zirconium oxide replaced Portland cement for use as a root-end filling material.

    Science.gov (United States)

    Camilleri, J; Cutajar, A; Mallia, B

    2011-08-01

    Zirconium oxide can be added to dental materials rendering them sufficiently radiopaque. It can thus be used to replace the bismuth oxide in mineral trioxide aggregate (MTA). Replacement of Portland cement with 30% zirconium oxide mixed at a water/cement ratio of 0.3 resulted in a material with adequate physical properties. This study aimed at investigating the microstructure, pH and leaching in physiological solution of Portland cement replaced zirconium oxide at either water-powder or water-cement ratios of 0.3 for use as a root-end filling material. The hydration characteristics of the materials which exhibited optimal behavior were evaluated. Portland cement replaced by zirconium oxide in varying amounts ranging from 0 to 50% in increments of 10 was prepared and divided into two sets. One set was prepared at a constant water/cement ratio while the other set at a constant water/powder ratio of 0.3. Portland cement and MTA were used as controls. The materials were analyzed under the scanning electron microscope (SEM) and the hydration products were determined. X-ray energy dispersive analysis (EDX) was used to analyze the elemental composition of the hydration products. The pH and the amount of leachate in Hank's balanced salt solution (HBSS) were evaluated. A material that had optimal properties that satisfied set criteria and could replace MTA was selected. The microstructure of the prototype material and Portland cement used as a control was assessed after 30 days using SEM and atomic ratio diagrams of Al/Ca versus Si/Ca and S/Ca versus Al/Ca were plotted. The hydration products of Portland cement replaced with 30% zirconium oxide mixed at water/cement ratio of 0.3 were calcium silicate hydrate, calcium hydroxide and minimal amounts of ettringite and monosulphate. The calcium hydroxide leached in HBSS solution resulted in an increase in the pH value. The zirconium oxide acted as inert filler and exhibited no reaction with the hydration by-products of Portland

  4. Self-healing phenomena in cement-based materials state-of-the-art report of RILEM Technical Committee 221-SHC Self-Healing Phenomena in Cement-Based Materials

    CERN Document Server

    Tittelboom, Kim; Belie, Nele; Schlangen, Erik

    2013-01-01

    Self-healing materials are man-made materials which have the built-in capability to repair damage. Failure in materials is often caused by the occurrence of small microcracks throughout the material. In self-healing materials phenomena are triggered to counteract these microcracks. These processes are ideally triggered by the occurrence of damage itself. Thus far, the self-healing capacity of cement-based materials has been considered as something "extra". This could be called passive self-healing, since it was not a designed feature of the material, but an inherent property of it. Centuries-old buildings have been said to have survived these centuries because of the inherent self-healing capacity of the binders used for cementing building blocks together. In this State-of-the-Art Report a closer look is taken at self-healing phenomena in cement-based materials. It is shown what options are available to design for this effect rather than have it occur as a "coincidental extra".

  5. Lithofacies and petrophysical properties of Portland Base Bed and Portland Whit Bed limestone as related to durability

    NARCIS (Netherlands)

    Dubelaar, C.W.; Engering, S.; Hees, R.P.J. van; Koch, R.; Lorenz, H.G.

    2003-01-01

    This study focuses on the differences in lithofacies and petrophysical properties of Base Bed and Whit Bed Portland limestone and the presumed relationships between these characteristics and the durability of this building stone. As Portland limestone probably will be used as a stone for several

  6. Lithofacies and Petrophysical Properties of Portland Base Bed and Portland Whit Bed Limestone as Related to Durability

    NARCIS (Netherlands)

    Dubelaar, C.W.; Engering, S.; Van Hees, R.P.J.; Koch, R.; Lorenz, H.G.

    2003-01-01

    This study focuses on the differences in lithofacies and petrophysical properties of Base Bed and Whit Bed Portland limestone and the presumed relationships between these characteristics and the durability of this building stone. As Portland limestone probably will be used as a stone for several

  7. Arsenic content in Portland cement: A literature review

    Directory of Open Access Journals (Sweden)

    Tenorio de Franca Talita

    2010-01-01

    Full Text Available Portland cement (PC is a hydraulic binding material widely used in the building industry. The main interest in its use in dentistry is focused on a possible alternative to mineral trioxide aggregate (MTA because PC is less expensive and is widely available. In dentistry, PC has been used in dental procedures such as pulpotomy, pulp capping, repair of root perforation and root-end filling. The purpose of this article is review the dental literature about the PC, its composition with special attention to arsenic content, properties, and application in dentistry. A bibliographic research was performed in Bireme, PubMed, LILACS and Scopus data bases looking for national and international studies about the PC composition, properties and clinical use. It was observed that PC has favorable biological properties very similar to those of MTA. The PC has shown good cell proliferation induction with formation of a monolayer cell, satisfactory inflammatory response, inhibitory effect of prostaglandin and antimicrobial effect. Studies have shown that PC is not cytotoxic, stimulates the apposition of reparative dentin and permits cellular attachment and growth. Regarding arsenic presence, its levels and release are low. PC has physical, chemical and biological properties similar to MTA. Arsenic levels and release are low, therefore, unable to cause toxic effects.

  8. Arsenic content in Portland cement: a literature review.

    Science.gov (United States)

    Tenório de Franca, Talita Ribeiro; da Silva, Raphaela Juvenal; Sedycias de Queiroz, Michellini; Aguiar, Carlos Menezes

    2010-01-01

    Portland cement (PC) is a hydraulic binding material widely used in the building industry. The main interest in its use in dentistry is focused on a possible alternative to mineral trioxide aggregate (MTA) because PC is less expensive and is widely available. In dentistry, PC has been used in dental procedures such as pulpotomy, pulp capping, repair of root perforation and root-end filling. The purpose of this article is review the dental literature about the PC, its composition with special attention to arsenic content, properties, and application in dentistry. A bibliographic research was performed in Bireme, PubMed, LILACS and Scopus data bases looking for national and international studies about the PC composition, properties and clinical use. It was observed that PC has favorable biological properties very similar to those of MTA. The PC has shown good cell proliferation induction with formation of a monolayer cell, satisfactory inflammatory response, inhibitory effect of prostaglandin and antimicrobial effect. Studies have shown that PC is not cytotoxic, stimulates the apposition of reparative dentin and permits cellular attachment and growth. Regarding arsenic presence, its levels and release are low. PC has physical, chemical and biological properties similar to MTA. Arsenic levels and release are low, therefore, unable to cause toxic effects.

  9. Performance of Cement-Based Materials in Aggressive Aqueous Environments State-of-the-Art Report, RILEM TC 211 - PAE

    CERN Document Server

    Bertron, Alexandra; Belie, Nele

    2013-01-01

    Concrete and cement-based materials must operate in increasingly aggressive aqueous environments, which may be either natural or industrial.  These materials may suffer degradation in which ion addition and/or ion exchange reactions occur, leading to a breakdown of the matrix microstructure and consequent weakening.  Sometimes this degradation can be extremely rapid and serious such as in acidic environments, while in other cases degradation occurs over long periods.  Consequences of material failure are usually severe – adversely affecting the health and well-being of human communities and disturbing ecological balances. There are also large direct costs of maintaining and replacing deteriorated infrastructure and indirect costs from loss of production during maintenance work, which place a great burden on society. The focus of this book is on addressing issues concerning performance of cement-based materials in aggressive aqueous environments , by way of this State-of-the-Art Report. The book represe...

  10. Prediction of SEM–X-ray images’ data of cement-based materials using artificial neural network algorithm

    Directory of Open Access Journals (Sweden)

    Ashraf Ragab Mohamed

    2014-09-01

    Full Text Available Recent advances of computational capabilities have motivated the development of more sophisticated models to simulate cement-based hydration. However, the input parameters for such models, obtained from SEM–X-ray image analyses, are quite complicated and hinder their versatile application. This paper addresses the utilization of the artificial neural networks (ANNs to predict the SEM–X-ray images’ data of cement-based materials (surface area fraction and the cement phases’ correlation functions. ANNs have been used to correlate these data, already obtained for 21 types of cement, to basic cement data (cement compounds and fineness. Two approaches have been proposed; the ANN, and the ANN-regression method. Comparisons have shown that the ANN proves effectiveness in predicting the surface area fraction, while the ANN-regression is more computationally suitable for the correlation functions. Results have shown good agreement between the proposed techniques and the actual data with respect to hydration products, degree of hydration, and simulated images.

  11. Numerical Analysis and Optimization on Piezoelectric Properties of 0–3 Type Piezoelectric Cement-Based Materials with Interdigitated Electrodes

    Directory of Open Access Journals (Sweden)

    Jianlin Luo

    2017-03-01

    Full Text Available The health conditions of complicated concrete structures require intrinsic cement-based sensors with a fast sensing response and high accuracy. In this paper, static, modal, harmonic, and transient dynamic analyses for the 0–3 type piezoelectric cement-based material with interdigitated electrodes (IEPCM wafer were investigated using the ANSYS finite element numerical approach. Optimal design of the IEPCM was further implemented with electrode distance (P, electrode width (W, and wafer density (H as the main parameters. Analysis results show that the maximum stress and strain in the x-polarization direction of the IEPCM are 2.6 and 3.19 times higher than that in the y-direction, respectively; there exists no repetition frequency phenomenon for the IEPCM. These indicate 0–3 type IEPCM possesses good orthotropic features, and lateral driving capacity notwithstanding, a hysteresis effect exists. Allowing for the wafer width (Wp of 1 mm, the optimal design of the IEPCM wafer arrives at the best physical values of H, W and P are 6.2, 0.73 and 1.02 mm respectively, whereas the corresponding optimal volume is 10.9 mm3.

  12. Evolution of cement based materials in a repository for radioactive waste and their chemical barrier function

    International Nuclear Information System (INIS)

    Kienzler, Bernhard; Metz, Volker; Schlieker, Martina; Bohnert, Elke

    2015-01-01

    The use of cementitious materials in nuclear waste management is quite widespread. It covers the solidification of low/intermediate-level liquid as well as solid wastes (e.g. laboratory wastes) and serves as shielding. For both high-level and intermediate-low level activity repositories, cement/concrete likewise plays an important role. It is used as construction material for underground and surface disposals, but more importantly it serves as barrier or sealing material. For the requirements of waste conditioning, special cement mixtures have been developed. These include special mixtures for the solidification of evaporator concentrates, borate binding additives and for spilling solid wastes. In recent years, low-pH cements were strongly discussed especially for repository applications, e.g. (Celine CAU DIT COUMES 2008; Garcia-Sineriz, et al. 2008). Examples for relevant systems are Calcium Silicate Cements (ordinary Portland cement (OPC) based) or Calcium Aluminates Cements (CAC). Low-pH pore solutions are achieved by reduction of the portlandite content by partial substitution of OPC by mineral admixtures with high silica content. The blends follow the pozzolanic reaction consuming Ca(OH) 2 . Potential admixtures are silica fume (SF) and fly ashes (FA). In these mixtures, super plasticizers are required, consisting of polycarboxilate or naphthalene formaldehyde as well as various accelerating admixtures (Garcia-Sineriz, et al. 2008). The pH regime of concrete/cement materials may stabilize radionuclides in solution. Newly formed alteration products retain or release radionuclides. An important degradation product of celluloses in cement is iso-saccharin acid. According to Glaus 2004 (Glaus and van Loon 2004), it reacts with radionuclides forming dissolved complexes. Apart from potentially impacting radionuclide solubility limitations, concrete additives, radionuclides or other strong complexants compete for surface sites for sorbing onto cement phases. In

  13. Analysis of Cement-Based Pastes Mixed with Waste Tire Rubber

    Science.gov (United States)

    Sola, O. C.; Ozyazgan, C.; Sayin, B.

    2017-03-01

    Using the methods of thermal gravimetry, differential thermal analysis, Furier transform infrared analysis, and capillary absorption, the properties of a cement composite produced by introducing waste tyre rubber into a cement mixture were investigated. It was found that the composite filled with the rubber had a much lower water absorption ability than the unfilled one.

  14. Effect of saccharides on the hydration of ordinary Portland cement

    NARCIS (Netherlands)

    Kochova, K.; Schollbach, K.; Gauvin, F.; Brouwers, H. J.H.

    2017-01-01

    Recently, the use of natural fibres as a sustainable alternative for reinforcements in cement-based materials has increased significantly. However, these lignocellulose fibres containing saccharides can have important retarding effects on cement hydration. The objective of this study is to

  15. Radiopacity of portland cement associated with different radiopacifying agents.

    Science.gov (United States)

    Húngaro Duarte, Marco Antonio; de Oliveira El Kadre, Guâniara D'arc; Vivan, Rodrigo Ricci; Guerreiro Tanomaru, Juliane Maria; Tanomaru Filho, Mário; de Moraes, Ivaldo Gomes

    2009-05-01

    This study evaluated the radiopacity of Portland cement associated with the following radiopacifying agents: bismuth oxide, zinc oxide, lead oxide, bismuth subnitrate, bismuth carbonate, barium sulfate, iodoform, calcium tungstate, and zirconium oxide. A ratio of 20% radiopacifier and 80% white Portland cement by weight was used for analysis. Pure Portland cement and dentin served as controls. Cement/radiopacifier and dentin disc-shaped specimens were fabricated, and radiopacity testing was performed according to the ISO 6876/2001 standard for dental root sealing materials. Using Insight occlusal films, the specimens were radiographed near to a graduated aluminum stepwedge varying from 2 to 16 mm in thickness. The radiographs were digitized and radiopacity compared with the aluminum stepwedge using Digora software (Orion Corporation Soredex, Helsinki, Finland). The radiographic density data were converted into mmAl and analyzed statistically by analysis of variance and Tukey-Kramer test (alpha = 0.05). The radiopacity of pure Portland cement was significantly lower (p cement/radiopacifier mixtures were significantly more radiopaque than dentin and Portland cement alone (p cement/bismuth oxide and Portland cement/lead oxide presented the highest radiopacity values and differed significantly from the other materials (p cement/zinc oxide presented the lowest radiopacity values of all mixtures (p cement as radiopacifying agents. However, the possible interference of the radiopacifiers with the setting chemistry, biocompatibility, and physical properties of the Portland cement should be further investigated before any clinical recommendation can be done.

  16. A thermodynamic approach to the hydration of sulphate-resisting Portland cement

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Wieland, Erich

    2006-01-01

    A thermodynamic approach is used to model changes in the hydrate assemblage and the composition of the pore solution during the hydration of calcite-free and calcite-containing sulphate-resisting Portland cement CEM I 52.5 N HTS. Modelling is based on thermodynamic data for the hydration products and calculated hydration rates for the individual clinker phases, which are used as time-dependent input parameters. Model predictions compare well with the composition of the hydrate assemblage as observed by TGA and semi-quantitative XRD and with the experimentally determined compositions of the pore solutions. The calculations show that in the presence of small amounts of calcite typically associated with Portland cement, C-S-H, portlandite, ettringite and calcium monocarbonate are the main hydration products. In the absence of calcite in the cement, however, siliceous hydrogarnet instead of calcium monocarbonate is observed to precipitate. The use of a higher water-to-cement ratio for the preparation of a calcite-containing cement paste has a minor effect on the composition of the hydrate assemblage, while it significantly changes the composition of the pore solution. In particular, lower pH value and higher Ca concentrations appear that could potentially influence the solubility and uptake of heavy metals and anions by cementitious materials

  17. 77 FR 46371 - National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing...

    Science.gov (United States)

    2012-08-03

    ...-AQ93 National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing... Portland Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants,'' which was... Manufacturing Industry and Standards of Performance for Portland Cement Plants'' under Docket ID No. EPA-HQ-OAR...

  18. 76 FR 28318 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Science.gov (United States)

    2011-05-17

    ... Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants AGENCY... Emission Standards for Hazardous Air Pollutants from the Portland Cement Manufacturing Industry Response to... by the Portland Cement Industry and the New Source Performance Standards for Portland Cement Plants...

  19. 76 FR 2832 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Science.gov (United States)

    2011-01-18

    ... Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants AGENCY...) from the Portland Cement Manufacturing Industry and Standards of Performance (NSPS) for Portland Cement... Standards for Hazardous Air Pollutant From the Portland Cement Manufacturing Industry Docket, Docket ID No...

  20. Portland cement hydration and early setting of cement stone intended for efficient paving materials

    Science.gov (United States)

    Grishina, A.

    2017-10-01

    Due to the growth of load on automotive roads, modern transportation engineering is in need of efficient paving materials. Runways and most advanced highways require Portland cement concretes. This makes important the studies directed to improvement of binders for such concretes. In the present work some peculiarities of the process of Portland cement hydration and early setting of cement stone with barium hydrosilicate sol were examined. It was found that the admixture of said sol leads to a shift in the induction period to later times without significant change in its duration. The admixture of a modifier with nanoscale barium hydrosilicates increases the degree of hydration of the cement clinker minerals and changes the phase composition of the hydration products; in particular, the content of portlandite and tricalcium silicate decreases, while the amount of ettringite increases. Changes in the hydration processes of Portland cement and early setting of cement stone that are caused by the nanoscale barium hydrosilicates, allow to forecast positive technological effects both at the stage of manufacturing and at the stage of operation. In particular, the formwork age can be reduced, turnover of molds can be increased, formation of secondary ettringite and corrosion of the first type can be eliminated.

  1. Long-term modeling of glass waste in portland cement- and clay-based matrices

    International Nuclear Information System (INIS)

    Stockman, H.W.; Nagy, K.L.; Morris, C.E.

    1995-12-01

    A set of ''templates'' was developed for modeling waste glass interactions with cement-based and clay-based matrices. The templates consist of a modified thermodynamic database, and input files for the EQ3/6 reaction path code, containing embedded rate models and compositions for waste glass, cement, and several pozzolanic materials. Significant modifications were made in the thermodynamic data for Th, Pb, Ra, Ba, cement phases, and aqueous silica species. It was found that the cement-containing matrices could increase glass corrosion rates by several orders of magnitude (over matrixless or clay matrix systems), but they also offered the lowest overall solubility for Pb, Ra, Th and U. Addition of pozzolans to cement decreased calculated glass corrosion rates by up to a factor of 30. It is shown that with current modeling capabilities, the ''affinity effect'' cannot be trusted to passivate glass if nuclei are available for precipitation of secondary phases that reduce silica activity

  2. Effect of blended materials on U(VI) retention characteristics for portland cement solidification product

    International Nuclear Information System (INIS)

    Tan Hongbin; Ma Xiaoling; Li Yuxiang

    2006-01-01

    Using the simulated groundwater as leaching liquid, the retention capability of U(VI) in solidification products with Portland cement, the Portland cement containing silica fume, the Portland cement containing metakaolin and the Portland cement containing fly ash was researched by leaching experiments at 25 degree C for 42 d. The results indicate silica fume and metakaolin as blended materials can improve the U(VI) retention capability of Portland cement solidification product, but fly ash can not. (authors)

  3. Preterm delivery among people living around Portland cement plants

    International Nuclear Information System (INIS)

    Yang, C.-Y.; Chang, C.-C.; Tsai, S.-S.; Huang, H.-Y.; Ho, C.-K.; Wu, T.-N.; Sung, F.-C.

    2003-01-01

    The Portland cement industry is the main source of particulate air pollution in Kaohsiung city. Data in this study concern outdoor air pollution and the health of individuals living in communities in close proximity to Portland cement plants. The prevalence of delivery of preterm birth infants as significantly higher in mothers living within 0-2 km of a Portland cement plant than in mothers living within 2-4 km. After controlling for several possible confounders (including maternal age, season, marital status, maternal education, and infant sex), the adjusted odds ratio was 1.30 (95% I=1.09-1.54) for the delivery of preterm infants for mothers living close to he Portland cement plants, chosen at the start to be from 0 to 2 km. These data provide further support for the hypothesis that air pollution can affect he outcome of pregnancy

  4. EnviroAtlas - Portland, ME - Ecosystem Services by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset presents environmental benefits of the urban forest in 146 block groups in Portland, Maine. Carbon attributes, temperature reduction,...

  5. Stabilization of chromium salt in ordinary portland cement

    Indian Academy of Sciences (India)

    Ordinary Portland cement (OPC) samples containing the chromium salt have been investigated using differential microcalorimetry, conductometry and Fourier transform infrared spectroscopic analysis. The effect of chromium on OPC hydration was evaluated by continuous observing of early hydration.

  6. EnviroAtlas - Portland, OR - Ecosystem Services by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset presents environmental benefits of the urban forest in 1176 block groups in Portland, Oregon. Carbon attributes, temperature reduction,...

  7. Modelling of interfacial transition zone effect on resistance to crack propagation in fine-grained cement-based composites

    Czech Academy of Sciences Publication Activity Database

    Šimonová, H.; Vyhlídal, M.; Kucharczyková, B.; Bayer, P.; Keršner, Z.; Malíková, Lucie; Klusák, Jan

    2017-01-01

    Roč. 11, č. 41 (2017), s. 211-219 ISSN 1971-8993 R&D Projects: GA ČR(CZ) GA16-18702S Institutional support: RVO:68081723 Keywords : Effective fracture toughness * Fine-grained concrete * Interfacial transition zone * Three-point bending fracture test * Scanning electron microscopy Subject RIV: JL - Materials Fatigue, Friction Mechanics OBOR OECD: Audio engineering, reliability analysis

  8. Possibilities of observation of behaviour of concrete- and cement-based composite materials exposed to high temperatures

    Czech Academy of Sciences Publication Activity Database

    Bodnárová, L.; Horák, D.; Válek, J.; Hela, R.; Sitek, Libor

    2015-01-01

    Roč. 19, č. 5 (2015), s. 936-940 ISSN 1432-8917 Institutional support: RVO:68145535 Keywords : concrete * high temperature * thermal load Subject RIV: JQ - Machines ; Tools Impact factor: 0.830, year: 2014 http://www.tandfonline.com/doi/full/10.1179/1432891714Z.0000000001225?scroll=top&needAccess=true

  9. Research on preparation and performance of graphite cement-based materials used for fast neutron shielding

    International Nuclear Information System (INIS)

    Xu Jun; Kang Qing; Shen Zhiqiang; Wang Zhenggang; Wang Zhiqiang

    2014-01-01

    Measurements have been carried out to investigate the 14.8 MeV neutron attenuation properties for 3 kinds of cement-graphite composites. In comparison with the void group, the 14.8 MeV neutron attenuation properties of cement-graphite composites raised not clearly in 8 mm thickness, and drop not remarkably in 40 mm thickness; with the increase of graphite content and the thickness, the 14.8 MeV neutron attenuation properties were enhanced clearly. The data may be useful to the radiation shielding design of neutron. (authors)

  10. User's guide for simplified computer models for the estimation of long-term performance of cement-based materials

    International Nuclear Information System (INIS)

    Plansky, L.E.; Seitz, R.R.

    1994-02-01

    This report documents user instructions for several simplified subroutines and driver programs that can be used to estimate various aspects of the long-term performance of cement-based barriers used in low-level radioactive waste disposal facilities. The subroutines are prepared in a modular fashion to allow flexibility for a variety of applications. Three levels of codes are provided: the individual subroutines, interactive drivers for each of the subroutines, and an interactive main driver, CEMENT, that calls each of the individual drivers. The individual subroutines for the different models may be taken independently and used in larger programs, or the driver modules can be used to execute the subroutines separately or as part of the main driver routine. A brief program description is included and user-interface instructions for the individual subroutines are documented in the main report. These are intended to be used when the subroutines are used as subroutines in a larger computer code

  11. The use of by-products from metallurgical and mineral industries as filler in cement-based materials.

    Science.gov (United States)

    Moosberg, Helena; Lagerblad, Björn; Forssberg, Eric

    2003-02-01

    This investigation has been made in order to make it possible to increase the use of by-products in cement-based materials. Use of by-products requires a screening procedure that will reliably determine their impact on concrete. A test procedure was developed. The most important properties were considered to be strength development, shrinkage, expansion and workability. The methods used were calorimetry, flow table tests, F-shape measurements, measurements of compressive and flexural strength and shrinkage/expansion measurements. Scanning electron microscopy was used to verify some results. Twelve by-products were collected from Swedish metallurgical and mineral industries and classified according to the test procedure. The investigation showed that the test procedure clearly screened out the materials that can be used in the production of concrete from the unsuitable ones.

  12. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    Science.gov (United States)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  13. Mechanical Properties and Durability of CNT Cement Composites

    Directory of Open Access Journals (Sweden)

    María del Carmen Camacho

    2014-02-01

    Full Text Available In the present paper, changes in mechanical properties of Portland cement-based mortars due to the addition of carbon nanotubes (CNT and corrosion of embedded steel rebars in CNT cement pastes are reported. Bending strength, compression strength, porosity and density of mortars were determined and related to the CNT dosages. CNT cement paste specimens were exposed to carbonation and chloride attacks, and results on steel corrosion rate tests were related to CNT dosages. The increase in CNT content implies no significant variations of mechanical properties but higher steel corrosion intensities were observed.

  14. BiOBr@SiO2 flower-like nanospheres chemically-bonded on cement-based materials for photocatalysis

    Science.gov (United States)

    Wang, Dan; Hou, Pengkun; Yang, Ping; Cheng, Xin

    2018-02-01

    Endowment of photocatalytic property on the surface of concrete structure can contribute to the self-cleaning of the structure and purification of the polluted environment. We developed a nano-structured BiOBr@SiO2 photocatalyst and innovatively used for surface-treatment of cement-based materials with the hope of attaining the photocatalytic property in visible-light region and surface modification/densification performances. The SiO2 layer on the flower-like BiOBr@SiO2 helps to maintain a stable distribution of the photocatalyst, as well as achieving a chemical bonding between the coating and the cement matrix. Results showed that the color fading rate of during the degradation of Rhodamine B dye of the BiOBr-cem sample is 2 times higher compared with the commonly studied C, N-TiO2-cem sample. The photo-degradation rates of samples BiOBr-cem and BiOBr@SiO2-cem are 93 and 81% within 150 min, respectively, while sample BiOBr@SiO2-cem reveals a denser and smoother surface after curing for 28 days and pore-filling effect at size within 0.01-0.2 μm when compared with untreated samples. Moreover, additional C-S-H gel can be formed due to the pozzolanic reaction between BiOBr@SiO2 and the hardened cement matrix. Both advantages of the BiOBr@SiO2 favor its application for surface-treatment of hardened cement-based material to acquire an improved surface quality, as well as durable photocatalytic functionality.

  15. Saltstone: cement-based waste form for disposal of Savannah River Plant low-level radioactive salt waste

    International Nuclear Information System (INIS)

    Langton, C.A.

    1984-01-01

    Defense waste processing at the Savannah River Plant will include decontamination and disposal of approximately 400 million liters of waste containing NaNO 3 , NaOH, Na 2 SO 4 , and NaNO 2 . After decontamination, the salt solution is classified as low-level waste. A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. Bulk properties of this material have been tailored with respect to salt leach rate, permeability, and compressive strength. Microstructure and mineralogy of leached and unleached specimens were characterized by SEM and x-ray diffraction analyses. The disposal system for the DWPF salt waste includes reconstitution of the crystallized salt as a solution containing 32 wt % solids. This solution will be decontaminated to remove 137 Cs and 90 Sr and then stabilized in a cement-based waste form. Laboratory and field tests indicate that this stabilization process greatly reduces the mobility of all of the waste constitutents in the surface and near-surface environment. Engineered trenches for subsurface burial of the saltstone have been designed to ensure compatibility between the waste form and the environment. The total disposal sytem, saltstone-trench-surrounding soil, has been designed to contain radionuclides, Cr, and Hg by both physical encapsulation and chemical fixation mechanisms. Physical encapsulation of the salts is the mechanism employed for controlling N and OH releases. In this way, final disposal of the SRP low-level waste can be achieved and the quality of the groundwater at the perimeter of the disposal site meets EPA drinking water standards

  16. Chemical and morphological characteristics of mineral trioxide aggregate and Portland cements.

    Science.gov (United States)

    Khan, Shahbaz; Kaleem, Muhammad; Fareed, Muhammad Amber; Habib, Amir; Iqbal, Kefi; Aslam, Ayesha; Ud Din, Shahab

    2016-01-01

    The purpose of this study was to investigate the chemical composition and particle morphology of white mineral trioxide aggregate (WMTA) and two white Portland cements (CEM 1 and CEM 2). Compositional analysis was performed by energy dispersive X-ray spectroscopy, X-ray fluorescence spectrometry and X-ray diffraction whereas, morphological characteristics were analyzed by scanning electron microscope and Laser scattering particle size distribution analyzer. The elemental composition of WMTA, CEM 1 and CEM 2 were similar except for the presence of higher amounts of bismuth in WMTA. Calcium oxide and silicon oxide constitute the major portion of the three materials whereas, tricalcium silicate was detected as the major mineral phase. The particle size distribution and morphology of WMTA was finer compared to CEM 1 and CEM 2. The three tested materials had relatively similar chemical composition and irregular particle morphologies.

  17. Análise microscópica da polpa dental de cães após pulpotomia e proteção pulpar com agregado de trióxido mineral e cimento Portland branco

    OpenAIRE

    Menezes, Renato; Bramante, Clóvis Monteiro; Garcia, Roberto Brandão; Letra, Ariadne; Carvalho, Vanessa Graciela Gomes; Carneiro, Everdan; Brunini, Sérgio; Oliveira, Rodrigo Cardoso; Canova, Giovana Calichio; Moraes, Fernanda Gomes de

    2004-01-01

    Considering previous studies on the similarity between the chemical composition of the mineral trioxide aggregate and the Portland cement, the purpose of this study was to investigate the pulp response of dog's teeth after pulpotomy and direct pulp protection with MTA Angelus and white Portland cement. Thirty eight pulp remnants were protected with these materials. One hundred and twenty days after treatment, the animals were sacrificed and the specimens removed and prepared for histological ...

  18. Innovative Structural Materials and Sections with Strain Hardening Cementitious Composites

    Science.gov (United States)

    Dey, Vikram

    The motivation of this work is based on development of new construction products with strain hardening cementitious composites (SHCC) geared towards sustainable residential applications. The proposed research has three main objectives: automation of existing manufacturing systems for SHCC laminates; multi-level characterization of mechanical properties of fiber, matrix, interface and composites phases using servo-hydraulic and digital image correlation techniques. Structural behavior of these systems were predicted using ductility based design procedures using classical laminate theory and structural mechanics. SHCC sections are made up of thin sections of matrix with Portland cement based binder and fine aggregates impregnating continuous one-dimensional fibers in individual or bundle form or two/three dimensional woven, bonded or knitted textiles. Traditional fiber reinforced concrete (FRC) use random dispersed chopped fibers in the matrix at a low volume fractions, typically 1-2% to avoid to avoid fiber agglomeration and balling. In conventional FRC, fracture localization occurs immediately after the first crack, resulting in only minor improvement in toughness and tensile strength. However in SHCC systems, distribution of cracking throughout the specimen is facilitated by the fiber bridging mechanism. Influence of material properties of yarn, composition, geometry and weave patterns of textile in the behavior of laminated SHCC skin composites were investigated. Contribution of the cementitious matrix in the early age and long-term performance of laminated composites was studied with supplementary cementitious materials such as fly ash, silica fume, and wollastonite. A closed form model with classical laminate theory and ply discount method, coupled with a damage evolution model was utilized to simulate the non-linear tensile response of these composite materials. A constitutive material model developed earlier in the group was utilized to characterize and

  19. Analysis of effective diffusivity of cement based materials by multi-scale modelling

    International Nuclear Information System (INIS)

    Dridi, Wissem

    2013-01-01

    This paper presents a simplified composite model, which considers the contribution of each phase participating to the transport within OPC pastes and concretes. At the micrometer scale, the phases considered hereafter are capillary porosity (macro-porosity) and the Low Density and the High Density C-S-H both containing gel pores (nano-porosity). Predicted values of tritiated water (HTO) diffusivity in OPC pastes with various (w/c) ratios are confronted to experimental results with a good agreement. The approach is then extended to mortars and concretes scale where microstructure is described by a three phase composite sphere assemblage. Here, elementary phase distribution is assumed to change as a function of distance from aggregate surface. Model results about HTO diffusivities of mortars and concretes are presented with some experimental values. The competition between the more diffusing ITZ zone and the less diffusing bulk matrix is investigated from a sensitive analysis. The dominance of the ITZ control is confirmed. (authors)

  20. Alkali segregation in Portland cement pastes

    Directory of Open Access Journals (Sweden)

    Triviño, F.

    1966-09-01

    Full Text Available Not availableEn el presente trabajo se pone de manifiesto experimentalmente la formación y presencia de aphthitalita -sulfato doble de potasio y sodio en la relación S04K2/S04Na2 = 3/1 en las pastas puras de cemento portland, desde el comienzo del fraguado de las mismas. Se estudia el mecanismo de la citada formación, íntimamente relacionada con el proceso general de formación de eflorescencias salinas, a base de una emigración de sulfatos alcalinos hacia las partes externas de las pastas, en virtud de fenómenos de exudación equivalentes a arrastres capilares. Se sintetiza y aísla la aphthitalita por dos procedimientos y se obtiene su difractograma.de rayos· X, a efectos de su identificación y de la confirmación de los resultados experimentales obtenidos, así como de la interpretación de los mismos.

  1. Theoretical Analysis of the Dynamic Properties of a 2-2 Cement-Based Piezoelectric Dual-Layer Stacked Sensor under Impact Load

    Directory of Open Access Journals (Sweden)

    Taotao Zhang

    2017-05-01

    Full Text Available Cement-based piezoelectric materials are widely used due to the fact that compared with common smart materials, they overcome the defects of structure-incompatibility and frequency inconsistency with a concrete structure. However, the present understanding of the mechanical behavior of cement-based piezoelectric smart materials under impact load is still limited. The dynamic characteristics under impact load are of importance, for example, for studying the anti-collision properties of engineering structures and aircraft takeoff-landing safety. Therefore, in this paper, an analytical model was proposed to investigate the dynamic properties of a 2-2 cement-based piezoelectric dual-layer stacked sensor under impact load based on the piezoelectric effect. Theoretical solutions are obtained by utilizing the variable separation and Duhamel integral method. To simulate the impact load and verify the theory, three types of loads, including atransient step load, isosceles triangle load and haversine wave load, are considered and the comparisons between the theoretical results, Li’s results and numerical results are presented by using the control variate method and good agreement is found. Furthermore, the influences of several parameters were discussed and other conclusions about this sensor are also given. This should prove very helpful for the design and optimization of the 2-2 cement-based piezoelectric dual-layer stacked sensor in engineering.

  2. Theoretical Analysis of the Dynamic Properties of a 2-2 Cement-Based Piezoelectric Dual-Layer Stacked Sensor under Impact Load.

    Science.gov (United States)

    Zhang, Taotao; Liao, Yangchao; Zhang, Keping; Chen, Jun

    2017-05-04

    Cement-based piezoelectric materials are widely used due to the fact that compared with common smart materials, they overcome the defects of structure-incompatibility and frequency inconsistency with a concrete structure. However, the present understanding of the mechanical behavior of cement-based piezoelectric smart materials under impact load is still limited. The dynamic characteristics under impact load are of importance, for example, for studying the anti-collision properties of engineering structures and aircraft takeoff-landing safety. Therefore, in this paper, an analytical model was proposed to investigate the dynamic properties of a 2-2 cement-based piezoelectric dual-layer stacked sensor under impact load based on the piezoelectric effect. Theoretical solutions are obtained by utilizing the variable separation and Duhamel integral method. To simulate the impact load and verify the theory, three types of loads, including atransient step load, isosceles triangle load and haversine wave load, are considered and the comparisons between the theoretical results, Li's results and numerical results are presented by using the control variate method and good agreement is found. Furthermore, the influences of several parameters were discussed and other conclusions about this sensor are also given. This should prove very helpful for the design and optimization of the 2-2 cement-based piezoelectric dual-layer stacked sensor in engineering.

  3. The effect of temperature rise on microstructural properties of cement-based materials : Correlation of experimental data and a simulation approach

    NARCIS (Netherlands)

    Susanto, A.; Koleva, D.A.; Van Breugel, K.

    2015-01-01

    This work reports on the influence of stray current flow on temperature rise in hardening cement-based materials and consequently altered cement hydration. To simulate stray current, different levels of electrical current were applied to cement paste and mortar specimens immediately after casting.

  4. Preliminary results of the immobilization of highly-salt-ladened concentrate in cement-based grout: a joint DOE/CEA research effort

    International Nuclear Information System (INIS)

    Bouniol, P.E.; Peyre, C.H.; Mattus, A.J.; Pitt, W.W.

    1988-10-01

    The ability of two types of cement-based matrices to immobilize highly-salt-ladened concentrate containing primarily nitrate and phosphate is examined when considering both fresh and hardened material properties. The effects of the incorporation ratio and the temperature of the feed concentrate are evaluated

  5. Composition and microstructure of MTA and Aureoseal Plus: XRF, EDS, XRD and FESEM evaluation.

    Science.gov (United States)

    Cianconi, L; Palopoli, P; Campanella, V; Mancini, M

    2016-12-01

    The aim of this study was to determine the chemical composition and the phases' microstructure of Aureoseal Plus (OGNA, Italy) and ProRoot MTA (Dentsply Tulsa Dental, USA) and to compare their characteristics. Study Design: Comparing Aureoseal Plus and ProRoot MTA microstructure by means of several analyses type. The chemical analysis of the two cements was assessed following the UNI EN ISO 196-2 norm. X-Ray fluorescence (XRF) was used to determine the element composition. The crystalline structure was analysed quantitatively using x-ray diffraction (XRD). Powders morphology was evaluated using a scanning electron microscope (SEM) with backscattering detectors, and a field emission scanning electron microscope (FESEM). Elemental analysis was performed by energy dispersive x-ray analysis (EDS). The semi-quantitative XRF analysis showed the presence of heavy metal oxides in both cements. The XRD spectra of the two cements reported the presence of dicalcium silicate, tricalcium silicate, tricalcium aluminate, tetracalcium aluminoferrite, bismuth oxide and gypsum. SEM analysis showed that ProRoot MTA powder is less coarse and more homogeneous than Aureoseal. Both powders are formed by particles of different shapes: round, prismatic and oblong. The EDS analysis showed that some ProRoot MTA particles, differently from Aureoseal, contain Ca, Si, Al and Fe. Oblong particles in ProRoot and Aureoseal are rich of bismuth. The strong interest in developing new Portland cement-based endodontic sealers will create materials with increased handling characteristics and physicochemical properties. A thorough investigation on two cement powders was carried out by using XRF, XRD, SEM and EDS analysis. To date there was a lack of studies on Aureoseal Plus. This cement is similar in composition to ProRoot MTA. Despite that it has distinctive elements that could improve its characteristics, resulting in a good alternative to MTA.

  6. Elementary characterization of samples of Portland cement, natural gypsum and phosphogypsum mortars from Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Narloch, Danielle Cristine; Paschuk, Sergei Anatolyevich; Corrêa, Janine Nicolosi; Torres, Catarina Alzira Peddis; Mazer, Wellington; Macioski, Gustavo [Universidade Tecnologica Federal do Parana (UTFPR), PR (Brazil); Lara, Alessandro [Universidade de Sao Paulo (USP), SP (Brazil). Departamento de Fisica; Casali, Juliana Machado, E-mail: janine_nicolosi@hotmail.com, E-mail: alellara@hotmail.com, E-mail: jucasali@gmail.com [Instituto Federal de Santa Catarina (IFSC), Florianópolis, SC (Brazil)

    2017-07-01

    Portland cement, the basic ingredient of concrete and is manufactured by crushing, milling and proportioning limestone, sand, clay, iron ore and secondary materials such as shells, chalk or marl combined with shale slate or blast furnace slag, fly ash, gypsum, phosphogypsum, and some others. Evaluating the physical and mineralogical characteristics of the cement and its chemical composition is essential to establish the quality of the product. Therefore, the objective of this work was to characterize and quantify the most common chemical elements in the samples of Brazilian Portland cement, natural gypsum, and phosphogypsum mortars by means of X-ray dispersive energy spectroscopy (EDXRF), as well as to evaluate the strength of these mortars. For analysis of the compressive strength, initially prepared samples were submitted to a destructive mechanical test. Subsequently samples were milled and compacted to form thin tablets, which were submitted to the EDXRF analysis. The qualitative and quantitative analyzes showed that for phosphogypsum mortar the largest mass fractions were found of 49.8±2.5% (Si), 24.66±0.96% (S) and 22.10±0.42% (Ca). For gypsum mortar those values were found of 43.41±0.45% (Ca), 33.8 ± 0.8% (S) and 18.9±1.2% (Si), respectively; and for Portland cement mortar, the predominant elements in those samples have the mass fractions of 64.20±0.52% (Ca) and 27.3±1.5% (Si). The results showed that obtained values of mass fraction of the elements Si, S, K, Ca, Ti, Fe are in rather good agreement with quantities indicated for manufacture. Besides, gypsum and phosphogypsum presented almost the same composition and compressive strength. (author)

  7. Elementary characterization of samples of Portland cement, natural gypsum and phosphogypsum mortars from Brazil

    International Nuclear Information System (INIS)

    Narloch, Danielle Cristine; Paschuk, Sergei Anatolyevich; Corrêa, Janine Nicolosi; Torres, Catarina Alzira Peddis; Mazer, Wellington; Macioski, Gustavo; Lara, Alessandro

    2017-01-01

    Portland cement, the basic ingredient of concrete and is manufactured by crushing, milling and proportioning limestone, sand, clay, iron ore and secondary materials such as shells, chalk or marl combined with shale slate or blast furnace slag, fly ash, gypsum, phosphogypsum, and some others. Evaluating the physical and mineralogical characteristics of the cement and its chemical composition is essential to establish the quality of the product. Therefore, the objective of this work was to characterize and quantify the most common chemical elements in the samples of Brazilian Portland cement, natural gypsum, and phosphogypsum mortars by means of X-ray dispersive energy spectroscopy (EDXRF), as well as to evaluate the strength of these mortars. For analysis of the compressive strength, initially prepared samples were submitted to a destructive mechanical test. Subsequently samples were milled and compacted to form thin tablets, which were submitted to the EDXRF analysis. The qualitative and quantitative analyzes showed that for phosphogypsum mortar the largest mass fractions were found of 49.8±2.5% (Si), 24.66±0.96% (S) and 22.10±0.42% (Ca). For gypsum mortar those values were found of 43.41±0.45% (Ca), 33.8 ± 0.8% (S) and 18.9±1.2% (Si), respectively; and for Portland cement mortar, the predominant elements in those samples have the mass fractions of 64.20±0.52% (Ca) and 27.3±1.5% (Si). The results showed that obtained values of mass fraction of the elements Si, S, K, Ca, Ti, Fe are in rather good agreement with quantities indicated for manufacture. Besides, gypsum and phosphogypsum presented almost the same composition and compressive strength. (author)

  8. Investigation of Waste Paper Cellulosic Fibers Utilization into Cement Based Building Materials

    Directory of Open Access Journals (Sweden)

    Viola Hospodarova

    2018-03-01

    Full Text Available Recently, the utilization of renewable natural cellulosic materials, such as wood, plants, and waste paper in the preparation of building materials has attracted significant interest. This is due to their advantageous properties, low environmental impact and low cost. The objective of this paper is to investigate the influence of recycled cellulosic fibers (in the amount 0.5 wt % of the filler and binder weight and superplasticizer (in the amount 0.5 wt % of the cement weight on the resulting properties of cement composites (consistency of fresh mixture, density, thermal conductivity, and compressive and flexural strength for hardening times of 1, 3, 7, 28, and 90 days. Plasticizer use improved the workability of fresh cement mixture. In comparison to the reference sample, the results revealed a decrease in density of 6.8% and in the thermal conductivity of composites with cellulosic fibers of 34%. The highest values of compressive (48.4 MPa and flexural (up to 7 MPa strength were achieved for hardened fiber cement specimens with plasticizer due to their significantly better dispersion of cement particles and improved bond strength between fibers and matrix.

  9. Alternative Fuel for Portland Cement Processing

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Anton K; Duke, Steve R; Burch, Thomas E; Davis, Edward W; Zee, Ralph H; Bransby, David I; Hopkins, Carla; Thompson, Rutherford L; Duan, Jingran; ; Venkatasubramanian, Vignesh; Stephen, Giles

    2012-06-30

    The production of cement involves a combination of numerous raw materials, strictly monitored system processes, and temperatures on the order of 1500 °C. Immense quantities of fuel are required for the production of cement. Traditionally, energy from fossil fuels was solely relied upon for the production of cement. The overarching project objective is to evaluate the use of alternative fuels to lessen the dependence on non-renewable resources to produce portland cement. The key objective of using alternative fuels is to continue to produce high-quality cement while decreasing the use of non-renewable fuels and minimizing the impact on the environment. Burn characteristics and thermodynamic parameters were evaluated with a laboratory burn simulator under conditions that mimic those in the preheater where the fuels are brought into a cement plant. A drop-tube furnace and visualization method were developed that show potential for evaluating time- and space-resolved temperature distributions for fuel solid particles and liquid droplets undergoing combustion in various combustion atmospheres. Downdraft gasification has been explored as a means to extract chemical energy from poultry litter while limiting the throughput of potentially deleterious components with regards to use in firing a cement kiln. Results have shown that the clinkering is temperature independent, at least within the controllable temperature range. Limestone also had only a slight effect on the fusion when used to coat the pellets. However, limestone addition did display some promise in regards to chlorine capture, as ash analyses showed chlorine concentrations of more than four times greater in the limestone infused ash as compared to raw poultry litter. A reliable and convenient sampling procedure was developed to estimate the combustion quality of broiler litter that is the best compromise between convenience and reliability by means of statistical analysis. Multi-day trial burns were conducted

  10. Effect of sodium fluorosilicate on the properties of Portland cement.

    Science.gov (United States)

    Appelbaum, Keith S; Stewart, Jeffrey T; Hartwell, Gary R

    2012-07-01

    Mineral trioxide aggregate (MTA) satisfies most of the ideal properties of a surgical root-end filling and perforation repair material. It has been found to be nontoxic, noncarcinogenic, nongenotoxic, biocompatible, insoluble in tissue fluids, and dimensionally stable and promotes cementogenesis. The major disadvantages are its long setting time and difficult handling characteristics during placement when performing endodontic procedures. MTA is similar to Portland cement (PC) in both composition and properties. The cement industry has used many additives to decrease the setting time of PC. Proprietary formulas of PC additives include fluorosilicates, which decrease setting time. The purpose of this pilot study was to determine whether sodium fluorosilicate (SF) could be used to decrease the setting time without adversely affecting the compressive strength of PC. To determine the most appropriate amount of SF to add to PC to decrease its setting time, 1%, 2%, 3%, 4%, 5%, 10%, and 15% SF by weight were added to PC and compared with PC without SF. Setting times were measured by using a Gilmore needle, and compressive strengths were determined by using a materials testing system at 24 hours and 21 days. Statistical analysis was performed by using one-way analysis of variance with post hoc Games-Howell test. None of the percentages of SF were effective in changing the setting time of PC (P > .05), and the SF additives were found to decrease the compressive strength of PC (P < .001). On the basis of the conditions of this study, SF should not be used to decrease setting time and increase the compressive strength of PC and as such does not warrant further testing with MTA. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  11. Bactericidal strontium-releasing injectable bone cements based on bioactive glasses.

    Science.gov (United States)

    Brauer, Delia S; Karpukhina, Natalia; Kedia, Gopal; Bhat, Aditya; Law, Robert V; Radecka, Izabela; Hill, Robert G

    2013-01-06

    Strontium-releasing injectable bone cements may have the potential to prevent implant-related infections through the bactericidal action of strontium, while enhancing bone formation in patients suffering from osteoporosis. A melt-derived bioactive glass (BG) series (SiO2–CaO–CaF2–MgO) with 0–50% of calcium substituted with strontium on a molar base were produced. By mixing glass powder, poly(acrylic acid) and water, cements were obtained which can be delivered by injection and set in situ, giving compressive strength of up to 35 MPa. Strontium release was dependent on BG composition with increasing strontium substitution resulting in higher concentrations in the medium. Bactericidal effects were tested on Staphylococcus aureus and Streptococcus faecalis; cell counts were reduced by up to three orders of magnitude over 6 days. Results show that bactericidal action can be increased through BG strontium substitution, allowing for the design of novel antimicrobial and bone enhancing cements for use in vertebroplasty or kyphoplasty for treating osteoporosis-related vertebral compression fractures.

  12. Portland-pfa cement: a comparison between intergrinding and blending

    Energy Technology Data Exchange (ETDEWEB)

    Monk, M

    1983-09-01

    Portland-pfa cements containing 20-40% (by weight) pfa have been prepared in the laboratory both by intergrinding the ashes with clinker and by blending with cement. Cement properties have been assessed according to BS 4550 and scanning electron microscopy was used to examine the effects of grinding upon the pfa particles. The work has shown that intergrinding leads to an improvement in the water-reducing properties of coarse pfas and also in their pozzolanic activity as indicated by compressive strength development at later ages. Setting times have been found to be essentially the same for blended and interground cements, both being considerably longer than for typical ordinary Portland cements. Thus the results of this investigation indicate that, provided pfa's are chemically acceptable, they can be used for Portland-pfa cement manufacture by intergrinding irrespective of their coarseness.

  13. EnviroAtlas - Portland, OR - Meter-Scale Urban Land Cover (MULC) Data (2012)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Portland, OR Meter-Scale Urban Land Cover (MULC) dataset includes data for the Portland metropolitan area plus the city of Vancouver, Washington and...

  14. The existence state of uranium(VI) in portland cement matrix material immobilization body

    International Nuclear Information System (INIS)

    Tan Hongbin; Li Yuxiang

    2005-01-01

    The basis of Portland cement material reaction with uranium, the corrosion of uranium minerals in nature and the state of study on immobilization of uranium by Portland cement matrix material are introduced, and some considerations are presented. (authors)

  15. 78 FR 4381 - Foreign-Trade Zone 45-Portland, Oregon; Application for Reorganization and Expansion Under...

    Science.gov (United States)

    2013-01-22

    ... following sites: Site 1 (1,830 acres)--Rivergate Industrial Park, Port Terminal Nos. 5 and 6, and the... Way and NE Alderwood Road, Portland; Site 3 (254 acres)--Portland Ship Repair Yard, 5555 N. Channel...

  16. Mixed waste solidification testing on polymer and cement-based waste forms in support of Hanford's WRAP 2A facility

    International Nuclear Information System (INIS)

    Burbank, D.A. Jr.; Weingardt, K.M.

    1993-10-01

    A testing program has been conducted by the Westinghouse Hanford Company to confirm the baseline waste form selection for use in Waste Receiving and Processing (WRAP) Module 2A. WRAP Module 2A will provide treatment required to properly dispose of containerized contact-handled, mixed low-level waste at the US Department of Energy Hanford Site in south-central Washington State. Solidification/stabilization has been chosen as the appropriate treatment for this waste. This work is intended to test cement-based, thermosetting polymer, and thermoplastic polymer solidification media to substantiate the technology approach for WRAP Module 2A. Screening tests were performed using the major chemical constituent of each waste type to measure the gross compatibility with the immobilization media and to determine formulations for more detailed testing. Surrogate materials representing each of the eight waste types were prepared in the laboratory. These surrogates were then solidified with the selected immobilization media and subjected to a battery of standard performance tests. Detailed discussion of the laboratory work and results are contained in this report

  17. Shape Effect of Electrochemical Chloride Extraction in Structural Reinforced Concrete Elements Using a New Cement-Based Anodic System

    Directory of Open Access Journals (Sweden)

    Jesús Carmona

    2015-05-01

    Full Text Available This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.

  18. Shape Effect of Electrochemical Chloride Extraction in Structural Reinforced Concrete Elements Using a New Cement-Based Anodic System

    Science.gov (United States)

    Carmona, Jesús; Climent, Miguel-Ángel; Antón, Carlos; de Vera, Guillem; Garcés, Pedro

    2015-01-01

    This article shows the research carried out by the authors focused on how the shape of structural reinforced concrete elements treated with electrochemical chloride extraction can affect the efficiency of this process. Assuming the current use of different anode systems, the present study considers the comparison of results between conventional anodes based on Ti-RuO2 wire mesh and a cement-based anodic system such as a paste of graphite-cement. Reinforced concrete elements of a meter length were molded to serve as laboratory specimens, to closely represent authentic structural supports, with circular and rectangular sections. Results confirm almost equal performances for both types of anode systems when electrochemical chloride extraction is applied to isotropic structural elements. In the case of anisotropic ones, such as rectangular sections with no uniformly distributed rebar, differences in electrical flow density were detected during the treatment. Those differences were more extreme for Ti-RuO2 mesh anode system. This particular shape effect is evidenced by obtaining the efficiencies of electrochemical chloride extraction in different points of specimens.

  19. Regional economic impact assessment: Evaluating remedial alternatives for the Portland Harbor Superfund Site, Portland, Oregon, USA.

    Science.gov (United States)

    Harrison, David; Coughlin, Conor; Hogan, Dylan; Edwards, Deborah A; Smith, Benjamin C

    2018-01-01

    The present paper describes a methodology for evaluating impacts of Superfund remedial alternatives on the regional economy in the context of a broader sustainability evaluation. Although economic impact methodology is well established, some applications to Superfund remedial evaluation have created confusion because of seemingly contradictory results. This confusion arises from failure to be explicit about 2 opposing impacts of remediation expenditures: 1) positive regional impacts of spending additional money in the region and 2) negative regional impacts of the need to pay for the expenditures (and thus forgo other expenditures in the region). The present paper provides a template for economic impact assessment that takes both positive and negative impacts into account, thus providing comprehensive estimates of net impacts. The paper also provides a strategy for identifying and estimating major uncertainties in the net impacts. The recommended methodology was applied at the Portland Harbor Superfund Site, located along the Lower Willamette River in Portland, Oregon, USA. The US Environmental Protection Agency (USEPA) developed remedial alternatives that it estimated would cost up to several billion dollars, with construction durations possibly lasting decades. The economic study estimated regional economic impacts-measured in terms of gross regional product (GRP), personal income, population, and employment-for 5 of the USEPA alternatives relative to the "no further action" alternative. Integr Environ Assess Manag 2018;14:32-42. © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC). © 2017 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

  20. The rim zone of cement based materials - barrier or fast lane for chemical degradation?

    International Nuclear Information System (INIS)

    Schwotzer, M.; Kaltenbach, J.; Heck, P.F.; Konno, K.; Gerdes, A.

    2015-01-01

    This contribution focuses exemplarily on the chemical and mineralogical changes in the rim zone of cement paste samples exposed to different chloride solutions (NaCl, KCl, MgCl 2 and CaCl 2 ), to hard tap water and to demineralized water. The determination of the Ca(OH) 2 and Mg(OH) 2 content of the solid phases was performed by means of thermogravimetry with pulverized samples (TGA/SDTA 851, Mettler-Toledo). A potential relation between temperature and the time dependant development of the material due to reactive transport processes will also be addressed. The experiments with tap water showed that the contact between the cement paste samples and hard tap water did not lead to significant changes in the composition of the solid samples or of the reaction solution. This can be attributed to a rapid formation of a protective calcium carbonate layer on the surface of the cement paste. The slight decrease of the Ca 2+ content in the solution indicates that the growth of this layer occurs within the first few hours. In contrast to the tap water exposure, the results of the experiments with the MgCl 2 solutions show features of an intense attack despite the presence of crystalline covering layers. The quick formation of a thick and dense Mg(OH) 2 layer does not provide any protection against reactive transport processes. In this experiment, the degradation rate of Ca(OH) 2 as well as the Ca 2+ release was higher than in all other experiments. In addition the rapid formation of a Mg(OH) 2 layer starting already during the first hour of the experiment did not prevent the chloride ingress compared to the other experiments with chloride solutions. The pH value of the reaction solution remains stable and relatively low which indicates a crystallisation process. In the other experiments, performed with demineralized water, alkali chloride solutions, and the CaCl 2 solution, no significant formation of potentially protective covering layers and no development of transport

  1. Characterization and chemical activity of Portland cement and two experimental cements with potential for use in dentistry.

    Science.gov (United States)

    Camilleri, J

    2008-09-01

    To evaluate the chemical activity of Portland cement and two other cement types with similar chemical composition to mineral trioxide aggregate with the aim of developing these cements for further applications in dentistry. The chemical composition of the three cement types namely Portland cement, calcium sulpho-aluminate cement and calcium fluoro-aluminate cement was evaluated by elemental analysis using energy dispersive analysis with X-ray under the scanning electron microscope and by X-ray diffraction analysis (XRD) to determine the phases. The constituents of the hydration reaction by-products were evaluated by XRD analysis of the set cements at 1, 7, 28 and 56 days and by analysis of the leachate by ion chromatography. The pH of both cements and leachate was determined at different time intervals. Cements admixed with micro-silica were also tested to determine the effect of micro-silica on the reaction by-products. All three cement types were composed of tricalcium silicate as the main constituent phase. The hydration reaction of Portland cement produced calcium hydroxide. However, this was not present in the other cements tested at all ages. Admixed micro-silica had little or no effect on the cements with regard to reaction by-products. The pH of all cements tested was alkaline. Both the experimental calcium sulpho-aluminate cement and calcium fluoro-aluminate cement had different hydration reactions to that of Portland cement even though calcium silicate was the major constituent element of both cement types. No calcium hydroxide was produced as a by-product to cement hydration. Micro-silica addition to the cement had no effect on the hydration reaction.

  2. 40 CFR 81.51 - Portland Interstate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Regions § 81.51 Portland Interstate Air Quality Control Region. The Portland Interstate Air Quality Control Region (Oregon-Washington) has been revised to consist of the territorial area... Portland Interstate Air Quality Control Region (Oregon-Washington) will be referred to by Washington...

  3. 76 FR 28315 - Security Zone; Portland Rose Festival on Willamette River

    Science.gov (United States)

    2011-05-17

    ... Zone; Portland Rose Festival on Willamette River AGENCY: Coast Guard, DHS. ACTION: Notice of enforcement of regulation. SUMMARY: The Coast Guard will enforce the Portland Rose Festival Security Zone in... River during the Portland Rose festival. During the enforcement period, no person or vessel may enter or...

  4. 76 FR 78240 - Gray Portland Cement and Clinker From Japan: Continuation of Antidumping Duty Order

    Science.gov (United States)

    2011-12-16

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-588-815] Gray Portland Cement and... Department) initiated the third sunset review of the antidumping duty order on gray portland cement and... of the antidumping duty order on gray portland cement and clinker from Japan would likely lead to...

  5. 75 FR 54969 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Science.gov (United States)

    2010-09-09

    ... Hazardous Air Pollutants From the Portland Cement Manufacturing Industry and Standards of Performance for... Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing Industry and Standards of... (NESHAP) from the Portland Cement Manufacturing Industry and to the New Source Performance Standards (NSPS...

  6. 77 FR 42367 - National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing...

    Science.gov (United States)

    2012-07-18

    ... and 63 National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing... Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing Industry and Standards of... manufacturing plants. Federal government Not affected. State/local/tribal government.... Portland cement...

  7. 76 FR 2860 - National Emission Standards for Hazardous Air Pollutants From the Portland Cement Manufacturing...

    Science.gov (United States)

    2011-01-18

    ... Cement Manufacturing Industry and Standards of Performance for Portland Cement Plants AGENCY... Portland Cement Manufacturing Industry Docket, Docket ID No. EPA-HQ-OAR-2002-0051, 1200 Pennsylvania Ave... Portland Cement Manufacturing Industry Docket, EPA West, Room 3334, 1301 Constitution Ave., NW., Washington...

  8. Effect of Relative Humidity and CO2 Concentration on the Properties of Carbonated Reactive MgO Cement Based Materials

    Science.gov (United States)

    Bilan, Yaroslav

    Sustainability of modern concrete industry recently has become an important topic of scientific discussion, and consequently there is an effort to study the potential of the emerging new supplementary cementitious materials. This study has a purpose to investigate the effect of reactive magnesia (reactive MgO) as a replacement for general use (GU) Portland Cements and the effect of environmental factors (CO2 concentrations and relative humidity) on accelerated carbonation curing results. The findings of this study revealed that improvement of physical properties is related directly to the increase in CO2 concentrations and inversely to the increase in relative humidity and also depends much on %MgO in the mixture. The conclusions of this study helped to clarify the effect of variable environmental factors and the material replacement range on carbonation of reactive magnesia concrete materials, as well as providing an assessment of the optimal conditions for the effective usage of the material.

  9. Expansive failure reactions and their prevention in the encapsulation of phenol formaldehyde type ion exchange resins in cement based systems

    Energy Technology Data Exchange (ETDEWEB)

    Constable, M.; Howard, C.G.; Johnson, M.A.; Jolliffe, C.B. (AEA Decommissioning and Waste Management, Winfrith (United Kingdom)); Sellers, R.M. (Nuclear Electric plc, Barnwood (United Kingdom))

    1992-01-01

    Lewatit DN is a phenol formaldehyde based ion exchange resin used to remove radioactive caesium from liquid waste streams such as fuel cooling ponds and effluents. This paper presents the results of a study of the encapsulation of the bead form of the resin in cement with particular reference to the mechanisms of its interaction with the encapsulant. When incorporated in pure ordinary Portland cement (OPC) at loadings in excess of 15 wt % an unstable product results due to expansion of the systems and at higher waste loadings failure results after only a few days. Evidence from differential scanning calorimetry, X-ray diffraction and scanning electron microscopy all indicate the cause of the expansive reaction to be the formation of crystals of calcium salts around and within the resin beads. Addition of BFS and sodium hydroxide prevent the formation of these salts by removal of calcium hydroxide from the system in other reactions. (author).

  10. High temperature polymer concrete compositions

    Science.gov (United States)

    Fontana, Jack J.; Reams, Walter

    1985-01-01

    This invention is concerned with a polymer concrete composition, which is a two-component composition useful with many bases including metal. Component A, the aggregate composition, is broadly composed of silica, silica flour, portland cement, and acrylamide, whereas Component B, which is primarily vinyl and acrylyl reactive monomers, is a liquid system. A preferred formulation emphasizing the major necessary components is as follows: ______________________________________ Component A: Silica sand 60-77 wt. % Silica flour 5-10 wt. % Portland cement 15-25 wt. % Acrylamide 1-5 wt. % Component B: Styrene 50-60 wt. % Trimethylolpropane 35-40 wt. % trimethacrylate ______________________________________ and necessary initiators, accelerators, and surfactants.

  11. Effect of Cement Composition in Lampung on Concrete Strength

    OpenAIRE

    Riyanto, Hery

    2014-01-01

    The strength and durability of concrete depends on the composition of its constituent materials ie fine aggregate, coarse aggregate, cement, water and other additives. The cement composition is about 10% acting as a binder paste material fine and coarse aggregates. In the Lampung market there are several brands of portland cement used by the community to make concrete construction. Although there is a standard of the government of portland cement composition, yet each brand of cement has diff...

  12. Comparative study of the properties of ordinary portland cement ...

    African Journals Online (AJOL)

    The study explored metakaolin as alternative material to cement. It compares the properties of Ordinary Portland Cement (OPC) concrete and binary concrete containing metakaolin as partial replacement of OPC. Two set of concrete samples; one with 10% Metakaolin (MK) replacing OPC by weight, and the other without ...

  13. Toxicity and Histopathological Effects of Portland Cement Powder in ...

    African Journals Online (AJOL)

    Hepatic lesions in the liver tissues of fish exposed to Portland cement powder in solution were characterized by degeneration of hepatocyte, vascuolization of cell cytoplasm, fatty degeneration and hypertrophy of hepatocytes. Histological comparison of tissues indicated that most damage occurred in the gill rather than in ...

  14. Assessment of Pollution Potentialities of some Portland Cement ...

    African Journals Online (AJOL)

    Chemical analysis of some Portland cement commonly used in Nigeria was carried out. All the cement studies were found to be good for concrete work especially where no special property is required. The concentration levels of heavy metals in all the cement samples were above the tolerance limit and therefore need to ...

  15. Biocompatibility of Portland cement combined with different radiopacifying agents.

    Science.gov (United States)

    Lourenço Neto, Natalino; Marques, Nádia C T; Fernandes, Ana Paula; Rodini, Camila O; Duarte, Marco A H; Lima, Marta C; Machado, Maria A A M; Abdo, Ruy C C; Oliveira, Thais M

    2014-03-01

    The aim of this study was to evaluate the response of rat subcutaneous tissue to Portland cement combined with two different radiopacifying agents, iodoform (CHI3) and zirconium oxide (ZrO2). These materials were placed in polyethylene tubes and implanted into the dorsal connective tissue of Wistar rats for 7 and 15 days. The specimens were then stained with hematoxylin and eosin, and inflammatory reaction parameters were evaluated by light microscopy. The intensity of the inflammatory response to the sealants was analyzed by two blind calibrated observers throughout the experimental period. Histological analysis showed that all the materials caused a moderated inflammatory reaction at 7 days, which then diminished with time. At 15 days, the inflammatory reaction was almost absent, and fibroblasts and collagen fibers were observed indicating normal tissue healing. The degrees of the inflammatory reaction on different days throughout the experimental period were compared using the non-parametric Kruskal-Wallis test. Statistical analysis demonstrated no significant differences amongst the groups, and Portland cement associated with radiopacifying agents gave satisfactory results. Therefore, Portland cement used in combination with radiopacifying agents can be considered a biocompatible material. Although our results are very encouraging, further studies are needed in order to establish safe clinical indications for Portland cement combined with radiopacifying agents.

  16. Portland Public Schools Project Chrysalis: Year 2 Evaluation Report.

    Science.gov (United States)

    Mitchell, Stephanie J.; Gabriel, Roy M.; Hahn, Karen J.; Laws, Katherine E.

    In 1994, the Chrysalis Project in Portland Public Schools received funding to prevent or delay the onset of substance abuse among a special target population: high-risk, female adolescents with a history of childhood abuse. Findings from the evaluation of the project's second year of providing assistance to these students are reported here. During…

  17. Portland cement with additives in the repair of furcation perforations in dogs.

    Science.gov (United States)

    Silva Neto, José Dias da; Schnaider, Taylor Brandão; Gragnani, Alfredo; Paiva, Anderson Paulo de; Novo, Neil Ferreira; Ferreira, Lydia Masako

    2012-11-01

    To evaluate the use of Portland cements with additives as furcation perforation repair materials and assess their biocompatibility. The four maxillary and mandibular premolars of ten male mongrel dogs (1-1.5 years old, weighing 10-15 kg) received endodontic treatment (n=80 teeth). The furcations were perforated with a round diamond bur (1016 HL). The perforations involved the dentin, cementum, periodontal ligament, and alveolar bone. A calcium sulfate barrier was placed into the perforated bone to prevent extrusion of obturation material into the periradicular space. The obturation materials MTA (control), white, Type II, and Type V Portland cements were randomly allocated to the teeth. Treated teeth were restored with composite resin. After 120 days, the animals were sacrificed and samples containing the teeth were collected and prepared for histological analysis. There were no significant differences in the amount of newly formed bone between teeth treated with the different obturation materials (p=0.879). Biomineralization occurred for all obturation materials tested, suggesting that these materials have similar biocompatibility.

  18. Engineered cementitious composites with low volume of cementitious materials

    NARCIS (Netherlands)

    Zhou, J.; Quian, S.; Van Breugel, K.

    2010-01-01

    Engineered cementitious composite (ECC) is an ultra ductile cement-based material reinforced with fibers. It is characterized by high tensile ductility and tight crack width control. Thanks to the excellent performance, ECC is emerging in broad applications to enhance the loading capacity and the

  19. Self-healing of drying shrinkage cracks in cement-based materials incorporating reactive MgO

    Science.gov (United States)

    Qureshi, T. S.; Al-Tabbaa, A.

    2016-08-01

    Excessive drying shrinkage is one of the major issues of concern for longevity and reduced strength performance of concrete structures. It can cause the formation of cracks in the concrete. This research aims to improve the autogenous self-healing capacity of traditional Portland cement (PC) systems, adding expansive minerals such as reactive magnesium oxide (MgO) in terms of drying shrinkage crack healing. Two different reactive grades (high ‘N50’and moderately high ‘92-200’) of MgO were added with PC. Cracks were induced in the samples with restraining end prisms through natural drying shrinkage over 28 days after casting. Samples were then cured under water for 28 and 56 days, and self-healing capacity was investigated in terms of mechanical strength recovery, crack sealing efficiency and improvement in durability. Finally, microstructures of the healing materials were investigated using FT-IR, XRD, and SEM-EDX. Overall N50 mixes show higher expansion and drying shrinkage compared to 92-200 mixes. Autogenous self-healing performance of the MgO containing samples were much higher compared to control (only PC) mixes. Cracks up to 500 μm were sealed in most MgO containing samples after 28 days. In the microstructural investigations, highly expansive Mg-rich hydro-carbonate bridges were found along with traditional calcium-based, self-healing compounds (calcite, portlandite, calcium silicate hydrates and ettringite).

  20. Concentration Limits in the Cement Based Swiss Repository for Long-lived, Intermediate-level Radioactive Wastes (LMA)

    International Nuclear Information System (INIS)

    Berner, Urs

    1999-12-01

    ) similar chemical behaviour of comparable elements The report compiles the expected maximum concentration in the cement pore water of the inner silo region, together with a detailed description of the criteria leading to the recommended values. For about half of the elements (U, Th, Np, Pu, Am, Ni, Zr, Sr) the presented maximum concentrations have a more general validity in cementitious systems, since they were derived from recent experimental investigations in cementitious environments or from reliable thermodynamic data. For the other elements, the validity of the recommendation is restricted to the specific repository design presented. The recommended numbers strongly depend on particular system properties and must not be transferred to other repository systems. In spite of these short-comings, the underlying criteria are nevertheless applicable to different cement based repositories, and will help to improve the determination of maximum concentrations in such environments. (author)

  1. Radiopacity and histological assessment of Portland cement plus bismuth oxide.

    Science.gov (United States)

    Coutinho-Filho, Tauby; De-Deus, Gustavo; Klein, Leila; Manera, Gisele; Peixoto, Carla; Gurgel-Filho, Eduardo Diogo

    2008-12-01

    The present study evaluated the subcutaneous connective tissue reactions and the radiopacity of MTA, Portland cement (PC), and Portland cement plus bismuth oxide (BO). Forty rats were divided into 5 groups (n = 8 per group): A1: Control (empty capsule); A2: Pro-Root MTA; A3: PC; A4: PC + BO 1:1; and A5: PC + BO 2:1. Polyethylene tubes were filled with the test materials and standardized radiographic images were taken. Histological evaluation was done after 7 and 60 days. Student t test and Fisher's test were used in the statistical analysis (P A4 > A5 > A3. No differences were found for the tissue response in the 2 experimental periods. A positive correlation between BO concentration and radiopacity of PC was determined. The histological evaluation suggests that all studied materials were biocompatible at 7 and 60 days.

  2. Use of red mud as addition for portland cement mortars

    International Nuclear Information System (INIS)

    Ribeiro, D.V.; Morelli, M.R.

    2011-01-01

    The aim of the present research work was to investigate the possibility of adding red mud, an alkaline leaching waste that is obtained from bauxite during the Bayer process for alumina production, in the raw meal of Portland cement mortars. The red mud is classified as dangerous, according to NBR 10004/2004, and world while generation reached over 117 million tons/year. This huge production requires high consuming products to be used as incorporation matrix and we studied the influence of red mud addition on the characteristics of cement mortars and concrete. In this paper the properties of Portland cement mortars incorporating high amounts of red mud was evaluated: pH variation, fresh (setting time, workability or normal consistency and water retention), and hardened state (mechanical strength, capillary water absorption, density and apparent porosity). Results seem promising for red mud additions up to 20 wt%. (author)

  3. City of Portland: Businesses for an environmentally sustainable tomorrow

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The sustainable business development program in Portland (OR) is known as BEST. BEST stands for Businesses for an Environmentally Sustainable Tomorrow. The Portland Energy Office operates BEST as a {open_quotes}one-stop service center{close_quotes} for business owners and managers. BEST provides information and assistance on resource efficient buildings and business practices. The results of BEST`s two years of operation have been generally impressive. Nearly 150 new or expanding businesses have been connected with utility design assistance programs. Businesses have also received assistance with water conservation, telecommuting, construction debris recycling, and alternative fuel vehicles. BEST has received local and national publicity and BEST services have been the topic at more than a dozen conferences, meetings, or other speaking engagements. A guidebook for communities wishing to start a similar program will be available in early 1996.

  4. Composites

    International Nuclear Information System (INIS)

    Kasen, M.B.

    1983-01-01

    This chapter discusses the roles of composite laminates and aggregates in cryogenic technology. Filamentary-reinforced composites are emphasized because they are the most widely used composite materials. Topics considered include composite systems and terminology, design and fabrication, composite failure, high-pressure reinforced plastic laminates, low-pressure reinforced plastics, reinforced metals, selectively reinforced structures, the effect of cryogenic temperatures, woven-fabric and random-mat composites, uniaxial fiber-reinforced composites, composite joints in cryogenic structures, joining techniques at room temperature, radiation effects, testing laminates at cryogenic temperatures, static and cyclic tensile testing, static and cyclic compression testing, interlaminar shear testing, secondary property tests, and concrete aggregates. It is suggested that cryogenic composite technology would benefit from the development of a fracture mechanics model for predicting the fitness-for-purpose of polymer-matrix composite structures

  5. Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR

    Science.gov (United States)

    Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.

    2017-12-01

    Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.

  6. Mineral trioxide aggregate and Portland cement promote biomineralization in vivo.

    Science.gov (United States)

    Dreger, Luonothar Antunes Schmitt; Felippe, Wilson Tadeu; Reyes-Carmona, Jessie Fabiola; Felippe, Gabriela Santos; Bortoluzzi, Eduardo Antunes; Felippe, Mara Cristina Santos

    2012-03-01

    Mineral trioxide aggregate (MTA) and Portland cement have been shown to be bioactive because of their ability to produce biologically compatible carbonated apatite. This study analyzed the interaction of MTA and white Portland cement with dentin in vivo. Seventy-two human dentin tubes were filled with MTA Branco, MTA BIO, and white Portland cement + 20% bismuth oxide (PC1) or PC1 + 10% of calcium chloride (PC2) and implanted subcutaneously in 18 rats at 4 sites from the dorsal area. Empty dentin tubes, implanted in rats of a pilot study, were used as control. After 30, 60, and 90 days, the animals were killed, and the dentin tubes were retrieved for scanning electron microscope analysis. In the periods of 30 and 60 days, the mineral deposition in the material-dentin interface (interfacial layer) and in the interior of dentinal tubules was detected in more tubes filled with MTA Branco and MTA BIO than in tubes filled with PC1 and PC2. After 90 days, the interfacial layer and intratubular mineralization were detected in all tubes except for 3 and 1 of the tubes filled with PC2, respectively. It was concluded that all the cements tested were bioactive. The cements released some of their components in the tissue capable of stimulating mineral deposition in the cement-dentin interface and in the interior of the dentinal tubules. MTA BIO and MTA Branco were more effective in promoting the biomineralization process than Portland cements, mainly after 30 and 60 days. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  7. Trees in the city: valuing street trees in Portland, Oregon

    Science.gov (United States)

    G.H. Donovan; D.T. Butry

    2010-01-01

    We use a hedonic price model to simultaneously estimate the effects of street trees on the sales price and the time-on-market (TOM) of houses in Portland. Oregon. On average, street trees add $8,870 to sales price and reduce TOM by 1.7 days. In addition, we found that the benefits of street trees spill over to neighboring houses. Because the provision and maintenance...

  8. Binding of chloride and alkalis in Portland cement systems

    International Nuclear Information System (INIS)

    Nielsen, Erik P.; Herfort, Duncan; Geiker, Mette R.

    2005-01-01

    A thermodynamic model for describing the binding of chloride and alkalis in hydrated Portland cement pastes has been developed. The model is based on the phase rule, which for cement pastes in aggressive marine environment predicts multivariant conditions, even at constant temperature and pressure. The effect of the chloride and alkalis has been quantified by experiments on cement pastes prepared from white Portland cements containing 4% and 12% C 3 A, and a grey Portland cement containing 7% C 3 A. One weight percent calcite was added to all cements. The pastes prepared at w/s ratio of 0.70 were stored in solutions of different Cl (CaCl 2 ) and Na (NaOH) concentrations. When equilibrium was reached, the mineralogy of the pastes was investigated by EDS analysis on the SEM. A well-defined distribution of chloride was found between the pore solution, the C-S-H phase, and an AFm solid solution phase consisting of Friedel's salt and monocarbonate. Partition coefficients varied as a function of iron and alkali contents. The lower content of alkalis in WPC results in higher chloride contents in the C-S-H phase. High alkali contents result in higher chloride concentrations in the pore solution

  9. A study of photon interaction in some building materials: High-volume admixture of blast furnace slag into Portland cement

    International Nuclear Information System (INIS)

    Kurudirek, Murat; Tuerkmen, Ibrahim; Ozdemir, Yueksel

    2009-01-01

    Total mass attenuation coefficients, mean free paths (MFP), half-value (HVT) and tenth-value (TVT) thicknesses of Portland cement and three mixtures have been calculated in function of the energy from 1 keV to 100 GeV. Both in the low- and high-energy region there were significant variations in those parameters where photoelectric process and pair production partially dominates, respectively. In general, the attenuation parameters were found to vary with chemical composition, density of given material and photon energy.

  10. A study of photon interaction in some building materials: High-volume admixture of blast furnace slag into Portland cement

    Energy Technology Data Exchange (ETDEWEB)

    Kurudirek, Murat [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey)], E-mail: mkurudirek@gmail.com; Tuerkmen, Ibrahim [Faculty of Engineering, Department of Civil Engineering, Ataturk University, 25240 Erzurum (Turkey); Ozdemir, Yueksel [Faculty of Science, Department of Physics, Ataturk University, 25240 Erzurum (Turkey)

    2009-09-15

    Total mass attenuation coefficients, mean free paths (MFP), half-value (HVT) and tenth-value (TVT) thicknesses of Portland cement and three mixtures have been calculated in function of the energy from 1 keV to 100 GeV. Both in the low- and high-energy region there were significant variations in those parameters where photoelectric process and pair production partially dominates, respectively. In general, the attenuation parameters were found to vary with chemical composition, density of given material and photon energy.

  11. Experimental Investigation of the Piezoresistive Properties of Cement Composites with Hybrid Carbon Fibers and Nanotubes

    Directory of Open Access Journals (Sweden)

    Seung-Jung Lee

    2017-11-01

    Full Text Available Cement-based sensors with hybrid conductive fillers using both carbon fibers (CFs and multi-walled carbon nanotubes (MWCNTs were experimentally investigated in this study. The self-sensing capacities of cement-based composites with only CFs or MWCNTs were found based on preliminary tests. The results showed that the percolation thresholds of CFs and MWCNTs were 0.5–1.0 vol.% and 1.0 vol.%, respectively. Based on these results, the feasibility of self-sensing composites with four different amounts of CFs and MWCNTs was considered under cyclic compression loads. When the amount of incorporated CFs increased and the amount of incorporated MWCNTs decreased, the self-sensing capacity of the composites was reduced. It was concluded that cement-based composites containing both 0.1 vol.% CFs and 0.5 vol.% MWCNTs could be an alternative to cement-based composites with 1.0 vol.% MWCNTs in order to achieve equivalent self-sensing performance at half the price. The gauge factor (GF for that composite was 160.3 with an R-square of 0.9274 in loading stages I and II, which was similar to the GF of 166.6 for the composite with 1.0 vol.% MWCNTs.

  12. Multi-scale modeling of the thermo-hydro- mechanical behaviour of heterogeneous materials. Application to cement-based materials under severe loads

    International Nuclear Information System (INIS)

    Grondin, Frederic Alain

    2005-01-01

    The work of modeling presented here relates to the study of the thermo-hydro- mechanical behaviour of porous materials based on hydraulic binder such as concrete, High Performance Concrete or more generally cement-based materials. This work is based on the exploitation of the Digital Concrete model, of the finite element code Symphonie developed in the Scientific and Technical Centre for Building (CSTB), in coupling with the homogenization methods to obtain macroscopic behaviour laws drawn from the Micro-Macro relations. Scales of investigation, macroscopic and microscopic, has been exploited by simulation in order to allow the comprehension fine of the behaviour of cement-based materials according to thermal, hydrous and mechanical loads. It appears necessary to take into account various scales of modeling. In order to study the behaviour of the structure, we are brought to reduce the scale of investigation to study the material more particularly. The research tasks presented suggest a new approach for the identification of the multi-physic behaviour of materials by simulation. In complement of the purely experimental approach, based on observations on the sample with measurements of the apparent parameters on the macroscopic scale, this new approach allows to obtain the fine analysis of elementary mechanisms in acting within the material. These elementary mechanisms are at the origin of the evolution of the macroscopic parameters measured in experimental tests. In this work, coefficients of the thermo-hydro-mechanical behaviour law of porous materials and the equivalent hydraulic conductivity were obtained by a multi-scales approach. Applications has been carried out on the study of the damaged behaviour of cement-based materials, in the objective to determine the elasticity tensor and the permeability tensor of a High Performance Concrete at high temperatures under a mechanical load. Also, the study of the strain evolution of cement-based materials at low

  13. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2011-01-01

    Strategies are open compositions to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them in full...

  14. Composition

    DEFF Research Database (Denmark)

    2014-01-01

    Memory Pieces are open compositions to be realised solo by an improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound files will in some cases only provide a few minutes' sample. Please DOWNLOAD them to hear them...

  15. Comparison of the physical and mechanical properties of MTA and portland cement.

    Science.gov (United States)

    Islam, Intekhab; Chng, Hui Kheng; Yap, Adrian U Jin

    2006-03-01

    This study evaluated and compared the pH, radiopacity, setting time, solubility, dimensional change, and compressive strength of ProRoot MTA (PMTA), ProRoot MTA (tooth colored formula) (WMTA), white Portland cement (WP), and ordinary Portland cement (OP). The results showed that PMTA and Portland cement have very similar physical properties. However, the radiopacity of Portland cement is much lower than that of PMTA. The compressive strength of PMTA was greater than Portland cement at 28 days. The major constituent of PMTA is Portland cement. Given the low cost of Portland cement and similar properties when compared to PMTA, it is reasonable to consider Portland cement as a possible substitute for PMTA in endodontic applications. However, industrially manufactured Portland cement is not approved currently for use in the United States and therefore no clinical recommendation can be made for its use in the human body. Further in vitro and in vivo tests, especially with regards its biocompatibility, should be conducted to ascertain if it meets the FDA requirements for use as a medical device.

  16. The Effect of Using Sewage Sludge Ash with and without Nano Silica Particles on Properties of Self-compacting Cement Based Materials

    Directory of Open Access Journals (Sweden)

    Amin Khoshravesh

    2014-10-01

    Full Text Available Nowadays using pozzolanic materials is crucial as a replacement of needed cement, improving properties of cement based materials and saving costs. On the other hand sewage sludge is harmful to the environment and human health. So in this research the sewage sludge ash has been used as an artificial pozzolan to produce self compacting cement based materials which could be evaluated as a revolution in the concrete industry. The objective of this research was to accelerate the performance of sewage sludge ash by utilizing nano silica particles. This research includes 10 mix designs for self compacting mortar and concrete made up of binary and ternary cementitious blends of sewage sludge ash (0%,5%,10%,15%,20% and nano silica (0%,1%. The results showed that by adding the sewage sludge ash, rheological and mechanical properties of the samples were reduced and for small percentages of sewage sludge ash, the durability characteristics were improved. The results also showed that adding nano silica improved the mechanical and durability properties of self compacting mortar and concrete. Finally in presence of nano silica, the reactivity of the sewage sludge ash was increased and its performance was improved.

  17. Optimization of an anion-exchange high performance liquid chromatography-inductively coupled plasma-mass spectrometric method for the speciation analysis of oxyanion-forming metals and metalloids in leachates from cement-based materials.

    Science.gov (United States)

    Mulugeta, Mesay; Wibetoe, Grethe; Engelsen, Christian J; Lund, Walter

    2010-10-01

    A method was developed for the speciation analysis of the oxyanions of As(III), As(V), Cr(VI), Mo(VI), Sb(III), Sb(V), Se(IV), Se(VI) and V(V) in leachates from cement-based materials, based on anion-exchange HPLC coupled with ICP-MS. The method was optimized in a two-step multivariate approach: the effect of sample pH and mobile phase composition on resolution, peak symmetry and analysis time was studied. Optimum conditions were then identified for the significant experimental factors by studying their interdependence. A mobile phase composition of 20 mM ammonium nitrate, 50 mM ammonium tartrate and pH 9.5 was found to be a compromise optimum for the separation of the target analytes using isocratic elution. The optimum condition provided separation of the analytes in less than 6 min, at a mobile phase flow rate of 1.0 mL/min. The signal intensities of the analytes were improved by adding 1% methanol to the mobile phase. The limit of detection of the method was in the range 0.2-2.2 μg/L for the various species. The effect of sample constituents was studied using spiked concrete leachates. The method was used to determine the target oxyanionic species in leachates generated from a concrete material in the pH range 3.5-12.4; CrO(4)(2-), MoO(4)(2-) and VO(4)(3-) were detected in most of the leachates. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Durability of cement-based materials: modeling of the influence of physical and chemical equilibria on the microstructure and the residual mechanical properties; Durabilite des materiaux cimentaires: modelisation de l'influence des equilibres physico-chimiques sur la microstructure et les proprietes mecaniques residuelles

    Energy Technology Data Exchange (ETDEWEB)

    Guillon, E

    2004-09-15

    A large part of mechanical and durability characteristics of cement-based materials comes from the performances of the hydrated cement, cohesive matrix surrounding the granular skeleton. Experimental studies, in situ or in laboratory, associated to models, have notably enhanced knowledge on the cement material and led to adapted formulations to specific applications or particularly aggressive environments. Nevertheless, these models, developed for precise cases, do not permit to specifically conclude for other experimental conclusions. To extend its applicability domain, we propose a new evolutive approach, based on reactive transport expressed at the microstructure scale of the cement. In a general point of view, the evolution of the solid compounds of the cement matrix, by dissolutions or precipitations, during chemical aggressions can be related to the pore solution evolution, and this one relied to the ionic exchanges with the external environment. By the utilization of a geochemical code associated to a thermodynamical database and coupled to a 3D transport model, this approach authorizes the study of all aggressive solution. The approach has been validated by the comparison of experimental observations to simulated degradations for three different environments (pure water, mineralized water, seawater) and on three different materials (CEM I Portland cement with 0.25, 0.4 and 0.5 water-to cement ratio). The microstructural approach permits also to have access to mechanical properties evolutions. During chemical aggressions, the cement matrix evolution is traduced in a microstructure evolution. This one is represented from 3D images similarly to the models developed at NIST (National Institute of Standards and Technology). A new finite-element model, validated on previous tests or models, evaluates the stiffness of the cement paste, using as a mesh these microstructures. Our approach identifies and quantifies the major influence of porosity and its spatial

  19. Immobilisation of strontium, nickel and iodide by a sulphate-resisting Portland cement

    International Nuclear Information System (INIS)

    Wieland, E.; Tits, J.; Spieler, P.; Dobler, J.-P.

    1998-01-01

    The interaction of Sr(II), Ni(II) and I(-I) with sulphate-resisting Portland cement was investigated under highly alkaline conditions. Batch-sorption studies were performed by contacting HTS cement (haute teneur en silice, sulphate-resisting Portland cement, Lafarge, France) with artificial cement pore water (ACW). The composition of ACW was 0.18 M KOH, 0.114 M NaOH and 1.2 mM Ca(OH) 2 . 85 Sr, 63 Ni and 125 I were used as tracers. In the experiments with Sr(II) and Ni(II), isosaccharinic acid (ISA) was added to ACW at 10 -5 M to 10 -2 M in order to study the effect of complexing ligands on radionuclide retention. The stability of the tracer solutions and the cement suspensions were first assessed. Moreover, the inventory of the stable elements were determined in cement and cement pore water. We then studied the kinetics of the radionuclide-cement interaction process and measured the dependence of the distribution ratio (R d ) on the concentration of ISA and on the concentration of cement particles (S:L ratio). In the case of 63 Ni and 125 I a strong decrease in the distribution ratio (R d ) with increasing S:L ratio was observed. There is strong indication that the inventory of the stable fraction of an element present in cement pore water accounts for the retention of the radioisotope fraction. The results further indicate that phase transformations may occur in non-pre-equilibrated cement systems (non-equilibrium conditions) which affect 63 Ni uptake by HTS cement. The distribution ratios measured on HTS cement were compared with values obtained from measurements on important cement components (portlandite, CSH/C(A)SH-phases)

  20. Influence of superplasticizers on the long-term properties of cement pastes and possible impact on radionuclide uptake in a cement-based repository for radioactive waste

    International Nuclear Information System (INIS)

    Wieland, E.; Lothenbach, B.; Glaus, M.A.; Thoenen, T.; Schwyn, B.

    2014-01-01

    Highlights: • We investigate the hydration of different cement mixes containing concrete admixtures. • The concentration of concrete admixtures decreases with time due to sorption on cement phases. • We observe no influence on the phase composition of cement paste and the ion composition of pore fluids. • Uptake of 63 Ni, 152 Eu and 228 Th by cement paste is not affected by the concrete admixtures. - Abstract: Cementitious materials will be used for the construction of the engineered barrier of the planned repositories for radioactive waste in Switzerland. Superplasticizers (SPs) are commonly used to improve the workability of concretes and, along with a set accelerator (Acc), to produce shotcrete. In this study the influence of a polycarboxylate- (PCE) and a polynaphthalene-sulphonate-based (PNS) SP on the hydration process, mineral composition and the sorption behaviour of metal cations has been investigated using an ordinary Portland cement (OPC), a low-alkali cement mix (LAC) consisting of CEM III-type cement and nanosilica, and a shotcrete-type cement mix (ESDRED) consisting of a CEM I-type cement and silica fume prepared in the presence of an alkali-free set accelerator. Both the PCE and PNS SP do not significantly influence the amount and quantity of hydrates formed during hydration. The concentration of both SPs decreased rapidly in the early stage of the hydration process for all cements due to sorption onto cement phases. After 28 days of hydration and longer, the concentration of the PNS SP in the pore fluids of all cements was generally lower than that of the PCE SP, indicating stronger uptake of the PNS SP. The formate present in the Acc sorbs only weakly onto the cement phases, which led to higher aqueous concentration of organics in the ESDRED cement than in OPC and LAC. Sorption experiments with 63 Ni, 152 Eu and 228 Th on a cation exchange resin indicate that, at concentrations above 0.1 g L −1 , the two SPs could reduce sorption of metal

  1. The Mayo-Portland Participation Index: A brief and psychometrically sound measure of brain injury outcome.

    Science.gov (United States)

    Malec, James F

    2004-12-01

    To evaluate the internal consistency, interrater agreement, concurrent validity, and floor and ceiling effects of the 8-item Participation Index (M2PI) of the Mayo-Portland Adaptability Inventory (MPAI). M2PI data derived from MPAIs completed independently by the people with acquired brain injury undergoing evaluation, their significant others, and rehabilitation staff were submitted to Rasch Facets analysis to determine the internal consistency of each independent rater group and of composite measures that combined rater groups. Correlations with the full-scale MPAI were examined to assess concurrent validity, as was interrater agreement. Outpatient rehabilitation in academic physical medicine and rehabilitation department. People with acquired brain injury (N=134) consecutively seen for evaluation, significant others, and evaluating staff. Not applicable. The MPAI and M2PI. The M2PI showed satisfactory internal consistency, concurrent validity, interrater agreement, and minimal floor and ceiling effects, although evidence of rater bias was also apparent. Composite indices showed more desirable psychometric properties than ratings by individual rater groups. The M2PI, particularly in composite indices and with attention to rater biases, provides an outcome measure with satisfactory psychometric qualities and the potential to represent the varying perspectives of people with acquired brain injury, significant others, and rehabilitation staff.

  2. The Social Acceptance of Community Solar: A Portland Case Study

    Science.gov (United States)

    Weaver, Anne

    Community solar is a renewable energy practice that's been adopted by multiple U.S. states and is being considered by many more, including the state of Oregon. A recent senate bill in Oregon, called the "Clean Electricity and Coal Transition Plan", includes a provision that directs the Oregon Public Utility Commission to establish a community solar program for investor-owned utilities by late 2017. Thus, energy consumers in Portland will be offered participation in community solar projects in the near future. Community solar is a mechanism that allows ratepayers to experience both the costs and benefits of solar energy while also helping to offset the proportion of fossil-fuel generated electricity in utility grids, thus aiding climate change mitigation. For community solar to achieve market success in the residential sector of Portland, ratepayers of investor-owned utilities must socially accept this energy practice. The aim of this study was to forecast the potential social acceptance of community solar among Portland residents by measuring willingness to participate in these projects. Additionally, consumer characteristics, attitudes, awareness, and knowledge were captured to assess the influence of these factors on intent to enroll in community solar. The theory of planned behavior, as well as the social acceptance, diffusion of innovation, and dual-interest theories were frameworks used to inform the analysis of community solar adoption. These research objectives were addressed through a mixed-mode survey of Portland residents, using a stratified random sample of Portland neighborhoods to acquire a gradient of demographics. 330 questionnaires were completed, yielding a 34.2% response rate. Descriptive statistics, binomial logistic regression models, and mean willingness to pay were the analyses conducted to measure the influence of project factors and demographic characteristics on likelihood of community solar participation. Roughly 60% of respondents

  3. Low porosity portland cement pastes based on furan polymers

    International Nuclear Information System (INIS)

    Darweesh, H.H.M.

    2005-01-01

    The effect of three different types of Furan polymers on the porosity, mechanical properties, mechanism of hydration and microstructure of Ordinary Portland cement (OPC) pastes was investigated. The results showed that mixing the OPC with Furan polymers, the standard water of consistency of the different cement pastes decreases and therefore the setting times (initial and final) are shortened. The total porosity of the hardened cement pastes decreased, while the mechanical properties improved and enhanced at all curing ages of hydration compared with those of the pure OPC pastes. The hydration process with Furan polymers proceeded according to the following decreasing order: F.ac. > F.ph. > F.alc. > OPC

  4. Efeito do tempo de cura na rigidez de argamassas produzidas com cimento Portland Effect of the curing time on the stiffness of mortars produced with Portland cement

    Directory of Open Access Journals (Sweden)

    G. C. R. Garcia

    2011-03-01

    Full Text Available O concreto de cimento Portland é um dos materiais mais usados no mundo inteiro, entretanto, devido a sua estrutura ser muito complexa, torna-se imprescindível estudar suas propriedades com bastante profundidade. O concreto é produzido a partir de uma argamassa, de areia e cimento, com adição de agregados graúdos, sendo que suas propriedades estão basicamente suportadas nessa argamassa de constituição. O objetivo deste trabalho foi estudar a variação da rigidez de duas argamassas de composições com razão cimento:areia de 1:2 e 1:3 em função do tempo de cura, tendo como parâmetro a variação do módulo de Young. Os resultados mostraram que o módulo de Young cresce até atingir o valor máximo no oitavo dia, sendo que nos três primeiros dias esse crescimento é mais acentuado. A análise dos resultados indica que grande parte do processo de hidratação do cimento, com formação das ligações químicas responsáveis pela rigidez da argamassa, acontece nos primeiros dias de cura.Concrete produced with Portland cement is one of building materials most widely used worldwide. However, due to its highly complex structure, its properties require in-depth studies. Concrete is a mortar consisting of a mixture of cement, sand and coarse aggregates, and its properties are represented basically by the mortar base. The aim of this work was to study the change in stiffness of two mortar compositions cured at 25 ºC with a cement-to-sand ratio of 1:2 and 1:3, as a function of curing time using the variation of Young modulus as the measuring parameter. The results showed that Young modulus increases up to a maximum value on the 8th day, and that this increase is more pronounced during the first three days. An analysis of the results indicates that a large part of the cement hydration process, involving the formation of chemical bonds that are responsible for the mortar stiffness, takes place in the early days of curing.

  5. 40 CFR 81.78 - Metropolitan Portland Intrastate Air Quality Control Region.

    Science.gov (United States)

    2010-07-01

    ... Quality Control Region. 81.78 Section 81.78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Air Quality Control Regions § 81.78 Metropolitan Portland Intrastate Air Quality Control Region. The Metropolitan Portland Intrastate Air Quality Control Region (Maine) consists of the territorial area...

  6. Exploratory characterization of volcanic ash sourced from Uganda as a pozzolanic material in portland cement concrete

    NARCIS (Netherlands)

    Buregyeya, A.; Quercia Bianchi, G.; Spiesz, P.R.; Florea, M.V.A.; Nassingwa, R.; Uzoegbo, H.C.; Schmidt, W.

    2013-01-01

    The need for alternative cementing materials to ordinary Portland cement (OPC) has promoted characterization research on pozzolana as an important ingredient in cement production. In Uganda, natural pozzolana application in cement production is done by only two producers of Portland cement and at a

  7. 33 CFR 165.1312 - Security Zone; Portland Rose Festival on Willamette River.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 2 2010-07-01 2010-07-01 false Security Zone; Portland Rose Festival on Willamette River. 165.1312 Section 165.1312 Navigation and Navigable Waters COAST GUARD... § 165.1312 Security Zone; Portland Rose Festival on Willamette River. (a) Location. The following area...

  8. 33 CFR 100.1302 - Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon. 100.1302 Section 100.1302 Navigation and Navigable Waters COAST... § 100.1302 Special Local Regulation, Annual Dragon Boat Races, Portland, Oregon. (a) Regulated area. All...

  9. 78 FR 4331 - Safety Zone; Sellwood Bridge Move; Willamette River, Portland, OR

    Science.gov (United States)

    2013-01-22

    ... Sellwood Bridge as it is being moved. This safety zone will also allow full maneuverability for... 1625-AA00 Safety Zone; Sellwood Bridge Move; Willamette River, Portland, OR AGENCY: Coast Guard, DHS... the Sellwood Bridge, located on the Willamette River in Portland, Oregon, while it is being relocated...

  10. Influence of ultrasonic radiation on the amorphous zeolite - Portland cement system

    NARCIS (Netherlands)

    Jakevicius, L.; Vaiciukyniene, D.; Demcenko, A.

    2012-01-01

    This paper considers the investigation of influence of an amorphous synthetic zeolite with inserted $Ca^{2+}$ ions additive (ASZ) on the hydration temperature of Portland cement paste. In this investigation the sonicated Portland cement paste is compared to the non-sonicated paste; and then the

  11. Understanding mineral trioxide aggregate/Portland-cement: a review of literature and background factors.

    Science.gov (United States)

    Steffen, R; van Waes, H

    2009-06-01

    This was to carry out a review of the literature concerning mineral trioxide aggregate (MTA) and Portland cement with regards to clinical, biological and mechanical findings and a possible substitution of MTA through Portland cement for endodontic use. Electronic literature search of scientific papers from January 1993 to January 2009 was carried out on the MEDLINE and Scopus databases using specific key words. In total, 57 papers were identified that dealt with MTA and Portland cement in a relevant way. The review of 50 papers conforming to the applied criteria showed that MTA and Portland cements have the same clinical, biological and mechanical properties. In animal experiments and technical characterisations both materials seemed to have very similar properties. The only difference is bismuth oxide in MTA added for better radio opacity. It seems likely that MTA materials are based on industrial Portland cements mixed with bismuth oxide. More studies, especially some long-term studies comparing MTA and Portland cement, are necessary. The existing literature gives a solid base for clinical studies with Portland cement in order to replace MTA as an endodontic material. Portland cement could be a substitute for most endodontic materials used in primary teeth.

  12. Estudo para o aproveitamento de resíduos pétreos de marmorarias, como agregados para concreto de cimento Portland

    Directory of Open Access Journals (Sweden)

    Fábio Conrado de Queiroz

    2008-01-01

    Full Text Available In this paper, it is presented a study for the utilization of marble shops waste (stone by-products as aggregate of Portland cement concrete. First, the material were separated and classified by lithologic type. After that, they were mixed in a crusher, producing the required aggregates. Several tests for technological characterization of the material were done, intending to evaluate the use of the material as aggregate. Some simulations of Portland cement concrete dosage were done with variation in fine and coarse aggregate composition, water/cement ratio and mortar percentage. The materials were submitted to uniaxial compression test at 7th, 14th and 28th days, showing similar resistances, around to 35 MPa, independent of the aggregate mix and concrete dosage.

  13. Durabilidad de un suelo contaminado y tratado con cemento portland Durability of a contaminated soil treated with portland cement

    OpenAIRE

    José W Jiménez Rojas; Nilo C Consoli; Karla Salvagni Heineck

    2008-01-01

    Este trabajo tiene por objetivo la aplicación de la técnica de solidificación/estabilización de suelos contaminados, analizando específicamente el comportamiento físico del suelo a través de ensayos de durabilidad. El suelo fue contaminado en laboratorio con residuo oleoso y la aplicación de la técnica tuvo cómo agente de encapsulamiento el cemento Portland CP V-ARI. Los ensayos de durabilidad, realizados según la NBR 13554 (1996), tuvieron como objetivo estudiar el grado de desagregación y v...

  14. Una nota sobre los Hormigones de Cemento Portland (HCP y Hormigones de Cemento Portland con Adiciones (HCPA

    Directory of Open Access Journals (Sweden)

    Talero Morales, Rafael

    1993-09-01

    Full Text Available El hombre contemporáneo ha dividido el proceso evolutivo de la humanidad en macroperíodos de tiempo relacionados con avances significativos obtenidos en el campo de los materiales. Así se define la edad de piedra, bronce, hierro, cobre, etc. Y siguiendo esta tendencia, probablemente las generaciones futuras podrán hablar de esta época como la "edad del hormigón" y mostrar los monumentales vestigios que, en su mayor parte, se han construido con hormigón de cemento portland.

  15. Portland cement versus MTA as a root-end filling material. A pilot study.

    Science.gov (United States)

    da Silva, Sérgio Ribeiro; da Silva Neto, José Dias; Veiga, Daniela Francescato; Schnaider, Taylor Brandão; Ferreira, Lydia Masako

    2015-02-01

    To assess periradicular lesions clinically and by computed tomography (CT) after endodontic surgery using either Portland cement or mineral trioxide aggregate (MTA) as a root-end filling material. Three patients diagnosed with periradicular lesions by cone-beam CT underwent endodontic surgery with root-end filling. Patient A was treated with MTA as the root-end filling material, patient B was treated with Portland cement and patient C had two teeth treated, one with MTA and the other with Portland cement. Six months after surgery, the patients were assessed clinically and by CT scan and the obtained results were compared. Periradicular tissue regeneration was observed in all cases, with no significant differences in bone formation when comparing the use of MTA and Portland cement as root-end filling materials. Both mineral trioxide aggregate and Portland cement were successful in the treatment of periradicular lesions.

  16. XRF analysis of portland cement for major and trace elements

    International Nuclear Information System (INIS)

    Abdunnabi, A. R.

    2012-12-01

    Libyan portland cement produced in several factories around the country, in Lip tis, Zoltan, Souq-Elkamis, Dernah and El-Fatach, were analyzed for quantitative major and trace elements and mineral content, which were compered with those imported from Spain, Romania, Cyprus, and Egypt. X-ray fluorescence spectro X lab 2000 spectrometer equipped with Rh-and X-ray tube was used for the analysis of various samples. The detector Si(Li) with a resolution of 148 eV at Mn K-a=5.9 keV facilitates the determination of a wide range of elements from sodium to uranium, with a detection limit at sub levels. Cement samples in the powder form were analyzed using the pellet-technique. The pellets were prepared by mixing 4g of the cement powder with 0.9 g of binder (HWC) and pressed at high pressure. A ful analysis including, background counting, matrix correction and all relevant corrections were achieved automatically by XLAB 2000 software package. For major and trace elements X RF results were higher for most of the elements than those analyzed with atomic absorption spectrometry. The mineral content showed that Libyan cement is comparable to the imported ones, also the Libyan cement meets the requirements of the international specifications of the portland cement. (Author)

  17. Portland's experience with land use tools to promote green roofs

    International Nuclear Information System (INIS)

    Johnson, M.

    2004-01-01

    In the late 1990s, the City of Portland, Oregon faced environmental challenges that prompted the City to mandate environmentally sensitive development. Several programs were developed in response to these challenges, some of which resulted in the creation of land use policies and incentives that promote green roofs. Zoning code provisions were adopted in 2001 to promote eco-roofs in an effort to reduce stormwater runoff, mitigate urban heat island effects, provide habitat for birds, and improve air quality and energy efficiency. The Central City Fundamental Design Guidelines were also revised to encourage eco-roof development. In 2002, the South Waterfront Plan was created to integrate ecological design into an urban environment through sustainability principles and practices. Land use tools were developed to introduce developers to an approach that reduced energy costs and stormwater costs, while also contributing to a project's marketability. These tools were created with the support of programs and policies such as the CSO (Combined Sewer Overflow) Program; eco-roof research which began in 1995 to determine the stormwater management potential of eco-Green roofs; technical assistance to encourage and highlight sustainable development practices; the Stormwater Management Manual that set standards for the amount and quality of stormwater runoff leaving development sites; the G/Rated Program that offers resources for green building practices; the Green Investment Fund that supports the G/Rated Program; and, the Portland Development Commission Green Building Policy financing tool for earth-friendly designs and materials. 34 refs., 2 figs

  18. Effect of wastewater on properties of Portland pozzolana cement

    Science.gov (United States)

    Babu, G. Reddy

    2017-07-01

    This paper presents the effect of wastewaters on properties of Portland pozzolana cement (PPC). Fourteen water treatment plants were found out in the Narasaraopet municipality region in Guntur district, Andhra Pradesh, India. Approximately, from each plant, between 3500 and 4000 L/day of potable water is selling to consumers. All plants are extracting ground water and treating through Reverse Osmosis (RO) process. During water treatment, plants are discharging approximately 1,00,000 L/day as wastewater in side drains in Narasaraopet municipality. Physical and chemical analysis was carried out on fourteen plants wastewater and distilled water as per producer described in APHA. In the present work, based on the concentrations of constituent's in wastewater, four typical plants i.e., Narasaraopeta Engineering College (NECWW), Patan Khasim Charitable Trust (PKTWW), Mahmadh Khasim Charitable Trust (MKTWW) and Amara (ARWW) were considered. The performance of four plants wastewater on physical properties i.e., setting times, compressive strength, and flexural strength of Portland pozzolana Cement (PPC) were performed in laboratories and compared same with reference specimens i.e., made with Distilled Water (DW) as mixing water. No significant change was observed in initial and finial setting time but setting times of selected wastewaters were retarded as compared to that of reference water. Almost, no change was observed in 90 days compressive and flexural strengths in four plants wastewaters specimens compared to that of reference water specimens. XRD technique was employed to find out main hydration compounds formed in the process.

  19. Utilization of steel slag for Portland cement clinker production.

    Science.gov (United States)

    Tsakiridis, P E; Papadimitriou, G D; Tsivilis, S; Koroneos, C

    2008-04-01

    The aim of the present research work is to investigate the possibility of adding steel slag, a by-product of the conversion of iron to steel process, in the raw meal for the production of Portland cement clinker. Two samples of raw meals were prepared, one with ordinary raw materials, as a reference sample ((PC)(Ref)), and another with 10.5% steel slag ((PC)(S/S)). Both raw meals were sintered at 1450 degrees C. The results of chemical and mineralogical analyses as well as the microscopic examination showed that the use of the steel slag did not affect the mineralogical characteristics of the so produced Portland cement clinker. Furthermore, both clinkers were tested by determining the grindability, setting times, compressive strengths and soundness. The hydration products were examined by XRD analysis at 2, 7, 28 and 90 days. The results of the physico-mechanical tests showed that the addition of the steel slag did not negatively affect the quality of the produced cement.

  20. INFLUENCE OF BARIUM OXIDE ADDITIONS ON PORTLAND CLINKER

    Directory of Open Access Journals (Sweden)

    Anezka Zezulova

    2016-12-01

    Full Text Available Nowadays, nuclear power plants are widespread around the world and research is of great interest. Together with nuclear research, shielding of different types of radiation is an important current topic of research aiming at their safety. Portland cement has been an elementary building material for centuries. Since barium is very efficient in shielding different types of radiation, it can be assumed that the radiation shielding capability of cement can be improved by incorporation of barium. This work deals with the influence of barium oxide, added in the form of barium carbonate and sulphate, on the formation and properties of Portland clinker. The structure of burnt clinkers and the ratio of clinker phases were studied by polarizing microscopy and by X-ray diffraction. With increasing barium content, the alite-belite ratio decreases and the content of free lime gradually increases. Moreover, sulphates induce the growth of alite crystals. The ability of barium to be a part of the clinker minerals was observed by scanning electron microscopy. Belite and clinker melt contain the highest amount of barium, but aggregates of barium oxide are formed in the clinker melt. Furthermore, the rate of alite crystallization was studied under isothermal conditions.

  1. Composition

    DEFF Research Database (Denmark)

    Bergstrøm-Nielsen, Carl

    2014-01-01

    Cue Rondo is an open composition to be realised by improvising musicians. See more about my composition practise in the entry "Composition - General Introduction". Caution: streaming the sound/video files will in some cases only provide a few minutes' sample, or the visuals will not appear at all....... Please DOWNLOAD them to see/hear them in full length! This work is licensed under a Creative Commons "by-nc" License. You may for non-commercial purposes use and distribute it, performance instructions as well as specially designated recordings, as long as the author is mentioned. Please see http...

  2. 76 FR 54206 - Gray Portland Cement and Clinker From Japan: Final Results of the Expedited Third Sunset Review...

    Science.gov (United States)

    2011-08-31

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-588-815] Gray Portland Cement and... portland cement and clinker from Japan. As a result of this third sunset review, the Department finds that... initiation of the third sunset review of the antidumping duty order on gray portland cement and clinker from...

  3. Modeling of the interaction between chemical and mechanical behavior of ion exchange resins encapsulated into a cement-based matrix

    International Nuclear Information System (INIS)

    Neji, Mejdi

    2014-01-01

    Ion exchange resins (IER) are widely used in the nuclear industry to purge non directly storable infected effluents. IER then become a solid waste which could be stored as any classical nuclear waste. One way of conditioning consists in embedding it into a cement paste matrix. This process raises some concerns regarding the cohesiveness of the composite. Once embedded, the IER might indeed interact with the cement paste which would lead, in some cases, to the swelling of the composite. This thesis has been set up to address this potential issue, with the aim to develop a numerical tool able to predict the mechanical behavior of this kind of material. This work only focuses on the long term behavior and more specifically on the potential degradations of the cement paste/IER composite due to cationic IER. (author)

  4. Microscopic analysis of dog dental pulp after pulpotomy and pulp protection with mineral trioxide aggregate and white Portland cement Análise microscópica da polpa dental de cães após pulpotomia e proteção pulpar com agregado de trióxido mineral e cimento Portland branco

    Directory of Open Access Journals (Sweden)

    Renato Menezes

    2004-06-01

    Full Text Available Considering previous studies on the similarity between the chemical composition of the mineral trioxide aggregate and the Portland cement, the purpose of this study was to investigate the pulp response of dog's teeth after pulpotomy and direct pulp protection with MTA Angelus and white Portland cement. Thirty eight pulp remnants were protected with these materials. One hundred and twenty days after treatment, the animals were sacrificed and the specimens removed and prepared for histological analysis. Both materials demonstrated the same results when used as pulp capping materials, inducing hard tissue bridge formation and maintaining pulp vitality in all specimens. The MTA Angelus and the white Portland cement showed to be effective as pulp protection materials following pulpotomy.Considerando estudos anteriores sobre a similaridade entre a composição química do agregado de trióxido mineral e o cimento Portland, o objetivo deste estudo foi investigar a resposta pulpar de dentes de cães após pulpotomia e proteção pulpar direta com MTA Angelus e cimento Portland branco. Trinta e oito remanescentes pulpares foram recobertos com esses materiais. Cento e vinte dias após o tratamento, os animais foram sacrificados e os espécimes removidos e preparados para análise histológica. Ambos os materiais demonstraram os mesmos resultados quando utilizados como materiais de capeamento pulpar, induzindo a formação de ponte de tecido mineralizado e mantendo a vitalidade pulpar em todos os espécimes. Ambos matérias se mostraram efetivos como protetores pulpares após pulpotomia em dentes de cães.

  5. Mechanical damage of a cement-based matrix subjected to a bio leaching test; Endommagement d'une matrice cimentaire soumise a un essai couple de biolixiviation

    Energy Technology Data Exchange (ETDEWEB)

    Lajili, H.; Grambin-Lapeyre, C. [Centre de Geosciences, Ecole des Mines de Paris, 77 - Marne la Vallee (France); Lajili, H.; Devillers, Ph. [Centre des Materiaux de Grande Diffusion, Ecole des Mines d' Ales, 30 - Ales (France); Lajili, H.; Degorce-Dumas, J.R.; Roussy, J. [Laboratoire Genie de l' Environnement Industriel, Ecole des Mines d' Ales, 30 - Ales (France); Bournazel, J.P. [14 rue Rene Cassin, 13 - Arles (France)

    2007-07-01

    Waste packages are often embedded in concrete containers and placed in storage sites. Cement-based materials due to their favourable physical properties, are commonly used for the solidification and stabilisation of these wastes. Waste repositories can be situated in geological formations where microorganisms capable of degrading cement matrices are present. In such situations, the stability of concrete used in underground repositories for immobilization of nuclear waste may be impaired by Inter alia filamentous fungi. Fungal growth on cement matrices leads to physicochemical and mechanical degradations which considerably affects their durability, thus bio-leaching scenario must be seriously considered. This paper outlines the detrimental impact of Aspergillus niger fungus on the integrity of cement paste and describes the associated mechanisms of biodegradation. (authors)

  6. Development, testing, and demonstration of geotechnical and cement-based encapsulant materials for the stabilization of radioactive and hazardous waste disposal structures

    International Nuclear Information System (INIS)

    Phillips, S.J.; Cammann, J.W.; Benny, H.L.; Serne, R.J.; Martin, P.F.; Ames, L.L.

    1991-09-01

    A zeolite fluidized-bed treatment system is being developed and tested for the treatment of radioactive and hazardous waste-contaminated subsurface disposal structures. Formulations of cement, fly ash, and slag slurries and sequestering agents also are being tested and evaluated. Leach resistance of radionuclides, heavy metals, and hazardous inorganic compounds in the solidified cement-based encapsulant has been determined. These results simulate the resistance to water leaching of the solidified product after it has been injected an open and interstitial void volume in and proximal to liquid waste disposal structures. Micro- and macro-encapsulation of contaminants within and geologic media surrounding subsurface disposal structures is being demonstrated as an alternative technology for waste site remediation. 5 refs., 1 fig., 1 tab

  7. A pressure-sensitive carbon black cement composite for traffic monitoring

    KAUST Repository

    Monteiro, A.O.; Loredo, A.; Da Costa, Pedro M. F. J.; Oeser, M.; Cachim, P.B.

    2017-01-01

    Recent advances in nanotechnology have guided the development of a new generation of multifunctional construction materials. An example of this are cement-based composites, some of which can be used not just to pave roads but also to monitor them. A

  8. Evaluation of Portland cement from X-ray diffraction associated with cluster analysis

    International Nuclear Information System (INIS)

    Gobbo, Luciano de Andrade; Montanheiro, Tarcisio Jose; Montanheiro, Filipe; Sant'Agostino, Lilia Mascarenhas

    2013-01-01

    The Brazilian cement industry produced 64 million tons of cement in 2012, with noteworthy contribution of CP-II (slag), CP-III (blast furnace) and CP-IV (pozzolanic) cements. The industrial pole comprises about 80 factories that utilize raw materials of different origins and chemical compositions that require enhanced analytical technologies to optimize production in order to gain space in the growing consumer market in Brazil. This paper assesses the sensitivity of mineralogical analysis by X-ray diffraction associated with cluster analysis to distinguish different kinds of cements with different additions. This technique can be applied, for example, in the prospection of different types of limestone (calcitic, dolomitic and siliceous) as well as in the qualification of different clinkers. The cluster analysis does not require any specific knowledge of the mineralogical composition of the diffractograms to be clustered; rather, it is based on their similarity. The materials tested for addition have different origins: fly ashes from different power stations from South Brazil and slag from different steel plants in the Southeast. Cement with different additions of limestone and white Portland cement were also used. The Rietveld method of qualitative and quantitative analysis was used for measuring the results generated by the cluster analysis technique. (author)

  9. Quantitative study of Portland cement hydration by X-Ray diffraction/Rietveld analysis and geochemical modeling

    Science.gov (United States)

    Coutelot, F.; Seaman, J. C.; Simner, S.

    2017-12-01

    In this study the hydration of Portland cements containing blast-furnace slag and type V fly ash were investigated during cement curing using X-ray diffraction, with geochemical modeling used to calculate the total volume of hydrates. The goal was to evaluate the relationship between the starting component levels and the hydrate assemblages that develop during the curing process. Blast furnace-slag levels of 60, 45 and 30 wt.% were studied in blends containing fly ash and Portland cement. Geochemical modelling described the dissolution of the clinker, and predicted quantitatively the amount of hydrates. In all cases the experiments showed the presence of C-S-H, portlandite and ettringite. The quantities of ettringite, portlandite and the amorphous phases as determined by XRD agreed well with the calculated amounts of these phases after different periods of time. These findings show that changes in the bulk composition of hydrating cements can be described by geochemical models. Such a comparison between experimental and modelled data helps to understand in more detail the active processes occurring during cement hydration.

  10. Modelling of the interaction between chemical and mechanical behaviour of ion exchange resins incorporated into a cement-based matrix

    Directory of Open Access Journals (Sweden)

    Le Bescop P.

    2013-07-01

    Full Text Available In this paper, we present a predictive model, based on experimental data, to determine the macroscopic mechanical behavior of a material made up of ion exchange resins solidified into a CEM III cement paste. Some observations have shown that in some cases, a significant macroscopic expansion of this composite material may be expected, due to internal pressures generated in the resin. To build the model, we made the choice to break down the problem in two scale’s studies. The first deals with the mechanical behavior of the different heterogeneities of the composite, i.e. the resin and the cement paste. The second upscales the information from the heterogeneities to the Representative Elementary Volume (REV of the composite. The heterogeneities effects are taken into account in the REV by applying a homogenization method derived from the Eshelby theory combined with an interaction coefficient drawn from the poroelasticity theory. At the first scale, from the second thermodynamic law, a formulation is developed to estimate the resin microscopic swelling. The model response is illustrated on a simple example showing the impact of the calculated internal pressure, on the macroscopic strain.

  11. Radioactive waste-Portland cement systems: I, radionuclide distribution

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Glasser, F.P.; Lachowski, E.E.

    1984-01-01

    Crystal chemical stabilization of radioactive wastes can be achieved during clinkering of, or with, ordinary portland cement. Waste loadings of 20 to 30 wt% are achieved by dilute solid solution of waste ions into cementitious host lattices. Higher waste loadings result in compatible noncementitious radiophases. The cementitious phases hydrate without loss of compressive strength. Crystallochemical relationships predict that the radionuclide partitioning in the anhydrous clinkered phases will be maintained in the hydration products. These cementitious hydroxylated radiophases would be in internal equilibrium under anticipated repository conditions. The radionuclide distributions observed are described in the context of established phase equilibria for commercial waste cement systems, but are applicable to transuranic, medium- and low-level wastes

  12. Planning, zoning and financial incentives for ecoroofs in Portland, Oregon

    Energy Technology Data Exchange (ETDEWEB)

    Liptan, T. [City of Portland, OR (United States). Bureau of Environmental Services

    2003-07-01

    Approximately 35 to 90 per cent of the surface area of various city neighbourhoods is composed of rooftops and pavement. The City of Portland has suffered from several infrastructure and environmental problems as a result of these rooftops and pavement. In response, the City created a program to address storm water related problems and to provide other environmental benefits. This program promotes the use of Ecoroofs or vegetated roofs. City officials are investigating three specific concerns regarding Ecoroofs: (1) the extent to which Ecoroofs can manage precipitation and water quality, (2) the design, construction and maintenance issues to be addressed in order to ensure Ecoroofs are viable, and (3) the policies and economic concerns that must be addressed to determine the appropriate incentives and potential regulations for Ecoroofs. The overall city program was described in this presentation. The incentives and assistance provided by the city were reviewed, and the practical lessons learned were discussed. 1 tab., 1 fig.

  13. The Portland Basin: A (big) river runs through it

    Science.gov (United States)

    Evarts, Russell C.; O'Connor, Jim E.; Wells, Ray E.; Madin, Ian P.

    2009-01-01

    Metropolitan Portland, Oregon, USA, lies within a small Neogene to Holocene basin in the forearc of the Cascadia subduction system. Although the basin owes its existence and structural development to its convergent-margin tectonic setting, the stratigraphic architecture of basin-fill deposits chiefly reflects its physiographic position along the lower reaches of the continental-scale Columbia River system. As a result of this globally unique setting, the basin preserves a complex record of aggradation and incision in response to distant as well as local tectonic, volcanic, and climatic events. Voluminous flood basalts, continental and locally derived sediment and volcanic debris, and catastrophic flood deposits all accumulated in an area influenced by contemporaneous tectonic deformation and variations in regional and local base level.

  14. Immobilization of citric acid solutions in portland cement

    International Nuclear Information System (INIS)

    Lopes, Valdir M.; Rzyski, Barbara M.

    1997-01-01

    Decontamination processes by using citric acid on certain items used in the nuclear area, can result in large volumes of liquid wastes with low activity or effluents, contaminated with uranium and some elements dangerous to the environment. A great number of installations that have decontamination processes adopt the zero discharge philosophy. So, one of the forms to isolate the solutions is by reducing its volume through the evaporation process. The generated must can be neutralized and encapsulated or immobilized in Portland cement. This work propose a chemical technique to destroy the citric acid in the decontamination solutions instead of neutralization and, depending on the installation convenience, a direct cement immobilization of these solutions or of the evaporation mud. The results obtained in this work involve data about the workability, setting time and mechanical resistance, after 28 days of sealed cure, for samples with water-cement ratios of 4, 0.5 and 0.6, by weight. (author). 5 refs., 2 tabs

  15. PULPOTOMIES WITH PORTLAND CEMENT IN HUMAN PRIMARY MOLARS

    Science.gov (United States)

    Conti, Taísa Regina; Sakai, Vivien Thiemy; Fornetti, Ana Paula Camolese; Moretti, Ana Beatriz Silveira; Oliveira, Thais Marchini; Lourenço, Natalino; Machado, Maria Aparecida Andrade Moreira; Abdo, Ruy Cesar Camargo

    2009-01-01

    Two clinical cases in which Portland cement (PC) was applied as a medicament after pulpotomy of mandibular primary molars in children are presented. Pulpotomy using PC was carried out in two mandibular first molars and one mandibular second molar, which were further followed-up. At the 3, 6 and 12-month follow-up appointments, clinical and radiographic examinations of the pulpotomized teeth and their periradicular area revealed that the treatments were successful in maintaining the teeth asymptomatic and preserving pulpal vitality. Additionally, the formation of a dentin bridge immediately below the PC could be observed in the three molars treated. PC may be considered as an effective alternative for primary molar pulpotomies, at least in a short-term period. Randomized clinical trials with human teeth are required in order to determine the suitability of PC before unlimited clinical use can be recommended. PMID:19148409

  16. On the use of crystalline admixtures in cement based construction materials: from porosity reducers to promoters of self healing

    Science.gov (United States)

    Ferrara, Liberato; Krelani, Visar; Moretti, Fabio

    2016-08-01

    The project detailed in this paper aims at a thorough characterization of the effects of crystalline admixtures, currently employed as porosity reducing admixtures, on the self-healing capacity of the cementitious composites, i.e. their capacity to completely or partially re-seal cracks and, in case, also exhibit recovery of mechanical properties. The problem has been investigated with reference to both a normal strength concrete (NSC) and a high performance fibre reinforced cementitious composite (HPFRCC). In the latter case, the influence of flow-induced fibre alignment has also been considered in the experimental investigation. With reference to either 3-point (for NSC) or 4-point (for HPFRCC) bending tests performed up to controlled crack opening and up to failure, respectively before and after exposure/conditioning recovery of stiffness and stress bearing capacity has been evaluated to assess the self-healing capacity. In a durability-based design framework, self-healing indices to quantify the recovery of mechanical properties will also be defined. In NSC, crystalline admixtures are able to promote up to 60% of crack sealing even under exposure to open air. In the case of HPFRCCs, which would already feature autogenous healing capacity because of their peculiar mix compositions, the synergy between the dispersed fibre reinforcement and the action of the crystalline admixture has resulted in a likely ‘chemical pre-stressing’ of the same reinforcement, from which the recovery of mechanical performance of the material has greatly benefited, up to levels even higher than the performance of the virgin un-cracked material.

  17. The U phase formation in cement-based systems containing high amounts of Na2SO4

    International Nuclear Information System (INIS)

    Li, G.; Moranville, M.; Le Bescop, P.

    1996-01-01

    Simulated cemented low level wastes containing high amounts of Na 2 SO 4 (10--15%) were examined with respect to the mineralogy of the solid phases, chemical composition of the interstitial aqueous phase and immersion behavior in water. All results reveal the formation of a mineral called U phase, first observed by Dosch and zur Strassen in 1967, and its deleterious effects on the samples immersed in water. It appears that this phase can form only at very high alkaline concentration, not compatible with traditional cement paste. Two possible degradation mechanisms associated with the U phase are proposed which are to be elucidated in further works

  18. Immobilization of citric acid solutions in portland cement; Imobilizacao de solucoes de acido citrico em cimento Portland

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Valdir M.; Rzyski, Barbara M. [Instituto de Pesquisas Energeticas e Nucleares (IPEN), Sao Paulo, SP (Brazil)

    1997-12-01

    Decontamination processes by using citric acid on certain items used in the nuclear area, can result in large volumes of liquid wastes with low activity or effluents, contaminated with uranium and some elements dangerous to the environment. A great number of installations that have decontamination processes adopt the zero discharge philosophy. So, one of the forms to isolate the solutions is by reducing its volume through the evaporation process. The generated must can be neutralized and encapsulated or immobilized in Portland cement. This work propose a chemical technique to destroy the citric acid in the decontamination solutions instead of neutralization and, depending on the installation convenience, a direct cement immobilization of these solutions or of the evaporation mud. The results obtained in this work involve data about the workability, setting time and mechanical resistance, after 28 days of sealed cure, for samples with water-cement ratios of 4, 0.5 and 0.6, by weight. (author). 5 refs., 2 tabs.

  19. Reactivity of Ordinary Portland Cement (OPC) grout and various lithologies from the Harwell research site

    International Nuclear Information System (INIS)

    Milodowski, A.E.; George, I.A.; Bloodworth, A.J.; Robins, N.S.

    1985-08-01

    Ordinary Portland Cement (OPC) has been used in the completion of boreholes on the Harwell Research Site, AERE, Oxfordshire. The purpose of this study was to examine the effect of OPC and the alkaline pore fluids generated during its setting on the various lithological types encountered in the boreholes. To facilitate this, samples of core representing the various rock types were selected and cement-rock composites were prepared from these in the laboratory to simulate the borehole cements. After a curing period of 15 months the cores and associated cement plugs were examined for any signs of reactivity or bonding. The best cement-rock bonding was shown by naturally well-cemented sandstone and limestone lithologies. Although no significant chemical reaction was seen to have occurred between OPC and rock, the OPC appears able to bind onto the rock surface because of the rigidity of the rock surface. Therefore, the best cement rock bonding and seal with OPC may be expected in the limestones of the Great Oolite Group, Inferior Oolite Group and parts of the Corallian Beds. Because of the reactivity of OPC towards certain lithologies a better borehole seal in such a sedimentary sequence might be achieved using a bentonite backfill in those parts of the sequence which either react with or bond only weakly to OPC. (author)

  20. Microstructural characterization of phases and interfaces of Portland cement mortar using high resolution microscopy

    International Nuclear Information System (INIS)

    Barreto, M.F.O.; Brandao, P.R.G.

    2014-01-01

    In Portland cement mortars it is of paramount importance to investigate the bond strength between mortar and masonry by means of the study of interfaces and surfaces that make up the system mortar/ceramic block. In this work the aim was to characterize the chemical compositions, microstructures, surfaces and interfaces of mortars applied on ceramic blocks. Therefore, two important characterization tools were used: field-effect gun (FEG) scanning electron microscope (SEM) - FEI Quanta 200 with energy-dispersive (X-ray) spectrometer (EDS) and SEM system with EGF Nanofabrication FIB - FEI Quanta 3D FEG also with an EDS coupled. To date the results obtained from the research show that the characterization of cementitious materials with high resolution SEM is an important tool in the detection and differentiation of hydrated calcium silicates (CSH), calcium hydroxide (Ca(OH)2), ettringite and calcium carbonate by means of morphological, topographical and chemical data, thus providing extremely reliable as well as qualitative data from the structure of cementitious materials. (author)

  1. Radiopacity and cytotoxicity of Portland cement associated with niobium oxide micro and nanoparticles.

    Science.gov (United States)

    Mestieri, Leticia Boldrin; Tanomaru-Filho, Mário; Gomes-Cornélio, Ana Livia; Salles, Loise Pedrosa; Bernardi, Maria Inês Basso; Guerreiro-Tanomaru, Juliane Maria

    2014-01-01

    Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nbη) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: (1) PC; (2) White MTA; (3) PC+30% Nbµ; (4) PC+30% Nbη. For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA.

  2. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    Energy Technology Data Exchange (ETDEWEB)

    Deschner, Florian, E-mail: florian.deschner@gmail.com [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Lothenbach, Barbara; Winnefeld, Frank [Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Concrete and Construction Chemistry, Überlandstrasse 129, 8600 Dübendorf (Switzerland); Neubauer, Jürgen [GeoZentrum Nordbayern, Mineralogy, University of Erlangen-Nuremberg, 91054 Erlangen (Germany)

    2013-10-15

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H.

  3. Study on Characteristics of Lightweight Aggregate Concrete Made From Foam and Ordinary Portland Cement

    Directory of Open Access Journals (Sweden)

    Ibrahim N.M.

    2016-01-01

    Full Text Available The production and characteristic of lightweight bubble aggregates (LBA are presented in this paper. The LBA are produced by mixing between the foam and ordinary Portland cement according to the composition which has been set. Then, the characteristics of LBA such as density, water absorption, specific gravity, compressive strength, aggregate impact value and microscopic analysis of the LBA are analyzed. Those characteristics are identified in order to ensure that the LBA are successfully categorized into lightweight aggregate. The loose bulk density is obtained at 812.5 kg/m3 which can be categorized under lightweight aggregate group. For water absorption the value obtained is 9.7 % which is slightly higher compared to normal aggregate. Meanwhile the average specific gravity obtained for the samples of LBAis 1.75. Compressive strength for the aggregates was 17.76 MPa. The highest compressive strength for LBA foamed concrete was obtained at 25% replacement with 7.83MPa. Thus, the LBA have a significant features and characteristics that can be used as coarse aggregates in concrete.

  4. Effect of temperature on the hydration of Portland cement blended with siliceous fly ash

    International Nuclear Information System (INIS)

    Deschner, Florian; Lothenbach, Barbara; Winnefeld, Frank; Neubauer, Jürgen

    2013-01-01

    The effect of temperature on the hydration of Portland cement pastes blended with 50 wt.% of siliceous fly ash is investigated within a temperature range of 7 to 80 °C. The elevation of temperature accelerates both the hydration of OPC and fly ash. Due to the enhanced pozzolanic reaction of the fly ash, the change of the composition of the C–S–H and the pore solution towards lower Ca and higher Al and Si concentrations is shifted towards earlier hydration times. Above 50 °C, the reaction of fly ash also contributes to the formation of siliceous hydrogarnet. At 80 °C, ettringite and AFm are destabilised and the released sulphate is partially incorporated into the C–S–H. The observed changes of the phase assemblage in dependence of the temperature are confirmed by thermodynamic modelling. The increasingly heterogeneous microstructure at elevated temperatures shows an increased density of the C–S–H and a higher coarse porosity. -- Highlights: •The reaction of quartz powder at 80 °C strongly enhances the compressive strength. •Almost no strength increase of fly ash blended OPC at 80 °C was found after 2 days. •Siliceous hydrogarnet is formed upon the reaction of fly ash at high temperatures. •Temperature dependent change of the system was simulated by thermodynamic modelling. •Destabilisation of ettringite above 50 °C correlates with sulphate content of C–S–H

  5. Microstructural characterization of phases and interfaces of Portland cement mortar using high resolution microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Barreto, M.F.O.; Brandao, P.R.G., E-mail: matheusfob@yahoo.com.br, E-mail: pbrandao@demin.ufmg.br [Universidade Federal de Minas Gerais (UFMG), MG (Brazil)

    2014-07-01

    In Portland cement mortars it is of paramount importance to investigate the bond strength between mortar and masonry by means of the study of interfaces and surfaces that make up the system mortar/ceramic block. In this work the aim was to characterize the chemical compositions, microstructures, surfaces and interfaces of mortars applied on ceramic blocks. Therefore, two important characterization tools were used: field-effect gun (FEG) scanning electron microscope (SEM) - FEI Quanta 200 with energy-dispersive (X-ray) spectrometer (EDS) and SEM system with EGF Nanofabrication FIB - FEI Quanta 3D FEG also with an EDS coupled. To date the results obtained from the research show that the characterization of cementitious materials with high resolution SEM is an important tool in the detection and differentiation of hydrated calcium silicates (CSH), calcium hydroxide (Ca(OH)2), ettringite and calcium carbonate by means of morphological, topographical and chemical data, thus providing extremely reliable as well as qualitative data from the structure of cementitious materials. (author)

  6. Increase in the strength characteristics of Portland cement due to introduction of the compound mineral supplements

    Science.gov (United States)

    Il'ina, Liliia; Gichko, Nikolai; Mukhina, Irina

    2016-01-01

    At the initial phase of hardening it is the limestone component that plays a major role in the hardening process, which acts as the substrate for the crystallization of hydrate tumors due to its chemical affinity with the products of Portland cement hydration. After 7 days, the diopside supplement influences the processes more significantly. Diopside has a high modulus of elasticity compared to the cement paste. As a result, stresses are redistributed within the cement paste and the whole composition is hardened. An increase in the quantity of diopside in the compound supplement to more than 66.7% does not provide a substantial increase in the strength of the cement paste. As the hardness of diopside is higher than the hardness of limestone, much more energy is required to grind it down to a usable component. Therefore, a further increase in the quantity of diopside in the compound supplement is not economically feasible. An evaluation of the optimum quantity of input compound mineral supplements can be made based on the ideas of close packing of spherical particles and the Pauling rules. The optimum content of the supplement is 8-8.5% provided that its dispersion and density are close to the dispersion and density of the binder. An increase in the dispersion of the supplement reduces its optimal quantity.

  7. An Alternative Quality Control Technique for Mineral Chemistry Analysis of Portland Cement-Grade Limestone Using Shortwave Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Nasrullah Zaini

    2016-11-01

    Full Text Available Shortwave infrared (SWIR spectroscopy can be applied directly to analyze the mineral chemistry of raw or geologic materials. It provides diagnostic spectral characteristics of the chemical composition of minerals, information that is invaluable for the identification and quality control of such materials. The present study aims to investigate the potential of SWIR spectroscopy as an alternative quality control technique for the mineral chemistry analysis of Portland cement-grade limestone. We used the spectroscopic (wavelength position and depth of absorption feature and geochemical characteristics of limestone samples to estimate the abundance and composition of carbonate and clay minerals on rock surfaces. The depth of the carbonate (CO3 and Al-OH absorption features are linearly correlated with the contents of CaO and Al2O3 in the samples, respectively, as determined by portable X-ray fluorescence (PXRF measurements. Variations in the wavelength position of CO3 and Al-OH absorption features are related to changes in the chemical compositions of the samples. The results showed that the dark gray and light gray limestone samples are better suited for manufacturing Portland cement clinker than the dolomitic limestone samples. This finding is based on the CaO, MgO, Al2O3, and SiO2 concentrations and compositions. The results indicate that SWIR spectroscopy is an appropriate approach for the chemical quality control of cement raw materials.

  8. Sulfatos en el cemento portland y su incidencia sobre el falso fraguado: Estado actual del conocimiento

    Directory of Open Access Journals (Sweden)

    de la Cruz, Ignacio

    1983-12-01

    Full Text Available A bibliographical study is carried out of the sulphates which may be present in the clinker and Portland cement, as likewise the effects of the aeration and temperature on the setting. This work is a prior phase of a wide experimental investigation carried out in the IETCC, on anomalies or setting and phenomena of "lumping" in Portland cement.

    Se realiza un estudio bibliográfico de los sulfatos que pueden estar presentes en el clínker y cemento portland, así como de los efectos de la aireación y temperatura sobre el fraguado. Este trabajo es la fase previa de una amplia investigación experimental realizada en el IETCC, sobre anomalías de fraguado y fenómenos de "aterronamiento" en el cemento portland.

  9. EnviroAtlas - Portland, ME - BenMAP Results by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 146 block groups in Portland, Maine. The US EPA's...

  10. Determination of coefficient of thermal expansion for Portland Cement Concrete pavements for MEPDG Implementation

    Science.gov (United States)

    2012-10-01

    The Coefficient of Thermal Expansion (CTE) is an important parameter in Portland Cement Concrete (PCC) pavement analysis and design as it is directly proportional to the magnitude of temperature-related pavement deformations throughout the pavement s...

  11. Nanotechnology-Based Performance Improvements For Portland Cement Concrete - Phase I

    Science.gov (United States)

    2012-08-16

    A fundamental understanding of the nano-structure of Portland cement concrete (PCC) is the key to realizing significant breakthroughs regarding high performance and susta : (MBTC 2095/3004) using molecular dynamics (MD) provided new understanding of ...

  12. Recycled Portland cement concrete pavements : Part II, state-of-the art summary.

    Science.gov (United States)

    1979-01-01

    This report constitutes a review of the literature concerning recycling of portland cement concrete pavements by crushing the old pavement and reusing the crushed material as aggregate in a number of applications. A summary of the major projects cond...

  13. 2014 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar: Metro Portland, OR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset encompasses 1221.6 square miles in portions of the greater Portland Metro area in the state of Oregon. The highest hit digital surface models (DSM)...

  14. EnviroAtlas - Portland, OR - BenMAP Results by Block Group

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset demonstrates the effect of changes in pollution concentration on local populations in 1176 block groups in Portland, Oregon. The US EPA's...

  15. NESHAP for the Portland Cement Manufacturing Industry: Fact Sheets for Actions Since 2015

    Science.gov (United States)

    EPA is extending its approval for the use of an alternative method to show compliance with hydrogen chloride (HCl) emissions limits in the National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing Industry

  16. Portland cement concrete pavement review of QC/QA data 2000 through 2009.

    Science.gov (United States)

    2011-04-01

    This report analyzes the Quality Control/Quality Assurance (QC/QA) data for Portland cement concrete pavement : (PCCP) awarded in the years 2000 through 2009. Analysis of the overall performance of the projects is accomplished by : reviewing the Calc...

  17. 2014 Oregon Department of Geology and Mineral Industries (DOGAMI) Oregon Lidar DEM: Metro Portland, OR

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset encompasses 1221.6 square miles in portions of the greater Portland Metro area in the state of Oregon. The highest hit digital surface models (DSM)...

  18. Final Rule: NESHAP for the Portland Cement Manufacturing Industry: Alternative Monitoring Method

    Science.gov (United States)

    EPA is extending its approval for the use of an alternative method to show compliance with hydrogen chloride (HCl) emissions limits in the National Emission Standards for Hazardous Air Pollutants for the Portland Cement Manufacturing Industry

  19. EnviroAtlas - Portland, ME - Meter-Scale Urban Land Cover (MULC) Data (2010)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The EnviroAtlas Portland, ME Meter-Scale Urban Land Cover (MULC) data was generated from USDA NAIP (National Agricultural Imagery Program) four band (red, green,...

  20. Evolution and quantification of the main Sensitisers in commercial portland cements

    Directory of Open Access Journals (Sweden)

    Frías, M.

    2002-03-01

    Full Text Available The commercial Portland cements contain minor elements in their chemical compositions. The presence of these elements has a direct incidence in different aspects: rheological behaviour, reaction kinetics, environmental, etc. Some of them also have a negative effect on the human health; so, chromium (Cr, nickel (Ni and cobalt (Co are the main allergens present in Portland cements, causing of Professional Dermatitis in construction workers. The current study is focussed on the quantification of total and soluble chromium, nickel and cobalt in a wide range of Spanish commercial cements. These values can represent a contribution to the establishing of possible limitations or reductions of these elements in forthcoming standards. Analytical data show that clinkers are the main responsibles of the presence of soluble chromium in commercial cements. This fact could be indicating that chromium solubility (from inert Cr III to soluble Cr VI would be closely related to the clinkerisation conditions. On the other hand, there is not a direct ratio between total chromium and soluble chromium; it means that analytical results are punctual and not any case can be extrapolating ones. Ni and Co solubility in water is practically negligible either raw as clinkers.

    Los cementos Portland comerciales contienen elementos minoritarios en su composición química. La presencia de estos elementos tiene una incidencia directa en diferentes aspectos: comportamiento reológico, cinética de reacción, contaminación ambiental, etc. Algunos de ellos, aparte de su incidencia mencionada anteriormente, tienen un efecto negativo en la salud humana. Así, el cromo (Cr, níquel (Ni y cobalto (Co son los principales alérgenos contenidos en los cementos y, por lo tanto, los principales causantes de la Dermatitis Profesional. Este trabajo se centra en la cuantifîcación de los contenidos totales y solubles de cromo, níquel y cobalto presentes en los cementos comerciales

  1. Analyses of heavy metals in mineral trioxide aggregate and Portland cement.

    Science.gov (United States)

    Schembri, Matthew; Peplow, George; Camilleri, Josette

    2010-07-01

    Portland cement is used in the construction industry as a binder in concrete. It is manufactured from chalk, limestone, and clay, which are clinkered at very high temperatures and ground with gypsum to form Portland cement. The raw materials and the manufacturing process can result in the inclusion of heavy metals in Portland cement. Portland cement with a four to one addition of bismuth oxide is marketed as mineral trioxide aggregate (MTA), which is used mainly as a dental material. Heavy metal inclusion can be of concern because MTA is in contact with hard and soft tissues. Measurements of arsenic, lead, and chromium in hydrated gray and white Portland cement, ProRoot MTA, and MTA Angelus were conducted with graphite furnace atomic absorption spectrophotometry after acid digestion on the hydrated material. The leaching of the metal ions from the solid material in water and simulated body fluid (SBF) was also determined. All cement types showed high relative values of leached chromium compared with arsenic and lead in both the total metal content and leached species. The gray Portland cement showed the highest total amount of metal. The white Portland and both MTAs had lower values for all the leached metal ions. Both MTAs released more arsenic than the amount specified in ISO 9917-1 (2007). Portland cements and MTAs showed evidence of heavy metals in the acid-soluble form as well as leaching in deionized water and SBF. MTA contained levels of arsenic higher than the safe limit specified by the ISO 9917-1 (2007). Copyright 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  2. Silica fume effect on retention characteristics of portland cement for uranium (VI)

    International Nuclear Information System (INIS)

    Tan Hongbin; Ma Xiaoling; Li Yuxiang

    2005-01-01

    With simulated groundwater as leachant, the retention capabilities of the portland cement, which contains different amount of silica fume, are investigated under 25 degree C and 42 days. The results indicate that silica fume can improve the retention capabilities of portland cement for uranium. When the cement contains 15% silica fume, the diffusion coefficient is 7 x 10 -3 cm 3 · -1 . It is only 5.5% of the cement without containing fume. (authors)

  3. Re-examining the prospects of aluminous cements based on alkali-earth and rare-earth oxides

    International Nuclear Information System (INIS)

    Chatterjee, A.K.

    2009-01-01

    In the family of aluminous cements the potential of strontium aluminate, the strontium-barium aluminate and the barium aluminate cements have been sporadically and incoherently studied over several decades in various parts of the world and more particularly in the East European countries without much wide-spread commercial success. Attempts had also been made to extend the exploratory studies to the (Ca, Sr, Ba)O-Al 2 O 3 -ZrO 2 -HfO 2 system to synthesize super-refractory binders. In fact, the above compositions, prima facie, seem to have the potential of arriving at cementitious formulations that, apart from being super-refractory, may as well be highly resistant to seawater, X-rays and gamma radiation. Looking at these potentials, quite a few experimental studies have been carried out under the guidance and supervision of the present author. The present paper is an endeavour to collate the data on some of these systems both from the published literature as well as from the author's findings. The prime motive has been to review and re-assess the prospects of manufacturing a range of new aluminous binders with superior properties.

  4. Imaging a fossil oolitic system with GPR, insights into the exposures of the Isle of Portland (UK)

    Science.gov (United States)

    Moreau, Julien; Hansen, Trine L.; Nielsen, Lars

    2015-04-01

    The Isle of Portland shows exposure of uppermost Jurassic oolitic carbonate all along its coast. The stone of Portland properties are famous as standards for concrete composition, as building material but also for sculpture. As a consequence, the Isle has been quarried intensively for hundreds of years. The regional exposure quality is very high with a potential 3D control. The site has seen generations of geologist trainees coming for field work. The Wessex Basin where the Isle is sitting contains an active petroleum system and the geologists visiting/training there use the carbonates of Portland as an analogue to equivalent Middle-East oil and gas reservoir. Surprisingly, although the site has a tremendous potential to understand the 3D architecture and the sedimentary dynamic of an oolitic system, only punctual observations of logs (1D), sometimes correlated have been published. Several studies place a shore line between the Isle and the continent striking NEE-SWW and facing towards the Channel. Facies changes are attributed to rapid sea-level variations and Walter's Law. We have collected an extensive GPR survey of the same stratigraphic interval (The Portland Freestone). With a total of 99 GPR profiles, we have produced grids on top of most of the coastal cliffs and quarry faces. We have encountered 3 main architectures: 2-m-high bars with steep clinoforms, 10s of metres-wide channels plugged with a variety of organisms and stacked aggrading bundles of multidirectional dunesets. Our dataset does not illustrate any major unconformity which could be attributed to a sharp sea-level drop. We have interpreted our sedimentary architecture to be the result of various hydrodynamic conditions associated with a mix of wave and tide influences. The Isle shows an island barrier complex which progrades into the basin but also expands laterally filling up the available space and cannibalising itself. More proximal facies are effectively observed in the north of the island

  5. Effect of heat treatment upon the mechanical and poro-mechanical behaviour of cement-based materials: hydraulic properties and morphological changes

    International Nuclear Information System (INIS)

    Chen, Xiao-Ting

    2009-01-01

    This work investigates the effects of morphological changes of a cement-based material subjected to heat treatment (up to 400 C). For a model W/C=0.5 mortar, we have characterized experimentally hydraulic behaviour (gas permeability), mechanical behaviour (in uniaxial compression, hydrostatic compression with or without deviatoric stress) and poro-mechanical behaviour (incompressibility moduli Kb, Ks and Biot's coefficient b) after a heating/cooling cycle. We have also developed an original experiment aimed at quantifying the accessible pore space volume under hydrostatic compression. The creation of occluded porosity under high confinement is confirmed, which justifies the observed decrease of solid matrix rigidity Ks under high confinement. A gas retention phenomenon was identified under simultaneous thermal and hydrostatic loadings for mortar, and industrial concretes (provided by CERIB and ANDRA). A predictive thermo-elasto-plastic model with isotropic damage and a micro-mechanical approach, which represents micro-cracking, are coupled in order to analyze or predict the evolution of mechanical and poro-elastic properties after heat cycling. (author)

  6. Mixed waste solidification testing on thermosetting polymer and cement based waste forms in support of Hanford's WRAP Module 2A Facility

    International Nuclear Information System (INIS)

    Burbank, D.A.; Weingardt, K.M.

    1993-01-01

    A testing program has been conducted by the Westinghouse Hanford Co. to confirm the baseline waste form selection for use in Waste Receiving and Processing (WRAP) Module 2A. WRAP Module 2A will provide treatment required to properly dispose of containerized contact-handled, mixed low-level waste at the US DOE Hanford Site in south-central Washington State. Solidification/stabilization has been chosen as the appropriate treatment for this waste. This work is intended to test cement-based and thermosetting polymer solidification media to confirm the baseline technologies selected for WRAP Module 2A. Screening tests were performed using the major chemical constituent of each waste type to measure the gross compatibility with the immobilization media and to determine formulations for more detailed testing. Surrogate wastes representing each of the eight waste types were prepared for testing. Surrogates for polymer testing were sent to a vendor commissioned for that portion of the test work. Surrogates for the grout testing were used in the Westinghouse Hanford Co. laboratory responsible for the grout performance testing. Detailed discussion of the lab. work and results are contained in this report

  7. Solid phase characterization and gas transfers through unsaturated porous media: experimental study and modeling applied diffusion of hydrogen through cement-based materials

    International Nuclear Information System (INIS)

    Vu, T.H.

    2009-10-01

    This thesis documents the relationship between the porous microstructure of cement based materials and theirs gaseous diffusivity properties relative to the aqueous phase location and the global saturation level of the material. The materials studied are cement pastes and mortars. To meet the thesis objective, the materials are characterized in detail by means of several experimental methods: mercury intrusion porosimetry, water porosimetry, thermo-poro-metry, nitrogen sorption and water desorption. In addition, diffusion tests realized on materials maintained in controlled humidity chambers allow obtaining the effective hydrogen diffusivity as function of the microstructure and the saturation state of material with a gas chromatography. The experimental results are then used as a data base that is compared to a modeling approach. The model developed consists of a combination of ordinary diffusion (Fick regime) and Knudsen diffusion of hydrogen. The model also accounts for the effects of the liquid curtains, the impact of tortuosity on gas diffusion, and the saturation level of the porous system. (author)

  8. Inference of the phase-to-mechanical property link via coupled X-ray spectrometry and indentation analysis: Application to cement-based materials

    Energy Technology Data Exchange (ETDEWEB)

    Krakowiak, Konrad J.; Wilson, William [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States); James, Simon [Schlumberger Riboud Product Center, 1 Rue Henri Becquerel, Clamart 92140 (France); Musso, Simone [Schlumberger-Doll Research Center, 1 Hampshire St., Cambridge, MA 02139-1578 (United States); Ulm, Franz-Josef, E-mail: ulm@mit.edu [Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307 (United States)

    2015-01-15

    A novel approach for the chemo-mechanical characterization of cement-based materials is presented, which combines the classical grid indentation technique with elemental mapping by scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDS). It is illustrated through application to an oil-well cement system with siliceous filler. The characteristic X-rays of major elements (silicon, calcium and aluminum) are measured over the indentation region and mapped back on the indentation points. Measured intensities together with indentation hardness and modulus are considered in a clustering analysis within the framework of Finite Mixture Models with Gaussian component density function. The method is able to successfully isolate the calcium-silica-hydrate gel at the indentation scale from its mixtures with other products of cement hydration and anhydrous phases; thus providing a convenient means to link mechanical response to the calcium-to-silicon ratio quantified independently via X-ray wavelength dispersive spectroscopy. A discussion of uncertainty quantification of the estimated chemo-mechanical properties and phase volume fractions, as well as the effect of chemical observables on phase assessment is also included.

  9. Interferometric microscopy study of the surface roughness of Portland cement under the action of different irrigants.

    Science.gov (United States)

    Ballester-Palacios, Maria L; Berástegui-Jimeno, Esther M; Parellada-Esquius, Neus; Canalda-Sahli, Carlos

    2013-09-01

    Some investigations suggested common Portland cement (PC) as a substitute material for MTA for endodontic use; both MTA and PC have a similar composition. The aim of this study was to determine the surface roughness of common PC before and after the exposition to different endodontic irrigating solutions: 10% and 20% citric acid, 17% ethylenediaminetetraacetic (EDTA) and 5% sodium hypochlorite. Fifty PC samples in the form of cubes were prepared. PC was mixed with distilled water (powder/liquid ratio 3:1 by weight). The samples were immersed for one minute in 10% and 20% citric acid, 17% EDTA and 5% sodium hypochlorite. After gold coating, PC samples were examined using the New View 100 Zygo interferometric microscope. It was used to examine and register the surface roughness and the profile of two different areas of each sample. Analysis of variance (ANOVA) was carried out, and as the requirements were not met, use was made of the Kruskal-Wallis test for analysis of the results obtained, followed by contrasts using Tukey's contrast tests. Sodium hypochlorite at a concentration of 5% significantly reduced the surface roughness of PC, while 20% citric acid significantly increased surface roughness. The other evaluated citric acid concentration (10%) slightly increased the surface roughness of PC, though statistical significance was not reached. EDTA at a concentration of 17% failed to modify PC surface roughness. Irrigation with 5% sodium hypochlorite and 20% citric acid lowered and raised the roughness values, respectively. The surface texture of PC is modified as the result of treatment with different irrigating solutions commonly used in endodontics, depending on their chemical composition and concentration.

  10. Sulfur polymer cement concrete

    International Nuclear Information System (INIS)

    Weber, H.H.; McBee, W.C.

    1990-01-01

    Sulfur-based composite materials formulated using sulfur polymer cement (SPC) and mineral aggregates are described and compared with conventional portland cement based materials. Materials characteristics presented include mechanical strength, chemical resistance, impact resistance, moisture permeation, and linear shrinkage during placement and curing. Examples of preparation and placement of sulfur polymer cement concrete (SC) are described using commercial scale equipment. SC applications presented are focused into hostile chemical environments where severe portland cement concrete (PCC) failure has occurred

  11. Blasted copper slag as fine aggregate in Portland cement concrete.

    Science.gov (United States)

    Dos Anjos, M A G; Sales, A T C; Andrade, N

    2017-07-01

    The present work focuses on assessing the viability of applying blasted copper slag, produced during abrasive blasting, as fine aggregate for Portland cement concrete manufacturing, resulting in an alternative and safe disposal method. Leaching assays showed no toxicity for this material. Concrete mixtures were produced, with high aggregate replacement ratios, varying from 0% to 100%. Axial compressive strength, diametrical compressive strength, elastic modulus, physical indexes and durability were evaluated. Assays showed a significant improvement in workability, with the increase in substitution of fine aggregate. With 80% of replacement, the concrete presented lower levels of water absorption capacity. Axial compressive strength and diametrical compressive strength decreased, with the increase of residue replacement content. The greatest reductions of compressive strength were found when the replacement was over 40%. For tensile strength by diametrical compression, the greatest reduction occurred for the concrete with 80% of replacement. After the accelerated aging, results of mechanic properties showed a small reduction of the concrete with blasted copper slag performance, when compared with the reference mixture. Results indicated that the blasted copper slag is a technically viable material for application as fine aggregate for concrete mixtures. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Portland Energy Centre: Securing supply and clearing the air

    International Nuclear Information System (INIS)

    2003-02-01

    The rationale for, and benefits derivable from the proposed Portland natural gas-fired cogeneration plant, to be located beside the former Hearn power station near the Leslie Street Spit in Toronto, are discussed. The justification for and the single most important benefit promised by the proposed plant is that it could help Ontario achieve its coal phase-out target by displacing 100 per cent of the annual output of the Lakeview coal--fired power plant in Mississauga, as well as six per cent of the annual output of the Nanticoke coal-fired power plant, in total supplying about 10 per cent of Toronto's electricity needs and providing steam to heat several office towers in downtown Toronto. Other benefits discussed include substantially improved air quality, reduced incidence of asthma and heart attacks, a more reliable power supply for Toronto, some 500 new jobs during construction, and 25 to 35 permanent jobs to operate the plant. The Fact Sheet also offers suggestions on how to generate political support for this project in particular and for renewable power sources in general

  13. Push-out strength of modified Portland cements and resins.

    Science.gov (United States)

    Iacono, Francesco; Gandolfi, Maria Giovanna; Huffman, Bradford; Sword, Jeremy; Agee, Kelli; Siboni, Francesco; Tay, Franklin; Prati, Carlo; Pashley, David

    2010-02-01

    Modified calcium-silicate cements derived from white Portland cement (PC) were formulated to test their push-out strength from radicular dentin after immersion for 1 month. Slabs obtained from 42 single-rooted extracted teeth were prepared with 0.6 mm diameter holes, then enlarged with rotary instruments. After immersion in EDTA and NaOC1, the holes were filled with modified PCs or ProRoot MTA, Vitrebond and Clearfil SE. Different concentrations of phyllosilicate (montmorillonite-MMT) were added to experimental cements. ProRoot MTA was also included as reference material. Vitrebond and Clearfil SE were included as controls. Each group was tested after 1 month of immersion in water or PBS. A thin-slice push-out test on a universal testing machine served to test the push-out strength of materials. Results were statistically analyzed using the least squares means (LSM) method. The modified PCs had push-out strengths of 3-9.5 MPa after 1 month of immersion in water, while ProRoot MTA had 4.8 MPa. The push-out strength of PC fell after incubation in PBS for 1 month, while the push-out strength of ProRoot MTA increased. There were no significant changes in Clearfil SE Bond or Vitrebond after water or PBS storage.

  14. Costs and benefits of bicycling investments in Portland, Oregon.

    Science.gov (United States)

    Gotschi, Thomas

    2011-01-01

    Promoting bicycling has great potential to increase overall physical activity; however, significant uncertainty exists with regard to the amount and effectiveness of investment needed for infrastructure. The objective of this study is to assess how costs of Portland's past and planned investments in bicycling relate to health and other benefits. Costs of investment plans are compared with 2 types of monetized health benefits, health care cost savings and value of statistical life savings. Levels of bicycling are estimated using past trends, future mode share goals, and a traffic demand model. By 2040, investments in the range of $138 to $605 million will result in health care cost savings of $388 to $594 million, fuel savings of $143 to $218 million, and savings in value of statistical lives of $7 to $12 billion. The benefit-cost ratios for health care and fuel savings are between 3.8 and 1.2 to 1, and an order of magnitude larger when value of statistical lives is used. This first of its kind cost-benefit analysis of investments in bicycling in a US city shows that such efforts are cost-effective, even when only a limited selection of benefits is considered.

  15. Durabilidad de un suelo contaminado y tratado con cemento portland Durability of a contaminated soil treated with portland cement

    Directory of Open Access Journals (Sweden)

    José W Jiménez Rojas

    2008-01-01

    Full Text Available Este trabajo tiene por objetivo la aplicación de la técnica de solidificación/estabilización de suelos contaminados, analizando específicamente el comportamiento físico del suelo a través de ensayos de durabilidad. El suelo fue contaminado en laboratorio con residuo oleoso y la aplicación de la técnica tuvo cómo agente de encapsulamiento el cemento Portland CP V-ARI. Los ensayos de durabilidad, realizados según la NBR 13554 (1996, tuvieron como objetivo estudiar el grado de desagregación y vulnerabilidad del material con diversas combinaciones de dosificaciones de cemento y residuo oleoso, así cómo estudiar la variación volumétrica de los mismos. A partir de los resultados es posible observar que cuanto mayor la cantidad de contaminante, mayor es la pérdida de masa. Sin embargo, cuánto mayor es la cantidad de cemento, menor es la pérdida de masa y menor la variación volumétrica.This work seeks the application of solidification/stabilization techniques to contaminated soils analyzing specifically de physical behavior of the soil through tests of durability. The soil was contaminated in laboratory with acidic oily sludge industrial residues and the application of that technique had an encapsulate agent, the Portland cement CP V-ARI. The tests were carried out according to NBR 13.554 (1996, and they aimed to study the level of degradation and the vulnerability of the material with several combinations of cement and acidic oily sludge as well as study their volumetric variations. Starting from the results, it is possible to observe that the larger the contamination the larger the mass loss; however the larger the amount of cement, the smaller the mass loss and the more stable the volumetric variation.

  16. Optimization of calcium chloride content on bioactivity and mechanical properties of white Portland cement

    International Nuclear Information System (INIS)

    Torkittikul, Pincha; Chaipanich, Arnon

    2012-01-01

    This research investigates the optimization of calcium chloride content on the bioactivity and mechanical properties of white Portland cement. Calcium chloride was used as an addition of White Portland cement at 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10% by weight. Calcium chloride was dissolved in sterile distilled water and blended with White Portland cement using a water to cement ratio of 0.5. Analysis of the bioactivity and pH of white Portland cement pastes with calcium chloride added at various amounts was carried out in simulated body fluid. Setting time, density, compressive strength and volume of permeable voids were also investigated. The characteristics of cement pastes were examined by X-ray diffractometer and scanning electron microscope linked to an energy-dispersive X-ray analyzer. The result indicated that the addition of calcium chloride could accelerate the hydration of white Portland cement, resulting in a decrease in setting time and an increase in early strength of the pastes. The compressive strength of all cement pastes with added calcium chloride was higher than that of the pure cement paste, and the addition of calcium chloride at 8 wt.% led to achieving the highest strength. Furthermore, white Portland cement pastes both with and without calcium chloride showed well-established bioactivity with respect to the formation of a hydroxyapatite layer on the material within 7 days following immersion in simulated body fluid; white Portland cement paste with added 3%CaCl 2 exhibited the best bioactivity. - Highlights: ► Optimization CaCl 2 content on the bioactivity and mechanical properties. ► CaCl 2 was used as an addition at 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10% by weight. ► CaCl 2 resulted in a decrease in setting time and an increase in early strength. ► Addition of 3%CaCl 2 exhibited the optimum formation of hydroxyapatite.

  17. Influence of limestone powder on the reaction kinetics and mechanical properties of sodium carbonate activated slag

    NARCIS (Netherlands)

    Yuan, B.; Yu, Q.; Brouwers, H.J.H.

    2016-01-01

    The effects of limestone powder (LP) on the performance of Portland cement based composites have been extensively studied, considering that LP not only acts as nuclei sites, but that it is also chemically involved in the hydration process, which improves the reaction degree at the early age. In high

  18. Manganese substitutions into the portland cement clinker phases

    Directory of Open Access Journals (Sweden)

    Puertas, F.

    1989-06-01

    Full Text Available The effect of manganese substitution into the crystal structures of the main Portland cement clinker phases (3CaO.SiO2, 2CaO.SiO2, 3CaO.Al2O3, 2CaO.Fe2O3 y 4CaO.Al2O3.Fe2O3 has been studied by X-ray and analytical electron microscopy. In oxidizing conditions, the limit of solid solution in 3CaO.SiO2 is about 0.72 ±0.11% (wt, while in 2CaO.SiO2 is 1.53±0,12%(wt. Mn solid solubility on 3CaO.Al2O3structure, in oxidizing conditions is close to 0.78 ± 0,12% (wt. In identical atmosphere, the proportion of Mn in the ferrite phases (2CaO.Fe2O3 and 4CaO.Al2O3.Fe2O3 is 6.80 ± 0.87% (wt and 6.7% (wt, respectively. To each mentioned clinker phases a solid solution formula has been proposed. In these formula, the manganese substitutions and also the different oxidation states which this element can be introduced in those crystalline structure are defined.

    Se ha estudiado, por difracción de rayos X y microanálisis por espectroscopia de energías dispersivas, el efecto de la sustitución del manganeso en las estructuras cristalinas de las fases más importantes del clinker del cemento portland (3CaO.SiO2, 2CaO.SiO2, 3CaO.Al2O3, 2CaO.Fe2O3 y 4CaO.Al2O3.Fe2O3. En condiciones oxidantes, el límite de solubilidad sólida en 3CaO.SiO2 es del orden de 0,72 ± 0,11% en peso; mientras que en 2CaO.SiO2 es de 1,53 ±0,12% en peso. La solución sólida del Mn en la estructura del 3CaO.Al2O3, en condiciones oxidantes, es próxima al 0,78 ±0,12% en peso. En idéntica atmósfera, la proporción del Mn en las fases terríficas (2CaO.Fe2O3 y 4CaO.Al2

  19. Release kinetics and mechanisms of trace heavy metals from cement based material; Cinetiques et mecanismes de relargage des metaux lourds presents en traces dans les matrices cimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Moudilou, E.

    2002-12-15

    Chemical species contained in a solid matrix may be transferred to the environment through water leaching. Previous studies of trace metals released from building materials (particularly cement-based ones) highlight an important analytical difficulty. The aim of this study is to determine the kinetics and the mechanisms involved in the release of trace heavy metals (Cr, Cu, Ni, Pb, V and Zn) from industrial cement pastes (usually ranging from 20 to 300 ppm). The development of a dynamic leaching system, named CTG-LEACHCRETE, (used at pH=5, 20 C) which permits the evaluation of the kinetics of trace heavy metals is presented in the first part. Also, innovative solid analysis techniques (ICP-MS-Laser Ablation, local and Grazing Incidence X-rays Diffraction (GIXD) technique) were used to characterise the cement-degraded layers formed during leaching experiments. These techniques enable to monitor the mineralogical evolution and the distribution of trace metals in these areas. The confrontation of these two approaches, kinetic and solid analysis, coupled with a thorough investigation of previously developed models, lead to proposals concerning the mechanisms of release of the trace heavy metals studied. In all the cement pastes studied (CPA-CEM I, CPJ-CEM II/A and CLC-CEM V/A), chromium is trapped in ettringite by substitution SO{sub 4}{sup 2-}(U)CrO{sub 4}{sup 2-} and its release is then controlled by the dissolution of this hydrate. The behaviour of copper, nickel and zinc in degraded areas and in leachates, are correlated to the silicon of the hydrated calcium silicate (CSH), which imply that they are localised there. Lead, was never detected in the leachates. But it is also correlated to the silicon in the degraded layers. (author)

  20. Modelling of Pb release during Portland cement alteration

    Energy Technology Data Exchange (ETDEWEB)

    Benard, A. [INERIS Mediterrannee, F-13545 Aix En Provence 04 (France); Rose, J.; Borschneck, D.; Bottero, J.Y. [Univ Paul Cezanne, CNRS, UMR 6635, CEREGE, IFR PMSE 112, F-13545 Aix En Provence, (France); Hazemann, J.L. [CNRS, Cristallog Lab, F-38042 Grenoble 09 (France); Proux, O. [Univ Grenoble 1, CNRS, UMR, LGIT, F-38400 St Martin Dheres (France); Trotignon, L. [CEA Cadarache, DTN, SMTM, Lab Modelisat Transferts Environm, 13 - Saint Paul lez Durance (France); Nonat, A. [Univ Bourgogne, CNRS, UMR 5613, Fac Sci Mirande, Lab Rech Reactivite Solides, F-21078 Dijon (France); Chateau, L. [ADEME, F-49004 Angers (France)

    2009-07-01

    Complex cementitious matrices undergo weathering with environmental exchange and can release metallic pollutants during alteration. The molecular mechanisms responsible for metal release are difficult to identify, though this is necessary if such processes are to be controlled. The present study determines and models the molecular mechanisms of Pb release during Portland cement leaching. As Pb release is strongly related to its speciation (i.e. atomic environment and the nature of bearing phases), the first objective of the present study was to investigate the evolution of Pb retention sites together with the evolution of the cement mineralogy during leaching. Complementary and efficient investigation tools were used, namely X-ray diffraction, micro-X-ray fluorescence and X-ray absorption fine structures. The second objective was to reproduce our results with a reactive transport code (CHESS/HYTEC) in order to test the proposed speciation model of Pb. Combined results indicate that in both the unaltered core and the altered layer of the leached cement, Pb(II) would be retained through C-S-H 'nano-structure', probably linked to a Q(1) or Q(2P) silicate tetrahedra. Moreover in the altered layer, the presence of Fe atoms in the atomic environment of Pb is highly probable. Unfortunately little is known about Fe phases in cement, which makes the interpretation difficult. Can Fe-substituted hydrogranet (C(3)AH(6)) be responsible for Pb retention? Modelling results were consistent with Pb retention through C-S-H in layers and also in an additional, possibly Fe-containing, Pb-retention phase in the altered layer. (authors)

  1. DURABILIDAD DEL CEMENTO PORTLAND BLANCO ADICIONADO CON PIGMENTO AZUL ULTRAMAR

    Directory of Open Access Journals (Sweden)

    CAROLINA GIRALDO

    2010-01-01

    Full Text Available El pigmento Azul Ultramar (AU es un aluminosilicato polisulfurado de sodio que reacciona con el aluminato tricálcico (C3A y con el óxido de calcio (CaO del cemento Pórtland blanco en presencia de agua, generando cantidades considerables de etringita a edad temprana y en menor proporción de tobermorita. Esta etringita primaria se presenta en forma de fibras no orientadas mejorando el desempeño mecánico de los morteros, y al mismo tiempo dejando pocas cantidades de C3A disponible para la formación de etringita secundaria. En esta investigación se evalúa la durabilidad a diferentes edades de curado en morteros de cemento Portland blanco sustituidos por 0%, 10% y 20% de AU en peso, mediante pruebas de succión capilar y evaluación del cambio longitudinal de morteros expuestos a una solución de sulfato de sodio con una concentración del 5% (ASTM C1012. Los resultados evidencian una mayor resistencia a compresión y a flexión, una significativa disminución de la expansión y una reducción hasta del 800% de la absorción de agua en morteros con AU. Todo esto debido a la formación de las fases minerales adicionales (etringita primaria y tobermorita, las cuales fueron identificadas mediante microscopía electrónica de barrido (SEM.

  2. Optimization of superplasticizer in portland pozzolana cement mortar and concrete

    Science.gov (United States)

    Sathyan, Dhanya; Anand, K. B.; Mini, K. M.; Aparna, S.

    2018-02-01

    Chemical Admixtures are added to concrete at the time of mixing of its constituents to impart workability. The requirement of right workability is the essence of good concrete. It has been found that the use of optimum use of admixtures is very important since low dosage may result in loss of fluidity and over dosage could lead to segregation, bleeding, excessive air entrainment etc in concrete. Hence it is essential to find optimum dosage of superplasticizer for getting good strength and workability. But large number of trial tests are required in the field to find the saturation dosage of superplasticizer in concrete which requires more materials and consume more time. The paper deals with developing a co-relation between the quantity requirements of superplasticiser in mortar to that of cement concrete to get good workability. In this work for preparing mortar and concrete 4 brands of locally available Portland pozzolana cement (PPC) and superplasticizer (SP) belonging to 4 different families namely Polycarboxylate Ether (PCE), Lignosulphate (LS), Sulfonated Naphthalene Formaldehyde (SNF) and Sulfonated Melamine Formaldehyde (SMF) are used. Two different brands of SP’s are taken from each family. Workability study on the superplasticized mortar with cement to sand ratio 1:1.5 and water cement ratio of 0.4 was performed using marsh cone and flow table test and workability study on the concrete with same cement/sand ratio and water cement ratio was done using slump cone and flow table test. Saturation dosage of superplasticizer in mortar and concrete determined experimentally was compared to study the correlation between two. Compressive strength study on concrete cubes were done on concrete mixes with a superplasticizer dosage corresponding to the saturation dosage and a comparative study were done to analyse the improvement in the compressive strength with addition of superplasticizer from different family.

  3. Immediate and delayed solubility of mineral trioxide aggregate and Portland cement

    Directory of Open Access Journals (Sweden)

    Augusto Bodanezi

    2008-04-01

    Full Text Available This study investigated the solubility of mineral trioxide aggregate (MTA and Portland cement since its mixture until 672 hours, by means of two complimentary methods. Metal ring molds filled with the cements were covered with distilled water and, at each experimental time (3, 24, 72, 168, 336 and 672 hours, were weighed as soon as the plates in which the samples have been placed. Empty rings served as the control group (n=8. Mean weight gain and loss was determined and analyzed statistically by two-way ANOVA and Tukey's test for all pairwise comparisons. Only Portland cement showed less than 3% weight loss through 24 hours. Detached MTA residues were heavier than those of Portland cement over the 3 to 168 hours. The weight of MTA rings increased more than that of Portland rings within 672 hours (p=0.05. The findings of the present study indicate that, in an aqueous environment MTA is more soluble than Portland cement and exceeds the maximum weight loss considered acceptable by ISO 6876 standard (2001.

  4. Effect of mineral trioxide aggregates and Portland cements on inflammatory cells.

    Science.gov (United States)

    Shahi, Shahriar; Rahimi, Saeed; Yavari, Hamid Reza; Mokhtari, Hadi; Roshangar, Leila; Abasi, Mehran Mesgary; Sattari, Sahar; Abdolrahimi, Majid

    2010-05-01

    Recently, some studies have compared mineral trioxide aggregate (MTA) with Portland cements, concluding that the principal ingredients of Portland cements are similar to those of MTA. The purpose of the present study was to evaluate the effect of gray MTA, white MTA, and gray and white Portland cements on inflammatory cells in rats. Fresh mixtures mixed with distilled water were placed in polyethylene tubes, which were implanted in the dorsal subcutaneous connective tissue of 60 Sprague-Dawley rats along with empty tubes as controls. Tissue specimens were collected after the rats were sacrificed after 7, 15, 30, 60, and 90 days. The specimens were fixed, stained, processed, and histologically evaluated under a light microscope. Inflammatory reactions were classified as grade 0: without inflammatory cells, grade I: sporadic infiltration of inflammatory cells, grade II: moderate infiltration (125 cells). Data were analyzed with the nonparametric (two factor) analysis of variance and Kruskal-Wallis H-test. All the groups showed grade III inflammation after 7 and 15 days; there was a decrease in the inflammatory process after 30, 60, and 90 days. After 90 days, gray MTA, white MTA, and control groups had grade 0 inflammatory process, but gray Portland cement and white Portland cement groups showed grade 0 to grade I inflammatory processes. MTAs were more biocompatible; however, more studies are required. Copyright (c) 2010 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  5. Immediate and delayed solubility of mineral trioxide aggregate and Portland cement.

    Science.gov (United States)

    Bodanezi, Augusto; Carvalho, Nara; Silva, Daniela; Bernardineli, Norberti; Bramante, Clovis Monteiro; Garcia, Roberto Brandão; de Moraes, Ivaldo Gomes

    2008-01-01

    This study investigated the solubility of mineral trioxide aggregate (MTA) and Portland cement since its mixture until 672 hours, by means of two complimentary methods. Metal ring molds filled with the cements were covered with distilled water and, at each experimental time (3, 24, 72, 168, 336 and 672 hours), were weighed as soon as the plates in which the samples have been placed. Empty rings served as the control group (n=8). Mean weight gain and loss was determined and analyzed statistically by two-way ANOVA and Tukey's test for all pairwise comparisons. Only Portland cement showed less than 3% weight loss through 24 hours. Detached MTA residues were heavier than those of Portland cement over the 3 to 168 hours. The weight of MTA rings increased more than that of Portland rings within 672 hours (p=0.05). The findings of the present study indicate that, in an aqueous environment MTA is more soluble than Portland cement and exceeds the maximum weight loss considered acceptable by ISO 6876 standard (2001).

  6. Evaluation of the strength and radiopacity of Portland cement with varying additions of bismuth oxide.

    Science.gov (United States)

    Saliba, E; Abbassi-Ghadi, S; Vowles, R; Camilleri, J; Hooper, S; Camilleri, J

    2009-04-01

    To study the effect of addition of various proportions of bismuth oxide on compressive strength and radiopacity of Portland cement. The compressive strength of white Portland cement and cement replaced with 10, 15, 20, 25 and 30% bismuth oxide was evaluated by testing cylinders 6 mm in diameter and 12 mm high. Twelve cylinders were tested for each material under study. The radiopacity of the cements tested was evaluated using an aluminium step-wedge and densitometer. The optical density was compared with the relevant thickness of aluminium (Al). Statistical analysis was performed using Analysis of Variance (ANOVA) with P = 0.05 and Tukey test to perform multiple comparison tests. Various additions of bismuth oxide had no significant effect on the strength of the material when compared with the unmodified Portland cement (P > 0.05). The radiopacity of the cements tested ranged from 2.02 mm Al for Portland cement to 9.79 mm Al for the highest bismuth replacement. Addition of bismuth oxide did not affect the compressive strength of Portland cement. All the bismuth oxide cement mixtures had radio-opacities higher than 3 mm thickness of aluminium.

  7. Thermophysical properties of blends from Portland and sulfoaluminate-belite cements

    International Nuclear Information System (INIS)

    Mojumdar, S.C.; Janotka, I.

    2002-01-01

    The behavior of mortars with blends consisting of sulfoaluminate-belite cements and ordinary Portland cement made with cement to sand ratio of 1:3 by weight and w/c = 0.5 maintained for 90 days at 20 0 C either at 60% relative humidity - dry air or 100% relative humidity - wet air. The results show insufficient character of hydraulic activity of sulfoaluminate-belite cements. Their quality has been improved. The replacement of 15 wt % of sulfoaluminate-belite cement by ordinary Portland cement influences strength positively and elasticity modulus values as well as hydrated phases and pore structure development of sulfoaluminate-belite/ordinary Portland cement blends relative to pure sulfoaluminate-belite cement systems. The above statements confirm the possible making technologies, when improvements in sulfoaluminate-belite cements quality will be achieved. One would then anticipate the competition in usages between sulfoaluminate-belite/ordinary Portland cement and blast furnace-slag Portland cement systems in the practice. It is important to consider because sulfoaluminate-belite cements are of great advantage from the viewpoint of energy savings and quantity of CO 2 released during their production. Thermal characteristics of the samples were studied by thermogravimetry and differential thermal analysis from room temperature to 1000 0 C in air atmosphere. Generally, four significant temperature regions on thermogravimetry curves with the respective differential thermal analysis peak temperature for all types of samples are observed (Authors)

  8. Comparability of Mayo-Portland Adaptability Inventory ratings by staff, significant others and people with acquired brain injury.

    Science.gov (United States)

    Malec, James F

    2004-06-01

    To determine the internal consistency, reliability and comparability of the Mayo-Portland Adaptability Inventory (MPAI-4) and sub-scales completed by people with acquired brain injury (ABI), family and significant others (SO) and rehabilitation staff. 134 people with ABI consecutively seen for outpatient rehabilitation evaluation. MPAI-4 protocols based on independent ratings by the people with ABI undergoing evaluation, SO and rehabilitation staff were submitted to Rasch Facets analysis to determine the internal consistency of the overall measure and sub-scales (Ability, Adjustment and Participation indices) for each rater group and for a composite measure based on all rater groups. Rater agreement for individual items was also examined. Rasch indicators of internal consistency were entirely within acceptable limits for 3-rater composite full scale and sub-scale measures; these indicators were generally within acceptable limits for measures based on a single rater group. Item agreement was generally acceptable; disagreements suggested various sources of bias for specific rater groups. The MPAI-4 possesses satisfactory internal consistency regardless of rating source. A composite measure based on ratings made independently by people with ABI, SO and staff may serve as a 'gold standard' for research purposes. In the clinical setting, assessment of varying perspectives and biases may not only best represent outcome as evaluated by all parties involved but be essential to developing effective rehabilitation plans.

  9. THERMOCHEMISTRY OF INTERACTION REACTIONS FOR SODIUM AND ALUMINUM SULPHATES WITH COMPONENTS OF HYDRATING PORTLAND CEMENT

    Directory of Open Access Journals (Sweden)

    P. I. Yukhnevskiy

    2018-01-01

    Full Text Available Chemical additives are widely used in the technology of concrete with the purpose to solve various problems and sulphate-containing additives-electrolytes are also used as accelerators for setting and hardening of cement. Action mechanism of additive accelerators for setting and hardening of cement is rather complicated and can not be considered as well-established. An influence of sulfate-containing additives such as sodium sulfate is reduced to acceleration of cement silicate phase hydration by increasing ionic strength of the solution. In addition to it, exchange reactions of anion additive with portlandite phase (Ca(OH2 and aluminate phases of hardening cement have a significant effect on hardening process that lead to formation of readily soluble hydroxides and hardly soluble calcium salts. The influence of sulfate-containing additives on properties of water cement paste and cement stone is quite diverse and depends on salt concentration and cation type. For example, the action of the aluminum sulphate additive becomes more complicated if the additive is subjected to hydrolysis in water, which is aggravated in an alkaline medium of the water cement paste. Formation of hydrolysis products and their reaction with aluminate phases and cement portlandite lead to a significant acceleration of setting. Thus, despite the similarity of additives ensuring participation of anions in the exchange reactions, the mechanism of their influence on cement setting and hardening varies rather significantly. The present paper considers peculiar features concerning the mechanism of interaction of sodium and aluminum sulfate additives in cement compositions from the viewpoint of thermochemistry. Thermochemical equations for reactions of sulfate-containing additives with phases of hydrated cement clinker have been given in the paper. The paper contains description how to calculate thermal effects of chemical reactions and determine an influence of the formed

  10. Stakeholder value-linked sustainability assessment: Evaluating remedial alternatives for the Portland Harbor Superfund Site, Portland, Oregon, USA.

    Science.gov (United States)

    Apitz, Sabine E; Fitzpatrick, Anne G; McNally, Amanda; Harrison, David; Coughlin, Conor; Edwards, Deborah A

    2018-01-01

    Regulatory decisions on remediation should consider affected communities' needs and values, and how these might be impacted by remedial options; this process requires that diverse stakeholders are able to engage in a transparent consideration of value trade-offs and of the distribution of risks and benefits associated with remedial actions and outcomes. The Stakeholder Values Assessment (SVA) tool was developed to evaluate remedial impacts on environmental quality, economic viability, and social equity in the context of stakeholder values and priorities. Stakeholder values were linked to the pillars of sustainability and also to a range of metrics to evaluate how sediment remediation affects these values. Sediment remedial alternatives proposed by the US Environmental Protection Agency (USEPA) for the Portland Harbor Superfund Site were scored for each metric, based upon data provided in published feasibility study (FS) documents. Metric scores were aggregated to generate scores for each value; these were then aggregated to generate scores for each pillar of sustainability. In parallel, the inferred priorities (in terms of regional remediation, restoration, planning, and development) of diverse stakeholder groups (SGs) were used to evaluate the sensitivity and robustness of the values-based sustainability assessment to diverse SG priorities. This approach, which addresses social indicators of impact and then integrates them with indicators of environmental and economic impacts, goes well beyond the Comprehensive Environmental Response, Compensation and Liability Act's (CERCLA) 9 criteria for evaluating remedial alternatives because it evaluates how remedial alternatives might be ranked in terms of the diverse values and priorities of stakeholders. This approach identified trade-offs and points of potential contention, providing a systematic, semiquantitative, transparent valuation tool that can be used in community engagement. Integr Environ Assess Manag 2018

  11. Partial replacement of Portland cement by red ceramic waste in mortars: study of pozzolanic activity

    International Nuclear Information System (INIS)

    Silva, A.R. da; Cabral, K.C.; Pinto, E.N. de M.G.l.

    2016-01-01

    The objective of this study is to analyze the pozzolanic activity of red ceramic residue on the partial replacement of Portland cement in mortars. The mortars were prepared by substituting 25% of the Portland cement for ground of ceramic residue with water cement’s factor of 0.48. The concrete used to construct the reference mortars and those with addiction was CPII-Z-32 (compound of Portland pozzolana cement). The chemical analysis and physical ceramic waste showed that this meets the requirements of NBR12653 (2014) for use as pozzolanic material. The pozzolanic activity index (IAP) obtained for the ceramic waste to twenty-eight days cure rate was 80.28%. (author)

  12. 75 FR 4423 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Portland Cement...

    Science.gov (United States)

    2010-01-27

    ... Production Act of 1993--Portland Cement Association Notice is hereby given that, on December 14, 2009... seq. (``the Act''), Portland Cement Association (``PCA'') has filed written notifications... Cement, Hannibal, MO has been added as a party to this venture. Also, the following parties have...

  13. 77 FR 5573 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Portland Cement...

    Science.gov (United States)

    2012-02-03

    ... Production Act of 1993--Portland Cement Association Notice is hereby given that, on January 6, 2012, pursuant... seq. (``the Act''), Portland Cement Association (``PCA'') has filed written notifications..., Newark, DE, has been added as a party to this venture. Also, Texas-Lehigh Cement Company, Buda, TX...

  14. 76 FR 12370 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Portland Cement...

    Science.gov (United States)

    2011-03-07

    ... Production Act of 1993--Portland Cement Association Notice is hereby given that, on February 02, 2011... seq. (``the Act''), Portland Cement Association (``PCA'') has filed written notifications..., Praxair, Danbury, CT; Metso Minerals, York, PA; Lehigh Cement Company LLC, Allentown, PA; Lehigh Northwest...

  15. 76 FR 34252 - Notice Pursuant to the National Cooperative Research and Production Act of 1993; Portland Cement...

    Science.gov (United States)

    2011-06-13

    ... Production Act of 1993; Portland Cement Association Notice is hereby given that, on May 12, 2011, pursuant to.... (``the Act''), Portland Cement Association (``PCA'') has filed written notifications simultaneously with... plaintiffs to actual damages under specified circumstances. Specifically, Drake Cement, LLC, Scottsdale, AZ...

  16. 76 FR 50252 - Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review...

    Science.gov (United States)

    2011-08-12

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-461 (Third Review)] Gray Portland Cement and Cement Clinker From Japan; Scheduling of an Expedited Five-Year Review Concerning the Antidumping Duty Order on Gray Portland Cement and Cement Clinker From Japan AGENCY: United States International...

  17. Alternatieven voor Portland Cement in ontwikkelingslanden onderzocht : continue-kalkoven maakt toepassing van kalk pozzolaan cement mogelijk

    NARCIS (Netherlands)

    Egmond - de Wilde De Ligny, van E.L.C.; Jongsma, Ivo

    1995-01-01

    In de discussie over bouwmaterialen in ontwikkelingslanden wordt vaak gepleit voor alternatieven voor Portland Cement. De productie van Portland Cement is kapitaal- en energie-intensief en draagt weinig bij aan de ontwikkeling van deze landen. De klein schaliger productie van alternatieven voor

  18. Improved quantification of alite and belite in anhydrous Portland cements by 29Si MAS NMR: Effects of paramagnetic ions

    DEFF Research Database (Denmark)

    Poulsen, Søren Lundsted; Kocaba, Vanessa; Le Saoût, Gwenn

    2009-01-01

    The applicability, reliability, and repeatability of 29Si MAS NMR for determination of the quantities of alite (Ca3SiO5) and belite (Ca2SiO4) in anhydrous Portland cement was investigated in detail for 11 commercial Portland cements and the results compared with phase quantifications based...

  19. Four Decades of Systems Science Teaching and Research in the USA at Portland State University

    Directory of Open Access Journals (Sweden)

    Wayne Wakeland

    2014-04-01

    Full Text Available Systems science is defined in general fashion, and a brief background is provided that lists some of the systems science-related societies, conferences, journals, research institutes, and educational programs. The Systems Science Graduate Program at Portland State University in Portland, OR, USA, is described in detail, including its history, curriculum, students, faculty, and degrees granted. Dissertation topics are summarized via word diagrams created from dissertation titles over the years. MS degrees, student placement, and undergraduate courses are also mentioned, and future plans for the program are described including its support for sustainability education.

  20. Ecological indices of manufacture of Portland cement clinker and production of the dolomite clinker

    Directory of Open Access Journals (Sweden)

    Vinnichenko Varvara

    2017-01-01

    Full Text Available It is shown that the production of dolomite clinker in comparison with that of Portland cement is environmentally appropriate. When calcining dolomite for cementitious binder, the pollution of the atmosphere by carbon dioxide is reduced due to its isolation during decarbonization reactions of calcium carbonates. Reducing fuel consumption for clinker burning provides less carbon dioxide emissions from combustion products. Reducing the firing temperature creates obstacles to the formation of nitrogen oxides. The production of binders from dolomite in comparison with the production of Portland cement helps to protect the environment from contamination

  1. Portland cement hydration in the presence of admixtures: black gram pulse and superplasticizer

    Directory of Open Access Journals (Sweden)

    Viveka Nand Dwivedi

    2008-12-01

    Full Text Available Effect of admixtures such as black gram pulse (BGP and sulfonated naphthalene based superplasticizer (SP on the hydration of Portland cement has been studied. The hydration characteristics of OPC in the presence of BGP and SP were studied with the help of non evaporable water content determinations, calorimetric method, Mössbauer spectroscopic and atomic force microscopic techniques. Results have shown that both BGP and SP get adsorbed at the surface of cement and its hydration products. The hydration of Portland cement is retarded in the presence of both the admixtures and nanosize hydration products are formed.

  2. Physical and Thermodynamical Properties of Water Phases in Hardening Portland Cement Systems

    DEFF Research Database (Denmark)

    Hansen, T. Bæk

    The present study is devoted to the description of water phases in hardening portland cement paste systems containing a significant amount of micro-filler and having a low to moderate water/powder ratio. Emphasis has been placed on the early stages of the hardening process.......The present study is devoted to the description of water phases in hardening portland cement paste systems containing a significant amount of micro-filler and having a low to moderate water/powder ratio. Emphasis has been placed on the early stages of the hardening process....

  3. Structure investigations on Portland cement paste by small angle neutron scattering

    International Nuclear Information System (INIS)

    Dragolici, C.A.; Lin, A.

    2004-01-01

    Hydrated Portland cement is a very complex material. Cement paste consists of many crystalline and non-crystalline phases in various ranges of sizes (μm and nm scale). The crystalline phases are embedded in amorphous phases of hydration products. We investigated the structural changes of hydrating phases in a time interval up to 18 days, at Budapest Neutron Center's SANS spectrometer. The small angle neutron scattering of Portland cements prepared with a various water-to-cement ratios, gave us information about the microstructure changes in the material. Fractals were a suitable way for structure modelling. Some comments regarding the opportunity of using the most common models are pointed out. (authors)

  4. Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone

    DEFF Research Database (Denmark)

    Moesgaard, M; Poulsen, Søren Lundsted; Herfort, D

    2012-01-01

    M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012).......M. MOESGAARD, S.L. POULSEN, D. HERFORT, M. STEENBERG, L.F. KIRKEGAARD, J. SKIBSTED, Y. YUE, Hydration of Blended Portland Cements Containing Calcium-Aluminosilicate Glass Powder and Limestone, Journal of the American Ceramic Society 95, 403 – 409 (2012)....

  5. Evaluation of Portland cement from X-ray diffraction associated with cluster analysis; Avaliacao de cimento Portland a partir da difracao de raios X associada a analise por agrupamento

    Energy Technology Data Exchange (ETDEWEB)

    Gobbo, Luciano de Andrade, E-mail: luciano.gobbo@panalytical.com [Panalytical Brasil, Sao Paulo, SP (Brazil); Montanheiro, Tarcisio Jose, E-mail: tarcisio.montanheiro@gmail.com [Instituto Geologico, Secretaria de Estado do Meio Ambiente, Sao Paulo, SP (Brazil); Montanheiro, Filipe, E-mail: flpmontanheiro@gmail.com [Universidade Estadual Paulista (LEBAC/UNESP), Rio Claro, SP (Brazil). Departamento de Geologia Aplicada. Lab. de Estudos de Bacias; Sant' Agostino, Lilia Mascarenhas, E-mail: agostino@usp.br [Universidade de Sao Paulo (USP), SP (Brazil). Instituto de Geociencias. Departamento de Geologia Sedimentar e Ambiental

    2013-12-15

    The Brazilian cement industry produced 64 million tons of cement in 2012, with noteworthy contribution of CP-II (slag), CP-III (blast furnace) and CP-IV (pozzolanic) cements. The industrial pole comprises about 80 factories that utilize raw materials of different origins and chemical compositions that require enhanced analytical technologies to optimize production in order to gain space in the growing consumer market in Brazil. This paper assesses the sensitivity of mineralogical analysis by X-ray diffraction associated with cluster analysis to distinguish different kinds of cements with different additions. This technique can be applied, for example, in the prospection of different types of limestone (calcitic, dolomitic and siliceous) as well as in the qualification of different clinkers. The cluster analysis does not require any specific knowledge of the mineralogical composition of the diffractograms to be clustered; rather, it is based on their similarity. The materials tested for addition have different origins: fly ashes from different power stations from South Brazil and slag from different steel plants in the Southeast. Cement with different additions of limestone and white Portland cement were also used. The Rietveld method of qualitative and quantitative analysis was used for measuring the results generated by the cluster analysis technique. (author)

  6. Use of copper slag in the manufacture of Portland cement

    Directory of Open Access Journals (Sweden)

    Aquilar Elguézabal, A.

    2006-03-01

    Full Text Available Given its chemical and mineralogical characteristics, copper slag, a solid industrial by-product, may serve as a partial substitute for silica and hematite in raw mixes used to manufacture Portland cement clinker. The benefits of such substitution include lower production costs and energy savings. The effect of slag-containing raw mixes on the reactivity of the CaO-Si02-Al203-Fe203 system was studied at three temperatures (1,350, 1,400 and 1,450ºC. Four mixes were used: M-1 and M-2 prepared with conventional prime materials and M-3 and M-4, in which ignimbrite and hematite were substituted for slag. In M-3 the slag replaced 45.54% of the ignimbrite and 100% of the hematite, and in M-4 100% of the mineral iron. The samples were clinkerized at 1,350, 1,400 and 1,450ºC. At 1,400ºC, clinker M-3 was found to have 10.7% less free lime than M-1, while the level in M-4 it was 15.93% lower than in M-2. The presence of the main clinker phases was confirmed by X-ray diffraction, which also showed that adding slag during c/inker manufacture slightly improves raw mix burnability without generating new unwanted phases. Consequently, recovery in cement kilns would appear to be an economically and environmentally feasible alternative to coprocessing such waste, although the industrial use of slag depends on its heavy metal content.En acuerdo con las características químicas y mineralógicas de la escoria de cobre, este residuo sólido industrial puede ser utilizado en el proceso de fabricación de clínker Portland como sustituto parcial de los minerales de sílice y hematita en la formación de mezclas crudas cuyos beneficios serían: disminución de los costos de producción de mezclas crudas y del consumo calorífico. El efecto de la adición de la escoria en las mezclas crudas sobre la reactividad del sistema CaO-Si02-Al203-Fe20 3 se estudió en tres niveles de temperatura (1.350, 1.400 Y 1.450ºC. Se trabajó con cuatro mezclas crudas, M-1 y M

  7. Development of the Portland cement slurries with diatomaceous earth to the oil industry; Desenvolvimento de pastas de cimento Portland com adicao de diatomita para a industria do petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Roseane A; Melo, Dulce M.A.; Martinelli, Antonio E.; Simao, Cristina A.; Paiva, Maria D.M. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Melo, Marcus A.F. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    The class-G Portland cement has been used with success in oil well cementing. The material is usually shipped to the Northeast Brazil, because the only plant that manufactures class-G is located in Cantagalo/RJ. The present work investigates the influence of the partial substitution of Portland cement by diatomaceous earth, aiming at reducing the costs in oil well cementing, improving the slurry properties and using local raw material. The diatomaceous earth has pozzolanic properties and can be used as extenders of cement slurries. This properties added to the lower cost and availability of this material in Northeast Brazil, make the diatomaceous earth a candidate material to produce light cements, to well conditions in advanced phases of production. It were evaluated the rheological properties of the slurries (at 25 and 52 deg C), volume of free water, compressive strength after curing for 8, 24 and 48 h at 38 deg C, and consistometry tests. The results show that the diatomaceous earth maintain the viscosity values and gel force suitable for use in oil well cementing. No free water was observed in the formulations. It was also verified that the compressive strength of slurries hardened with diatomaceous earth is similar to those with only Portland cement and that the minimum compressive strength of 300 psi, after curing for 8 h was reached. The thickening time was longer than the average value and the application value. (author)

  8. Portland clinker production with carbonatite waste and tire-derived fuel: crystallochemistry of minor and trace elements

    Directory of Open Access Journals (Sweden)

    F. R. D. Andrade

    2014-12-01

    Full Text Available This paper presents results on the composition of Portland clinkers produced with non-conventional raw-materials and fuels, focusing on the distribution of selected trace elements. Clinkers produced with three different fuel compositions were sampled in an industrial plant, where all other parameters were kept unchanged. The fuels have chemical fingerprints, which are sulfur for petroleum coke and zinc for TDF (tire-derived fuel. Presence of carbonatite in the raw materials is indicated by high amounts of strontium and phosphorous. Electron microprobe data was used to determine occupation of structural site of both C3S and C2S, and the distribution of trace elements among clinker phases. Phosphorous occurs in similar proportions in C3S and C2S; while considering its modal abundance, C3S is its main reservoir in the clinker. Sulfur is preferentially partitioned toward C2S compared to C3S. Strontium substitutes for Ca2+ mainly in C2S and in non-silicatic phases, compared to C3S.

  9. CERCLA-linked environmental impact and benefit analysis: Evaluating remedial alternatives for the Portland Harbor Superfund Site, Portland, Oregon, USA.

    Science.gov (United States)

    McNally, Amanda D; Fitzpatrick, Anne G; Mirchandani, Sera; Salmon, Matthew; Edwards, Deborah A

    2018-01-01

    This analysis focused on evaluating the environmental consequences of remediation, providing indicators for the environmental quality pillar of 3 "pillars" of the Portland Harbor Sustainability Project (PHSP) framework (the other 2 pillars are economic viability and social equity). The project an environmental impact and benefit analysis (EIBA) and an EIBA-based cost-benefit analysis. Metrics developed in the EIBA were used to quantify and compare remedial alternatives' environmental benefits and impacts in the human and ecological domains, as a result of remedial actions (relative to no action). The cost-benefit results were used to evaluate whether remediation costs were proportionate or disproportionate to the environmental benefits. Alternatives B and D had the highest overall benefit scores, and Alternative F was disproportionately costly relative to its achieved benefits when compared to the other remedial alternatives. Indeed, the costlier alternatives with larger remedial footprints had lower overall EIBA benefit scores-because of substantially more air emissions, noise, and light impacts, and more disturbance to business, recreational access, and habitat during construction-compared to the less costly and smaller alternatives. Put another way, the adverse effects during construction tended to outweigh the long-term benefits, and the net environmental impacts of the larger remedial alternatives far outweighed their small incremental improvements in risk reduction. Results of this Comprehensive Environmental Response Compensation and Liability Act (CERCLA)-linked environmental analysis were integrated with indicators of economic and social impacts of remediation in a stakeholder values-based sustainability framework. These tools (EIBA, EIBA-based cost-benefit analysis, economic impact assessment, and the stakeholder values-based integration) provide transparent and quantitative evaluations of the benefits and impacts associated with remedial alternatives

  10. Application of probabilistic risk assessment: Evaluating remedial alternatives at the Portland Harbor Superfund Site, Portland, Oregon, USA.

    Science.gov (United States)

    Ruffle, Betsy; Henderson, James; Murphy-Hagan, Clare; Kirkwood, Gemma; Wolf, Frederick; Edwards, Deborah A

    2018-01-01

    A probabilistic risk assessment (PRA) was performed to evaluate the range of potential baseline and postremedy health risks to fish consumers at the Portland Harbor Superfund Site (the "Site"). The analysis focused on risks of consuming fish resident to the Site containing polychlorinated biphenyls (PCBs), given that this exposure scenario and contaminant are the primary basis for US Environmental Protection Agency's (USEPA's) selected remedy per the January 2017 Record of Decision (ROD). The PRA used probability distributions fit to the same data sets used in the deterministic baseline human health risk assessment (BHHRA) as well as recent sediment and fish tissue data to evaluate the range and likelihood of current baseline cancer risks and noncancer hazards for anglers. Areas of elevated PCBs in sediment were identified on the basis of a geospatial evaluation of the surface sediment data, and the ranges of risks and hazards associated with pre- and postremedy conditions were calculated. The analysis showed that less active remediation (targeted to areas with the highest concentrations) compared to the remedial alternative selected by USEPA in the ROD can achieve USEPA's interim risk management benchmarks (cancer risk of 10 -4 and noncancer hazard index [HI] of 10) immediately postremediation for the vast majority of subsistence anglers that consume smallmouth bass (SMB) fillet tissue. In addition, the same targeted remedy achieves USEPA's long-term benchmarks (10 -5 and HI of 1) for the majority of recreational anglers. Additional sediment remediation would result in negligible additional risk reduction due to the influence of background. The PRA approach applied here provides a simple but adaptive framework for analysis of risks and remedial options focused on variability in exposures. It can be updated and refined with new data to evaluate and reduce uncertainty, improve understanding of the Site and target populations, and foster informed remedial decision

  11. Strengthening Masonry Arches with Lime-Based Mortar Composite

    Directory of Open Access Journals (Sweden)

    Valerio Alecci

    2017-06-01

    Full Text Available In recent decades, many strengthening interventions on masonry elements were performed by using fiber reinforced polymers (FRPs. These advanced materials proved to be effective to increase the load-carrying capacity of masonry elements and to improve their structural behavior, avoiding the most critical failure modes. Despite the advantages of this technique compared to more traditional methods, FRP systems have disadvantages related to their low resistance to high temperatures, impossibility of application on wet surfaces, low permeability, and poor compatibility with masonry supports. Therefore, composite materials made of a fiber textile embedded in an inorganic matrix were recently proposed as alternatives to FRPs for strengthening historic masonry constructions. These composite materials are easier to install, have higher resistance to high temperatures, and permit higher vapor permeability than FRPs. The inorganic matrix is frequently a cement-based mortar, and the composite materials made of a fiber textile embedded in a cement-based mortar are usually identified as FRCM (fabric reinforced cementitious matrix composites. More recently, the use of natural lime mortar as an inorganic matrix has been proposed as an alternative to cement-based mortars when historic compatibility with the substrate is strictly required, as in case of restoration of historic buildings. In this paper, the effectiveness of a fabric made of basalt fibers embedded in lime mortar matrix (Basalt-FRLM for the strengthening of masonry arches is investigated. An experimental investigation was performed on 1:2 scaled brick masonry arches strengthened at the extrados with a layer of Basalt-FRLM and tested under vertical load. The results obtained are compared with previous results obtained by the authors by testing masonry arches strengthened at their extrados with FRCM and FRP composites. This investigation highlights the effectiveness of Basalt-FRLM in increasing load

  12. Effect of Nano-SiO2 on the Hydration and Microstructure of Portland Cement

    Directory of Open Access Journals (Sweden)

    Liguo Wang

    2016-12-01

    Full Text Available This paper systematically studied the modification of cement-based materials by nano-SiO2 particles with an average diameter of about 20 nm. In order to obtain the effect of nano-SiO2 particles on the mechanical properties, hydration, and pore structure of cement-based materials, adding 1%, 3%, and 5% content of nano-SiO2 in cement paste, respectively. The results showed that the reaction of nano-SiO2 particles with Ca(OH2 (crystal powder started within 1 h, and formed C–S–H gel. The reaction speed was faster after aging for three days. The mechanical properties of cement-based materials were improved with the addition of 3% nano-SiO2, and the early strength enhancement of test pieces was obvious. Three-day compressive strength increased 33.2%, and 28-day compressive strength increased 18.5%. The exothermic peak of hydration heat of cement increased significantly after the addition of nano-SiO2. Appearance time of the exothermic peak was advanced and the total heat release increased. Thermogravimetric-differential scanning calorimetry (TG-DSC analysis showed that nano-SiO2 promoted the formation of C–S–H gel. The results of mercury intrusion porosimetry (MIP showed that the total porosity of cement paste with 3% nano-SiO2 was reduced by 5.51% and 5.4% at three days and 28 days, respectively, compared with the pure cement paste. At the same time, the pore structure of cement paste was optimized, and much-detrimental pores and detrimental pores decreased, while less harmful pores and innocuous pores increased.

  13. Effect of Nano-SiO2 on the Hydration and Microstructure of Portland Cement

    Science.gov (United States)

    Wang, Liguo; Zheng, Dapeng; Zhang, Shupeng; Cui, Hongzhi; Li, Dongxu

    2016-01-01

    This paper systematically studied the modification of cement-based materials by nano-SiO2 particles with an average diameter of about 20 nm. In order to obtain the effect of nano-SiO2 particles on the mechanical properties, hydration, and pore structure of cement-based materials, adding 1%, 3%, and 5% content of nano-SiO2 in cement paste, respectively. The results showed that the reaction of nano-SiO2 particles with Ca(OH)2 (crystal powder) started within 1 h, and formed C–S–H gel. The reaction speed was faster after aging for three days. The mechanical properties of cement-based materials were improved with the addition of 3% nano-SiO2, and the early strength enhancement of test pieces was obvious. Three-day compressive strength increased 33.2%, and 28-day compressive strength increased 18.5%. The exothermic peak of hydration heat of cement increased significantly after the addition of nano-SiO2. Appearance time of the exothermic peak was advanced and the total heat release increased. Thermogravimetric-differential scanning calorimetry (TG-DSC) analysis showed that nano-SiO2 promoted the formation of C–S–H gel. The results of mercury intrusion porosimetry (MIP) showed that the total porosity of cement paste with 3% nano-SiO2 was reduced by 5.51% and 5.4% at three days and 28 days, respectively, compared with the pure cement paste. At the same time, the pore structure of cement paste was optimized, and much-detrimental pores and detrimental pores decreased, while less harmful pores and innocuous pores increased. PMID:28335369

  14. Sulfate resistance of nanosilica contained Portland cement mortars

    Science.gov (United States)

    Batilov, Iani B.

    Soils, sea water and ground water high in sulfates are commonly encountered hostile environments that can attack the structure of concrete via chemical and physical mechanisms which can lead to costly repairs or replacement. Sulfate attack is a slow acting deteriorative phenomenon that can result in cracking, spalling, expansion, increased permeability, paste-to-aggregate bond loss, paste softening, strength loss, and ultimately, progressive failure of concrete. In the presented research study, Portland cement (PC) mortars containing 1.5% to 6.0% nanosilica (nS) cement replacement by weight were tested for sulfate resistance through full submersion in sodium sulfate to simulate external sulfate attack. Mortars with comparable levels of cement replacement were also prepared with microsilica (mS). Three cement types were chosen to explore nS' effectiveness to reduce sulfate expansion, when paired with cements of varying tricalcium aluminate (C3A) content and Blaine fineness, and compare it to that of mS. Mortars were also made with combined cement replacement of equal parts nS and mS to identify if they were mutually compatible and beneficial towards sulfate resistance. Besides sulfate attack expansion of mortar bars, the testing program included investigations into transport and microstructure properties via water absorption, sulfate ion permeability, porosimetry, SEM with EDS, laser diffraction, compressive strength, and heat of hydration. Expansion measurements indicated that mS replacement mortars outperformed both powder form nS, and nS/mS combined replacement mixtures. A negative effect of the dry nS powder replacement attributed to agglomeration of its nanoparticles during mixing negated the expected superior filler, paste densification, and pozzolanic activity of the nanomaterial. Agglomerated nS was identified as the root cause behind poor performance of nS in comparison to mS for all cement types, and the control when paired with a low C3A sulfate resistant

  15. Influence of moisture condition on chloride diffusion in partially saturated ordinary Portland cement mortar

    NARCIS (Netherlands)

    Zhang, Y.; Zhang, M.; Ye, G.

    2018-01-01

    Experiments have been carried out to study the influence of moisture condition, including moisture content and its distribution, on the chloride diffusion in partially saturated ordinary Portland cement mortar. The mortar samples with water-to-cement (w/c) ratios of 0.4, 0.5 and 0.6, cured for 1

  16. Experimental study of chloride diffusivity in unsaturated ordinary Portland cement mortar

    NARCIS (Netherlands)

    Zhang, Y.; Ye, G.; Santhanam, M.

    2017-01-01

    Experiments are carried out to investigate the chloride diffusivity in partially saturated ordinary Portland cement mortars with water-to-cement (w/c) ratios of 0.4, 0.5 and 0.6. Based on resistivity measurement and Nernst-Einstein equation, the chloride diffusivities of cement mortars at various

  17. The Arabic Version of the Mayo-Portland Adaptability Inventory 4: A Validation Study

    Science.gov (United States)

    Hamed, Razan; Tariah, Hashem Abu; Malkawi, Somaya; Holm, Margo B.

    2012-01-01

    The Mayo-Portland Adaptability Inventory 4 (MPAI-4) is a valid and reliable assessment tool to detect clinical impairments in patients with acquired brain injury. The tool is widely used by rehabilitation therapists worldwide, given its good psychometric properties and its availability in several languages. The purpose of this study was to…

  18. Elemental atmospheric pollution assessment via moss-based measurements in Portland, Oregon

    Science.gov (United States)

    Demetrios Gatziolis; Sarah Jovan; Geoffrey Donovan; Michael Amacher; Vicente Monleon

    2016-01-01

    Mosses accumulate pollutants from the atmosphere and can serve as an inexpensive screening tool for mapping air quality and guiding the placement of monitoring instruments. We measured 22 elements using 346 moss samples collected across Portland, Oregon, in December 2013. Our objectives were to develop citywide maps showing concentrations of each element in moss and...

  19. 76 FR 76760 - Gray Portland Cement and Cement Clinker From Japan

    Science.gov (United States)

    2011-12-08

    ... and Cement Clinker From Japan Determination On the basis of the record \\1\\ developed in the subject... duty order on gray Portland cement and cement clinker from Japan would be likely to lead to... and Cement Clinker from Japan: Investigation No. 731- TA-461 (Third Review). By order of the...

  20. Prediction of potential compressive strength of Portland clinker from its mineralogy

    DEFF Research Database (Denmark)

    Svinning, K.; Høskuldsson, Agnar; Justnes, H.

    2010-01-01

    Based on a statistical model first applied for prediction of compressive strength up to 28 d from the microstructure of Portland cement, potential compressive strength of clinker has been predicted from its mineralogy. The prediction model was evaluated by partial least squares regression...

  1. Radiopacity evaluation of Portland and MTA-based cements by digital radiographic system.

    Science.gov (United States)

    Borges, Alvaro Henrique; Pedro, Fabio Luiz Miranda; Semanoff-Segundo, Alex; Miranda, Carlos Eduardo Saraiva; Pécora, Jesus Djalma; Cruz Filho, Antônio Miranda

    2011-01-01

    The aim of the present study was to evaluate the radiopacity of Portland and MTA-based cements using the Digora TM digital radiographic system. The performed tests followed specification number 57 from the American National Standard Institute/American Dental Association (2000) for endodontic sealing materials. The materials were placed in 5 acrylic plates, especially designed for this experiment, along with a graduated aluminum stepwedge varying from 1 to 10 mm in thickness. The set was radiographed at a 30 cm focus-object distance and with 0.2 s exposure time. After the radiographs were taken, the optical laser readings of radiographs were performed by Digora TM system. Five radiographic density readings were performed for each studied material and for each step of the aluminum scale. White ProRoot MTA (155.99±8.04), gray ProRoot MTA (155.96±16.30) and MTA BIO (143.13±16.94) presented higher radiopacity values (pPortland (119.76±22.34), gray Portland (109.71±4.90) and white structural Portland (99.59±12.88) presented lower radiopacity values (pcements were the only materials presenting radiopacity within the ANSI/ADA specifications.

  2. Portland cement for SO.sub.2 control in coal-fired power plants

    Science.gov (United States)

    Steinberg, Meyer

    1985-01-01

    There is described a method of removing oxides of sulfur from the emissions of fossil fuel combustion by injecting portland cement into the boiler with the fuel, the combustion air, or downstream with the combustion gases. There is also described the cement products that result from this method.

  3. Physicochemical Properties of MTA and Portland Cement after Addition of Aloe Vera.

    Science.gov (United States)

    Henrique Borges, Alvaro; Aguirre Guedes, Orlando; Evaristo Ricci Volpato, Luiz; Siebert Filho, Gilberto; Meireles Borba, Alexandre; Zina, Omar; Piva, Evandro; Estrela, Carlos

    2017-01-01

    The aim of this in vitro study was to determine the liquid-powder ratio, setting time, solubility, dimensional change, pH, and radiopacity of white structural and non-structural Portland cement, ProRoot MTA and MTA Bio, associated with a 2% glycolic solution containing Aloe Vera, as vehicle. Five samples of each material were used for each test, according to the American National Standards Institute/American Dental Association (ANSI/ADA) specification No. 57. Statistical analyses were performed using ANOVA and Tukey's test at 5% significance. When sample distribution was not normal, non-parametric analysis of variance and the Kruskal-Wallis test were used ( α =0.05). No statistical differences were found in liquid-powder ratios among the tested materials. ProRoot MTA showed the longest setting time. Dimensional change values were acceptable in all groups. Also, no significant differences were found in pH values and pH was alkaline in all samples throughout the experiment. Mean radiopacity results obtained for white Portland cements did not meet ANSI/ADA requirements, and were significantly lower than those obtained for MTA-based cements. Finally, Portland cements showed significantly higher mean solubility values compared to the other samples. The physicochemical properties of the tested materials in association with Aloe Vera were compatible with ANSI/ADA requirements, except for the white Portland cements, which failed to meet the radiopacity specification.

  4. Portland cement for SO/sub 2/ control in coal-fired power plants

    Science.gov (United States)

    Steinberg, M.

    1984-10-17

    A method is described for removing oxides of sulfur from the emissions of fossil fuel combustion by injecting portland cement into the boiler with the fuel, the combustion air, or downstream with the combustion gases. The cement products that result from this method is also described. 1 tab.

  5. Strategic Planning to Advance Equity on Campus: A Case Study at Portland State University

    Science.gov (United States)

    Zapata, Marisa; Percy, Stephen; Andrews, Sona

    2018-01-01

    Propelled by many factors, including a newly appointed Board of Trustees responsible for governance of our university, resource shortages, and enrollment swings, Portland State University embarked on a strategic planning effort in 2014 with the intent of reunifying a divided campus and creating a bold vision for moving forward in the next five…

  6. A thermal comparator sensor for measuring autogenous deformation in hardening Portland cement paste

    DEFF Research Database (Denmark)

    Østergaard, Thomas; Jensen, Ole Mejlhede

    2003-01-01

    This paper describes a simple and accurate experimental device specially developed to measure autogenous deformation in hardening cement-based materials. The measuring system consists of a so-called thermal comparator sensor and a modular thermostatically controlled system. The operating principle...... of the thermal comparator is based on thermal expansion of aluminium. A particular characteristic of the measuring system is the fixation of the thermal comparator sensor to the deforming specimen. The modular system ensures effective thermostatic control of the hydrating cement paste samples. The technique...... allows continuous measurement with high accuracy of the linear deformation as well as determination of the activation energy of autogenous deformation....

  7. Caracterização mecânica de laminados cimentíceos esbeltos reforçados com fibras de sisal Mechanical characterization of cement-based thin-walled laminates reinforced with sisal fibre

    Directory of Open Access Journals (Sweden)

    Paulo R. L. Lima

    2007-12-01

    Full Text Available Com a proibição progressiva do uso de fibras de asbesto na fabricação de laminados à base de cimento, novos produtos têm sido desenvolvidos para suprir esta demanda do setor construtivo. A utilização de fibras de sisal como substituto ao asbesto, além de ser uma proposta ecológica tem grande importância socioeconômica, pois agregará valor a um produto cultivado com sucesso no semi-árido nordestino. Produziram-se, neste trabalho, placas laminadas com matriz de argamassa reforçadas com fibras longas de sisal. Ensaios de flexão em três pontos foram realizados com o objetivo de se estudar a influência da adição de fibras (3%, do número de camadas (2 e 3, da orientação das camadas (0 e 90° e da pressão de moldagem (0 e 2 MPa sobre o comportamento à flexão dos laminados. Os resultados indicam que a adição de fibras de sisal aumentou, para todos os casos estudados, a capacidade de absorver energia, a resistência à flexão pós-fissuração e a deflexão última do material. Os laminados reforçados com 3% de fibras de sisal, distribuídas em três camadas ortogonais à direção do carregamento e submetidos à pressão de moldagem de 2 MPa, apresentaram o melhor comportamento mecânico.Because of hazards to human and animal health, the use of asbestos and its products is being prohibited all around the world and academic institutions and fibre cement producers have been engaged in intensive research to find asbestos-free cement products. The application of natural fibres such as sisal to replace asbestos fibres can bring economical and ecological benefits due to their availability, low cost, low consumption of energy and suitability to the semi-arid area of the Northeast of Brazil (where not many plants can grow. In this paper, cement-based laminates reinforced with continuous sisal fibre were produced. Three point bending tests were carried out to evaluate the influence of addition of fibre (3%, number of layers of

  8. Application areas of phosphogypsum in production of mineral binders and composites based on them: a review of research results

    Directory of Open Access Journals (Sweden)

    Dvorkin Leonid

    2018-01-01

    modified binder can be used as partial or complete replacement of gypsum binder for filling cements and finishing plasters. It can substitute gypsum in non-clinker binders like supersulphated cements. There were also developed compositions of supersulphated cements based on low-alumina blast furnace slag and phosphorgypsum. Supersulphated cements were tested in normal-weight and light-weight concrete.

  9. Effectiveness of inorganic membrane mixture of natural zeolite and portland white cement in purifying of peat water based on turbidity parameter

    Science.gov (United States)

    Elfiana; Fuadi, A.; Diana, S.

    2018-04-01

    Peat water is water surface that brownish red colour caused by the contained constituents. Solving the peat watercolor problem requires special attention considering the quantity of peat water and suitable to be used to meet the daily needs. This study aims to know the inorganic membrane capability of mix nature zeolite and white Portland cement to purifying the peat water based on turbidity parameter. The study was conducted by varying the composition of nature zeolite (Za) and white Portland cement (Sp) in the ratio of Za: Sp is (25%:75%; 50%:50%; 75%:25%) with zeolite condition activated using HCl 2M and nonactivated zeolite treatments. The result of the characteristic test on membrane morphology using SEM (Scanning Electron Microscope) showed that the pore surface size of the membrane is 2 μm that could classified in microfiltration membrane an organic type. The characteristic test showed also resulted in the density of 0.77 to 0.86 gr/cm3, porosity 26.22% to 35.93%, and permeability 2736.19 to 8428.15. While the water retention capacity is in range of 30.64% to 46.46%, The result of inorganic membrane application on peat water showed turbidity of peat water decreased 94.17%, from 10.3 NTU to 0.6 NTU.

  10. Sealing ability of mineral trioxide aggregate and Portland cement for furcal perforation repair: a protein leakage study.

    Science.gov (United States)

    Shahi, Shahriar; Rahimi, Saeed; Hasan, Maryam; Shiezadeh, Vahab; Abdolrahimi, Majid

    2009-12-01

    The purpose of this study was to compare the sealing ability of gray mineral trioxide aggregate (GMTA), white MTA (WMTA), and both white and gray Portland cement as furcation perforation repair materials. A total of 120 human mandibular first molars were used. After root canal obturation and preparation of furcal perforations the specimens were randomly divided into four groups of 25 teeth each. In groups A, B, C, and D furcation perforations were filled with WMTA, GMTA, white Portland cement, and type II Portland cement, respectively. Ten teeth were used as positive controls with no filling materials in the perforations and 10 teeth with complete coverage with two layers of nail varnish were used as negative controls. A protein leakage model utilizing 22% bovine serum albumin (BSA) was used for evaluation. Leakage was noted when color conversion of the protein reagent was observed. The controls behaved as expected. Leakage was found in the samples from group A (WMTA), group B (GMTA), and in the two other groups (white and gray Portland cement). There were no statistically significant differences between GMTA and WMTA or white and gray Portland cement, but significant differences were observed between the MTA groups and the Portland cement groups. It was concluded that Portland cements have better sealing ability than MTA, and can be recommended for repair of furcation perforation if the present results are supported by other in vivo and in vitro studies.

  11. Pulp tissue response to Portland cement associated with different radio pacifying agents on pulpotomy of human primary molars.

    Science.gov (United States)

    Marques, N; Lourenço Neto, N; Fernandes, A P; Rodini, C; Hungaro Duarte, M; Rios, D; Machado, M A; Oliveira, T

    2015-12-01

    The objective of this research was to evaluate the response of Portland cement associated with different radio pacifying agents on pulp treatment of human primary teeth by clinical and radiographic exams and microscopic analysis. Thirty mandibular primary molars were randomly divided into the following groups: Group I - Portland cement; Group II - Portland cement with iodoform (Portland cement + CHI3 ); Group III - Portland cement with zirconium oxide (Portland cement + ZrO2 ); and treated by pulpotomy technique (removal of a portion of the pulp aiming to maintain the vitally of the remaining radicular pulp tissue using a therapeutic dressing). Clinical and radiographic evaluations were recorded at 6, 12 and 24 months follow-up. The teeth at the regular exfoliation period were extracted and processed for histological analysis. Data were tested using statistical analysis with a significance level of 5%. The microscopic findings were descriptively analysed. All treated teeth were clinically and radiographically successful at follow-up appointments. The microscopic analysis revealed positive response to pulp repair with hard tissue barrier formation and pulp calcification in the remaining roots of all available teeth. The findings of this study suggest that primary teeth pulp tissue exhibited satisfactory biological response to Portland cement associated with radio pacifying agents. However, further studies with long-term follow-up are needed to determine the safe clinical indication of this alternative material for pulp therapy of primary teeth. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  12. Effect of various Portland cement paste compositions on early-age strain

    Science.gov (United States)

    Guzzetta, Alana G.

    Early-age strain in paste, mortar, and concrete mixtures was investigated using a new method where the specimen shape was a cone frustum. Strain of the specimen from both the horizontal and vertical directions was captured by height change measurement. The volumetric strain was then calculated as a function of the height change and was plotted versus time. A correlation was found between the slopes of the volumetric strain curve resulting from this test method and the initial setting time of the tested material. An initial evaluation of the repeatability of this innovative test method was conducted. The early-age strain effects of aggregate volume, shrinkage reducing admixture, water-cementitious ratio (w/cm), and partial cement replacement with supplementary cementitious materials were tested and individually compared. From these comparisons, it was observed that ambient temperature, bleed water development, and rheological properties had a significant impact on the volumetric strain results. Data showed increased strain as aggregate volume was reduced and as the w/cm was changed from 0.25 up to 0.50. The addition of shrinkage reducing admixture generally caused an increase in the 36-hour volumetric strain value. In most of the mixtures, cement replacement with 20% fly ash or 10% metakaolin reduced the measured volumetric strain when the w/cm was 0.30. Replacement of cement with 10% silica fume caused an insignificant change in volumetric strain results.

  13. Influence of the cementitious paste composition on the E-modulus and heat of hydration evolutions

    International Nuclear Information System (INIS)

    Maia, Lino; Azenha, Miguel; Faria, Rui; Figueiras, Joaquim

    2011-01-01

    E-modulus and heat of hydration are features of cement-based materials that follow a rapid rate of change at early ages. This paper analyses the influence of the composition of cementitious pastes on these features by using two methods: (i) a novel technique for continuously monitoring the E-modulus of cement-based materials, based on evaluating the first resonant frequency of a composite beam containing the material under testing, and (ii) an isothermal calorimeter to determine the released heat of hydration. Seventeen mixes are tested, encompassing pastes with five w/c ratios, as well as different contents of limestone filler, fly ash, silica fume and metakaolin. The results permit the comparison of the E-modulus and heat of hydration sensitivities to mix composition changes, and to check possible relations between these features. This work also helps to establish the technique (i) as a non-destructive method for monitoring the E-modulus evolution in cement-based materials since casting.

  14. Electromagnetic interference shielding with Portland cement paste containing carbon materials and processed fly ash

    Directory of Open Access Journals (Sweden)

    Zornoza, E.

    2010-12-01

    Full Text Available The study described in this article explored the effect of adding different types of carbon materials (graphite powder and three types of carbon fibre, fly ash (with 5.6%, 15.9% and 24.3% Fe2O3, and a mix of both on electromagnetic interference (EMI shielding in Portland cement pastes. The parameters studied included the type and aspect ratio of the carbonic material, composite material thickness, the frequency of the incident electromagnetic radiation and the percentage of the magnetic fraction in the fly ash. The findings showed that the polyacrylonitrile-based carbon fibres, which had the highest aspect ratio, provided more effective shielding than any of the other carbon materials studied. Shielding was more effective in thicker specimens and at higher radiation frequencies. Raising the magnetic fraction of the fly ash, in turn, also enhanced paste shielding performance. Finally, adding both carbon fibre and fly ash to the paste resulted in the most effective EMI shielding as a result of the synergies generated.

    En el presente trabajo se investiga la influencia de la adición de diferentes tipos de materiales carbonosos (polvo de grafito y 3 tipos de fibra de carbono, de una ceniza volante con diferentes contenidos de fase magnética (5,6%, 15,9% y 24,3% de Fe2O3 y de una mezcla de ambos, sobre la capacidad de apantallar interferencias electromagnéticas de pastas de cemento Pórtland. Entre los parámetros estudiados se encuentra: el tipo de material carbonoso, la relación de aspecto del material carbonoso, el espesor del material compuesto, la frecuencia de la radiación electromagnética incidente y el porcentaje de fracción magnética en la ceniza volante. Los resultados obtenidos indican que entre los materiales carbonosos estudiados son las fibras de carbono basadas en poliacrilonitrilo con una mayor relación de aspecto las que dan mejores resultados de apantallamiento. Al aumentar

  15. About the possibility of obtaining cementitious soil composites of high strength on the basis of belozems of carbonate composition

    Science.gov (United States)

    Karapetyan, K. A.; Hayroyan, S. G.; Manukyan, E. S.

    2018-04-01

    The problem of manufacturing high strength cementitious soils based on belozems of carbonate composition, which experience compression (no less than 10 MPa), without application of surface active substances is considered. The portland cement of type 400 was used as a binding agent to develop compositions of cementitious soil composites, and the ordinary pipe water was used to obtain solutions of cementitious soils. The chemical and mineralogical composition of the initial ingredients and the granulometric composition of belozems were determined. The measurements showed that the upper and lower plasticity limits, the optimum moisture content, and the maximal density of the skeleton of belozems, as well as the considered compositions of cementitious soils, are insignificant, while the plasticity index of cementitious soils is less than one for belozems. It is experimentally proved that an increase in the portland cement amount lead to an increase in the compressive strength of cementitious soils with a decreasing speed. But for the same amount of portland cement used in the cementitious soil compositions, the values of the strength ratio of the pieces tested at the age of 60 and 28 days remain the same and are approximately equal to 1.2. A comparison of experimental data showed that it seems to be real to manufacture a cementitious soil on the basis of belozems of carbonate composition, which contain 10% of cement of the weight of dry mixture and have strength more than 10 MPa, without adding any surfactants to the material composition.

  16. Contribución al estudio de los reacciones de hidratación del cemento portland por espectroscopia infrarroja II. Estudio de clínkeres y de cementos portland anhidros

    Directory of Open Access Journals (Sweden)

    Vázquez-Moreno, Tomás

    1976-06-01

    Full Text Available Not availableEn un artículo anterior (1 se dio cuenta de los trabajos realizados sobre la aplicación de la espectroscopia IR al estudio de las principales fases sintetizadas del clínker de cemento portland como fase previa al estudio de diversos clínkeres, obtenidos por nosotros en el laboratorio a partir de crudos industriales, y de distintos cementos portland comerciales anhidros.

  17. National Emission Standards for Hazardous Air Pollutants (NESHAP) for the Portland Cement Manufacturing Industry Subpart LLL Rule Guidance

    Science.gov (United States)

    This Spring 2016 document is intended for the use of EPA staff, State and Local regulatory agencies and their staff, and industry plant managers for the NESHAP for the Portland Cement Manufacturing Industry.

  18. Effects of chemical and mineral additives and the water/cement ratio on the thermal resistance of Portland cement concrete

    International Nuclear Information System (INIS)

    Cesar, Leandro Cesar Dias; Morelli, Arnaldo C.; Baldo, Joao Baptista

    1998-01-01

    The exposure of Portland concrete to high temperatures (>250 deg C) can damage drastically the microstructural integrity of the material. Since the water/cement ratio as well as the inclusion of superplasticizers and mineral additives (silica fume) can alter constitutively and micro structurally the material, in this work it was investigated per effect of these additions on the damage resistance of portland concrete after exposure to high temperatures. (author)

  19. Evaluation of dynamic elasticity module in samples of Portland (type 1) cement paste exposed to neutronic irradiation

    International Nuclear Information System (INIS)

    Rosa Junior, A.A.; Lucki, G.

    1986-01-01

    The fast neutron radiation effects and temperature on Portland cement are studied. The Dynamic Elasticity Module (Ed) in samples of Portland cement paste was evaluated. Ultrassonic technics were applied (resonance frequency and pulse velocity). The samples were irradiated with fast neutrons to fluence of 7,2 x 10 18 n/cm 2 (E approx. 1 MeV), at temperature of 120 + - 5 0 C, due to gamma heating. This temperature was simulated in laboratory in a microwave oven. (Author) [pt

  20. Study of irradiation damage by fast neutrons in samples of Portland cement

    International Nuclear Information System (INIS)

    Lucki, G.; Rosa Junior, A.A.

    1984-01-01

    The effect of neutron irradiation in samples of Portland cement was evaluated, using the resonance frequency method and pulse velocity of ultra-sound techniques. The samples were divided in three groups: 1) monitoring samples; 2) samples submitted to gamma heating; 3) Irradiated samples. In the sample preparation, it was used the Portland Santa Rita CP 320 cement, and water-cement rate of 0.40 l/Kg. The irradiation was done in the research reactor IEA-R1, at IPEN - CNEN/SP, with an integrated flux of 7.2 x 10 18 n/cm 2 (E approx. 1 MeV). Some damage were detected, due to the neutron flux, and by the thermal effect of gamma heating. (E.G.) [pt

  1. Predicting the durability of Portland cement systems in aggressive environments--Laboratory validation

    International Nuclear Information System (INIS)

    Maltais, Y.; Samson, E.; Marchand, J.

    2004-01-01

    Portland cement systems are often exposed to severe environments, and their long-term performance is of concern. The main results of a comprehensive investigation of deterioration processes that may affect the behavior of Portland cement systems exposed to chemically aggressive environments is presented. As part of this investigation, well-cured cement paste discs were fully characterized and exposed to deionized water and sodium sulfate solutions. Degradation experiments were conducted under saturated and unsaturated conditions. At the end of the exposure period, microstructural alterations were investigated by microprobe analyses, scanning electron microscope observations and energy-dispersive X-ray analyses. Test results provide information on the basic aspects of various degradation phenomena, such as decalcification and external sulfate attack. Experimental results were also compared with results obtained by a numerical model. The analysis reveals that the intricate microstructural features of the degraded samples could be accurately reproduced by the model

  2. X-ray diffractometry of steam cured ordinary Portland and blast-furnace-slag cements

    International Nuclear Information System (INIS)

    Camarini, G.; Djanikian, J.G.

    1994-01-01

    This work studies some aspects of the phases produced by hydration of ordinary and blast-furnace-slag cements, at normal conditions and steam cured (60 and 95 0 C), using an X-ray diffraction technique. The blast-furnace-slag cement was a mixture of 50% of ordinary Portland cement and 50% of blast-furnace-slag (separately grinding). After curing the X-ray diffraction reveals that, in relation to ordinary Portland cement, the main phases in blast-furnace-slag cement are hydrated silicates and aluminates, hydro garnet, etringitte and mono sulphate. After steam curing the hydration of blast-furnace-slag cement proceeds. This is a result of the slag activation by the curing temperature. (author). 8 refs., 3 figs., 1 tab

  3. STABILISASI TANAH LIAT SANGAT LUNAK DENGAN GARAM DAN PC (PORTLAND CEMENT

    Directory of Open Access Journals (Sweden)

    Tirta Djusman Arief

    2006-01-01

    Full Text Available Adding sodium chloride, as admixture, and Portland Cement, as stabilizer, to a very soft clay increase its plasticity index (PI, Californian Bearing Ratio (CBR, and Unconfined Compression Strength (UCS. This paper presents the results of testings done to very soft clay from Margomulyo, Surabaya. The results show a promising tendency. Anyhow a wider and comprehensive research is still needed to ensure the long-term effect of the soil stabilization. Abstract in Bahasa Indonesia : Penambahan garam (sodium chloride dan PC (Portland Cement meningkatkan PI (Plasticity Index, CBR (Californian Bearing Ratio, dan UCS (Unconfined Compression Strength dari tanah lempung sangat lunak. Dalam makalah ini disajikan hasil pengujian yang dilakukan terhadap lempung sangat lunak dari daerah Margomulyo, Surabaya. Hasilnya menunjukkan kecenderungan yang menggembirakan, namun penelitian yang luas dan komprehensif masih diperlukan untuk peningkatan stabilitas tanah dalam jangka panjang.

  4. Performance Characteristics of Waste Glass Powder Substituting Portland Cement in Mortar Mixtures

    Science.gov (United States)

    Kara, P.; Csetényi, L. J.; Borosnyói, A.

    2016-04-01

    In the present work, soda-lime glass cullet (flint, amber, green) and special glass cullet (soda-alkaline earth-silicate glass coming from low pressure mercury-discharge lamp cullet and incandescent light bulb borosilicate glass waste cullet) were ground into fine powders in a laboratory planetary ball mill for 30 minutes. CEM I 42.5N Portland cement was applied in mortar mixtures, substituted with waste glass powder at levels of 20% and 30%. Characterisation and testing of waste glass powders included fineness by laser diffraction particle size analysis, specific surface area by nitrogen adsorption technique, particle density by pycnometry and chemical analysis by X-ray fluorescence spectrophotometry. Compressive strength, early age shrinkage cracking and drying shrinkage tests, heat of hydration of mortars, temperature of hydration, X-ray diffraction analysis and volume stability tests were performed to observe the influence of waste glass powder substitution for Portland cement on physical and engineering properties of mortar mixtures.

  5. Clinical and computed tomographic evaluation of portland cement pulpotomy in primary molar: A case report

    Directory of Open Access Journals (Sweden)

    Kamrun Nahar

    2016-08-01

    Full Text Available The present case describes the clinical & radiographic outcome of a Portland Cement pulpotomy. The 5 years old girl presenting extensive carious exposure in her mandibular left 2nd deciduous molar and was suffering pain in her left lower jaw only on exposure to cold for last 2 days. She was ultimately diagnosed clinic-radio-graphically as a case of irreversible pulpitis. Coronal pulpotomy procedure was carried out in the responsible tooth and Portland cement (PC was applied as a medicament after pulpotomy. At the 3 & 6-months follow-up appointments, treated tooth was asymptomatic clinically and radiographic examinations revealed no sign of periradicular pathosis in the pulpotomized teeth. Additionally, the formation of a dentin bridge immediately below the PC in the treated tooth was confirmed by RVG and CBCT.

  6. Natural cement as the precursor of Portland cement: Methodology for its identification

    International Nuclear Information System (INIS)

    Varas, M.J.; Alvarez de Buergo, M.; Fort, R.

    2005-01-01

    When cements appeared in the 19th century, they took the place of traditional binding materials (lime, gypsum, and hydraulic lime) which had been used until that time. Early cements can be divided into two groups, natural and artificial (Portland) cements. Natural cements were introduced first, but their widespread usage was short-lived as they were quickly replaced by artificial cements (Portland), still the most important and predominant today. The main differences between natural and artificial cements arise during the manufacturing process. The final properties of the cements are greatly influenced by differences in the raw materials and burning temperatures employed. The aim of this paper is to assess the efficiency of traditional analytical techniques (petrographic microscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR)) used to differentiate natural and artificial cements

  7. Study irradiation damage by fast neutrons in Portland cement by means of ultra-sound

    International Nuclear Information System (INIS)

    Rosa Junior, A.A.

    1988-01-01

    The effect of neutron irradiation in samples of Portland cement paste was evaluated, using the resonance frequency method and pulse velocity of ultra-sound technique. The samples were divide in three groups: 1) Monitoring samples; 2) Samples to gamma heating simulation; 3) Fast neutron irradiated samples in reactor core. Santa Rita Portland cement was utilized for samples preparation with water-cement rate of 0,40 l/kg. The irradiation was performed in the research reactor IEA-R1, at IPEN-CNEN/SP, with an integrated flux of 7,2 X 10 sup(18) n/cm sup(2) (E approx. 1 Mev). The samples of group 2 were submitted to special micro-waves heat treatment-with the same number of cycles of the reactor-which allowed the detection of fast neutron radiation effects within the predominant thermal effects. (author)

  8. Effect of calcium/silicon ratio on retention of uranium (VI) in portland cement materials

    International Nuclear Information System (INIS)

    Tan Hongbin; Li Yuxiang

    2005-01-01

    Calcium silicate hydrate (CSH) materials of varied calcium to silicon (Ca/Si) ratios were prepared by hydrothermal synthesis at 80 degree C, with calcium oxide and micro-silicon employed. These products were determined to be of gel phase by XRD. Leaching tests with 1% hydrochloric acid indicated that more Uranium (VI) was detained by CSH with lower Ca/Si ratios. Alkali-activated slag cement (with a lower Ca/Si ratio) was found to have a stronger retention capacity than Portland cement (with a higher Ca/Si ratio), at 25 degree C in 102-days leaching tests with simulated solidified forms containing Uranium (VI). The accumulative leaching fraction of Uranium (VI) for Alkali-activated slag cement solidified forms is 17.6% lower than that for Portland cement. The corresponding difference of diffusion coefficients is 40.6%. This could be correlated with the difference of Ca/Si ratios between cements of two kinds. (authors)

  9. Structure investigations on Portland cement paste by small angle neutron scattering

    International Nuclear Information System (INIS)

    Dragolici, C. A.; Len, A.

    2003-01-01

    Portland cement pastes consist of many crystalline and non-crystalline phases in various ranges of sizes (nm and mm scale). The crystalline phases are embedded in amorphous phases of the hydration products. We investigated the structural changes of hydrating phases in the time interval of 1-30 days at Budapest Neutron Center's SANS diffractometer. The small angle neutron scattering of Portland cements prepared with a water-to-cement ratio from 0,3 to 0,8 gave us information about the microstructure changes in the material. Fractals were a suitable way for structure modelling. The variation of fractals size depending on the preparation-to-measurement time interval and water-to-cement ratio could be observed. (authors)

  10. Flow properties of MK-based geopolymer pastes. A comparative study with standard Portland cement pastes.

    Science.gov (United States)

    Favier, Aurélie; Hot, Julie; Habert, Guillaume; Roussel, Nicolas; d'Espinose de Lacaillerie, Jean-Baptiste

    2014-02-28

    Geopolymers are presented in many studies as alternatives to ordinary Portland cement. Previous studies have focused on their chemical and mechanical properties, their microstructures and their potential applications, but very few have focussed on their rheological behaviour. Our work highlights the fundamental differences in the flow properties, which exist between geopolymers made from metakaolin and Ordinary Portland Cement (OPC). We show that colloidal interactions between metakaolin particles are negligible and that hydrodynamic effects control the rheological behaviour. Metakaolin-based geopolymers can then be described as Newtonian fluids with the viscosity controlled mainly by the high viscosity of the suspending alkaline silicate solution and not by the contribution of direct contacts between metakaolin grains. This fundamental difference between geopolymers and OPC implies that developments made in cement technology to improve rheological behaviour such as plasticizers will not be efficient for geopolymers and that new research directions need to be explored.

  11. Description of the structural evolution of a hydrating portland cement paste by SANS

    International Nuclear Information System (INIS)

    Haeussler, F.; Eichhorn, F.; Baumbach, H.

    1994-01-01

    On the spectrometer MURN at the pulsed reactor IBR-2 dry Portland cement, silica fume, and a hydrating Portland cement paste were studied by small-angle neutron scattering (SANS). By using the TOF-method a momentum transfer from 0.07 nm -1 to 7 nm -1 is detectable. Every component (dry cement powder, clinker minerals, hydrating cement pastes) shows a different scattering behaviour. In the measured Q-region the hardening cement paste does not show a Porod-like behaviour of SANS-curves. In contrast the Porod's potential law holds for dry powder samples of clinker minerals and silica fume. In experiments carried out to observe the hydration progress within the first 321 days the characteristics of the scattering curves (potential behaviour, the radius of gyration, and the macroscopic scattering cross section at Q = 0 nm -1 were measured. Some evolution of the inner structure of the hardened cement paste was noted. (orig.)

  12. Influencia del yeso sobre la velocidad de hidratación del cemento portland

    Directory of Open Access Journals (Sweden)

    Yamaguchi, G.

    1961-12-01

    Full Text Available Not availablePara esclarecer la Influencia del yeso sobre el fraguado y endurecimiento del cemento, los autores estudiaron el grado de hidratación de los cuatro principales minerales del clínker de cemento Portland y el efecto del yeso sobre ellas. Haciendo uso del análisis cuantitativo de rayos X, se determinó la porción no hidratada. Simultáneamente, se determinaron los tiempos de fraguado y las resistencias. Los ensayos se llevaron a cabo sobre tres clínkeres sintéticos de diferentes composiciones y sobre dos clínkeres de cemento Portland comerciales.

  13. Pembuatan dan Pengujian Kualitas Semen Portland Yang Diperkaya Silikat Abu Ampas Tebu

    OpenAIRE

    Suci Wulandari, Indah Pratama

    2015-01-01

    Penelitian ini mengkaji pengaruh penambahan abu ampas tebu terhadap kuat tekan mortar dan sifat fisis semen portland komposit, meliputi: kehalusan semen, kebutuhan air semen, waktu pengikatan semen, pemuaian dan komposisi kimia semen. Dari hasil penelitian, besar kuat tekan pada penggunaan abu ampas tebu dengan kadar 9% merupakan penambahan optimum pada mortar yang direndam larutan kapur jenuh Sedangkan dari hasil pengujian fisis yang meliputi kehalusan semen, kebutuhan air semen, waktu pengi...

  14. Tabular data base construction and analysis from thematic classified Landsat imagery of Portland, Oregon

    Science.gov (United States)

    Bryant, N. A.; George, A. J., Jr.; Hegdahl, R.

    1977-01-01

    A systematic verification of Landsat data classifications of the Portland, Oregon metropolitan area has been undertaken on the basis of census tract data. The degree of systematic misclassification due to the Bayesian classifier used to process the Landsat data was noted for the various suburban, industrialized and central business districts of the metropolitan area. The Landsat determinations of residential land use were employed to estimate the number of automobile trips generated in the region and to model air pollution hazards.

  15. Experimental and modeling study of Portland cement paste degradation in boric acid

    International Nuclear Information System (INIS)

    Benakli, A.; Chomat, L.; Le Bescop, P.; Wall, J.

    2015-01-01

    In the framework of Spent Fuel Pools (SFP) lifetime studies, an investigation of the Portland cement degradation in boric acid has been requested by the Electric Power Research Institute. The main goal of this study is to identify the physico-chemical degradation mechanisms involved in boric acid media. Both experimental and modeling approaches are considered. Concerning degradation experiments, sample of cement paste are immersed during three and nine months in a boric acid solution at 2400 ppm that is periodically renewed. Boric acid concentration has been chosen to be representative of SFP solution. Results will be confronted with reactive transport numerical calculations performed by the reactive transport code HYTEC associated with a dedicated extended database called Thermoddem. The analysis of degradation solution revealed a main ions release mechanism driven by diffusion especially for calcium, nitrate, sodium and sulfate. Leaching behavior of magnesium seems to be more complex. Decalcification is the major degradation process involved, even if a non-negligible contribution of further cations (Mg 2+ , Na + ) and anions (SO 4 2- ) has been noticed. Analysis of degradation soution also revealed that kinetic of Portland cement paste degradation in boric acid is higher than in pure water, regarding the degraded depths measured and calcium leaching rate. This observation has been confirmed by solid characterization. Microstructure analysis of degraded Portland cement paste showed a global porosity increase in the degraded zone that might be mainly attributed to Portlandite dissolution. An Ettringite reprecipitation in the degraded zone has been suspected but could also be Ettringite-like phases containing boron. The analysis techniques used did not allow us to differentiate it, and no others specific mineral phases containing boron has been identified. Profile pattern by XRD analysis allowed us to identify four zones composing the degraded Portland cement paste

  16. Evolution of porosity in a Portland cement paste studied through positron annihilation lifetime spectroscopy

    International Nuclear Information System (INIS)

    Consolati, G.; Quasso, F.

    2003-01-01

    Positron annihilation lifetime spectroscopy experiments were carried out in an ordinary Portland cement paste characterized by a water-to-cement ratio w/c=0.8, in order to monitor the porosity of the paste. It was found that ortho-positronium intensity is a suitable quantity to this purpose, being sensitive to the amount of water contained in the pores. The experimental data show good agreement with the porosity calculated according to the Powers' thin filmsodel

  17. D90: The Strongest Contributor to Setting Time in Mineral Trioxide Aggregate and Portland Cement.

    Science.gov (United States)

    Ha, William N; Bentz, Dale P; Kahler, Bill; Walsh, Laurence J

    2015-07-01

    The setting times of commercial mineral trioxide aggregate (MTA) and Portland cements vary. It was hypothesized that much of this variation was caused by differences in particle size distribution. Two gram samples from 11 MTA-type cements were analyzed by laser diffraction to determine their particle size distributions characterized by their percentile equivalent diameters (the 10th percentile, the median, and the 90th percentile [d90], respectively). Setting time data were received from manufacturers who performed indentation setting time tests as specified by the standards relevant to dentistry, ISO 6786 (9 respondents) or ISO 9917.1 (1 respondent), or not divulged to the authors (1 respondent). In a parallel experiment, 6 samples of different size graded Portland cements were produced using the same cement clinker. The measurement of setting time for Portland cement pastes was performed using American Society for Testing and Materials C 191. Cumulative heat release was measured using isothermal calorimetry to assess the reactions occurring during the setting of these pastes. In all experiments, linear correlations were assessed between setting times, heat release, and the 3 particle size parameters. Particle size varied considerably among MTA cements. For MTA cements, d90 was the particle size characteristic showing the highest positive linear correlation with setting time (r = 0.538). For Portland cement, d90 gave an even higher linear correlation for the initial setting time (r = 0.804) and the final setting time (r = 0.873) and exhibited a strong negative linear correlation for cumulative heat release (r = 0.901). Smaller particle sizes result in faster setting times, with d90 (the largest particles) being most closely correlated with the setting times of the samples. Copyright © 2015 American Association of Endodontists. All rights reserved.

  18. Effect of silica fume on reaction products of uranium (VI) with portland cement

    International Nuclear Information System (INIS)

    Tan Hongbin; Shaanxi Univ. of Technology, Hanzhong; Li Yuxiang

    2005-01-01

    Simulation of radioactive waste of U(VI) by uranyl nitrate and the effects of different additive quantities (12%, 20%, 30%, 35%, 40%) of silica fume on the products of U(VI) with Portland cement were studied at a hydrothermal condition of 180 degree C for a duration of one week. The X-ray powder diffraction examination results showed that the calcium uranate would be transformed into uranophane when the cement contained 30% silica fume. (authors)

  19. Biological evaluation of a new pulp capping material developed from Portland cement.

    Science.gov (United States)

    Negm, Ahmed M; Hassanien, Ehab E; Abu-Seida, Ashraf M; Nagy, Mohamed M

    2017-03-02

    This study evaluates the biological properties of a new pulp capping material developed from Portland cement. This study was conducted on 48 teeth in 4 dogs (12 teeth/dog). The dogs were classified into two equal groups (n=24 teeth) according to the evaluation period including: group A (3 weeks) and group B (3 months). Each group was further subdivided into three equal subgroups (n=8 teeth) according to the capping material including: subgroup 1: mineral trioxide aggregate (MTA), subgroup2: Portland cement+10% calcium hydroxide+20% bismuth oxide (Port Cal) and subgroup 3: Portland cement+bismuth oxide. After general anesthesia, a class V buccal cavity was prepared coronal to the gingival margin. After pulp exposure and hemostasis,the capping materials and glass ionomer filling were placed on the exposure sites. All histopathological findings, inflammatory cell count and dentin bridge formation were recorded. Data were analyzed statistically. After 3 months, the histopathological picture of the pulp in subgroup 1 showed normal pulp, continuous odontoblastic layer and complete dentin bridge formation while subgroup 2 showed partial and complete dentin bridge over a normal and necrotic pulps. Subgroup 3 showed loss of normal architecture, areas of necrosis, complete, or incomplete dentin bridge formation, attached and detached pulp stones and fatty degeneration in group B. For group A, MTA subgroup showed the least number of inflammatory cell infiltrate followed by Port Cal subgroup. While subgroup 3 showed the highest number of inflammatory cell infiltrate. For group B, the mean inflammatory cell count increased with the three tested materials with no statistical difference. Regarding dentin bridge formation at group A, no significant differences was found between subgroups, while at group B, MTA subgroup exhibited significantly higher scores than other subgroups. In conclusion, addition of calcium hydroxide to Portland cement improves the dentin bridge formation

  20. The origins of American industrial success: Evidence from the US portland cement industry

    OpenAIRE

    Prentice, David

    2008-01-01

    The contributions of innovations, factor endowments and institutions to American industrialization are examined through analysing the rise of the American portland cement industry. Minerals abundance contributed in multiple ways to the spectacular rise of the industry from the 1890s. However, the results of a structural econometric analysis of entry suggests geological surveys, institutions highlighted by David and Wright, played a contributing rather than critical rol...