WorldWideScience

Sample records for portfolio optimization problems

  1. A Risk-Sensitive Portfolio Optimization Problem with Fixed Incomes Securities

    OpenAIRE

    Goel, Mayank; Kumar, K. Suresh

    2007-01-01

    We discuss a class of risk-sensitive portfolio optimization problems. We consider the portfolio optimization model investigated by Nagai in 2003. The model by its nature can include fixed income securities as well in the portfolio. Under fairly general conditions, we prove the existence of optimal portfolio in both finite and infinite horizon problems.

  2. Belief Propagation Algorithm for Portfolio Optimization Problems.

    Science.gov (United States)

    Shinzato, Takashi; Yasuda, Muneki

    2015-01-01

    The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007)]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.

  3. Belief Propagation Algorithm for Portfolio Optimization Problems.

    Directory of Open Access Journals (Sweden)

    Takashi Shinzato

    Full Text Available The typical behavior of optimal solutions to portfolio optimization problems with absolute deviation and expected shortfall models using replica analysis was pioneeringly estimated by S. Ciliberti et al. [Eur. Phys. B. 57, 175 (2007]; however, they have not yet developed an approximate derivation method for finding the optimal portfolio with respect to a given return set. In this study, an approximation algorithm based on belief propagation for the portfolio optimization problem is presented using the Bethe free energy formalism, and the consistency of the numerical experimental results of the proposed algorithm with those of replica analysis is confirmed. Furthermore, the conjecture of H. Konno and H. Yamazaki, that the optimal solutions with the absolute deviation model and with the mean-variance model have the same typical behavior, is verified using replica analysis and the belief propagation algorithm.

  4. Random Matrix Approach for Primal-Dual Portfolio Optimization Problems

    Science.gov (United States)

    Tada, Daichi; Yamamoto, Hisashi; Shinzato, Takashi

    2017-12-01

    In this paper, we revisit the portfolio optimization problems of the minimization/maximization of investment risk under constraints of budget and investment concentration (primal problem) and the maximization/minimization of investment concentration under constraints of budget and investment risk (dual problem) for the case that the variances of the return rates of the assets are identical. We analyze both optimization problems by the Lagrange multiplier method and the random matrix approach. Thereafter, we compare the results obtained from our proposed approach with the results obtained in previous work. Moreover, we use numerical experiments to validate the results obtained from the replica approach and the random matrix approach as methods for analyzing both the primal and dual portfolio optimization problems.

  5. On the Equivalence of Quadratic Optimization Problems Commonly Used in Portfolio Theory

    OpenAIRE

    Taras Bodnar; Nestor Parolya; Wolfgang Schmid

    2012-01-01

    In the paper, we consider three quadratic optimization problems which are frequently applied in portfolio theory, i.e, the Markowitz mean-variance problem as well as the problems based on the mean-variance utility function and the quadratic utility.Conditions are derived under which the solutions of these three optimization procedures coincide and are lying on the efficient frontier, the set of mean-variance optimal portfolios. It is shown that the solutions of the Markowitz optimization prob...

  6. Optimal consumption—portfolio problem with CVaR constraints

    International Nuclear Information System (INIS)

    Zhang, Qingye; Gao, Yan

    2016-01-01

    The optimal portfolio selection is a fundamental issue in finance, and its two most important ingredients are risk and return. Merton's pioneering work in dynamic portfolio selection emphasized only the expected utility of the consumption and the terminal wealth. To make the optimal portfolio strategy be achievable, risk control over bankruptcy during the investment horizon is an indispensable ingredient. So, in this paper, we consider the consumption-portfolio problem coupled with a dynamic risk control. More specifically, different from the existing literature, we impose a dynamic relative CVaR constraint on it. By the stochastic dynamic programming techniques, we derive the corresponding Hamilton–Jacobi–Bellman (HJB) equation. Moreover, by the Lagrange multiplier method, the closed form solution is provided when the utility function is a logarithmic one. At last, an illustrative empirical study is given. The results show the distinct difference of the portfolio strategies with and without the CVaR constraints: the proportion invested in the risky assets is reduced over time with CVaR constraint instead of being constant without CVaR constraints. This can provide a good decision-making reference for the investors.

  7. Portfolio optimization problem with nonidentical variances of asset returns using statistical mechanical informatics

    Science.gov (United States)

    Shinzato, Takashi

    2016-12-01

    The portfolio optimization problem in which the variances of the return rates of assets are not identical is analyzed in this paper using the methodology of statistical mechanical informatics, specifically, replica analysis. We defined two characteristic quantities of an optimal portfolio, namely, minimal investment risk and investment concentration, in order to solve the portfolio optimization problem and analytically determined their asymptotical behaviors using replica analysis. Numerical experiments were also performed, and a comparison between the results of our simulation and those obtained via replica analysis validated our proposed method.

  8. Robust and Reliable Portfolio Optimization Formulation of a Chance Constrained Problem

    Directory of Open Access Journals (Sweden)

    Sengupta Raghu Nandan

    2017-02-01

    Full Text Available We solve a linear chance constrained portfolio optimization problem using Robust Optimization (RO method wherein financial script/asset loss return distributions are considered as extreme valued. The objective function is a convex combination of portfolio’s CVaR and expected value of loss return, subject to a set of randomly perturbed chance constraints with specified probability values. The robust deterministic counterpart of the model takes the form of Second Order Cone Programming (SOCP problem. Results from extensive simulation runs show the efficacy of our proposed models, as it helps the investor to (i utilize extensive simulation studies to draw insights into the effect of randomness in portfolio decision making process, (ii incorporate different risk appetite scenarios to find the optimal solutions for the financial portfolio allocation problem and (iii compare the risk and return profiles of the investments made in both deterministic as well as in uncertain and highly volatile financial markets.

  9. Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint

    Science.gov (United States)

    2014-01-01

    Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results. PMID:24991645

  10. Firefly algorithm for cardinality constrained mean-variance portfolio optimization problem with entropy diversity constraint.

    Science.gov (United States)

    Bacanin, Nebojsa; Tuba, Milan

    2014-01-01

    Portfolio optimization (selection) problem is an important and hard optimization problem that, with the addition of necessary realistic constraints, becomes computationally intractable. Nature-inspired metaheuristics are appropriate for solving such problems; however, literature review shows that there are very few applications of nature-inspired metaheuristics to portfolio optimization problem. This is especially true for swarm intelligence algorithms which represent the newer branch of nature-inspired algorithms. No application of any swarm intelligence metaheuristics to cardinality constrained mean-variance (CCMV) portfolio problem with entropy constraint was found in the literature. This paper introduces modified firefly algorithm (FA) for the CCMV portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.

  11. Artificial bee colony algorithm for constrained possibilistic portfolio optimization problem

    Science.gov (United States)

    Chen, Wei

    2015-07-01

    In this paper, we discuss the portfolio optimization problem with real-world constraints under the assumption that the returns of risky assets are fuzzy numbers. A new possibilistic mean-semiabsolute deviation model is proposed, in which transaction costs, cardinality and quantity constraints are considered. Due to such constraints the proposed model becomes a mixed integer nonlinear programming problem and traditional optimization methods fail to find the optimal solution efficiently. Thus, a modified artificial bee colony (MABC) algorithm is developed to solve the corresponding optimization problem. Finally, a numerical example is given to illustrate the effectiveness of the proposed model and the corresponding algorithm.

  12. Portfolio Optimization in a Semi-Markov Modulated Market

    International Nuclear Information System (INIS)

    Ghosh, Mrinal K.; Goswami, Anindya; Kumar, Suresh K.

    2009-01-01

    We address a portfolio optimization problem in a semi-Markov modulated market. We study both the terminal expected utility optimization on finite time horizon and the risk-sensitive portfolio optimization on finite and infinite time horizon. We obtain optimal portfolios in relevant cases. A numerical procedure is also developed to compute the optimal expected terminal utility for finite horizon problem

  13. Aircraft technology portfolio optimization using ant colony optimization

    Science.gov (United States)

    Villeneuve, Frederic J.; Mavris, Dimitri N.

    2012-11-01

    Technology portfolio selection is a combinatorial optimization problem often faced with a large number of combinations and technology incompatibilities. The main research question addressed in this article is to determine if Ant Colony Optimization (ACO) is better suited than Genetic Algorithms (GAs) and Simulated Annealing (SA) for technology portfolio optimization when incompatibility constraints between technologies are present. Convergence rate, capability to find optima, and efficiency in handling of incompatibilities are the three criteria of comparison. The application problem consists of finding the best technology portfolio from 29 aircraft technologies. The results show that ACO and GAs converge faster and find optima more easily than SA, and that ACO can optimize portfolios with technology incompatibilities without using penalty functions. This latter finding paves the way for more use of ACO when the number of constraints increases, such as in the technology and concept selection for complex engineering systems.

  14. Optimal portfolio selection for general provisioning and terminal wealth problems

    NARCIS (Netherlands)

    van Weert, K.; Dhaene, J.; Goovaerts, M.

    2010-01-01

    In Dhaene et al. (2005), multiperiod portfolio selection problems are discussed, using an analytical approach to find optimal constant mix investment strategies in a provisioning or a savings context. In this paper we extend some of these results, investigating some specific, real-life situations.

  15. Optimal portfolio selection for general provisioning and terminal wealth problems

    NARCIS (Netherlands)

    van Weert, K.; Dhaene, J.; Goovaerts, M.

    2009-01-01

    In Dhaene et al. (2005), multiperiod portfolio selection problems are discussed, using an analytical approach to find optimal constant mix investment strategies in a provisioning or savings context. In this paper we extend some of these results, investigating some specific, real-life situations. The

  16. Replica analysis for the duality of the portfolio optimization problem.

    Science.gov (United States)

    Shinzato, Takashi

    2016-11-01

    In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.

  17. Replica analysis for the duality of the portfolio optimization problem

    Science.gov (United States)

    Shinzato, Takashi

    2016-11-01

    In the present paper, the primal-dual problem consisting of the investment risk minimization problem and the expected return maximization problem in the mean-variance model is discussed using replica analysis. As a natural extension of the investment risk minimization problem under only a budget constraint that we analyzed in a previous study, we herein consider a primal-dual problem in which the investment risk minimization problem with budget and expected return constraints is regarded as the primal problem, and the expected return maximization problem with budget and investment risk constraints is regarded as the dual problem. With respect to these optimal problems, we analyze a quenched disordered system involving both of these optimization problems using the approach developed in statistical mechanical informatics and confirm that both optimal portfolios can possess the primal-dual structure. Finally, the results of numerical simulations are shown to validate the effectiveness of the proposed method.

  18. Fuzzy Random λ-Mean SAD Portfolio Selection Problem: An Ant Colony Optimization Approach

    Science.gov (United States)

    Thakur, Gour Sundar Mitra; Bhattacharyya, Rupak; Mitra, Swapan Kumar

    2010-10-01

    To reach the investment goal, one has to select a combination of securities among different portfolios containing large number of securities. Only the past records of each security do not guarantee the future return. As there are many uncertain factors which directly or indirectly influence the stock market and there are also some newer stock markets which do not have enough historical data, experts' expectation and experience must be combined with the past records to generate an effective portfolio selection model. In this paper the return of security is assumed to be Fuzzy Random Variable Set (FRVS), where returns are set of random numbers which are in turn fuzzy numbers. A new λ-Mean Semi Absolute Deviation (λ-MSAD) portfolio selection model is developed. The subjective opinions of the investors to the rate of returns of each security are taken into consideration by introducing a pessimistic-optimistic parameter vector λ. λ-Mean Semi Absolute Deviation (λ-MSAD) model is preferred as it follows absolute deviation of the rate of returns of a portfolio instead of the variance as the measure of the risk. As this model can be reduced to Linear Programming Problem (LPP) it can be solved much faster than quadratic programming problems. Ant Colony Optimization (ACO) is used for solving the portfolio selection problem. ACO is a paradigm for designing meta-heuristic algorithms for combinatorial optimization problem. Data from BSE is used for illustration.

  19. Portfolio Optimization

    OpenAIRE

    Issagali, Aizhan; Alshimbayeva, Damira; Zhalgas, Aidana

    2015-01-01

    In this paper Portfolio Optimization techniques were used to determine the most favorable investment portfolio. In particular, stock indices of three companies, namely Microsoft Corporation, Christian Dior Fashion House and Shevron Corporation were evaluated. Using this data the amounts invested in each asset when a portfolio is chosen on the efficient frontier were calculated. In addition, the Portfolio with minimum variance, tangency portfolio and optimal Markowitz portfolio are presented.

  20. Minimal investment risk of a portfolio optimization problem with budget and investment concentration constraints

    Science.gov (United States)

    Shinzato, Takashi

    2017-02-01

    In the present paper, the minimal investment risk for a portfolio optimization problem with imposed budget and investment concentration constraints is considered using replica analysis. Since the minimal investment risk is influenced by the investment concentration constraint (as well as the budget constraint), it is intuitive that the minimal investment risk for the problem with an investment concentration constraint can be larger than that without the constraint (that is, with only the budget constraint). Moreover, a numerical experiment shows the effectiveness of our proposed analysis. In contrast, the standard operations research approach failed to identify accurately the minimal investment risk of the portfolio optimization problem.

  1. Dynamic-Programming Approaches to Single- and Multi-Stage Stochastic Knapsack Problems for Portfolio Optimization

    National Research Council Canada - National Science Library

    Khoo, Wai

    1999-01-01

    .... These problems model stochastic portfolio optimization problems (SPOPs) which assume deterministic unit weight, and normally distributed unit return with known mean and variance for each item type...

  2. Portfolio optimization using fuzzy linear programming

    Science.gov (United States)

    Pandit, Purnima K.

    2013-09-01

    Portfolio Optimization (PO) is a problem in Finance, in which investor tries to maximize return and minimize risk by carefully choosing different assets. Expected return and risk are the most important parameters with regard to optimal portfolios. In the simple form PO can be modeled as quadratic programming problem which can be put into equivalent linear form. PO problems with the fuzzy parameters can be solved as multi-objective fuzzy linear programming problem. In this paper we give the solution to such problems with an illustrative example.

  3. Robust Portfolio Optimization using CAPM Approach

    Directory of Open Access Journals (Sweden)

    mohsen gharakhani

    2013-08-01

    Full Text Available In this paper, a new robust model of multi-period portfolio problem has been developed. One of the key concerns in any asset allocation problem is how to cope with uncertainty about future returns. There are some approaches in the literature for this purpose including stochastic programming and robust optimization. Applying these techniques to multi-period portfolio problem may increase the problem size in a way that the resulting model is intractable. In this paper, a novel approach has been proposed to formulate multi-period portfolio problem as an uncertain linear program assuming that asset return follows the single-index factor model. Robust optimization technique has been also used to solve the problem. In order to evaluate the performance of the proposed model, a numerical example has been applied using simulated data.

  4. Portfolio optimization with structured products under return constraint

    Directory of Open Access Journals (Sweden)

    Baweja Meena

    2015-01-01

    Full Text Available A new approach for optimizing risk in a portfolio of financial instruments involving structured products is presented. This paper deals with a portfolio selection model which uses optimization methodology to minimize conditional Value-at-Risk (CVaR under return constraint. It focuses on minimizing CVaR rather than on minimizing value-at-Risk VaR, as portfolios with low CVaR necessarily have low VaR as well. We consider a simple investment problem where besides stocks and bonds, the investor can also include structured products into the investment portfolio. Due to possible intermediate payments from structured product, we have to deal with a re-investment problem modeled as a linear optimization problem.

  5. Regularizing portfolio optimization

    International Nuclear Information System (INIS)

    Still, Susanne; Kondor, Imre

    2010-01-01

    The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.

  6. Regularizing portfolio optimization

    Science.gov (United States)

    Still, Susanne; Kondor, Imre

    2010-07-01

    The optimization of large portfolios displays an inherent instability due to estimation error. This poses a fundamental problem, because solutions that are not stable under sample fluctuations may look optimal for a given sample, but are, in effect, very far from optimal with respect to the average risk. In this paper, we approach the problem from the point of view of statistical learning theory. The occurrence of the instability is intimately related to over-fitting, which can be avoided using known regularization methods. We show how regularized portfolio optimization with the expected shortfall as a risk measure is related to support vector regression. The budget constraint dictates a modification. We present the resulting optimization problem and discuss the solution. The L2 norm of the weight vector is used as a regularizer, which corresponds to a diversification 'pressure'. This means that diversification, besides counteracting downward fluctuations in some assets by upward fluctuations in others, is also crucial because it improves the stability of the solution. The approach we provide here allows for the simultaneous treatment of optimization and diversification in one framework that enables the investor to trade off between the two, depending on the size of the available dataset.

  7. Comonotonic approximations for a generalized provisioning problem with application to optimal portfolio selection

    NARCIS (Netherlands)

    van Weert, K.; Dhaene, J.; Goovaerts, M.

    2011-01-01

    In this paper we discuss multiperiod portfolio selection problems related to a specific provisioning problem. Our results are an extension of Dhaene et al. (2005) [14], where optimal constant mix investment strategies are obtained in a provisioning and savings context, using an analytical approach

  8. Optimal Portfolios in Wishart Models and Effects of Discrete Rebalancing on Portfolio Distribution and Strategy Selection

    OpenAIRE

    Li, Zejing

    2012-01-01

    This dissertation is mainly devoted to the research of two problems - the continuous-time portfolio optimization in different Wishart models and the effects of discrete rebalancing on portfolio wealth distribution and optimal portfolio strategy.

  9. HEURISTIC APPROACHES FOR PORTFOLIO OPTIMIZATION

    OpenAIRE

    Manfred Gilli, Evis Kellezi

    2000-01-01

    The paper first compares the use of optimization heuristics to the classical optimization techniques for the selection of optimal portfolios. Second, the heuristic approach is applied to problems other than those in the standard mean-variance framework where the classical optimization fails.

  10. Spin glasses and nonlinear constraints in portfolio optimization

    International Nuclear Information System (INIS)

    Andrecut, M.

    2014-01-01

    We discuss the portfolio optimization problem with the obligatory deposits constraint. Recently it has been shown that as a consequence of this nonlinear constraint, the solution consists of an exponentially large number of optimal portfolios, completely different from each other, and extremely sensitive to any changes in the input parameters of the problem, making the concept of rational decision making questionable. Here we reformulate the problem using a quadratic obligatory deposits constraint, and we show that from the physics point of view, finding an optimal portfolio amounts to calculating the mean-field magnetizations of a random Ising model with the constraint of a constant magnetization norm. We show that the model reduces to an eigenproblem, with 2N solutions, where N is the number of assets defining the portfolio. Also, in order to illustrate our results, we present a detailed numerical example of a portfolio of several risky common stocks traded on the Nasdaq Market.

  11. Spin glasses and nonlinear constraints in portfolio optimization

    Energy Technology Data Exchange (ETDEWEB)

    Andrecut, M., E-mail: mircea.andrecut@gmail.com

    2014-01-17

    We discuss the portfolio optimization problem with the obligatory deposits constraint. Recently it has been shown that as a consequence of this nonlinear constraint, the solution consists of an exponentially large number of optimal portfolios, completely different from each other, and extremely sensitive to any changes in the input parameters of the problem, making the concept of rational decision making questionable. Here we reformulate the problem using a quadratic obligatory deposits constraint, and we show that from the physics point of view, finding an optimal portfolio amounts to calculating the mean-field magnetizations of a random Ising model with the constraint of a constant magnetization norm. We show that the model reduces to an eigenproblem, with 2N solutions, where N is the number of assets defining the portfolio. Also, in order to illustrate our results, we present a detailed numerical example of a portfolio of several risky common stocks traded on the Nasdaq Market.

  12. Asset Allocation and Optimal Contract for Delegated Portfolio Management

    Science.gov (United States)

    Liu, Jingjun; Liang, Jianfeng

    This article studies the portfolio selection and the contracting problems between an individual investor and a professional portfolio manager in a discrete-time principal-agent framework. Portfolio selection and optimal contracts are obtained in closed form. The optimal contract was composed with the fixed fee, the cost, and the fraction of excess expected return. The optimal portfolio is similar to the classical two-fund separation theorem.

  13. Optimal diversification of the securities portfolio

    Directory of Open Access Journals (Sweden)

    Валентина Михайловна Андриенко

    2016-09-01

    Full Text Available The article deals with problems of the theory and methods of forming the optimal portfolio of financial markets. The analytical review of methods in their historical development is given. Recommendations on the use of a particular method depends on the specific conditions are formulated. The classical and alternative methods are considered. The main attention is paid to the analysis of the investment portfolio of derivative securities in B/S-market modelThe article deals with problems of the theory and methods of forming the optimal portfolio of financial markets. The analytical review of methods in their historical development is given. Recommendations on the use of a particular method depends on the specific conditions are formulated. The classical and alternative methods are considered. The main attention is paid to the analysis of the investment portfolio of derivative securities in -market model

  14. Cluster analysis for portfolio optimization

    OpenAIRE

    Vincenzo Tola; Fabrizio Lillo; Mauro Gallegati; Rosario N. Mantegna

    2005-01-01

    We consider the problem of the statistical uncertainty of the correlation matrix in the optimization of a financial portfolio. We show that the use of clustering algorithms can improve the reliability of the portfolio in terms of the ratio between predicted and realized risk. Bootstrap analysis indicates that this improvement is obtained in a wide range of the parameters N (number of assets) and T (investment horizon). The predicted and realized risk level and the relative portfolio compositi...

  15. A Generalized Measure for the Optimal Portfolio Selection Problem and its Explicit Solution

    Directory of Open Access Journals (Sweden)

    Zinoviy Landsman

    2018-03-01

    Full Text Available In this paper, we offer a novel class of utility functions applied to optimal portfolio selection. This class incorporates as special cases important measures such as the mean-variance, Sharpe ratio, mean-standard deviation and others. We provide an explicit solution to the problem of optimal portfolio selection based on this class. Furthermore, we show that each measure in this class generally reduces to the efficient frontier that coincides or belongs to the classical mean-variance efficient frontier. In addition, a condition is provided for the existence of the a one-to-one correspondence between the parameter of this class of utility functions and the trade-off parameter λ in the mean-variance utility function. This correspondence essentially provides insight into the choice of this parameter. We illustrate our results by taking a portfolio of stocks from National Association of Securities Dealers Automated Quotation (NASDAQ.

  16. Contract portfolio optimization for a gasoline supply chain

    Science.gov (United States)

    Wang, Shanshan

    Major oil companies sell gasoline through three channels of trade: branded (associated with long-term contracts), unbranded (associated with short-term contracts), and spot market. The branded channel provides them with a long-term secured and sustainable demand source, but requires an inflexible long-term commitment with demand and price risks. The unbranded channel provides a medium level of allocation flexibility. The spot market provides them with the greatest allocation flexibility to the changing market conditions, but the spot market's illiquidity mitigates this benefit. In order to sell the product in a profitable and sustainable way, they need an optimal contract portfolio. This dissertation addresses the contract portfolio optimization problem from different perspectives (retrospective view and forward-looking view) at different levels (strategic level, tactical level and operational level). The objective of the retrospective operational model is to develop a financial case to estimate the business value of having a dynamic optimization model and quantify the opportunity values missed in the past. This model proves the financial significance of the problem and provides top management valuable insights into the business. BP has applied the insights and principles gained from this work and implemented the model to the entire Midwest gasoline supply chain to retrospectively review optimization opportunities. The strategic model is the most parsimonious model that captures the essential economic tradeoffs among different contract types, to demonstrate the need for a contract portfolio and what drives the portfolio. We examine the properties of the optimal contract portfolio and provide a comparative statics analysis by changing the model parameters. As the strategic model encapsulates the business problem at the macroscopic level, the tactical model resolves lower level issues. It considers the time dynamics, the information flow and contracting flow. Using

  17. Combinatorial Algorithms for Portfolio Optimization Problems - Case of Risk Moderate Investor

    Science.gov (United States)

    Juarna, A.

    2017-03-01

    Portfolio optimization problem is a problem of finding optimal combination of n stocks from N ≥ n available stocks that gives maximal aggregate return and minimal aggregate risk. In this paper given N = 43 from the IDX (Indonesia Stock Exchange) group of the 45 most-traded stocks, known as the LQ45, with p = 24 data of monthly returns for each stock, spanned over interval 2013-2014. This problem actually is a combinatorial one where its algorithm is constructed based on two considerations: risk moderate type of investor and maximum allowed correlation coefficient between every two eligible stocks. The main outputs resulted from implementation of the algorithms is a multiple curve of three portfolio’s attributes, e.g. the size, the ratio of return to risk, and the percentage of negative correlation coefficient for every two chosen stocks, as function of maximum allowed correlation coefficient between each two stocks. The output curve shows that the portfolio contains three stocks with ratio of return to risk at 14.57 if the maximum allowed correlation coefficient between every two eligible stocks is negative and contains 19 stocks with maximum allowed correlation coefficient 0.17 to get maximum ratio of return to risk at 25.48.

  18. Risk modelling in portfolio optimization

    Science.gov (United States)

    Lam, W. H.; Jaaman, Saiful Hafizah Hj.; Isa, Zaidi

    2013-09-01

    Risk management is very important in portfolio optimization. The mean-variance model has been used in portfolio optimization to minimize the investment risk. The objective of the mean-variance model is to minimize the portfolio risk and achieve the target rate of return. Variance is used as risk measure in the mean-variance model. The purpose of this study is to compare the portfolio composition as well as performance between the optimal portfolio of mean-variance model and equally weighted portfolio. Equally weighted portfolio means the proportions that are invested in each asset are equal. The results show that the portfolio composition of the mean-variance optimal portfolio and equally weighted portfolio are different. Besides that, the mean-variance optimal portfolio gives better performance because it gives higher performance ratio than the equally weighted portfolio.

  19. Does asymmetric correlation affect portfolio optimization?

    Science.gov (United States)

    Fryd, Lukas

    2017-07-01

    The classical portfolio optimization problem does not assume asymmetric behavior of relationship among asset returns. The existence of asymmetric response in correlation on the bad news could be important information in portfolio optimization. The paper applies Dynamic conditional correlation model (DCC) and his asymmetric version (ADCC) to propose asymmetric behavior of conditional correlation. We analyse asymmetric correlation among S&P index, bonds index and spot gold price before mortgage crisis in 2008. We evaluate forecast ability of the models during and after mortgage crisis and demonstrate the impact of asymmetric correlation on the reduction of portfolio variance.

  20. Optimal Portfolio Choice with Annuitization

    NARCIS (Netherlands)

    Koijen, R.S.J.; Nijman, T.E.; Werker, B.J.M.

    2006-01-01

    We study the optimal consumption and portfolio choice problem over an individual's life-cycle taking into account annuity risk at retirement. Optimally, the investor allocates wealth at retirement to nominal, inflation-linked, and variable annuities and conditions this choice on the state of the

  1. Macroscopic relationship in primal-dual portfolio optimization problem

    Science.gov (United States)

    Shinzato, Takashi

    2018-02-01

    In the present paper, using a replica analysis, we examine the portfolio optimization problem handled in previous work and discuss the minimization of investment risk under constraints of budget and expected return for the case that the distribution of the hyperparameters of the mean and variance of the return rate of each asset are not limited to a specific probability family. Findings derived using our proposed method are compared with those in previous work to verify the effectiveness of our proposed method. Further, we derive a Pythagorean theorem of the Sharpe ratio and macroscopic relations of opportunity loss. Using numerical experiments, the effectiveness of our proposed method is demonstrated for a specific situation.

  2. Portfolio optimization by using linear programing models based on genetic algorithm

    Science.gov (United States)

    Sukono; Hidayat, Y.; Lesmana, E.; Putra, A. S.; Napitupulu, H.; Supian, S.

    2018-01-01

    In this paper, we discussed the investment portfolio optimization using linear programming model based on genetic algorithms. It is assumed that the portfolio risk is measured by absolute standard deviation, and each investor has a risk tolerance on the investment portfolio. To complete the investment portfolio optimization problem, the issue is arranged into a linear programming model. Furthermore, determination of the optimum solution for linear programming is done by using a genetic algorithm. As a numerical illustration, we analyze some of the stocks traded on the capital market in Indonesia. Based on the analysis, it is shown that the portfolio optimization performed by genetic algorithm approach produces more optimal efficient portfolio, compared to the portfolio optimization performed by a linear programming algorithm approach. Therefore, genetic algorithms can be considered as an alternative on determining the investment portfolio optimization, particularly using linear programming models.

  3. Large portfolio risk management and optimal portfolio allocation with dynamic elliptical copulas

    Directory of Open Access Journals (Sweden)

    Jin Xisong

    2018-02-01

    Full Text Available Previous research has focused on the importance of modeling the multivariate distribution for optimal portfolio allocation and active risk management. However, existing dynamic models are not easily applied to high-dimensional problems due to the curse of dimensionality. In this paper, we extend the framework of the Dynamic Conditional Correlation/Equicorrelation and an extreme value approach into a series of Dynamic Conditional Elliptical Copulas. We investigate risk measures such as Value at Risk (VaR and Expected Shortfall (ES for passive portfolios and dynamic optimal portfolios using Mean-Variance and ES criteria for a sample of US stocks over a period of 10 years. Our results suggest that (1 Modeling the marginal distribution is important for dynamic high-dimensional multivariate models. (2 Neglecting the dynamic dependence in the copula causes over-aggressive risk management. (3 The DCC/DECO Gaussian copula and t-copula work very well for both VaR and ES. (4 Grouped t-copulas and t-copulas with dynamic degrees of freedom further match the fat tail. (5 Correctly modeling the dependence structure makes an improvement in portfolio optimization with respect to tail risk. (6 Models driven by multivariate t innovations with exogenously given degrees of freedom provide a flexible and applicable alternative for optimal portfolio risk management.

  4. PORTFOLIO OPTIMIZATION ON CROATIAN CAPITAL MARKET

    Directory of Open Access Journals (Sweden)

    Sinisa Bogdan

    2013-12-01

    Full Text Available Purpose of this paper was to research portfolio optimization problem on Croatian capital market using Markowitz theory. Research systematically investigated the selection of securities, and defined the importance of using fundamental analysis when selecting the best combination of securities. Since fundamental analysis involves a large number of indicators, this paper selected key indicators that enable a complete and quick securities review on the market. This paper clarifies diversification effect and influence of the correlation coefficient on diversification. Two basic types of assets (stocks and cash funds have been chosen to build the optimal portfolio. Cash funds were selected because they represent a form of risk-free investment, while stocks were chosen because of the high level of return which they achieve. At the end of paper, optimal portfolio was calculated with an excellent yield of 1.82% and deviation of 5.77% on a monthly basis which corresponds to the minimum deviation of the selected stocks. Calculated optimal portfolio achieves better expected value than investing in stock index CROBEX, which for the same period achieves the expected result of -0.02%.

  5. RISK LOAN PORTFOLIO OPTIMIZATION MODEL BASED ON CVAR RISK MEASURE

    Directory of Open Access Journals (Sweden)

    Ming-Chang LEE

    2015-07-01

    Full Text Available In order to achieve commercial banks liquidity, safety and profitability objective requirements, loan portfolio risk analysis based optimization decisions are rational allocation of assets.  The risk analysis and asset allocation are the key technology of banking and risk management.  The aim of this paper, build a loan portfolio optimization model based on risk analysis.  Loan portfolio rate of return by using Value-at-Risk (VaR and Conditional Value-at-Risk (CVaR constraint optimization decision model reflects the bank's risk tolerance, and the potential loss of direct control of the bank.  In this paper, it analyze a general risk management model applied to portfolio problems with VaR and CVaR risk measures by using Using the Lagrangian Algorithm.  This paper solves the highly difficult problem by matrix operation method.  Therefore, the combination of this paper is easy understanding the portfolio problems with VaR and CVaR risk model is a hyperbola in mean-standard deviation space.  It is easy calculation in proposed method.

  6. Multiperiod Mean-Variance Portfolio Optimization via Market Cloning

    International Nuclear Information System (INIS)

    Ankirchner, Stefan; Dermoune, Azzouz

    2011-01-01

    The problem of finding the mean variance optimal portfolio in a multiperiod model can not be solved directly by means of dynamic programming. In order to find a solution we therefore first introduce independent market clones having the same distributional properties as the original market, and we replace the portfolio mean and variance by their empirical counterparts. We then use dynamic programming to derive portfolios maximizing a weighted sum of the empirical mean and variance. By letting the number of market clones converge to infinity we are able to solve the original mean variance problem.

  7. Multiperiod Mean-Variance Portfolio Optimization via Market Cloning

    Energy Technology Data Exchange (ETDEWEB)

    Ankirchner, Stefan, E-mail: ankirchner@hcm.uni-bonn.de [Rheinische Friedrich-Wilhelms-Universitaet Bonn, Institut fuer Angewandte Mathematik, Hausdorff Center for Mathematics (Germany); Dermoune, Azzouz, E-mail: Azzouz.Dermoune@math.univ-lille1.fr [Universite des Sciences et Technologies de Lille, Laboratoire Paul Painleve UMR CNRS 8524 (France)

    2011-08-15

    The problem of finding the mean variance optimal portfolio in a multiperiod model can not be solved directly by means of dynamic programming. In order to find a solution we therefore first introduce independent market clones having the same distributional properties as the original market, and we replace the portfolio mean and variance by their empirical counterparts. We then use dynamic programming to derive portfolios maximizing a weighted sum of the empirical mean and variance. By letting the number of market clones converge to infinity we are able to solve the original mean variance problem.

  8. Enhanced index tracking modelling in portfolio optimization

    Science.gov (United States)

    Lam, W. S.; Hj. Jaaman, Saiful Hafizah; Ismail, Hamizun bin

    2013-09-01

    Enhanced index tracking is a popular form of passive fund management in stock market. It is a dual-objective optimization problem, a trade-off between maximizing the mean return and minimizing the risk. Enhanced index tracking aims to generate excess return over the return achieved by the index without purchasing all of the stocks that make up the index by establishing an optimal portfolio. The objective of this study is to determine the optimal portfolio composition and performance by using weighted model in enhanced index tracking. Weighted model focuses on the trade-off between the excess return and the risk. The results of this study show that the optimal portfolio for the weighted model is able to outperform the Malaysia market index which is Kuala Lumpur Composite Index because of higher mean return and lower risk without purchasing all the stocks in the market index.

  9. Portfolio optimization with mean-variance model

    Science.gov (United States)

    Hoe, Lam Weng; Siew, Lam Weng

    2016-06-01

    Investors wish to achieve the target rate of return at the minimum level of risk in their investment. Portfolio optimization is an investment strategy that can be used to minimize the portfolio risk and can achieve the target rate of return. The mean-variance model has been proposed in portfolio optimization. The mean-variance model is an optimization model that aims to minimize the portfolio risk which is the portfolio variance. The objective of this study is to construct the optimal portfolio using the mean-variance model. The data of this study consists of weekly returns of 20 component stocks of FTSE Bursa Malaysia Kuala Lumpur Composite Index (FBMKLCI). The results of this study show that the portfolio composition of the stocks is different. Moreover, investors can get the return at minimum level of risk with the constructed optimal mean-variance portfolio.

  10. A One-Layer Recurrent Neural Network for Real-Time Portfolio Optimization With Probability Criterion.

    Science.gov (United States)

    Liu, Qingshan; Dang, Chuangyin; Huang, Tingwen

    2013-02-01

    This paper presents a decision-making model described by a recurrent neural network for dynamic portfolio optimization. The portfolio-optimization problem is first converted into a constrained fractional programming problem. Since the objective function in the programming problem is not convex, the traditional optimization techniques are no longer applicable for solving this problem. Fortunately, the objective function in the fractional programming is pseudoconvex on the feasible region. It leads to a one-layer recurrent neural network modeled by means of a discontinuous dynamic system. To ensure the optimal solutions for portfolio optimization, the convergence of the proposed neural network is analyzed and proved. In fact, the neural network guarantees to get the optimal solutions for portfolio-investment advice if some mild conditions are satisfied. A numerical example with simulation results substantiates the effectiveness and illustrates the characteristics of the proposed neural network.

  11. Portfolio optimization retail investor

    Directory of Open Access Journals (Sweden)

    I. А. Kiseleva

    2016-01-01

    Full Text Available The article notes that the task of the investor's risk management is to, on the one hand, as much as possible to strive to achieve the criterion of risk level, and on the other hand, in any case not exceed it. Since the domestic theory of risk management is under development, the problem of the optimal ratio of "risk-income" becomes now of particular relevance. This article discusses the different distribution areas of the private investor in order to obtain the maximum profit. The analysis showed us the overall economic and political system of the country, as well as the legislative provision of guarantees to the investor. To obtain sufficient income and reduce losses it is important to maintain the optimum value found between the amount of the investor's risk and capital transactions. Model of optimal placement of funds led to the conclusion about inexpediency strong increase in the diversification of the investment portfolio (more than 10 different types of assets in the portfolio, since it increases the complexity of its practical form, while the portfolio characteristics are improved significantly. It is concluded that it is impossible to increase revenue without increasing the risk or reduce risk without reducing income. The analysis shows that there is no single best asset portfolio. It is impossible to increase revenue without increasing the risk or reduce risk without reducing income. Possible combination of the "riskincome" will depend on the objective function. Most diversified and bringing the best return per unit of risk, is a portfolio that contains the most risky assets.

  12. Feature selection for portfolio optimization

    DEFF Research Database (Denmark)

    Bjerring, Thomas Trier; Ross, Omri; Weissensteiner, Alex

    2016-01-01

    Most portfolio selection rules based on the sample mean and covariance matrix perform poorly out-of-sample. Moreover, there is a growing body of evidence that such optimization rules are not able to beat simple rules of thumb, such as 1/N. Parameter uncertainty has been identified as one major....... While most of the diversification benefits are preserved, the parameter estimation problem is alleviated. We conduct out-of-sample back-tests to show that in most cases different well-established portfolio selection rules applied on the reduced asset universe are able to improve alpha relative...

  13. Portfolio Optimization and Mortgage Choice

    Directory of Open Access Journals (Sweden)

    Maj-Britt Nordfang

    2017-01-01

    Full Text Available This paper studies the optimal mortgage choice of an investor in a simple bond market with a stochastic interest rate and access to term life insurance. The study is based on advances in stochastic control theory, which provides analytical solutions to portfolio problems with a stochastic interest rate. We derive the optimal portfolio of a mortgagor in a simple framework and formulate stylized versions of mortgage products offered in the market today. This allows us to analyze the optimal investment strategy in terms of optimal mortgage choice. We conclude that certain extreme investors optimally choose either a traditional fixed rate mortgage or an adjustable rate mortgage, while investors with moderate risk aversion and income prefer a mix of the two. By matching specific investor characteristics to existing mortgage products, our study provides a better understanding of the complex and yet restricted mortgage choice faced by many household investors. In addition, the simple analytical framework enables a detailed analysis of how changes to market, income and preference parameters affect the optimal mortgage choice.

  14. Portfolio optimization using median-variance approach

    Science.gov (United States)

    Wan Mohd, Wan Rosanisah; Mohamad, Daud; Mohamed, Zulkifli

    2013-04-01

    Optimization models have been applied in many decision-making problems particularly in portfolio selection. Since the introduction of Markowitz's theory of portfolio selection, various approaches based on mathematical programming have been introduced such as mean-variance, mean-absolute deviation, mean-variance-skewness and conditional value-at-risk (CVaR) mainly to maximize return and minimize risk. However most of the approaches assume that the distribution of data is normal and this is not generally true. As an alternative, in this paper, we employ the median-variance approach to improve the portfolio optimization. This approach has successfully catered both types of normal and non-normal distribution of data. With this actual representation, we analyze and compare the rate of return and risk between the mean-variance and the median-variance based portfolio which consist of 30 stocks from Bursa Malaysia. The results in this study show that the median-variance approach is capable to produce a lower risk for each return earning as compared to the mean-variance approach.

  15. A Polynomial Optimization Approach to Constant Rebalanced Portfolio Selection

    NARCIS (Netherlands)

    Takano, Y.; Sotirov, R.

    2010-01-01

    We address the multi-period portfolio optimization problem with the constant rebalancing strategy. This problem is formulated as a polynomial optimization problem (POP) by using a mean-variance criterion. In order to solve the POPs of high degree, we develop a cutting-plane algorithm based on

  16. A polynomial optimization approach to constant rebalanced portfolio selection

    NARCIS (Netherlands)

    Takano, Y.; Sotirov, R.

    2012-01-01

    We address the multi-period portfolio optimization problem with the constant rebalancing strategy. This problem is formulated as a polynomial optimization problem (POP) by using a mean-variance criterion. In order to solve the POPs of high degree, we develop a cutting-plane algorithm based on

  17. Portfolio Optimization Using Particle Swarms with Stripes

    Directory of Open Access Journals (Sweden)

    Mario Villalobos Arias

    2011-04-01

    Full Text Available In this paper it is consider the Portfolio Optimization Problem developed by Markowitz [11]. The basic assumption is that the investor tries to maximize his/her profit and at the same time, wants to minimize the risk. This problem is usually solved using a scalarization approach (with one objective. Here it is solved it as a bi-objective  optimization problem. It uses a new version of the algorithm of Particle Swarm Optimization for Multi-Objective Problems to which it implemented a method of the stripes to improve dispersion.

  18. Fault Tolerant Distributed Portfolio Optimization in Smart Grids

    DEFF Research Database (Denmark)

    Juelsgaard, Morten; Wisniewski, Rafal; Bendtsen, Jan Dimon

    2014-01-01

    optimization scheme for power balancing, where communication is allowed only between units that are linked in the graph. We include consumers with controllable consumption as an active part of the portfolio. We show that a suboptimal, but arbitrarily good power balancing can be obtained in an uncoordinated......, distributed optimization framework, and argue that the scheme will work even if the computation time is limited. We further show that our approach can tolerate changes in the portfolio, in the sense that increasing or reducing the number of units in the portfolio requires only local updates. This ensures......This work considers a portfolio of units for electrical power production and the problem of utilizing it to maintain power balance in the electrical grid. We treat the portfolio as a graph in which the nodes are distributed generators and the links are communication paths. We present a distributed...

  19. Dynamic Portfolio Optimization with Transaction Costs and State-Dependent Drift

    DEFF Research Database (Denmark)

    Palczewski, Jan; Poulsen, Rolf; Schenk-Hoppe, Klaus Reiner

    2015-01-01

    The problem of dynamic portfolio choice with transaction costs is often addressed by constructing a Markov Chain approximation of the continuous time price processes. Using this approximation, we present an efficient numerical method to determine optimal portfolio strategies under time- and state......-dependent drift and proportional transaction costs. This scenario arises when investors have behavioral biases or the actual drift is unknown and needs to be estimated. Our numerical method solves dynamic optimal portfolio problems with an exponential utility function for time-horizons of up to 40 years....... It is applied to measure the value of information and the loss from transaction costs using the indifference principle....

  20. A Simulation Approach to Statistical Estimation of Multiperiod Optimal Portfolios

    Directory of Open Access Journals (Sweden)

    Hiroshi Shiraishi

    2012-01-01

    Full Text Available This paper discusses a simulation-based method for solving discrete-time multiperiod portfolio choice problems under AR(1 process. The method is applicable even if the distributions of return processes are unknown. We first generate simulation sample paths of the random returns by using AR bootstrap. Then, for each sample path and each investment time, we obtain an optimal portfolio estimator, which optimizes a constant relative risk aversion (CRRA utility function. When an investor considers an optimal investment strategy with portfolio rebalancing, it is convenient to introduce a value function. The most important difference between single-period portfolio choice problems and multiperiod ones is that the value function is time dependent. Our method takes care of the time dependency by using bootstrapped sample paths. Numerical studies are provided to examine the validity of our method. The result shows the necessity to take care of the time dependency of the value function.

  1. Portfolio Optimization with Stochastic Dividends and Stochastic Volatility

    Science.gov (United States)

    Varga, Katherine Yvonne

    2015-01-01

    We consider an optimal investment-consumption portfolio optimization model in which an investor receives stochastic dividends. As a first problem, we allow the drift of stock price to be a bounded function. Next, we consider a stochastic volatility model. In each problem, we use the dynamic programming method to derive the Hamilton-Jacobi-Bellman…

  2. The admissible portfolio selection problem with transaction costs and an improved PSO algorithm

    Science.gov (United States)

    Chen, Wei; Zhang, Wei-Guo

    2010-05-01

    In this paper, we discuss the portfolio selection problem with transaction costs under the assumption that there exist admissible errors on expected returns and risks of assets. We propose a new admissible efficient portfolio selection model and design an improved particle swarm optimization (PSO) algorithm because traditional optimization algorithms fail to work efficiently for our proposed problem. Finally, we offer a numerical example to illustrate the proposed effective approaches and compare the admissible portfolio efficient frontiers under different constraints.

  3. Portfolio Implementation Risk Management Using Evolutionary Multiobjective Optimization

    Directory of Open Access Journals (Sweden)

    David Quintana

    2017-10-01

    Full Text Available Portfolio management based on mean-variance portfolio optimization is subject to different sources of uncertainty. In addition to those related to the quality of parameter estimates used in the optimization process, investors face a portfolio implementation risk. The potential temporary discrepancy between target and present portfolios, caused by trading strategies, may expose investors to undesired risks. This study proposes an evolutionary multiobjective optimization algorithm aiming at regions with solutions more tolerant to these deviations and, therefore, more reliable. The proposed approach incorporates a user’s preference and seeks a fine-grained approximation of the most relevant efficient region. The computational experiments performed in this study are based on a cardinality-constrained problem with investment limits for eight broad-category indexes and 15 years of data. The obtained results show the ability of the proposed approach to address the robustness issue and to support decision making by providing a preferred part of the efficient set. The results reveal that the obtained solutions also exhibit a higher tolerance to prediction errors in asset returns and variance–covariance matrix.

  4. Portfolio optimization and performance evaluation

    DEFF Research Database (Denmark)

    Juhl, Hans Jørn; Christensen, Michael

    2013-01-01

    Based on an exclusive business-to-business database comprising nearly 1,000 customers, the applicability of portfolio analysis is documented, and it is examined how such an optimization analysis can be used to explore the growth potential of a company. As opposed to any previous analyses, optimal...... customer portfolios are determined, and it is shown how marketing decision-makers can use this information in their marketing strategies to optimize the revenue growth of the company. Finally, our analysis is the first analysis which applies portfolio based methods to measure customer performance......, and it is shown how these performance measures complement the optimization analysis....

  5. Mean-Variance portfolio optimization when each asset has individual uncertain exit-time

    Directory of Open Access Journals (Sweden)

    Reza Keykhaei

    2016-12-01

    Full Text Available The standard Markowitz Mean-Variance optimization model is a single-period portfolio selection approach where the exit-time (or the time-horizon is deterministic. ‎In this paper we study the Mean-Variance portfolio selection problem ‎with ‎uncertain ‎exit-time ‎when ‎each ‎has ‎individual uncertain ‎xit-time‎, ‎which generalizes the Markowitz's model‎. ‎‎‎‎‎‎We provide some conditions under which the optimal portfolio of the generalized problem is independent of the exit-times distributions. Also, ‎‎it is shown that under some general circumstances, the sets of optimal portfolios‎ ‎in the generalized model and the standard model are the same‎.

  6. Model Risk in Portfolio Optimization

    Directory of Open Access Journals (Sweden)

    David Stefanovits

    2014-08-01

    Full Text Available We consider a one-period portfolio optimization problem under model uncertainty. For this purpose, we introduce a measure of model risk. We derive analytical results for this measure of model risk in the mean-variance problem assuming we have observations drawn from a normal variance mixture model. This model allows for heavy tails, tail dependence and leptokurtosis of marginals. The results show that mean-variance optimization is seriously compromised by model uncertainty, in particular, for non-Gaussian data and small sample sizes. To mitigate these shortcomings, we propose a method to adjust the sample covariance matrix in order to reduce model risk.

  7. Large-Scale Portfolio Optimization Using Multiobjective Evolutionary Algorithms and Preselection Methods

    Directory of Open Access Journals (Sweden)

    B. Y. Qu

    2017-01-01

    Full Text Available Portfolio optimization problems involve selection of different assets to invest in order to maximize the overall return and minimize the overall risk simultaneously. The complexity of the optimal asset allocation problem increases with an increase in the number of assets available to select from for investing. The optimization problem becomes computationally challenging when there are more than a few hundreds of assets to select from. To reduce the complexity of large-scale portfolio optimization, two asset preselection procedures that consider return and risk of individual asset and pairwise correlation to remove assets that may not potentially be selected into any portfolio are proposed in this paper. With these asset preselection methods, the number of assets considered to be included in a portfolio can be increased to thousands. To test the effectiveness of the proposed methods, a Normalized Multiobjective Evolutionary Algorithm based on Decomposition (NMOEA/D algorithm and several other commonly used multiobjective evolutionary algorithms are applied and compared. Six experiments with different settings are carried out. The experimental results show that with the proposed methods the simulation time is reduced while return-risk trade-off performances are significantly improved. Meanwhile, the NMOEA/D is able to outperform other compared algorithms on all experiments according to the comparative analysis.

  8. Two-Stage Fuzzy Portfolio Selection Problem with Transaction Costs

    OpenAIRE

    Chen, Yanju; Wang, Ye

    2015-01-01

    This paper studies a two-period portfolio selection problem. The problem is formulated as a two-stage fuzzy portfolio selection model with transaction costs, in which the future returns of risky security are characterized by possibility distributions. The objective of the proposed model is to achieve the maximum utility in terms of the expected value and variance of the final wealth. Given the first-stage decision vector and a realization of fuzzy return, the optimal value expression of the s...

  9. Portfolio optimization in electricity markets

    International Nuclear Information System (INIS)

    Liu, Min; Wu, Felix F.

    2007-01-01

    In a competitive electricity market, Generation companies (Gencos) face price risk and delivery risk that affect their profitability. Risk management is an important and essential part in the Genco's decision making. In this paper, risk management through diversification is considered. The problem of energy allocation between spot markets and bilateral contracts is formulated as a general portfolio optimization problem with a risk-free asset and n risky assets. Historical data of the PJM electricity market are used to demonstrate the approach. (author)

  10. Geometrical framework for robust portfolio optimization

    OpenAIRE

    Bazovkin, Pavel

    2014-01-01

    We consider a vector-valued multivariate risk measure that depends on the user's profile given by the user's utility. It is constructed on the basis of weighted-mean trimmed regions and represents the solution of an optimization problem. The key feature of this measure is convexity. We apply the measure to the portfolio selection problem, employing different measures of performance as objective functions in a common geometrical framework.

  11. Ant Colony Optimization for Markowitz Mean-Variance Portfolio Model

    Science.gov (United States)

    Deng, Guang-Feng; Lin, Woo-Tsong

    This work presents Ant Colony Optimization (ACO), which was initially developed to be a meta-heuristic for combinatorial optimization, for solving the cardinality constraints Markowitz mean-variance portfolio model (nonlinear mixed quadratic programming problem). To our knowledge, an efficient algorithmic solution for this problem has not been proposed until now. Using heuristic algorithms in this case is imperative. Numerical solutions are obtained for five analyses of weekly price data for the following indices for the period March, 1992 to September, 1997: Hang Seng 31 in Hong Kong, DAX 100 in Germany, FTSE 100 in UK, S&P 100 in USA and Nikkei 225 in Japan. The test results indicate that the ACO is much more robust and effective than Particle swarm optimization (PSO), especially for low-risk investment portfolios.

  12. A Maximum Entropy Method for a Robust Portfolio Problem

    Directory of Open Access Journals (Sweden)

    Yingying Xu

    2014-06-01

    Full Text Available We propose a continuous maximum entropy method to investigate the robustoptimal portfolio selection problem for the market with transaction costs and dividends.This robust model aims to maximize the worst-case portfolio return in the case that allof asset returns lie within some prescribed intervals. A numerical optimal solution tothe problem is obtained by using a continuous maximum entropy method. Furthermore,some numerical experiments indicate that the robust model in this paper can result in betterportfolio performance than a classical mean-variance model.

  13. Mean-variance portfolio optimization with state-dependent risk aversion

    DEFF Research Database (Denmark)

    Bjoerk, Tomas; Murgoci, Agatha; Zhou, Xun Yu

    2014-01-01

    The objective of this paper is to study the mean-variance portfolio optimization in continuous time. Since this problem is time inconsistent we attack it by placing the problem within a game theoretic framework and look for subgame perfect Nash equilibrium strategies. This particular problem has...

  14. Hereditary Portfolio Optimization with Taxes and Fixed Plus Proportional Transaction Costs—Part II

    Directory of Open Access Journals (Sweden)

    Mou-Hsiung Chang

    2007-01-01

    Full Text Available This paper is the continuation of the paper entitled “Hereditary portfolio optimization with taxes and fixed plus proportional transaction costs I” that treats an infinite-time horizon hereditary portfolio optimization problem in a market that consists of one savings account and one stock account. Within the solvency region, the investor is allowed to consume from the savings account and can make transactions between the two assets subject to paying capital-gain taxes as well as a fixed plus proportional transaction cost. The investor is to seek an optimal consumption-trading strategy in order to maximize the expected utility from the total discounted consumption. The portfolio optimization problem is formulated as an infinite dimensional stochastic classical impulse control problem due to the hereditary nature of the stock price dynamics and inventories. This paper contains the verification theorem for the optimal strategy. It also proves that the value function is a viscosity solution of the QVHJBI.

  15. Transaction fees and optimal rebalancing in the growth-optimal portfolio

    OpenAIRE

    Yu Feng; Matus Medo; Liang Zhang; Yi-Cheng Zhang

    2010-01-01

    The growth-optimal portfolio optimization strategy pioneered by Kelly is based on constant portfolio rebalancing which makes it sensitive to transaction fees. We examine the effect of fees on an example of a risky asset with a binary return distribution and show that the fees may give rise to an optimal period of portfolio rebalancing. The optimal period is found analytically in the case of lognormal returns. This result is consequently generalized and numerically verified for broad return di...

  16. Comparison of Optimal Portfolios Selected by Multicriterial Model Using Absolute and Relative Criteria Values

    Directory of Open Access Journals (Sweden)

    Branka Marasović

    2009-03-01

    Full Text Available In this paper we select an optimal portfolio on the Croatian capital market by using the multicriterial programming. In accordance with the modern portfolio theory maximisation of returns at minimal risk should be the investment goal of any successful investor. However, contrary to the expectations of the modern portfolio theory, the tests carried out on a number of financial markets reveal the existence of other indicators important in portfolio selection. Considering the importance of variables other than return and risk, selection of the optimal portfolio becomes a multicriterial problem which should be solved by using the appropriate techniques.In order to select an optimal portfolio, absolute values of criteria, like return, risk, price to earning value ratio (P/E, price to book value ratio (P/B and price to sale value ratio (P/S are included in our multicriterial model. However the problem might occur as the mean values of some criteria are significantly different for different sectors and because financial managers emphasize that comparison of the same criteria for different sectors could lead us to wrong conclusions. In the second part of the paper, relative values of previously stated criteria (in relation to mean value of sector are included in model for selecting optimal portfolio. Furthermore, the paper shows that if relative values of criteria are included in multicriterial model for selecting optimal portfolio, return in subsequent period is considerably higher than if absolute values of the same criteria were used.

  17. Robust Portfolio Optimization Using Pseudodistances

    Science.gov (United States)

    2015-01-01

    The presence of outliers in financial asset returns is a frequently occurring phenomenon which may lead to unreliable mean-variance optimized portfolios. This fact is due to the unbounded influence that outliers can have on the mean returns and covariance estimators that are inputs in the optimization procedure. In this paper we present robust estimators of mean and covariance matrix obtained by minimizing an empirical version of a pseudodistance between the assumed model and the true model underlying the data. We prove and discuss theoretical properties of these estimators, such as affine equivariance, B-robustness, asymptotic normality and asymptotic relative efficiency. These estimators can be easily used in place of the classical estimators, thereby providing robust optimized portfolios. A Monte Carlo simulation study and applications to real data show the advantages of the proposed approach. We study both in-sample and out-of-sample performance of the proposed robust portfolios comparing them with some other portfolios known in literature. PMID:26468948

  18. Robust Portfolio Optimization Using Pseudodistances.

    Science.gov (United States)

    Toma, Aida; Leoni-Aubin, Samuela

    2015-01-01

    The presence of outliers in financial asset returns is a frequently occurring phenomenon which may lead to unreliable mean-variance optimized portfolios. This fact is due to the unbounded influence that outliers can have on the mean returns and covariance estimators that are inputs in the optimization procedure. In this paper we present robust estimators of mean and covariance matrix obtained by minimizing an empirical version of a pseudodistance between the assumed model and the true model underlying the data. We prove and discuss theoretical properties of these estimators, such as affine equivariance, B-robustness, asymptotic normality and asymptotic relative efficiency. These estimators can be easily used in place of the classical estimators, thereby providing robust optimized portfolios. A Monte Carlo simulation study and applications to real data show the advantages of the proposed approach. We study both in-sample and out-of-sample performance of the proposed robust portfolios comparing them with some other portfolios known in literature.

  19. Correlation risk and optimal portfolio choice

    OpenAIRE

    Buraschi, Andrea; Porchia, Paolo; Trojani, Fabio

    2010-01-01

    We develop a new framework for multivariate intertemporal portfolio choice that allows us to derive optimal portfolio implications for economies in which the degree of correlation across industries, countries, or asset classes is stochastic. Optimal portfolios include distinct hedging components against both stochastic volatility and correlation risk. We find that the hedging demand is typically larger than in univariate models, and it includes an economically significant covariance hedging...

  20. Measuring Treasury Bond Portfolio Risk and Portfolio Optimization with a Non-Gaussian Multivariate Model

    Science.gov (United States)

    Dong, Yijun

    The research about measuring the risk of a bond portfolio and the portfolio optimization was relatively rare previously, because the risk factors of bond portfolios are not very volatile. However, this condition has changed recently. The 2008 financial crisis brought high volatility to the risk factors and the related bond securities, even if the highly rated U.S. treasury bonds. Moreover, the risk factors of bond portfolios show properties of fat-tailness and asymmetry like risk factors of equity portfolios. Therefore, we need to use advanced techniques to measure and manage risk of bond portfolios. In our paper, we first apply autoregressive moving average generalized autoregressive conditional heteroscedasticity (ARMA-GARCH) model with multivariate normal tempered stable (MNTS) distribution innovations to predict risk factors of U.S. treasury bonds and statistically demonstrate that MNTS distribution has the ability to capture the properties of risk factors based on the goodness-of-fit tests. Then based on empirical evidence, we find that the VaR and AVaR estimated by assuming normal tempered stable distribution are more realistic and reliable than those estimated by assuming normal distribution, especially for the financial crisis period. Finally, we use the mean-risk portfolio optimization to minimize portfolios' potential risks. The empirical study indicates that the optimized bond portfolios have better risk-adjusted performances than the benchmark portfolios for some periods. Moreover, the optimized bond portfolios obtained by assuming normal tempered stable distribution have improved performances in comparison to the optimized bond portfolios obtained by assuming normal distribution.

  1. Replica approach to mean-variance portfolio optimization

    Science.gov (United States)

    Varga-Haszonits, Istvan; Caccioli, Fabio; Kondor, Imre

    2016-12-01

    We consider the problem of mean-variance portfolio optimization for a generic covariance matrix subject to the budget constraint and the constraint for the expected return, with the application of the replica method borrowed from the statistical physics of disordered systems. We find that the replica symmetry of the solution does not need to be assumed, but emerges as the unique solution of the optimization problem. We also check the stability of this solution and find that the eigenvalues of the Hessian are positive for r  =  N/T  optimal in-sample variance is found to vanish at the critical point inversely proportional to the divergent estimation error.

  2. Worst-Case Portfolio Optimization under Stochastic Interest Rate Risk

    Directory of Open Access Journals (Sweden)

    Tina Engler

    2014-12-01

    Full Text Available We investigate a portfolio optimization problem under the threat of a market crash, where the interest rate of the bond is modeled as a Vasicek process, which is correlated with the stock price process. We adopt a non-probabilistic worst-case approach for the height and time of the market crash. On a given time horizon [0; T], we then maximize the investor’s expected utility of terminal wealth in the worst-case crash scenario. Our main result is an explicit characterization of the worst-case optimal portfolio strategy for the class of HARA (hyperbolic absolute risk aversion utility functions.

  3. Portfolios Dominating Indices: Optimization with Second-Order Stochastic Dominance Constraints vs. Minimum and Mean Variance Portfolios

    Directory of Open Access Journals (Sweden)

    Neslihan Fidan Keçeci

    2016-10-01

    Full Text Available The paper compares portfolio optimization with the Second-Order Stochastic Dominance (SSD constraints with mean-variance and minimum variance portfolio optimization. As a distribution-free decision rule, stochastic dominance takes into account the entire distribution of return rather than some specific characteristic, such as variance. The paper is focused on practical applications of the portfolio optimization and uses the Portfolio Safeguard (PSG package, which has precoded modules for optimization with SSD constraints, mean-variance and minimum variance portfolio optimization. We have done in-sample and out-of-sample simulations for portfolios of stocks from the Dow Jones, S&P 100 and DAX indices. The considered portfolios’ SSD dominate the Dow Jones, S&P 100 and DAX indices. Simulation demonstrated a superior performance of portfolios with SD constraints, versus mean-variance and minimum variance portfolios.

  4. Portfolio optimization with skewness and kurtosis

    Science.gov (United States)

    Lam, Weng Hoe; Jaaman, Saiful Hafizah Hj.; Isa, Zaidi

    2013-04-01

    Mean and variance of return distributions are two important parameters of the mean-variance model in portfolio optimization. However, the mean-variance model will become inadequate if the returns of assets are not normally distributed. Therefore, higher moments such as skewness and kurtosis cannot be ignored. Risk averse investors prefer portfolios with high skewness and low kurtosis so that the probability of getting negative rates of return will be reduced. The objective of this study is to compare the portfolio compositions as well as performances between the mean-variance model and mean-variance-skewness-kurtosis model by using the polynomial goal programming approach. The results show that the incorporation of skewness and kurtosis will change the optimal portfolio compositions. The mean-variance-skewness-kurtosis model outperforms the mean-variance model because the mean-variance-skewness-kurtosis model takes skewness and kurtosis into consideration. Therefore, the mean-variance-skewness-kurtosis model is more appropriate for the investors of Malaysia in portfolio optimization.

  5. Large Portfolio Risk Management and Optimal Portfolio Allocation with Dynamic Copulas

    OpenAIRE

    Thorsten Lehnert; Xisong Jin

    2011-01-01

    Previous research focuses on the importance of modeling the multivariate distribution for optimal portfolio allocation and active risk management. However, available dynamic models are not easily applied for high-dimensional problems due to the curse of dimensionality. In this paper, we extend the framework of the Dynamic Conditional Correlation/Equicorrelation and an extreme value approach into a series of Dynamic Conditional Elliptical Copulas. We investigate risk measures like Value at Ris...

  6. Decentralized portfolio management

    OpenAIRE

    Coutinho, Paulo; Tabak, Benjamin Miranda

    2003-01-01

    We use a mean-variance model to analyze the problem of decentralized portfolio management. We find the solution for the optimal portfolio allocation for a head trader operating in n different markets, which is called the optimal centralized portfolio. However, as there are many traders specialized in different markets, the solution to the problem of optimal decentralized allocation should be different from the centralized case. In this paper we derive conditions for the solutions to be equiva...

  7. Two-Stage Fuzzy Portfolio Selection Problem with Transaction Costs

    Directory of Open Access Journals (Sweden)

    Yanju Chen

    2015-01-01

    Full Text Available This paper studies a two-period portfolio selection problem. The problem is formulated as a two-stage fuzzy portfolio selection model with transaction costs, in which the future returns of risky security are characterized by possibility distributions. The objective of the proposed model is to achieve the maximum utility in terms of the expected value and variance of the final wealth. Given the first-stage decision vector and a realization of fuzzy return, the optimal value expression of the second-stage programming problem is derived. As a result, the proposed two-stage model is equivalent to a single-stage model, and the analytical optimal solution of the two-stage model is obtained, which helps us to discuss the properties of the optimal solution. Finally, some numerical experiments are performed to demonstrate the new modeling idea and the effectiveness. The computational results provided by the proposed model show that the more risk-averse investor will invest more wealth in the risk-free security. They also show that the optimal invested amount in risky security increases as the risk-free return decreases and the optimal utility increases as the risk-free return increases, whereas the optimal utility increases as the transaction costs decrease. In most instances the utilities provided by the proposed two-stage model are larger than those provided by the single-stage model.

  8. Portfolio management using value at risk: A comparison between genetic algorithms and particle swarm optimization

    NARCIS (Netherlands)

    V.A.F. Dallagnol (V. A F); J.H. van den Berg (Jan); L. Mous (Lonneke)

    2009-01-01

    textabstractIn this paper, it is shown a comparison of the application of particle swarm optimization and genetic algorithms to portfolio management, in a constrained portfolio optimization problem where no short sales are allowed. The objective function to be minimized is the value at risk

  9. Transaction fees and optimal rebalancing in the growth-optimal portfolio

    Science.gov (United States)

    Feng, Yu; Medo, Matúš; Zhang, Liang; Zhang, Yi-Cheng

    2011-05-01

    The growth-optimal portfolio optimization strategy pioneered by Kelly is based on constant portfolio rebalancing which makes it sensitive to transaction fees. We examine the effect of fees on an example of a risky asset with a binary return distribution and show that the fees may give rise to an optimal period of portfolio rebalancing. The optimal period is found analytically in the case of lognormal returns. This result is consequently generalized and numerically verified for broad return distributions and returns generated by a GARCH process. Finally we study the case when investment is rebalanced only partially and show that this strategy can improve the investment long-term growth rate more than optimization of the rebalancing period.

  10. portfolio optimization based on nonparametric estimation methods

    Directory of Open Access Journals (Sweden)

    mahsa ghandehari

    2017-03-01

    Full Text Available One of the major issues investors are facing with in capital markets is decision making about select an appropriate stock exchange for investing and selecting an optimal portfolio. This process is done through the risk and expected return assessment. On the other hand in portfolio selection problem if the assets expected returns are normally distributed, variance and standard deviation are used as a risk measure. But, the expected returns on assets are not necessarily normal and sometimes have dramatic differences from normal distribution. This paper with the introduction of conditional value at risk ( CVaR, as a measure of risk in a nonparametric framework, for a given expected return, offers the optimal portfolio and this method is compared with the linear programming method. The data used in this study consists of monthly returns of 15 companies selected from the top 50 companies in Tehran Stock Exchange during the winter of 1392 which is considered from April of 1388 to June of 1393. The results of this study show the superiority of nonparametric method over the linear programming method and the nonparametric method is much faster than the linear programming method.

  11. Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization

    Czech Academy of Sciences Publication Activity Database

    Branda, Martin; Bucher, M.; Červinka, Michal; Schwartz, A.

    2018-01-01

    Roč. 70, č. 2 (2018), s. 503-530 ISSN 0926-6003 R&D Projects: GA ČR GA15-00735S Institutional support: RVO:67985556 Keywords : Cardinality constraints * Regularization method * Scholtes regularization * Strong stationarity * Sparse portfolio optimization * Robust portfolio optimization Subject RIV: BB - Applied Statistics, Operational Research OBOR OECD: Statistics and probability Impact factor: 1.520, year: 2016 http://library.utia.cas.cz/separaty/2018/MTR/branda-0489264.pdf

  12. Ant colony algorithm for clustering in portfolio optimization

    Science.gov (United States)

    Subekti, R.; Sari, E. R.; Kusumawati, R.

    2018-03-01

    This research aims to describe portfolio optimization using clustering methods with ant colony approach. Two stock portfolios of LQ45 Indonesia is proposed based on the cluster results obtained from ant colony optimization (ACO). The first portfolio consists of assets with ant colony displacement opportunities beyond the defined probability limits of the researcher, where the weight of each asset is determined by mean-variance method. The second portfolio consists of two assets with the assumption that each asset is a cluster formed from ACO. The first portfolio has a better performance compared to the second portfolio seen from the Sharpe index.

  13. Portfolios dominating indices: Optimization with second-order stochastic dominance constraints vs. minimum and mean variance portfolios

    OpenAIRE

    Keçeci, Neslihan Fidan; Kuzmenko, Viktor; Uryasev, Stan

    2016-01-01

    The paper compares portfolio optimization with the Second-Order Stochastic Dominance (SSD) constraints with mean-variance and minimum variance portfolio optimization. As a distribution-free decision rule, stochastic dominance takes into account the entire distribution of return rather than some specific characteristic, such as variance. The paper is focused on practical applications of the portfolio optimization and uses the Portfolio Safeguard (PSG) package, which has precoded modules for op...

  14. Portfolios Dominating Indices: Optimization with Second-Order Stochastic Dominance Constraints vs. Minimum and Mean Variance Portfolios

    OpenAIRE

    Neslihan Fidan Keçeci; Viktor Kuzmenko; Stan Uryasev

    2016-01-01

    The paper compares portfolio optimization with the Second-Order Stochastic Dominance (SSD) constraints with mean-variance and minimum variance portfolio optimization. As a distribution-free decision rule, stochastic dominance takes into account the entire distribution of return rather than some specific characteristic, such as variance. The paper is focused on practical applications of the portfolio optimization and uses the Portfolio Safeguard (PSG) package, which has precoded modules for op...

  15. Optimal portfolio strategies under a shortfall constraint | Akume ...

    African Journals Online (AJOL)

    We impose dynamically, a shortfall constraint in terms of Tail Conditional Expectation on the portfolio selection problem in continuous time, in order to obtain optimal strategies. The nancial market is assumed to comprise n risky assets driven by geometric Brownian motion and one risk-free asset. The method of Lagrange ...

  16. Portfolio optimization with short-selling and spin-glass

    NARCIS (Netherlands)

    Schianchi, A.; Bongini, L.; Degli Esposti, M.; Giardinà, C.

    2002-01-01

    n this paper, we solve a general problem of optimizing a portfolio in a futures markets framework, extending the previous work of Galluccio et al. [Physica A 259, 449 (1998)]. We allow for long buying/short selling of a relatively large number of assets, assuming a fixed level of margin requirement.

  17. Portfolio selection problem with liquidity constraints under non-extensive statistical mechanics

    International Nuclear Information System (INIS)

    Zhao, Pan; Xiao, Qingxian

    2016-01-01

    In this study, we consider the optimal portfolio selection problem with liquidity limits. A portfolio selection model is proposed in which the risky asset price is driven by the process based on non-extensive statistical mechanics instead of the classic Wiener process. Using dynamic programming and Lagrange multiplier methods, we obtain the optimal policy and value function. Moreover, the numerical results indicate that this model is considerably different from the model based on the classic Wiener process, the optimal strategy is affected by the non-extensive parameter q, the increase in the investment in the risky asset is faster at a larger parameter q and the increase in wealth is similar.

  18. Multi-period mean–variance portfolio optimization based on Monte-Carlo simulation

    NARCIS (Netherlands)

    F. Cong (Fei); C.W. Oosterlee (Kees)

    2016-01-01

    htmlabstractWe propose a simulation-based approach for solving the constrained dynamic mean– variance portfolio managemen tproblem. For this dynamic optimization problem, we first consider a sub-optimal strategy, called the multi-stage strategy, which can be utilized in a forward fashion. Then,

  19. Penalty Algorithm Based on Conjugate Gradient Method for Solving Portfolio Management Problem

    Directory of Open Access Journals (Sweden)

    Wang YaLin

    2009-01-01

    Full Text Available A new approach was proposed to reformulate the biobjectives optimization model of portfolio management into an unconstrained minimization problem, where the objective function is a piecewise quadratic polynomial. We presented some properties of such an objective function. Then, a class of penalty algorithms based on the well-known conjugate gradient methods was developed to find the solution of portfolio management problem. By implementing the proposed algorithm to solve the real problems from the stock market in China, it was shown that this algorithm is promising.

  20. Reliable Portfolio Selection Problem in Fuzzy Environment: An mλ Measure Based Approach

    Directory of Open Access Journals (Sweden)

    Yuan Feng

    2017-04-01

    Full Text Available This paper investigates a fuzzy portfolio selection problem with guaranteed reliability, in which the fuzzy variables are used to capture the uncertain returns of different securities. To effectively handle the fuzziness in a mathematical way, a new expected value operator and variance of fuzzy variables are defined based on the m λ measure that is a linear combination of the possibility measure and necessity measure to balance the pessimism and optimism in the decision-making process. To formulate the reliable portfolio selection problem, we particularly adopt the expected total return and standard variance of the total return to evaluate the reliability of the investment strategies, producing three risk-guaranteed reliable portfolio selection models. To solve the proposed models, an effective genetic algorithm is designed to generate the approximate optimal solution to the considered problem. Finally, the numerical examples are given to show the performance of the proposed models and algorithm.

  1. Portfolio optimization in enhanced index tracking with goal programming approach

    Science.gov (United States)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of passive fund management in stock market. Enhanced index tracking aims to generate excess return over the return achieved by the market index without purchasing all of the stocks that make up the index. This can be done by establishing an optimal portfolio to maximize the mean return and minimize the risk. The objective of this paper is to determine the portfolio composition and performance using goal programming approach in enhanced index tracking and comparing it to the market index. Goal programming is a branch of multi-objective optimization which can handle decision problems that involve two different goals in enhanced index tracking, a trade-off between maximizing the mean return and minimizing the risk. The results of this study show that the optimal portfolio with goal programming approach is able to outperform the Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index because of higher mean return and lower risk without purchasing all the stocks in the market index.

  2. Smooth Solutions to Optimal Investment Models with Stochastic Volatilities and Portfolio Constraints

    International Nuclear Information System (INIS)

    Pham, H.

    2002-01-01

    This paper deals with an extension of Merton's optimal investment problem to a multidimensional model with stochastic volatility and portfolio constraints. The classical dynamic programming approach leads to a characterization of the value function as a viscosity solution of the highly nonlinear associated Bellman equation. A logarithmic transformation expresses the value function in terms of the solution to a semilinear parabolic equation with quadratic growth on the derivative term. Using a stochastic control representation and some approximations, we prove the existence of a smooth solution to this semilinear equation. An optimal portfolio is shown to exist, and is expressed in terms of the classical solution to this semilinear equation. This reduction is useful for studying numerical schemes for both the value function and the optimal portfolio. We illustrate our results with several examples of stochastic volatility models popular in the financial literature

  3. Application of Markowitz Portfolio Theory by Building Optimal Portfolio on the US Stock Market

    OpenAIRE

    Širůček, Martin; Křen, Lukáš

    2015-01-01

    ŠIRŮČEK MARTIN, KŘEN LUKÁŠ. 2015. Application of Markowitz Portfolio Theory by Building Optimal Portfolio on the US Stock Market. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 63(4): 1375–1386. This paper is focused on building investment portfolios by using the Markowitz Portfolio Theory (MPT). Derivation based on the Capital Asset Pricing Model (CAPM) is used to calculate the weights of individual securities in portfolios. The calculated portfolios include a po...

  4. Portfolio optimization using Mixture Design of Experiments. Scheduling trades within electricity markets

    International Nuclear Information System (INIS)

    Oliveira, Francisco Alexandre de; Paiva, Anderson Paulo de; Lima, Jose Wanderley Marangon; Balestrassi, Pedro Paulo; Mendes, Rona Rinston Amaury

    2011-01-01

    Deregulation of the electricity sector has given rise to several approaches to defining optimal portfolios of energy contracts. Financial tools - requiring substantial adjustments - are usually used to determine risk and return. This article presents a novel approach to adjusting the conditional value at risk (CVaR) metric to the mix of contracts on the energy markets; the approach uses Mixture Design of Experiments (MDE). In this kind of experimental strategy, the design factors are treated as proportions in a mixture system considered quite adequate for treating portfolios in general. Instead of using traditional linear programming, the concept of desirability function is here used to combine the multi-response, nonlinear objective functions for mean with the variance of a specific portfolio obtained through MDE. The maximization of the desirability function is implied in the portfolio optimization, generating an efficient recruitment frontier. This approach offers three main contributions: it includes risk aversion in the optimization routine, it assesses interaction between contracts, and it lessens the computational effort required to solve the constrained nonlinear optimization problem. A case study based on the Brazilian energy market is used to illustrate the proposal. The numerical results verify the proposal's adequacy. (author)

  5. Portfolio optimization using Mixture Design of Experiments. Scheduling trades within electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Francisco Alexandre de; Paiva, Anderson Paulo de; Lima, Jose Wanderley Marangon; Balestrassi, Pedro Paulo; Mendes, Rona Rinston Amaury [Federal Univ. of Itajuba, Minas Gerais (Brazil)

    2011-01-15

    Deregulation of the electricity sector has given rise to several approaches to defining optimal portfolios of energy contracts. Financial tools - requiring substantial adjustments - are usually used to determine risk and return. This article presents a novel approach to adjusting the conditional value at risk (CVaR) metric to the mix of contracts on the energy markets; the approach uses Mixture Design of Experiments (MDE). In this kind of experimental strategy, the design factors are treated as proportions in a mixture system considered quite adequate for treating portfolios in general. Instead of using traditional linear programming, the concept of desirability function is here used to combine the multi-response, nonlinear objective functions for mean with the variance of a specific portfolio obtained through MDE. The maximization of the desirability function is implied in the portfolio optimization, generating an efficient recruitment frontier. This approach offers three main contributions: it includes risk aversion in the optimization routine, it assesses interaction between contracts, and it lessens the computational effort required to solve the constrained nonlinear optimization problem. A case study based on the Brazilian energy market is used to illustrate the proposal. The numerical results verify the proposal's adequacy. (author)

  6. Optimal Premium Pricing for a Heterogeneous Portfolio of Insurance Risks

    Directory of Open Access Journals (Sweden)

    Athanasios A. Pantelous

    2009-01-01

    Full Text Available The paper revisits the classical problem of premium rating within a heterogeneous portfolio of insurance risks using a continuous stochastic control framework. The portfolio is divided into several classes where each class interacts with the others. The risks are modelled dynamically by the means of a Brownian motion. This dynamic approach is also transferred to the design of the premium process. The premium is not constant but equals the drift of the Brownian motion plus a controlled percentage of the respective volatility. The optimal controller for the premium is obtained using advanced optimization techniques, and it is finally shown that the respective pricing strategy follows a more balanced development compared with the traditional premium approaches.

  7. Optimal portfolio choice under loss aversion

    NARCIS (Netherlands)

    A.B. Berkelaar (Arjan); R.R.P. Kouwenberg (Roy)

    2000-01-01

    textabstractProspect theory and loss aversion play a dominant role in behavioral finance. In this paper we derive closed-form solutions for optimal portfolio choice under loss aversion. When confronted with gains a loss averse investor behaves similar to a portfolio insurer. When confronted with

  8. Risk-Controlled Multiobjective Portfolio Selection Problem Using a Principle of Compromise

    Directory of Open Access Journals (Sweden)

    Takashi Hasuike

    2014-01-01

    Full Text Available This paper proposes a multiobjective portfolio selection problem with most probable random distribution derived from current market data and other random distributions of boom and recession under the risk-controlled parameters determined by an investor. The current market data and information include not only historical data but also interpretations of economists’ oral and linguistic information, and hence, the boom and recession are often caused by these nonnumeric data. Therefore, investors need to consider several situations from most probable condition to boom and recession and to avoid the risk less than the target return in each situation. Furthermore, it is generally difficult to set random distributions of these cases exactly. Therefore, a robust-based approach for portfolio selection problems using the only mean values and variances of securities is proposed as a multiobjective programming problem. In addition, an exact algorithm is developed to obtain an explicit optimal portfolio using a principle of compromise.

  9. Bayesian emulation for optimization in multi-step portfolio decisions

    OpenAIRE

    Irie, Kaoru; West, Mike

    2016-01-01

    We discuss the Bayesian emulation approach to computational solution of multi-step portfolio studies in financial time series. "Bayesian emulation for decisions" involves mapping the technical structure of a decision analysis problem to that of Bayesian inference in a purely synthetic "emulating" statistical model. This provides access to standard posterior analytic, simulation and optimization methods that yield indirect solutions of the decision problem. We develop this in time series portf...

  10. Optimization of a dynamic supply portfolio considering risks and discount’s constraints

    Directory of Open Access Journals (Sweden)

    Masoud Rabbani

    2014-01-01

    Full Text Available Purpose: Nowadays finding reliable suppliers in the global supply chains has become so important for success, because reliable suppliers would lead to a reliable supply and besides that orders of customer are met effectively . Yet, there is little empirical evidence to support this view, hence the purpose of this paper is to fill this need by considering risk in order to find the optimum supply portfolio. Design/methodology/approach: This paper proposes a multi objective model for the supplier selection portfolio problem that uses conditional value at risk (CVaR criteria to control the risks of delayed, disrupted and defected supplies via scenario analysis. Also we consider discount’s constraints which are common assumptions in supplier selection problems. The proposed approach is capable of determining the optimal supply portfolio by calculating value-at-risk and minimizing conditional value-at-risk. In this study the Reservation Level driven Tchebycheff Procedure (RLTP which is one of the reference point methods, is used to solve small size of our model through coding in GAMS. As our model is NP-hard; a meta-heuristic approach, Non-dominated Sorting Genetic Algorithm (NSGA which is one of the most efficient methods for optimizing multi objective models, is applied to solve large scales of our model. Findings and Originality/value: In order to find a dynamic supply portfolio, we developed a Mixed Integer Linear Programming (MILP model which contains two objectives. One objective minimizes the cost and the other minimizes the risks of delayed, disrupted and defected supplies. CVaR is used as the risk controlling method which emphases on low-probability, high-consequence events. Discount option as a common offer from suppliers is also implanted in the proposed model. Our findings show that the proposed model can help in optimization of a dynamic supplier selection portfolio with controlling the corresponding risks for large scales of real word

  11. An efficient heuristic method for dynamic portfolio selection problem under transaction costs and uncertain conditions

    Science.gov (United States)

    Najafi, Amir Abbas; Pourahmadi, Zahra

    2016-04-01

    Selecting the optimal combination of assets in a portfolio is one of the most important decisions in investment management. As investment is a long term concept, looking into a portfolio optimization problem just in a single period may cause loss of some opportunities that could be exploited in a long term view. Hence, it is tried to extend the problem from single to multi-period model. We include trading costs and uncertain conditions to this model which made it more realistic and complex. Hence, we propose an efficient heuristic method to tackle this problem. The efficiency of the method is examined and compared with the results of the rolling single-period optimization and the buy and hold method which shows the superiority of the proposed method.

  12. Three Essays on Robust Optimization of Efficient Portfolios

    OpenAIRE

    Liu, Hao

    2013-01-01

    The mean-variance approach was first proposed by Markowitz (1952), and laid the foundation of the modern portfolio theory. Despite its theoretical appeal, the practical implementation of optimized portfolios is strongly restricted by the fact that the two inputs, the means and the covariance matrix of asset returns, are unknown and have to be estimated by available historical information. Due to the estimation risk inherited from inputs, desired properties of estimated optimal portfolios are ...

  13. Optimization of China's generating portfolio and policy implications based on portfolio theory

    International Nuclear Information System (INIS)

    Zhu, Lei; Fan, Ying

    2010-01-01

    This paper applies portfolio theory to evaluate China's 2020-medium-term plans for generating technologies and its generating portfolio. With reference to the risk of relevant generating-cost streams, the paper discusses China's future development of efficient (Pareto optimal) generating portfolios that enhance energy security in different scenarios, including CO 2 -emission-constrained scenarios. This research has found that the future adjustment of China's planned 2020 generating portfolio can reduce the portfolio's cost risk through appropriate diversification of generating technologies, but a price will be paid in the form of increased generating cost. In the CO 2 -emission-constrained scenarios, the generating-cost risk of China's planned 2020 portfolio is even greater than that of the 2005 portfolio, but increasing the proportion of nuclear power in the generating portfolio can reduce the cost risk effectively. For renewable-power generation, because of relatively high generating costs, it will be necessary to obtain stronger policy support to promote renewable-power development.

  14. Application of Markowitz Portfolio Theory by Building Optimal Portfolio on the US Stock Market

    Directory of Open Access Journals (Sweden)

    Martin Širůček

    2015-01-01

    Full Text Available This paper is focused on building investment portfolios by using the Markowitz Portfolio Theory (MPT. Derivation based on the Capital Asset Pricing Model (CAPM is used to calculate the weights of individual securities in portfolios. The calculated portfolios include a portfolio copying the benchmark made using the CAPM model, portfolio with low and high beta coefficients, and a random portfolio. Only stocks were selected for the examined sample from all the asset classes. Stocks in each portfolio are put together according to predefined criteria. All stocks were selected from Dow Jones Industrial Average (DJIA index which serves as a benchmark, too. Portfolios were compared based on their risk and return profiles. The results of this work will provide general recommendations on the optimal approach to choose securities for an investor’s portfolio.

  15. DIFFERENCES BETWEEN MEAN-VARIANCE AND MEAN-CVAR PORTFOLIO OPTIMIZATION MODELS

    Directory of Open Access Journals (Sweden)

    Panna Miskolczi

    2016-07-01

    Full Text Available Everybody heard already that one should not expect high returns without high risk, or one should not expect safety without low returns. The goal of portfolio theory is to find the balance between maximizing the return and minimizing the risk. To do so we have to first understand and measure the risk. Naturally a good risk measure has to satisfy several properties - in theory and in practise. Markowitz suggested to use the variance as a risk measure in portfolio theory. This led to the so called mean-variance model - for which Markowitz received the Nobel Prize in 1990. The model has been criticized because it is well suited for elliptical distributions but it may lead to incorrect conclusions in the case of non-elliptical distributions. Since then many risk measures have been introduced, of which the Value at Risk (VaR is the most widely used in the recent years. Despite of the widespread use of the Value at Risk there are some fundamental problems with it. It does not satisfy the subadditivity property and it ignores the severity of losses in the far tail of the profit-and-loss (P&L distribution. Moreover, its non-convexity makes VaR impossible to use in optimization problems. To come over these issues the Expected Shortfall (ES as a coherent risk measure was developed. Expected Shortfall is also called Conditional Value at Risk (CVaR. Compared to Value at Risk, ES is more sensitive to the tail behaviour of the P&L distribution function. In the first part of the paper I state the definition of these three risk measures. In the second part I deal with my main question: What is happening if we replace the variance with the Expected Shortfall in the portfolio optimization process. Do we have different optimal portfolios as a solution? And thus, does the solution suggests to decide differently in the two cases? To answer to these questions I analyse seven Hungarian stock exchange companies. First I use the mean-variance portfolio optimization model

  16. A Robust Statistics Approach to Minimum Variance Portfolio Optimization

    Science.gov (United States)

    Yang, Liusha; Couillet, Romain; McKay, Matthew R.

    2015-12-01

    We study the design of portfolios under a minimum risk criterion. The performance of the optimized portfolio relies on the accuracy of the estimated covariance matrix of the portfolio asset returns. For large portfolios, the number of available market returns is often of similar order to the number of assets, so that the sample covariance matrix performs poorly as a covariance estimator. Additionally, financial market data often contain outliers which, if not correctly handled, may further corrupt the covariance estimation. We address these shortcomings by studying the performance of a hybrid covariance matrix estimator based on Tyler's robust M-estimator and on Ledoit-Wolf's shrinkage estimator while assuming samples with heavy-tailed distribution. Employing recent results from random matrix theory, we develop a consistent estimator of (a scaled version of) the realized portfolio risk, which is minimized by optimizing online the shrinkage intensity. Our portfolio optimization method is shown via simulations to outperform existing methods both for synthetic and real market data.

  17. Risk and utility in portfolio optimization

    Science.gov (United States)

    Cohen, Morrel H.; Natoli, Vincent D.

    2003-06-01

    Modern portfolio theory (MPT) addresses the problem of determining the optimum allocation of investment resources among a set of candidate assets. In the original mean-variance approach of Markowitz, volatility is taken as a proxy for risk, conflating uncertainty with risk. There have been many subsequent attempts to alleviate that weakness which, typically, combine utility and risk. We present here a modification of MPT based on the inclusion of separate risk and utility criteria. We define risk as the probability of failure to meet a pre-established investment goal. We define utility as the expectation of a utility function with positive and decreasing marginal value as a function of yield. The emphasis throughout is on long investment horizons for which risk-free assets do not exist. Analytic results are presented for a Gaussian probability distribution. Risk-utility relations are explored via empirical stock-price data, and an illustrative portfolio is optimized using the empirical data.

  18. Optimal Portfolio Selection Under Concave Price Impact

    International Nuclear Information System (INIS)

    Ma Jin; Song Qingshuo; Xu Jing; Zhang Jianfeng

    2013-01-01

    In this paper we study an optimal portfolio selection problem under instantaneous price impact. Based on some empirical analysis in the literature, we model such impact as a concave function of the trading size when the trading size is small. The price impact can be thought of as either a liquidity cost or a transaction cost, but the concavity nature of the cost leads to some fundamental difference from those in the existing literature. We show that the problem can be reduced to an impulse control problem, but without fixed cost, and that the value function is a viscosity solution to a special type of Quasi-Variational Inequality (QVI). We also prove directly (without using the solution to the QVI) that the optimal strategy exists and more importantly, despite the absence of a fixed cost, it is still in a “piecewise constant” form, reflecting a more practical perspective.

  19. Optimal Portfolio Selection Under Concave Price Impact

    Energy Technology Data Exchange (ETDEWEB)

    Ma Jin, E-mail: jinma@usc.edu [University of Southern California, Department of Mathematics (United States); Song Qingshuo, E-mail: songe.qingshuo@cityu.edu.hk [City University of Hong Kong, Department of Mathematics (Hong Kong); Xu Jing, E-mail: xujing8023@yahoo.com.cn [Chongqing University, School of Economics and Business Administration (China); Zhang Jianfeng, E-mail: jianfenz@usc.edu [University of Southern California, Department of Mathematics (United States)

    2013-06-15

    In this paper we study an optimal portfolio selection problem under instantaneous price impact. Based on some empirical analysis in the literature, we model such impact as a concave function of the trading size when the trading size is small. The price impact can be thought of as either a liquidity cost or a transaction cost, but the concavity nature of the cost leads to some fundamental difference from those in the existing literature. We show that the problem can be reduced to an impulse control problem, but without fixed cost, and that the value function is a viscosity solution to a special type of Quasi-Variational Inequality (QVI). We also prove directly (without using the solution to the QVI) that the optimal strategy exists and more importantly, despite the absence of a fixed cost, it is still in a 'piecewise constant' form, reflecting a more practical perspective.

  20. Risk-aware multi-armed bandit problem with application to portfolio selection.

    Science.gov (United States)

    Huo, Xiaoguang; Fu, Feng

    2017-11-01

    Sequential portfolio selection has attracted increasing interest in the machine learning and quantitative finance communities in recent years. As a mathematical framework for reinforcement learning policies, the stochastic multi-armed bandit problem addresses the primary difficulty in sequential decision-making under uncertainty, namely the exploration versus exploitation dilemma, and therefore provides a natural connection to portfolio selection. In this paper, we incorporate risk awareness into the classic multi-armed bandit setting and introduce an algorithm to construct portfolio. Through filtering assets based on the topological structure of the financial market and combining the optimal multi-armed bandit policy with the minimization of a coherent risk measure, we achieve a balance between risk and return.

  1. Robust Active Portfolio Management

    National Research Council Canada - National Science Library

    Erdogan, E; Goldfarb, D; Iyengar, G

    2006-01-01

    ... on the portfolio beta, and limits on cash and industry exposure. We show that the optimal portfolios can be computed by solving second-order cone programs -- a class of optimization problems with a worst case complexity (i.e...

  2. Portfolio optimization for index tracking modelling in Malaysia stock market

    Science.gov (United States)

    Siew, Lam Weng; Jaaman, Saiful Hafizah; Ismail, Hamizun

    2016-06-01

    Index tracking is an investment strategy in portfolio management which aims to construct an optimal portfolio to generate similar mean return with the stock market index mean return without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using the optimization model which adopts regression approach in tracking the benchmark stock market index return. In this study, the data consists of weekly price of stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2013. The results of this study show that the optimal portfolio is able to track FBMKLCI Index at minimum tracking error of 1.0027% with 0.0290% excess mean return over the mean return of FBMKLCI Index. The significance of this study is to construct the optimal portfolio using optimization model which adopts regression approach in tracking the stock market index without purchasing all index components.

  3. Assessing the Value of Information for Identifying Optimal Floodplain Management Portfolios

    Science.gov (United States)

    Read, L.; Bates, M.; Hui, R.; Lund, J. R.

    2014-12-01

    Floodplain management is a complex portfolio problem that can be analyzed from an integrated perspective incorporating traditionally structural and nonstructural options. One method to identify effective strategies for preparing, responding to, and recovering from floods is to optimize for a portfolio of temporary (emergency) and permanent floodplain management options. A risk-based optimization approach to this problem assigns probabilities to specific flood events and calculates the associated expected damages. This approach is currently limited by: (1) the assumption of perfect flood forecast information, i.e. implementing temporary management activities according to the actual flood event may differ from optimizing based on forecasted information and (2) the inability to assess system resilience across a range of possible future events (risk-centric approach). Resilience is defined here as the ability of a system to absorb and recover from a severe disturbance or extreme event. In our analysis, resilience is a system property that requires integration of physical, social, and information domains. This work employs a 3-stage linear program to identify the optimal mix of floodplain management options using conditional probabilities to represent perfect and imperfect flood stages (forecast vs. actual events). We assess the value of information in terms of minimizing damage costs for two theoretical cases - urban and rural systems. We use portfolio analysis to explore how the set of optimal management options differs depending on whether the goal is for the system to be risk-adverse to a specified event or resilient over a range of events.

  4. Optimization of the bank's operating portfolio

    Science.gov (United States)

    Borodachev, S. M.; Medvedev, M. A.

    2016-06-01

    The theory of efficient portfolios developed by Markowitz is used to optimize the structure of the types of financial operations of a bank (bank portfolio) in order to increase the profit and reduce the risk. The focus of this paper is to check the stability of the model to errors in the original data.

  5. PORTFOLIO SELECTION OF INFORMATION SYSTEMS PROJECTS USING PROMETHEE V WITH C-OPTIMAL CONCEPT

    Directory of Open Access Journals (Sweden)

    Jonatas A. de Almeida

    2014-05-01

    Full Text Available This paper presents a multicriteria decision model for selecting a portfolio of information system (IS projects, which integrates strategic and organizational view within a multicriteria decision structure. The PROMETHEE V method, based on outranking relations is applied, considering the c-optimal concept in order to overcome some scaling problems found in the classical PROMETHEE V approach. Then, a procedure is proposed in order to make a final analysis of the c-optimal portfolios found as a result of using PROMETHEE V. Also, the organizational view is discussed, including some factors that may influence decision making on IS projects to be included in the portfolio, such as adding the company's strategic vision and technical aspects that demonstrate how IS contributes value to a company's business.

  6. Construction of uncertainty sets for portfolio selection problems

    OpenAIRE

    Wiechers, Christof

    2011-01-01

    While modern portfolio theory grounds on the trade-off between portfolio return and portfolio variance to determine the optimal investment decision, postmodern portfolio theory uses downside risk measures instead of the variance. Prominent examples are given by the risk measures Value-at-Risk and its coherent extension, Conditional Value-at-Risk. When avoiding distributional assumptions on the process that generates the risky assets' returns, historical return data or expert knowledge remain ...

  7. Quantitative Portfolio Optimization Techniques Applied to the Brazilian Stock Market

    Directory of Open Access Journals (Sweden)

    André Alves Portela Santos

    2012-09-01

    Full Text Available In this paper we assess the out-of-sample performance of two alternative quantitative portfolio optimization techniques - mean-variance and minimum variance optimization – and compare their performance with respect to a naive 1/N (or equally-weighted portfolio and also to the market portfolio given by the Ibovespa. We focus on short selling-constrained portfolios and consider alternative estimators for the covariance matrices: sample covariance matrix, RiskMetrics, and three covariance estimators proposed by Ledoit and Wolf (2003, Ledoit and Wolf (2004a and Ledoit and Wolf (2004b. Taking into account alternative portfolio re-balancing frequencies, we compute out-of-sample performance statistics which indicate that the quantitative approaches delivered improved results in terms of lower portfolio volatility and better risk-adjusted returns. Moreover, the use of more sophisticated estimators for the covariance matrix generated optimal portfolios with lower turnover over time.

  8. Time-Consistent Strategies for a Multiperiod Mean-Variance Portfolio Selection Problem

    Directory of Open Access Journals (Sweden)

    Huiling Wu

    2013-01-01

    Full Text Available It remained prevalent in the past years to obtain the precommitment strategies for Markowitz's mean-variance portfolio optimization problems, but not much is known about their time-consistent strategies. This paper takes a step to investigate the time-consistent Nash equilibrium strategies for a multiperiod mean-variance portfolio selection problem. Under the assumption that the risk aversion is, respectively, a constant and a function of current wealth level, we obtain the explicit expressions for the time-consistent Nash equilibrium strategy and the equilibrium value function. Many interesting properties of the time-consistent results are identified through numerical sensitivity analysis and by comparing them with the classical pre-commitment solutions.

  9. Modeling of Mean-VaR portfolio optimization by risk tolerance when the utility function is quadratic

    Science.gov (United States)

    Sukono, Sidi, Pramono; Bon, Abdul Talib bin; Supian, Sudradjat

    2017-03-01

    The problems of investing in financial assets are to choose a combination of weighting a portfolio can be maximized return expectations and minimizing the risk. This paper discusses the modeling of Mean-VaR portfolio optimization by risk tolerance, when square-shaped utility functions. It is assumed that the asset return has a certain distribution, and the risk of the portfolio is measured using the Value-at-Risk (VaR). So, the process of optimization of the portfolio is done based on the model of Mean-VaR portfolio optimization model for the Mean-VaR done using matrix algebra approach, and the Lagrange multiplier method, as well as Khun-Tucker. The results of the modeling portfolio optimization is in the form of a weighting vector equations depends on the vector mean return vector assets, identities, and matrix covariance between return of assets, as well as a factor in risk tolerance. As an illustration of numeric, analyzed five shares traded on the stock market in Indonesia. Based on analysis of five stocks return data gained the vector of weight composition and graphics of efficient surface of portfolio. Vector composition weighting weights and efficient surface charts can be used as a guide for investors in decisions to invest.

  10. Firefly Algorithm for Cardinality Constrained Mean-Variance Portfolio Optimization Problem with Entropy Diversity Constraint

    Directory of Open Access Journals (Sweden)

    Nebojsa Bacanin

    2014-01-01

    portfolio model with entropy constraint. Firefly algorithm is one of the latest, very successful swarm intelligence algorithm; however, it exhibits some deficiencies when applied to constrained problems. To overcome lack of exploration power during early iterations, we modified the algorithm and tested it on standard portfolio benchmark data sets used in the literature. Our proposed modified firefly algorithm proved to be better than other state-of-the-art algorithms, while introduction of entropy diversity constraint further improved results.

  11. Large deviations and portfolio optimization

    Science.gov (United States)

    Sornette, Didier

    Risk control and optimal diversification constitute a major focus in the finance and insurance industries as well as, more or less consciously, in our everyday life. We present a discussion of the characterization of risks and of the optimization of portfolios that starts from a simple illustrative model and ends by a general functional integral formulation. A major item is that risk, usually thought of as one-dimensional in the conventional mean-variance approach, has to be addressed by the full distribution of losses. Furthermore, the time-horizon of the investment is shown to play a major role. We show the importance of accounting for large fluctuations and use the theory of Cramér for large deviations in this context. We first treat a simple model with a single risky asset that exemplifies the distinction between the average return and the typical return and the role of large deviations in multiplicative processes, and the different optimal strategies for the investors depending on their size. We then analyze the case of assets whose price variations are distributed according to exponential laws, a situation that is found to describe daily price variations reasonably well. Several portfolio optimization strategies are presented that aim at controlling large risks. We end by extending the standard mean-variance portfolio optimization theory, first within the quasi-Gaussian approximation and then using a general formulation for non-Gaussian correlated assets in terms of the formalism of functional integrals developed in the field theory of critical phenomena.

  12. Portfolio selection problem: a comparison of fuzzy goal programming and linear physical programming

    Directory of Open Access Journals (Sweden)

    Fusun Kucukbay

    2016-04-01

    Full Text Available Investors have limited budget and they try to maximize their return with minimum risk. Therefore this study aims to deal with the portfolio selection problem. In the study two criteria are considered which are expected return, and risk. In this respect, linear physical programming (LPP technique is applied on Bist 100 stocks to be able to find out the optimum portfolio. The analysis covers the period April 2009- March 2015. This period is divided into two; April 2009-March 2014 and April 2014 – March 2015. April 2009-March 2014 period is used as data to find an optimal solution. April 2014-March 2015 period is used to test the real performance of portfolios. The performance of the obtained portfolio is compared with that obtained from fuzzy goal programming (FGP. Then the performances of both method, LPP and FGP are compared with BIST 100 in terms of their Sharpe Indexes. The findings reveal that LPP for portfolio selection problem is a good alternative to FGP.

  13. Modelling on optimal portfolio with exchange rate based on discontinuous stochastic process

    Science.gov (United States)

    Yan, Wei; Chang, Yuwen

    2016-12-01

    Considering the stochastic exchange rate, this paper is concerned with the dynamic portfolio selection in financial market. The optimal investment problem is formulated as a continuous-time mathematical model under mean-variance criterion. These processes follow jump-diffusion processes (Weiner process and Poisson process). Then the corresponding Hamilton-Jacobi-Bellman(HJB) equation of the problem is presented and its efferent frontier is obtained. Moreover, the optimal strategy is also derived under safety-first criterion.

  14. On the microeconomic problems studied by portfolio theory

    Science.gov (United States)

    Nikonov, Oleg; Medvedeva, Marina

    2012-09-01

    In the paper we consider economically motivated problems, which are treated with the help of methods of portfolio theory that goes back to the papers by H. Markowitz [1] and J. Tobin [2]. We show that the portfolio theory initially developed for risky securities (stocks) could be applied to other objects. In the present paper we consider several situations where such an application is reasonable and seems to be fruitful. Namely, we consider the problems of constructing the efficient portfolio of banking services and the portfolio of counteragents of a firm.

  15. Mean-variance model for portfolio optimization with background risk based on uncertainty theory

    Science.gov (United States)

    Zhai, Jia; Bai, Manying

    2018-04-01

    The aim of this paper is to develop a mean-variance model for portfolio optimization considering the background risk, liquidity and transaction cost based on uncertainty theory. In portfolio selection problem, returns of securities and assets liquidity are assumed as uncertain variables because of incidents or lacking of historical data, which are common in economic and social environment. We provide crisp forms of the model and a hybrid intelligent algorithm to solve it. Under a mean-variance framework, we analyze the portfolio frontier characteristic considering independently additive background risk. In addition, we discuss some effects of background risk and liquidity constraint on the portfolio selection. Finally, we demonstrate the proposed models by numerical simulations.

  16. Fuzzy portfolio optimization advances in hybrid multi-criteria methodologies

    CERN Document Server

    Gupta, Pankaj; Inuiguchi, Masahiro; Chandra, Suresh

    2014-01-01

    This monograph presents a comprehensive study of portfolio optimization, an important area of quantitative finance. Considering that the information available in financial markets is incomplete and that the markets are affected by vagueness and ambiguity, the monograph deals with fuzzy portfolio optimization models. At first, the book makes the reader familiar with basic concepts, including the classical mean–variance portfolio analysis. Then, it introduces advanced optimization techniques and applies them for the development of various multi-criteria portfolio optimization models in an uncertain environment. The models are developed considering both the financial and non-financial criteria of investment decision making, and the inputs from the investment experts. The utility of these models in practice is then demonstrated using numerical illustrations based on real-world data, which were collected from one of the premier stock exchanges in India. The book addresses both academics and professionals pursuin...

  17. Decentralized Portfolio Management

    Directory of Open Access Journals (Sweden)

    Benjamin Miranda Tabak

    2003-12-01

    Full Text Available We use a mean-variance model to analyze the problem of decentralized portfolio management. We find the solution for the optimal portfolio allocation for a head trader operating in n different markets, which is called the optimal centralized portfolio. However, as there are many traders specialized in different markets, the solution to the problem of optimal decentralized allocation should be different from the centralized case. In this paper we derive conditions for the solutions to be equivalent. We use multivariate normal returns and a negative exponential function to solve the problem analytically. We generate the equivalence of solutions by assuming that different traders face different interest rates for borrowing and lending. This interest rate is dependent on the ratio of the degrees of risk aversion of the trader and the head trader, on the excess return, and on the correlation between asset returns.

  18. Optimal Portfolio Strategy under Rolling Economic Maximum Drawdown Constraints

    Directory of Open Access Journals (Sweden)

    Xiaojian Yu

    2014-01-01

    Full Text Available This paper deals with the problem of optimal portfolio strategy under the constraints of rolling economic maximum drawdown. A more practical strategy is developed by using rolling Sharpe ratio in computing the allocation proportion in contrast to existing models. Besides, another novel strategy named “REDP strategy” is further proposed, which replaces the rolling economic drawdown of the portfolio with the rolling economic drawdown of the risky asset. The simulation tests prove that REDP strategy can ensure the portfolio to satisfy the drawdown constraint and outperforms other strategies significantly. An empirical comparison research on the performances of different strategies is carried out by using the 23-year monthly data of SPTR, DJUBS, and 3-month T-bill. The investment cases of single risky asset and two risky assets are both studied in this paper. Empirical results indicate that the REDP strategy successfully controls the maximum drawdown within the given limit and performs best in both return and risk.

  19. Credibilistic multi-period portfolio optimization based on scenario tree

    Science.gov (United States)

    Mohebbi, Negin; Najafi, Amir Abbas

    2018-02-01

    In this paper, we consider a multi-period fuzzy portfolio optimization model with considering transaction costs and the possibility of risk-free investment. We formulate a bi-objective mean-VaR portfolio selection model based on the integration of fuzzy credibility theory and scenario tree in order to dealing with the markets uncertainty. The scenario tree is also a proper method for modeling multi-period portfolio problems since the length and continuity of their horizon. We take the return and risk as well cardinality, threshold, class, and liquidity constraints into consideration for further compliance of the model with reality. Then, an interactive dynamic programming method, which is based on a two-phase fuzzy interactive approach, is employed to solve the proposed model. In order to verify the proposed model, we present an empirical application in NYSE under different circumstances. The results show that the consideration of data uncertainty and other real-world assumptions lead to more practical and efficient solutions.

  20. Bond portfolio's duration and investment term-structure management problem

    OpenAIRE

    Liu, Daobai

    2006-01-01

    In the considered bond market, there are N zero-coupon bonds transacted continuously, which will mature at equally spaced dates. A duration of bond portfolios under stochastic interest rate model is introduced, which provides a measurement for the interest rate risk. Then we consider an optimal bond investment term-structure management problem using this duration as a performance index, and with the short-term interest rate process satisfying some stochastic differential ...

  1. Formation of the portfolio of high-rise construction projects on the basis of optimization of «risk-return» rate

    Science.gov (United States)

    Uvarova, Svetlana; Kutsygina, Olga; Smorodina, Elena; Gumba, Khuta

    2018-03-01

    The effectiveness and sustainability of an enterprise are based on the effectiveness and sustainability of its portfolio of projects. When creating a production program for a construction company based on a portfolio of projects and related to the planning and implementation of initiated organizational and economic changes, the problem of finding the optimal "risk-return" ratio of the program (portfolio of projects) is solved. The article proposes and approves the methodology of forming a portfolio of enterprise projects on the basis of the correspondence principle. Optimization of the portfolio of projects on the criterion of "risk-return" also contributes to the company's sustainability.

  2. Portfolio Optimization of Nanomaterial Use in Clean Energy Technologies.

    Science.gov (United States)

    Moore, Elizabeth A; Babbitt, Callie W; Gaustad, Gabrielle; Moore, Sean T

    2018-04-03

    While engineered nanomaterials (ENMs) are increasingly incorporated in diverse applications, risks of ENM adoption remain difficult to predict and mitigate proactively. Current decision-making tools do not adequately account for ENM uncertainties including varying functional forms, unique environmental behavior, economic costs, unknown supply and demand, and upstream emissions. The complexity of the ENM system necessitates a novel approach: in this study, the adaptation of an investment portfolio optimization model is demonstrated for optimization of ENM use in renewable energy technologies. Where a traditional investment portfolio optimization model maximizes return on investment through optimal selection of stock, ENM portfolio optimization maximizes the performance of energy technology systems by optimizing selective use of ENMs. Cumulative impacts of multiple ENM material portfolios are evaluated in two case studies: organic photovoltaic cells (OPVs) for renewable energy and lithium-ion batteries (LIBs) for electric vehicles. Results indicate ENM adoption is dependent on overall performance and variance of the material, resource use, environmental impact, and economic trade-offs. From a sustainability perspective, improved clean energy applications can help extend product lifespans, reduce fossil energy consumption, and substitute ENMs for scarce incumbent materials.

  3. Extended Information Ratio for Portfolio Optimization Using Simulated Annealing with Constrained Neighborhood

    Science.gov (United States)

    Orito, Yukiko; Yamamoto, Hisashi; Tsujimura, Yasuhiro; Kambayashi, Yasushi

    The portfolio optimizations are to determine the proportion-weighted combination in the portfolio in order to achieve investment targets. This optimization is one of the multi-dimensional combinatorial optimizations and it is difficult for the portfolio constructed in the past period to keep its performance in the future period. In order to keep the good performances of portfolios, we propose the extended information ratio as an objective function, using the information ratio, beta, prime beta, or correlation coefficient in this paper. We apply the simulated annealing (SA) to optimize the portfolio employing the proposed ratio. For the SA, we make the neighbor by the operation that changes the structure of the weights in the portfolio. In the numerical experiments, we show that our portfolios keep the good performances when the market trend of the future period becomes different from that of the past period.

  4. Noisy covariance matrices and portfolio optimization II

    Science.gov (United States)

    Pafka, Szilárd; Kondor, Imre

    2003-03-01

    Recent studies inspired by results from random matrix theory (Galluccio et al.: Physica A 259 (1998) 449; Laloux et al.: Phys. Rev. Lett. 83 (1999) 1467; Risk 12 (3) (1999) 69; Plerou et al.: Phys. Rev. Lett. 83 (1999) 1471) found that covariance matrices determined from empirical financial time series appear to contain such a high amount of noise that their structure can essentially be regarded as random. This seems, however, to be in contradiction with the fundamental role played by covariance matrices in finance, which constitute the pillars of modern investment theory and have also gained industry-wide applications in risk management. Our paper is an attempt to resolve this embarrassing paradox. The key observation is that the effect of noise strongly depends on the ratio r= n/ T, where n is the size of the portfolio and T the length of the available time series. On the basis of numerical experiments and analytic results for some toy portfolio models we show that for relatively large values of r (e.g. 0.6) noise does, indeed, have the pronounced effect suggested by Galluccio et al. (1998), Laloux et al. (1999) and Plerou et al. (1999) and illustrated later by Laloux et al. (Int. J. Theor. Appl. Finance 3 (2000) 391), Plerou et al. (Phys. Rev. E, e-print cond-mat/0108023) and Rosenow et al. (Europhys. Lett., e-print cond-mat/0111537) in a portfolio optimization context, while for smaller r (around 0.2 or below), the error due to noise drops to acceptable levels. Since the length of available time series is for obvious reasons limited in any practical application, any bound imposed on the noise-induced error translates into a bound on the size of the portfolio. In a related set of experiments we find that the effect of noise depends also on whether the problem arises in asset allocation or in a risk measurement context: if covariance matrices are used simply for measuring the risk of portfolios with a fixed composition rather than as inputs to optimization, the

  5. Optimizing Eco-Efficiency Across the Procurement Portfolio.

    Science.gov (United States)

    Pelton, Rylie E O; Li, Mo; Smith, Timothy M; Lyon, Thomas P

    2016-06-07

    Manufacturing organizations' environmental impacts are often attributable to processes in the firm's upstream supply chain. Environmentally preferable procurement (EPP) and the establishment of environmental purchasing criteria can potentially reduce these indirect impacts. Life-cycle assessment (LCA) can help identify the purchasing criteria that are most effective in reducing environmental impacts. However, the high costs of LCA and the problems associated with the comparability of results have limited efforts to integrate procurement performance with quantitative organizational environmental performance targets. Moreover, environmental purchasing criteria, when implemented, are often established on a product-by-product basis without consideration of other products in the procurement portfolio. We develop an approach that utilizes streamlined LCA methods, together with linear programming, to determine optimal portfolios of product impact-reduction opportunities under budget constraints. The approach is illustrated through a simulated breakfast cereal manufacturing firm procuring grain, containerboard boxes, plastic packaging, electricity, and industrial cleaning solutions. Results suggest that extending EPP decisions and resources to the portfolio level, recently made feasible through the methods illustrated herein, can provide substantially greater CO2e and water-depletion reductions per dollar spend than a product-by-product approach, creating opportunities for procurement organizations to participate in firm-wide environmental impact reduction targets.

  6. An Extensive Evaluation of Portfolio Approaches for Constraint Satisfaction Problems

    Directory of Open Access Journals (Sweden)

    Roberto Amadini

    2016-06-01

    Full Text Available In the context of Constraint Programming, a portfolio approach exploits the complementary strengths of a portfolio of different constraint solvers. The goal is to predict and run the best solver(s of the portfolio for solving a new, unseen problem. In this work we reproduce, simulate, and evaluate the performance of different portfolio approaches on extensive benchmarks of Constraint Satisfaction Problems. Empirical results clearly show the benefits of portfolio solvers in terms of both solved instances and solving time.

  7. A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization.

    Science.gov (United States)

    Liu, Qingshan; Guo, Zhishan; Wang, Jun

    2012-02-01

    In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. Moreover, it is capable of solving constrained fractional programming problems as a special case. The convergence of the state variables of the proposed neural network to achieve solution optimality is guaranteed as long as the designed parameters in the model are larger than the derived lower bounds. Numerical examples with simulation results illustrate the effectiveness and characteristics of the proposed neural network. In addition, an application for dynamic portfolio optimization is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Continuous-Time Mean-Variance Portfolio Selection under the CEV Process

    OpenAIRE

    Ma, Hui-qiang

    2014-01-01

    We consider a continuous-time mean-variance portfolio selection model when stock price follows the constant elasticity of variance (CEV) process. The aim of this paper is to derive an optimal portfolio strategy and the efficient frontier. The mean-variance portfolio selection problem is formulated as a linearly constrained convex program problem. By employing the Lagrange multiplier method and stochastic optimal control theory, we obtain the optimal portfolio strategy and mean-variance effici...

  9. Optimal wind power deployment in Europe. A portfolio approach

    International Nuclear Information System (INIS)

    Roques, Fabien; Hiroux, Celine; Saguan, Marcelo

    2010-01-01

    Geographic diversification of wind farms can smooth out the fluctuations in wind power generation and reduce the associated system balancing and reliability costs. The paper uses historical wind production data from five European countries (Austria, Denmark, France, Germany, and Spain) and applies the Mean-Variance Portfolio theory to identify cross-country portfolios that minimise the total variance of wind production for a given level of production. Theoretical unconstrained portfolios show that countries (Spain and Denmark) with the best wind resource or whose size contributes to smoothing out the country output variability dominate optimal portfolios. The methodology is then elaborated to derive optimal constrained portfolios taking into account national wind resource potential and transmission constraints and compare them with the projected portfolios for 2020. Such constraints limit the theoretical potential efficiency gains from geographical diversification, but there is still considerable room to improve performance from actual or projected portfolios. These results highlight the need for more cross-border interconnection capacity, for greater coordination of European renewable support policies, and for renewable support mechanisms and electricity market designs providing locational incentives. Under these conditions, a mechanism for renewables credits trading could help aligning wind power portfolios with the theoretically efficient geographic dispersion. (author)

  10. Optimal selling rules for monetary invariant criteria: tracking the maximum of a portfolio with negative drift

    OpenAIRE

    Elie, Romuald; Espinosa, Gilles-Edouard

    2013-01-01

    Considering a positive portfolio diffusion $X$ with negative drift, we investigate optimal stopping problems of the form $$ \\inf_\\theta \\Esp{f\\left(\\frac{X_\\theta}{\\Sup_{s\\in[0,\\tau]}{X_s}}\\right)}\\;,$$ where $f$ is a non-increasing function, $\\tau$ is the next random time where the portfolio $X$ crosses zero and $\\theta$ is any stopping time smaller than $\\tau$. Hereby, our motivation is the obtention of an optimal selling strategy minimizing the relative distance between the liquidation val...

  11. Multi-Period Portfolio Optimization of Power Generation Assets

    Directory of Open Access Journals (Sweden)

    Barbara Glensk

    2013-01-01

    Full Text Available The liberalization and deregulation of the energy industry in the past decades have been significantly affected by changes in the strategies of energy firms. The traditionally used approach of cost minimization was no longer sufficient, risk and market behavior could no longer be ignored and the need for more appropriate optimization methods for uncertain environments was increased. Meanvariance portfolio (MVP theory is one of the more advanced financial methods that has been successfully applied to the energy sector. Unfortunately, this static approach is inadequate for studying multi-stage investment decision problems. The methodology proposed in this paper considering power generation assets is based on the model introduced by Mulvey, who suggests a reallocation approach using the analysis of various scenarios. The adoption of this methodology to power generation assets allows us to capture the impact of variations in the economic and technical parameters considered. The results of our study show that the application of a model for selection of multi-period portfolio can indeed improve the decision making process. Especially for the case of adding new investments to the portfolio mix, this rebalancing model captures new entries very well. (original abstract

  12. Log-Optimal Portfolio Selection Using the Blackwell Approachability Theorem

    OpenAIRE

    V'yugin, Vladimir

    2014-01-01

    We present a method for constructing the log-optimal portfolio using the well-calibrated forecasts of market values. Dawid's notion of calibration and the Blackwell approachability theorem are used for computing well-calibrated forecasts. We select a portfolio using this "artificial" probability distribution of market values. Our portfolio performs asymptotically at least as well as any stationary portfolio that redistributes the investment at each round using a continuous function of side in...

  13. Replica Analysis for Portfolio Optimization with Single-Factor Model

    Science.gov (United States)

    Shinzato, Takashi

    2017-06-01

    In this paper, we use replica analysis to investigate the influence of correlation among the return rates of assets on the solution of the portfolio optimization problem. We consider the behavior of an optimal solution for the case where the return rate is described with a single-factor model and compare the findings obtained from our proposed methods with correlated return rates with those obtained with independent return rates. We then analytically assess the increase in the investment risk when correlation is included. Furthermore, we also compare our approach with analytical procedures for minimizing the investment risk from operations research.

  14. Public Project Portfolio Optimization under a Participatory Paradigm

    Directory of Open Access Journals (Sweden)

    Eduardo Fernandez

    2013-01-01

    Full Text Available A new democracy paradigm is emerging through participatory budgeting exercises, which can be defined as a public space in which the government and the society agree on how to adapt the priorities of the citizenship to the public policy agenda. Although these priorities have been identified and they are likely to be reflected in a ranking of public policy actions, there is still a challenge of solving a portfolio problem of public projects that should implement the agreed agenda. This work proposes two procedures for optimizing the portfolio of public actions with the information stemming from the citizen participatory exercise. The selection of the method depends on the information about preferences collected from the participatory group. When the information is sufficient, the method behaves as an instrument of legitimate democracy. The proposal performs very well in solving two real-size examples.

  15. Electricity portfolio management : optimal peak/off-peak allocations

    NARCIS (Netherlands)

    Huisman, R.; Mahieu, R.J.; Schlichter, F.

    2009-01-01

    Electricity purchasers manage a portfolio of contracts in order to purchase the expected future electricity consumption profile of a company or a pool of clients. This paper proposes a mean-variance framework to address the concept of structuring the portfolio and focuses on how to optimally

  16. On the Computation of Optimal Monotone Mean-Variance Portfolios via Truncated Quadratic Utility

    OpenAIRE

    Ales Cerný; Fabio Maccheroni; Massimo Marinacci; Aldo Rustichini

    2008-01-01

    We report a surprising link between optimal portfolios generated by a special type of variational preferences called divergence preferences (cf. [8]) and optimal portfolios generated by classical expected utility. As a special case we connect optimization of truncated quadratic utility (cf. [2]) to the optimal monotone mean-variance portfolios (cf. [9]), thus simplifying the computation of the latter.

  17. MARKOV CHAIN PORTFOLIO LIQUIDITY OPTIMIZATION MODEL

    Directory of Open Access Journals (Sweden)

    Eder Oliveira Abensur

    2014-05-01

    Full Text Available The international financial crisis of September 2008 and May 2010 showed the importance of liquidity as an attribute to be considered in portfolio decisions. This study proposes an optimization model based on available public data, using Markov chain and Genetic Algorithms concepts as it considers the classic duality of risk versus return and incorporating liquidity costs. The work intends to propose a multi-criterion non-linear optimization model using liquidity based on a Markov chain. The non-linear model was tested using Genetic Algorithms with twenty five Brazilian stocks from 2007 to 2009. The results suggest that this is an innovative development methodology and useful for developing an efficient and realistic financial portfolio, as it considers many attributes such as risk, return and liquidity.

  18. Methods of Choosing an Optimal Portfolio of Projects

    OpenAIRE

    Yakovlev, A.; Chernenko, M.

    2016-01-01

    This paper presents an analysis of existing methods for a portfolio of project optimization. The necessity for their improvement is shown. It is suggested to assess the portfolio of projects on the basis of the amount in the difference between the results and costs during development and implementation of selected projects and the losses caused by non-implementation or delayed implementation of projects that were not included in the portfolio. Consideration of capital and current costs compon...

  19. Characteristics of Omega-Optimized Portfolios at Different Levels of Threshold Returns

    Directory of Open Access Journals (Sweden)

    Renaldas Vilkancas

    2014-12-01

    Full Text Available There is little literature considering effects that the loss-gain threshold used for dividing good and bad outcomes by all downside (upside risk measures has on portfolio optimization and performance. The purpose of this study is to assess the performance of portfolios optimized with respect to the Omega function developed by Keating and Shadwick at different levels of the threshold returns. The most common choices of the threshold values used in various Omega studies cover the risk-free rate and the average market return or simply a zero return, even though the inventors of this measure for risk warn that “using the values of the Omega function at particular points can be critically misleading” and that “only the entire Omega function contains information on distribution”. The obtained results demonstrate the importance of the selected values of the threshold return on portfolio performance – higher levels of the threshold lead to an increase in portfolio returns, albeit at the expense of a higher risk. In fact, within a certain threshold interval, Omega-optimized portfolios achieved the highest net return, compared with all other strategies for portfolio optimization using three different test datasets. However, beyond a certain limit, high threshold values will actually start hurting portfolio performance while meta-heuristic optimizers typically are able to produce a solution at any level of the threshold, and the obtained results would most likely be financially meaningless.

  20. Electricity Portfolio Management: Optimal Peak / Off-Peak Allocations

    OpenAIRE

    Huisman, Ronald; Mahieu, Ronald; Schlichter, Felix

    2007-01-01

    textabstractElectricity purchasers manage a portfolio of contracts in order to purchase the expected future electricity consumption profile of a company or a pool of clients. This paper proposes a mean-variance framework to address the concept of structuring the portfolio and focuses on how to allocate optimal positions in peak and off-peak forward contracts. It is shown that the optimal allocations are based on the difference in risk premiums per unit of day-ahead risk as a measure of relati...

  1. Sparse and stable Markowitz portfolios.

    Science.gov (United States)

    Brodie, Joshua; Daubechies, Ingrid; De Mol, Christine; Giannone, Domenico; Loris, Ignace

    2009-07-28

    We consider the problem of portfolio selection within the classical Markowitz mean-variance framework, reformulated as a constrained least-squares regression problem. We propose to add to the objective function a penalty proportional to the sum of the absolute values of the portfolio weights. This penalty regularizes (stabilizes) the optimization problem, encourages sparse portfolios (i.e., portfolios with only few active positions), and allows accounting for transaction costs. Our approach recovers as special cases the no-short-positions portfolios, but does allow for short positions in limited number. We implement this methodology on two benchmark data sets constructed by Fama and French. Using only a modest amount of training data, we construct portfolios whose out-of-sample performance, as measured by Sharpe ratio, is consistently and significantly better than that of the naïve evenly weighted portfolio.

  2. Optimal Portfolio Choice with Wash Sale Constraints

    DEFF Research Database (Denmark)

    Astrup Jensen, Bjarne; Marekwica, Marcel

    2011-01-01

    We analytically solve the portfolio choice problem in the presence of wash sale constraints in a two-period model with one risky asset. Our results show that wash sale constraints can heavily affect portfolio choice of investors with unrealized losses. The trading behavior of such investors...

  3. A hybrid intelligent algorithm for portfolio selection problem with fuzzy returns

    Science.gov (United States)

    Li, Xiang; Zhang, Yang; Wong, Hau-San; Qin, Zhongfeng

    2009-11-01

    Portfolio selection theory with fuzzy returns has been well developed and widely applied. Within the framework of credibility theory, several fuzzy portfolio selection models have been proposed such as mean-variance model, entropy optimization model, chance constrained programming model and so on. In order to solve these nonlinear optimization models, a hybrid intelligent algorithm is designed by integrating simulated annealing algorithm, neural network and fuzzy simulation techniques, where the neural network is used to approximate the expected value and variance for fuzzy returns and the fuzzy simulation is used to generate the training data for neural network. Since these models are used to be solved by genetic algorithm, some comparisons between the hybrid intelligent algorithm and genetic algorithm are given in terms of numerical examples, which imply that the hybrid intelligent algorithm is robust and more effective. In particular, it reduces the running time significantly for large size problems.

  4. Portfolio Optimization under Local-Stochastic Volatility: Coefficient Taylor Series Approximations & Implied Sharpe Ratio

    OpenAIRE

    Lorig, Matthew; Sircar, Ronnie

    2015-01-01

    We study the finite horizon Merton portfolio optimization problem in a general local-stochastic volatility setting. Using model coefficient expansion techniques, we derive approximations for the both the value function and the optimal investment strategy. We also analyze the `implied Sharpe ratio' and derive a series approximation for this quantity. The zeroth-order approximation of the value function and optimal investment strategy correspond to those obtained by Merton (1969) when the risky...

  5. A Portfolio for Optimal Collaboration of Human and Cyber Physical Production Systems in Problem-Solving

    Science.gov (United States)

    Ansari, Fazel; Seidenberg, Ulrich

    2016-01-01

    This paper discusses the complementarity of human and cyber physical production systems (CPPS). The discourse of complementarity is elaborated by defining five criteria for comparing the characteristics of human and CPPS. Finally, a management portfolio matrix is proposed for examining the feasibility of optimal collaboration between them. The…

  6. Portfolio optimization of the construction sector companies in ...

    African Journals Online (AJOL)

    The objective of this paper is to construct the optimal portfolio that will minimize the portfolio risk and can achieve the investors target rate of return by using the mean-semi absolute deviation model. The data of this study comprises 20 construction sector companies that listed in Malaysia stock market from July 2011 until ...

  7. Robust portfolio selection under norm uncertainty

    Directory of Open Access Journals (Sweden)

    Lei Wang

    2016-06-01

    Full Text Available Abstract In this paper, we consider the robust portfolio selection problem which has a data uncertainty described by the ( p , w $(p,w$ -norm in the objective function. We show that the robust formulation of this problem is equivalent to a linear optimization problem. Moreover, we present some numerical results concerning our robust portfolio selection problem.

  8. Linear versus quadratic portfolio optimization model with transaction cost

    Science.gov (United States)

    Razak, Norhidayah Bt Ab; Kamil, Karmila Hanim; Elias, Siti Masitah

    2014-06-01

    Optimization model is introduced to become one of the decision making tools in investment. Hence, it is always a big challenge for investors to select the best model that could fulfill their goal in investment with respect to risk and return. In this paper we aims to discuss and compare the portfolio allocation and performance generated by quadratic and linear portfolio optimization models namely of Markowitz and Maximin model respectively. The application of these models has been proven to be significant and popular among others. However transaction cost has been debated as one of the important aspects that should be considered for portfolio reallocation as portfolio return could be significantly reduced when transaction cost is taken into consideration. Therefore, recognizing the importance to consider transaction cost value when calculating portfolio' return, we formulate this paper by using data from Shariah compliant securities listed in Bursa Malaysia. It is expected that, results from this paper will effectively justify the advantage of one model to another and shed some lights in quest to find the best decision making tools in investment for individual investors.

  9. Hierarchical Portfolio Management: Theory and Applications

    NARCIS (Netherlands)

    H. Ning (Haikun)

    2007-01-01

    textabstractUnder his own preference, how should an investor coordinate the asset managers such that his aggregated portfolio is optimized? The efficiency of each managed sub portfolio and the aggregation of all the sub portfolios are the 2 main underlying problems considered in this dissertation.

  10. A mixed integer linear programming approach for optimal DER portfolio, sizing, and placement in multi-energy microgrids

    International Nuclear Information System (INIS)

    Mashayekh, Salman; Stadler, Michael; Cardoso, Gonçalo; Heleno, Miguel

    2017-01-01

    Highlights: • This paper presents a MILP model for optimal design of multi-energy microgrids. • Our microgrid design includes optimal technology portfolio, placement, and operation. • Our model includes microgrid electrical power flow and heat transfer equations. • The case study shows advantages of our model over aggregate single-node approaches. • The case study shows the accuracy of the integrated linearized power flow model. - Abstract: Optimal microgrid design is a challenging problem, especially for multi-energy microgrids with electricity, heating, and cooling loads as well as sources, and multiple energy carriers. To address this problem, this paper presents an optimization model formulated as a mixed-integer linear program, which determines the optimal technology portfolio, the optimal technology placement, and the associated optimal dispatch, in a microgrid with multiple energy types. The developed model uses a multi-node modeling approach (as opposed to an aggregate single-node approach) that includes electrical power flow and heat flow equations, and hence, offers the ability to perform optimal siting considering physical and operational constraints of electrical and heating/cooling networks. The new model is founded on the existing optimization model DER-CAM, a state-of-the-art decision support tool for microgrid planning and design. The results of a case study that compares single-node vs. multi-node optimal design for an example microgrid show the importance of multi-node modeling. It has been shown that single-node approaches are not only incapable of optimal DER placement, but may also result in sub-optimal DER portfolio, as well as underestimation of investment costs.

  11. Dynamic Portfolio Strategy Using Clustering Approach.

    Science.gov (United States)

    Ren, Fei; Lu, Ya-Nan; Li, Sai-Ping; Jiang, Xiong-Fei; Zhong, Li-Xin; Qiu, Tian

    2017-01-01

    The problem of portfolio optimization is one of the most important issues in asset management. We here propose a new dynamic portfolio strategy based on the time-varying structures of MST networks in Chinese stock markets, where the market condition is further considered when using the optimal portfolios for investment. A portfolio strategy comprises two stages: First, select the portfolios by choosing central and peripheral stocks in the selection horizon using five topological parameters, namely degree, betweenness centrality, distance on degree criterion, distance on correlation criterion and distance on distance criterion. Second, use the portfolios for investment in the investment horizon. The optimal portfolio is chosen by comparing central and peripheral portfolios under different combinations of market conditions in the selection and investment horizons. Market conditions in our paper are identified by the ratios of the number of trading days with rising index to the total number of trading days, or the sum of the amplitudes of the trading days with rising index to the sum of the amplitudes of the total trading days. We find that central portfolios outperform peripheral portfolios when the market is under a drawup condition, or when the market is stable or drawup in the selection horizon and is under a stable condition in the investment horizon. We also find that peripheral portfolios gain more than central portfolios when the market is stable in the selection horizon and is drawdown in the investment horizon. Empirical tests are carried out based on the optimal portfolio strategy. Among all possible optimal portfolio strategies based on different parameters to select portfolios and different criteria to identify market conditions, 65% of our optimal portfolio strategies outperform the random strategy for the Shanghai A-Share market while the proportion is 70% for the Shenzhen A-Share market.

  12. Dynamic Portfolio Strategy Using Clustering Approach.

    Directory of Open Access Journals (Sweden)

    Fei Ren

    Full Text Available The problem of portfolio optimization is one of the most important issues in asset management. We here propose a new dynamic portfolio strategy based on the time-varying structures of MST networks in Chinese stock markets, where the market condition is further considered when using the optimal portfolios for investment. A portfolio strategy comprises two stages: First, select the portfolios by choosing central and peripheral stocks in the selection horizon using five topological parameters, namely degree, betweenness centrality, distance on degree criterion, distance on correlation criterion and distance on distance criterion. Second, use the portfolios for investment in the investment horizon. The optimal portfolio is chosen by comparing central and peripheral portfolios under different combinations of market conditions in the selection and investment horizons. Market conditions in our paper are identified by the ratios of the number of trading days with rising index to the total number of trading days, or the sum of the amplitudes of the trading days with rising index to the sum of the amplitudes of the total trading days. We find that central portfolios outperform peripheral portfolios when the market is under a drawup condition, or when the market is stable or drawup in the selection horizon and is under a stable condition in the investment horizon. We also find that peripheral portfolios gain more than central portfolios when the market is stable in the selection horizon and is drawdown in the investment horizon. Empirical tests are carried out based on the optimal portfolio strategy. Among all possible optimal portfolio strategies based on different parameters to select portfolios and different criteria to identify market conditions, 65% of our optimal portfolio strategies outperform the random strategy for the Shanghai A-Share market while the proportion is 70% for the Shenzhen A-Share market.

  13. Towards resiliency with micro-grids: Portfolio optimization and investment under uncertainty

    Science.gov (United States)

    Gharieh, Kaveh

    Energy security and sustained supply of power are critical for community welfare and economic growth. In the face of the increased frequency and intensity of extreme weather conditions which can result in power grid outage, the value of micro-grids to improve the communities' power reliability and resiliency is becoming more important. Micro-grids capability to operate in islanded mode in stressed-out conditions, dramatically decreases the economic loss of critical infrastructure in power shortage occasions. More wide-spread participation of micro-grids in the wholesale energy market in near future, makes the development of new investment models necessary. However, market and price risks in short term and long term along with risk factors' impacts shall be taken into consideration in development of new investment models. This work proposes a set of models and tools to address different problems associated with micro-grid assets including optimal portfolio selection, investment and financing in both community and a sample critical infrastructure (i.e. wastewater treatment plant) levels. The models account for short-term operational volatilities and long-term market uncertainties. A number of analytical methodologies and financial concepts have been adopted to develop the aforementioned models as follows. (1) Capital budgeting planning and portfolio optimization models with Monte Carlo stochastic scenario generation are applied to derive the optimal investment decision for a portfolio of micro-grid assets considering risk factors and multiple sources of uncertainties. (2) Real Option theory, Monte Carlo simulation and stochastic optimization techniques are applied to obtain optimal modularized investment decisions for hydrogen tri-generation systems in wastewater treatment facilities, considering multiple sources of uncertainty. (3) Public Private Partnership (PPP) financing concept coupled with investment horizon approach are applied to estimate public and private

  14. Leptokurtic portfolio theory

    Science.gov (United States)

    Kitt, R.; Kalda, J.

    2006-03-01

    The question of optimal portfolio is addressed. The conventional Markowitz portfolio optimisation is discussed and the shortcomings due to non-Gaussian security returns are outlined. A method is proposed to minimise the likelihood of extreme non-Gaussian drawdowns of the portfolio value. The theory is called Leptokurtic, because it minimises the effects from “fat tails” of returns. The leptokurtic portfolio theory provides an optimal portfolio for investors, who define their risk-aversion as unwillingness to experience sharp drawdowns in asset prices. Two types of risks in asset returns are defined: a fluctuation risk, that has Gaussian distribution, and a drawdown risk, that deals with distribution tails. These risks are quantitatively measured by defining the “noise kernel” — an ellipsoidal cloud of points in the space of asset returns. The size of the ellipse is controlled with the threshold parameter: the larger the threshold parameter, the larger return are accepted for investors as normal fluctuations. The return vectors falling into the kernel are used for calculation of fluctuation risk. Analogously, the data points falling outside the kernel are used for the calculation of drawdown risks. As a result the portfolio optimisation problem becomes three-dimensional: in addition to the return, there are two types of risks involved. Optimal portfolio for drawdown-averse investors is the portfolio minimising variance outside the noise kernel. The theory has been tested with MSCI North America, Europe and Pacific total return stock indices.

  15. Mean-Reverting Portfolio With Budget Constraint

    Science.gov (United States)

    Zhao, Ziping; Palomar, Daniel P.

    2018-05-01

    This paper considers the mean-reverting portfolio design problem arising from statistical arbitrage in the financial markets. We first propose a general problem formulation aimed at finding a portfolio of underlying component assets by optimizing a mean-reversion criterion characterizing the mean-reversion strength, taking into consideration the variance of the portfolio and an investment budget constraint. Then several specific problems are considered based on the general formulation, and efficient algorithms are proposed. Numerical results on both synthetic and market data show that our proposed mean-reverting portfolio design methods can generate consistent profits and outperform the traditional design methods and the benchmark methods in the literature.

  16. Mean-variance portfolio analysis data for optimizing community-based photovoltaic investment

    Directory of Open Access Journals (Sweden)

    Mahmoud Shakouri

    2016-03-01

    Full Text Available The amount of electricity generated by Photovoltaic (PV systems is affected by factors such as shading, building orientation and roof slope. To increase electricity generation and reduce volatility in generation of PV systems, a portfolio of PV systems can be made which takes advantages of the potential synergy among neighboring buildings. This paper contains data supporting the research article entitled: PACPIM: new decision-support model of optimized portfolio analysis for community-based photovoltaic investment [1]. We present a set of data relating to physical properties of 24 houses in Oregon, USA, along with simulated hourly electricity data for the installed PV systems. The developed Matlab code to construct optimized portfolios is also provided in Supplementary materials. The application of these files can be generalized to variety of communities interested in investing on PV systems. Keywords: Community solar, Photovoltaic system, Portfolio theory, Energy optimization, Electricity volatility

  17. The cost of geothermal energy in the western US region:a portfolio-based approach a mean-variance portfolio optimization of the regions' generating mix to 2013.

    Energy Technology Data Exchange (ETDEWEB)

    Beurskens, Luuk (ECN-Energy Research Centre of the Netherland); Jansen, Jaap C. (ECN-Energy Research Centre of the Netherlands); Awerbuch, Shimon Ph.D. (.University of Sussex, Brighton, UK); Drennen, Thomas E.

    2005-09-01

    Energy planning represents an investment-decision problem. Investors commonly evaluate such problems using portfolio theory to manage risk and maximize portfolio performance under a variety of unpredictable economic outcomes. Energy planners need to similarly abandon their reliance on traditional, ''least-cost'' stand-alone technology cost estimates and instead evaluate conventional and renewable energy sources on the basis of their portfolio cost--their cost contribution relative to their risk contribution to a mix of generating assets. This report describes essential portfolio-theory ideas and discusses their application in the Western US region. The memo illustrates how electricity-generating mixes can benefit from additional shares of geothermal and other renewables. Compared to fossil-dominated mixes, efficient portfolios reduce generating cost while including greater renewables shares in the mix. This enhances energy security. Though counter-intuitive, the idea that adding more costly geothermal can actually reduce portfolio-generating cost is consistent with basic finance theory. An important implication is that in dynamic and uncertain environments, the relative value of generating technologies must be determined not by evaluating alternative resources, but by evaluating alternative resource portfolios. The optimal results for the Western US Region indicate that compared to the EIA target mixes, there exist generating mixes with larger geothermal shares at equal-or-lower expected cost and risk.

  18. Heuristic Optimization for the Discrete Virtual Power Plant Dispatch Problem

    DEFF Research Database (Denmark)

    Petersen, Mette Kirschmeyer; Hansen, Lars Henrik; Bendtsen, Jan Dimon

    2014-01-01

    We consider a Virtual Power Plant, which is given the task of dispatching a fluctuating power supply to a portfolio of flexible consumers. The flexible consumers are modeled as discrete batch processes, and the associated optimization problem is denoted the Discrete Virtual Power Plant Dispatch...... Problem. First NP-completeness of the Discrete Virtual Power Plant Dispatch Problem is proved formally. We then proceed to develop tailored versions of the meta-heuristic algorithms Hill Climber and Greedy Randomized Adaptive Search Procedure (GRASP). The algorithms are tuned and tested on portfolios...... of varying sizes. We find that all the tailored algorithms perform satisfactorily in the sense that they are able to find sub-optimal, but usable, solutions to very large problems (on the order of 10 5 units) at computation times on the scale of just 10 seconds, which is far beyond the capabilities...

  19. A new enhanced index tracking model in portfolio optimization with sum weighted approach

    Science.gov (United States)

    Siew, Lam Weng; Jaaman, Saiful Hafizah; Hoe, Lam Weng

    2017-04-01

    Index tracking is a portfolio management which aims to construct the optimal portfolio to achieve similar return with the benchmark index return at minimum tracking error without purchasing all the stocks that make up the index. Enhanced index tracking is an improved portfolio management which aims to generate higher portfolio return than the benchmark index return besides minimizing the tracking error. The objective of this paper is to propose a new enhanced index tracking model with sum weighted approach to improve the existing index tracking model for tracking the benchmark Technology Index in Malaysia. The optimal portfolio composition and performance of both models are determined and compared in terms of portfolio mean return, tracking error and information ratio. The results of this study show that the optimal portfolio of the proposed model is able to generate higher mean return than the benchmark index at minimum tracking error. Besides that, the proposed model is able to outperform the existing model in tracking the benchmark index. The significance of this study is to propose a new enhanced index tracking model with sum weighted apporach which contributes 67% improvement on the portfolio mean return as compared to the existing model.

  20. Formation of the portfolio of high-rise construction projects on the basis of optimization of «risk-return» rate

    OpenAIRE

    Uvarova Svetlana; Kutsygina Olga; Smorodina Elena; Gumba Khuta

    2018-01-01

    The effectiveness and sustainability of an enterprise are based on the effectiveness and sustainability of its portfolio of projects. When creating a production program for a construction company based on a portfolio of projects and related to the planning and implementation of initiated organizational and economic changes, the problem of finding the optimal "risk-return" ratio of the program (portfolio of projects) is solved. The article proposes and approves the methodology of forming a por...

  1. More efficient optimization of long-term water supply portfolios

    Science.gov (United States)

    Kirsch, Brian R.; Characklis, Gregory W.; Dillard, Karen E. M.; Kelley, C. T.

    2009-03-01

    The use of temporary transfers, such as options and leases, has grown as utilities attempt to meet increases in demand while reducing dependence on the expansion of costly infrastructure capacity (e.g., reservoirs). Earlier work has been done to construct optimal portfolios comprising firm capacity and transfers, using decision rules that determine the timing and volume of transfers. However, such work has only focused on the short-term (e.g., 1-year scenarios), which limits the utility of these planning efforts. Developing multiyear portfolios can lead to the exploration of a wider range of alternatives but also increases the computational burden. This work utilizes a coupled hydrologic-economic model to simulate the long-term performance of a city's water supply portfolio. This stochastic model is linked with an optimization search algorithm that is designed to handle the high-frequency, low-amplitude noise inherent in many simulations, particularly those involving expected values. This noise is detrimental to the accuracy and precision of the optimized solution and has traditionally been controlled by investing greater computational effort in the simulation. However, the increased computational effort can be substantial. This work describes the integration of a variance reduction technique (control variate method) within the simulation/optimization as a means of more efficiently identifying minimum cost portfolios. Random variation in model output (i.e., noise) is moderated using knowledge of random variations in stochastic input variables (e.g., reservoir inflows, demand), thereby reducing the computing time by 50% or more. Using these efficiency gains, water supply portfolios are evaluated over a 10-year period in order to assess their ability to reduce costs and adapt to demand growth, while still meeting reliability goals. As a part of the evaluation, several multiyear option contract structures are explored and compared.

  2. Mean--variance portfolio optimization when means and covariances are unknown

    OpenAIRE

    Tze Leung Lai; Haipeng Xing; Zehao Chen

    2011-01-01

    Markowitz's celebrated mean--variance portfolio optimization theory assumes that the means and covariances of the underlying asset returns are known. In practice, they are unknown and have to be estimated from historical data. Plugging the estimates into the efficient frontier that assumes known parameters has led to portfolios that may perform poorly and have counter-intuitive asset allocation weights; this has been referred to as the "Markowitz optimization enigma." After reviewing differen...

  3. Fuzzy Portfolio Selection Problem with Different Borrowing and Lending Rates

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2011-01-01

    the returns of each assets are assumed to be fuzzy variables, then following the mean-variance approach, a new possibilistic portfolio selection model with different interest rates for borrowing and lending is proposed, in which the possibilistic semiabsolute deviation of the return is used to measure investment risk. The conventional probabilistic mean variance model can be transformed to a linear programming problem under possibility distributions. Finally, a numerical example is given to illustrate the modeling idea and the impact of borrowing and lending on optimal decision making.

  4. An Agent-Based Co-Evolutionary Multi-Objective Algorithm for Portfolio Optimization

    Directory of Open Access Journals (Sweden)

    Rafał Dreżewski

    2017-08-01

    Full Text Available Algorithms based on the process of natural evolution are widely used to solve multi-objective optimization problems. In this paper we propose the agent-based co-evolutionary algorithm for multi-objective portfolio optimization. The proposed technique is compared experimentally to the genetic algorithm, co-evolutionary algorithm and a more classical approach—the trend-following algorithm. During the experiments historical data from the Warsaw Stock Exchange is used in order to assess the performance of the compared algorithms. Finally, we draw some conclusions from these experiments, showing the strong and weak points of all the techniques.

  5. Investments Portfolio Optimal Planning for industrial assets management: Method and Tool

    International Nuclear Information System (INIS)

    Lonchampt, Jerome; Fessart, Karine

    2012-01-01

    The purpose of this paper is to describe the method and tool dedicated to optimize investments planning for industrial assets. These investments may either be preventive maintenance tasks, asset enhancement or logistic investment such as spare parts purchase. The three methodological points to investigate in such an issue are: 1. The measure of the profitability of a portfolio of investments 2. The selection and planning of an optimal set of investments 3. The measure of the risk of a portfolio of investments The measure of the profitability of a set of investments in the IPOP (registered) tool is synthesised in the Net Present Value indicator. The NPV is the sum of the differences of discounted cash flows (direct costs, forced outages...) between the situations with and without a given investment. These cash flows are calculated through a pseudo-markov reliability model representing independently the components of the industrial asset and the spare parts inventories. The component model has been widely discussed over the years but the spare part model is a new one based on some approximations that will be discussed. This model, referred as the NPV function, takes for input an investments portfolio and gives its NPV. The second issue is to optimize the NPV. If all investments were independent, this optimization would be an easy calculation, unfortunately there are two sources of dependency. The first one is introduced by the spare part model, as if components are indeed independent in their reliability model, the fact that several components use the same inventory induces a dependency. The second dependency comes from economic, technical or logistic constraints, such as a global maintenance budget limit or a precedence constraint between two investments, making the aggregation of individual optimum not necessary feasible. The algorithm used to solve such a difficult optimization problem is a genetic algorithm. After a description of the features of the software a

  6. Numerical approach to optimal portfolio in a power utility regime-switching model

    Science.gov (United States)

    Gyulov, Tihomir B.; Koleva, Miglena N.; Vulkov, Lubin G.

    2017-12-01

    We consider a system of weakly coupled degenerate semi-linear parabolic equations of optimal portfolio in a regime-switching with power utility function, derived by A.R. Valdez and T. Vargiolu [14]. First, we discuss some basic properties of the solution of this system. Then, we develop and analyze implicit-explicit, flux limited finite difference schemes for the differential problem. Numerical experiments are discussed.

  7. Modern Portfolio Theory: Some Main Results

    OpenAIRE

    Müller, Heinz H.

    2017-01-01

    This article summarizes some main results in modern portfolio theory. First, the Markowitz approach is presented. Then the capital asset pricing model is derived and its empirical testability is discussed. Afterwards Neumann-Morgenstern utility theory is applied to the portfolio problem. Finally, it is shown how optimal risk allocation in an economy may lead to portfolio insurance

  8. Continuous-Time Mean-Variance Portfolio Selection with Random Horizon

    International Nuclear Information System (INIS)

    Yu, Zhiyong

    2013-01-01

    This paper examines the continuous-time mean-variance optimal portfolio selection problem with random market parameters and random time horizon. Treating this problem as a linearly constrained stochastic linear-quadratic optimal control problem, I explicitly derive the efficient portfolios and efficient frontier in closed forms based on the solutions of two backward stochastic differential equations. Some related issues such as a minimum variance portfolio and a mutual fund theorem are also addressed. All the results are markedly different from those in the problem with deterministic exit time. A key part of my analysis involves proving the global solvability of a stochastic Riccati equation, which is interesting in its own right

  9. Continuous-Time Mean-Variance Portfolio Selection with Random Horizon

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhiyong, E-mail: yuzhiyong@sdu.edu.cn [Shandong University, School of Mathematics (China)

    2013-12-15

    This paper examines the continuous-time mean-variance optimal portfolio selection problem with random market parameters and random time horizon. Treating this problem as a linearly constrained stochastic linear-quadratic optimal control problem, I explicitly derive the efficient portfolios and efficient frontier in closed forms based on the solutions of two backward stochastic differential equations. Some related issues such as a minimum variance portfolio and a mutual fund theorem are also addressed. All the results are markedly different from those in the problem with deterministic exit time. A key part of my analysis involves proving the global solvability of a stochastic Riccati equation, which is interesting in its own right.

  10. Multi-objective portfolio optimization of mutual funds under downside risk measure using fuzzy theory

    Directory of Open Access Journals (Sweden)

    M. Amiri

    2012-10-01

    Full Text Available Mutual fund is one of the most popular techniques for many people to invest their funds where a professional fund manager invests people's funds based on some special predefined objectives; therefore, performance evaluation of mutual funds is an important problem. This paper proposes a multi-objective portfolio optimization to offer asset allocation. The proposed model clusters mutual funds with two methods based on six characteristics including rate of return, variance, semivariance, turnover rate, Treynor index and Sharpe index. Semivariance is used as a downside risk measure. The proposed model of this paper uses fuzzy variables for return rate and semivariance. A multi-objective fuzzy mean-semivariance portfolio optimization model is implemented and fuzzy programming technique is adopted to solve the resulted problem. The proposed model of this paper has gathered the information of mutual fund traded on Nasdaq from 2007 to 2009 and Pareto optimal solutions are obtained considering different weights for objective functions. The results of asset allocation, rate of return and risk of each cluster are also determined and they are compared with the results of two clustering methods.

  11. Classical-Equivalent Bayesian Portfolio Optimization for Electricity Generation Planning

    Directory of Open Access Journals (Sweden)

    Hellinton H. Takada

    2018-01-01

    Full Text Available There are several electricity generation technologies based on different sources such as wind, biomass, gas, coal, and so on. The consideration of the uncertainties associated with the future costs of such technologies is crucial for planning purposes. In the literature, the allocation of resources in the available technologies has been solved as a mean-variance optimization problem assuming knowledge of the expected values and the covariance matrix of the costs. However, in practice, they are not exactly known parameters. Consequently, the obtained optimal allocations from the mean-variance optimization are not robust to possible estimation errors of such parameters. Additionally, it is usual to have electricity generation technology specialists participating in the planning processes and, obviously, the consideration of useful prior information based on their previous experience is of utmost importance. The Bayesian models consider not only the uncertainty in the parameters, but also the prior information from the specialists. In this paper, we introduce the classical-equivalent Bayesian mean-variance optimization to solve the electricity generation planning problem using both improper and proper prior distributions for the parameters. In order to illustrate our approach, we present an application comparing the classical-equivalent Bayesian with the naive mean-variance optimal portfolios.

  12. Portfolios with nonlinear constraints and spin glasses

    Science.gov (United States)

    Gábor, Adrienn; Kondor, I.

    1999-12-01

    In a recent paper Galluccio, Bouchaud and Potters demonstrated that a certain portfolio problem with a nonlinear constraint maps exactly onto finding the ground states of a long-range spin glass, with the concomitant nonuniqueness and instability of the optimal portfolios. Here we put forward geometric arguments that lead to qualitatively similar conclusions, without recourse to the methods of spin glass theory, and give two more examples of portfolio problems with convex nonlinear constraints.

  13. Particle swarm optimization algorithm for mean-variance portfolio optimization: A case study of Istanbul Stock Exchange

    OpenAIRE

    Akyer, Hasan; Kalaycı, Can Berk; Aygören, Hakan

    2018-01-01

    Whileinvestors used to create their portfolios according to traditional portfoliotheory in the past, today modern portfolio approach is widely preferred. Thebasis of the modern portfolio theory was suggested by Harry Markowitz with themean variance model. A greater number of securities in a portfolio is difficultto manage and has an increased transaction cost. Therefore, the number ofsecurities in the portfolio should be restricted. The problem of portfoliooptimization with cardinality constr...

  14. Portfolio Diversification with Commodity Futures: Properties of Levered Futures

    NARCIS (Netherlands)

    Woodard, J.D.; Egelkraut, T.M.; Garcia, P.; Pennings, J.M.E.

    2005-01-01

    Portfolio Diversification with Commodity Futures: Properties of Levered Futures This study extends previous work on the impact of commodity futures on portfolio performance by explicitly incorporating levered futures into the portfolio optimization problem. Using data on nine individual commodity

  15. Product portfolio optimization based on substitution

    DEFF Research Database (Denmark)

    Myrodia, Anna; Moseley, A.; Hvam, Lars

    2017-01-01

    The development of production capabilities has led to proliferation of the product variety offered to the customer. Yet this fact does not directly imply increase of manufacturers' profitability, nor customers' satisfaction. Consequently, recent research focuses on portfolio optimization through...... substitution and standardization techniques. However when re-defining the strategic market decisions are characterized by uncertainty due to several parameters. In this study, by using a GAMS optimization model we present a method for supporting strategic decisions on substitution, by quantifying the impact...

  16. Enhanced index tracking modeling in portfolio optimization with mixed-integer programming z approach

    Science.gov (United States)

    Siew, Lam Weng; Jaaman, Saiful Hafizah Hj.; Ismail, Hamizun bin

    2014-09-01

    Enhanced index tracking is a popular form of portfolio management in stock market investment. Enhanced index tracking aims to construct an optimal portfolio to generate excess return over the return achieved by the stock market index without purchasing all of the stocks that make up the index. The objective of this paper is to construct an optimal portfolio using mixed-integer programming model which adopts regression approach in order to generate higher portfolio mean return than stock market index return. In this study, the data consists of 24 component stocks in Malaysia market index which is FTSE Bursa Malaysia Kuala Lumpur Composite Index from January 2010 until December 2012. The results of this study show that the optimal portfolio of mixed-integer programming model is able to generate higher mean return than FTSE Bursa Malaysia Kuala Lumpur Composite Index return with only selecting 30% out of the total stock market index components.

  17. An optimization-based approach for facility energy management with uncertainties, and, Power portfolio optimization in deregulated electricity markets with risk management

    Science.gov (United States)

    Xu, Jun

    Topic 1. An Optimization-Based Approach for Facility Energy Management with Uncertainties. Effective energy management for facilities is becoming increasingly important in view of the rising energy costs, the government mandate on the reduction of energy consumption, and the human comfort requirements. This part of dissertation presents a daily energy management formulation and the corresponding solution methodology for HVAC systems. The problem is to minimize the energy and demand costs through the control of HVAC units while satisfying human comfort, system dynamics, load limit constraints, and other requirements. The problem is difficult in view of the fact that the system is nonlinear, time-varying, building-dependent, and uncertain; and that the direct control of a large number of HVAC components is difficult. In this work, HVAC setpoints are the control variables developed on top of a Direct Digital Control (DDC) system. A method that combines Lagrangian relaxation, neural networks, stochastic dynamic programming, and heuristics is developed to predict the system dynamics and uncontrollable load, and to optimize the setpoints. Numerical testing and prototype implementation results show that our method can effectively reduce total costs, manage uncertainties, and shed the load, is computationally efficient. Furthermore, it is significantly better than existing methods. Topic 2. Power Portfolio Optimization in Deregulated Electricity Markets with Risk Management. In a deregulated electric power system, multiple markets of different time scales exist with various power supply instruments. A load serving entity (LSE) has multiple choices from these instruments to meet its load obligations. In view of the large amount of power involved, the complex market structure, risks in such volatile markets, stringent constraints to be satisfied, and the long time horizon, a power portfolio optimization problem is of critical importance but difficulty for an LSE to serve the

  18. Markowitz portfolio optimization model employing fuzzy measure

    Science.gov (United States)

    Ramli, Suhailywati; Jaaman, Saiful Hafizah

    2017-04-01

    Markowitz in 1952 introduced the mean-variance methodology for the portfolio selection problems. His pioneering research has shaped the portfolio risk-return model and become one of the most important research fields in modern finance. This paper extends the classical Markowitz's mean-variance portfolio selection model applying the fuzzy measure to determine the risk and return. In this paper, we apply the original mean-variance model as a benchmark, fuzzy mean-variance model with fuzzy return and the model with return are modeled by specific types of fuzzy number for comparison. The model with fuzzy approach gives better performance as compared to the mean-variance approach. The numerical examples are included to illustrate these models by employing Malaysian share market data.

  19. On application of vector optimization in the problem of formation of portfolio of counterparties

    Science.gov (United States)

    Gorbich, A. L.; Medvedeva, M. A.; Medvedev, M. A.

    2016-12-01

    For the effective functioning of any enterprise it is necessary to choose the right partners: suppliers of raw material, buyers of finished products, with which the company interacts in the course of their business. However, the presence on the market of big amounts of enterprises makes the choice the most appropriate among them very difficult and requires the ability to objectively assess of the possible partners, based on multilateral analysis of their activities. This analysis can be carried out based on the solution of multiobjective problems of mathematical programming by using the methods of vector optimization. The work considers existing methods of selection of counterparties, as well as the theoretical foundations for the proposed methodology. It also describes a computer program that analyzes the raw data for contractors and allows choosing the best portfolio of suppliers of enterprise. The feature of selection of counterparties is that today's market has a large number of enterprises in similar activities. Successful choice of contractor will help to avoid unpleasant situations and financial losses, as well as to find a reliable partner in his person for the implementation of the production strategy of the company.

  20. Computation of optimal transport and related hedging problems via penalization and neural networks

    OpenAIRE

    Eckstein, Stephan; Kupper, Michael

    2018-01-01

    This paper presents a widely applicable approach to solving (multi-marginal, martingale) optimal transport and related problems via neural networks. The core idea is to penalize the optimization problem in its dual formulation and reduce it to a finite dimensional one which corresponds to optimizing a neural network with smooth objective function. We present numerical examples from optimal transport, martingale optimal transport, portfolio optimization under uncertainty and generative adversa...

  1. Automated Portfolio Optimization Based on a New Test for Structural Breaks

    Directory of Open Access Journals (Sweden)

    Tobias Berens

    2014-04-01

    Full Text Available We present a completely automated optimization strategy which combines the classical Markowitz mean-variance portfolio theory with a recently proposed test for structural breaks in covariance matrices. With respect to equity portfolios, global minimum-variance optimizations, which base solely on the covariance matrix, yield considerable results in previous studies. However, financial assets cannot be assumed to have a constant covariance matrix over longer periods of time. Hence, we estimate the covariance matrix of the assets by respecting potential change points. The resulting approach resolves the issue of determining a sample for parameter estimation. Moreover, we investigate if this approach is also appropriate for timing the reoptimizations. Finally, we apply the approach to two datasets and compare the results to relevant benchmark techniques by means of an out-of-sample study. It is shown that the new approach outperforms equally weighted portfolios and plain minimum-variance portfolios on average.

  2. Optimization of revenues from a distributed generation portfolio: a case study

    NARCIS (Netherlands)

    Geysen, D.; Kessels, K.; Hommelberg, M.; Ghijsen, M.; Tielemans, Y.; Vinck, K.

    2011-01-01

    Many companies are investing in energy production from renewable energy sources and are looking at ways to optimize their portfolio performance. The case study under consideration aims at maximizing the revenues from such a distributed energy generation portfolio, consisting of gas engines and a PV

  3. Linearly Adjustable International Portfolios

    International Nuclear Information System (INIS)

    Fonseca, R. J.; Kuhn, D.; Rustem, B.

    2010-01-01

    We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.

  4. Linearly Adjustable International Portfolios

    Science.gov (United States)

    Fonseca, R. J.; Kuhn, D.; Rustem, B.

    2010-09-01

    We present an approach to multi-stage international portfolio optimization based on the imposition of a linear structure on the recourse decisions. Multiperiod decision problems are traditionally formulated as stochastic programs. Scenario tree based solutions however can become intractable as the number of stages increases. By restricting the space of decision policies to linear rules, we obtain a conservative tractable approximation to the original problem. Local asset prices and foreign exchange rates are modelled separately, which allows for a direct measure of their impact on the final portfolio value.

  5. A method for minimum risk portfolio optimization under hybrid uncertainty

    Science.gov (United States)

    Egorova, Yu E.; Yazenin, A. V.

    2018-03-01

    In this paper, we investigate a minimum risk portfolio model under hybrid uncertainty when the profitability of financial assets is described by fuzzy random variables. According to Feng, the variance of a portfolio is defined as a crisp value. To aggregate fuzzy information the weakest (drastic) t-norm is used. We construct an equivalent stochastic problem of the minimum risk portfolio model and specify the stochastic penalty method for solving it.

  6. A nonlinear bi-level programming approach for product portfolio management.

    Science.gov (United States)

    Ma, Shuang

    2016-01-01

    Product portfolio management (PPM) is a critical decision-making for companies across various industries in today's competitive environment. Traditional studies on PPM problem have been motivated toward engineering feasibilities and marketing which relatively pay less attention to other competitors' actions and the competitive relations, especially in mathematical optimization domain. The key challenge lies in that how to construct a mathematical optimization model to describe this Stackelberg game-based leader-follower PPM problem and the competitive relations between them. The primary work of this paper is the representation of a decision framework and the optimization model to leverage the PPM problem of leader and follower. A nonlinear, integer bi-level programming model is developed based on the decision framework. Furthermore, a bi-level nested genetic algorithm is put forward to solve this nonlinear bi-level programming model for leader-follower PPM problem. A case study of notebook computer product portfolio optimization is reported. Results and analyses reveal that the leader-follower bi-level optimization model is robust and can empower product portfolio optimization.

  7. An Empirical Study on Hedge Fund Portfolio Optimization, Mean-Risk Based Approaches

    OpenAIRE

    Li, Yang

    2011-01-01

    Abstract This research attempts to investigate the divergences between the Mean-Variance and the Mean-CVaR portfolio optimization methods in examining various assets classes, such as equities, bonds, and especially hedge funds. In order to get a thorough understanding of hedge funds facts and available optimization techniques, relevant literatures are carefully reviewed and incorporated into later stage computer modelling. By constructing three hypothetical portfolios, including traditiona...

  8. Growth Optimal Portfolio Selection Under Proportional Transaction Costs with Obligatory Diversification

    International Nuclear Information System (INIS)

    Duncan, T.; Pasik Duncan, B.; Stettner, L.

    2011-01-01

    A continuous time long run growth optimal or optimal logarithmic utility portfolio with proportional transaction costs consisting of a fixed proportional cost and a cost proportional to the volume of transaction is considered. The asset prices are modeled as exponent of diffusion with jumps whose parameters depend on a finite state Markov process of economic factors. An obligatory portfolio diversification is introduced, accordingly to which it is required to invest at least a fixed small portion of our wealth in each asset.

  9. Analysis of the rebalancing frequency in log-optimal portfolio selection

    OpenAIRE

    Kuhn, Daniel; Luenberger, David G.

    2010-01-01

    In a dynamic investment situation, the right timing of portfolio revisions and adjustments is essential to sustain long-term growth. A high rebalancing frequency reduces the portfolio performance in the presence of transaction costs, whereas a low rebalancing frequency entails a static investment strategy that hardly reacts to changing market conditions. This article studies a family of portfolio problems in a Black-Scholes type economy which depend parametrically on the rebalancing frequency...

  10. Selection of risk reduction portfolios under interval-valued probabilities

    International Nuclear Information System (INIS)

    Toppila, Antti; Salo, Ahti

    2017-01-01

    A central problem in risk management is that of identifying the optimal combination (or portfolio) of improvements that enhance the reliability of the system most through reducing failure event probabilities, subject to the availability of resources. This optimal portfolio can be sensitive with regard to epistemic uncertainties about the failure events' probabilities. In this paper, we develop an optimization model to support the allocation of resources to improvements that mitigate risks in coherent systems in which interval-valued probabilities defined by lower and upper bounds are employed to capture epistemic uncertainties. Decision recommendations are based on portfolio dominance: a resource allocation portfolio is dominated if there exists another portfolio that improves system reliability (i) at least as much for all feasible failure probabilities and (ii) strictly more for some feasible probabilities. Based on non-dominated portfolios, recommendations about improvements to implement are derived by inspecting in how many non-dominated portfolios a given improvement is contained. We present an exact method for computing the non-dominated portfolios. We also present an approximate method that simplifies the reliability function using total order interactions so that larger problem instances can be solved with reasonable computational effort. - Highlights: • Reliability allocation under epistemic uncertainty about probabilities. • Comparison of alternatives using dominance. • Computational methods for generating the non-dominated alternatives. • Deriving decision recommendations that are robust with respect to epistemic uncertainty.

  11. A Multiagent Evolutionary Algorithm for the Resource-Constrained Project Portfolio Selection and Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Yongyi Shou

    2014-01-01

    Full Text Available A multiagent evolutionary algorithm is proposed to solve the resource-constrained project portfolio selection and scheduling problem. The proposed algorithm has a dual level structure. In the upper level a set of agents make decisions to select appropriate project portfolios. Each agent selects its project portfolio independently. The neighborhood competition operator and self-learning operator are designed to improve the agent’s energy, that is, the portfolio profit. In the lower level the selected projects are scheduled simultaneously and completion times are computed to estimate the expected portfolio profit. A priority rule-based heuristic is used by each agent to solve the multiproject scheduling problem. A set of instances were generated systematically from the widely used Patterson set. Computational experiments confirmed that the proposed evolutionary algorithm is effective for the resource-constrained project portfolio selection and scheduling problem.

  12. Continuous-Time Mean-Variance Portfolio Selection under the CEV Process

    Directory of Open Access Journals (Sweden)

    Hui-qiang Ma

    2014-01-01

    Full Text Available We consider a continuous-time mean-variance portfolio selection model when stock price follows the constant elasticity of variance (CEV process. The aim of this paper is to derive an optimal portfolio strategy and the efficient frontier. The mean-variance portfolio selection problem is formulated as a linearly constrained convex program problem. By employing the Lagrange multiplier method and stochastic optimal control theory, we obtain the optimal portfolio strategy and mean-variance efficient frontier analytically. The results show that the mean-variance efficient frontier is still a parabola in the mean-variance plane, and the optimal strategies depend not only on the total wealth but also on the stock price. Moreover, some numerical examples are given to analyze the sensitivity of the efficient frontier with respect to the elasticity parameter and to illustrate the results presented in this paper. The numerical results show that the price of risk decreases as the elasticity coefficient increases.

  13. Mean-variance portfolio analysis data for optimizing community-based photovoltaic investment.

    Science.gov (United States)

    Shakouri, Mahmoud; Lee, Hyun Woo

    2016-03-01

    The amount of electricity generated by Photovoltaic (PV) systems is affected by factors such as shading, building orientation and roof slope. To increase electricity generation and reduce volatility in generation of PV systems, a portfolio of PV systems can be made which takes advantages of the potential synergy among neighboring buildings. This paper contains data supporting the research article entitled: PACPIM: new decision-support model of optimized portfolio analysis for community-based photovoltaic investment [1]. We present a set of data relating to physical properties of 24 houses in Oregon, USA, along with simulated hourly electricity data for the installed PV systems. The developed Matlab code to construct optimized portfolios is also provided in . The application of these files can be generalized to variety of communities interested in investing on PV systems.

  14. Comparative evaluation of fuzzy logic and genetic algorithms models for portfolio optimization

    Directory of Open Access Journals (Sweden)

    Heidar Masoumi Soureh

    2017-03-01

    Full Text Available Selection of optimum methods which have appropriate speed and precision for planning and de-cision-making has always been a challenge for investors and managers. One the most important concerns for them is investment planning and optimization for acquisition of desirable wealth under controlled risk with the best return. This paper proposes a model based on Markowitz the-orem by considering the aforementioned limitations in order to help effective decisions-making for portfolio selection. Then, the model is investigated by fuzzy logic and genetic algorithms, for the optimization of the portfolio in selected active companies listed in Tehran Stock Exchange over the period 2012-2016 and the results of the above models are discussed. The results show that the two studied models had functional differences in portfolio optimization, its tools and the possibility of supplementing each other and their selection.

  15. Portfolio optimization for heavy-tailed assets: Extreme Risk Index vs. Markowitz

    OpenAIRE

    Mainik, Georg; Mitov, Georgi; Rüschendorf, Ludger

    2015-01-01

    Using daily returns of the S&P 500 stocks from 2001 to 2011, we perform a backtesting study of the portfolio optimization strategy based on the extreme risk index (ERI). This method uses multivariate extreme value theory to minimize the probability of large portfolio losses. With more than 400 stocks to choose from, our study seems to be the first application of extreme value techniques in portfolio management on a large scale. The primary aim of our investigation is the potential of ERI in p...

  16. Mean-variance portfolio optimization by using time series approaches based on logarithmic utility function

    Science.gov (United States)

    Soeryana, E.; Fadhlina, N.; Sukono; Rusyaman, E.; Supian, S.

    2017-01-01

    Investments in stocks investors are also faced with the issue of risk, due to daily price of stock also fluctuate. For minimize the level of risk, investors usually forming an investment portfolio. Establishment of a portfolio consisting of several stocks are intended to get the optimal composition of the investment portfolio. This paper discussed about optimizing investment portfolio of Mean-Variance to stocks by using mean and volatility is not constant based on logarithmic utility function. Non constant mean analysed using models Autoregressive Moving Average (ARMA), while non constant volatility models are analysed using the Generalized Autoregressive Conditional heteroscedastic (GARCH). Optimization process is performed by using the Lagrangian multiplier technique. As a numerical illustration, the method is used to analyse some Islamic stocks in Indonesia. The expected result is to get the proportion of investment in each Islamic stock analysed.

  17. Optimal Premium as a Function of the Deductible: Customer Analysis and Portfolio Characteristics

    Directory of Open Access Journals (Sweden)

    Julie Thøgersen

    2016-11-01

    Full Text Available An insurance company offers an insurance contract ( p , K , consisting of a premium p and a deductible K. In this paper, we consider the problem of choosing the premium optimally as a function of the deductible. The insurance company is facing a market of N customers, each characterized by their personal claim frequency, α, and risk aversion, β. When a customer is offered an insurance contract, she/he will, based on these characteristics, choose whether or not to insure. The decision process of the customer is analyzed in detail. Since the customer characteristics are unknown to the company, it models them as i.i.d. random variables; A 1 , … , A N for the claim frequencies and B 1 , … , B N for the risk aversions. Depending on the distributions of A i and B i , expressions for the portfolio size n ( p ; K ∈ [ 0 , N ] and average claim frequency α ( p ; K in the portfolio are obtained. Knowing these, the company can choose the premium optimally, mainly by minimizing the ruin probability.

  18. Parametric Portfolio Policies with Common Volatility Dynamics

    DEFF Research Database (Denmark)

    Ergemen, Yunus Emre; Taamouti, Abderrahim

    A parametric portfolio policy function is considered that incorporates common stock volatility dynamics to optimally determine portfolio weights. Reducing dimension of the traditional portfolio selection problem significantly, only a number of policy parameters corresponding to first- and second......-order characteristics are estimated based on a standard method-of-moments technique. The method, allowing for the calculation of portfolio weight and return statistics, is illustrated with an empirical application to 30 U.S. industries to study the economic activity before and after the recent financial crisis....

  19. Commands for financial data management and portfolio optimization

    OpenAIRE

    C. Alberto Dorantes

    2013-01-01

    Several econometric software offer portfolio management tools for practitioners and researchers. For example, MatLab and R offer a great variety of tools for the simulation, optimization, and analysis of financial time series. Stata, together with Mata, offers powerful programming tools for the simulation, optimization, and analysis of financial data. However, related user commands are scarce. In this presentation, commands for online market data collection, data manipulation, and financial a...

  20. The Optimal Portfolio Selection Model under g-Expectation

    Directory of Open Access Journals (Sweden)

    Li Li

    2014-01-01

    complicated and sophisticated, the optimal solution turns out to be surprisingly simple, the payoff of a portfolio of two binary claims. Also I give the economic meaning of my model and the comparison with that one in the work of Jin and Zhou, 2008.

  1. Nonzero-Sum Stochastic Differential Portfolio Games under a Markovian Regime Switching Model

    Directory of Open Access Journals (Sweden)

    Chaoqun Ma

    2015-01-01

    Full Text Available We consider a nonzero-sum stochastic differential portfolio game problem in a continuous-time Markov regime switching environment when the price dynamics of the risky assets are governed by a Markov-modulated geometric Brownian motion (GBM. The market parameters, including the bank interest rate and the appreciation and volatility rates of the risky assets, switch over time according to a continuous-time Markov chain. We formulate the nonzero-sum stochastic differential portfolio game problem as two utility maximization problems of the sum process between two investors’ terminal wealth. We derive a pair of regime switching Hamilton-Jacobi-Bellman (HJB equations and two systems of coupled HJB equations at different regimes. We obtain explicit optimal portfolio strategies and Feynman-Kac representations of the two value functions. Furthermore, we solve the system of coupled HJB equations explicitly in a special case where there are only two states in the Markov chain. Finally we provide comparative statics and numerical simulation analysis of optimal portfolio strategies and investigate the impact of regime switching on optimal portfolio strategies.

  2. International Diversification Versus Domestic Diversification: Mean-Variance Portfolio Optimization and Stochastic Dominance Approaches

    Directory of Open Access Journals (Sweden)

    Fathi Abid

    2014-05-01

    Full Text Available This paper applies the mean-variance portfolio optimization (PO approach and the stochastic dominance (SD test to examine preferences for international diversification versus domestic diversification from American investors’ viewpoints. Our PO results imply that the domestic diversification strategy dominates the international diversification strategy at a lower risk level and the reverse is true at a higher risk level. Our SD analysis shows that there is no arbitrage opportunity between international and domestic stock markets; domestically diversified portfolios with smaller risk dominate internationally diversified portfolios with larger risk and vice versa; and at the same risk level, there is no difference between the domestically and internationally diversified portfolios. Nonetheless, we cannot find any domestically diversified portfolios that stochastically dominate all internationally diversified portfolios, but we find some internationally diversified portfolios with small risk that dominate all the domestically diversified portfolios.

  3. Optimal static allocation decisions in the presence of portfolio insurance

    OpenAIRE

    Goltz, Felix; Martellini, Lionel; Şimşek, Koray Deniz; Simsek, Koray Deniz

    2008-01-01

    The focus of this paper is to determine what fraction a myopic risk-averse investor should allocate to investment strategies with convex exposure to stock market returns in a general economy with stochastically time-varying interest rates and equity risk premium. Our conclusion is that typical investors should optimally allocate a sizable fraction of their portfolio to such portfolio insurance strategies, and the associated utility gains are significant. While the fact that static investors w...

  4. Portfolio Optimization: A Combined Regime-Switching and Black–Litterman Model

    OpenAIRE

    Edwin O. Fischer; Immanuel Seidl

    2013-01-01

    Traditionally portfolios are optimized with the single-regime Markowitz model using the volatility as the risk measure and the historical return as the expected return. This study shows the effects that a regime-switching framework and alternative risk measures (modified value at risk and conditional value at risk) and return measures (CAPM estimates and Black–Litterman estimates) have on the asset allocation and on the absolute and relative performance of portfolios. It demonstrates that the...

  5. Universal portfolios in stochastic portfolio theory

    OpenAIRE

    Wong, Ting-Kam Leonard

    2015-01-01

    Consider a family of portfolio strategies with the aim of achieving the asymptotic growth rate of the best one. The idea behind Cover's universal portfolio is to build a wealth-weighted average which can be viewed as a buy-and-hold portfolio of portfolios. When an optimal portfolio exists, the wealth-weighted average converges to it by concentration of wealth. Working under a discrete time and pathwise setup, we show under suitable conditions that the distribution of wealth in the family sati...

  6. Issues in the determination of the optimal portfolio of electricity supply options

    International Nuclear Information System (INIS)

    Hickey, Emily A.; Lon Carlson, J.; Loomis, David

    2010-01-01

    In recent years a growing amount of attention has been focused on the need to develop a cost-effective portfolio of electricity supply options that provides society with a measure of protection from such factors as fuel price volatility and supply interruptions. A number of strategies, including portfolio theory, real options theory, and different measures of diversity have been suggested. In this paper we begin by first considering how we might characterize an optimal portfolio of supply options and identify a number of constraints that must be satisfied as part of the optimization process. We then review the strengths and limitations of each approach listed above. The results of our review lead us to conclude that, of the strategies we consider, using the concept of diversity to assess the viability of an electricity supply portfolio is most appropriate. We then provide an example of how a particular measure of diversity, the Shannon-Weiner Index, can be used to assess the diversity of the electricity supply portfolio in the state of Illinois, the region served by the Midwest Independent System Operator (MISO), and the continental United States.

  7. On the non-stationarity of financial time series: impact on optimal portfolio selection

    International Nuclear Information System (INIS)

    Livan, Giacomo; Inoue, Jun-ichi; Scalas, Enrico

    2012-01-01

    We investigate the possible drawbacks of employing the standard Pearson estimator to measure correlation coefficients between financial stocks in the presence of non-stationary behavior, and we provide empirical evidence against the well-established common knowledge that using longer price time series provides better, more accurate, correlation estimates. Then, we investigate the possible consequences of instabilities in empirical correlation coefficient measurements on optimal portfolio selection. We rely on previously published works which provide a framework allowing us to take into account possible risk underestimations due to the non-optimality of the portfolio weights being used in order to distinguish such non-optimality effects from risk underestimations genuinely due to non-stationarities. We interpret such results in terms of instabilities in some spectral properties of portfolio correlation matrices. (paper)

  8. Managing the Public Sector Research and Development Portfolio Selection Process: A Case Study of Quantitative Selection and Optimization

    Science.gov (United States)

    2016-09-01

    PUBLIC SECTOR RESEARCH & DEVELOPMENT PORTFOLIO SELECTION PROCESS: A CASE STUDY OF QUANTITATIVE SELECTION AND OPTIMIZATION by Jason A. Schwartz...PUBLIC SECTOR RESEARCH & DEVELOPMENT PORTFOLIO SELECTION PROCESS: A CASE STUDY OF QUANTITATIVE SELECTION AND OPTIMIZATION 5. FUNDING NUMBERS 6...describing how public sector organizations can implement a research and development (R&D) portfolio optimization strategy to maximize the cost

  9. A Bicriteria Approach Identifying Nondominated Portfolios

    Directory of Open Access Journals (Sweden)

    Javier Pereira

    2014-01-01

    Full Text Available We explore a portfolio constructive model, formulated in terms of satisfaction of a given set of technical requirements, with the minimum number of projects and minimum redundancy. An algorithm issued from robust portfolio modeling is adapted to a vector model, modifying the dominance condition as convenient, in order to find the set of nondominated portfolios, as solutions of a bicriteria integer linear programming problem. In order to improve the former algorithm, a process finding an optimal solution of a monocriteria version of this problem is proposed, which is further used as a first feasible solution aiding to find nondominated solutions more rapidly. Next, a sorting process is applied on the input data or information matrix, which is intended to prune nonfeasible solutions early in the constructive algorithm. Numerical examples show that the optimization and sorting processes both improve computational efficiency of the original algorithm. Their limits are also shown on certain complex instances.

  10. Multi-objective portfolio optimization of mutual funds under downside risk measure using fuzzy theory

    OpenAIRE

    M. Amiri; M. Zandieh; A. Alimi

    2012-01-01

    Mutual fund is one of the most popular techniques for many people to invest their funds where a professional fund manager invests people's funds based on some special predefined objectives; therefore, performance evaluation of mutual funds is an important problem. This paper proposes a multi-objective portfolio optimization to offer asset allocation. The proposed model clusters mutual funds with two methods based on six characteristics including rate of return, variance, semivariance, turnove...

  11. Comprehensive Feature-Based Landscape Analysis of Continuous and Constrained Optimization Problems Using the R-Package flacco

    OpenAIRE

    Kerschke, Pascal

    2017-01-01

    Choosing the best-performing optimizer(s) out of a portfolio of optimization algorithms is usually a difficult and complex task. It gets even worse, if the underlying functions are unknown, i.e., so-called Black-Box problems, and function evaluations are considered to be expensive. In the case of continuous single-objective optimization problems, Exploratory Landscape Analysis (ELA) - a sophisticated and effective approach for characterizing the landscapes of such problems by means of numeric...

  12. Optimization of portfolio of contracts for companies of electric power generation

    International Nuclear Information System (INIS)

    Gunn, Laura Keiko; Silva, Elisa Bastos; Correia, Paulo de Barros

    2010-01-01

    Portfolio optimization is a technique widely used to select investments in economic and financial zones. In the Brazilian Electric Market the portfolio models must consider not only different types of contracts used in the free market, but also different types of markets: the free market, the captive market and the spot market. Normally, the question is knowing which proportion of energy should be sold in each market, in order to maximize the return and minimize the risk. This article deals with a problem from the point of view of a power generator, where their objective is to maximize its profit, to serve their obligations regarding the delivery of energy and minimizing the risk associated with the occurrence of Spot Price - minimum (Spot Price). It is considered that the generator has flexible contracts and inflexible contracts to sell the energy. Inflexible contracts have delivery obligations of fixed energy and flexible contracts allow, the holder of the flexibility, to deliver or to receive an amount of variable energy. In this case, the holder of flexibility may be the purchaser or the generator. (author)

  13. Consumption-Portfolio Optimization with Recursive Utility in Incomplete Markets

    DEFF Research Database (Denmark)

    Kraft, Holger; Seifried, Frank Thomas; Steffensen, Mogens

    2013-01-01

    In an incomplete market, we study the optimal consumption-portfolio decision of an investor with recursive preferences of Epstein–Zin type. Applying a classical dynamic programming approach, we formulate the associated Hamilton–Jacobi–Bellman equation and provide a suitable verification theorem...

  14. On portfolio risk diversification

    Science.gov (United States)

    Takada, Hellinton H.; Stern, Julio M.

    2017-06-01

    The first portfolio risk diversification strategy was put into practice by the All Weather fund in 1996. The idea of risk diversification is related to the risk contribution of each available asset class or investment factor to the total portfolio risk. The maximum diversification or the risk parity allocation is achieved when the set of risk contributions is given by a uniform distribution. Meucci (2009) introduced the maximization of the Rényi entropy as part of a leverage constrained optimization problem to achieve such diversified risk contributions when dealing with uncorrelated investment factors. A generalization of the risk parity is the risk budgeting when there is a prior for the distribution of the risk contributions. Our contribution is the generalization of the existent optimization frameworks to be able to solve the risk budgeting problem. In addition, our framework does not possess any leverage constraint.

  15. Application of Performance Ratios in Portfolio Optimization

    Directory of Open Access Journals (Sweden)

    Aleš Kresta

    2015-01-01

    Full Text Available The cornerstone of modern portfolio theory was established by pioneer work of Harry Markowitz. Based on his mean-variance framework, Sharpe formulated his well-known Sharpe ratio aiming to measure the performance of mutual funds. The contemporary development in computer’s computational power allowed to apply more complex performance ratios, which take into account also higher moments of return probability distribution. Although these ratios were proposed to help the investors to improve the results of portfolio optimization, we empirically demonstrated in our paper that this may not necessarily be true. On the historical dataset of DJIA components we empirically showed that both Sharpe ratio and MAD ratio outperformed Rachev ratio. However, for Rachev ratio we assumed only one level of parameters value. Different set-ups of parameters may provide different results and thus further analysis is certainly required.

  16. 2-Phase NSGA II: An Optimized Reward and Risk Measurements Algorithm in Portfolio Optimization

    Directory of Open Access Journals (Sweden)

    Seyedeh Elham Eftekharian

    2017-11-01

    Full Text Available Portfolio optimization is a serious challenge for financial engineering and has pulled down special attention among investors. It has two objectives: to maximize the reward that is calculated by expected return and to minimize the risk. Variance has been considered as a risk measure. There are many constraints in the world that ultimately lead to a non–convex search space such as cardinality constraint. In conclusion, parametric quadratic programming could not be applied and it seems essential to apply multi-objective evolutionary algorithm (MOEA. In this paper, a new efficient multi-objective portfolio optimization algorithm called 2-phase NSGA II algorithm is developed and the results of this algorithm are compared with the NSGA II algorithm. It was found that 2-phase NSGA II significantly outperformed NSGA II algorithm.

  17. Application of an integrated model for evaluation and optimization of business projects portfolios

    Directory of Open Access Journals (Sweden)

    Camila Costa Dutra

    2016-12-01

    Full Text Available This work presents an application of an integrated model for the evaluation and probabilistic optimization of projects portfolios, integrating economic, risk and social and environmental impacts analysis. The model uses the Monte Carlo simulation and linear programming techniques for treatment of uncertainties and optimization of projects portfolio. The integrated model was applied in a Brazilian company of electricity distributions. The portfolio of selected projects was related to the expansion of the supply of electricity in a town in the south of the country and the analysis horizon was set in ten years. The aim of the application was to maximize the return for the implementation of a substation and a transmission line in a set of projects, which are diverse in terms of costs, benefits and environmental and social impacts. As a result, the model generates: i an analysis of each individual projects, from budget information (costs and benefits involved and estimation of social and environmental impacts generated by the project and the risks (uncertainties involved and ii the optimum combination of projects that the company should prioritize to ensure the best financial return and lower social and environmental impacts, thus generating an optimal portfolio.

  18. APPLICATION OF AN INTEGRATED MODEL FOR EVALUATION AND OPTIMIZATION OF BUSINESS PROJECTS PORTFOLIOS

    Directory of Open Access Journals (Sweden)

    Maria Auxiliadora Cannarozzo Tinoco

    2016-12-01

    Full Text Available This work presents an application of an integrated model for the evaluation and probabilistic optimization of projects portfolios, integrating economic, risk and social and environmental impacts analysis. The model uses the Monte Carlo simulation and linear programming techniques for treatment of uncertainties and optimization of projects portfolio. The integrated model was applied in a Brazilian company of electricity distributions. The portfolio of selected projects was related to the expansion of the supply of electricity in a town in the south of the country and the analysis horizon was set in ten years. The aim of the application was to maximize the return for the implementation of a substation and a transmission line in a set of projects, which are diverse in terms of costs, benefits and environmental and social impacts. As a result, the model generates: i an analysis of each individual projects, from budget information (costs and benefits involved and estimation of social and environmental impacts generated by the project and the risks (uncertainties involved and ii the optimum combination of projects that the company should prioritize to ensure the best financial return and lower social and environmental impacts, thus generating an optimal portfolio

  19. Optimal Investment Under Transaction Costs: A Threshold Rebalanced Portfolio Approach

    Science.gov (United States)

    Tunc, Sait; Donmez, Mehmet Ali; Kozat, Suleyman Serdar

    2013-06-01

    We study optimal investment in a financial market having a finite number of assets from a signal processing perspective. We investigate how an investor should distribute capital over these assets and when he should reallocate the distribution of the funds over these assets to maximize the cumulative wealth over any investment period. In particular, we introduce a portfolio selection algorithm that maximizes the expected cumulative wealth in i.i.d. two-asset discrete-time markets where the market levies proportional transaction costs in buying and selling stocks. We achieve this using "threshold rebalanced portfolios", where trading occurs only if the portfolio breaches certain thresholds. Under the assumption that the relative price sequences have log-normal distribution from the Black-Scholes model, we evaluate the expected wealth under proportional transaction costs and find the threshold rebalanced portfolio that achieves the maximal expected cumulative wealth over any investment period. Our derivations can be readily extended to markets having more than two stocks, where these extensions are pointed out in the paper. As predicted from our derivations, we significantly improve the achieved wealth over portfolio selection algorithms from the literature on historical data sets.

  20. Optimal Strategy Analysis of a Competing Portfolio Market with a Polyvariant Profit Function

    International Nuclear Information System (INIS)

    Bogolubov, Nikolai N. Jr.; Kyshakevych, Bohdan Yu.; Blackmore, Denis; Prykarpatsky, Anatoliy K.

    2010-12-01

    A competing market model with a polyvariant profit function that assumes 'zeitnot' stock behavior of clients is formulated within the banking portfolio medium and then analyzed from the perspective of devising optimal strategies. An associated Markov process method for finding an optimal choice strategy for monovariant and bivariant profit functions is developed. Under certain conditions on the bank 'promotional' parameter with respect to the 'fee' for a missed share package transaction and at an asymptotically large enough portfolio volume, universal transcendental equations - determining the optimal share package choice among competing strategies with monovariant and bivariant profit functions - are obtained. (author)

  1. Multi-objective mean-variance-skewness model for generation portfolio allocation in electricity markets

    Energy Technology Data Exchange (ETDEWEB)

    Pindoriya, N.M.; Singh, S.N. [Department of Electrical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Singh, S.K. [Indian Institute of Management Lucknow, Lucknow 226013 (India)

    2010-10-15

    This paper proposes an approach for generation portfolio allocation based on mean-variance-skewness (MVS) model which is an extension of the classical mean-variance (MV) portfolio theory, to deal with assets whose return distribution is non-normal. The MVS model allocates portfolios optimally by considering the maximization of both the expected return and skewness of portfolio return while simultaneously minimizing the risk. Since, it is competing and conflicting non-smooth multi-objective optimization problem, this paper employed a multi-objective particle swarm optimization (MOPSO) based meta-heuristic technique to provide Pareto-optimal solution in a single simulation run. Using a case study of the PJM electricity market, the performance of the MVS portfolio theory based method and the classical MV method is compared. It has been found that the MVS portfolio theory based method can provide significantly better portfolios in the situation where non-normally distributed assets exist for trading. (author)

  2. Multi-objective mean-variance-skewness model for generation portfolio allocation in electricity markets

    International Nuclear Information System (INIS)

    Pindoriya, N.M.; Singh, S.N.; Singh, S.K.

    2010-01-01

    This paper proposes an approach for generation portfolio allocation based on mean-variance-skewness (MVS) model which is an extension of the classical mean-variance (MV) portfolio theory, to deal with assets whose return distribution is non-normal. The MVS model allocates portfolios optimally by considering the maximization of both the expected return and skewness of portfolio return while simultaneously minimizing the risk. Since, it is competing and conflicting non-smooth multi-objective optimization problem, this paper employed a multi-objective particle swarm optimization (MOPSO) based meta-heuristic technique to provide Pareto-optimal solution in a single simulation run. Using a case study of the PJM electricity market, the performance of the MVS portfolio theory based method and the classical MV method is compared. It has been found that the MVS portfolio theory based method can provide significantly better portfolios in the situation where non-normally distributed assets exist for trading. (author)

  3. An Optimal Portfolio and Capital Management Strategy for Basel III Compliant Commercial Banks

    Directory of Open Access Journals (Sweden)

    Grant E. Muller

    2014-01-01

    Full Text Available We model a Basel III compliant commercial bank that operates in a financial market consisting of a treasury security, a marketable security, and a loan and we regard the interest rate in the market as being stochastic. We find the investment strategy that maximizes an expected utility of the bank’s asset portfolio at a future date. This entails obtaining formulas for the optimal amounts of bank capital invested in different assets. Based on the optimal investment strategy, we derive a model for the Capital Adequacy Ratio (CAR, which the Basel Committee on Banking Supervision (BCBS introduced as a measure against banks’ susceptibility to failure. Furthermore, we consider the optimal investment strategy subject to a constant CAR at the minimum prescribed level. We derive a formula for the bank’s asset portfolio at constant (minimum CAR value and present numerical simulations on different scenarios. Under the optimal investment strategy, the CAR is above the minimum prescribed level. The value of the asset portfolio is improved if the CAR is at its (constant minimum value.

  4. Optimal Energy Mix with Renewable Portfolio Standards in Korea

    Directory of Open Access Journals (Sweden)

    Zong Woo Geem

    2016-05-01

    Full Text Available Korea is a heavily energy-dependent country whose primary energy consumption ranks ninth in the world. However, at the same time, it promised to reduce carbon emission and planned to use more renewable energy. Thus, the objective of this study is to propose an optimal energy mix planning model in electricity generation from various energy sources, such as gas, coal, nuclear, hydro, wind, photovoltaic, and biomass, which considers more renewable and sustainable portions by imposing governmental regulation named renewable portfolio standard (RPS. This optimization model minimizes various costs such as construction cost, operation and management cost, fuel cost, and carbon emission cost while satisfying minimal demand requirement, maximal annual installation potential, and renewable portfolio standard constraints. Results showed that this optimization model could successfully generate energy mix plan from 2012 to 2030 while minimizing the objective costs and satisfying all the constraints. Therefore, this optimization model contributes more efficient and objective method to the complex decision-making process with a sustainability option. This proposed energy mix model is expected to be applied not only to Korea, but also to many other countries in the future for more economical planning of their electricity generation while affecting climate change less.

  5. Statistically Efficient Construction of α-Risk-Minimizing Portfolio

    Directory of Open Access Journals (Sweden)

    Hiroyuki Taniai

    2012-01-01

    Full Text Available We propose a semiparametrically efficient estimator for α-risk-minimizing portfolio weights. Based on the work of Bassett et al. (2004, an α-risk-minimizing portfolio optimization is formulated as a linear quantile regression problem. The quantile regression method uses a pseudolikelihood based on an asymmetric Laplace reference density, and asymptotic properties such as consistency and asymptotic normality are obtained. We apply the results of Hallin et al. (2008 to the problem of constructing α-risk-minimizing portfolios using residual signs and ranks and a general reference density. Monte Carlo simulations assess the performance of the proposed method. Empirical applications are also investigated.

  6. Big Data Challenges of High-Dimensional Continuous-Time Mean-Variance Portfolio Selection and a Remedy.

    Science.gov (United States)

    Chiu, Mei Choi; Pun, Chi Seng; Wong, Hoi Ying

    2017-08-01

    Investors interested in the global financial market must analyze financial securities internationally. Making an optimal global investment decision involves processing a huge amount of data for a high-dimensional portfolio. This article investigates the big data challenges of two mean-variance optimal portfolios: continuous-time precommitment and constant-rebalancing strategies. We show that both optimized portfolios implemented with the traditional sample estimates converge to the worst performing portfolio when the portfolio size becomes large. The crux of the problem is the estimation error accumulated from the huge dimension of stock data. We then propose a linear programming optimal (LPO) portfolio framework, which applies a constrained ℓ 1 minimization to the theoretical optimal control to mitigate the risk associated with the dimensionality issue. The resulting portfolio becomes a sparse portfolio that selects stocks with a data-driven procedure and hence offers a stable mean-variance portfolio in practice. When the number of observations becomes large, the LPO portfolio converges to the oracle optimal portfolio, which is free of estimation error, even though the number of stocks grows faster than the number of observations. Our numerical and empirical studies demonstrate the superiority of the proposed approach. © 2017 Society for Risk Analysis.

  7. Wavelet evolutionary network for complex-constrained portfolio rebalancing

    Science.gov (United States)

    Suganya, N. C.; Vijayalakshmi Pai, G. A.

    2012-07-01

    Portfolio rebalancing problem deals with resetting the proportion of different assets in a portfolio with respect to changing market conditions. The constraints included in the portfolio rebalancing problem are basic, cardinality, bounding, class and proportional transaction cost. In this study, a new heuristic algorithm named wavelet evolutionary network (WEN) is proposed for the solution of complex-constrained portfolio rebalancing problem. Initially, the empirical covariance matrix, one of the key inputs to the problem, is estimated using the wavelet shrinkage denoising technique to obtain better optimal portfolios. Secondly, the complex cardinality constraint is eliminated using k-means cluster analysis. Finally, WEN strategy with logical procedures is employed to find the initial proportion of investment in portfolio of assets and also rebalance them after certain period. Experimental studies of WEN are undertaken on Bombay Stock Exchange, India (BSE200 index, period: July 2001-July 2006) and Tokyo Stock Exchange, Japan (Nikkei225 index, period: March 2002-March 2007) data sets. The result obtained using WEN is compared with the only existing counterpart named Hopfield evolutionary network (HEN) strategy and also verifies that WEN performs better than HEN. In addition, different performance metrics and data envelopment analysis are carried out to prove the robustness and efficiency of WEN over HEN strategy.

  8. Portfolio optimization using Mean Absolute Deviation (MAD and Conditional Value-at-Risk (CVaR

    Directory of Open Access Journals (Sweden)

    Lucas Pelegrin da Silva

    Full Text Available Abstract This paper investigates the efficiency of traditional portfolio optimization models when the returns of financial assets are highly volatile, e.g., in financial crises periods. We also develop alternative optimization models that combine the mean absolute deviation (MAD and the conditional value at risk (CVaR, attempting to mitigate inefficient, low return and/or high-risk, portfolios. Three methodologies for estimating the probability of the asset’s historical returns are also compared. By using historical data on the Brazilian stock market between 2004 and 2013, we analyze the efficiency of the proposed approaches. Our results show that the traditional models provide portfolios with higher returns, but our propose model are able to generate lower risk portfolios, which might be more attractive in volatile markets. In addition, we find that models that do not use equiprobable scenarios produce better results in terms of return and risk.

  9. The rule of nuclear power in the base-load portfolio optimization process

    International Nuclear Information System (INIS)

    Desiata, L.; D'Alberti, F.

    2007-01-01

    The pursuit of optimal portfolios, maximizing long-term profitability, is the main strategic challenge faced by electricity producers nowadays. Investment decisions, worth billions of euros, are affected by spot factors (such as current fuel prices volatility) that often lead to unbalanced generation mixes. Our analysis presents a statistical-financial approach that highlights the role of nuclear within the base-load portfolio optimisation process [it

  10. Fuzzy Portfolio Selection Problem with Different Borrowing and Lending Rates

    OpenAIRE

    Chen, Wei; Yang, Yiping; Ma, Hui

    2011-01-01

    As we know, borrowing and lending risk-free assets arise extensively in the theory and practice of finance. However, little study has ever investigated them in fuzzy portfolio problem. In this paper, the returns of each assets are assumed to be fuzzy variables, then following the mean-variance approach, a new possibilistic portfolio selection model with different interest rates for borrowing and lending is proposed, in which the possibilistic semiabsolute deviation of the return is used to...

  11. Optimization Stock Portfolio With Mean-Variance and Linear Programming: Case In Indonesia Stock Market

    Directory of Open Access Journals (Sweden)

    Yen Sun

    2010-05-01

    Full Text Available It is observed that the number of Indonesia’s domestic investor who involved in the stock exchange is very less compare to its total number of population (only about 0.1%. As a result, Indonesia Stock Exchange (IDX is highly affected by foreign investor that can threat the economy. Domestic investor tends to invest in risk-free asset such as deposit in the bank since they are not familiar yet with the stock market and anxious about the risk (risk-averse type of investor. Therefore, it is important to educate domestic investor to involve in the stock exchange. Investing in portfolio of stock is one of the best choices for risk-averse investor (such as Indonesia domestic investor since it offers lower risk for a given level of return. This paper studies the optimization of Indonesian stock portfolio. The data is the historical return of 10 stocks of LQ 45 for 5 time series (January 2004 – December 2008. It will be focus on selecting stocks into a portfolio, setting 10 of stock portfolios using mean variance method combining with the linear programming (solver. Furthermore, based on Efficient Frontier concept and Sharpe measurement, there will be one stock portfolio picked as an optimum Portfolio (Namely Portfolio G. Then, Performance of portfolio G will be evaluated by using Sharpe, Treynor and Jensen Measurement to show whether the return of Portfolio G exceeds the market return. This paper also illustrates how the stock composition of the Optimum Portfolio (G succeeds to predict the portfolio return in the future (5th January – 3rd April 2009. The result of the study observed that optimization portfolio using Mean-Variance (consistent with Markowitz theory combine with linear programming can be applied into Indonesia stock’s portfolio. All the measurements (Sharpe, Jensen, and Treynor show that the portfolio G is a superior portfolio. It is also been found that the composition (weights stocks of optimum portfolio (G can be used to

  12. Optimal Portfolio Allocation under a Probabilistic Risk Constraint and the Incentives for Financial Innovation

    NARCIS (Netherlands)

    J. Daníelsson (Jón); B.N. Jorgensen (Bjørn); C.G. de Vries (Casper); X. Yang (Xiaoguang)

    2001-01-01

    textabstractWe derive, in a complete markets environment, an investor's optimal portfolio allocation subject to both a budget constraint and a probabilistic risk constraint. We demonstrate that the set of feasible portfolios need not be connected or convex, while the number of local optima increases

  13. Beating the market with small portfolios: Evidence from Brazil

    Directory of Open Access Journals (Sweden)

    André A.P. Santos

    2015-01-01

    Full Text Available Optimal portfolios with a restriction on the number of assets, also referred to as cardinality-constrained portfolios, have been receiving attention in the literature due to its popularity among market practitioners and retail investors. In most cases, however, the interest is in proposing efficient optimization methods to solve the problem, with little or no attention to the characteristics of the resulting portfolio such as risk-adjusted performance and turnover. We address this question by implementing a tractable reformulation of the cardinality-constrained version of the minimum variance portfolio. We analyze the out-of-sample performance of cardinality-constrained portfolios according to alternative criteria and check the robustness of the results for portfolios with alternative number of assets and under alternative re-balancing frequencies. Our empirical application for the Brazilian equities market shows that cardinality-constrained minimum variance portfolios with very few assets, e.g. 3 stocks, can deliver statistically lower portfolio risk and higher Sharpe ratios in comparison to the market index. Similar results are obtained for constrained portfolios with 5 and 10 assets and under daily, weekly, and monthly re-balancing frequencies. Our evidence indicates that it is possible to obtain better risk-adjusted performance with fewer securities in the portfolio by using an improved allocation scheme.

  14. Parametric Portfolio Selection: Evaluating and Comparing to Markowitz Portfolios

    Directory of Open Access Journals (Sweden)

    Marcelo C. Medeiros

    2014-10-01

    Full Text Available In this paper we exploit the parametric portfolio optimization in the Brazilian market. Our data consists of monthly returns of 306 Brazilian stocks in the period between 2001 and 2013. We tested the model both in and out of sample and compared the results with the value and equal weighted portfolios and with a Markowitz based portfolio. We performed statistical inference in the parametric optimization using bootstrap techniques in order to build the parameters empirical distributions. Our results showed that the parametric optimization is a very efficient technique out of sample. It consistently showed superior results when compared with the VW, EW and Markowitz portfolios even when transaction costs were included. Finally, we consider the parametric approach to be very flexible to the inclusion of constraints in weights, transaction costs and listing and delisting of stocks.

  15. Optimal Premium Pricing for a Heterogeneous Portfolio of Insurance Risks

    OpenAIRE

    Pantelous, Athanasios A.; Frangos, Nicholas E.; Zimbidis, Alexandros A.

    2009-01-01

    The paper revisits the classical problem of premium rating within a heterogeneous portfolio of insurance risks using a continuous stochastic control framework. The portfolio is divided into several classes where each class interacts with the others. The risks are modelled dynamically by the means of a Brownian motion. This dynamic approach is also transferred to the design of the premium process. The premium is not constant but equals the drift of the Brownian motion plus a controlled percent...

  16. Relationship between Maximum Principle and Dynamic Programming for Stochastic Recursive Optimal Control Problems and Applications

    Directory of Open Access Journals (Sweden)

    Jingtao Shi

    2013-01-01

    Full Text Available This paper is concerned with the relationship between maximum principle and dynamic programming for stochastic recursive optimal control problems. Under certain differentiability conditions, relations among the adjoint processes, the generalized Hamiltonian function, and the value function are given. A linear quadratic recursive utility portfolio optimization problem in the financial engineering is discussed as an explicitly illustrated example of the main result.

  17. Optimal trading quantity integration as a basis for optimal portfolio management

    Directory of Open Access Journals (Sweden)

    Saša Žiković

    2005-06-01

    Full Text Available The author in this paper points out the reason behind calculating and using optimal trading quantity in conjunction with Markowitz’s Modern portfolio theory. In the opening part the author presents an example of calculating optimal weights using Markowitz’s Mean-Variance approach, followed by an explanation of basic logic behind optimal trading quantity. The use of optimal trading quantity is not limited to systems with Bernoulli outcome, but can also be used when trading shares, futures, options etc. Optimal trading quantity points out two often-overlooked axioms: (1 a system with negative mathematical expectancy can never be transformed in a system with positive mathematical expectancy, (2 by missing the optimal trading quantity an investor can turn a system with positive expectancy into a negative one. Optimal trading quantity is that quantity which maximizes geometric mean (growth function of a particular system. To determine the optimal trading quantity for simpler systems, with a very limited number of outcomes, a set of Kelly’s formulas is appropriate. In the conclusion the summary of the paper is presented.

  18. The Impact of Transaction Costs on Rebalancing an Investment Portfolio in Portfolio Optimization

    OpenAIRE

    B. Marasović; S. Pivac; S. V. Vukasović

    2015-01-01

    Constructing a portfolio of investments is one of the most significant financial decisions facing individuals and institutions. In accordance with the modern portfolio theory maximization of return at minimal risk should be the investment goal of any successful investor. In addition, the costs incurred when setting up a new portfolio or rebalancing an existing portfolio must be included in any realistic analysis. In this paper rebalancing an investment portfolio in the pr...

  19. Investigation of Multi-Criteria Decision Consistency: A Triplex Approach to Optimal Oilfield Portfolio Investment Decisions

    Science.gov (United States)

    Qaradaghi, Mohammed

    Complexity of the capital intensive oil and gas portfolio investments is continuously growing. It is manifested in the constant increase in the type, number and degree of risks and uncertainties, which consequently lead to more challenging decision making problems. A typical complex decision making problem in petroleum exploration and production (E&P) is the selection and prioritization of oilfields/projects in a portfolio investment. Prioritizing oilfields maybe required for different purposes, including the achievement of a targeted production and allocation of limited available development resources. These resources cannot be distributed evenly nor can they be allocated based on the oilfield size or production capacity alone since various other factors need to be considered simultaneously. These factors may include subsurface complexity, size of reservoir, plateau production and needed infrastructure in addition to other issues of strategic concern, such as socio-economic, environmental and fiscal policies, particularly when the decision making involves governments or national oil companies. Therefore, it would be imperative to employ decision aiding tools that not only address these factors, but also incorporate the decision makers' preferences clearly and accurately. However, the tools commonly used in project portfolio selection and optimization, including intuitive approaches, vary in their focus and strength in addressing the different criteria involved in such decision problems. They are also disadvantaged by a number of drawbacks, which may include lacking the capacity to address multiple and interrelated criteria, uncertainty and risk, project relationship with regard to value contribution and optimum resource utilization, non-monetary attributes, decision maker's knowledge and expertise, in addition to varying levels of ease of use and other practical and theoretical drawbacks. These drawbacks have motivated researchers to investigate other tools and

  20. Mean-Variance Portfolio Selection with Margin Requirements

    Directory of Open Access Journals (Sweden)

    Yuan Zhou

    2013-01-01

    Full Text Available We study the continuous-time mean-variance portfolio selection problem in the situation when investors must pay margin for short selling. The problem is essentially a nonlinear stochastic optimal control problem because the coefficients of positive and negative parts of control variables are different. We can not apply the results of stochastic linearquadratic (LQ problem. Also the solution of corresponding Hamilton-Jacobi-Bellman (HJB equation is not smooth. Li et al. (2002 studied the case when short selling is prohibited; therefore they only need to consider the positive part of control variables, whereas we need to handle both the positive part and the negative part of control variables. The main difficulty is that the positive part and the negative part are not independent. The previous results are not directly applicable. By decomposing the problem into several subproblems we figure out the solutions of HJB equation in two disjoint regions and then prove it is the viscosity solution of HJB equation. Finally we formulate solution of optimal portfolio and the efficient frontier. We also present two examples showing how different margin rates affect the optimal solutions and the efficient frontier.

  1. A conceptual framework for economic optimization of an animal health surveillance portfolio.

    Science.gov (United States)

    Guo, X; Claassen, G D H; Oude Lansink, A G J M; Saatkamp, H W

    2016-04-01

    Decision making on hazard surveillance in livestock product chains is a multi-hazard, multi-stakeholder, and multi-criteria process that includes a variety of decision alternatives. The multi-hazard aspect means that the allocation of the scarce resource for surveillance should be optimized from the point of view of a surveillance portfolio (SP) rather than a single hazard. In this paper, we present a novel conceptual approach for economic optimization of a SP to address the resource allocation problem for a surveillance organization from a theoretical perspective. This approach uses multi-criteria techniques to evaluate the performances of different settings of a SP, taking cost-benefit aspects of surveillance and stakeholders' preferences into account. The credibility of the approach has also been checked for conceptual validity, data needs and operational validity; the application potentials of the approach are also discussed.

  2. Estimated correlation matrices and portfolio optimization

    Science.gov (United States)

    Pafka, Szilárd; Kondor, Imre

    2004-11-01

    Correlations of returns on various assets play a central role in financial theory and also in many practical applications. From a theoretical point of view, the main interest lies in the proper description of the structure and dynamics of correlations, whereas for the practitioner the emphasis is on the ability of the models to provide adequate inputs for the numerous portfolio and risk management procedures used in the financial industry. The theory of portfolios, initiated by Markowitz, has suffered from the “curse of dimensions” from the very outset. Over the past decades a large number of different techniques have been developed to tackle this problem and reduce the effective dimension of large bank portfolios, but the efficiency and reliability of these procedures are extremely hard to assess or compare. In this paper, we propose a model (simulation)-based approach which can be used for the systematical testing of all these dimensional reduction techniques. To illustrate the usefulness of our framework, we develop several toy models that display some of the main characteristic features of empirical correlations and generate artificial time series from them. Then, we regard these time series as empirical data and reconstruct the corresponding correlation matrices which will inevitably contain a certain amount of noise, due to the finiteness of the time series. Next, we apply several correlation matrix estimators and dimension reduction techniques introduced in the literature and/or applied in practice. As in our artificial world the only source of error is the finite length of the time series and, in addition, the “true” model, hence also the “true” correlation matrix, are precisely known, therefore in sharp contrast with empirical studies, we can precisely compare the performance of the various noise reduction techniques. One of our recurrent observations is that the recently introduced filtering technique based on random matrix theory performs

  3. Particle Swarm Optimization of Electricity Market Negotiating Players Portfolio

    DEFF Research Database (Denmark)

    Pinto, Tiago; Vale, Zita; Sousa, Tiago

    2014-01-01

    Energy systems worldwide are complex and challenging environments. Multi-agent based simulation platforms are increasing at a high rate, as they show to be a good option to study many issues related to these systems, as well as the involved players at act in this domain. In this scope the authors......, the type of day (business day, weekend, holiday, etc.) and most important, the renewable based distributed generation forecast. The proposed approach is tested and validated using real electricity markets data from the Iberian operator – MIBEL.......’ research group has developed a multi-agent system: MASCEM (Multi- Agent System for Competitive Electricity Markets), which performs realistic simulations of the electricity markets. MASCEM is integrated with ALBidS (Adaptive Learning Strategic Bidding System) that works as a decision support system...... for market players. The ALBidS system allows MASCEM market negotiating players to take the best possible advantages from each market context. However, it is still necessary to adequately optimize the players’ portfolio investment. For this purpose, this paper proposes a market portfolio optimization method...

  4. A Quantitative Optimization Framework for Market-Driven Academic Program Portfolios

    NARCIS (Netherlands)

    Burgher, Joshua; Hamers, Herbert

    2017-01-01

    We introduce a quantitative model that can be used for decision support for planning and optimizing the composition of portfolios of market-driven academic programs within the context of higher education. This model is intended to enable leaders in colleges and universities to maximize financial

  5. Power Grid Construction Project Portfolio Optimization Based on Bi-level programming model

    Science.gov (United States)

    Zhao, Erdong; Li, Shangqi

    2017-08-01

    As the main body of power grid operation, county-level power supply enterprises undertake an important emission to guarantee the security of power grid operation and safeguard social power using order. The optimization of grid construction projects has been a key issue of power supply capacity and service level of grid enterprises. According to the actual situation of power grid construction project optimization of county-level power enterprises, on the basis of qualitative analysis of the projects, this paper builds a Bi-level programming model based on quantitative analysis. The upper layer of the model is the target restriction of the optimal portfolio; the lower layer of the model is enterprises’ financial restrictions on the size of the enterprise project portfolio. Finally, using a real example to illustrate operation proceeding and the optimization result of the model. Through qualitative analysis and quantitative analysis, the bi-level programming model improves the accuracy and normative standardization of power grid enterprises projects.

  6. φq-field theory for portfolio optimization: “fat tails” and nonlinear correlations

    Science.gov (United States)

    Sornette, D.; Simonetti, P.; Andersen, J. V.

    2000-08-01

    Physics and finance are both fundamentally based on the theory of random walks (and their generalizations to higher dimensions) and on the collective behavior of large numbers of correlated variables. The archetype examplifying this situation in finance is the portfolio optimization problem in which one desires to diversify on a set of possibly dependent assets to optimize the return and minimize the risks. The standard mean-variance solution introduced by Markovitz and its subsequent developments is basically a mean-field Gaussian solution. It has severe limitations for practical applications due to the strongly non-Gaussian structure of distributions and the nonlinear dependence between assets. Here, we present in details a general analytical characterization of the distribution of returns for a portfolio constituted of assets whose returns are described by an arbitrary joint multivariate distribution. In this goal, we introduce a non-linear transformation that maps the returns onto Gaussian variables whose covariance matrix provides a new measure of dependence between the non-normal returns, generalizing the covariance matrix into a nonlinear covariance matrix. This nonlinear covariance matrix is chiseled to the specific fat tail structure of the underlying marginal distributions, thus ensuring stability and good conditioning. The portfolio distribution is then obtained as the solution of a mapping to a so-called φq field theory in particle physics, of which we offer an extensive treatment using Feynman diagrammatic techniques and large deviation theory, that we illustrate in details for multivariate Weibull distributions. The interaction (non-mean field) structure in this field theory is a direct consequence of the non-Gaussian nature of the distribution of asset price returns. We find that minimizing the portfolio variance (i.e. the relatively “small” risks) may often increase the large risks, as measured by higher normalized cumulants. Extensive

  7. Optimal portfolio strategy with cross-correlation matrix composed by DCCA coefficients: Evidence from the Chinese stock market

    Science.gov (United States)

    Sun, Xuelian; Liu, Zixian

    2016-02-01

    In this paper, a new estimator of correlation matrix is proposed, which is composed of the detrended cross-correlation coefficients (DCCA coefficients), to improve portfolio optimization. In contrast to Pearson's correlation coefficients (PCC), DCCA coefficients acquired by the detrended cross-correlation analysis (DCCA) method can describe the nonlinear correlation between assets, and can be decomposed in different time scales. These properties of DCCA make it possible to improve the investment effect and more valuable to investigate the scale behaviors of portfolios. The minimum variance portfolio (MVP) model and the Mean-Variance (MV) model are used to evaluate the effectiveness of this improvement. Stability analysis shows the effect of two kinds of correlation matrices on the estimation error of portfolio weights. The observed scale behaviors are significant to risk management and could be used to optimize the portfolio selection.

  8. Building a Smart E-Portfolio Platform for Optimal E-Learning Objects Acquisition

    Directory of Open Access Journals (Sweden)

    Chih-Kun Ke

    2013-01-01

    Full Text Available In modern education, an e-portfolio platform helps students in acquiring e-learning objects in a learning activity. Quality is an important consideration in evaluating the desirable e-learning object. Finding a means of determining a high quality e-learning object from a large number of candidate e-learning objects is an important requirement. To assist student learning in a modern e-portfolio platform, this work proposed an optimal selection approach determining a reasonable e-learning object from various candidate e-learning objects. An optimal selection approach which uses advanced information techniques is proposed. Each e-learning object undergoes a formalization process. An Information Retrieval (IR technique extracts and analyses key concepts from the student’s previous learning contexts. A context-based utility model computes the expected utility values of various e-learning objects based on the extracted key concepts. The expected utility values of e-learning objects are used in a multicriteria decision analysis to determine the optimal selection order of the candidate e-learning objects. The main contribution of this work is the demonstration of an effective e-learning object selection method which is easy to implement within an e-portfolio platform and which makes it smarter.

  9. On the optimization of a CAPM portfolio using lower partial moments as measure of risk and using the possibility of safeguarding its loss

    Science.gov (United States)

    Spreitzer, U. W.; Reznik, V.

    2007-05-01

    Using a portfolio built from bonds (investment without volatility) and shares (investment with volatility) corresponding to the CAPM we calculate the possible loss of this portfolio. The loss is measured by a so-called lower partial moment of the rate of return of the portfolio. Using this loss, we optimize the composition of the portfolio with respect to this loss. Also we investigate the optimization of the portfolio when the loss can be underwritten by an insurance. Concerning the premium of this insurance contract, we show that when the premium is defined inadequate, e.g. proportional to the investment or proportional to the amount of investment in shares, the optimal portfolio consists only of investment in shares. When the premium is defined more suitable, e.g. proportional to the loss, the optimal portfolio is built by an investment in bonds and shares.

  10. Behavioral optimization models for multicriteria portfolio selection

    Directory of Open Access Journals (Sweden)

    Mehlawat Mukesh Kumar

    2013-01-01

    Full Text Available In this paper, behavioral construct of suitability is used to develop a multicriteria decision making framework for portfolio selection. To achieve this purpose, we rely on multiple methodologies. Analytical hierarchy process technique is used to model the suitability considerations with a view to obtaining the suitability performance score in respect of each asset. A fuzzy multiple criteria decision making method is used to obtain the financial quality score of each asset based upon investor's rating on the financial criteria. Two optimization models are developed for optimal asset allocation considering simultaneously financial and suitability criteria. An empirical study is conducted on randomly selected assets from National Stock Exchange, Mumbai, India to demonstrate the effectiveness of the proposed methodology.

  11. OPTIMIZATION OF EXPORT PORTFOLIO CURRENCY STRUCTURE OF INDUSTRIAL ENTERPRISES IN REPUBLIC OF BELARUS

    Directory of Open Access Journals (Sweden)

    K. A. Коrоbiyna

    2009-01-01

    Full Text Available Optimization of currency portfolio structure of export industrial enterprises in the Republic of Belarus, by which we shall understand a currency structure of export contracts of an international enterprise, is considered as one of the most important problems in the financial management of an enterprise. Statement and analysis of industrial enterprise alternative costs and simultaneous investigation of tendencies pertaining to changes in the exchange rates give the possibility (under other equal status to reduce non-systematic risks in foreign trade. Diversification of industrial enterprise currency portfolios with the purpose to decrease financial risks and with due account of exchange rate correlation can lead to an increase of payments in Russian currency and Eurocurrency under enterprise export contracts. The given changes decrease currency risks in the foreign trade however they entail possible increase of the export share of products to the Russian Federation in total export volume of the Republic of Belarus that increases dependence of the Republic of Belarus on the Russian Federation as the main foreign trade partner.

  12. Large and small baseload power plants: Drivers to define the optimal portfolios

    International Nuclear Information System (INIS)

    Locatelli, Giorgio; Mancini, Mauro

    2011-01-01

    Despite the growing interest in Small Medium sized Power Plants (SMPP) international literature provides only studies related to portfolios of large plants in infinite markets/grids with no particular attention given to base load SMPP. This paper aims to fill this gap, investigating the attractiveness of SMPP portfolios respect to large power plant portfolios. The analysis includes nuclear, coal and combined cycle gas turbines (CCGT) of different plant sizes. The Mean Variance Portfolio theory (MVP) is used to define the best portfolio according to Internal Rate of Return (IRR) and Levelised Unit Electricity Cost (LUEC) considering the life cycle costs of each power plant, Carbon Tax, Electricity Price and grid dimension. The results show how large plants are the best option for large grids, while SMPP are as competitive as large plants in small grids. In fact, in order to achieve the highest profitability with the lowest risk it is necessary to build several types of different plants and, in case of small grids, this is possible only with SMPP. A further result is the application of the framework to European OECD countries and the United States assessing their portfolios. - Highlights: ► The literature about power plant portfolios does not consider small grids and IRR. ► We evaluated Base load portfolios respect to IRR and LUEC. ► We assessed the influence of grid and plant size, CO 2 cost and Electricity Price. ► Large plants are optimal for large markets even if small plants have similar IRR. ► Small plants are suitable to diversify portfolios in small grids reducing the risk.

  13. Portfolio evaluation of health programs: a reply to Sendi et al.

    Science.gov (United States)

    Bridges, John F P; Terris, Darcey D

    2004-05-01

    Sendi et al. (Soc. Sci. Med. 57 (2003) 2207) extend previous research on cost-effectiveness analysis to the evaluation of a portfolio of interventions with risky outcomes using a "second best" approach that can identify improvements in efficiency in the allocation of resources. This method, however, cannot be used to directly identify the optimal solution to the resource allocation problem. Theoretically, a stricter adherence to the foundations of portfolio theory would permit direct optimization in portfolio selection, however, when we include uncertainty in our analysis in addition to the traditional concept of risk (which is often mislabelled uncertainty) complexities are introduced that create significant hurdles in the development of practical applications of portfolio theory for health care policy decision making.

  14. Application of a general risk management model to portfolio optimization problems with elliptical distributed returns for risk neutral and risk averse decision makers.

    NARCIS (Netherlands)

    B. Kaynar; S.I. Birbil (Ilker); J.B.G. Frenk (Hans)

    2007-01-01

    textabstractWe discuss a class of risk measures for portfolio optimization with linear loss functions, where the random returns of financial instruments have a multivariate elliptical distribution. Under this setting we pay special attention to two risk measures, Value-at-Risk and

  15. Mean-Variance portfolio optimization by using non constant mean and volatility based on the negative exponential utility function

    Science.gov (United States)

    Soeryana, Endang; Halim, Nurfadhlina Bt Abdul; Sukono, Rusyaman, Endang; Supian, Sudradjat

    2017-03-01

    Investments in stocks investors are also faced with the issue of risk, due to daily price of stock also fluctuate. For minimize the level of risk, investors usually forming an investment portfolio. Establishment of a portfolio consisting of several stocks are intended to get the optimal composition of the investment portfolio. This paper discussed about optimizing investment portfolio of Mean-Variance to stocks by using mean and volatility is not constant based on the Negative Exponential Utility Function. Non constant mean analyzed using models Autoregressive Moving Average (ARMA), while non constant volatility models are analyzed using the Generalized Autoregressive Conditional heteroscedastic (GARCH). Optimization process is performed by using the Lagrangian multiplier technique. As a numerical illustration, the method is used to analyze some stocks in Indonesia. The expected result is to get the proportion of investment in each stock analyzed

  16. Portfolio selection theory and wildlife management

    Directory of Open Access Journals (Sweden)

    JW Hearne

    2008-12-01

    Full Text Available With a strong commercial incentive driving the increase in game ranching in Southern Africa the need has come for more advanced management tools. In this paper the potential of Portfolio Selection Theory to determine the optimal mix of species on game ranches is explored. Land, or the food it produces, is a resource available to invest. We consider species as investment choices. Each species has its own return and risk profile. The question arises as to what proportion of the resource available should be invested in each species. We show that if the objective is to minimise risk for a given return, then the problem is analogous to the Portfolio Selection Problem. The method is then implemented for a typical game ranch. We show that besides risk and return objectives, it is necessary to include an additional objective so as to ensure sufficient species to maintain the character of a game ranch. Some other points of difference from the classical Portfolio Selection problem are also highlighted and discussed.

  17. IT PROJECT PORTFOLIO MANAGEMENT: MODULARITY PROBLEMS IN A PUBLIC ORGANIZATION

    DEFF Research Database (Denmark)

    Hansen, Lars Kristian; Mengiste, Shegaw Anagaw

    2012-01-01

    As today’s public and private sector organizations heavily rely on Information Technology (IT) to provide faster cycle times and better services, IT Project Portfolio Management (IT PPM) has become a high priority issue. This research adopts engaged scholarship to investigate IT PPM practices...... within a large local government. The investigation applies Modularity theory to analyze rich data from the local government covering several units with quite diverse functions to address the following two questions (1) which modularity problems does a public organization have in its IT PPM practices...... suggest a model addressing the identified problems by organizing IT PPM in three modules connected by three gateways. These results may be used to inform further research into IT PPM and to help managers improve IT PPM practices in public organizations. Keywords: IT Project Portfolio Management (IT PPM...

  18. Computing Optimal Stochastic Portfolio Execution Strategies: A Parametric Approach Using Simulations

    Science.gov (United States)

    Moazeni, Somayeh; Coleman, Thomas F.; Li, Yuying

    2010-09-01

    Computing optimal stochastic portfolio execution strategies under appropriate risk consideration presents great computational challenge. We investigate a parametric approach for computing optimal stochastic strategies using Monte Carlo simulations. This approach allows reduction in computational complexity by computing coefficients for a parametric representation of a stochastic dynamic strategy based on static optimization. Using this technique, constraints can be similarly handled using appropriate penalty functions. We illustrate the proposed approach to minimize the expected execution cost and Conditional Value-at-Risk (CVaR).

  19. Optimal Portfolio Rebalancing Strategy : Evidence from Finnish Stocks

    OpenAIRE

    Savage, Akinwunmi

    2010-01-01

    Portfolio rebalancing is an established concept in portfolio management and investing generally. Assets within a portfolio have different return and risk prospects, and this inevitably leads them to drift away from their initial allocation weights overtime. Portfolio rebalancing is arguably the only method by which such assets can be reset to their initial weights, thus ensuring the portfolio reflects the risk appetite of the investor. Like many other concepts and practices in finance, portfo...

  20. THE MAIN PROBLEMS OF THE STUDENTS’ ELECTRONIC PORTFOLIO FORMATION IN TERMS OF THE HIGHER EDUCATIONAL PROGRAMS

    Directory of Open Access Journals (Sweden)

    Yulia V. Dementieva

    2016-01-01

    Full Text Available The aim of the study is the description of the main problems of formation of the student’s electronic portfolio in the conditions of realization of Federal State Educational Standards of the Higher Education (FSES of HE.Methods.Theoretical analysis of scientific literature concerning the subject under discussion; monitoring of existing practices in modern Russian Universities procedures for the formation and maintenance of students electronic portfolio.Results. The author describes the main problems of the electronic students’ portfolio formation; some ways of solving described problems are offered.Scientific novelty concludes in the formation of key ideas of the electronic students’ portfolio based on the understanding of requirements of Federal State Educational Standards of Higher Education for the results of mastering educational programs. They are the formation of general cultural, general professional and professional competences.Practical significance. The researching results will become the theoretical basis for the systematic organization of the process of creating and maintaining an electronic students’ portfolio during the whole period of their studying at the university; the researching results can become a basis for methodological developments.

  1. A dynamic decision model for portfolio investment and assets management

    Institute of Scientific and Technical Information of China (English)

    QIAN Edward Y.; FENG Ying; HIGGISION James

    2005-01-01

    This paper addresses a dynamic portfolio investment problem. It discusses how we can dynamically choose candidate assets, achieve the possible maximum revenue and reduce the risk to the minimum level. The paper generalizes Markowitz's portfolio selection theory and Sharpe's rule for investment decision. An analytical solution is presented to show how an institutional or individual investor can combine Markowitz's portfolio selection theory, generalized Sharpe's rule and Value-at-Risk(VaR) to find candidate assets and optimal level of position sizes for investment (dis-investment). The result shows that the generalized Markowitz's portfolio selection theory and generalized Sharpe's rule improve decision making for investment.

  2. Portfolios with fuzzy returns: Selection strategies based on semi-infinite programming

    Science.gov (United States)

    Vercher, Enriqueta

    2008-08-01

    This paper provides new models for portfolio selection in which the returns on securities are considered fuzzy numbers rather than random variables. The investor's problem is to find the portfolio that minimizes the risk of achieving a return that is not less than the return of a riskless asset. The corresponding optimal portfolio is derived using semi-infinite programming in a soft framework. The return on each asset and their membership functions are described using historical data. The investment risk is approximated by mean intervals which evaluate the downside risk for a given fuzzy portfolio. This approach is illustrated with a numerical example.

  3. Risk Management of Interest Rate Derivative Portfolios: A Stochastic Control Approach

    Directory of Open Access Journals (Sweden)

    Konstantinos Kiriakopoulos

    2014-10-01

    Full Text Available In this paper we formulate the Risk Management Control problem in the interest rate area as a constrained stochastic portfolio optimization problem. The utility that we use can be any continuous function and based on the viscosity theory, the unique solution of the problem is guaranteed. The numerical approximation scheme is presented and applied using a single factor interest rate model. It is shown how the whole methodology works in practice, with the implementation of the algorithm for a specific interest rate portfolio. The recent financial crisis showed that risk management of derivatives portfolios especially in the interest rate market is crucial for the stability of the financial system. Modern Value at Risk (VAR and Conditional Value at Risk (CVAR techniques, although very useful and easy to understand, fail to grasp the need for on-line controlling and monitoring of derivatives portfolio. The portfolios should be designed in a way that risk and return be quantified and controlled in every possible state of the world. We hope that this methodology contributes towards this direction.

  4. Transforming local government by project portfolio management: Identifying and overcoming control problems

    DEFF Research Database (Denmark)

    Hansen, Lars Kristian

    2013-01-01

    Purpose – As public organizations strive for higher e-government maturity, information technology (IT) Project Portfolio Management (IT PPM) has become a high priority issue. Assuming control is central in IT PPM, the purpose of this paper is to investigate how a Danish local government conducts...... to understand how local governments can improve IT PPM. Keywords IT project portfolio management, E-government, Control theory, Control problems, Formal mechanisms, Informal mechanisms, Local government, Denmark...... control in IT PPM. The authors identify control problems and formulate recommendations to address these. Design/methodology/approach – Adopting principles from Engaged Scholarship, the authors have conducted a case study using a wide variety of data collection methods, including 29 interviews, one...

  5. A comparison of portfolio selection models via application on ISE 100 index data

    Science.gov (United States)

    Altun, Emrah; Tatlidil, Hüseyin

    2013-10-01

    Markowitz Model, a classical approach to portfolio optimization problem, relies on two important assumptions: the expected return is multivariate normally distributed and the investor is risk averter. But this model has not been extensively used in finance. Empirical results show that it is very hard to solve large scale portfolio optimization problems with Mean-Variance (M-V)model. Alternative model, Mean Absolute Deviation (MAD) model which is proposed by Konno and Yamazaki [7] has been used to remove most of difficulties of Markowitz Mean-Variance model. MAD model don't need to assume that the probability of the rates of return is normally distributed and based on Linear Programming. Another alternative portfolio model is Mean-Lower Semi Absolute Deviation (M-LSAD), which is proposed by Speranza [3]. We will compare these models to determine which model gives more appropriate solution to investors.

  6. A behavioural approach to financial portfolio selection problem: an empirical study using heuristics

    OpenAIRE

    Grishina, Nina

    2014-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University The behaviourally based portfolio selection problem with investor's loss aversion and risk aversion biases in portfolio choice under uncertainty are studied. The main results of this work are developed heuristic approaches for the prospect theory and cumulative prospect theory models proposed by Kahneman and Tversky in 1979 and 1992 as well as an empirical comparative analysis of these models ...

  7. Optimal portfolio selection for cashflows with bounded capital at risk

    NARCIS (Netherlands)

    Vyncke, D.; Goovaerts, M.J.; Dhaene, J.L.M.; Vanduffel, S.

    2005-01-01

    We consider a continuous-time Markowitz type portfolio problem that consists of minimizing the discounted cost of a given cash-fl ow under the constraint of a restricted Capital at Risk. In a Black-Scholes setting, upper and lower bounds are obtained by means of simple analytical expressions that

  8. A Class of Optimal Portfolio Liquidation Problems with a Linear Decreasing Impact

    Directory of Open Access Journals (Sweden)

    Jiangming Ma

    2017-01-01

    Full Text Available A problem of an optimal liquidation is investigated by using the Almgren-Chriss market impact model on the background that the n agents liquidate assets completely. The impact of market is divided into three components: unaffected price process, permanent impact, and temporary impact. The key element is that the variable temporary market impact is analyzed. When the temporary market impact is decreasing linearly, the optimal problem is described by a Nash equilibrium in finite time horizon. The stochastic component of the price process is eliminated from the mean-variance. Mathematically, the Nash equilibrium is considered as the second-order linear differential equation with variable coefficients. We prove the existence and uniqueness of solutions for the differential equation with two boundaries and find the closed-form solutions in special situations. The numerical examples and properties of the solution are given. The corresponding finance phenomenon is interpreted.

  9. Simulated annealing algorithm for optimal capital growth

    Science.gov (United States)

    Luo, Yong; Zhu, Bo; Tang, Yong

    2014-08-01

    We investigate the problem of dynamic optimal capital growth of a portfolio. A general framework that one strives to maximize the expected logarithm utility of long term growth rate was developed. Exact optimization algorithms run into difficulties in this framework and this motivates the investigation of applying simulated annealing optimized algorithm to optimize the capital growth of a given portfolio. Empirical results with real financial data indicate that the approach is inspiring for capital growth portfolio.

  10. Essays on Rational Portfolio Theory

    DEFF Research Database (Denmark)

    Nielsen, Simon Ellersgaard

    market prices, we findonly a very modest improvement in portfolio wealth over the corresponding strategy whichonly trades in bonds and stocks. Optimal Hedge Tracking Portfolios in a Limit Order Book. In this paper we developa control theoretic solution to the manner in which a portfolio manager optimally...... shouldtrack a targeted D, given that he wishes to hedge a short position in European call optionsthe underlying of which is traded in a limit order book. Specifically, we are interested in theinterplay between posting limit and market orders respectively: when should the portfoliomanager do what (and at what......’s theory of optimal portfolio selection for wealth maximisingagents. In this paper we present a systematic analysis of the optimal asset allocation in aderivative-free market for the Heston model, the 3/2 model, and a Fong Vasicek type model.Under the assumption that the market price of risk...

  11. Adaptive Portfolio Optimization for Multiple Electricity Markets Participation.

    Science.gov (United States)

    Pinto, Tiago; Morais, Hugo; Sousa, Tiago M; Sousa, Tiago; Vale, Zita; Praca, Isabel; Faia, Ricardo; Pires, Eduardo Jose Solteiro

    2016-08-01

    The increase of distributed energy resources, mainly based on renewable sources, requires new solutions that are able to deal with this type of resources' particular characteristics (namely, the renewable energy sources intermittent nature). The smart grid concept is increasing its consensus as the most suitable solution to facilitate the small players' participation in electric power negotiations while improving energy efficiency. The opportunity for players' participation in multiple energy negotiation environments (smart grid negotiation in addition to the already implemented market types, such as day-ahead spot markets, balancing markets, intraday negotiations, bilateral contracts, forward and futures negotiations, and among other) requires players to take suitable decisions on whether to, and how to participate in each market type. This paper proposes a portfolio optimization methodology, which provides the best investment profile for a market player, considering different market opportunities. The amount of power that each supported player should negotiate in each available market type in order to maximize its profits, considers the prices that are expected to be achieved in each market, in different contexts. The price forecasts are performed using artificial neural networks, providing a specific database with the expected prices in the different market types, at each time. This database is then used as input by an evolutionary particle swarm optimization process, which originates the most advantage participation portfolio for the market player. The proposed approach is tested and validated with simulations performed in multiagent simulator of competitive electricity markets, using real electricity markets data from the Iberian operator-MIBEL.

  12. Are oil and gas stocks from the Australian market riskier than coal and uranium stocks? Dependence risk analysis and portfolio optimization

    International Nuclear Information System (INIS)

    Arreola Hernandez, Jose

    2014-01-01

    This article models the dependence risk and resource allocation characteristics of two 20-stock coal–uranium and oil–gas sector portfolios from the Australian market in the context of the global financial crisis of 2008–2009. The modeling framework implemented consists of pair vine copulas and, linear and nonlinear portfolio optimization methods with respect to five risk measures. The paper's objectives are to find out if the oil and gas stocks are riskier than the coal and uranium stocks, to identify the optimization method and risk measure that produce the best risk-return trade-off, to recognize the stocks in which the optimal weight allocations converge on average, and to acknowledge the vine copula model that best accounts for the overall dependence of the energy portfolios. The research findings indicate that the oil stocks have higher dependence risk than the coal, uranium and gas stocks in financial crisis periods. The higher risk of the oil stocks is confirmed by the larger concentration of symmetric and asymmetric dependence they have in the negative tail. The canonical vine (c-vine) copula model is observed to better capture the overall dependence of the energy portfolios. The combination of a pair c-vine copula and nonlinear portfolio optimization produces the highest return relative to risk. The optimal weight allocations converge on average in some stocks. - Highlights: • Vine copula dependence modeling of coal, uranium, oil and gas stocks • Oil stocks are riskier than coal, uranium and gas stocks in financial crisis periods. • The c-vine model better captures the overall dependence of the energy portfolios. • Vine copulas and nonlinear optimization combined produce the best results. • The optimal weight allocations converge on average in some stocks

  13. Application of a General Risk Management Model to Portfolio Optimization Problems with Elliptical Distributed Returns for Risk Neutral and Risk Averse Decision Makers

    NARCIS (Netherlands)

    B. Kaynar; S.I. Birbil (Ilker); J.B.G. Frenk (Hans)

    2007-01-01

    textabstractIn this paper portfolio problems with linear loss functions and multivariate elliptical distributed returns are studied. We consider two risk measures, Value-at-Risk and Conditional-Value-at-Risk, and two types of decision makers, risk neutral and risk averse. For Value-at-Risk, we show

  14. Mean-variance portfolio selection for defined-contribution pension funds with stochastic salary.

    Science.gov (United States)

    Zhang, Chubing

    2014-01-01

    This paper focuses on a continuous-time dynamic mean-variance portfolio selection problem of defined-contribution pension funds with stochastic salary, whose risk comes from both financial market and nonfinancial market. By constructing a special Riccati equation as a continuous (actually a viscosity) solution to the HJB equation, we obtain an explicit closed form solution for the optimal investment portfolio as well as the efficient frontier.

  15. Mean-Variance Portfolio Selection for Defined-Contribution Pension Funds with Stochastic Salary

    OpenAIRE

    Chubing Zhang

    2014-01-01

    This paper focuses on a continuous-time dynamic mean-variance portfolio selection problem of defined-contribution pension funds with stochastic salary, whose risk comes from both financial market and nonfinancial market. By constructing a special Riccati equation as a continuous (actually a viscosity) solution to the HJB equation, we obtain an explicit closed form solution for the optimal investment portfolio as well as the efficient frontier.

  16. Continuous-Time Mean-Variance Portfolio Selection: A Stochastic LQ Framework

    International Nuclear Information System (INIS)

    Zhou, X.Y.; Li, D.

    2000-01-01

    This paper is concerned with a continuous-time mean-variance portfolio selection model that is formulated as a bicriteria optimization problem. The objective is to maximize the expected terminal return and minimize the variance of the terminal wealth. By putting weights on the two criteria one obtains a single objective stochastic control problem which is however not in the standard form due to the variance term involved. It is shown that this nonstandard problem can be 'embedded' into a class of auxiliary stochastic linear-quadratic (LQ) problems. The stochastic LQ control model proves to be an appropriate and effective framework to study the mean-variance problem in light of the recent development on general stochastic LQ problems with indefinite control weighting matrices. This gives rise to the efficient frontier in a closed form for the original portfolio selection problem

  17. Perhitungan Value at Risk Pada Portfolio Optimal: Studi Perbandingan Saham Syariah dan Saham Konvensional

    Directory of Open Access Journals (Sweden)

    Sri Astuti Heryanti

    2017-05-01

    Full Text Available The aim of this study was to obtain empirical evidence about the difference between the level of risk when investing stocks in the Islamic and conventional by using Value at Risk (VaR. The object of research including consistent stock in the Jakarta Islamic Index and LQ45. The analytical method used in this research is quantitative analysis consisting of the establishment of the optimal portfolio by Markowitz method, calculation of VaR and testing the differences with Independent sample t-test. This study indicated that the value every stock can be reduced by diversifying through the establishment of an optimal portfolio. Based on the calculation Independent sample t-test, it is known that there is no difference between VaR of Islamic stocks and conventional stocks.

  18. Fuzzy Investment Portfolio Selection Models Based on Interval Analysis Approach

    Directory of Open Access Journals (Sweden)

    Haifeng Guo

    2012-01-01

    Full Text Available This paper employs fuzzy set theory to solve the unintuitive problem of the Markowitz mean-variance (MV portfolio model and extend it to a fuzzy investment portfolio selection model. Our model establishes intervals for expected returns and risk preference, which can take into account investors' different investment appetite and thus can find the optimal resolution for each interval. In the empirical part, we test this model in Chinese stocks investment and find that this model can fulfill different kinds of investors’ objectives. Finally, investment risk can be decreased when we add investment limit to each stock in the portfolio, which indicates our model is useful in practice.

  19. Robust Utility Maximization Under Convex Portfolio Constraints

    International Nuclear Information System (INIS)

    Matoussi, Anis; Mezghani, Hanen; Mnif, Mohamed

    2015-01-01

    We study a robust maximization problem from terminal wealth and consumption under a convex constraints on the portfolio. We state the existence and the uniqueness of the consumption–investment strategy by studying the associated quadratic backward stochastic differential equation. We characterize the optimal control by using the duality method and deriving a dynamic maximum principle

  20. Portfolio optimization using fundamental indicators based on multi-objective EA

    CERN Document Server

    Silva, Antonio Daniel; Horta, Nuno

    2016-01-01

    This work presents a new approach to portfolio composition in the stock market. It incorporates a fundamental approach using financial ratios and technical indicators with a Multi-Objective Evolutionary Algorithms to choose the portfolio composition with two objectives the return and the risk. Two different chromosomes are used for representing different investment models with real constraints equivalents to the ones faced by managers of mutual funds, hedge funds, and pension funds. To validate the present solution two case studies are presented for the SP&500 for the period June 2010 until end of 2012. The simulations demonstrates that stock selection based on financial ratios is a combination that can be used to choose the best companies in operational terms, obtaining returns above the market average with low variances in their returns. In this case the optimizer found stocks with high return on investment in a conjunction with high rate of growth of the net income and a high profit margin. To obtain s...

  1. Mean-Variance Portfolio Selection for Defined-Contribution Pension Funds with Stochastic Salary

    Directory of Open Access Journals (Sweden)

    Chubing Zhang

    2014-01-01

    Full Text Available This paper focuses on a continuous-time dynamic mean-variance portfolio selection problem of defined-contribution pension funds with stochastic salary, whose risk comes from both financial market and nonfinancial market. By constructing a special Riccati equation as a continuous (actually a viscosity solution to the HJB equation, we obtain an explicit closed form solution for the optimal investment portfolio as well as the efficient frontier.

  2. Mean-Variance Portfolio Selection for Defined-Contribution Pension Funds with Stochastic Salary

    Science.gov (United States)

    Zhang, Chubing

    2014-01-01

    This paper focuses on a continuous-time dynamic mean-variance portfolio selection problem of defined-contribution pension funds with stochastic salary, whose risk comes from both financial market and nonfinancial market. By constructing a special Riccati equation as a continuous (actually a viscosity) solution to the HJB equation, we obtain an explicit closed form solution for the optimal investment portfolio as well as the efficient frontier. PMID:24782667

  3. Minimization of the root of a quadratic functional under a system of affine equality constraints with application to portfolio management

    Science.gov (United States)

    Landsman, Zinoviy

    2008-10-01

    We present an explicit closed form solution of the problem of minimizing the root of a quadratic functional subject to a system of affine constraints. The result generalizes Z. Landsman, Minimization of the root of a quadratic functional under an affine equality constraint, J. Comput. Appl. Math. 2007, to appear, see sciencedirect.com/science/journal/03770427>, articles in press, where the optimization problem was solved under only one linear constraint. This is of interest for solving significant problems pertaining to financial economics as well as some classes of feasibility and optimization problems which frequently occur in tomography and other fields. The results are illustrated in the problem of optimal portfolio selection and the particular case when the expected return of finance portfolio is certain is discussed.

  4. Optimal annuity portfolio under inflation risk

    DEFF Research Database (Denmark)

    Konicz, Agnieszka Karolina; Pisinger, David; Weissensteiner, Alex

    2015-01-01

    The paper investigates the importance of in ation-linked annuities to individuals facing in ation risk. Given the investment opportunities in nominal, real, and variable annuities, as well as cash and stocks, we investigate the consumption and investment decisions under two different objective fu...... and risk aversion, real annuities are a crucial asset in every portfolio. In addition, without investing in real annuities, the retiree has to rebalance the portfolio more frequently, and still obtains the lower and more volatile real consumption....

  5. Flightdeck Automation Problems (FLAP) Model for Safety Technology Portfolio Assessment

    Science.gov (United States)

    Ancel, Ersin; Shih, Ann T.

    2014-01-01

    NASA's Aviation Safety Program (AvSP) develops and advances methodologies and technologies to improve air transportation safety. The Safety Analysis and Integration Team (SAIT) conducts a safety technology portfolio assessment (PA) to analyze the program content, to examine the benefits and risks of products with respect to program goals, and to support programmatic decision making. The PA process includes systematic identification of current and future safety risks as well as tracking several quantitative and qualitative metrics to ensure the program goals are addressing prominent safety risks accurately and effectively. One of the metrics within the PA process involves using quantitative aviation safety models to gauge the impact of the safety products. This paper demonstrates the role of aviation safety modeling by providing model outputs and evaluating a sample of portfolio elements using the Flightdeck Automation Problems (FLAP) model. The model enables not only ranking of the quantitative relative risk reduction impact of all portfolio elements, but also highlighting the areas with high potential impact via sensitivity and gap analyses in support of the program office. Although the model outputs are preliminary and products are notional, the process shown in this paper is essential to a comprehensive PA of NASA's safety products in the current program and future programs/projects.

  6. An inequality for detecting financial fraud, derived from the Markowitz Optimal Portfolio Theory

    Science.gov (United States)

    Bard, Gregory V.

    2016-12-01

    The Markowitz Optimal Portfolio Theory, published in 1952, is well-known, and was often taught because it blends Lagrange Multipliers, matrices, statistics, and mathematical finance. However, the theory faded from prominence in American investing, as Business departments at US universities shifted from techniques based on mathematics, finance, and statistics, to focus instead on leadership, public speaking, interpersonal skills, advertising, etc… The author proposes a new application of Markowitz's Theory: the detection of a fairly broad category of financial fraud (called "Ponzi schemes" in American newspapers) by looking at a particular inequality derived from the Markowitz Optimal Portfolio Theory, relating volatility and expected rate of return. For example, one recent Ponzi scheme was that of Bernard Madoff, uncovered in December 2008, which comprised fraud totaling 64,800,000,000 US dollars [23]. The objective is to compare investments with the "efficient frontier" as predicted by Markowitz's theory. Violations of the inequality should be impossible in theory; therefore, in practice, violations might indicate fraud.

  7. Efficient Cardinality/Mean-Variance Portfolios

    OpenAIRE

    Brito, R. Pedro; Vicente, Luís Nunes

    2014-01-01

    International audience; We propose a novel approach to handle cardinality in portfolio selection, by means of a biobjective cardinality/mean-variance problem, allowing the investor to analyze the efficient tradeoff between return-risk and number of active positions. Recent progress in multiobjective optimization without derivatives allow us to robustly compute (in-sample) the whole cardinality/mean-variance efficient frontier, for a variety of data sets and mean-variance models. Our results s...

  8. Comparison of Portfolio Selection and Performance: Shari’ah-Compliant and Socially Responsible Investment Portfolios

    Directory of Open Access Journals (Sweden)

    Mehmet Asutay

    2015-04-01

    Full Text Available This study examines the effect of Islamic screening criteria on Shari’ah-compliant portfolio selection and performance compared to Socially Responsible Investment (SRI portfolio. Each portfolio constructed from 15 stocks based on FTSE 100 using data from year 1997. Mean-variance portfolio optimization is employed with some financial ratios added as constraints for the Shari’ah portfolio. Annual expected return of each portfolio from 2008 to 2013 is used to calculate Sharpe’s ratio, Treynor ratio and Jensen’s alpha as the performance measurement tools. Macroeconomic variables are assessed using ordinary least square to examine whether they influence the portfolios’ expected returns or not. The result finds that Shari’ah portfolio has a better performance than SRI from year 2008 to 2010 shown by higher value of the measurement tools. However, from 2011 to 2013, SRI portfolio has better performance than Shari’ah portfolio

  9. HSTLBO: A hybrid algorithm based on Harmony Search and Teaching-Learning-Based Optimization for complex high-dimensional optimization problems.

    Directory of Open Access Journals (Sweden)

    Shouheng Tuo

    Full Text Available Harmony Search (HS and Teaching-Learning-Based Optimization (TLBO as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application.

  10. Household portfolios and implicit risk aversion

    NARCIS (Netherlands)

    Bucciol, A.; Miniaci, R.

    2008-01-01

    We derive from a sample of US households the distribution of the risk aversion implicit in their portfolio choice. Our estimate minimizes the distance between the certainty equivalent return generated with observed portfolios and portfolios that are optimal in a mean-variance framework. Taking into

  11. The current account as a dynamic portfolio choice problem

    OpenAIRE

    Didier, Tatiana; Lowenkron, Alexandre

    2009-01-01

    The current account can be understood as the outcome of investment decisions made by domestic and foreign investors. These decisions can be decomposed into a portfolio rebalancing and a portfolio growth component. This paper provides empirical evidence of the importance of portfolio rebalancing for the dynamics of the current account. The authors evaluate the predictions of a partial-equil...

  12. Portfolio optimization and the random magnet problem

    Science.gov (United States)

    Rosenow, B.; Plerou, V.; Gopikrishnan, P.; Stanley, H. E.

    2002-08-01

    Diversification of an investment into independently fluctuating assets reduces its risk. In reality, movements of assets are mutually correlated and therefore knowledge of cross-correlations among asset price movements are of great importance. Our results support the possibility that the problem of finding an investment in stocks which exposes invested funds to a minimum level of risk is analogous to the problem of finding the magnetization of a random magnet. The interactions for this "random magnet problem" are given by the cross-correlation matrix C of stock returns. We find that random matrix theory allows us to make an estimate for C which outperforms the standard estimate in terms of constructing an investment which carries a minimum level of risk.

  13. Continuous-time mean-variance portfolio selection with value-at-risk and no-shorting constraints

    Science.gov (United States)

    Yan, Wei

    2012-01-01

    An investment problem is considered with dynamic mean-variance(M-V) portfolio criterion under discontinuous prices which follow jump-diffusion processes according to the actual prices of stocks and the normality and stability of the financial market. The short-selling of stocks is prohibited in this mathematical model. Then, the corresponding stochastic Hamilton-Jacobi-Bellman(HJB) equation of the problem is presented and the solution of the stochastic HJB equation based on the theory of stochastic LQ control and viscosity solution is obtained. The efficient frontier and optimal strategies of the original dynamic M-V portfolio selection problem are also provided. And then, the effects on efficient frontier under the value-at-risk constraint are illustrated. Finally, an example illustrating the discontinuous prices based on M-V portfolio selection is presented.

  14. Vast Portfolio Selection with Gross-exposure Constraints().

    Science.gov (United States)

    Fan, Jianqing; Zhang, Jingjin; Yu, Ke

    2012-01-01

    We introduce the large portfolio selection using gross-exposure constraints. We show that with gross-exposure constraint the empirically selected optimal portfolios based on estimated covariance matrices have similar performance to the theoretical optimal ones and there is no error accumulation effect from estimation of vast covariance matrices. This gives theoretical justification to the empirical results in Jagannathan and Ma (2003). We also show that the no-short-sale portfolio can be improved by allowing some short positions. The applications to portfolio selection, tracking, and improvements are also addressed. The utility of our new approach is illustrated by simulation and empirical studies on the 100 Fama-French industrial portfolios and the 600 stocks randomly selected from Russell 3000.

  15. An Ad-Hoc Initial Solution Heuristic for Metaheuristic Optimization of Energy Market Participation Portfolios

    Directory of Open Access Journals (Sweden)

    Ricardo Faia

    2017-06-01

    Full Text Available The deregulation of the electricity sector has culminated in the introduction of competitive markets. In addition, the emergence of new forms of electric energy production, namely the production of renewable energy, has brought additional changes in electricity market operation. Renewable energy has significant advantages, but at the cost of an intermittent character. The generation variability adds new challenges for negotiating players, as they have to deal with a new level of uncertainty. In order to assist players in their decisions, decision support tools enabling assisting players in their negotiations are crucial. Artificial intelligence techniques play an important role in this decision support, as they can provide valuable results in rather small execution times, namely regarding the problem of optimizing the electricity markets participation portfolio. This paper proposes a heuristic method that provides an initial solution that allows metaheuristic techniques to improve their results through a good initialization of the optimization process. Results show that by using the proposed heuristic, multiple metaheuristic optimization methods are able to improve their solutions in a faster execution time, thus providing a valuable contribution for players support in energy markets negotiations.

  16. Portfolio optimization in the cryptocurrency market : an evaluation of the performance of momentum strategies in the cryptocurrency market and cryptocurrency’s place in an optimized investment portfolio

    OpenAIRE

    Bjordal, Andreas; Opdahl, Espen

    2017-01-01

    In this paper, we rigorously investigate the benefit of utilizing an active investment strategy based on momentum when investing in cryptocurrencies. We also examine how including cryptocurrencies in a more traditional asset allocation can optimize an investment portfolio. First, we create strategies with the use of exponential moving averages and simple average filters to generate a trading signal. Second, we provide evidence that the active strategies receive positive return,...

  17. Portfolio theory and the alternative decision rule of cost-effectiveness analysis: theoretical and practical considerations.

    Science.gov (United States)

    Sendi, Pedram; Al, Maiwenn J; Gafni, Amiram; Birch, Stephen

    2004-05-01

    Bridges and Terris (Soc. Sci. Med. (2004)) critique our paper on the alternative decision rule of economic evaluation in the presence of uncertainty and constrained resources within the context of a portfolio of health care programs (Sendi et al. Soc. Sci. Med. 57 (2003) 2207). They argue that by not adopting a formal portfolio theory approach we overlook the optimal solution. We show that these arguments stem from a fundamental misunderstanding of the alternative decision rule of economic evaluation. In particular, the portfolio theory approach advocated by Bridges and Terris is based on the same theoretical assumptions that the alternative decision rule set out to relax. Moreover, Bridges and Terris acknowledge that the proposed portfolio theory approach may not identify the optimal solution to resource allocation problems. Hence, it provides neither theoretical nor practical improvements to the proposed alternative decision rule.

  18. On the Computation of the Efficient Frontier of the Portfolio Selection Problem

    Directory of Open Access Journals (Sweden)

    Clara Calvo

    2012-01-01

    Full Text Available An easy-to-use procedure is presented for improving the ε-constraint method for computing the efficient frontier of the portfolio selection problem endowed with additional cardinality and semicontinuous variable constraints. The proposed method provides not only a numerical plotting of the frontier but also an analytical description of it, including the explicit equations of the arcs of parabola it comprises and the change points between them. This information is useful for performing a sensitivity analysis as well as for providing additional criteria to the investor in order to select an efficient portfolio. Computational results are provided to test the efficiency of the algorithm and to illustrate its applications. The procedure has been implemented in Mathematica.

  19. Essays on intertemporal consumption and portfolio choice

    NARCIS (Netherlands)

    van Bilsen, Servaas

    2015-01-01

    This dissertation consists of two parts, preceded by an introductory chapter. Part I (Chapters 2, 3 and 4) considers optimal consumption and portfolio choice using preference models. Chapter 2 analyzes optimal consumption and portfolio choice under loss aversion and endogenous updating of the

  20. Delegated Portfolio Management and Optimal Allocation of Portfolio Managers

    DEFF Research Database (Denmark)

    Christensen, Michael; Vangsgaard Christensen, Michael; Gamskjaer, Ken

    2015-01-01

    In this article, we investigate whether the application of the mean-variance framework on portfolio manager allocation offers any out-of-sample benefits compared to a naïve strategy of equal weighting. Based on an exclusive data-set of high-net-worth (HNW) investors, we utilize a wide variety of ...

  1. Portfolio Management with Stochastic Interest Rates and Inflation Ambiguity

    DEFF Research Database (Denmark)

    Munk, Claus; Rubtsov, Alexey Vladimirovich

    We solve a stock-bond-cash portfolio choice problem for a risk- and ambiguity-averse investor in a setting where the inflation rate and interest rates are stochastic. The expected inflation rate is unobservable, but the investor may learn about it from realized inflation and observed stock and bond......-Jacobi-Bellman equation in closed form and derive and illustrate a number of interesting properties of the solution. For example, ambiguity aversion affects the optimal portfolio through the correlation of price level with the stock index, a bond, and the expected inflation rate. Furthermore, unlike other settings...

  2. Vast Portfolio Selection with Gross-exposure Constraints*

    Science.gov (United States)

    Fan, Jianqing; Zhang, Jingjin; Yu, Ke

    2012-01-01

    We introduce the large portfolio selection using gross-exposure constraints. We show that with gross-exposure constraint the empirically selected optimal portfolios based on estimated covariance matrices have similar performance to the theoretical optimal ones and there is no error accumulation effect from estimation of vast covariance matrices. This gives theoretical justification to the empirical results in Jagannathan and Ma (2003). We also show that the no-short-sale portfolio can be improved by allowing some short positions. The applications to portfolio selection, tracking, and improvements are also addressed. The utility of our new approach is illustrated by simulation and empirical studies on the 100 Fama-French industrial portfolios and the 600 stocks randomly selected from Russell 3000. PMID:23293404

  3. Lost opportunities and future avenues to reconcile hydropower and sediment transport in the Mekong Basin through optimal sequencing of dam portfolios.

    Science.gov (United States)

    Castelletti, A.; Schmitt, R. J. P.; Bizzi, S.; Kondolf, G. M.

    2017-12-01

    Dams are essential to meet growing water and energy demands. While dams cumulatively impact downstream rivers on network-scales, dam development is mostly based on ad-hoc economic and environmental assessments of single dams. Here, we provide evidence that replacing this ad-hoc approach with early strategic planning of entire dam portfolios can greatly reduce conflicts between economic and environmental objectives of dams. In the Mekong Basin (800,000km2), 123 major dam sites (status-quo: 56 built and under construction) could generate 280,000 GWh/yr of hydropower. Cumulatively, dams risk interrupting the basin's sediment dynamics with severe impacts on livelihoods and eco-systems. To evaluate cumulative impacts and benefits of the ad-hoc planned status-quo portfolio, we combine the CASCADE sediment connectivity model with data on hydropower production and sediment trapping at each dam site. We couple CASCADE to a multi-objective genetic algorithm (BORG) identifying a) portfolios resulting in an optimal trade-off between cumulative sediment trapping and hydropower production and b) an optimal development sequence for each portfolio. We perform this analysis first for the pristine basin (i.e., without pre-existing dams) and then starting from the status-quo portfolio, deriving policy recommendations for which dams should be prioritized in the near future. The status-quo portfolio creates a sub-optimal trade-off between hydropower and sediment trapping, exploiting 50 % of the basin's hydro-electric potential and trapping 60 % of the sediment load. Alternative optimal portfolios could have produced equivalent hydropower for 30 % sediment trapping. Imminent development of mega-dams in the lower basin will increase hydropower production by 20 % but increase sediment trapping to >90 %. In contrast, following an optimal development sequence can still increase hydropower by 30 % with limited additional sediment trapping by prioritizing dams in upper parts of the basin. Our

  4. Electricity Portfolio Management: Optimal Peak / Off-Peak Allocations

    NARCIS (Netherlands)

    R. Huisman (Ronald); R.J. Mahieu (Ronald); F. Schlichter (Felix)

    2007-01-01

    textabstractElectricity purchasers manage a portfolio of contracts in order to purchase the expected future electricity consumption profile of a company or a pool of clients. This paper proposes a mean-variance framework to address the concept of structuring the portfolio and focuses on how to

  5. Optimization of investment portfolio weight of stocks affected by market index

    Science.gov (United States)

    Azizah, E.; Rusyaman, E.; Supian, S.

    2017-01-01

    Stock price assessment, selection of optimum combination, and measure the risk of a portfolio investment is one important issue for investors. In this paper single index model used for the assessment of the stock price, and formulation optimization model developed using Lagrange multiplier technique to determine the proportion of assets to be invested. The level of risk is estimated by using variance. These models are used to analyse the stock price data Lippo Bank and Bumi Putera.

  6. Power utility generation portfolio optimization as function of specific RES and decarbonisation targets – EPBiH case study

    International Nuclear Information System (INIS)

    Kazagic, Anes; Merzic, Ajla; Redzic, Elma; Music, Mustafa

    2014-01-01

    Highlights: • Guidelines for power utilities to reach specific decarbonisation targets offered. • Optimization model of RES share to be introduced into power system is proposed. • Single criteria analysis and multicriteria sustainability assessment are applied. • The optimization method has been demonstrated on a real power system. • In the considered case, HIGH RES scenario showed to be the preferable one. - Abstract: This paper provides guidelines and principles for power utilities to reach specific energy and decarbonisation targets. Method of power generation portfolio optimization, as function of sustainability and decarbonisation, along with appropriate criteria, has been proposed. Application of this optimization method has been demonstrated on a real power system – power utility JP Elektroprivreda BiH d.d. – Sarajevo (EPBiH), a typical example of South East European power system. The software tool WASP IV has been employed in the analysis, in order to define the dynamics and an optimized expansion of generation portfolio of the power system under consideration for the next period. The mid-term generation portfolio development plan for the EPBiH power system until year 2030 has been made during this research, taking into account the shutdown dynamics of existing power units and commissioning new ones, in order to provide safe supply of electric and heat energy for local consumers. Three basic scenario of renewable energy sources (RES) expansion have been analysed to reach specific RES and decarbonisation targets set for 2030, including RES share increase from the current level of 18% up to 35% (LOW RES), 45% (MID RES) and 55% (HIGH RES). Effects to the sustainability are considered through environmental, economic and social indicators. Multicriteria sustainability assessment gave an advantage to the HIGH RES, under assumption of equal weighting factors of economic and environment groups of indicators. Also, single criteria analysis has been

  7. The Optimal Allocation for Capital Preservation: an Evidence Australian Portfolio

    Directory of Open Access Journals (Sweden)

    Riznaldi Akbar

    2018-05-01

    Full Text Available This study analyzes optimal asset mix for Australian portfolios with the main investment objective for capital preservation. An alternative measure of risk of annual maximum drawdown has been used to reflect investor preference for capital preservation as opposed to conventional risk measure of standard deviation and variance. The contribution of the study is two folds. First, this study has put different perspective to look at portfolio risk in the view of capital preservation. Second, the optimal weight for asset class mix that minimizes annual maximum drawdown has been analyzed for the case of Australian market. The results suggest that for capital preservation, investors should expect lower returns and need to put a greater allocation on less risky assets such as cash or bond. To this end, cash and bond have provided stable long term annual returns along with contained level of annual maximum drawdowns. In contrast, when investors demand higher expected return, they should increase asset allocation into stocks (equities market at the expense of higher maximum drawdowns. Bahasa Indonesia Abstrak: Studi ini menganalisis bauran aset optimal untuk portofolio Australia dengan tujuan investasi utama untuk pelestarian modal. Ukuran alternatif risiko penarikan maksimum tahunan telah digunakan untuk mencerminkan preferensi investor untuk pelestarian modal dibandingkan dengan ukuran risiko konvensional standar deviasi dan varians. Kontribusi dari penelitian ini adalah dua lipatan. Pertama, penelitian ini telah menempatkan perspektif yang berbeda untuk melihat risiko portofolio dalam pandangan pelestarian modal. Kedua, bobot optimal untuk campuran kelas aset yang meminimalkan penarikan maksimum tahunan telah dianalisis untuk kasus pasar Australia. Hasilnya menunjukkan bahwa untuk pelestarian modal, investor harus mengharapkan pengembalian yang lebih rendah dan perlu menempatkan alokasi yang lebih besar pada aset yang kurang berisiko seperti uang tunai

  8. Choosing an Optimal e-Portfolio System for the Institution

    OpenAIRE

    YAMAMOTO, Toshiyuki

    2010-01-01

    Implementing an e-Portfolio system to enhance educational processes and outcomes has been becoming a hot issue among the Japanese universities that are ambitious in resetting their mission statements. In such universities, defining purposes, clearly stating what to be focused, learning processes, and expected outcomes are the critical issues in the development of their original e-Portfolio system. However, not all institutions are aware that e-Portfolio has advantages and disadvantages. One o...

  9. ) Application of Value Management and Portfolio Optimization to the Nigerian Market

    International Nuclear Information System (INIS)

    Agbonyeme, C.

    2003-01-01

    The desire to thoroughly analyze the economic value of oil, gas and non-oil properties in Nigeria is increasing fast.This analysis is especially important for marginal fields where the borderline between technical success and financial disaster is small. Also, with the objective to increase daily output of oil to 4 million bbl/day by the year 2005 many dormant fields are re-appraised. This has to be done technically and financially. Oil and gas companies that optimize their portfolio through acquisition and divestiture face a lot of challenges. These challenges include decisions of whether to invest or divest, preparation of a divestiture package for analysis, and also the definition of a company's own most suitable economic performance indicators. In this evaluation process, the understanding and proper modelling of the local fiscal regime is of paramount importance. A quick and efficient method is presented which accounts for the complexity of the Nigerian fiscal regime-for computing the value of fields, analyzing the risks associated with a project and selecting the most profitable project from a range of available projects or portfolios. Tools for facilitating this multifaceted decision making process will be discussed as well as latest probabilistic techniques discussed as well as latest probabilistic techniques and optimization strategies. Example cases showing the successful application of these techniques in Nigeria will round off this paper

  10. Concurrent credit portfolio losses.

    Science.gov (United States)

    Sicking, Joachim; Guhr, Thomas; Schäfer, Rudi

    2018-01-01

    We consider the problem of concurrent portfolio losses in two non-overlapping credit portfolios. In order to explore the full statistical dependence structure of such portfolio losses, we estimate their empirical pairwise copulas. Instead of a Gaussian dependence, we typically find a strong asymmetry in the copulas. Concurrent large portfolio losses are much more likely than small ones. Studying the dependences of these losses as a function of portfolio size, we moreover reveal that not only large portfolios of thousands of contracts, but also medium-sized and small ones with only a few dozens of contracts exhibit notable portfolio loss correlations. Anticipated idiosyncratic effects turn out to be negligible. These are troublesome insights not only for investors in structured fixed-income products, but particularly for the stability of the financial sector. JEL codes: C32, F34, G21, G32, H81.

  11. Dynamic portfolio optimization across hidden market regimes

    DEFF Research Database (Denmark)

    Nystrup, Peter; Madsen, Henrik; Lindström, Erik

    2017-01-01

    Regime-based asset allocation has been shown to add value over rebalancing to static weights and, in particular, reduce potential drawdowns by reacting to changes in market conditions. The predominant approach in previous studies has been to specify in advance a static decision rule for changing...... the allocation based on the state of financial markets or the economy. In this article, model predictive control (MPC) is used to dynamically optimize a portfolio based on forecasts of the mean and variance of financial returns from a hidden Markov model with time-varying parameters. There are computational...... than a buy-and-hold investment in various major stock market indices. This is after accounting for transaction costs, with a one-day delay in the implementation of allocation changes, and with zero-interest cash as the only alternative to the stock indices. Imposing a trading penalty that reduces...

  12. Mean-Variance-CvaR Model of Multiportfolio Optimization via Linear Weighted Sum Method

    Directory of Open Access Journals (Sweden)

    Younes Elahi

    2014-01-01

    Full Text Available We propose a new approach to optimizing portfolios to mean-variance-CVaR (MVC model. Although of several researches have studied the optimal MVC model of portfolio, the linear weighted sum method (LWSM was not implemented in the area. The aim of this paper is to investigate the optimal portfolio model based on MVC via LWSM. With this method, the solution of the MVC model of portfolio as the multiobjective problem is presented. In data analysis section, this approach in investing on two assets is investigated. An MVC model of the multiportfolio was implemented in MATLAB and tested on the presented problem. It is shown that, by using three objective functions, it helps the investors to manage their portfolio better and thereby minimize the risk and maximize the return of the portfolio. The main goal of this study is to modify the current models and simplify it by using LWSM to obtain better results.

  13. A note on the sensitivity of the strategic asset allocation problem

    Directory of Open Access Journals (Sweden)

    W.J. Hurley

    2015-12-01

    Full Text Available The Markowitz mean–variance portfolio optimization problem is a quadratic programming problem whose first-order conditions require the solution of a linear system. It is well known that the optimal portfolio weights are sensitive to parameter estimates, particularly the mean return vector. This has generally been attributed to the interaction of estimation error and optimization. In this paper we present some examples that suggest the linear system produced by the first-order conditions is ill-conditioned and it is this property that gives rise to the sensitivity of the optimal weights.

  14. Extension of portfolio theory application to energy planning problem – The Italian case

    International Nuclear Information System (INIS)

    Arnesano, M.; Carlucci, A.P.; Laforgia, D.

    2012-01-01

    Energy procurement is a necessity which needs a deep study of both the demand and the generation sources, referred to consumers territorial localization. The study presented in this paper extends and consolidate the Shimon Awerbuch’s study on portfolio theory applied to the energy planning, in order to define a broad generating mix which optimizes one or more objective functions defined for a determined contest. For this purpose the computation model was specialized in energy generation problem and extended with the addition of new cost-risk settings, like renewable energy availability, and Black–Litterman model, which extends Markowitz theory. Energy planning was then contextualized to the territory: the introduction of geographic and climatic features allows to plan energy infrastructures on both global and local (regional, provincial, municipal) scale. The result is an efficient decision making tool to drive the investment on typical energy policy assets. In general the tool allows to analyze several scenarios in support of renewable energy sources, environmental sustainability, costs and risks reduction. In this paper the model was applied to the energy generation in Italy, and the analysis was done: on the actual energy mix; assuming the use of nuclear technology; assuming the verisimilar improvement of several technologies in the future. -- Highlights: ► Extension and consolidation of Shimon Awerbuch’s studies. ► Introduction of aspects connected to realization and utilization of power plants. ► Application of the model on a national, provincial, municipal scale. ► Modification of Energy Portfolio based on subjective previsions (Black–Litterman).

  15. Multi-Period Mean-Variance Portfolio Selection with Uncertain Time Horizon When Returns Are Serially Correlated

    Directory of Open Access Journals (Sweden)

    Ling Zhang

    2012-01-01

    Full Text Available We study a multi-period mean-variance portfolio selection problem with an uncertain time horizon and serial correlations. Firstly, we embed the nonseparable multi-period optimization problem into a separable quadratic optimization problem with uncertain exit time by employing the embedding technique of Li and Ng (2000. Then we convert the later into an optimization problem with deterministic exit time. Finally, using the dynamic programming approach, we explicitly derive the optimal strategy and the efficient frontier for the dynamic mean-variance optimization problem. A numerical example with AR(1 return process is also presented, which shows that both the uncertainty of exit time and the serial correlations of returns have significant impacts on the optimal strategy and the efficient frontier.

  16. The Role of Agribusiness Assets in Investment Portfolios

    OpenAIRE

    Johnson, Michael; Malcolm, Bill; O'Connor, Ian

    2006-01-01

    Investment in agribusiness assets has grown significantly in recent years. The question of interest is whether including agribusiness assets in investment portfolios provide benefits. The effects of diversification by including agribusiness assets in two investment portfolios, a mixed asset portfolio and a diversified share portfolio was investigated using Markowitz’s (1952) Modern Portfolio Theory (MPT) of mean-variance optimization. To measure the performance of agribusiness assets, an in...

  17. THE EXTREME WEIGHTS IN THE INDEX PORTFOLIO OF CONSTANT-PROPORTION STRATEGIES

    Directory of Open Access Journals (Sweden)

    Yury F. Kasimov

    2018-01-01

    Full Text Available This paper analyzes the optimal of constant proportion index portfolio strategies. They are also called passive strategies which are becoming more common in Russia and abroad. They are significantly cheaper to implement than active strategies. In addition, as practice shows, in the long term they are more profitable and less risky. The main problem in these strategies is the choice of the proportions in which the investor allocates his capital between risky and risk-free assets. In constant proportion index portfolio the weight of risk asset remains constant throughout investment period. For this purpose, the investor with a certain frequency restores the desired balance between risky and risk-free assets. Each period at the beginning of which such recovery occurs is called the re-balancing period. In the case of strategies with index portfolios, risky assets are the shares of the index fund, and risk-free assets are the deposits in reliable bank or government bonds. According on the daily value of units of these funds and the annual interest rate for the 11-year period, using a specially developed program optimal weight index funds in the portfolios has been found. Parameters of the analyzed portfolios are: length of the investment period (from one year to 10 years and the frequency of weight rebalancing (month, quarter, year. The sequence of optimal weights and the corresponding optimum yield for consecutive investment periods with a specified frequency of re-balancing were determined for each fund. It was found that in almost all cases, the optimal weights of fund equals the extreme values 0 or 1. Also, the frequencies of these values in the selected sequence is about the same for all funds. This empiric fact can be conventionally called the principle of extremeness or “all or nothing” principle. 

  18. Authentic assessment based showcase portfolio on learning of mathematical problem solving in senior high school

    Science.gov (United States)

    Sukmawati, Zuhairoh, Faihatuz

    2017-05-01

    The purpose of this research was to develop authentic assessment model based on showcase portfolio on learning of mathematical problem solving. This research used research and development Method (R & D) which consists of four stages of development that: Phase I, conducting a preliminary study. Phase II, determining the purpose of developing and preparing the initial model. Phase III, trial test of instrument for the initial draft model and the initial product. The respondents of this research are the students of SMAN 8 and SMAN 20 Makassar. The collection of data was through observation, interviews, documentation, student questionnaire, and instrument tests mathematical solving abilities. The data were analyzed with descriptive and inferential statistics. The results of this research are authentic assessment model design based on showcase portfolio which involves: 1) Steps in implementing the authentic assessment based Showcase, assessment rubric of cognitive aspects, assessment rubric of affective aspects, and assessment rubric of skill aspect. 2) The average ability of the students' problem solving which is scored by using authentic assessment based on showcase portfolio was in high category and the students' response in good category.

  19. Adaptive Portfolio Optimization for Multiple Electricity Markets Participation

    DEFF Research Database (Denmark)

    Pinto, Tiago; Morais, Hugo; Sousa, Tiago M.

    2016-01-01

    as the most suitable solution to facilitate the small players' participation in electric power negotiations while improving energy efficiency. The opportunity for players' participation in multiple energy negotiation environments (smart grid negotiation in addition to the already implemented market types......, such as day-ahead spot markets, balancing markets, intraday negotiations, bilateral contracts, forward and futures negotiations, and among other) requires players to take suitable decisions on whether to, and how to participate in each market type. This paper proposes a portfolio optimization methodology......, which provides the best investment profile for a market player, considering different market opportunities. The amount of power that each supported player should negotiate in each available market type in order to maximize its profits, considers the prices that are expected to be achieved in each market...

  20. Mean-Coherent Risk and Mean-Variance Approaches in Portfolio Selection : An Empirical Comparison

    NARCIS (Netherlands)

    Polbennikov, S.Y.; Melenberg, B.

    2005-01-01

    We empirically analyze the implementation of coherent risk measures in portfolio selection.First, we compare optimal portfolios obtained through mean-coherent risk optimization with corresponding mean-variance portfolios.We find that, even for a typical portfolio of equities, the outcomes can be

  1. Solving portfolio selection problems with minimum transaction lots based on conditional-value-at-risk

    Science.gov (United States)

    Setiawan, E. P.; Rosadi, D.

    2017-01-01

    Portfolio selection problems conventionally means ‘minimizing the risk, given the certain level of returns’ from some financial assets. This problem is frequently solved with quadratic or linear programming methods, depending on the risk measure that used in the objective function. However, the solutions obtained by these method are in real numbers, which may give some problem in real application because each asset usually has its minimum transaction lots. In the classical approach considering minimum transaction lots were developed based on linear Mean Absolute Deviation (MAD), variance (like Markowitz’s model), and semi-variance as risk measure. In this paper we investigated the portfolio selection methods with minimum transaction lots with conditional value at risk (CVaR) as risk measure. The mean-CVaR methodology only involves the part of the tail of the distribution that contributed to high losses. This approach looks better when we work with non-symmetric return probability distribution. Solution of this method can be found with Genetic Algorithm (GA) methods. We provide real examples using stocks from Indonesia stocks market.

  2. Designing a portfolio management programme to optimize cash-flow

    International Nuclear Information System (INIS)

    Fassom, D.

    1996-01-01

    The design and implementation of any portfolio management programme must, by definition, be tailored to the drivers and particular objectives of the company owning the assets. This paper will concentrate on one of the most important driving forces, namely managing cash-flow. Five key steps are required to achieve an effective portfolio management programme: 1. establish targets/goals; 2. describe and value the assets in your company's portfolio; 3. identify and catalogue potential 'customers'; 4. construct appropriate deal structures and other strategies to achieve your targets; 5. work hard and do deals. (author)

  3. Features for Exploiting Black-Box Optimization Problem Structure

    DEFF Research Database (Denmark)

    Tierney, Kevin; Malitsky, Yuri; Abell, Tinus

    2013-01-01

    landscape of BBO problems and show how an algorithm portfolio approach can exploit these general, problem indepen- dent features and outperform the utilization of any single minimization search strategy. We test our methodology on data from the GECCO Workshop on BBO Benchmarking 2012, which contains 21...

  4. The Effect of Exit Strategy on Optimal Portfolio Selection with Birandom Returns

    Directory of Open Access Journals (Sweden)

    Guohua Cao

    2013-01-01

    Full Text Available The aims of this paper are to use a birandom variable to denote the stock return selected by some recurring technical patterns and to study the effect of exit strategy on optimal portfolio selection with birandom returns. Firstly, we propose a new method to estimate the stock return and use birandom distribution to denote the final stock return which can reflect the features of technical patterns and investors' heterogeneity simultaneously; secondly, we build a birandom safety-first model and design a hybrid intelligent algorithm to help investors make decisions; finally, we innovatively study the effect of exit strategy on the given birandom safety-first model. The results indicate that (1 the exit strategy affects the proportion of portfolio, (2 the performance of taking the exit strategy is better than when the exit strategy is not taken, if the stop-loss point and the stop-profit point are appropriately set, and (3 the investor using the exit strategy become conservative.

  5. The Effect of Exit Strategy on Optimal Portfolio Selection with Birandom Returns

    OpenAIRE

    Cao, Guohua; Shan, Dan

    2013-01-01

    The aims of this paper are to use a birandom variable to denote the stock return selected by some recurring technical patterns and to study the effect of exit strategy on optimal portfolio selection with birandom returns. Firstly, we propose a new method to estimate the stock return and use birandom distribution to denote the final stock return which can reflect the features of technical patterns and investors' heterogeneity simultaneously; secondly, we build a birandom safety-first model and...

  6. Evaluating dynamic covariance matrix forecasting and portfolio optimization

    OpenAIRE

    Sendstad, Lars Hegnes; Holten, Dag Martin

    2012-01-01

    In this thesis we have evaluated the covariance forecasting ability of the simple moving average, the exponential moving average and the dynamic conditional correlation models. Overall we found that a dynamic portfolio can gain significant improvements by implementing a multivariate GARCH forecast. We further divided the global investment universe into sectors and regions in order to investigate the relative portfolio performance of several asset allocation strategies with both variance and c...

  7. On the Teaching of Portfolio Theory.

    Science.gov (United States)

    Biederman, Daniel K.

    1992-01-01

    Demonstrates how a simple portfolio problem expressed explicitly as an expected utility maximization problem can be used to instruct students in portfolio theory. Discusses risk aversion, decision making under uncertainty, and the limitations of the traditional mean variance approach. Suggests students may develop a greater appreciation of general…

  8. Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach

    International Nuclear Information System (INIS)

    Roques, Fabien A.; Newbery, David M.; Nuttall, William J.

    2008-01-01

    Monte Carlo simulations of gas, coal and nuclear plant investment returns are used as inputs of a Mean-Variance Portfolio optimization to identify optimal base load generation portfolios for large electricity generators in liberalized electricity markets. We study the impact of fuel, electricity, and CO 2 price risks and their degree of correlation on optimal plant portfolios. High degrees of correlation between gas and electricity prices - as observed in most European markets - reduce gas plant risks and make portfolios dominated by gas plant more attractive. Long-term power purchase contracts and/or a lower cost of capital can rebalance optimal portfolios towards more diversified portfolios with larger shares of nuclear and coal plants

  9. Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach

    Energy Technology Data Exchange (ETDEWEB)

    Roques, F.A.; Newbery, D.M.; Nuffall, W.J. [University of Cambridge, Cambridge (United Kingdom). Faculty of Economics

    2008-07-15

    Monte Carlo simulations of gas, coal and nuclear plant investment returns are used as inputs of a Mean-Variance Portfolio optimization to identify optimal base load generation portfolios for large electricity generators in liberalized electricity markets. We study the impact of fuel, electricity, and CO{sub 2} price risks and their degree of correlation on optimal plant portfolios. High degrees of correlation between gas and electricity prices - as observed in most European markets - reduce gas plant risks and make portfolios dominated by gas plant more attractive. Long-term power purchase contracts and/or a lower cost of capital can rebalance optimal portfolios towards more diversified portfolios with larger shares of nuclear and coal plants.

  10. An Evolutionary Algorithm for Multiobjective Fuzzy Portfolio Selection Models with Transaction Cost and Liquidity

    Directory of Open Access Journals (Sweden)

    Wei Yue

    2015-01-01

    Full Text Available The major issues for mean-variance-skewness models are the errors in estimations that cause corner solutions and low diversity in the portfolio. In this paper, a multiobjective fuzzy portfolio selection model with transaction cost and liquidity is proposed to maintain the diversity of portfolio. In addition, we have designed a multiobjective evolutionary algorithm based on decomposition of the objective space to maintain the diversity of obtained solutions. The algorithm is used to obtain a set of Pareto-optimal portfolios with good diversity and convergence. To demonstrate the effectiveness of the proposed model and algorithm, the performance of the proposed algorithm is compared with the classic MOEA/D and NSGA-II through some numerical examples based on the data of the Shanghai Stock Exchange Market. Simulation results show that our proposed algorithm is able to obtain better diversity and more evenly distributed Pareto front than the other two algorithms and the proposed model can maintain quite well the diversity of portfolio. The purpose of this paper is to deal with portfolio problems in the weighted possibilistic mean-variance-skewness (MVS and possibilistic mean-variance-skewness-entropy (MVS-E frameworks with transaction cost and liquidity and to provide different Pareto-optimal investment strategies as diversified as possible for investors at a time, rather than one strategy for investors at a time.

  11. PORTFOLIO COMPOSITION WITH MINIMUM VARIANCE: COMPARISON WITH MARKET BENCHMARKS

    Directory of Open Access Journals (Sweden)

    Daniel Menezes Cavalcante

    2016-07-01

    Full Text Available Portfolio optimization strategies are advocated as being able to allow the composition of stocks portfolios that provide returns above market benchmarks. This study aims to determine whether, in fact, portfolios based on the minimum variance strategy, optimized by the Modern Portfolio Theory, are able to achieve earnings above market benchmarks in Brazil. Time series of 36 securities traded on the BM&FBOVESPA have been analyzed in a long period of time (1999-2012, with sample windows of 12, 36, 60 and 120 monthly observations. The results indicated that the minimum variance portfolio performance is superior to market benchmarks (CDI and IBOVESPA in terms of return and risk-adjusted return, especially in medium and long-term investment horizons.

  12. Validity of the Learning Portfolio: Analysis of a Portfolio Proposal for the University

    Science.gov (United States)

    Gregori-Giralt, Eva; Menéndez-Varela, José Luis

    2015-01-01

    Validity is a central issue in portfolio-based assessment. This empirical study used a quantitative approach to analyse the validity of the inferences drawn from a disciplinary course work portfolio assessment comprising profession-specific and learning competencies. The study also examined the problems involved in the development of the…

  13. Estimating risk of foreign exchange portfolio: Using VaR and CVaR based on GARCH-EVT-Copula model

    Science.gov (United States)

    Wang, Zong-Run; Chen, Xiao-Hong; Jin, Yan-Bo; Zhou, Yan-Ju

    2010-11-01

    This paper introduces GARCH-EVT-Copula model and applies it to study the risk of foreign exchange portfolio. Multivariate Copulas, including Gaussian, t and Clayton ones, were used to describe a portfolio risk structure, and to extend the analysis from a bivariate to an n-dimensional asset allocation problem. We apply this methodology to study the returns of a portfolio of four major foreign currencies in China, including USD, EUR, JPY and HKD. Our results suggest that the optimal investment allocations are similar across different Copulas and confidence levels. In addition, we find that the optimal investment concentrates on the USD investment. Generally speaking, t Copula and Clayton Copula better portray the correlation structure of multiple assets than Normal Copula.

  14. Constant Proportion Portfolio Insurance

    DEFF Research Database (Denmark)

    Jessen, Cathrine

    2014-01-01

    on the theme, originally proposed by Fischer Black. In CPPI, a financial institution guarantees a floor value for the “insured” portfolio and adjusts the stock/bond mix to produce a leveraged exposure to the risky assets, which depends on how far the portfolio value is above the floor. Plain-vanilla portfolio...... insurance largely died with the crash of 1987, but CPPI is still going strong. In the frictionless markets of finance theory, the issuer’s strategy to hedge its liability under the contract is clear, but in the real world with transactions costs and stochastic jump risk, the optimal strategy is less obvious...

  15. Mean-Variance Portfolio Selection with a Fixed Flow of Investment in ...

    African Journals Online (AJOL)

    We consider a mean-variance portfolio selection problem for a fixed flow of investment in a continuous time framework. We consider a market structure that is characterized by a cash account, an indexed bond and a stock. We obtain the expected optimal terminal wealth for the investor. We also obtain a closed-form ...

  16. Linear and nonlinear market correlations: Characterizing financial crises and portfolio optimization

    Science.gov (United States)

    Haluszczynski, Alexander; Laut, Ingo; Modest, Heike; Räth, Christoph

    2017-12-01

    Pearson correlation and mutual information-based complex networks of the day-to-day returns of U.S. S&P500 stocks between 1985 and 2015 have been constructed to investigate the mutual dependencies of the stocks and their nature. We show that both networks detect qualitative differences especially during (recent) turbulent market periods, thus indicating strongly fluctuating interconnections between the stocks of different companies in changing economic environments. A measure for the strength of nonlinear dependencies is derived using surrogate data and leads to interesting observations during periods of financial market crises. In contrast to the expectation that dependencies reduce mainly to linear correlations during crises, we show that (at least in the 2008 crisis) nonlinear effects are significantly increasing. It turns out that the concept of centrality within a network could potentially be used as some kind of an early warning indicator for abnormal market behavior as we demonstrate with the example of the 2008 subprime mortgage crisis. Finally, we apply a Markowitz mean variance portfolio optimization and integrate the measure of nonlinear dependencies to scale the investment exposure. This leads to significant outperformance as compared to a fully invested portfolio.

  17. Portfolio Diversification in the South-East European Equity Markets

    Directory of Open Access Journals (Sweden)

    Zaimovic Azra

    2017-04-01

    Full Text Available Diversification potential enables investors to manage their risk and decrease risk exposure. Good diversification policy is a safety net that prevents a portfolio from losing its value. A well-diversified portfolio consists of different categories of property with low correlations, while highly correlated markets have the feature of low possibilities for diversification. The biggest riddle in the world of investments is to find the optimal portfolio within a set of available assets with limited capital. There are numerous studies and mathematical models that deal with portfolio investment strategies. These strategies take advantage of diversification by spreading risk over several financial assets. Modern portfolio theory seeks to find the optimal model with the best results. This paper tries to identify relationships between returns of companies traded in South-East European equity markets. A Markowitz mean-variance (MV portfolio optimization method is used to identify possibilities for diversification among these markets and world leading capital markets. This research also offers insight into to the level of integration of South-East European equity markets. Principal component analysis (PCA is used to determine components that describe the strong patterns and co-movements of the dataset. Finally, we combined MV efficient frontier and equity, which represent PCA components, to draw conclusions. Our findings show that PC analysis substantially simplifies asset selection process in portfolio management. The results of the paper have practical applications for portfolio investors.

  18. Learning to Select Supplier Portfolios for Service Supply Chain.

    Science.gov (United States)

    Zhang, Rui; Li, Jingfei; Wu, Shaoyu; Meng, Dabin

    2016-01-01

    The research on service supply chain has attracted more and more focus from both academia and industrial community. In a service supply chain, the selection of supplier portfolio is an important and difficult problem due to the fact that a supplier portfolio may include multiple suppliers from a variety of fields. To address this problem, we propose a novel supplier portfolio selection method based on a well known machine learning approach, i.e., Ranking Neural Network (RankNet). In the proposed method, we regard the problem of supplier portfolio selection as a ranking problem, which integrates a large scale of decision making features into a ranking neural network. Extensive simulation experiments are conducted, which demonstrate the feasibility and effectiveness of the proposed method. The proposed supplier portfolio selection model can be applied in a real corporation easily in the future.

  19. An intrinsic robust rank-one-approximation approach for currencyportfolio optimization

    Directory of Open Access Journals (Sweden)

    Hongxuan Huang

    2018-03-01

    Full Text Available A currency portfolio is a special kind of wealth whose value fluctuates with foreignexchange rates over time, which possesses 3Vs (volume, variety and velocity properties of big datain the currency market. In this paper, an intrinsic robust rank one approximation (ROA approachis proposed to maximize the value of currency portfolios over time. The main results of the paperinclude four parts: Firstly, under the assumptions about the currency market, the currency portfoliooptimization problem is formulated as the basic model, in which there are two types of variablesdescribing currency amounts in portfolios and the amount of each currency exchanged into another,respectively. Secondly, the rank one approximation problem and its variants are also formulated toapproximate a foreign exchange rate matrix, whose performance is measured by the Frobenius normor the 2-norm of a residual matrix. The intrinsic robustness of the rank one approximation is provedtogether with summarizing properties of the basic ROA problem and designing a modified powermethod to search for the virtual exchange rates hidden in a foreign exchange rate matrix. Thirdly,a technique for decision variables reduction is presented to attack the currency portfolio optimization.The reduced formulation is referred to as the ROA model, which keeps only variables describingcurrency amounts in portfolios. The optimal solution to the ROA model also induces a feasible solutionto the basic model of the currency portfolio problem by integrating forex operations from the ROAmodel with practical forex rates. Finally, numerical examples are presented to verify the feasibility ande ciency of the intrinsic robust rank one approximation approach. They also indicate that there existsan objective measure for evaluating and optimizing currency portfolios over time, which is related tothe virtual standard currency and independent of any real currency selected specially for measurement.

  20. Integration of a Portfolio-based Approach to Evaluate Aerospace R and D Problem Formulation Into a Parametric Synthesis Tool

    Science.gov (United States)

    Oza, Amit R.

    The focus of this study is to improve R&D effectiveness towards aerospace and defense planning in the early stages of the product development lifecycle. Emphasis is on: correct formulation of a decision problem, with special attention to account for data relationships between the individual design problem and the system capability required to size the aircraft, understanding of the meaning of the acquisition strategy objective and subjective data requirements that are required to arrive at a balanced analysis and/or "correct" mix of technology projects, understanding the meaning of the outputs that can be created from the technology analysis, and methods the researcher can use at effectively support decisions at the acquisition and conceptual design levels through utilization of a research and development portfolio strategy. The primary objectives of this study are to: (1) determine what strategy should be used to initialize conceptual design parametric sizing processes during requirements analysis for the materiel solution analysis stage of the product development lifecycle when utilizing data already constructed in the latter phase when working with a generic database management system synthesis tool integration architecture for aircraft design , and (2) assess how these new data relationships can contribute for innovative decision-making when solving acquisition hardware/technology portfolio problems. As such, an automated composable problem formulation system is developed to consider data interactions for the system architecture that manages acquisition pre-design concept refinement portfolio management, and conceptual design parametric sizing requirements. The research includes a way to: • Formalize the data storage and implement the data relationship structure with a system architecture automated through a database management system. • Allow for composable modeling, in terms of level of hardware abstraction, for the product model, mission model, and

  1. Strategic biopharmaceutical portfolio development: an analysis of constraint-induced implications.

    Science.gov (United States)

    George, Edmund D; Farid, Suzanne S

    2008-01-01

    Optimizing the structure and development pathway of biopharmaceutical drug portfolios are core concerns to the developer that come with several attached complexities. These include strategic decisions for the choice of drugs, the scheduling of critical activities, and the possible involvement of third parties for development and manufacturing at various stages for each drug. Additional complexities that must be considered include the impact of making such decisions in an uncertain environment. Presented here is the development of a stochastic multi-objective optimization framework designed to address these issues. The framework harnesses the ability of Bayesian networks to characterize the probabilistic structure of superior decisions via machine learning and evolve them to multi-objective optimality. Case studies that entailed three- and five-drug portfolios alongside a range of cash flow constraints were constructed to derive insight from the framework where results demonstrate that a variety of options exist for formulating nondominated strategies in the objective space considered, giving the manufacturer a range of pursuable options. In all cases limitations on cash flow reduce the potential for generating profits for a given probability of success. For the sizes of portfolio considered, results suggest that naïvely applying strategies optimal for a particular size of portfolio to a portfolio of another size is inappropriate. For the five-drug portfolio the most preferred means for development across the set of optimized strategies is to fully integrate development and commercial activities in-house. For the three-drug portfolio, the preferred means of development involves a mixture of in-house, outsourced, and partnered activities. Also, the size of the portfolio appears to have a larger impact on strategy and the quality of objectives than the magnitude of cash flow constraint.

  2. Turnover, account value and diversification of real traders: evidence of collective portfolio optimizing behavior

    Science.gov (United States)

    Morton de Lachapelle, David; Challet, Damien

    2010-07-01

    Despite the availability of very detailed data on financial markets, agent-based modeling is hindered by the lack of information about real trader behavior. This makes it impossible to validate agent-based models, which are thus reverse-engineering attempts. This work is a contribution towards building a set of stylized facts about the traders themselves. Using the client database of Swissquote Bank SA, the largest online Swiss broker, we find empirical relationships between turnover, account values and the number of assets in which a trader is invested. A theory based on simple mean-variance portfolio optimization that crucially includes variable transaction costs is able to reproduce faithfully the observed behaviors. We finally argue that our results bring to light the collective ability of a population to construct a mean-variance portfolio that takes into account the structure of transaction costs.

  3. A mean–variance objective for robust production optimization in uncertain geological scenarios

    DEFF Research Database (Denmark)

    Capolei, Andrea; Suwartadi, Eka; Foss, Bjarne

    2014-01-01

    directly. In the mean–variance bi-criterion objective function risk appears directly, it also considers an ensemble of reservoir models, and has robust optimization as a special extreme case. The mean–variance objective is common for portfolio optimization problems in finance. The Markowitz portfolio...... optimization problem is the original and simplest example of a mean–variance criterion for mitigating risk. Risk is mitigated in oil production by including both the expected NPV (mean of NPV) and the risk (variance of NPV) for the ensemble of possible reservoir models. With the inclusion of the risk...

  4. Discrete Analysis of Portfolio Selection with Optimal Stopping Time

    Directory of Open Access Journals (Sweden)

    Jianfeng Liang

    2009-01-01

    Full Text Available Most of the investments in practice are carried out without certain horizons. There are many factors to drive investment to a stop. In this paper, we consider a portfolio selection policy with market-related stopping time. Particularly, we assume that the investor exits the market once his wealth reaches a given investment target or falls below a bankruptcy threshold. Our objective is to minimize the expected time when the investment target is obtained, at the same time, we guarantee the probability that bankruptcy happens is no larger than a given level. We formulate the problem as a mix integer linear programming model and make analysis of the model by using a numerical example.

  5. Applying the partitioned multiobjective risk method (PMRM) to portfolio selection.

    Science.gov (United States)

    Reyes Santos, Joost; Haimes, Yacov Y

    2004-06-01

    The analysis of risk-return tradeoffs and their practical applications to portfolio analysis paved the way for Modern Portfolio Theory (MPT), which won Harry Markowitz a 1992 Nobel Prize in Economics. A typical approach in measuring a portfolio's expected return is based on the historical returns of the assets included in a portfolio. On the other hand, portfolio risk is usually measured using volatility, which is derived from the historical variance-covariance relationships among the portfolio assets. This article focuses on assessing portfolio risk, with emphasis on extreme risks. To date, volatility is a major measure of risk owing to its simplicity and validity for relatively small asset price fluctuations. Volatility is a justified measure for stable market performance, but it is weak in addressing portfolio risk under aberrant market fluctuations. Extreme market crashes such as that on October 19, 1987 ("Black Monday") and catastrophic events such as the terrorist attack of September 11, 2001 that led to a four-day suspension of trading on the New York Stock Exchange (NYSE) are a few examples where measuring risk via volatility can lead to inaccurate predictions. Thus, there is a need for a more robust metric of risk. By invoking the principles of the extreme-risk-analysis method through the partitioned multiobjective risk method (PMRM), this article contributes to the modeling of extreme risks in portfolio performance. A measure of an extreme portfolio risk, denoted by f(4), is defined as the conditional expectation for a lower-tail region of the distribution of the possible portfolio returns. This article presents a multiobjective problem formulation consisting of optimizing expected return and f(4), whose solution is determined using Evolver-a software that implements a genetic algorithm. Under business-as-usual market scenarios, the results of the proposed PMRM portfolio selection model are found to be compatible with those of the volatility-based model

  6. R functions development for stockPortfolio package

    OpenAIRE

    Luo, Rui

    2013-01-01

    Modern portfolio theory is a statistical framework to allocate investment assets properly, with the aim of reducing risk by diversification. In the past decades, a variety of index and group models (with different covariance assumption) have been proposed to optimize the portfolio, including Single Index Model, Constant Correlation Model, Multi-Group Model, and Multi-Index Model. An R package "stockPortfolio" is developed by Drs. Christou and Diez, and fully implemented Single Index Model, Co...

  7. Maslow Portfolio Selection for Individuals with Low Financial Sustainability

    Directory of Open Access Journals (Sweden)

    Zongxin Li

    2018-04-01

    Full Text Available In this paper, we extend Maslow’s need hierarchy theory and the two-level optimization approach by developing the framework of the Maslow portfolio selection model (MPSM by solving the two optimization problems to meet the need of individuals with low financial sustainability who prefer to satisfy their lower-level (safety need first, and, thereafter, look for higher-level (self-actualization need to maximize the optimal return. We illustrate our proposed model with real American stock data from the S&P index and conduct the out-of-sample analysis to compare the performance of our proposed Variance-CVaR (conditional value-at-risk MPSM with both traditional mean-variance and mean-CVaR models. Our empirical analysis shows that our proposed Variance-CVaR MPSM is not only sustainable, but also obtains the best out-of-sample performance in the sense that the optimal portfolios obtained by using our proposed Variance-CVaR MPSM obtain the highest cumulative returns in the out-of-sample period among the models used in our paper. We note that our proposed model is not only suitable to individuals with low financial sustainability, but also suitable to institutions or investors with high financial sustainability.

  8. Optimization of urban water supply portfolios combining infrastructure capacity expansion and water use decisions

    Science.gov (United States)

    Medellin-Azuara, J.; Fraga, C. C. S.; Marques, G.; Mendes, C. A.

    2015-12-01

    The expansion and operation of urban water supply systems under rapidly growing demands, hydrologic uncertainty, and scarce water supplies requires a strategic combination of various supply sources for added reliability, reduced costs and improved operational flexibility. The design and operation of such portfolio of water supply sources merits decisions of what and when to expand, and how much to use of each available sources accounting for interest rates, economies of scale and hydrologic variability. The present research provides a framework and an integrated methodology that optimizes the expansion of various water supply alternatives using dynamic programming and combining both short term and long term optimization of water use and simulation of water allocation. A case study in Bahia Do Rio Dos Sinos in Southern Brazil is presented. The framework couples an optimization model with quadratic programming model in GAMS with WEAP, a rain runoff simulation models that hosts the water supply infrastructure features and hydrologic conditions. Results allow (a) identification of trade offs between cost and reliability of different expansion paths and water use decisions and (b) evaluation of potential gains by reducing water system losses as a portfolio component. The latter is critical in several developing countries where water supply system losses are high and often neglected in favor of more system expansion. Results also highlight the potential of various water supply alternatives including, conservation, groundwater, and infrastructural enhancements over time. The framework proves its usefulness for planning its transferability to similarly urbanized systems.

  9. Mean-variance portfolio selection and efficient frontier for defined contribution pension schemes

    DEFF Research Database (Denmark)

    Højgaard, Bjarne; Vigna, Elena

    We solve a mean-variance portfolio selection problem in the accumulation phase of a defined contribution pension scheme. The efficient frontier, which is found for the 2 asset case as well as the n + 1 asset case, gives the member the possibility to decide his own risk/reward profile. The mean...... as a mean-variance optimization problem. It is shown that the corresponding mean and variance of the final fund belong to the efficient frontier and also the opposite, that each point on the efficient frontier corresponds to a target-based optimization problem. Furthermore, numerical results indicate...... that the largely adopted lifestyle strategy seems to be very far from being efficient in the mean-variance setting....

  10. Formal Method of Description Supporting Portfolio Assessment

    Science.gov (United States)

    Morimoto, Yasuhiko; Ueno, Maomi; Kikukawa, Isao; Yokoyama, Setsuo; Miyadera, Youzou

    2006-01-01

    Teachers need to assess learner portfolios in the field of education. However, they need support in the process of designing and practicing what kind of portfolios are to be assessed. To solve the problem, a formal method of describing the relations between the lesson forms and portfolios that need to be collected and the relations between…

  11. Merton's problem for an investor with a benchmark in a Barndorff-Nielsen and Shephard market.

    Science.gov (United States)

    Lennartsson, Jan; Lindberg, Carl

    2015-01-01

    To try to outperform an externally given benchmark with known weights is the most common equity mandate in the financial industry. For quantitative investors, this task is predominantly approached by optimizing their portfolios consecutively over short time horizons with one-period models. We seek in this paper to provide a theoretical justification to this practice when the underlying market is of Barndorff-Nielsen and Shephard type. This is done by verifying that an investor who seeks to maximize her expected terminal exponential utility of wealth in excess of her benchmark will in fact use an optimal portfolio equivalent to the one-period Markowitz mean-variance problem in continuum under the corresponding Black-Scholes market. Further, we can represent the solution to the optimization problem as in Feynman-Kac form. Hence, the problem, and its solution, is analogous to Merton's classical portfolio problem, with the main difference that Merton maximizes expected utility of terminal wealth, not wealth in excess of a benchmark.

  12. Continuous Time Portfolio Selection under Conditional Capital at Risk

    Directory of Open Access Journals (Sweden)

    Gordana Dmitrasinovic-Vidovic

    2010-01-01

    Full Text Available Portfolio optimization with respect to different risk measures is of interest to both practitioners and academics. For there to be a well-defined optimal portfolio, it is important that the risk measure be coherent and quasiconvex with respect to the proportion invested in risky assets. In this paper we investigate one such measure—conditional capital at risk—and find the optimal strategies under this measure, in the Black-Scholes continuous time setting, with time dependent coefficients.

  13. Research on regularized mean-variance portfolio selection strategy with modified Roy safety-first principle.

    Science.gov (United States)

    Atta Mills, Ebenezer Fiifi Emire; Yan, Dawen; Yu, Bo; Wei, Xinyuan

    2016-01-01

    We propose a consolidated risk measure based on variance and the safety-first principle in a mean-risk portfolio optimization framework. The safety-first principle to financial portfolio selection strategy is modified and improved. Our proposed models are subjected to norm regularization to seek near-optimal stable and sparse portfolios. We compare the cumulative wealth of our preferred proposed model to a benchmark, S&P 500 index for the same period. Our proposed portfolio strategies have better out-of-sample performance than the selected alternative portfolio rules in literature and control the downside risk of the portfolio returns.

  14. Vector optimization technique in the problems of interaction between an enterprise and its counteragents

    Directory of Open Access Journals (Sweden)

    Oleg Igorevich Nikonov

    2011-09-01

    Full Text Available This paper reviews vector optimization goals related to the selection of efficient portfolios of a company's counterparties. In the first part of the research, the costs to minimize of providing goods and risk of late delivery have been selected as the optimization criteria. It is assumed that the risks are random in nature and are characterized by a random amount of damage being made to the firm due to late delivery of products. It is assumed that the amount of damage is proportional to the quantity of goods ordered. The second section is devoted to the optimization of working with bank clients through the formation of an effective portfolio of banking products. The following resources of the bank are considered as risky assets: placed interbank loans, securities (bonds, stocks, bonds, corporate loans, loans to small and medium-sized businesses, factoring and loans to individuals. Methodologically, the approach developed here is adjacent to the theory of portfolio investment, which goes back to a paper by G. Markowitz, however, this approach is applied for objects other than capital market instruments.

  15. Applying Portfolio Theory to EU Electricity Planning and Policy-Making

    Energy Technology Data Exchange (ETDEWEB)

    Awerbuch, Shimon; Berger, Martin

    2003-02-01

    This study introduces mean-variance portfolio theory and evaluates its potential application to the development of efficient (optimal) European Union (EU-15) generating portfolios that enhance energy security and diversification objectives. The analysis extends to European countries the previous work done by Awerbuch in the US, and applies a significantly more detailed portfolio model that reflects the risk of the relevant generating cost streams: fuel, operation and maintenance and construction period costs. It illustrates the portfolio effects of different generating mixes. The study offers preliminary findings on the effects of including more renewable energy sources in the typical EU portfolio mix and suggests interesting directions for further study. The study arises from the perception that these standard, finance-oriented analyses may offer valuable enhancements to energy planning, and concepts of energy security and diversity. Clearly the combination of better portfolio construction and more accurate pricing should lead to more optimal decisions in the round. This study, therefore, represents an effort to complement traditional approaches and point researchers and planners into new territory. The results generally indicate that the existing and projected EU generating mixes are sub optimal - though slightly - from a risk-return perspective, which implies that feasible portfolios with lower cost and risk exist. These can be developed by adjusting the conventional mix and by including larger shares of wind or similar renewable technologies. The results of the portfolio analysis suggest that fixed cost technologies such as renewables must be a part of any efficient generating portfolio. Our assessment of all technologies is limited to risk and cost measures, although other benefits, including low externality costs and sustainability, are often cited for renewables.

  16. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region.

    Science.gov (United States)

    Ando, Amy W; Mallory, Mindy L

    2012-04-24

    Climate change is likely to alter the spatial distributions of species and habitat types but the nature of such change is uncertain. Thus, climate change makes it difficult to implement standard conservation planning paradigms. Previous work has suggested some approaches to cope with such uncertainty but has not harnessed all of the benefits of risk diversification. We adapt Modern Portfolio Theory (MPT) to optimal spatial targeting of conservation activity, using wetland habitat conservation in the Prairie Pothole Region (PPR) as an example. This approach finds the allocations of conservation activity among subregions of the planning area that maximize the expected conservation returns for a given level of uncertainty or minimize uncertainty for a given expected level of returns. We find that using MPT instead of simple diversification in the PPR can achieve a value of the conservation objective per dollar spent that is 15% higher for the same level of risk. MPT-based portfolios can also have 21% less uncertainty over benefits or 6% greater expected benefits than the current portfolio of PPR conservation. Total benefits from conservation investment are higher if returns are defined in terms of benefit-cost ratios rather than benefits alone. MPT-guided diversification can work to reduce the climate-change-induced uncertainty of future ecosystem-service benefits from many land policy and investment initiatives, especially when outcomes are negatively correlated between subregions of a planning area.

  17. Mean-Gini Portfolio Analysis: A Pedagogic Illustration

    Directory of Open Access Journals (Sweden)

    C. Sherman Cheung

    2007-05-01

    Full Text Available It is well known in the finance literature that mean-variance analysis is inappropriate when asset returns are not normally distributed or investors’ preferences of returns are not characterized by quadratic functions. The normality assumption has been widely rejected in cases of emerging market equities and hedge funds. The mean-Gini framework is an attractive alternative as it is consistent with stochastic dominance rules regardless of the probability distributions of asset returns. Applying mean-Gini to a portfolio setting involving multiple assets, however, has always been challenging to business students whose training in optimization is limited. This paper introduces a simple spreadsheet-based approach to mean-Gini portfolio optimization, thus allowing the mean-Gini concepts to be covered more effectively in finance courses such as portfolio theory and investment analysis.

  18. Deformed exponentials and portfolio selection

    Science.gov (United States)

    Rodrigues, Ana Flávia P.; Guerreiro, Igor M.; Cavalcante, Charles Casimiro

    In this paper, we present a method for portfolio selection based on the consideration on deformed exponentials in order to generalize the methods based on the gaussianity of the returns in portfolio, such as the Markowitz model. The proposed method generalizes the idea of optimizing mean-variance and mean-divergence models and allows a more accurate behavior for situations where heavy-tails distributions are necessary to describe the returns in a given time instant, such as those observed in economic crises. Numerical results show the proposed method outperforms the Markowitz portfolio for the cumulated returns with a good convergence rate of the weights for the assets which are searched by means of a natural gradient algorithm.

  19. VAR Portfolio Optimal: Perbandingan Antara Metode Markowitz dan Mean Absolute Deviation

    Directory of Open Access Journals (Sweden)

    R. Agus Sartono

    2009-05-01

    Full Text Available Portfolio selection method which have been introduced by Harry Markowitz (1952 used variance or deviation standard as a measure of risk. Kanno and Yamazaki (1991 introduced another method and used mean absolute deviation as a measure of risk instead of variance. The Value-at Risk (VaR is a relatively new method to capitalized risk that been used by financial institutions. The aim of this research is compare between mean variance and mean absolute deviation of two portfolios. Next, we attempt to assess the VaR of two portfolios using delta normal method and historical simulation. We use the secondary data from the Jakarta Stock Exchange – LQ45 during 2003. We find that there is a weak-positive correlation between deviation standard and return in both portfolios. The VaR nolmal delta based on mean absolute deviation method eventually is higher than the VaR normal delta based on mean variance method. However, based on the historical simulation the VaR of two methods is statistically insignificant. Thus, the deviation standard is sufficient measures of portfolio risk.Keywords: optimalisasi portofolio, mean-variance, mean-absolute deviation, value-at-risk, metode delta normal, metode simulasi historis

  20. Equity portfolio optimization: A DEA based methodology applied to the Zagreb Stock Exchange

    Directory of Open Access Journals (Sweden)

    Margareta Gardijan

    2015-10-01

    Full Text Available Most strategies for selection portfolios focus on utilizing solely market data and implicitly assume that stock markets communicate all relevant information to all market stakeholders, and that these markets cannot be influenced by investor activities. However convenient, this is a limited approach, especially when applied to small and illiquid markets such as the Croatian market, where such assumptions are hardly realistic. Thus, there is a demand for including other sources of data, such as financial reports. Research poses the question of whether financial ratios as criteria for stock selection are of any use to Croatian investors. Financial and market data from selected publicly companies listed on the Croatian capital market are used. A two-stage portfolio selection strategy is applied, where the first stage involves selecting stocks based on the respective Data Envelopment Analysis (DEA efficiency scores. DEA models are becoming popular in stock portfolio selection given that the methodology includes numerous models that provide a great flexibility in selecting inputs and outputs, which in turn are considered as criteria for portfolio selection. Accordingly, there is much room for improvement of the current proposed strategies for selecting portfolios. In the second stage, two portfolio-weighting strategies are applied using equal proportions and score-weighting. To show whether these strategies create outstanding out–of–sample portfolios in time, time-dependent DEA Window Analysis is applied using a reference time of one year, and portfolio returns are compared with the market portfolio for each period. It is found that the financial data are a significant indicator of the future performance of a stock and a DEA-based portfolio strategy outperforms market return.

  1. A Study on the Optimal Generation Mix Based on Portfolio Theory with Considering the Basic Condition for Power Supply

    Science.gov (United States)

    Kato, Moritoshi; Zhou, Yicheng

    This paper presents a novel method to analyze the optimal generation mix based on portfolio theory with considering the basic condition for power supply, which means that electricity generation corresponds with load curve. The optimization of portfolio is integrated with the calculation of a capacity factor of each generation in order to satisfy the basic condition for power supply. Besides, each generation is considered to be an asset, and risks of the generation asset both in its operation period and construction period are considered. Environmental measures are evaluated through restriction of CO2 emissions, which are indicated by CO2 price. Numerical examples show the optimal generation mix according to risks such as the deviation of capacity factor of nuclear power or restriction of CO2 emissions, the possibility of introduction of clean coal technology (IGCC, CCS) or renewable energy, and so on. The results of this work will be possibly applied as setting the target of the generation mix for the future according to prospects of risks of each generation and restrictions of CO2 emissions.

  2. Declarative Modeling for Production Order Portfolio Scheduling

    Directory of Open Access Journals (Sweden)

    Banaszak Zbigniew

    2014-12-01

    Full Text Available A declarative framework enabling to determine conditions as well as to develop decision-making software supporting small- and medium-sized enterprises aimed at unique, multi-project-like and mass customized oriented production is discussed. A set of unique production orders grouped into portfolio orders is considered. Operations executed along different production orders share available resources following a mutual exclusion protocol. A unique product or production batch is completed while following a given activity’s network order. The problem concerns scheduling a newly inserted project portfolio subject to constraints imposed by a multi-project environment The answers sought are: Can a given project portfolio specified by its cost and completion time be completed within the assumed time period in a manufacturing system in hand? Which manufacturing system capability guarantees the completion of a given project portfolio ordered under assumed cost and time constraints? The considered problems regard finding a computationally effective approach aimed at simultaneous routing and allocation as well as batching and scheduling of a newly ordered project portfolio subject to constraints imposed by a multi-project environment. The main objective is to provide a declarative model enabling to state a constraint satisfaction problem aimed at multi-project-like and mass customized oriented production scheduling. Multiple illustrative examples are discussed.

  3. Portfolio Management with Stochastic Interest Rates and Inflation Ambiguity

    DEFF Research Database (Denmark)

    Munk, Claus; Rubtsov, Alexey Vladimirovich

    We solve a stock-bond-cash portfolio choice problem for a risk- and ambiguity-averse investor in a setting where the inflation rate and interest rates are stochastic. The expected inflation rate is unobservable, but the investor may learn about it from realized inflation and observed stock and bond...... prices. The investor is aware that his model for the observed inflation is potentially misspecified, and he seeks an investment strategy that maximizes his expected utility from real terminal wealth and is also robust to inflation model misspecification. We solve the corresponding robust Hamilton......-Jacobi-Bellman equation in closed form and derive and illustrate a number of interesting properties of the solution. For example, ambiguity aversion affects the optimal portfolio through the correlation of price level with the stock index, a bond, and the expected inflation rate. Furthermore, unlike other settings...

  4. Methodical bases of accounting and analytical support for the management of credit portfolio of the bank

    Directory of Open Access Journals (Sweden)

    A.M. Gerasimovich

    2015-03-01

    Full Text Available Solved how to optimize the system of accounting and analytical indicators to assess the level of risk and the effectiveness of the Bank's credit activity, on the basis of scale, scope and structure of the credit portfolio; the turnover of credit investments; the problematical character of the loan portfolio and the level of risk and security of the loan portfolio. Exploring the possibility of accounting on the basis of which analysis calculated metrics and evaluation of significance proposed, in contrast to the current Grad C system with more than 50 indicators, the most informative in the amount of 20–25, which allow daily operational way to assess the level of credit portfolio management of the Bank. This contributes to the daily detailed sub-accounts trial balance balance sheet, which consists of all banks and provide the National Bank of Ukraine. So, the most reasonable is the performance in terms of scale and structure – percentage changes; turnover rates – the rate in days; problem – percentage problems; credit risk – factor security loans; management effectiveness factors: the economy, profitability and efficiency.

  5. Multi-objective possibilistic model for portfolio selection with transaction cost

    Science.gov (United States)

    Jana, P.; Roy, T. K.; Mazumder, S. K.

    2009-06-01

    In this paper, we introduce the possibilistic mean value and variance of continuous distribution, rather than probability distributions. We propose a multi-objective Portfolio based model and added another entropy objective function to generate a well diversified asset portfolio within optimal asset allocation. For quantifying any potential return and risk, portfolio liquidity is taken into account and a multi-objective non-linear programming model for portfolio rebalancing with transaction cost is proposed. The models are illustrated with numerical examples.

  6. Formation of the Optimal Investment Portfolio as a Precondition for the Bank’s Financial Security

    Directory of Open Access Journals (Sweden)

    Anna Shapovalova

    2015-01-01

    Full Text Available This article analyses the definition of the bank’s financial security and investment activities. It describes a few types of models of bank’s risks management and the method CAPM, which is chosen for use. In support for the chosen CAPM method, we included the mathematical model that allows elaborating an optimal investment portfolio. The model stands at the basis of this method and a case study of one of Ukrainian banks.

  7. Formation of the Optimal Investment Portfolio as a Precondition for the Bank’s Financial Security

    Directory of Open Access Journals (Sweden)

    Anna Shapovalova

    2016-01-01

    Full Text Available This article analyses the definition of the bank’s financial security and investment activities. It describes a few types of models of bank’s risks management and the method CAPM, which is chosen for use. In support for the chosen CAPM method, we included the mathematical model that allows elaborating an optimal investment portfolio. The model stands at the basis of this method and a case study of one of Ukrainian banks.

  8. Optimal Responsible Investment

    DEFF Research Database (Denmark)

    Jessen, Pernille

    Numerous institutions are now engaged in Socially Responsible Investment or have signed the "UN Principles for Responsible Investment". Retail investors, however, are still lacking behind. This is peculiar since the sector constitutes key stakeholders in environmental, social and governmental...... standards. This paper considers optimal responsible investment for a small retail investor. It extends conventional portfolio theory by allowing for a personal-value based investment decision. Preferences for responsibility are defined in the framework of mean-variance analysis and an optimal responsible...... investment model identified. Implications of the altered investment problem are investigated when the dynamics between portfolio risk, expected return and responsibility is considered. Relying on the definition of a responsible investor, it is shown how superior investment opportunities can emerge when...

  9. Optimal portfolio selection in a Lévy market with uncontrolled cash flow and only risky assets

    Science.gov (United States)

    Zeng, Yan; Li, Zhongfei; Wu, Huiling

    2013-03-01

    This article considers an investor who has an exogenous cash flow evolving according to a Lévy process and invests in a financial market consisting of only risky assets, whose prices are governed by exponential Lévy processes. Two continuous-time portfolio selection problems are studied for the investor. One is a benchmark problem, and the other is a mean-variance problem. The first problem is solved by adopting the stochastic dynamic programming approach, and the obtained results are extended to the second problem by employing the duality theory. Closed-form solutions of these two problems are derived. Some existing results are found to be special cases of our results.

  10. Portfolio Management with Stochastic Interest Rates and Inflation Ambiguity

    DEFF Research Database (Denmark)

    Munk, Claus; Rubtsov, Alexey Vladimirovich

    2014-01-01

    prices. The investor is ambiguous about the inflation model and prefers a portfolio strategy which is robust to model misspecification. Ambiguity about the inflation dynamics is shown to affect the optimal portfolio fundamentally different than ambiguity about the price dynamics of traded assets...

  11. Optimal portfolio design to reduce climate-related conservation uncertainty in the Prairie Pothole Region

    Science.gov (United States)

    Ando, Amy W.; Mallory, Mindy L.

    2012-01-01

    Climate change is likely to alter the spatial distributions of species and habitat types but the nature of such change is uncertain. Thus, climate change makes it difficult to implement standard conservation planning paradigms. Previous work has suggested some approaches to cope with such uncertainty but has not harnessed all of the benefits of risk diversification. We adapt Modern Portfolio Theory (MPT) to optimal spatial targeting of conservation activity, using wetland habitat conservation in the Prairie Pothole Region (PPR) as an example. This approach finds the allocations of conservation activity among subregions of the planning area that maximize the expected conservation returns for a given level of uncertainty or minimize uncertainty for a given expected level of returns. We find that using MPT instead of simple diversification in the PPR can achieve a value of the conservation objective per dollar spent that is 15% higher for the same level of risk. MPT-based portfolios can also have 21% less uncertainty over benefits or 6% greater expected benefits than the current portfolio of PPR conservation. Total benefits from conservation investment are higher if returns are defined in terms of benefit–cost ratios rather than benefits alone. MPT-guided diversification can work to reduce the climate-change–induced uncertainty of future ecosystem-service benefits from many land policy and investment initiatives, especially when outcomes are negatively correlated between subregions of a planning area. PMID:22451914

  12. The Role of Learning- and Presentation- Portfolios in Design Educations

    DEFF Research Database (Denmark)

    Thomsen, Bente Dahl; Ovesen, Nis

    2014-01-01

    Students that primarily study design through team-based projects often struggle to develop presentation portfolios that differentiate from the ones of other students. In the industry, design managers experience this as a problem, as they often receive job applications with presentation portfolios...... resources from other activities, which is why the templates have to be carefully balanced in order to achieve the desired effect. The portfolio method proved to be especially good at illustrating process related competencies.......Students that primarily study design through team-based projects often struggle to develop presentation portfolios that differentiate from the ones of other students. In the industry, design managers experience this as a problem, as they often receive job applications with presentation portfolios...... of the portfolio method in engineering design educations, this research project has investigated the method as part of a course programme. The preliminary experiments and results show that learning portfolio templates are effective in strengthening certain activities. On the other hand, the method risks draining...

  13. Noise sensitivity of portfolio selection in constant conditional correlation GARCH models

    Science.gov (United States)

    Varga-Haszonits, I.; Kondor, I.

    2007-11-01

    This paper investigates the efficiency of minimum variance portfolio optimization for stock price movements following the Constant Conditional Correlation GARCH process proposed by Bollerslev. Simulations show that the quality of portfolio selection can be improved substantially by computing optimal portfolio weights from conditional covariances instead of unconditional ones. Measurement noise can be further reduced by applying some filtering method on the conditional correlation matrix (such as Random Matrix Theory based filtering). As an empirical support for the simulation results, the analysis is also carried out for a time series of S&P500 stock prices.

  14. Subjective Life Horizon and Portfolio Choice

    OpenAIRE

    Spaenjers , Christophe; Spira, Sven Michael

    2013-01-01

    Using data from a U.S. household survey, we examine the empirical relation between subjective life horizon (i.e., the self-reported expectation of remaining life span) and portfolio choice. We find that equity portfolio shares are higher for investors with longer horizons, ceteris paribus, in line with theoretical predictions. This result is robust to controlling for optimism and health status, accounting for the endogeneity of equity market participation, or instrumenting subjective life hor...

  15. Transforming local government by project portfolio management: Identifying and overcoming control problems

    DEFF Research Database (Denmark)

    Hansen, Lars Kristian

    2013-01-01

    Purpose – As public organizations strive for higher e-government maturity, information technology (IT) Project Portfolio Management (IT PPM) has become a high priority issue. Assuming control is central in IT PPM, the purpose of this paper is to investigate how a Danish local government conducts...... workshop, and analyses of documents. Findings – It is found that the local government relies vastly on informal control mechanisms and five control problems are identified: weak accountability processes between the political and administrative level; weak accountability between the director level...... the identified control problems. Research limitations/implications – As a single qualitative case study, the results are limited to one organization and subject. Practical implications – The paper has implications for IT PPM in Danish local governments and similar organizations in other countries. The paper...

  16. How Family Status and Social Security Claiming Options Shape Optimal Life Cycle Portfolios.

    Science.gov (United States)

    Hubener, Andreas; Maurer, Raimond; Mitchell, Olivia S

    2016-04-01

    We show how optimal household decisions regarding work, retirement, saving, portfolio allocations, and life insurance are shaped by the complex financial options embedded in U.S. Social Security rules and uncertain family transitions. Our life cycle model predicts sharp consumption drops on retirement, an age-62 peak in claiming rates, and earlier claiming by wives versus husbands and single women. Moreover, life insurance is mainly purchased on men's lives. Our model, which takes Social Security rules seriously, generates wealth and retirement outcomes that are more consistent with the data, in contrast to earlier and less realistic models.

  17. Portfolio Diversification in the South-East European Equity Markets

    OpenAIRE

    Zaimovic Azra; Arnaut-Berilo Almira; Mustafic Arnela

    2017-01-01

    Diversification potential enables investors to manage their risk and decrease risk exposure. Good diversification policy is a safety net that prevents a portfolio from losing its value. A well-diversified portfolio consists of different categories of property with low correlations, while highly correlated markets have the feature of low possibilities for diversification. The biggest riddle in the world of investments is to find the optimal portfolio within a set of available assets with limit...

  18. Binary Cockroach Swarm Optimization for Combinatorial Optimization Problem

    Directory of Open Access Journals (Sweden)

    Ibidun Christiana Obagbuwa

    2016-09-01

    Full Text Available The Cockroach Swarm Optimization (CSO algorithm is inspired by cockroach social behavior. It is a simple and efficient meta-heuristic algorithm and has been applied to solve global optimization problems successfully. The original CSO algorithm and its variants operate mainly in continuous search space and cannot solve binary-coded optimization problems directly. Many optimization problems have their decision variables in binary. Binary Cockroach Swarm Optimization (BCSO is proposed in this paper to tackle such problems and was evaluated on the popular Traveling Salesman Problem (TSP, which is considered to be an NP-hard Combinatorial Optimization Problem (COP. A transfer function was employed to map a continuous search space CSO to binary search space. The performance of the proposed algorithm was tested firstly on benchmark functions through simulation studies and compared with the performance of existing binary particle swarm optimization and continuous space versions of CSO. The proposed BCSO was adapted to TSP and applied to a set of benchmark instances of symmetric TSP from the TSP library. The results of the proposed Binary Cockroach Swarm Optimization (BCSO algorithm on TSP were compared to other meta-heuristic algorithms.

  19. Technology Audit: Assessment of Innovative Portfolio

    Directory of Open Access Journals (Sweden)

    Kurushina Viktoria

    2016-01-01

    Full Text Available The article discusses the features of the technological audit performing in the companies of oil and gas sector of Russian economy. To measure the innovations quality level the scale was developed based on the Theory of Inventive Problem Solving and the theory of technological structures. Figures of the innovations quantity by levels, volume and quality of the innovative portfolio are offered for assessment the innovative portfolio quality. The method was tested on an example of oil and gas transporting enterprises. The results of the comparative analysis of innovative portfolio are shown.

  20. Roy's safety-first portfolio principle in financial risk management of disastrous events.

    Science.gov (United States)

    Chiu, Mei Choi; Wong, Hoi Ying; Li, Duan

    2012-11-01

    Roy pioneers the concept and practice of risk management of disastrous events via his safety-first principle for portfolio selection. More specifically, his safety-first principle advocates an optimal portfolio strategy generated from minimizing the disaster probability, while subject to the budget constraint and the mean constraint that the expected final wealth is not less than a preselected disaster level. This article studies the dynamic safety-first principle in continuous time and its application in asset and liability management. We reveal that the distortion resulting from dropping the mean constraint, as a common practice to approximate the original Roy's setting, either leads to a trivial case or changes the problem nature completely to a target-reaching problem, which produces a highly leveraged trading strategy. Recognizing the ill-posed nature of the corresponding Lagrangian method when retaining the mean constraint, we invoke a wisdom observed from a limited funding-level regulation of pension funds and modify the original safety-first formulation accordingly by imposing an upper bound on the funding level. This model revision enables us to solve completely the safety-first asset-liability problem by a martingale approach and to derive an optimal policy that follows faithfully the spirit of the safety-first principle and demonstrates a prominent nature of fighting for the best and preventing disaster from happening. © 2012 Society for Risk Analysis.

  1. Investment portfolio management from cybernetic point of view

    Science.gov (United States)

    Marchev, Angel, Jr.; Marchev, Angel

    2013-12-01

    The theory of investment portfolios is a well defined component of financial science. While sound in principle, it faces some setbacks in its real-world implementation. In this paper the authors propose a reformulation of the investment portfolio problem as a cybernetic system where the Investor is the controlling system and the portfolio is the controlled system. Also the portfolio controlling process should be dissected in several ordered phases, so that each phase is represented as a subsystem within the structure of the controlling system Investor.

  2. MODERN THEORETICAL APPROACHES CREDIT PORTFOLIO QUALITY MANAGEMENT OF COMMERCIAL BANK

    Directory of Open Access Journals (Sweden)

    Victoria Lisnic

    2016-12-01

    Full Text Available Credit portfolio management means the totality of financial and economic decisions realization aimed at achieving optimal ratio of performance indicators of loan portfolio. If low-quality loans increase, the reduction of productive assets volume and, respectively, profitability from banking lending. In extreme cases a such situation could lead to bank bankruptcy. At present bank loan portfolio quality assessment is an important component of bank management.

  3. Multi-period project portfolio selection under risk considerations and stochastic income

    Science.gov (United States)

    Tofighian, Ali Asghar; Moezzi, Hamid; Khakzar Barfuei, Morteza; Shafiee, Mahmood

    2018-02-01

    This paper deals with multi-period project portfolio selection problem. In this problem, the available budget is invested on the best portfolio of projects in each period such that the net profit is maximized. We also consider more realistic assumptions to cover wider range of applications than those reported in previous studies. A novel mathematical model is presented to solve the problem, considering risks, stochastic incomes, and possibility of investing extra budget in each time period. Due to the complexity of the problem, an effective meta-heuristic method hybridized with a local search procedure is presented to solve the problem. The algorithm is based on genetic algorithm (GA), which is a prominent method to solve this type of problems. The GA is enhanced by a new solution representation and well selected operators. It also is hybridized with a local search mechanism to gain better solution in shorter time. The performance of the proposed algorithm is then compared with well-known algorithms, like basic genetic algorithm (GA), particle swarm optimization (PSO), and electromagnetism-like algorithm (EM-like) by means of some prominent indicators. The computation results show the superiority of the proposed algorithm in terms of accuracy, robustness and computation time. At last, the proposed algorithm is wisely combined with PSO to improve the computing time considerably.

  4. Portfolio Allocation Subject to Credit Risk

    Directory of Open Access Journals (Sweden)

    Rogerio de Deus Oliveira

    2003-12-01

    Full Text Available Credit Risk is an important dimension to be considered in the risk management procedures of financial institutions. Is a particularly useful in emerging markets where default rates on bank loan products are usually high. It is usually calculated through highly costly Monte Carlo simulations which consider different stochastic factors driving the uncertainly associated to the borrowers liabilities. In this paper, under some restrictions, we drive closed form formulas for the probability distributions of default rates of bank loans products involving a big number of clients. This allows us to quickly obtain the credit risk of such products. Moreover, using these probability distributions, we solve the problem of optimal portfolio allocation under default risk.

  5. On the Benefits of Equicorrelation for Portfolio Allocation

    OpenAIRE

    Adam Clements; Ayesha Scott; Annastiina Silvennoinen

    2013-01-01

    The importance of modelling correlation has long been recognised in the field of portfolio management with large dimensional multivariate problems are increasingly becoming the focus of research. This paper provides a straightforward and commonsense approach toward investigating a number of models used to generate forecasts of the correlation matrix for large dimensional problems. We find evidence in favour of assuming equicorrelation across various portfolio sizes, particularly during times ...

  6. Portfolio optimization for seed selection in diverse weather scenarios.

    Science.gov (United States)

    Marko, Oskar; Brdar, Sanja; Panić, Marko; Šašić, Isidora; Despotović, Danica; Knežević, Milivoje; Crnojević, Vladimir

    2017-01-01

    The aim of this work was to develop a method for selection of optimal soybean varieties for the American Midwest using data analytics. We extracted the knowledge about 174 varieties from the dataset, which contained information about weather, soil, yield and regional statistical parameters. Next, we predicted the yield of each variety in each of 6,490 observed subregions of the Midwest. Furthermore, yield was predicted for all the possible weather scenarios approximated by 15 historical weather instances contained in the dataset. Using predicted yields and covariance between varieties through different weather scenarios, we performed portfolio optimisation. In this way, for each subregion, we obtained a selection of varieties, that proved superior to others in terms of the amount and stability of yield. According to the rules of Syngenta Crop Challenge, for which this research was conducted, we aggregated the results across all subregions and selected up to five soybean varieties that should be distributed across the network of seed retailers. The work presented in this paper was the winning solution for Syngenta Crop Challenge 2017.

  7. Portfolio optimization for seed selection in diverse weather scenarios.

    Directory of Open Access Journals (Sweden)

    Oskar Marko

    Full Text Available The aim of this work was to develop a method for selection of optimal soybean varieties for the American Midwest using data analytics. We extracted the knowledge about 174 varieties from the dataset, which contained information about weather, soil, yield and regional statistical parameters. Next, we predicted the yield of each variety in each of 6,490 observed subregions of the Midwest. Furthermore, yield was predicted for all the possible weather scenarios approximated by 15 historical weather instances contained in the dataset. Using predicted yields and covariance between varieties through different weather scenarios, we performed portfolio optimisation. In this way, for each subregion, we obtained a selection of varieties, that proved superior to others in terms of the amount and stability of yield. According to the rules of Syngenta Crop Challenge, for which this research was conducted, we aggregated the results across all subregions and selected up to five soybean varieties that should be distributed across the network of seed retailers. The work presented in this paper was the winning solution for Syngenta Crop Challenge 2017.

  8. Management of Portfolio Investment Held by Pension Funds

    Directory of Open Access Journals (Sweden)

    Dan Armeanu

    2008-09-01

    Full Text Available As a result of the fact that pension funds are financial intermediaries, the value of their assets and liabilities is influenced by changing conditions in financial markets. The market image of a pension fund (and hence its perceived value are closely tied to the “financial health” of the fund. Setting up and managing complex investment portfolios requires that pension administrators use scientific models of portfolio selection and optimization based on the risk-expected return relationship. Most investment portfolios are modified in time as result of changing stock prices and investment policy objectives. Having established investment policy guidelines, the administrators of pension funds have to determine the structure of their portfolios so that the latter meet legal requirements.

  9. Optimal portfolio strategies under a shortfall constraint

    African Journals Online (AJOL)

    we make precise the optimal control problem to be solved. .... is closely related to the concept of Value-at-Risk, but overcomes some of the conceptual .... We adapt a dynamic programming approach to solve the HJB equation associated with.

  10. Online Learning of Commission Avoidant Portfolio Ensembles

    OpenAIRE

    Uziel, Guy; El-Yaniv, Ran

    2016-01-01

    We present a novel online ensemble learning strategy for portfolio selection. The new strategy controls and exploits any set of commission-oblivious portfolio selection algorithms. The strategy handles transaction costs using a novel commission avoidance mechanism. We prove a logarithmic regret bound for our strategy with respect to optimal mixtures of the base algorithms. Numerical examples validate the viability of our method and show significant improvement over the state-of-the-art.

  11. Stock portfolio selection using Dempster–Shafer evidence theory

    Directory of Open Access Journals (Sweden)

    Gour Sundar Mitra Thakur

    2018-04-01

    Full Text Available Markowitz’s return–risk model for stock portfolio selection is based on the historical return data of assets. In addition to the effect of historical return, there are many other critical factors which directly or indirectly influence the stock market. We use the fuzzy Delphi method to identify the critical factors initially. Factors having lower correlation coefficients are finally considered for further consideration. The critical factors and historical data are used to apply Dempster–Shafer evidence theory to rank the stocks. Then, a portfolio selection model that prefers stocks with higher rank is proposed. Illustration is done using stocks under Bombay Stock Exchange (BSE. Simulation is done by Ant Colony Optimization. The performance of the outcome is found satisfactory when compared with recent performance of the assets. Keywords: Stock portfolio selection, Ranking, Dempster–Shafer evidence theory, Ant Colony Optimization, Fuzzy Delphi method

  12. An Optimization of the Risk Management using Derivatives

    Directory of Open Access Journals (Sweden)

    Ovidiu ŞONTEA

    2011-07-01

    Full Text Available This article aims to provide a process that can be used in financial risk management by resolving problems of minimizing the risk measure (VaR using derivatives products, bonds and options. This optimization problem was formulated in the hedging situation of a portfolio formed by an active and a put option on this active, respectively a bond and an option on this bond. In the first optimization problem we will obtain the coverage ratio of the optimal price for the excertion of the option which is in fact the relative cost of the option’s value. In the second optimization problem we obtained optimal exercise price for a put option which is to support a bond.

  13. Differentiated risk models in portfolio optimization: a comparative analysis of the degree of diversification and performance in the São Paulo Stock Exchange (BOVESPA

    Directory of Open Access Journals (Sweden)

    Ivan Ricardo Gartner

    2012-08-01

    Full Text Available Faced with so many risk modeling alternatives in portfolio optimization, several questions arise regarding their legitimacy, utility and applicability. In particular, a question arises involving the adherence of the alternative models with regard to the basic presupposition of Markowitz's classical model, with regard to the concept of diversification as a means of controlling the relationship between risk and return within a process of optimization. In this context, the aim of this article is to explore the risk-differentiated configurations that entropy can provide, from the point of view of the repercussions that these have on the degree of diversification and on portfolios performance. The reach of this objective requires that a comparative analysis is made between models that include entropy in their formulation and the classic Markowitz model. In order to contribute to this debate, this article proposes that adaptations are made to the models of relative minimum entropy and of maximum entropy, so that these can be applied to investment portfolio optimizations. The comparative analysis was based on performance indicators and on a ratio of the degree of portfolio diversification. The portfolios were formed by considering a sample of fourteen assets that compose the IBOVESPA, which were projected during the period from January 2007 to December 2009, and took into account the matrices of covariance that were formed as from January 1999. When comparing the Markowitz model with two models that were constructed to represent new risk configurations based on entropy optimization, the present study concluded that the first model was far superior to the others. Not only did the Markowitz model present better accumulated nominal yields, it also presented a far greater predictive efficiency and better effective performance, when considering the trade-off between risk and return. However, with regards to diversification, the Markowitz model concentrated

  14. Multi-Objective Stochastic Optimization Programs for a Non-Life Insurance Company under Solvency Constraints

    Directory of Open Access Journals (Sweden)

    Massimiliano Kaucic

    2015-09-01

    Full Text Available In the paper, we introduce a multi-objective scenario-based optimization approach for chance-constrained portfolio selection problems. More specifically, a modified version of the normal constraint method is implemented with a global solver in order to generate a dotted approximation of the Pareto frontier for bi- and tri-objective programming problems. Numerical experiments are carried out on a set of portfolios to be optimized for an EU-based non-life insurance company. Both performance indicators and risk measures are managed as objectives. Results show that this procedure is effective and readily applicable to achieve suitable risk-reward tradeoff analysis.

  15. Portfolio size as funktion of the premium: modeling and optimization

    DEFF Research Database (Denmark)

    Asmussen, Søren; Christensen, Bent Jesper; Taksar, Michael I

    An insurance company has a large number N of potential customers characterized by i.i.d. r.v.'s A1,…,AN giving the arrival rates of claims. Customers are risk averse, and a customer accepts an offered premium p according to his A-value. The modeling further involves a discount rate d>r of customers......, where r is the risk-free interest rate. Based on calculations of the customers' present values of the alternative strategies of insuring and not insuring, the portfolio size n(p) is derived, and also the rate of claims from the insured customers is given. Further, the value of p which is optimal...... for minimizing the ruin probability is derived in a diffusion approximation to the Cramér-Lundberg risk process with an added liability rate L of the company. The solution involves the Lambert W function. Similar discussion is given for extensions involving customers having only partial information...

  16. Optimal Responsible Investment

    DEFF Research Database (Denmark)

    Jessen, Pernille

    The paper studies retail Socially Responsible Investment and portfolio allocation. It extends conventional portfolio theory by allowing for a personal value based investment decision. When preferences for responsibility enter the framework for mean-variance analysis, it yields an optimal...... responsible investment model. An example of index investing illustrates the theory. Results show that it is crucial for the responsible investor to consider portfolio risk, expected return, and responsibility simultaneously in order to obtain an optimal portfolio. The model enables responsible investors...

  17. A fuzzy compromise programming approach for the Black-Litterman portfolio selection model

    Directory of Open Access Journals (Sweden)

    Mohsen Gharakhani

    2013-01-01

    Full Text Available In this paper, we examine advanced optimization approach for portfolio problem introduced by Black and Litterman to consider the shortcomings of Markowitz standard Mean-Variance optimization. Black and Litterman propose a new approach to estimate asset return. They present a way to incorporate the investor’s views into asset pricing process. Since the investor’s view about future asset return is always subjective and imprecise, we can represent it by using fuzzy numbers and the resulting model is multi-objective linear programming. Therefore, the proposed model is analyzed through fuzzy compromise programming approach using appropriate membership function. For this purpose, we introduce the fuzzy ideal solution concept based on investor preference and indifference relationships using canonical representation of proposed fuzzy numbers by means of their correspondingα-cuts. A real world numerical example is presented in which MSCI (Morgan Stanley Capital International Index is chosen as the target index. The results are reported for a portfolio consisting of the six national indices. The performance of the proposed models is compared using several financial criteria.

  18. Multi-period fuzzy mean-semi variance portfolio selection problem with transaction cost and minimum transaction lots using genetic algorithm

    Directory of Open Access Journals (Sweden)

    Mohammad Ali Barati

    2016-04-01

    Full Text Available Multi-period models of portfolio selection have been developed in the literature with respect to certain assumptions. In this study, for the first time, the portfolio selection problem has been modeled based on mean-semi variance with transaction cost and minimum transaction lots considering functional constraints and fuzzy parameters. Functional constraints such as transaction cost and minimum transaction lots were included. In addition, the returns on assets parameters were considered as trapezoidal fuzzy numbers. An efficient genetic algorithm (GA was designed, results were analyzed using numerical instances and sensitivity analysis were executed. In the numerical study, the problem was solved based on the presence or absence of each mode of constraints including transaction costs and minimum transaction lots. In addition, with the use of sensitivity analysis, the results of the model were presented with the variations of minimum expected rate of programming periods.

  19. Power sector investment risk and renewable energy: A Japanese case study using portfolio risk optimization method

    International Nuclear Information System (INIS)

    Bhattacharya, Anindya; Kojima, Satoshi

    2012-01-01

    The conventional pricing mechanism used for electricity systematically hides huge investment risks which are embedded in the overall cost of production. Although consumers are often unaware of these risks, they present a large financial burden on the economy. This study applies the portfolio optimization concepts from the field of finance to demonstrate the scope of greater utilization of renewable energies (RE) while reducing the embedded investment risk in the conventional electricity sector and its related financial burden. This study demonstrates that RE investment can compensate for the risks associated with the total input costs; such costs being external volatilities of fossil fuel prices, capital costs, operating and maintenance costs and the carbon costs. By means of example, this case study shows that Japan could in theory obtain up to 9% of its electricity supply from green sources, as compared to the present 1.37%, based on the utilization of a portfolio risk-analysis evaluation. Explicit comparison of the monetary values of the investment risks of conventional and renewable energy sources shows that renewable energies have high market competitiveness. The study concludes with a recommendation that, as a business objective, investors would benefit by focusing on electricity supply portfolio risk minimization instead of cost. This could also inherently increase the supply of renewable energy in the market. - Research highlights: ►Energy sector investors should not be bothered only about the absolute cost figures of the input factors like fossil fuels but should also be careful about the fluctuation of their costs while making the investment decisions. ►Inclusion of renewable energy in the investment portfolio can increase the cost apparently but can reduce the risk hedging costs, too. ►International carbon price may not be a good factor to encourage renewable energy investment in the market.

  20. Developing a framework for energy technology portfolio selection

    Science.gov (United States)

    Davoudpour, Hamid; Ashrafi, Maryam

    2012-11-01

    Today, the increased consumption of energy in world, in addition to the risk of quick exhaustion of fossil resources, has forced industrial firms and organizations to utilize energy technology portfolio management tools viewed both as a process of diversification of energy sources and optimal use of available energy sources. Furthermore, the rapid development of technologies, their increasing complexity and variety, and market dynamics have made the task of technology portfolio selection difficult. Considering high level of competitiveness, organizations need to strategically allocate their limited resources to the best subset of possible candidates. This paper presents the results of developing a mathematical model for energy technology portfolio selection at a R&D center maximizing support of the organization's strategy and values. The model balances the cost and benefit of the entire portfolio.

  1. Gaming Change: A Many-objective Analysis of Water Supply Portfolios under Uncertainty

    Science.gov (United States)

    Reed, P. M.; Kasprzyk, J.; Characklis, G.; Kirsch, B.

    2008-12-01

    This study explores the uncertainty and tradeoffs associated with up to six conflicting water supply portfolio planning objectives. A ten-year Monte Carlo simulation model is used to evaluate water supply portfolios blending permanent rights, adaptive options contracts, and spot leases for a single city in the Lower Rio Grande Valley. Historical records of reservoir mass balance, lease pricing, and demand serve as the source data for the Monte Carlo simulation. Portfolio planning decisions include the initial volume and annual increases of permanent rights, thresholds for an adaptive options contract, and anticipatory decision rules for purchasing leases and exercising options. Our work distinguishes three cases: (1) permanent rights as the sole source of supply, (2) permanent rights and adaptive options, and (3) a combination of permanent rights, adaptive options, and leases. The problems have been formulated such that cases 1 and 2 are sub-spaces of the six objective formulation used for case 3. Our solution sets provide the tradeoff surfaces between portfolios' expected values for cost, cost variability, reliability, frequency of purchasing permanent rights increases, frequency of using leases, and dropped (or unused) transfers of water. The tradeoff surfaces for the three cases show that options and leases have a dramatic impact on the marginal costs associated with improving the efficiency and reliability of urban water supplies. Moreover, our many-objective analysis permits the discovery of a broad range of high quality portfolio strategies. We differentiate the value of adaptive options versus leases by testing a representative subset of optimal portfolios' abilities to effectively address regional increases in demand during drought periods. These results provide insights into the tradeoffs inherent to a more flexible, portfolio-style approach to urban water resources management, an approach that should become increasingly attractive in an environment of

  2. An Artificial Bee Colony Algorithm for Uncertain Portfolio Selection

    OpenAIRE

    Chen, Wei

    2014-01-01

    Portfolio selection is an important issue for researchers and practitioners. In this paper, under the assumption that security returns are given by experts’ evaluations rather than historical data, we discuss the portfolio adjusting problem which takes transaction costs and diversification degree of portfolio into consideration. Uncertain variables are employed to describe the security returns. In the proposed mean-variance-entropy model, the uncertain mean value of the return is ...

  3. Optimal allocation of trend following strategies

    Science.gov (United States)

    Grebenkov, Denis S.; Serror, Jeremy

    2015-09-01

    We consider a portfolio allocation problem for trend following (TF) strategies on multiple correlated assets. Under simplifying assumptions of a Gaussian market and linear TF strategies, we derive analytical formulas for the mean and variance of the portfolio return. We construct then the optimal portfolio that maximizes risk-adjusted return by accounting for inter-asset correlations. The dynamic allocation problem for n assets is shown to be equivalent to the classical static allocation problem for n2 virtual assets that include lead-lag corrections in positions of TF strategies. The respective roles of asset auto-correlations and inter-asset correlations are investigated in depth for the two-asset case and a sector model. In contrast to the principle of diversification suggesting to treat uncorrelated assets, we show that inter-asset correlations allow one to estimate apparent trends more reliably and to adjust the TF positions more efficiently. If properly accounted for, inter-asset correlations are not deteriorative but beneficial for portfolio management that can open new profit opportunities for trend followers. These concepts are illustrated using daily returns of three highly correlated futures markets: the E-mini S&P 500, Euro Stoxx 50 index, and the US 10-year T-note futures.

  4. The stock selection problem: Is the stock selection approach more important than the optimization method? Evidence from the Danish stock market

    OpenAIRE

    Grobys, Klaus

    2011-01-01

    Passive investment strategies basically aim to replicate an underlying benchmark. Thereby, the management usually selects a subset of stocks being employed in the optimization procedure. Apart from the optimization procedure, the stock selection approach determines the stock portfolios' out-of-sample performance. The empirical study here takes into account the Danish stock market from 2000-2010 and gives evidence that stock portfolios including small companies' stocks being estimated via coin...

  5. Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Ahmet Demir

    2017-01-01

    Full Text Available In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an important role on providing software related techniques to improve the associated literature. Today, intelligent optimization techniques based on Artificial Intelligence are widely used for optimization problems. The objective of this paper is to provide a comparative study on the employment of classical optimization solutions and Artificial Intelligence solutions for enabling readers to have idea about the potential of intelligent optimization techniques. At this point, two recently developed intelligent optimization algorithms, Vortex Optimization Algorithm (VOA and Cognitive Development Optimization Algorithm (CoDOA, have been used to solve some multidisciplinary optimization problems provided in the source book Thomas' Calculus 11th Edition and the obtained results have compared with classical optimization solutions. 

  6. A diversified portfolio model of adaptability.

    Science.gov (United States)

    Chandra, Siddharth; Leong, Frederick T L

    2016-12-01

    A new model of adaptability, the diversified portfolio model (DPM) of adaptability, is introduced. In the 1950s, Markowitz developed the financial portfolio model by demonstrating that investors could optimize the ratio of risk and return on their portfolios through risk diversification. The DPM integrates attractive features of a variety of models of adaptability, including Linville's self-complexity model, the risk and resilience model, and Bandura's social cognitive theory. The DPM draws on the concept of portfolio diversification, positing that diversified investment in multiple life experiences, life roles, and relationships promotes positive adaptation to life's challenges. The DPM provides a new integrative model of adaptability across the biopsychosocial levels of functioning. More importantly, the DPM addresses a gap in the literature by illuminating the antecedents of adaptive processes studied in a broad array of psychological models. The DPM is described in relation to the biopsychosocial model and propositions are offered regarding its utility in increasing adaptiveness. Recommendations for future research are also offered. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  7. Portfolio allocation under the vendor managed inventory: A Markov ...

    African Journals Online (AJOL)

    Portfolio allocation under the vendor managed inventory: A Markov decision process. ... Journal of Applied Sciences and Environmental Management ... This study provides a review of Markov decision processes and investigates its suitability for solutions to portfolio allocation problems under vendor managed inventory in ...

  8. Mean-Variance Efficiency of the Market Portfolio

    OpenAIRE

    Rafael Falcão Noda; Roy Martelanc; José Roberto Securato

    2014-01-01

    The objective of this study is to answer the criticism to the CAPM based on findings that the market portfolio is far from the efficient frontier. We run a numeric optimization model, based on Brazilian stock market data from 2003 to 2012. For each asset, we obtain adjusted returns and standard deviations such that (i) the efficient frontier intersects with the market portfolio and (ii) the distance between the adjusted parameters and the sample parameters is minimized. We conclude that the a...

  9. Portfolio at Tertiary Level – Lifelong Learning Tool

    Directory of Open Access Journals (Sweden)

    Galina Kavaliauskienė

    2011-04-01

    Full Text Available The use of electronic language portfolios has been preferable to the use of common paper portfolios for ease of application – there is no need for accumulating a number of files of written papers, which solves the problem of storing space and, to some extent, helps reduce students’ and teachers’ workload.The study investigated learners’ perceptions of employing electronic language portfolios for conducting various assignments in English for Specific Purposes. The research involved university students of different specializations. Learners’ experience of employing portfolios and opinions on their benefits for improving language skills have been analyzed and statistically treated using SPSS software. The results show that students are positive about application of electronic portfolios in ESP classes. The use of online portfolios for various assignments helps teachers foster students’ learning, encourages critical thinking, develops creativity, motivates learners to use digital technology, encourages collaboration of learners, and in the long run, leads to lifelong learning.

  10. VAR Portfolio Optimal: Perbandingan Antara Metode Markowitz Dan Mean Absolute Deviation

    OpenAIRE

    Sartono, R. Agus; Setiawan, Arie Andika

    2006-01-01

    Portfolio selection method which have been introduced by Harry Markowitz (1952) used variance or deviation standard as a measure of risk. Kanno and Yamazaki (1991) introduced another method and used mean absolute deviation as a measure of risk instead of variance. The Value-at Risk (VaR) is a relatively new method to capitalized risk that been used by financial institutions. The aim of this research is compare between mean variance and mean absolute deviation of two portfolios. Next, we attem...

  11. Portfolio-Scale Optimization of Customer Energy Efficiency Incentive and Marketing: Cooperative Research and Development Final Report, CRADA Number CRD-13-535

    Energy Technology Data Exchange (ETDEWEB)

    Brackney, Larry J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-02-17

    North East utility National Grid (NGrid) is developing a portfolio-scale application of OpenStudio designed to optimize incentive and marketing expenditures for their energy efficiency (EE) programs. NGrid wishes to leverage a combination of geographic information systems (GIS), public records, customer data, and content from the Building Component Library (BCL) to form a JavaScript Object Notation (JSON) input file that is consumed by an OpenStudio-based expert system for automated model generation. A baseline model for each customer building will be automatically tuned using electricity and gas consumption data, and a set of energy conservation measures (ECMs) associated with each NGrid incentive program will be applied to the model. The simulated energy performance and return on investment (ROI) will be compared with customer hurdle rates and available incentives to A) optimize the incentive required to overcome the customer hurdle rate and B) determine if marketing activity associated with the specific ECM is warranted for that particular customer. Repeated across their portfolio, this process will enable NGrid to substantially optimize their marketing and incentive expenditures, targeting those customers that will likely adopt and benefit from specific EE programs.

  12. 8th Workshop on Computational Optimization

    CERN Document Server

    2016-01-01

    This volume is a comprehensive collection of extended contributions from the Workshop on Computational Optimization 2015. It presents recent advances in computational optimization. The volume includes important real life problems like parameter settings for controlling processes in bioreactor, control of ethanol production, minimal convex hill with application in routing algorithms, graph coloring, flow design in photonic data transport system, predicting indoor temperature, crisis control center monitoring, fuel consumption of helicopters, portfolio selection, GPS surveying and so on. It shows how to develop algorithms for them based on new metaheuristic methods like evolutionary computation, ant colony optimization, constrain programming and others. This research demonstrates how some real-world problems arising in engineering, economics, medicine and other domains can be formulated as optimization problems. .

  13. Bank’s choIce of loan portfolIo under hIgh regulatIon – example of croatIa

    Directory of Open Access Journals (Sweden)

    Neven Vidakovic

    2014-12-01

    Full Text Available This paper creates a mathematical model in which the banks are faced with two optimization problems. The first optimization problem is how to optimize their behavior in order to maximize profits. The second optimization is how to optimize the structure of liabilities in order to have minimum regulation. The regulatory regime is imposed by the central bank. This paper investigates the behavior of banks when faced with high regulation and provides a theoretical framework for analysis of the impact of high regulation on the choice of the bank’s portfolio structure. The model shows the banks have a learning framework in which the banks learn the central bank’s true model and adjust their credit policies to existing regulatory regime. However this adjustment also creates changes in the choice of credit.

  14. SOCIAL NETWORK OPTIMIZATION A NEW METHAHEURISTIC FOR GENERAL OPTIMIZATION PROBLEMS

    Directory of Open Access Journals (Sweden)

    Hassan Sherafat

    2017-12-01

    Full Text Available In the recent years metaheuristics were studied and developed as powerful technics for hard optimization problems. Some of well-known technics in this field are: Genetic Algorithms, Tabu Search, Simulated Annealing, Ant Colony Optimization, and Swarm Intelligence, which are applied successfully to many complex optimization problems. In this paper, we introduce a new metaheuristic for solving such problems based on social networks concept, named as Social Network Optimization – SNO. We show that a wide range of np-hard optimization problems may be solved by SNO.

  15. Class and Home Problems: Optimization Problems

    Science.gov (United States)

    Anderson, Brian J.; Hissam, Robin S.; Shaeiwitz, Joseph A.; Turton, Richard

    2011-01-01

    Optimization problems suitable for all levels of chemical engineering students are available. These problems do not require advanced mathematical techniques, since they can be solved using typical software used by students and practitioners. The method used to solve these problems forces students to understand the trends for the different terms…

  16. Geometric representation of the mean-variance-skewness portfolio frontier based upon the shortage function

    OpenAIRE

    Kerstens, Kristiaan; Mounier, Amine; Van de Woestyne, Ignace

    2008-01-01

    The literature suggests that investors prefer portfolios based on mean, variance and skewness rather than portfolios based on mean-variance (MV) criteria solely. Furthermore, a small variety of methods have been proposed to determine mean-variance-skewness (MVS) optimal portfolios. Recently, the shortage function has been introduced as a measure of efficiency, allowing to characterize MVS optimalportfolios using non-parametric mathematical programming tools. While tracing the MV portfolio fro...

  17. Optimal Investment in Structured Bonds

    DEFF Research Database (Denmark)

    Jessen, Pernille; Jørgensen, Peter Løchte

    The paper examines the role of structured bonds in the optimal portfolio of a small retail investor. We consider the typical structured bond essentially repacking an exotic option and a zero coupon bond, i.e. an investment with portfolio insurance. The optimal portfolio is found when the investment...

  18. ALPHA-BETA SEPARATION PORTFOLIO STRATEGIES FOR ISLAMIC FINANCE

    Directory of Open Access Journals (Sweden)

    Valentyn Khokhlov

    2016-11-01

    Full Text Available The purpose of this paper is to develop a mathematical alpha-beta separation model that can be used to create a core-satellite portfolio management strategy that complies with the principles of Islamic finance. Methodology. Core-satellite portfolio construction methodology is used to implement the alpha-beta separation approach, where the core part of the portfolio is managed using the tracking error minimization strategy, and the satellite part of the portfolio is managed using the mean-variance optimization strategy. Results of the portfolio dynamics clearly show that a significant amount of value was created by alpha-beta separation. The typical alpha ranges from 4% to 5.7%. The most aggressive portfolio strategies that allow short positions in the satellite portfolio work best with frequent rebalancing and benefit from the active bets. Smoothing technique that was introduced to decrease the portfolio turnover and stabilize its composition works better when active bets are less efficient, particularly with less frequent rebalancing. The best risk-return combinations are achieved with modest (3% to 10% allocation of the total portfolio to the satellite, and the remaining part (90% to 97% being managed in order to minimize the tracking error. Practical implications. The alpha-beta separation framework suggested in this paper can be used to enhance the portfolio management techniques for the hedge funds that operate under tight restrictions, particularly under the Islamic finance principles. The mathematical models developed in this paper allow practical implementation of the alphabeta separation concept. Originality/value. While the idea of alpha-beta separation existed in hedge fund management before, there was no comprehensive mathematical model under it, so its implementation was based on the ad hoc approach. This paper introduces such a mathematical model and demonstrates how portfolio managers can create value for their clients using it.

  19. Portfolio balancing and risk adjusted values under constrained budget conditions

    International Nuclear Information System (INIS)

    MacKay, J.A.; Lerche, I.

    1996-01-01

    For a given hydrocarbon exploration opportunity, the influences of value, cost, success probability and corporate risk tolerance provide an optimal working interest that should be taken in the opportunity in order to maximize the risk adjusted value. When several opportunities are available, but when the total budget is insufficient to take optimal working interest in each, an analytic procedure is given for optimizing the risk adjusted value of the total portfolio; the relevant working interests are also derived based on a cost exposure constraint. Several numerical illustrations are provided to exhibit the use of the method under different budget conditions, and with different numbers of available opportunities. When value, cost, success probability, and risk tolerance are uncertain for each and every opportunity, the procedure is generalized to allow determination of probable optimal risk adjusted value for the total portfolio and, at the same time, the range of probable working interest that should be taken in each opportunity is also provided. The result is that the computations of portfolio balancing can be done quickly in either deterministic or probabilistic manners on a small calculator, thereby providing rapid assessments of opportunities and their worth to a corporation. (Author)

  20. CHARACTERISTICS OF INVESTMENT PORTFOLIOS PASSIVE MANAGEMENT STRATEGY ON THE CAPITAL MARKET

    Directory of Open Access Journals (Sweden)

    MIHAELA SUDACEVSCHI

    2013-05-01

    Full Text Available The strategies of investment portfolios management on the capital market involves a range of transactions with different financial securities, aimed at optimizing the results. On a developed and efficient capital market, with a high liquidity level, portfolio management primarly depends on investor’s targeted level of return and the risk profile of the investor. Passive strategy of investment portfolios management is applied especially by risk aversion investors, who are taking into account all existing risks in the capital market and seeking to preserve the value of investments, rather than increasing its value. This strategy presume that the investor has no information about the prices and the return of securities that would make him to give to his investment portfolio a different structure from the structure of capital market portfolio. Therefore, he will seek a return level equal to the return on the market portfolio, minimizing the portfolio risk up to eliminating the specific risk.

  1. Portfolio management of hydropower producer via stochastic programming

    International Nuclear Information System (INIS)

    Liu, Hongling; Jiang, Chuanwen; Zhang, Yan

    2009-01-01

    This paper presents a stochastic linear programming framework for the hydropower portfolio management problem with uncertainty in market prices and inflows on medium term. The uncertainty is modeled as a scenario tree using the Monte Carlo simulation method, and the objective is to maximize the expected revenue over the entire scenario tree. The portfolio decisions of the stochastic model are formulated as a tradeoff involving different scenarios. Numerical results illustrate the impact of uncertainty on the portfolio management decisions, and indicate the significant value of stochastic solution. (author)

  2. Optimal Scheduling of Biogas-Solar-Wind Renewable Portfolio for Multi-Carrier Energy Supplies

    DEFF Research Database (Denmark)

    Zhou, Bin; Xu, Da; Li, Canbing

    2018-01-01

    the mitigation of renewable intermittency and the efficient utilization of batteries, and a multi-carrier generation scheduling scheme is further presented to dynamically optimize dispatch factors in the coupling matrix for energy-efficient con-version and storage, while different energy demands of end......This paper proposes a multi-source multi-product framework for coupled multi-carrier energy supplies with a biogas-solar-wind hybrid renewable system. In this framework, the biogas-solar-wind complementarities are fully exploited based on digesting thermodynamic effects for the synergetic...... interactions of electricity, gas and heating energy flows, and a coupling matrix is formulated for the modeling of production, conversion, storage, and consumption of different energy carriers. The multi-energy complementarity of biogas-solar-wind renewable portfolio can be utilized to facilitate...

  3. METHODICAL BASES OF MANAGEMENT OF INSURANCE PORTFOLIO

    Directory of Open Access Journals (Sweden)

    Serdechna Yulia

    2018-01-01

    balanced insurance portfolio. A balanced insurance portfolio is when it satisfies the insurer’s need for a spatial layout of risk and provides a balance between the contracts that expire and those that are concluded; when the risk is balanced between the types of insurance; when the optimal ratio between income and portfolio risk is provided.

  4. Portfolio Selection with Jumps under Regime Switching

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2010-01-01

    Full Text Available We investigate a continuous-time version of the mean-variance portfolio selection model with jumps under regime switching. The portfolio selection is proposed and analyzed for a market consisting of one bank account and multiple stocks. The random regime switching is assumed to be independent of the underlying Brownian motion and jump processes. A Markov chain modulated diffusion formulation is employed to model the problem.

  5. The electricity portfolio simulation model (EPSim) technical description.

    Energy Technology Data Exchange (ETDEWEB)

    Drennen, Thomas E.; Klotz, Richard (Hobart and William Smith Colleges, Geneva, NY)

    2005-09-01

    Stakeholders often have competing interests when selecting or planning new power plants. The purpose of developing this preliminary Electricity Portfolio Simulation Model (EPSim) is to provide a first cut, dynamic methodology and approach to this problem, that can subsequently be refined and validated, that may help energy planners, policy makers, and energy students better understand the tradeoffs associated with competing electricity portfolios. EPSim allows the user to explore competing electricity portfolios annually from 2002 to 2025 in terms of five different criteria: cost, environmental impacts, energy dependence, health and safety, and sustainability. Four additional criteria (infrastructure vulnerability, service limitations, policy needs and science and technology needs) may be added in future versions of the model. Using an analytic hierarchy process (AHP) approach, users or groups of users apply weights to each of the criteria. The default energy assumptions of the model mimic Department of Energy's (DOE) electricity portfolio to 2025 (EIA, 2005). At any time, the user can compare alternative portfolios to this reference case portfolio.

  6. Optimal bank portfolio choice under fixed-rate deposit insurance

    OpenAIRE

    Anlong Li

    1991-01-01

    An analysis of the investment decisions of a bank whose deposits are fully insured under fixed-rate insurance, showing how banks dynamically adjust their investment portfolios in response to market information and how this flexibility affects both investment decisions and the fair cost of deposit insurance.

  7. Decision-support tool for assessing future nuclear reactor generation portfolios

    International Nuclear Information System (INIS)

    Jain, Shashi; Roelofs, Ferry; Oosterlee, Cornelis W.

    2014-01-01

    Capital costs, fuel, operation and maintenance (O and M) costs, and electricity prices play a key role in the economics of nuclear power plants. Often standardized reactor designs are required to be locally adapted, which often impacts the project plans and the supply chain. It then becomes difficult to ascertain how these changes will eventually reflect in costs, which makes the capital costs component of nuclear power plants uncertain. Different nuclear reactor types compete economically by having either lower and less uncertain construction costs, increased efficiencies, lower and less uncertain fuel cycles and O and M costs etc. The decision making process related to nuclear power plants requires a holistic approach that takes into account the key economic factors and their uncertainties. We here present a decision-support tool that satisfactorily takes into account the major uncertainties in the cost elements of a nuclear power plant, to provide an optimal portfolio of nuclear reactors. The portfolio so obtained, under our model assumptions and the constraints considered, maximizes the combined returns for a given level of risk or uncertainty. These decisions are made using a combination of real option theory and mean–variance portfolio optimization. - Highlights: • Decisions to continue or abandon the construction of NPPs • Mean–variance portfolio of nuclear reactors • Sensitivity study of mean–variance portfolio of nuclear reactors

  8. Analytic solution to variance optimization with no short positions

    Science.gov (United States)

    Kondor, Imre; Papp, Gábor; Caccioli, Fabio

    2017-12-01

    We consider the variance portfolio optimization problem with a ban on short selling. We provide an analytical solution by means of the replica method for the case of a portfolio of independent, but not identically distributed, assets. We study the behavior of the solution as a function of the ratio r between the number N of assets and the length T of the time series of returns used to estimate risk. The no-short-selling constraint acts as an asymmetric \

  9. Electricity Market Optimization of Heat Pump Portfolio

    DEFF Research Database (Denmark)

    Biegel, Benjamin; Andersen, Palle; Pedersen, Tom S.

    2013-01-01

    We consider a portfolio of domestic heat pumps controlled by an aggregator. The aggregator is able to adjust the consumption of the heat pumps without affecting the comfort in the houses and uses this ability to shift the main consumption to hours with low electricity prices. Further......, the aggregator is able to place upward and downward regulating bids in the regulating power market based on the consumption flexibility. A simulation is carried out based on data from a Danish domestic heat pump project, historical spot prices, regulating power prices, and spot price predictions. The simulations...

  10. The Formation of Optimal Portfolio of Mutual Shares Funds using Multi-Objective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yandra Arkeman

    2013-09-01

    Full Text Available Investments in financial assets have become a trend in the globalization era, especially the investment in mutual fund shares. Investors who want to invest in stock mutual funds can set up an investment portfolio in order to generate a minimal risk and maximum return. In this study the authors used the Multi-Objective Genetic Algorithm Non-dominated Sorting II (MOGA NSGA-II technique with the Markowitz portfolio principle to find the best portfolio from several mutual funds. The data used are 10 company stock mutual funds with a period of 12 months, 24 months and 36 months. The genetic algorithm parameters used are crossover probability of 0.65, mutation probability of 0.05, Generation 400 and a population numbering 20 individuals. The study produced a combination of the best portfolios for the period of 24 months with a computing time of 63,289 seconds.

  11. Promoting Affordability in Defense Acquisitions: A Multi-Period Portfolio Approach

    Science.gov (United States)

    2014-04-30

    has evolved out of many areas of research, ranging from economics to modern control theory (Powell, 2011). The general form of a dynamic programming...states 5 School of Aeronautics & Astronautics A Portfolio Approach: Background • Balance expected profit (performance) against risk ( variance ) in...investments (Markowitz 1952) • Efficiency frontier of optimal portfolios given investor risk averseness • Extends to multi-period case with various

  12. Solving Optimization Problems via Vortex Optimization Algorithm and Cognitive Development Optimization Algorithm

    OpenAIRE

    Ahmet Demir; Utku kose

    2017-01-01

    In the fields which require finding the most appropriate value, optimization became a vital approach to employ effective solutions. With the use of optimization techniques, many different fields in the modern life have found solutions to their real-world based problems. In this context, classical optimization techniques have had an important popularity. But after a while, more advanced optimization problems required the use of more effective techniques. At this point, Computer Science took an...

  13. Sharing the cost of river basin adaptation portfolios to climate change: Insights from social justice and cooperative game theory

    Science.gov (United States)

    Girard, Corentin; Rinaudo, Jean-Daniel; Pulido-Velazquez, Manuel

    2016-10-01

    The adaptation of water resource systems to the potential impacts of climate change requires mixed portfolios of supply and demand adaptation measures. The issue is not only to select efficient, robust, and flexible adaptation portfolios but also to find equitable strategies of cost allocation among the stakeholders. Our work addresses such cost allocation problems by applying two different theoretical approaches: social justice and cooperative game theory in a real case study. First of all, a cost-effective portfolio of adaptation measures at the basin scale is selected using a least-cost optimization model. Cost allocation solutions are then defined based on economic rationality concepts from cooperative game theory (the Core). Second, interviews are conducted to characterize stakeholders' perceptions of social justice principles associated with the definition of alternatives cost allocation rules. The comparison of the cost allocation scenarios leads to contrasted insights in order to inform the decision-making process at the river basin scale and potentially reap the efficiency gains from cooperation in the design of river basin adaptation portfolios.

  14. Optimal Portfolio of Corporate Investment and Consumption Problem under Market Closure: Inflation Case

    Directory of Open Access Journals (Sweden)

    Zongyuan Huang

    2013-01-01

    Full Text Available We present the model of corporate optimal investment with consideration of the influence of inflation and the difference between the market opening and market closure. In our model, the investor has three market activities of his or her choice: investment in project A, investment in project B, and consumption. The optimal strategy for the investor is obtained using the Hamilton-Jacobi-Bellman equation which is derived using the dynamic programming principle. Further along, a specific case, the Hyperbolic Absolute Risk Aversion case, is discussed in detail, where the explicit optimal strategy can be obtained using a very simple and direct method. At the very end, we present some simulation results along with a brief analysis of the relationship between the optimal strategy and other factors.

  15. Mean-risk efficient portfolio analysis of demand response and supply resources

    International Nuclear Information System (INIS)

    Deng, Shi-Jie; Xu, Li

    2009-01-01

    In the restructured electric power utility industry, reducing the risk exposure of profit to the highly volatile electricity wholesale price and the fluctuating demand of end users is essential to the financial success of load-serving entities (LSEs). Demand response (DR) programs have been utilized to manage the correlated price and volumetric risks, and simultaneously improve the reliability of the power system. This paper proposes an efficient portfolio framework for LSEs to evaluate the role of DR programs in achieving a desirable tradeoff between profit and risk. The mean-risk efficient frontier formed by the optimal portfolios allows LSEs to identify the least amount of risk to bear corresponding to a given profit target. Numerical examples are provided to illustrate the impact of DR programs on the composition of the optimal portfolios in achieving different levels of tradeoff between risk and reward. (author)

  16. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    Energy Technology Data Exchange (ETDEWEB)

    Pham, Huyên, E-mail: pham@math.univ-paris-diderot.fr; Wei, Xiaoli, E-mail: tyswxl@gmail.com [Laboratoire de Probabilités et Modèles Aléatoires, CNRS, UMR 7599, Université Paris Diderot (France)

    2016-12-15

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  17. Discrete Time McKean–Vlasov Control Problem: A Dynamic Programming Approach

    International Nuclear Information System (INIS)

    Pham, Huyên; Wei, Xiaoli

    2016-01-01

    We consider the stochastic optimal control problem of nonlinear mean-field systems in discrete time. We reformulate the problem into a deterministic control problem with marginal distribution as controlled state variable, and prove that dynamic programming principle holds in its general form. We apply our method for solving explicitly the mean-variance portfolio selection and the multivariate linear-quadratic McKean–Vlasov control problem.

  18. Backtesting Portfolio Value-at-Risk with Estimated Portfolio Weights

    OpenAIRE

    Pei Pei

    2010-01-01

    This paper theoretically and empirically analyzes backtesting portfolio VaR with estimation risk in an intrinsically multivariate framework. For the first time in the literature, it takes into account the estimation of portfolio weights in forecasting portfolio VaR and its impact on backtesting. It shows that the estimation risk from estimating the portfolio weights as well as that from estimating the multivariate dynamic model of asset returns make the existing methods in a univariate framew...

  19. Portfolios of quantum algorithms.

    Science.gov (United States)

    Maurer, S M; Hogg, T; Huberman, B A

    2001-12-17

    Quantum computation holds promise for the solution of many intractable problems. However, since many quantum algorithms are stochastic in nature they can find the solution of hard problems only probabilistically. Thus the efficiency of the algorithms has to be characterized by both the expected time to completion and the associated variance. In order to minimize both the running time and its uncertainty, we show that portfolios of quantum algorithms analogous to those of finance can outperform single algorithms when applied to the NP-complete problems such as 3-satisfiability.

  20. A Bayesian approach for incorporating economic factors in sample size design for clinical trials of individual drugs and portfolios of drugs.

    Science.gov (United States)

    Patel, Nitin R; Ankolekar, Suresh

    2007-11-30

    Classical approaches to clinical trial design ignore economic factors that determine economic viability of a new drug. We address the choice of sample size in Phase III trials as a decision theory problem using a hybrid approach that takes a Bayesian view from the perspective of a drug company and a classical Neyman-Pearson view from the perspective of regulatory authorities. We incorporate relevant economic factors in the analysis to determine the optimal sample size to maximize the expected profit for the company. We extend the analysis to account for risk by using a 'satisficing' objective function that maximizes the chance of meeting a management-specified target level of profit. We extend the models for single drugs to a portfolio of clinical trials and optimize the sample sizes to maximize the expected profit subject to budget constraints. Further, we address the portfolio risk and optimize the sample sizes to maximize the probability of achieving a given target of expected profit.

  1. Portfolio selection with heavy tails

    NARCIS (Netherlands)

    Hyung, N.; Vries, de C.G.

    2007-01-01

    Consider the portfolio problem of choosing the mix between stocks and bonds under a downside risk constraint. Typically stock returns exhibit fatter tails than bonds corresponding to their greater downside risk. Downside risk criteria like the safety first criterion therefore often select corner

  2. Portfolio Selection with Heavy Tails

    NARCIS (Netherlands)

    N. Hyung (Namwon); C.G. de Vries (Casper)

    2004-01-01

    textabstractConsider the portfolio problem of choosing the mix between stocks and bonds under a downside risk constraint. Typically stock returns exhibit fatter tails than bonds corresponding to their greater downside risk. Downside risk criteria like the safety first criterion therefore of ten

  3. Use of Portfolios by Medical Students: Significance of Critical Thinking

    Directory of Open Access Journals (Sweden)

    Samy A. Azer

    2008-07-01

    Full Text Available Portfolios have been used in the medical curriculum to evaluate difficult-to-assess areas such as students' attitudes, professionalism and teamwork. However, their use early in a problem-based learning (PBL course to foster deep learning and enhance students' self-directed learning has not been adequately studied. The aims of this paper are to: (1 understand the uses of portfolios and the rationale for using reflection in the early years of a PBL curriculum; (2 discuss how to introduce portfolios and encourage students' critical thinking skills, not just reflection; and (3 provide students with tips that could enhance their skills in constructing good portfolios.

  4. A Monte Carlo simulation technique to determine the optimal portfolio

    Directory of Open Access Journals (Sweden)

    Hassan Ghodrati

    2014-03-01

    Full Text Available During the past few years, there have been several studies for portfolio management. One of the primary concerns on any stock market is to detect the risk associated with various assets. One of the recognized methods in order to measure, to forecast, and to manage the existing risk is associated with Value at Risk (VaR, which draws much attention by financial institutions in recent years. VaR is a method for recognizing and evaluating of risk, which uses the standard statistical techniques and the method has been used in other fields, increasingly. The present study has measured the value at risk of 26 companies from chemical industry in Tehran Stock Exchange over the period 2009-2011 using the simulation technique of Monte Carlo with 95% confidence level. The used variability in the present study has been the daily return resulted from the stock daily price change. Moreover, the weight of optimal investment has been determined using a hybrid model called Markowitz and Winker model in each determined stocks. The results showed that the maximum loss would not exceed from 1259432 Rials at 95% confidence level in future day.

  5. Optimisation of the securities portfolio as a part of the risk management process

    Directory of Open Access Journals (Sweden)

    Srečko Devjak

    2004-01-01

    Full Text Available Securities of Slovene companies are listed at the Ljubljana Stock Exchange. Market capitalisation at the Ljubljana Stock Exchange has been growing since 1996 due to new listings of equities. On the basis of financial data time series for listed equities, the financial investor can calculate a risk for each individual security with a selected risk measure and can determine an optimal portfolio, subject to selected constraints. In this paper, we shall consequently determine an optimal portfolio of equities for the financial investor, investing his assets only in selected equities listed at the Ljubljana Stock Exchange. Selecting an appropriate risk measure is especially important for a commercial bank in a risk management process. Commercial banks can use internal models in the risk management process and for the purpose of capital charges as well. An optimal portfolio will be calculated, using a non-linear mathematical model.

  6. Financial planning working capital ventures using software «analyzer bdds» sold on the basis of selection of optimal bond portfolio

    Directory of Open Access Journals (Sweden)

    N.J. Timofeeva

    2011-05-01

    Full Text Available This article examines the financial planning of working capital organizations, in particular presented a software implementation of the algorithm analyzes the budget forecast working capital, identify and take advantage of temporarily free money using a model of a decision on the choice of the optimal bond portfolio, consistent with the free flow of liquidity of the enterprise.

  7. Generalizable open source urban water portfolio simulation framework demonstrated using a multi-objective risk-based planning benchmark problem.

    Science.gov (United States)

    Trindade, B. C.; Reed, P. M.

    2017-12-01

    The growing access and reduced cost for computing power in recent years has promoted rapid development and application of multi-objective water supply portfolio planning. As this trend continues there is a pressing need for flexible risk-based simulation frameworks and improved algorithm benchmarking for emerging classes of water supply planning and management problems. This work contributes the Water Utilities Management and Planning (WUMP) model: a generalizable and open source simulation framework designed to capture how water utilities can minimize operational and financial risks by regionally coordinating planning and management choices, i.e. making more efficient and coordinated use of restrictions, water transfers and financial hedging combined with possible construction of new infrastructure. We introduce the WUMP simulation framework as part of a new multi-objective benchmark problem for planning and management of regionally integrated water utility companies. In this problem, a group of fictitious water utilities seek to balance the use of the mentioned reliability driven actions (e.g., restrictions, water transfers and infrastructure pathways) and their inherent financial risks. Several traits of this problem make it ideal for a benchmark problem, namely the presence of (1) strong non-linearities and discontinuities in the Pareto front caused by the step-wise nature of the decision making formulation and by the abrupt addition of storage through infrastructure construction, (2) noise due to the stochastic nature of the streamflows and water demands, and (3) non-separability resulting from the cooperative formulation of the problem, in which decisions made by stakeholder may substantially impact others. Both the open source WUMP simulation framework and its demonstration in a challenging benchmarking example hold value for promoting broader advances in urban water supply portfolio planning for regions confronting change.

  8. MOSEP – More Self-Esteem With My E-Portfolio Development of a Train-the-Trainer Course for E-Portfolio Tutors

    OpenAIRE

    Buchberger , Gerlinde; Hilzensauer , Wolf; Hornung-Prähauser , Veronika

    2007-01-01

    This paper gives an insight into the MOSEP project, funded by the European Commission (Leonardo da Vinci Programme). The project focuses on the high dropout rates amongst young students (14-16) in the transition phase from middle to upper secondary school or into first vocational education. MOSEP addresses this problem by proposing to introduce the method of electronic learning and development portfolios (e-portfolios) specifically designed for effectively teaching and consulting this difficu...

  9. EFL Writers' Attitudes and Perceptions toward F-Portfolio Use

    Science.gov (United States)

    Aydin, Selami

    2014-01-01

    Atitudes toward and perceptions of using Facebook as a portfolio-keeping tool in teaching English as a foreign language (EFL) writing. In general, existing research reveals primarily positive effects of Facebook on educational activities, and research on portfolio keeping in EFL writing shows both benefits and problem areas. Thus, the current…

  10. Carrying the (paper) burden: A portfolio view of systemic risk and optimal bank size

    NARCIS (Netherlands)

    Bos, J.W.B.; Lamers, M.; Purice, V.

    2014-01-01

    We examine the relationship between bank size and financial stability by viewing the supervisor of a banking system as an ‘investor’ holding a portfolio of banks. Based on this view, we investigate the role of large banks in determining the systemic risk in this portfolio. Our results, based on book

  11. Recognizing the needs for improving the portfolio management for new products in the industry

    DEFF Research Database (Denmark)

    Larsson, Flemming; Mortensen, Niels Henrik; Andreasen, Mogens Myrup

    2004-01-01

    The lack of sound portfolio management for new products increases the probability that the company’s product portfolio will have a potential low business value. This research reveals that portfolio management for new products seems to be a problem in the Danish industry. Existing methods described...

  12. A mathematical model for maximizing the value of phase 3 drug development portfolios incorporating budget constraints and risk.

    Science.gov (United States)

    Patel, Nitin R; Ankolekar, Suresh; Antonijevic, Zoran; Rajicic, Natasa

    2013-05-10

    We describe a value-driven approach to optimizing pharmaceutical portfolios. Our approach incorporates inputs from research and development and commercial functions by simultaneously addressing internal and external factors. This approach differentiates itself from current practices in that it recognizes the impact of study design parameters, sample size in particular, on the portfolio value. We develop an integer programming (IP) model as the basis for Bayesian decision analysis to optimize phase 3 development portfolios using expected net present value as the criterion. We show how this framework can be used to determine optimal sample sizes and trial schedules to maximize the value of a portfolio under budget constraints. We then illustrate the remarkable flexibility of the IP model to answer a variety of 'what-if' questions that reflect situations that arise in practice. We extend the IP model to a stochastic IP model to incorporate uncertainty in the availability of drugs from earlier development phases for phase 3 development in the future. We show how to use stochastic IP to re-optimize the portfolio development strategy over time as new information accumulates and budget changes occur. Copyright © 2013 John Wiley & Sons, Ltd.

  13. A Problem on Optimal Transportation

    Science.gov (United States)

    Cechlarova, Katarina

    2005-01-01

    Mathematical optimization problems are not typical in the classical curriculum of mathematics. In this paper we show how several generalizations of an easy problem on optimal transportation were solved by gifted secondary school pupils in a correspondence mathematical seminar, how they can be used in university courses of linear programming and…

  14. Testing for structural changes in large portfolios

    OpenAIRE

    Posch, Peter N.; Ullmann, Daniel; Wied, Dominik

    2015-01-01

    Model free tests for constant parameters often fail to detect structural changes in high dimensions. In practice, this corresponds to a portfolio with many assets and a reasonable long time series. We reduce the dimensionality of the problem by looking a compressed panel of time series obtained by cluster analysis and the principal components of the data. Using our methodology we are able to extend a test for a constant correlation matrix from a sub portfolio to whole indices a...

  15. A Dynamic Programming Approach to Constrained Portfolios

    DEFF Research Database (Denmark)

    Kraft, Holger; Steffensen, Mogens

    2013-01-01

    This paper studies constrained portfolio problems that may involve constraints on the probability or the expected size of a shortfall of wealth or consumption. Our first contribution is that we solve the problems by dynamic programming, which is in contrast to the existing literature that applies...

  16. Portfolio implications of cointegration between labor income and dividends

    NARCIS (Netherlands)

    de Jong, F.C.J.M.

    2012-01-01

    This paper analyzes the implications of cointegration between labor income and dividends for the optimal portfolio weight for stocks. In a recent paper, Benzoni et al. (J Finance 62:2123–2167, 2007) claim that, as a result of cointegration, the optimal weight in stocks may be smaller for young

  17. Robust portfolio selection based on asymmetric measures of variability of stock returns

    Science.gov (United States)

    Chen, Wei; Tan, Shaohua

    2009-10-01

    This paper addresses a new uncertainty set--interval random uncertainty set for robust optimization. The form of interval random uncertainty set makes it suitable for capturing the downside and upside deviations of real-world data. These deviation measures capture distributional asymmetry and lead to better optimization results. We also apply our interval random chance-constrained programming to robust mean-variance portfolio selection under interval random uncertainty sets in the elements of mean vector and covariance matrix. Numerical experiments with real market data indicate that our approach results in better portfolio performance.

  18. The Role of Nuclear Power in Reducing Risk of the Fossil Fuel Prices and Diversity of Electricity Generation in Tunisia: A Portfolio Approach

    Science.gov (United States)

    Abdelhamid, Mohamed Ben; Aloui, Chaker; Chaton, Corinne; Souissi, Jomâa

    2010-04-01

    This paper applies real options and mean-variance portfolio theories to analyze the electricity generation planning into presence of nuclear power plant for the Tunisian case. First, we analyze the choice between fossil fuel and nuclear production. A dynamic model is presented to illustrate the impact of fossil fuel cost uncertainty on the optimal timing to switch from gas to nuclear. Next, we use the portfolio theory to manage risk of the electricity generation portfolio and to determine the optimal fuel mix with the nuclear alternative. Based on portfolio theory, the results show that there is other optimal mix than the mix fixed for the Tunisian mix for the horizon 2010-2020, with lower cost for the same risk degree. In the presence of nuclear technology, we found that the optimal generating portfolio must include 13% of nuclear power technology share.

  19. Customer portfolios

    DEFF Research Database (Denmark)

    Clarke, Ann Højbjerg; Freytag, Per Vagn; Zolkiewski, Judith

    2017-01-01

    gives managers a tool to help to cope with the dynamic aspects of the customer portfolio. Recognition of the importance of communication to the process, the development of trust and the role of legitimacy also provides areas that managers can focus upon in their relationship management processes......Purpose The purpose of this paper is to extend the discussion about customer portfolios beyond simple identification of models and how they can be used for balanced resource allocation to a discussion about how portfolios should take into account views from relationship partners and how they should...... that helps improve the understanding of how customer portfolio models can actually be applied from a relational perspective. Findings The key aspects of the conceptual framework relate to how alignment of the relationships in the portfolio is achieved. Critical to this are the interaction spaces...

  20. Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model.

    Science.gov (United States)

    Tang, Jiechen; Zhou, Chao; Yuan, Xinyu; Sriboonchitta, Songsak

    2015-01-01

    This paper concentrates on estimating the risk of Title Transfer Facility (TTF) Hub natural gas portfolios by using the GARCH-EVT-copula model. We first use the univariate ARMA-GARCH model to model each natural gas return series. Second, the extreme value distribution (EVT) is fitted to the tails of the residuals to model marginal residual distributions. Third, multivariate Gaussian copula and Student t-copula are employed to describe the natural gas portfolio risk dependence structure. Finally, we simulate N portfolios and estimate value at risk (VaR) and conditional value at risk (CVaR). Our empirical results show that, for an equally weighted portfolio of five natural gases, the VaR and CVaR values obtained from the Student t-copula are larger than those obtained from the Gaussian copula. Moreover, when minimizing the portfolio risk, the optimal natural gas portfolio weights are found to be similar across the multivariate Gaussian copula and Student t-copula and different confidence levels.

  1. Estimating Risk of Natural Gas Portfolios by Using GARCH-EVT-Copula Model

    Directory of Open Access Journals (Sweden)

    Jiechen Tang

    2015-01-01

    Full Text Available This paper concentrates on estimating the risk of Title Transfer Facility (TTF Hub natural gas portfolios by using the GARCH-EVT-copula model. We first use the univariate ARMA-GARCH model to model each natural gas return series. Second, the extreme value distribution (EVT is fitted to the tails of the residuals to model marginal residual distributions. Third, multivariate Gaussian copula and Student t-copula are employed to describe the natural gas portfolio risk dependence structure. Finally, we simulate N portfolios and estimate value at risk (VaR and conditional value at risk (CVaR. Our empirical results show that, for an equally weighted portfolio of five natural gases, the VaR and CVaR values obtained from the Student t-copula are larger than those obtained from the Gaussian copula. Moreover, when minimizing the portfolio risk, the optimal natural gas portfolio weights are found to be similar across the multivariate Gaussian copula and Student t-copula and different confidence levels.

  2. RISK MANAGEMENT OF INVESTMENT PORTFOLIO BY FUTURE

    Directory of Open Access Journals (Sweden)

    K. Kerimov Alexandr

    2017-01-01

    Full Text Available The article considers the problem of the dynamic risk management of the investment portfolio using future con- tracts. The management starts with the concept of effective inhomogeneous portfolios, which contain futures together with underlying asserts. The effective portfolios are defined as the ones of the minimal dispersion with the expected return greater or equal to the specified value. Risk is measured by the probability of losing of a certain part of the portfolio value. The control parameters are the number of futures for each asset of portfolio, which is defined from the condition of effec- tiveness of portfolio and risk acceptability on each step.The effective adaptive strategies of portfolio risk management together with comparative analysis on a concrete example are presented. The proposed approach provides the forecast correction of the expected income and its variance for the assets with the emergence of new data. The financial time series are determined by volatility clustering, i.e. relative or absolute price changes tend to keep high or low magnitude for some time, with the result that clusters are created - periods of high or low volatility. Then adaptive estimate of correlational relationships between asset prices are essential because the degree of correlational relationship also changes in time. So the correlation of future and spot price changes considerably increases while approaching to performance of contracts. For taking into account of data instability of dispersion and correlation simple methods of volatility forecasting and correlation of relative changes of price data based on exponential smoothing are implemented.

  3. Teaching empirical finance courses: A project on portfolio management

    Directory of Open Access Journals (Sweden)

    Bruce Morley

    2016-12-01

    Full Text Available The aim of this article was to assess the use of a group-based project for an empirical finance type of course. It examines the outline of the project, the methodology the students are encouraged to follow and how the course is assessed. This approach enables the students to apply many of the techniques learnt on this course and other courses such as econometrics, to determine an optimal portfolio of assets given their view on the risks in the economy. The emphasis is on risk management through portfolio diversification and the use of a simple hedge strategy. The overall aim was to introduce the students to the basics of portfolio management, as many work in this industry for their industrial placements and when they graduate. The main contribution to the literature is through the analysis of an empirically based portfolio management project. The feedback from the students suggests they felt that they had learnt useful concepts and information, in an enjoyable exercise.

  4. ANALYSIS OF PROJECT PORTFOLIO MANAGEMENT MATURITY: THE CASE OF A SMALL FINANCIAL INSTITUTION

    Directory of Open Access Journals (Sweden)

    Karoline Doro Alves Carneiro

    2012-04-01

    Full Text Available This study explores the implementation of project portfolio management in the organizational context. The objective is to analyze the methodology of project portfolio management adopted by an organization based in the project portfolio management maturity model proposed by Rad and Levin (2006. We developed an exploratory case study in a small financial institution that experienced problems with the implementation of its methodology in project portfolio management. As a result of study, we found that the organization has maturity level 2 in portfolio project management, and that some methodology aspects are not appropriate at this level.

  5. Some topics in mathematical finance: Asian basket option pricing, Optimal investment strategies

    OpenAIRE

    Diallo, Ibrahima

    2010-01-01

    This thesis presents the main results of my research in the field of computational finance and portfolios optimization. We focus on pricing Asian basket options and portfolio problems in the presence of inflation with stochastic interest rates.In Chapter 2, we concentrate upon the derivation of bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework.We start from methods used for basket options and Asian options. First, we use the general approach f...

  6. An artificial bee colony algorithm for uncertain portfolio selection.

    Science.gov (United States)

    Chen, Wei

    2014-01-01

    Portfolio selection is an important issue for researchers and practitioners. In this paper, under the assumption that security returns are given by experts' evaluations rather than historical data, we discuss the portfolio adjusting problem which takes transaction costs and diversification degree of portfolio into consideration. Uncertain variables are employed to describe the security returns. In the proposed mean-variance-entropy model, the uncertain mean value of the return is used to measure investment return, the uncertain variance of the return is used to measure investment risk, and the entropy is used to measure diversification degree of portfolio. In order to solve the proposed model, a modified artificial bee colony (ABC) algorithm is designed. Finally, a numerical example is given to illustrate the modelling idea and the effectiveness of the proposed algorithm.

  7. 77 FR 55903 - Confirmation, Portfolio Reconciliation, Portfolio Compression, and Swap Trading Relationship...

    Science.gov (United States)

    2012-09-11

    ... Vol. 77 Tuesday, No. 176 September 11, 2012 Part II Commodity Futures Trading Commission 17 CFR Part 23 Confirmation, Portfolio Reconciliation, Portfolio Compression, and Swap Trading Relationship... FUTURES TRADING COMMISSION 17 CFR Part 23 RIN 3038-AC96 Confirmation, Portfolio Reconciliation, Portfolio...

  8. Optimization and inverse problems in electromagnetism

    CERN Document Server

    Wiak, Sławomir

    2003-01-01

    From 12 to 14 September 2002, the Academy of Humanities and Economics (AHE) hosted the workshop "Optimization and Inverse Problems in Electromagnetism". After this bi-annual event, a large number of papers were assembled and combined in this book. During the workshop recent developments and applications in optimization and inverse methodologies for electromagnetic fields were discussed. The contributions selected for the present volume cover a wide spectrum of inverse and optimal electromagnetic methodologies, ranging from theoretical to practical applications. A number of new optimal and inverse methodologies were proposed. There are contributions related to dedicated software. Optimization and Inverse Problems in Electromagnetism consists of three thematic chapters, covering: -General papers (survey of specific aspects of optimization and inverse problems in electromagnetism), -Methodologies, -Industrial Applications. The book can be useful to students of electrical and electronics engineering, computer sci...

  9. The returns and risks of investment portfolio in stock market crashes

    Science.gov (United States)

    Li, Jiang-Cheng; Long, Chao; Chen, Xiao-Dan

    2015-06-01

    The returns and risks of investment portfolio in stock market crashes are investigated by considering a theoretical model, based on a modified Heston model with a cubic nonlinearity, proposed by Spagnolo and Valenti. Through numerically simulating probability density function of returns and the mean escape time of the model, the results indicate that: (i) the maximum stability of returns is associated with the maximum dispersion of investment portfolio and an optimal stop-loss position; (ii) the maximum risks are related with a worst dispersion of investment portfolio and the risks of investment portfolio are enhanced by increasing stop-loss position. In addition, the good agreements between the theoretical result and real market data are found in the behaviors of the probability density function and the mean escape time.

  10. Generalized Benders’ Decomposition for topology optimization problems

    DEFF Research Database (Denmark)

    Munoz Queupumil, Eduardo Javier; Stolpe, Mathias

    2011-01-01

    ) problems with discrete design variables to global optimality. We present the theoretical aspects of the method, including a proof of finite convergence and conditions for obtaining global optimal solutions. The method is also linked to, and compared with, an Outer-Approximation approach and a mixed 0......–1 semi definite programming formulation of the considered problem. Several ways to accelerate the method are suggested and an implementation is described. Finally, a set of truss topology optimization problems are numerically solved to global optimality.......This article considers the non-linear mixed 0–1 optimization problems that appear in topology optimization of load carrying structures. The main objective is to present a Generalized Benders’ Decomposition (GBD) method for solving single and multiple load minimum compliance (maximum stiffness...

  11. From Metacognition to Practice Cognition: The DNP e-Portfolio to Promote Integrated Learning.

    Science.gov (United States)

    Anderson, Kelley M; DesLauriers, Patricia; Horvath, Catherine H; Slota, Margaret; Farley, Jean Nelson

    2017-08-01

    Educating Doctor of Nursing Practice (DNP) students for an increasingly complex health care environment requires novel applications of learning concepts and technology. A deliberate and thoughtful process is required to integrate concepts of the DNP program into practice paradigm changes to subsequently improve students' abilities to innovate solutions to complex practice problems. The authors constructed or participated in electronic portfolio development inspired by theories of metacognition and integrated learning. The objective was to develop DNP student's reflection, integration of concepts, and technological capabilities to foster the deliberative competencies related to the DNP Essentials and the foundations of the DNP program. The pedagogical process demonstrates how e-portfolios adapted into the doctoral-level curriculum for DNP students can address the Essentials and foster the development of metacognitive capabilities, which translates into practice changes. The authors suggest that this pedagogical approach has the potential to optimize reflective and deliberative competencies among DNP students. [J Nurs Educ. 2017;56(8):497-500.]. Copyright 2017, SLACK Incorporated.

  12. Students' reflections in a portfolio pilot: highlighting professional issues.

    Science.gov (United States)

    Haffling, Ann-Christin; Beckman, Anders; Pahlmblad, Annika; Edgren, Gudrun

    2010-01-01

    Portfolios are highlighted as potential assessment tools for professional competence. Although students' self-reflections are considered to be central in the portfolio, the content of reflections in practice-based portfolios is seldom analysed. To investigate whether students' reflections include sufficient dimensions of professional competence, notwithstanding a standardized portfolio format, and to evaluate students' satisfaction with the portfolio. Thirty-five voluntary final-year medical students piloted a standardized portfolio in a general practice (GP) attachment at Lund University, Sweden. Students' portfolio reflections were based upon documentary evidence from practice, and aimed to demonstrate students' learning. The reflections were qualitatively analysed, using a framework approach. Students' evaluations of the portfolio were subjected to quantitative and qualitative analysis. Among professional issues, an integration of cognitive, affective and practical dimensions in clinical practice was provided by students' reflections. The findings suggested an emphasis on affective issues, particularly on self-awareness of feelings, attitudes and concerns. In addition, ethical problems, clinical reasoning strategies and future communication skills training were subjects of several reflective commentaries. Students' reflections on their consultation skills demonstrated their endeavour to achieve structure in the medical interview by negotiation of an agenda for the consultation, keeping the interview on track, and using internal summarizing. The importance of active listening and exploration of patient's perspective was also emphasized. In students' case summaries, illustrating characteristic attributes of GP, the dominating theme was 'patient-centred care', including the patient-doctor relationship, holistic modelling and longitudinal continuity. Students were satisfied with the portfolio, but improved instructions were needed. A standardized portfolio in a

  13. Topology optimization of flow problems

    DEFF Research Database (Denmark)

    Gersborg, Allan Roulund

    2007-01-01

    This thesis investigates how to apply topology optimization using the material distribution technique to steady-state viscous incompressible flow problems. The target design applications are fluid devices that are optimized with respect to minimizing the energy loss, characteristic properties...... transport in 2D Stokes flow. Using Stokes flow limits the range of applications; nonetheless, the thesis gives a proof-of-concept for the application of the method within fluid dynamic problems and it remains of interest for the design of microfluidic devices. Furthermore, the thesis contributes...... at the Technical University of Denmark. Large topology optimization problems with 2D and 3D Stokes flow modeling are solved with direct and iterative strategies employing the parallelized Sun Performance Library and the OpenMP parallelization technique, respectively....

  14. Topology Optimization for Convection Problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe

    2011-01-01

    This report deals with the topology optimization of convection problems.That is, the aim of the project is to develop, implement and examine topology optimization of purely thermal and coupled thermomechanical problems,when the design-dependent eects of convection are taken into consideration.......This is done by the use of a self-programmed FORTRAN-code, which builds on an existing 2D-plane thermomechanical nite element code implementing during the course `41525 FEM-Heavy'. The topology optimizationfeatures have been implemented from scratch, and allows the program to optimize elastostatic mechanical...

  15. Medicare Part D and Portfolio Choice.

    Science.gov (United States)

    Ayyagari, Padmaja; He, Daifeng

    2016-05-01

    This study evaluates the impact of medical expenditure risk on portfolio choice among the elderly. The risk of large medical expenditures can be substantial for elderly individuals and is only partially mitigated by access to health insurance. The presence of deductibles, copayments, and other cost-sharing mechanisms implies that medical spending risk can be viewed as an undiversifiable background risk. Economic theory suggests that increases in background risk reduce the optimal financial risk that an individual or household is willing to bear (Pratt and Zeckhauser 1987; Elmendorf and Kimball 2000). In this study, we evaluate this hypothesis by estimating the impact of the introduction of the Medicare Part D program, which significantly reduced prescription drug spending risk for seniors, on portfolio choice.

  16. An integrated portfolio optimisation procedure based on data envelopment analysis, artificial bee colony algorithm and genetic programming

    Science.gov (United States)

    Hsu, Chih-Ming

    2014-12-01

    Portfolio optimisation is an important issue in the field of investment/financial decision-making and has received considerable attention from both researchers and practitioners. However, besides portfolio optimisation, a complete investment procedure should also include the selection of profitable investment targets and determine the optimal timing for buying/selling the investment targets. In this study, an integrated procedure using data envelopment analysis (DEA), artificial bee colony (ABC) and genetic programming (GP) is proposed to resolve a portfolio optimisation problem. The proposed procedure is evaluated through a case study on investing in stocks in the semiconductor sub-section of the Taiwan stock market for 4 years. The potential average 6-month return on investment of 9.31% from 1 November 2007 to 31 October 2011 indicates that the proposed procedure can be considered a feasible and effective tool for making outstanding investment plans, and thus making profits in the Taiwan stock market. Moreover, it is a strategy that can help investors to make profits even when the overall stock market suffers a loss.

  17. International portfolio diversification, skewness and the role of gold

    OpenAIRE

    LUCEY, BRIAN MICHAEL

    2007-01-01

    PUBLISHED The paper examines the optimal allocation of assets in well diversified equity based portfolio where the investor is concerned not only with mean and variance but also with the skewness of the returns.

  18. Constrained Dynamic Optimality and Binomial Terminal Wealth

    DEFF Research Database (Denmark)

    Pedersen, J. L.; Peskir, G.

    2018-01-01

    with interest rate $r \\in {R}$). Letting $P_{t,x}$ denote a probability measure under which $X^u$ takes value $x$ at time $t,$ we study the dynamic version of the nonlinear optimal control problem $\\inf_u\\, Var{t,X_t^u}(X_T^u)$ where the infimum is taken over admissible controls $u$ subject to $X_t^u \\ge e...... a martingale method combined with Lagrange multipliers, we derive the dynamically optimal control $u_*^d$ in closed form and prove that the dynamically optimal terminal wealth $X_T^d$ can only take two values $g$ and $\\beta$. This binomial nature of the dynamically optimal strategy stands in sharp contrast...... with other known portfolio selection strategies encountered in the literature. A direct comparison shows that the dynamically optimal (time-consistent) strategy outperforms the statically optimal (time-inconsistent) strategy in the problem....

  19. Stochastic search, optimization and regression with energy applications

    Science.gov (United States)

    Hannah, Lauren A.

    Designing clean energy systems will be an important task over the next few decades. One of the major roadblocks is a lack of mathematical tools to economically evaluate those energy systems. However, solutions to these mathematical problems are also of interest to the operations research and statistical communities in general. This thesis studies three problems that are of interest to the energy community itself or provide support for solution methods: R&D portfolio optimization, nonparametric regression and stochastic search with an observable state variable. First, we consider the one stage R&D portfolio optimization problem to avoid the sequential decision process associated with the multi-stage. The one stage problem is still difficult because of a non-convex, combinatorial decision space and a non-convex objective function. We propose a heuristic solution method that uses marginal project values---which depend on the selected portfolio---to create a linear objective function. In conjunction with the 0-1 decision space, this new problem can be solved as a knapsack linear program. This method scales well to large decision spaces. We also propose an alternate, provably convergent algorithm that does not exploit problem structure. These methods are compared on a solid oxide fuel cell R&D portfolio problem. Next, we propose Dirichlet Process mixtures of Generalized Linear Models (DPGLM), a new method of nonparametric regression that accommodates continuous and categorical inputs, and responses that can be modeled by a generalized linear model. We prove conditions for the asymptotic unbiasedness of the DP-GLM regression mean function estimate. We also give examples for when those conditions hold, including models for compactly supported continuous distributions and a model with continuous covariates and categorical response. We empirically analyze the properties of the DP-GLM and why it provides better results than existing Dirichlet process mixture regression

  20. Shedding New Light on Project Portfolio Risk Management

    Directory of Open Access Journals (Sweden)

    Mariusz Hofman

    2017-10-01

    Full Text Available This paper constitutes an innovative attempt to analyse the risks and negative phenomena dependencies within a project portfolio. Based on the available literature, the risks and negative phenomena (that is, the problems with the availability of resources, interpersonal conflicts, irregularities in the portfolio balance, etc. specific to a project portfolio were identified. Theoretical constructs were then used to connect the identified risks with the negative phenomena. Structural equations were used to confirm the existence and quality of these constructs, as well as models describing connections between phenomena. The determination of the structural equations also provided a setting in which statistical methods (χ2, RMSEA and CFI could be used to investigate the level of fit of the constructs and models to the empirical data.