WorldWideScience

Sample records for portable ecg devices

  1. A portable ECG monitoring device with Bluetooth and Holter capabilities for telemedicine applications.

    Science.gov (United States)

    Lucani, Daniel; Cataldo, Giancarlos; Cruz, Julio; Villegas, Guillermo; Wong, Sara

    2006-01-01

    A prototype of a portable ECG-monitoring device has been developed for clinical and non-clinical environments as part of a telemedicine system to provide remote and continuous surveillance of patients. The device can acquire, store and/or transmit ECG signals to computer-based platforms or specially configured access points (AP) with Intranet/Internet capabilities in order to reach remote monitoring stations. Acquired data can be stored in a flash memory card in FAT16 format for later recovery, or transmitted via Bluetooth or USB to a local station or AP. This data acquisition module (DAM) operates in two modes: Holter and on-line transmission.

  2. Design of portable electrocardiogram device using DSO138

    Science.gov (United States)

    Abuzairi, Tomy; Matondang, Josef Stevanus; Purnamaningsih, Retno Wigajatri; Basari, Ratnasari, Anita

    2018-02-01

    Cardiovascular disease has been one of the leading causes of sudden cardiac deaths in many countries, covering Indonesia. Electrocardiogram (ECG) is a medical test to detect cardiac abnormalities by measuring the electrical activity generated by the heart, as the heart contracts. By using ECG, we can observe anomaly at the time of heart abnormalities. In this paper, design of portable ECG device is presented. The portable ECG device was designed to easily use in the village clinic or houses, due to the small size device and other benefits. The device was designed by using four units: (1) ECG electrode; (2) ECG analog front-end; (3) DSO138; and (4) battery. To create a simple electrode system in the portable ECG, 1-lead ECG with two electrodes were applied. The analog front-end circuitry consists of three integrated circuits, an instrumentation amplifier AD820AN, a low noise operational amplifier OPA134, and a low offset operational amplifier TL082. Digital ECG data were transformed to graphical data on DSO138. The results show that the portable ECG is successfully read the signal from 1-lead ECG system.

  3. Wireless ECG and PCG Portable Telemedicine Kit for Rural Areas of Colombia

    Directory of Open Access Journals (Sweden)

    Miguel Jimeno

    2014-07-01

    Full Text Available Telemedicine is always a popular topic thanks to the constants advancements of technology. The focus on development of new devices has been mainly on decreasing size to increase portability. Our research focused on improving functionality but not giving up on portability and cost. In this paper we are presenting the first prototype device that measures 4-leads electrocardiogram (ECG and phonocardiogram (PCG signals with low cost, high portability and wireless connectivity features in mind. We designed and developed a prototype that measures ECG using a standard ECG cable; we designed and developed a digital stethoscope prototype and also the necessary hardware for both medical signals to be transmitted through Bluetooth to a computer. We present here the hardware design, a new communication protocol for transmission of both signals from the device to the computer, and the software system to enable remote consultations. We designed the prototype with the main purpose of using low cost parts without sacrificing functionality, with the purpose of using it in remote zones of the Caribbean coast of Colombia. We show open issues and prepare a field implementation of the kit in the target zone.

  4. Revisiting QRS Detection Methodologies for Portable, Wearable, Battery-Operated, and Wireless ECG Systems

    Science.gov (United States)

    Elgendi, Mohamed; Eskofier, Björn; Dokos, Socrates; Abbott, Derek

    2014-01-01

    Cardiovascular diseases are the number one cause of death worldwide. Currently, portable battery-operated systems such as mobile phones with wireless ECG sensors have the potential to be used in continuous cardiac function assessment that can be easily integrated into daily life. These portable point-of-care diagnostic systems can therefore help unveil and treat cardiovascular diseases. The basis for ECG analysis is a robust detection of the prominent QRS complex, as well as other ECG signal characteristics. However, it is not clear from the literature which ECG analysis algorithms are suited for an implementation on a mobile device. We investigate current QRS detection algorithms based on three assessment criteria: 1) robustness to noise, 2) parameter choice, and 3) numerical efficiency, in order to target a universal fast-robust detector. Furthermore, existing QRS detection algorithms may provide an acceptable solution only on small segments of ECG signals, within a certain amplitude range, or amid particular types of arrhythmia and/or noise. These issues are discussed in the context of a comparison with the most conventional algorithms, followed by future recommendations for developing reliable QRS detection schemes suitable for implementation on battery-operated mobile devices. PMID:24409290

  5. A real time ECG signal processing application for arrhythmia detection on portable devices

    Science.gov (United States)

    Georganis, A.; Doulgeraki, N.; Asvestas, P.

    2017-11-01

    Arrhythmia describes the disorders of normal heart rate, which, depending on the case, can even be fatal for a patient with severe history of heart disease. The purpose of this work is to develop an application for heart signal visualization, processing and analysis in Android portable devices e.g. Mobile phones, tablets, etc. The application is able to retrieve the signal initially from a file and at a later stage this signal is processed and analysed within the device so that it can be classified according to the features of the arrhythmia. In the processing and analysing stage, different algorithms are included among them the Moving Average and Pan Tompkins algorithm as well as the use of wavelets, in order to extract features and characteristics. At the final stage, testing is performed by simulating our application in real-time records, using the TCP network protocol for communicating the mobile with a simulated signal source. The classification of ECG beat to be processed is performed by neural networks.

  6. Portable electrocardiogram device using Android smartphone.

    Science.gov (United States)

    Brucal, S G E; Clamor, G K D; Pasiliao, L A O; Soriano, J P F; Varilla, L P M

    2016-08-01

    Portable electrocardiogram (ECG) capturing device can be interfaced to a smart phone installed with an android-based application (app). This app processes and analyses the data sent by the device to provide an interpretation of the patient/user's heart current condition (e.g.: beats per minute, heart signal waveform, R-R interval). The ECG recorded by the app is stored in the smart phone's Secure Digital (SD) card and cloud storage which can be accessed remotely by a physician to aid in providing medical diagnosis. The project aims to help patients living at a far distance from hospitals and experience difficulty in consulting their physician for regular check-ups, and assist doctors in regularly monitoring their patient's heart condition. The hardware data acquisition device and software application were subjected to trials in a clinic with volunteer-patients to measure the ECG and heart rate, data saving speed on the SD card, success rate of the saved data and uploaded file. Different ECG tests using the project prototype were done for 12 patients/users and yielded a reading difference of 7.61% in an R-R interval reading and 5.35% in heart rate reading as compared with the cardiologist's conventional 12-electrode ECG machine. Using the developed ECG device, it took less than 5 seconds to save ECG reading using SD card and approximately 2 minutes to upload via cloud.

  7. The Development of a Portable ECG Monitor Based on DSP

    Science.gov (United States)

    Nan, CHI Jian; Tao, YAN Yan; Meng Chen, LIU; Li, YANG

    With the advent of global information, researches of Smart Home system are in the ascendant, the ECG real-time detection, and wireless transmission of ECG become more useful. In order to achieve the purpose we developed a portable ECG monitor which achieves the purpose of cardiac disease remote monitoring, and will be used in the physical and psychological disease surveillance in smart home system, we developed this portable ECG Monitor, based on the analysis of existing ECG Monitor, using TMS320F2812 as the core controller, which complete the signal collection, storage, processing, waveform display and transmission.

  8. [Study for portable dynamic ECG monitor and recorder].

    Science.gov (United States)

    Yang, Pengcheng; Li, Yongqin; Chen, Bihua

    2012-09-01

    This Paper presents a portable dynamic ECG monitor system based on MSP430F149 microcontroller. The electrocardiogram detecting system consists of ECG detecting circuit, man-machine interaction module, MSP430F149 and upper computer software. The ECG detecting circuit including a preamplifier, second-order Butterworth low-pass filter, high-pass filter, and 50Hz trap circuit to detects electrocardiogram and depresses various kinds of interference effectively. A microcontroller is used to collect three channel analog signals which can be displayed on TFT LCD. A SD card is used to record real-time data continuously and implement the FTA16 file system. In the end, a host computer system interface is also designed to analyze the ECG signal and the analysis results can provide diagnosis references to clinical doctors.

  9. Development of a portable Linux-based ECG measurement and monitoring system.

    Science.gov (United States)

    Tan, Tan-Hsu; Chang, Ching-Su; Huang, Yung-Fa; Chen, Yung-Fu; Lee, Cheng

    2011-08-01

    This work presents a portable Linux-based electrocardiogram (ECG) signals measurement and monitoring system. The proposed system consists of an ECG front end and an embedded Linux platform (ELP). The ECG front end digitizes 12-lead ECG signals acquired from electrodes and then delivers them to the ELP via a universal serial bus (USB) interface for storage, signal processing, and graphic display. The proposed system can be installed anywhere (e.g., offices, homes, healthcare centers and ambulances) to allow people to self-monitor their health conditions at any time. The proposed system also enables remote diagnosis via Internet. Additionally, the system has a 7-in. interactive TFT-LCD touch screen that enables users to execute various functions, such as scaling a single-lead or multiple-lead ECG waveforms. The effectiveness of the proposed system was verified by using a commercial 12-lead ECG signal simulator and in vivo experiments. In addition to its portability, the proposed system is license-free as Linux, an open-source code, is utilized during software development. The cost-effectiveness of the system significantly enhances its practical application for personal healthcare.

  10. Portable ECG design and application based on wireless sensor network

    Directory of Open Access Journals (Sweden)

    Gül Fatma TÜRKER

    2016-05-01

    Full Text Available In this study, in order to follow the heart signals of patients that needs to be monitored instantly and continuously without mobility restrictions, a portable electrocardiogram circuit is designed. After performing the detection, upgrading, cleaning and digitizing of ECG signal received from patient via disposable electrodes, ECG signals was performed that transmit to a central node with Wireless Sensor Network (WSN based on ZigBee 802.11.4 standard. Central node is connected to the serial port of a computer. Received data from the central node is processed on computer and continuous flow graph is obtained. The obligation to use wires for tracing patients’ ECG has been removed with this portable system. As it can be seen in this study, thanks to WSN’s property of forming network by itself and its augmentable loop property, the restrain of ECG signals to reach far away distances can be surmounted. The transmission of biological signals with WSN will light on many studies that follow of patients from a distance.

  11. A low-power portable ECG sensor interface with dry electrodes

    International Nuclear Information System (INIS)

    Pu Xiaofei; Wan Lei; Zhang Hui; Qin Yajie; Hong Zhiliang

    2013-01-01

    This paper describes a low-power portable sensor interface dedicated to sensing and processing electrocardiogram (ECG) signals. Dry electrodes were employed in this ECG sensor, which eliminates the need of conductive gel and avoids complicated and mandatory skin preparation before electrode attachment. This ECG sensor system consists of two ICs, an analog front-end (AFE) and a successive approximation register analog-to-digital converter (SAR ADC) containing a relaxation oscillator. This proposed design was fabricated in a 0.18 μm 1P6M standard CMOS process. The AFE for extracting the biopotential signals is essential in this ECG sensor. In measurements, the AFE obtains a mid-band gain of 45 dB, a bandwidth from 0.6 to 160 Hz, and a total input referred noise of 2.8 μV rms while consuming 1 μW from the 1.8 V supply. The noise efficiency factor (NEF) of our design is 3.4. After conditioning, the amplified ECG signal is digitized by a 12-bit SAR ADC with 61.8 dB SNDR and 220 fJ/conversion-step. Finally, a complete ECG sensor interface with three dry copper electrodes is demonstrated in real-word setting, showing successful recordings of a capture ECG waveform. (semiconductor integrated circuits)

  12. Development of a portable wireless system for bipolar concentric ECG recording

    International Nuclear Information System (INIS)

    Prats-Boluda, G; Ye-Lin, Y; Bueno Barrachina, J M; Senent, E; Rodriguez de Sanabria, R; Garcia-Casado, J

    2015-01-01

    Cardiovascular diseases (CVDs) remain the biggest cause of deaths worldwide. ECG monitoring is a key tool for early diagnosis of CVDs. Conventional monitors use monopolar electrodes resulting in poor spatial resolution surface recordings and requiring extensive wiring. High-spatial resolution surface electrocardiographic recordings provide valuable information for the diagnosis of a wide range of cardiac abnormalities, including infarction and arrhythmia. The aim of this work was to develop and test a wireless recording system for acquiring high spatial resolution ECG signals, based on a flexible tripolar concentric electrode (TCE) without cable wiring or external reference electrode which would make more comnfortable its use in clinical practice. For this, a portable, wireless sensor node for analogue conditioning, digitalization and transmission of a bipolar concentric ECG signal (BC-ECG) using a TCE and a Mason-likar Lead-I ECG (ML-Lead-I ECG) signal was developed. Experimental results from a total of 32 healthy volunteers showed that the ECG fiducial points in the BC-ECG signals, recorded with external and internal reference electrode, are consistent with those of simultaneous ML-Lead-I ECG. No statistically significant difference was found in either signal amplitude or morphology, regardless of the reference electrode used, being the signal-to-noise similar to that of ML-Lead-I ECG. Furthermore, it has been observed that BC-ECG signals contain information that could not available in conventional records, specially related to atria activity. The proposed wireless sensor node provides non-invasive high-local resolution ECG signals using only a TCE without additional wiring, which would have great potential in medical diagnosis of diseases such as atrial or ventricular fibrillations or arrhythmias that currently require invasive diagnostic procedures (catheterization). (paper)

  13. A configurable and low-power mixed signal SoC for portable ECG monitoring applications.

    Science.gov (United States)

    Kim, Hyejung; Kim, Sunyoung; Van Helleputte, Nick; Artes, Antonio; Konijnenburg, Mario; Huisken, Jos; Van Hoof, Chris; Yazicioglu, Refet Firat

    2014-04-01

    This paper describes a mixed-signal ECG System-on-Chip (SoC) that is capable of implementing configurable functionality with low-power consumption for portable ECG monitoring applications. A low-voltage and high performance analog front-end extracts 3-channel ECG signals and single channel electrode-tissue-impedance (ETI) measurement with high signal quality. This can be used to evaluate the quality of the ECG measurement and to filter motion artifacts. A custom digital signal processor consisting of 4-way SIMD processor provides the configurability and advanced functionality like motion artifact removal and R peak detection. A built-in 12-bit analog-to-digital converter (ADC) is capable of adaptive sampling achieving a compression ratio of up to 7, and loop buffer integration reduces the power consumption for on-chip memory access. The SoC is implemented in 0.18 μm CMOS process and consumes 32 μ W from a 1.2 V while heart beat detection application is running, and integrated in a wireless ECG monitoring system with Bluetooth protocol. Thanks to the ECG SoC, the overall system power consumption can be reduced significantly.

  14. Smart portable rehabilitation devices

    Directory of Open Access Journals (Sweden)

    Leahey Matt

    2005-07-01

    Full Text Available Abstract Background The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s. Methods In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Results Laboratory tests of the devices

  15. Smart portable rehabilitation devices.

    Science.gov (United States)

    Mavroidis, Constantinos; Nikitczuk, Jason; Weinberg, Brian; Danaher, Gil; Jensen, Katherine; Pelletier, Philip; Prugnarola, Jennifer; Stuart, Ryan; Arango, Roberto; Leahey, Matt; Pavone, Robert; Provo, Andrew; Yasevac, Dan

    2005-07-12

    The majority of current portable orthotic devices and rehabilitative braces provide stability, apply precise pressure, or help maintain alignment of the joints with out the capability for real time monitoring of the patient's motions and forces and without the ability for real time adjustments of the applied forces and motions. Improved technology has allowed for advancements where these devices can be designed to apply a form of tension to resist motion of the joint. These devices induce quicker recovery and are more effective at restoring proper biomechanics and improving muscle function. However, their shortcoming is in their inability to be adjusted in real-time, which is the most ideal form of a device for rehabilitation. This introduces a second class of devices beyond passive orthotics. It is comprised of "active" or powered devices, and although more complicated in design, they are definitely the most versatile. An active or powered orthotic, usually employs some type of actuator(s). In this paper we present several new advancements in the area of smart rehabilitation devices that have been developed by the Northeastern University Robotics and Mechatronics Laboratory. They are all compact, wearable and portable devices and boast re-programmable, real time computer controlled functions as the central theme behind their operation. The sensory information and computer control of the three described devices make for highly efficient and versatile systems that represent a whole new breed in wearable rehabilitation devices. Their applications range from active-assistive rehabilitation to resistance exercise and even have applications in gait training. The three devices described are: a transportable continuous passive motion elbow device, a wearable electro-rheological fluid based knee resistance device, and a wearable electrical stimulation and biofeedback knee device. Laboratory tests of the devices demonstrated that they were able to meet their design

  16. Designing ECG-based physical unclonable function for security of wearable devices.

    Science.gov (United States)

    Shihui Yin; Chisung Bae; Sang Joon Kim; Jae-Sun Seo

    2017-07-01

    As a plethora of wearable devices are being introduced, significant concerns exist on the privacy and security of personal data stored on these devices. Expanding on recent works of using electrocardiogram (ECG) as a modality for biometric authentication, in this work, we investigate the possibility of using personal ECG signals as the individually unique source for physical unclonable function (PUF), which eventually can be used as the key for encryption and decryption engines. We present new signal processing and machine learning algorithms that learn and extract maximally different ECG features for different individuals and minimally different ECG features for the same individual over time. Experimental results with a large 741-subject in-house ECG database show that the distributions of the intra-subject (same person) Hamming distance of extracted ECG features and the inter-subject Hamming distance have minimal overlap. 256-b random numbers generated from the ECG features of 648 (out of 741) subjects pass the NIST randomness tests.

  17. Low-cost compact ECG with graphic LCD and phonocardiogram system design.

    Science.gov (United States)

    Kara, Sadik; Kemaloğlu, Semra; Kirbaş, Samil

    2006-06-01

    Till today, many different ECG devices are made in developing countries. In this study, low cost, small size, portable LCD screen ECG device, and phonocardiograph were designed. With designed system, heart sounds that take synchronously with ECG signal are heard as sensitive. Improved system consist three units; Unit 1, ECG circuit, filter and amplifier structure. Unit 2, heart sound acquisition circuit. Unit 3, microcontroller, graphic LCD and ECG signal sending unit to computer. Our system can be used easily in different departments of the hospital, health institution and clinics, village clinic and also in houses because of its small size structure and other benefits. In this way, it is possible that to see ECG signal and hear heart sounds as synchronously and sensitively. In conclusion, heart sounds are heard on the part of both doctor and patient because sounds are given to environment with a tiny speaker. Thus, the patient knows and hears heart sounds him/herself and is acquainted by doctor about healthy condition.

  18. A Trusted Portable Computing Device

    Science.gov (United States)

    Ming-wei, Fang; Jun-jun, Wu; Peng-fei, Yu; Xin-fang, Zhang

    A trusted portable computing device and its security mechanism were presented to solve the security issues, such as the attack of virus and Trojan horse, the lost and stolen of storage device, in mobile office. It used smart card to build a trusted portable security base, virtualization to create a secure virtual execution environment, two-factor authentication mechanism to identify legitimate users, and dynamic encryption to protect data privacy. The security environment described in this paper is characteristic of portability, security and reliability. It can meet the security requirement of mobile office.

  19. 78 FR 34669 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-06-10

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... importing wireless communication devices, portable music and data processing devices, and tablet computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  20. Matrix of regularity for improving the quality of ECGs

    International Nuclear Information System (INIS)

    Xia, Henian; Garcia, Gabriel A; Zhao, Xiaopeng; Bains, Jujhar; Wortham, Dale C

    2012-01-01

    The 12-lead electrocardiography (ECG) is the gold standard for diagnosis of abnormalities of the heart. However, the ECG is susceptible to artifacts, which may lead to wrong diagnosis and thus mistreatment. It is a clinical challenge of great significance differentiating ECG artifacts from patterns of diseases. We propose a computational framework, called the matrix of regularity, to evaluate the quality of ECGs. The matrix of regularity is a novel mechanism to fuse results from multiple tests of signal quality. Moreover, this method can produce a continuous grade, which can more accurately represent the quality of an ECG. When tested on a dataset from the Computing in Cardiology/PhysioNet Challenge 2011, the algorithm achieves up to 95% accuracy. The area under the receiver operating characteristic curve is 0.97. The developed framework and computer program have the potential to improve the quality of ECGs collected using conventional and portable devices. (paper)

  1. 14 CFR 91.21 - Portable electronic devices.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Portable electronic devices. 91.21 Section... electronic devices. (a) Except as provided in paragraph (b) of this section, no person may operate, nor may any operator or pilot in command of an aircraft allow the operation of, any portable electronic device...

  2. 78 FR 16865 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2013-03-19

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... certain electronic devices, including wireless communication devices, portable music and data processing...

  3. 77 FR 70464 - Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data...

    Science.gov (United States)

    2012-11-26

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... wireless communication devices, portable music and data processing devices, and tablet computers, by reason...

  4. 77 FR 60720 - Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data...

    Science.gov (United States)

    2012-10-04

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-794] Certain Electronic Devices, Including Wireless Commmunication Devices, Portable Music and Data Processing Devices, and Tablet Computers... communication devices, portable music and data processing devices, and tablet computers, imported by Apple Inc...

  5. A New Method to Detect Driver Fatigue Based on EMG and ECG Collected by Portable Non-Contact Sensors

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2017-11-01

    Full Text Available Recently, detection and prediction on driver fatigue have become interest of research worldwide. In the present work, a new method is built to effectively evaluate driver fatigue based on electromyography (EMG and electrocardiogram (ECG collected by portable real-time and non-contact sensors. First, under the non-disturbance condition for driver’s attention, mixed physiological signals (EMG, ECG and artefacts are collected by non-contact sensors located in a cushion on the driver’s seat. EMG and ECG are effectively separated by FastICA, and de-noised by empirical mode decomposition (EMD. Then, three physiological features, complexity of EMG, complexity of ECG, and sample entropy (SampEn of ECG, are extracted and analysed. Principal components are obtained by principal components analysis (PCA and are used as independent variables. Finally, a mathematical model of driver fatigue is built, and the accuracy of the model is up to 91%. Moreover, based on the questionnaire, the calculation results of model are consistent with real fatigue felt by the participants. Therefore, this model can effectively detect driver fatigue.

  6. 77 FR 51571 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...

    Science.gov (United States)

    2012-08-24

    ... Music and Data Processing Devices, Computers, and Components Thereof; Notice of Receipt of Complaint... complaint entitled Wireless Communication Devices, Portable Music and Data Processing Devices, Computers..., portable music and data processing devices, computers, and components thereof. The complaint names as...

  7. Accuracy of portable devices in measuring peak cough flow

    International Nuclear Information System (INIS)

    Kulnik, Stefan Tino; Kalra, Lalit; MacBean, Victoria; Birring, Surinder Singh; Moxham, John; Rafferty, Gerrard Francis

    2015-01-01

    Peak cough flow (PCF) measurements can be used as indicators of cough effectiveness. Portable peak flow meters and spirometers have been used to measure PCF, but little is known about their accuracy compared to pneumotachograph systems. The aim of this study was to compare the accuracy of four portable devices (Mini–Wright and Assess peak flow meters, SpiroUSB and Microlab spirometers) in measuring PCF with a calibrated laboratory based pneumotachograph system. Twenty healthy volunteers (mean (SD) age 45 (16) years) coughed through a pneumotachograph connected in series with each portable device in turn, and the differences in PCF readings were analysed. In addition, mechanically generated flow waves of constant peak flow were delivered through each device both independently and when connected in series with the pneumotachograph. Agreement between PCF readings obtained with the pneumotachograph and the portable devices was poor. Peak flow readings were on average lower by approximately 50 L min −1 when measured using the portable devices; 95% limits of agreement spanned approximately 150 L min −1 . The findings highlight the potential for inaccuracy when using portable devices for the measurement of PCF. Depending on the measurement instrument used, absolute values of PCF reported in the literature may not be directly comparable. (paper)

  8. 77 FR 58576 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...

    Science.gov (United States)

    2012-09-21

    ... Devices, Portable Music and Data Processing Devices, Computers, and Components Thereof; Institution of... communication devices, portable music and data processing devices, computers, and components thereof by reason... alleges that an industry in the United States exists as required by subsection (a)(2) of section 337. The...

  9. 76 FR 45860 - In the Matter of Certain Electronic Devices, Including Wireless Communication Devices, Portable...

    Science.gov (United States)

    2011-08-01

    ..., Including Wireless Communication Devices, Portable Music and Data Processing Devices, and Tablet Computers... electronic devices, including wireless communication devices, portable music and data processing devices, and...''). The complaint further alleges that an industry in the United States exists or is in the process of...

  10. 78 FR 24775 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Science.gov (United States)

    2013-04-26

    ... Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Commission Decision... importation of certain wireless communication devices, portable music and data processing devices, computers... '826 patent''). The complaint further alleges the existence of a domestic industry. The Commission's...

  11. 77 FR 38826 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Science.gov (United States)

    2012-06-29

    ... Devices, Portable Music and Data Processing Devices, Computers and Components Thereof, Commission Decision... importation of certain wireless communication devices, portable music and data processing devices, computers... further alleges the existence of a domestic industry. The Commission's notice of investigation named Apple...

  12. 78 FR 12785 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Science.gov (United States)

    2013-02-25

    ... Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Commission Decision... importation of certain wireless communication devices, portable music and data processing devices, computers... further alleges the existence of a domestic industry. The Commission's notice of investigation named Apple...

  13. α-sealed transfer device and portable plastic film sealers

    International Nuclear Information System (INIS)

    Fu Zhujun; Shan Ruixia

    1990-04-01

    An α transfer device which can be operated remotely is presented. The device is able to perform sealed transfer of radioactive articles from a hot cell or shielded glove box to the outside and non-radioactive articles from the outside to a hot cell or shielded glove box by using bag sealing technology. The structure of the transfer device is simple. Its operation is safe and reliable. The sealing performance of the device is very good (for alpha). The use of this transfer device will greatly reduce α contamination of the building and creates a favourable condition for operating radioactive materials in an undivided area. The portable heat sealing device is also a necessary tool in bag sealing technology and α-sealed transfer. Two types of portable plastic film sealers have been developed. Their structure is simple. The operation of the portable plastic film sealers is easy. Their performance is also excellent. Both the α-sealed transfer device and portable plastic film sealers are very useful to the reprocessing plant of nuclear fuel

  14. 77 FR 52759 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers and...

    Science.gov (United States)

    2012-08-30

    ... Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of... communication devices, portable music and data processing devices, computers and components thereof by reason of... complaint further alleges the existence of a domestic industry. The Commission's notice of investigation...

  15. Hydrogen in portable devices

    Energy Technology Data Exchange (ETDEWEB)

    Garche, J. [ZSW - Electrochemical Energy storage and energy Conversion Division, Baden Wuerttemberg (Germany); Stimmer, U. [Technische Universitaet, Muenchen (Germany); Friedrich, A.K. [ZAE Bayern (Germany); Fiedenhans' l, R. [Risoe National Lab., Materials Res. Dept., Roskilde (Denmark)

    2004-10-01

    Fuel cells were originally intended for use in power plants and vehicles. More recently, developers realised the possibility for building much smaller units and for lower prices per kilowatt than their larger relatives. This has led to a strong interest in developing small fuel cells. Small fuel cells could replace batteries in portable electronic equipment and internal combustion engines in portable generators. The upper limit for portable generators is about 5kW, mainly because of the weight of the fuel cell. The main applications for low-power fuel cells are mobile phones, personal digital assistants, laptop and notebook computers, cameras, medical equipment, military applications and other portable electronic devices. In comparison to batteries, fuel cells can supply much more power per unit volume or weight, though they have lower output voltages and are slower to respond to transients. Fuel cell types that are suitable for portable applications include: proton exchange membrane fuel cells (PEMFCs) using pure hydrogen, PEMFCs using hydrogen-rich gases from hydrocarbon or alcohol reforming, direct methanol fuel cells and, high-temperature fuel cells such as solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs) using hydrocarbons directly. Fuel cells for portable devices is becoming a niche, high-value market area which has good opportunities for a fast introduction of fuel cell technology and for the first consumer products in the electronic market can be expected within the coming year and is believed to grow rapidly thereafter. Danish industry is involved in the development of SOFC, PEMFC and DMFC fuel cells and the industry has in particular a strong position in system components and complete systems. An important area for Danish industry is system integration, where fuel cells and hydrogen technologies are implemented in electrical powered products. This is an area that is particular suited for small and medium sized enterprises and for

  16. Hydrogen in portable devices

    International Nuclear Information System (INIS)

    Garche, J.; Stimmer, U.; Friedrich, A.K.; Fiedenhans'l, R.

    2004-01-01

    Fuel cells were originally intended for use in power plants and vehicles. More recently, developers realised the possibility for building much smaller units and for lower prices per kilowatt than their larger relatives. This has led to a strong interest in developing small fuel cells. Small fuel cells could replace batteries in portable electronic equipment and internal combustion engines in portable generators. The upper limit for portable generators is about 5kW, mainly because of the weight of the fuel cell. The main applications for low-power fuel cells are mobile phones, personal digital assistants, laptop and notebook computers, cameras, medical equipment, military applications and other portable electronic devices. In comparison to batteries, fuel cells can supply much more power per unit volume or weight, though they have lower output voltages and are slower to respond to transients. Fuel cell types that are suitable for portable applications include: proton exchange membrane fuel cells (PEMFCs) using pure hydrogen, PEMFCs using hydrogen-rich gases from hydrocarbon or alcohol reforming, direct methanol fuel cells and, high-temperature fuel cells such as solid oxide fuel cells (SOFCs) and molten carbonate fuel cells (MCFCs) using hydrocarbons directly. Fuel cells for portable devices is becoming a niche, high-value market area which has good opportunities for a fast introduction of fuel cell technology and for the first consumer products in the electronic market can be expected within the coming year and is believed to grow rapidly thereafter. Danish industry is involved in the development of SOFC, PEMFC and DMFC fuel cells and the industry has in particular a strong position in system components and complete systems. An important area for Danish industry is system integration, where fuel cells and hydrogen technologies are implemented in electrical powered products. This is an area that is particular suited for small and medium sized enterprises and for

  17. Multi-purpose ECG telemetry system.

    Science.gov (United States)

    Marouf, Mohamed; Vukomanovic, Goran; Saranovac, Lazar; Bozic, Miroslav

    2017-06-19

    The Electrocardiogram ECG is one of the most important non-invasive tools for cardiac diseases diagnosis. Taking advantage of the developed telecommunication infrastructure, several approaches that address the development of telemetry cardiac devices were introduced recently. Telemetry ECG devices allow easy and fast ECG monitoring of patients with suspected cardiac issues. Choosing the right device with the desired working mode, signal quality, and the device cost are still the main obstacles to massive usage of these devices. In this paper, we introduce design, implementation, and validation of a multi-purpose telemetry system for recording, transmission, and interpretation of ECG signals in different recording modes. The system consists of an ECG device, a cloud-based analysis pipeline, and accompanied mobile applications for physicians and patients. The proposed ECG device's mechanical design allows laypersons to easily record post-event short-term ECG signals, using dry electrodes without any preparation. Moreover, patients can use the device to record long-term signals in loop and holter modes, using wet electrodes. In order to overcome the problem of signal quality fluctuation due to using different electrodes types and different placements on subject's chest, customized ECG signal processing and interpretation pipeline is presented for each working mode. We present the evaluation of the novel short-term recorder design. Recording of an ECG signal was performed for 391 patients using a standard 12-leads golden standard ECG and the proposed patient-activated short-term post-event recorder. In the validation phase, a sample of validation signals followed peer review process wherein two experts annotated the signals in terms of signal acceptability for diagnosis.We found that 96% of signals allow detecting arrhythmia and other signal's abnormal changes. Additionally, we compared and presented the correlation coefficient and the automatic QRS delineation results

  18. Low-power analog integrated circuits for wireless ECG acquisition systems.

    Science.gov (United States)

    Tsai, Tsung-Heng; Hong, Jia-Hua; Wang, Liang-Hung; Lee, Shuenn-Yuh

    2012-09-01

    This paper presents low-power analog ICs for wireless ECG acquisition systems. Considering the power-efficient communication in the body sensor network, the required low-power analog ICs are developed for a healthcare system through miniaturization and system integration. To acquire the ECG signal, a low-power analog front-end system, including an ECG signal acquisition board, an on-chip low-pass filter, and an on-chip successive-approximation analog-to-digital converter for portable ECG detection devices is presented. A quadrature CMOS voltage-controlled oscillator and a 2.4 GHz direct-conversion transmitter with a power amplifier and upconversion mixer are also developed to transmit the ECG signal through wireless communication. In the receiver, a 2.4 GHz fully integrated CMOS RF front end with a low-noise amplifier, differential power splitter, and quadrature mixer based on current-reused folded architecture is proposed. The circuits have been implemented to meet the specifications of the IEEE 802.15.4 2.4 GHz standard. The low-power ICs of the wireless ECG acquisition systems have been fabricated using a 0.18 μm Taiwan Semiconductor Manufacturing Company (TSMC) CMOS standard process. The measured results on the human body reveal that ECG signals can be acquired effectively by the proposed low-power analog front-end ICs.

  19. [Advances of portable electrocardiogram monitor design].

    Science.gov (United States)

    Ding, Shenping; Wang, Yinghai; Wu, Weirong; Deng, Lingli; Lu, Jidong

    2014-06-01

    Portable electrocardiogram monitor is an important equipment in the clinical diagnosis of cardiovascular diseases due to its portable, real-time features. It has a broad application and development prospects in China. In the present review, previous researches on the portable electrocardiogram monitors have been arranged, analyzed and summarized. According to the characteristics of the electrocardiogram (ECG), this paper discusses the ergonomic design of the portable electrocardiogram monitor, including hardware and software. The circuit components and software modules were parsed from the ECG features and system functions. Finally, the development trend and reference are provided for the portable electrocardiogram monitors and for the subsequent research and product design.

  20. Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring

    Directory of Open Access Journals (Sweden)

    Cunguang Lou

    2016-11-01

    Full Text Available This paper describes the development of a graphene-based dry flexible electrocardiography (ECG electrode and a portable wireless ECG measurement system. First, graphene films on polyethylene terephthalate (PET substrates and graphene paper were used to construct the ECG electrode. Then, a graphene textile was synthesized for the fabrication of a wearable ECG monitoring system. The structure and the electrical properties of the graphene electrodes were evaluated using Raman spectroscopy, scanning electron microscopy (SEM, and alternating current impedance spectroscopy. ECG signals were then collected from healthy subjects using the developed graphene electrode and portable measurement system. The results show that the graphene electrode was able to acquire the typical characteristics and features of human ECG signals with a high signal-to-noise (SNR ratio in different states of motion. A week-long continuous wearability test showed no degradation in the ECG signal quality over time. The graphene-based flexible electrode demonstrates comfortability, good biocompatibility, and high electrophysiological detection sensitivity. The graphene electrode also combines the potential for use in long-term wearable dynamic cardiac activity monitoring systems with convenience and comfort for use in home health care of elderly and high-risk adults.

  1. A low-power bio-potential acquisition system with flexible PDMS dry electrodes for portable ubiquitous healthcare applications.

    Science.gov (United States)

    Chen, Chih-Yuan; Chang, Chia-Lin; Chang, Chih-Wei; Lai, Shin-Chi; Chien, Tsung-Fu; Huang, Hong-Yi; Chiou, Jin-Chern; Luo, Ching-Hsing

    2013-03-04

    This work describes a bio-potential acquisition system for portable ubiquitous healthcare applications using flexible polydimethylsiloxane dry electrodes (FPDEs) and a low-power recording circuit. This novel FPDE used Au as the skin contact layer, which was made using a CO2 laser and replica method technology. The FPDE was revised from a commercial bio-potential electrode with a conductive snap using dry electrodes rather than wet electrodes that proposed reliable and robust attachment for the purpose of measurement, and attaching velcro made it wearable on the forearm for bio-potential applications. Furthermore, this study proposes a recording device to store bio-potential signal data and provides portability and low-power consumption for the proposed acquisition system. To acquire differential bio-potentials, such as electrocardiogram (ECG) signals, the proposed recording device includes a low-power front-end acquisition chip fabricated using a complementary metal-oxide-semiconductor (CMOS) process, a commercial microcontroller (MSP430F149), and a secure digital (SD) card for portable healthcare applications. The proposed system can obtain ECG signals efficiently and are comfortable to the skin. The power consumption of the system is about 85 mW for continuous working over a 3 day period with two AA batteries. It can also be used as a compact Holter ECG system.

  2. Portable EMG devices, Biofeedback and Contingent Electrical Stimulation applications in Bruxism

    DEFF Research Database (Denmark)

    Castrillon, Eduardo

    Portable EMG devices, Biofeedback and Contingent Electrical Stimulation applications in Bruxism Eduardo Enrique, Castrillon Watanabe, DDS, MSc, PhD Section of Orofacial Pain and Jaw Function, Department of Dentistry, Aarhus University, Aarhus, Denmark; Scandinavian Center for Orofacial Neuroscience...... Summary: Bruxism is a parafunctional activity, which involves the masticatory muscles and probably it is as old as human mankind. Different methods such as portable EMG devices have been proposed to diagnose and understand the pathophysiology of bruxism. Biofeedback / contingent electrical stimulation...... characteristics make it complicated to assess bruxism using portable EMG devices. The possibility to assess bruxism like EMG activity on a portable device made it possible to use biofeedback and CES approaches in order to treat / manage bruxism. The available scientific information about CES effects on bruxism...

  3. Prehospital ECG transmission: comparison of advanced mobile phone and facsimile devices in an urban Emergency Medical Service System.

    Science.gov (United States)

    Väisänen, Olli; Mäkijärvi, Markku; Silfvast, Tom

    2003-05-01

    To compare the speed and reliability of electrocardiogram (ECG) transmissions from the prehospital setting to a conventional table facsimile device and to an advanced mobile phone in a Helicopter Emergency Medical Service System (HEMS). Eighteen authentic ECGs stored in the memory module of a monitor defibrillator were used. The ECGs were (1) sent directly from the monitor defibrillator to a table fax and an advanced mobile phone at the HEMS base; (2) printed out and sent from a mobile fax connected to an ordinary mobile phone to the table fax and the advanced mobile phone at the HEMS base; (3) printed out and sent from an ordinary table fax as well as from a table fax connected to a satellite phone system to the receiving devices at the HEMS base. When the ECGs were sent from the table fax via satellite, the transmission times were longer to the advanced mobile phone than to the table fax at the HEMS base (1 min 54 s+/-0 min 21 s vs. 1 min 37 s+/-0 min 20 s, (mean+/-SD), (Ptransmission from the other fax devices, there were no differences in transmission times between the two receiving devices. The fastest way to transmit ECGs to the advanced mobile phone was to send it from conventional table fax (1 min 22 s+/-0 min 18 s) and the longest transmission times were with mobile fax connected to mobile phone (5 min 23 s+/-3 min 5 s). In all ECGs transmitted except one the cardiac rhythm and ST-changes could be recognised. An advanced mobile phone is as fast and reliable as a conventional table fax in receiving ECGs. A mobile phone with advanced features is a practical tool for HEMS physicians who need to evaluate ECGs in the prehospital setting.

  4. A Portable ECG Recorder for Shipboard Use

    National Research Council Canada - National Science Library

    Ryack, Bernard L

    1989-01-01

    ...) that would serve as a medical consultant to the Independent Duty Corpsman. The system was designed for use on submarines where such common tools as x-rays and electrocardiograms (ECGs) are not available...

  5. Portable X-Ray Device

    Science.gov (United States)

    1983-01-01

    Portable x-ray instrument developed by NASA now being produced commercially as an industrial tool may soon find further utility as a medical system. The instrument is Lixiscope - Low Intensity X-Ray Imaging Scope -- a self-contained, battery-powered fluoroscope that produces an instant image through use of a small amount of radioactive isotope. Originally developed by Goddard Space Flight Center, Lixiscope is now being produced by Lixi, Inc. which has an exclusive NASA license for one version of the device.

  6. 21 CFR 892.1970 - Radiographic ECG/respirator synchronizer.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Radiographic ECG/respirator synchronizer. 892.1970... (CONTINUED) MEDICAL DEVICES RADIOLOGY DEVICES Diagnostic Devices § 892.1970 Radiographic ECG/respirator synchronizer. (a) Identification. A radiographic ECG/respirator synchronizer is a device intended to be used to...

  7. Modified automatic R-peak detection algorithm for patients with epilepsy using a portable electrocardiogram recorder.

    Science.gov (United States)

    Jeppesen, J; Beniczky, S; Fuglsang Frederiksen, A; Sidenius, P; Johansen, P

    2017-07-01

    Earlier studies have shown that short term heart rate variability (HRV) analysis of ECG seems promising for detection of epileptic seizures. A precise and accurate automatic R-peak detection algorithm is a necessity in a real-time, continuous measurement of HRV, in a portable ECG device. We used the portable CE marked ePatch® heart monitor to record the ECG of 14 patients, who were enrolled in the videoEEG long term monitoring unit for clinical workup of epilepsy. Recordings of the first 7 patients were used as training set of data for the R-peak detection algorithm and the recordings of the last 7 patients (467.6 recording hours) were used to test the performance of the algorithm. We aimed to modify an existing QRS-detection algorithm to a more precise R-peak detection algorithm to avoid the possible jitter Qand S-peaks can create in the tachogram, which causes error in short-term HRVanalysis. The proposed R-peak detection algorithm showed a high sensitivity (Se = 99.979%) and positive predictive value (P+ = 99.976%), which was comparable with a previously published QRS-detection algorithm for the ePatch® ECG device, when testing the same dataset. The novel R-peak detection algorithm designed to avoid jitter has very high sensitivity and specificity and thus is a suitable tool for a robust, fast, real-time HRV-analysis in patients with epilepsy, creating the possibility for real-time seizure detection for these patients.

  8. Portable devices for delivering imagery and modelling interventions ...

    African Journals Online (AJOL)

    The main objective of this study was to investigate the effectiveness of portable devices (MP4) and a stationary device (DVD and fixed point stationary computer) in delivering imagery and modelling training among female netball players, examining the effect on imagery adherence, performance, self-efficacy, and the relative ...

  9. 78 FR 34132 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-06-06

    ... INTERNATIONAL TRADE COMMISSION [Docket No 2958] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Correction to Notice of Receipt of Complaint; Solicitation... of complaint entitled Certain Portable Electronic Communications Devices, Including Mobile Phones and...

  10. Are Portable Stereophotogrammetric Devices Reliable in Facial Imaging? A Validation Study of VECTRA H1 Device.

    Science.gov (United States)

    Gibelli, Daniele; Pucciarelli, Valentina; Cappella, Annalisa; Dolci, Claudia; Sforza, Chiarella

    2018-01-31

    Modern 3-dimensional (3D) image acquisition systems represent a crucial technologic development in facial anatomy because of their accuracy and precision. The recently introduced portable devices can improve facial databases by increasing the number of applications. In the present study, the VECTRA H1 portable stereophotogrammetric device was validated to verify its applicability to 3D facial analysis. Fifty volunteers underwent 4 facial scans using portable VECTRA H1 and static VECTRA M3 devices (2 for each instrument). Repeatability of linear, angular, surface area, and volume measurements was verified within the device and between devices using the Bland-Altman test and the calculation of absolute and relative technical errors of measurement (TEM and rTEM, respectively). In addition, the 2 scans obtained by the same device and the 2 scans obtained by different devices were registered and superimposed to calculate the root mean square (RMS; point-to-point) distance between the 2 surfaces. Most linear, angular, and surface area measurements had high repeatability in M3 versus M3, H1 versus H1, and M3 versus H1 comparisons (range, 82.2 to 98.7%; TEM range, 0.3 to 2.0 mm, 0.4° to 1.8°; rTEM range, 0.2 to 3.1%). In contrast, volumes and RMS distances showed evident differences in M3 versus M3 and H1 versus H1 comparisons and reached the maximum when scans from the 2 different devices were compared. The portable VECTRA H1 device proved reliable for assessing linear measurements, angles, and surface areas; conversely, the influence of involuntary facial movements on volumes and RMS distances was more important compared with the static device. Copyright © 2018 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.

  11. Wavelet-based Encoding Scheme for Controlling Size of Compressed ECG Segments in Telecardiology Systems.

    Science.gov (United States)

    Al-Busaidi, Asiya M; Khriji, Lazhar; Touati, Farid; Rasid, Mohd Fadlee; Mnaouer, Adel Ben

    2017-09-12

    One of the major issues in time-critical medical applications using wireless technology is the size of the payload packet, which is generally designed to be very small to improve the transmission process. Using small packets to transmit continuous ECG data is still costly. Thus, data compression is commonly used to reduce the huge amount of ECG data transmitted through telecardiology devices. In this paper, a new ECG compression scheme is introduced to ensure that the compressed ECG segments fit into the available limited payload packets, while maintaining a fixed CR to preserve the diagnostic information. The scheme automatically divides the ECG block into segments, while maintaining other compression parameters fixed. This scheme adopts discrete wavelet transform (DWT) method to decompose the ECG data, bit-field preserving (BFP) method to preserve the quality of the DWT coefficients, and a modified running-length encoding (RLE) scheme to encode the coefficients. The proposed dynamic compression scheme showed promising results with a percentage packet reduction (PR) of about 85.39% at low percentage root-mean square difference (PRD) values, less than 1%. ECG records from MIT-BIH Arrhythmia Database were used to test the proposed method. The simulation results showed promising performance that satisfies the needs of portable telecardiology systems, like the limited payload size and low power consumption.

  12. Fringe projection profilometry with portable consumer devices

    Science.gov (United States)

    Liu, Danji; Pan, Zhipeng; Wu, Yuxiang; Yue, Huimin

    2018-01-01

    A fringe projection profilometry (FPP) using portable consumer devices is attractive because it can realize optical three dimensional (3D) measurement for ordinary consumers in their daily lives. We demonstrate a FPP using a camera in a smart mobile phone and a digital consumer mini projector. In our experiment of testing the smart phone (iphone7) camera performance, the rare-facing camera in the iphone7 causes the FPP to have a fringe contrast ratio of 0.546, nonlinear carrier phase aberration value of 0.6 rad, and nonlinear phase error of 0.08 rad and RMS random phase error of 0.033 rad. In contrast, the FPP using the industrial camera has a fringe contrast ratio of 0.715, nonlinear carrier phase aberration value of 0.5 rad, nonlinear phase error of 0.05 rad and RMS random phase error of 0.011 rad. Good performance is achieved by using the FPP composed of an iphone7 and a mini projector. 3D information of a facemask with a size for an adult is also measured by using the FPP that uses portable consumer devices. After the system calibration, the 3D absolute information of the facemask is obtained. The measured results are in good agreement with the ones that are carried out in a traditional way. Our results show that it is possible to use portable consumer devices to construct a good FPP, which is useful for ordinary people to get 3D information in their daily lives.

  13. 77 FR 65580 - Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers...

    Science.gov (United States)

    2012-10-29

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-856] Certain Wireless Communication Devices, Portable Music and Data Processing Devices, Computers, and Components Thereof AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International...

  14. Organizational Security Threats Related to Portable Data Storage Devices: Qualitative Exploratory Inquiry

    Science.gov (United States)

    Cooper, Paul K.

    2017-01-01

    There has been a significant growth of portable devices capable of storing both personal data as well as sensitive organizational data. This growth of these portable devices has led to an increased threat of cyber-criminal activity. The purpose of this study was to gain a better understanding of security threats to the data assets of organizations…

  15. Low-power signal processing devices for portable ECG detection.

    Science.gov (United States)

    Lee, Shuenn-Yuh; Cheng, Chih-Jen; Wang, Cheng-Pin; Kao, Wei-Chun

    2008-01-01

    An analog front end for diagnosing and monitoring the behavior of the heart is presented. This sensing front end has two low-power processing devices, including a 5(th)-order Butterworth operational transconductance-C (OTA-C) filter and an 8-bit successive approximation analog-to-digital converter (SAADC). The components fabricated in a 0.18-microm CMOS technology feature with power consumptions of 453 nW (filter) and 940 nW (ADC) at a supply voltage of 1 V, respectively. The system specifications in terms of output noise and linearity associated with the two integrated circuits are described in this paper.

  16. Plans for Hand-Held/Portable Oil Assessment Devices

    National Research Council Canada - National Science Library

    Urbansky, Edward

    2005-01-01

    At the request of the U.S. Army Oil Analysis Program, the JOAP TSC conducted a market study, assembled a plan of action, and prepared a worksheet for the evaluation of portable or hand-held oil assessment devices...

  17. Portable Hybrid Powered Water Filtration Device

    Directory of Open Access Journals (Sweden)

    Maria Lourdes V. Balansay

    2015-08-01

    Full Text Available The existing water filtration device has features that can be developed to be more useful and functional during emergency situations. The project’s development has been aided by following provisions in PEC, NEC, NEMA and Philippine National Standard for Safe Drinking Water provide standards for the construction of the project. These standards protect both the prototype and the user. These also served as guide for the maintenance of every component. The design of the portable hybrid powered water filtration device shows that the project has more advanced features such as portability and the power supply used such as photovoltaic module solar cells and manually operated generator. This also shows its effectiveness and reliability based on the results of discharging test, water quality test and water production test. Based on analysis of the overall financial aspects, the machine can be profitable and the amount of revenue and operating cost will increase as years pass. Using the proper machine/ tools and methods of fabrication helps in easy assembly of the project. The materials and components used are cost effective and efficient. The best time for charging the battery using solar panel is 9:00 am onwards while the hand crank generator is too slow because the generated current is little. The water filtration device is very efficient regarding the operating hours and water production. The machine may have a great effect to society and economy in generation of clean available water at less cost.

  18. Evaluation of a novel portable capacitive ECG system in the clinical practice for a fast and simple ECG assessment in patients presenting with chest pain: FIDET (Fast Infarction Diagnosis ECG Trial)

    OpenAIRE

    Rasenack, Eva C. L.; Oehler, Martin; Els?sser, Albrecht; Schilling, Meinhard; Maier, Lars S.

    2012-01-01

    Background Electrocardiogram (ECG) assessment plays a crucial role in patients presenting with chest pain and suspected acute coronary syndrome (ACS). In a pilot study, we previously evaluated a capacitive ECG system (cECG) as a novel ECG technique for a fast and simple ECG assessment in patients with ST-elevation myocardial infarction (STEMI). In a next step, the sensitivity and specificity of this novel ECG technique have to be assessed in patients with ACS. Hypothesis The Fast Infarction D...

  19. A portable air jet actuator device for mechanical system identification

    Science.gov (United States)

    Belden, Jesse; Staats, Wayne L.; Mazumdar, Anirban; Hunter, Ian W.

    2011-03-01

    System identification of limb mechanics can help diagnose ailments and can aid in the optimization of robotic limb control parameters and designs. An interesting fluid phenomenon—the Coandă effect—is utilized in a portable actuator to provide a stochastic binary force disturbance to a limb system. The design of the actuator is approached with the goal of creating a portable device which could be deployed on human or robotic limbs for in situ mechanical system identification. The viability of the device is demonstrated by identifying the parameters of an underdamped elastic beam system with fixed inertia and stiffness and variable damping. The nonparametric compliance impulse response yielded from the system identification is modeled as a second-order system and the resultant parameters are found to be in excellent agreement with those found using more traditional system identification techniques. The current design could be further miniaturized and developed as a portable, wireless, unrestrained mechanical system identification instrument for less intrusive and more widespread use.

  20. Portable Integrated Wireless Device Threat Assessment to Aircraft Radio Systems

    Science.gov (United States)

    Salud, Maria Theresa P.; Williams, Reuben A. (Technical Monitor)

    2004-01-01

    An assessment was conducted on multiple wireless local area network (WLAN) devices using the three wireless standards for spurious radiated emissions to determine their threat to aircraft radio navigation systems. The measurement process, data and analysis are provided for devices tested using IEEE 802.11a, IEEE 802.11b, and Bluetooth as well as data from portable laptops/tablet PCs and PDAs (grouping known as PEDs). A comparison was made between wireless LAN devices and portable electronic devices. Spurious radiated emissions were investigated in the radio frequency bands for the following aircraft systems: Instrument Landing System Localizer and Glideslope, Very High Frequency (VHF) Communication, VHF Omnidirectional Range, Traffic Collision Avoidance System, Air Traffic Control Radar Beacon System, Microwave Landing System and Global Positioning System. Since several of the contiguous navigation systems were grouped under one encompassing measurement frequency band, there were five measurement frequency bands where spurious radiated emissions data were collected for the PEDs and WLAN devices. The report also provides a comparison between emissions data and regulatory emission limit.

  1. Influence of Mobile Phones on the Quality of ECG Signal Acquired by Medical Devices

    Science.gov (United States)

    Buczkowski, T.; Janusek, D.; Zavala-Fernandez, H.; Skrok, M.; Kania, M.; Liebert, A.

    2013-10-01

    Health aspects of the use of radiating devices, like mobile phones, are still a public concern. Stand-alone electrocardiographic systems and those built-in, more sophisticated, medical devices have become a standard tool used in everyday medical practice. GSM mobile phones might be a potential source of electromagnetic interference (EMI) which may affect reliability of medical appliances. Risk of such event is particularly high in places remote from GSM base stations in which the signal received by GSM mobile phone is weak. In such locations an increase in power of transmitted radio signal is necessary to enhance quality of the communication. In consequence, the risk of interference of electronic devices increases because of the high level of EMI. In the present paper the spatial, temporal, and spectral characteristics of the interference have been examined. The influence of GSM mobile phone on multilead ECG recordings was studied. It was observed that the electrocardiographic system was vulnerable to the interference generated by the GSM mobile phone working with maximum transmit power and in DTX mode when the device was placed in a distance shorter than 7.5 cm from the ECG electrode located on the surface of the chest. Negligible EMI was encountered at any longer distance.

  2. The intracavitary ECG method for positioning the tip of central venous access devices in pediatric patients: results of an Italian multicenter study.

    Science.gov (United States)

    Rossetti, Francesca; Pittiruti, Mauro; Lamperti, Massimo; Graziano, Ugo; Celentano, Davide; Capozzoli, Giuseppe

    2015-01-01

    The Italian Group for Venous Access Devices (GAVeCeLT) has carried out a multicenter study investigating the safety and accuracy of intracavitary electrocardiography (IC-ECG) in pediatric patients. We enrolled 309 patients (age 1 month-18 years) candidate to different central venous access devices (VAD) - 56 peripherally inserted central catheters (PICC), 178 short term centrally inserted central catheters (CICC), 65 long term VADs, 10 VADs for dialysis - in five Italian Hospitals. Three age groups were considered: A (ECG was applicable in 307 cases. The increase of the P wave on IC-ECG was detected in all cases but two. The tip of the catheter was positioned at the cavo-atrial junction (CAJ) (i.e., at the maximal height of the P wave on IC-ECG) and the position was checked during the procedure by fluoroscopy or chest x-ray, considering the CAJ at 1-2 cm (group A), 1.5-3 cm (group B), or 2-4 cm (group C) below the carina. There were no complications related to IC-ECG. The overall match between IC-ECG and x-ray was 95.8% (96.2% in group A, 95% in group B, and 96.8% in group C). In 95 cases, the IC-ECG was performed with a dedicated ECG monitor, specifically designed for IC-ECG (Nautilus, Romedex): in this group, the match between IC-ECG and x-ray was 98.8%. We conclude that the IC-ECG method is safe and accurate in the pediatric patients. The applicability of the method is 99.4% and its feasibility is 99.4%. The accuracy is 95.8% and even higher (98.8%) when using a dedicated ECG monitor.

  3. 75 FR 68619 - In the Matter of Certain Wireless Communication Devices, Portable Music and Data Processing...

    Science.gov (United States)

    2010-11-08

    ... Communication Devices, Portable Music and Data Processing Devices, Computers and Components Thereof; Notice of... within the United States after importation of certain wireless communication devices, portable music and...''). The complaint further alleges that an industry in the United States exists as required by subsection...

  4. Development of a Soundproof Device for 950 Watt rated Portable ...

    African Journals Online (AJOL)

    The noise emanating from generators has adverse effects on our health. In view of this, this paper reports the development of soundproof device for 950Watt rated generators which are widely used portable generators. Performance evaluation of the soundproof device was carried out, and the sound pressure level of the ...

  5. Experimental evaluations of wearable ECG monitor.

    Science.gov (United States)

    Ha, Kiryong; Kim, Youngsung; Jung, Junyoung; Lee, Jeunwoo

    2008-01-01

    Healthcare industry is changing with ubiquitous computing environment and wearable ECG measurement is one of the most popular approaches in this healthcare industry. Reliability and performance of healthcare device is fundamental issue for widespread adoptions, and interdisciplinary perspectives of wearable ECG monitor make this more difficult. In this paper, we propose evaluation criteria considering characteristic of both ECG measurement and ubiquitous computing. With our wearable ECG monitors, various levels of experimental analysis are performed based on evaluation strategy.

  6. Assessment of a portable device for the quantitative measurement of ankle joint stiffness in spastic individuals

    DEFF Research Database (Denmark)

    Lorentzen, Jakob; Grey, Michael J; Geertsen, Svend Sparre

    2012-01-01

    was measured with the portable device and a stationary torque motor. Inter- and intra-rater reliability was assessed with the intra-class correlation coefficient (ICC). RESULTS: Stiffness measures with the portable and stationary devices were significantly correlated for controls and MS participants (p...

  7. Security risks arising from portable storage devices

    CSIR Research Space (South Africa)

    Molotsi, K

    2012-10-01

    Full Text Available of the security risks arising from the use of PSDs, and further provides possible security countermeasures to help organisations and users to protect their digital assets. APPROACH Literature review: ? To investigate security risks posed by PSDs... technology in the workplace. International Journal of Electronic Security and Digital Forensics. 3(1): 73?81 [3] Kim, K., Kim, E. & Hong S. (2009). Privacy information protection in portable device. Proceedings of International Conference on Convergence...

  8. A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications.

    Science.gov (United States)

    Kim, Hyejung; Van Hoof, Chris; Yazicioglu, Refet Firat

    2011-01-01

    This paper describes a mixed-signal ECG processing platform with an 12-bit ADC architecture that can adapt its sampling rate according to the input signals rate of change. This enables the sampling of ECG signals with significantly reduced data rate without loss of information. The presented adaptive sampling scheme reduces the ADC power consumption, enables the processing of ECG signals with lower power consumption, and reduces the power consumption of the radio while streaming the ECG signals. The test results show that running a CWT-based R peak detection algorithm using the adaptively sampled ECG signals consumes only 45.6 μW and it leads to 36% less overall system power consumption.

  9. A Mobile Device System for Early Warning of ECG Anomalies

    Directory of Open Access Journals (Sweden)

    Adam Szczepański

    2014-06-01

    Full Text Available With the rapid increase in computational power of mobile devices the amount of ambient intelligence-based smart environment systems has increased greatly in recent years. A proposition of such a solution is described in this paper, namely real time monitoring of an electrocardiogram (ECG signal during everyday activities for identification of life threatening situations. The paper, being both research and review, describes previous work of the authors, current state of the art in the context of the authors’ work and the proposed aforementioned system. Although parts of the solution were described in earlier publications of the authors, the whole concept is presented completely for the first time along with the prototype implementation on mobile device—a Windows 8 tablet with Modern UI. The system has three main purposes. The first goal is the detection of sudden rapid cardiac malfunctions and informing the people in the patient’s surroundings, family and friends and the nearest emergency station about the deteriorating health of the monitored person. The second goal is a monitoring of ECG signals under non-clinical conditions to detect anomalies that are typically not found during diagnostic tests. The third goal is to register and analyze repeatable, long-term disturbances in the regular signal and finding their patterns.

  10. Using Personal Portable Devices as Learning Tools in the English Class

    Science.gov (United States)

    Herrera Díaz, Luz Edith; Cruz Ramos, María de los Milagros; Sandoval Sánchez, Mario Alberto

    2014-01-01

    A group of university students used a variety of personal portable devices (cellphones, tablets, laptops, and netbooks) which distracted them in English class. This qualitative action research aimed to implement activities entailing the use of such devices and to learn their impact on students' learning and the use of English in class. Thus, a…

  11. 76 FR 31983 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and...

    Science.gov (United States)

    2011-06-02

    ... Devices, Including Mobile Phones, Portable Music Players, and Computers; Notice of Commission... States after importation of certain electronic devices, including mobile phones, portable music players... rendered asserted claim 5 invalid. The ALJ concluded that an industry exists within the United States that...

  12. 76 FR 40930 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Portable Music Players, and...

    Science.gov (United States)

    2011-07-12

    ... Devices, Including Mobile Phones, Portable Music Players, and Computers; Notice of Commission....S.C. 1337) in the importation into the United States, the sale for importation, and the sale within the United States after importation of certain electronic devices, including mobile phones, portable...

  13. 41 CFR 102-74.190 - Are portable heaters, fans and other such devices allowed in Government-controlled facilities?

    Science.gov (United States)

    2010-07-01

    ..., fans and other such devices allowed in Government-controlled facilities? 102-74.190 Section 102-74.190... § 102-74.190 Are portable heaters, fans and other such devices allowed in Government-controlled facilities? Federal agencies are prohibited from operating portable heaters, fans, and other such devices in...

  14. X-ray spectroscopy and dosimetry with a portable CdTe device

    International Nuclear Information System (INIS)

    Abbene, Leonardo; La Manna, Angelo; Fauci, Francesco; Gerardi, Gaetano; Stumbo, Simone; Raso, Giuseppe

    2007-01-01

    X-ray spectra and dosimetry information are very important for quality assurance (QA) and quality control (QC) in medical diagnostic X-ray systems. An accurate knowledge of the diagnostic X-ray spectra would improve the patient dose optimization, without compromising image information. In this work, we performed direct diagnostic X-ray spectra measurements with a portable device, based on a CdTe solid-state detector. The portable device is able to directly measure X-ray spectra at high photon fluence rates, as typical of clinical radiography. We investigated on the spectral performances of the system in the mammographic energy range (up to ∼40 keV). Good system response to monoenergetic photons was measured (energy resolution of 5% FWHM at 22.1 keV). We measured the molybdenum X-ray spectra produced by a mammographic X-ray unit (GE Senographe DMR) at 28 kV and 30 kV under clinical conditions. The results showed the good reproducibility of the system and low pile-up distortions. Preliminary dosimetric measurements have been regarded as exposure and half value layer (HVL) values obtained from direct measurements and from measured X-ray spectral data, and a good agreement between exposure attenuation curves and the HVL values was obtained. The results indicated that the portable device is suitable for mammographic X-ray spectroscopy under clinical conditions

  15. A Novel 12-Lead ECG T-Shirt with Active Electrodes

    Directory of Open Access Journals (Sweden)

    Anna Boehm

    2016-11-01

    Full Text Available We developed an ECG T-shirt with a portable recorder for unobtrusive and long-term multichannel ECG monitoring with active electrodes. A major drawback of conventional 12-lead ECGs is the use of adhesive gel electrodes, which are uncomfortable during long-term application and may even cause skin irritations and allergic reactions. Therefore, we integrated comfortable patches of conductive textile into the ECG T-shirt in order to replace the adhesive gel electrodes. In order to prevent signal deterioration, as reported for other textile ECG systems, we attached active circuits on the outside of the T-shirt to further improve the signal quality of the dry electrodes. Finally, we validated the ECG T-shirt against a commercial Holter ECG with healthy volunteers during phases of lying down, sitting, and walking. The 12-lead ECG was successfully recorded with a resulting mean relative error of the RR intervals of 0.96% and mean coverage of 96.6%. Furthermore, the ECG waves of the 12 leads were analyzed separately and showed high accordance. The P-wave had a correlation of 0.703 for walking subjects, while the T-wave demonstrated lower correlations for all three scenarios (lying: 0.817, sitting: 0.710, walking: 0.403. The other correlations for the P, Q, R, and S-waves were all higher than 0.9. This work demonstrates that our ECG T-shirt is suitable for 12-lead ECG recordings while providing a higher level of comfort compared with a commercial Holter ECG.

  16. ECG-gated scintillation probe measurement of left ventricular function

    International Nuclear Information System (INIS)

    Bacharach, S.L.; Green, M.V.; Borer, J.S.; Ostrow, H.G.; Redwood, D.R.; Johnston, G.S.

    1977-01-01

    A nonimaging, ECG-gated scintillation-probe system is described that permits real-time quantification, at high temporal resolution, of the time variation of left ventricular (LV) volume over a complete, average cardiac cycle. Linearity between counting rate and volume, probe positioning, and background correction were investigated for both cylindrically collimated (CC) and parallel-hole-collimated (PC) detectors. In 53 patient studies, results obtained with these probes were compared with results obtained from an ECG-gated gamma camera system (CS) with high temporal resolution. Time-activity curves obtained by all three devices were essentially identical in shape (for CC against CS, r = 0.93; for PC against CS, r = 0.98) and in intracycle timing. Left-ventricular ejection fractions obtained with the probes showed workable agreement with the camera: for CC against CS, r = 0.85 (N = 31); for PC against CS, r = 0.90 (N = 21). When LV background is removed as a source of error, the correlation between (PC) probe and camera is improved (r = 0.95, N = 21). This suggests that the portable probe system be used in circumstances where exact knowledge of LV background is minimally important--e.g., continuous bedside monitoring of changes in LV function

  17. A portable device for fast analysis of explosives in the environment

    Czech Academy of Sciences Publication Activity Database

    Čapka, Lukáš; Večeřa, Zbyněk; Mikuška, Pavel; Šesták, Jozef; Kahle, Vladislav; Bumbová, A.

    2015-01-01

    Roč. 1388, APR (2015), s. 167-173 ISSN 0021-9673 Institutional support: RVO:68081715 Keywords : analysis of explosives * portable device * chemiluminescence detector Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 3.926, year: 2015

  18. e-SCP-ECG+ Protocol: An Expansion on SCP-ECG Protocol for Health Telemonitoring—Pilot Implementation

    Directory of Open Access Journals (Sweden)

    George J. Mandellos

    2010-01-01

    Full Text Available Standard Communication Protocol for Computer-assisted Electrocardiography (SCP-ECG provides standardized communication among different ECG devices and medical information systems. This paper extends the use of this protocol in order to be included in health monitoring systems. It introduces new sections into SCP-ECG structure for transferring data for positioning, allergies, and five additional biosignals: noninvasive blood pressure (NiBP, body temperature (Temp, Carbon dioxide (CO2, blood oxygen saturation (SPO2, and pulse rate. It also introduces new tags in existing sections for transferring comprehensive demographic data. The proposed enhanced version is referred to as e-SCP-ECG+ protocol. This paper also considers the pilot implementation of the new protocol as a software component in a Health Telemonitoring System.

  19. The IMPACT shirt: textile integrated and portable impedance cardiography

    International Nuclear Information System (INIS)

    Ulbrich, Mark; Wan, Tingting; Leonhardt, Steffen; Walter, Marian; Mühlsteff, Jens; Sipilä, Auli; Kamppi, Merja; Koskela, Anne; Myry, Manu

    2014-01-01

    Measurement of hemodynamic parameters such as stroke volume (SV) via impedance cardiography (ICG) is an easy, non-invasive and inexpensive way to assess the health status of the heart. We present a possibility to use this technology for monitoring risk patients at home. The IMPACT Shirt (IMPedAnce Cardiography Textile) has been developed with integrated textile electrodes and textile wiring, as well as with portable miniaturized hardware. Several textile materials were characterized in vitro and in vivo to analyze their performance with regard to washability, and electrical characteristics such as skin-electrode impedance, capacitive coupling and subjective tactile feeling. The small lightweight hardware measures ECG and ICG continuously and transmits wireless data via Bluetooth to a mobile phone (Android) or PC for further analysis. A lithium polymer battery supplies the circuit and can be charged via a micro-USB. Results of a proof-of-concept trial show excellent agreement between SV assessed by a commercial device and the developed system. The IMPACT Shirt allows monitoring of SV and ECG on a daily basis at the patient’s home. (paper)

  20. 78 FR 2437 - Corrected: Certain Cases For Portable Electronic Devices; Notice of Receipt of Complaint...

    Science.gov (United States)

    2013-01-11

    ... INTERNATIONAL TRADE COMMISSION [Docket No. 2927] Corrected: Certain Cases For Portable Electronic...: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled Certain Cases For Portable Electronic Devices...

  1. Comparison between two portable devices for widefield PpIX fluorescence during cervical intraepithelial neoplasia treatment

    Science.gov (United States)

    Carbinatto, Fernanda M.; Inada, Natalia Mayumi; Lombardi, Welington; Cossetin, Natália Fernandez; Varoto, Cinthia; Kurachi, Cristina; Bagnato, Vanderlei Salvador

    2015-06-01

    The use of portable electronic devices, in particular mobile phones such as smartphones is increasing not only for all known applications, but also for diagnosis of diseases and monitoring treatments like topical Photodynamic Therapy. The aim of the study is to evaluate the production of the photosensitizer Protoporphyrin IX (PpIX) after topical application of a cream containing methyl aminolevulinate (MAL) in the cervix with diagnosis of Cervical Intraepithelial Neoplasia (CIN) through the fluorescence images captured after one and three hours and compare the images using two devices (a Sony Xperia® mobile and an Apple Ipod®. Was observed an increasing fluorescence intensity of the cervix three hours after cream application, in both portable electronic devices. However, because was used a specific program for the treatment of images using the Ipod® device, these images presented better resolution than observed by the Sony cell phone without a specific program. One hour after cream application presented a more selective fluorescence than the group of three hours. In conclusion, the use of portable devices to obtain images of PpIX fluorescence shown to be an effective tool and is necessary the improvement of programs for achievement of better results.

  2. Practice parameters for the use of portable monitoring devices in the investigation of suspected obstructive sleep apnea in adults.

    Science.gov (United States)

    Chesson, Andrew L; Berry, Richard B; Pack, Allan

    2003-11-01

    A variety of devices are used to evaluate patients with a potential diagnosis of obstructive sleep apnea (OSA). A committee comprised of members of the American Academy of Sleep Medicine, American Thoracic Society, and American College of Chest Physicians systematically evaluated data on the use of these devices and developed practice parameters. Three categories of portable monitoring (PM) devices were reviewed with regard to assessing the probability of identifying an apnea-hypopnea index (AHI) of greater or less than 15 in attended and unattended settings. Type 2 (minimum of seven channels, including EEG, EOG, chin EMG, ECG or heart rate, airflow, respiratory effort, oxygen saturation), Type 3 (minimum of four channels, including ventilation or airflow (at least two channels of respiratory movement, or respiratory movement and airflow), heart rate or ECG and oxygen saturation) and Type 4 (most monitors of this type measure a single parameter or two parameters) devices were evaluated, and in-laboratory, attended polysomnography was used as a reference. (1) Insufficient evidence is available to recommend the use of Type 2 PM devices in attended or unattended settings. (2) Type 3 PM devices appear to be capable of being used in an attended setting to increase or to decrease the probability that a patient has an apnea-hypopnea index greater than 15. (3) The use of Type 3 PM devices in an unattended setting is not recommended to rule in, rule out, or both rule in and rule out a diagnosis of OSA. (4) There is some evidence that the use of Type 3 PM devices in an attended in-laboratory setting may be acceptable to both rule in and rule out a diagnosis of OSA if certain limitations are in place. These limitations include manually scoring the records, using the devices only in patients without significant comorbid conditions, having an awareness that symptomatic patients with a negative study should have a Type 1 study, and not using these devices for titrating positive

  3. Portable blood extraction device integrated with biomedical monitoring system

    Science.gov (United States)

    Khumpuang, S.; Horade, M.; Fujioka, K.; Sugiyama, S.

    2006-01-01

    Painless and portable blood extraction device has been immersed in the world of miniaturization on bio-medical research particularly in manufacturing point-of-care systems. The fabrication of a blood extraction device integrated with an electrolyte-monitoring system is reported in this paper. The device has advantages in precise controlled dosage of blood extracted including the slightly damaged blood vessels and nervous system. The in-house blood diagnostic will become simple for the patients. Main components of the portable system are; the blood extraction device and electrolyte-monitoring system. The monitoring system consists of ISFET (Ion Selective Field Effect Transistor) for measuring the concentration level of minerals in blood. In this work, we measured the level of 3 ions; Na+, K+ and Cl-. The mentioned ions are frequently required the measurement since their concentration levels in the blood can indicate whether the kidney, pancreas, liver or heart is being malfunction. The fabrication of the whole system and experimentation on each ISM (Ion Sensitive Membrane) will be provided. Taking the advantages of LIGA technology, the 100 hollow microneedles fabricated by Synchrotron Radiation deep X-ray lithography through PCT (Plane-pattern to Cross-section Transfer) technique have been consisted in 5x5 mm2 area. The microneedle is 300 μm in base-diameter, 500 μm-pitch, 800 μm-height and 50 μm hole-diameter. The total size of the blood extraction device is 2x2x2 cm 3. The package is made from a plastic socket including slots for inserting microneedle array and ISFET connecting to an electrical circuit for the monitoring. Through the dimensional design for simply handling and selection of disposable material, the patients can self-evaluate the critical level of the body minerals in anywhere and anytime.

  4. Embryo yield in llamas synchronized with two different intravaginal progesterone-releasing devices and superovulated with eCG

    Energy Technology Data Exchange (ETDEWEB)

    Aller, J.F.; Abalos, M.C.; Acuña, F.A.; Virgili, R.; Requena, F.; Cancino, A.K.

    2015-07-01

    The objectives of this study were to compare the effects of two intravaginal devices (ID) containing the same dose (0.5 g) of progesterone (P4) on subsequent ovarian response, embryo production and circulating P4 concentration profile in llamas (Lama glama) treated with equine chorionic gonadotropin (eCG) for ovarian superstimulation. Female llamas were randomly assigned (n = 10 llamas per group) to one of the following groups and treated (Day 0) with an ID containing 0.5 g of vegetal P4 to synchronize the emergence of a new follicular wave: i) DIB 0.5® and ii) Cronipres M15®. On Day 3 llamas were intramuscularly treated with 1000 IU of eCG. The IDs were removed on Day 7. Llamas were naturally mated (Day 9) and treated with GnRH analogue to induce ovulation. A second mating was allowed 24 h later. Embryos were collected between 7 and 8 days after the first mating. Blood samples were taken every day from Day 0 to Day 7 to measure circulating P4 concentrations. The results indicated that DIB device maintained greater plasma P4 levels as compared to Cronipres until Day 2. However, the mean (± SD) number of corpora lutea and recovered embryos was not affected (p < 0.05) by the type of ID (5.3 ± 2.6 vs 4.2 ± 2.2 and 3.5 ± 2.7 vs 2.6 ± 3.0 for DIB and Cronipres, respectively). In conclusion, both DIB and Cronipres devices can be successfully used to synchronize the emergence of follicular wave prior to a single dose of eCG in superovulation protocol in llamas. (Author)

  5. A Portable, Air-Jet-Actuator-Based Device for System Identification

    Science.gov (United States)

    Staats, Wayne; Belden, Jesse; Mazumdar, Anirban; Hunter, Ian

    2010-11-01

    System identification (ID) of human and robotic limbs could help in diagnosis of ailments and aid in optimization of control parameters and future redesigns. We present a self-contained actuator, which uses the Coanda effect to rapidly switch the direction of a high speed air jet to create a binary stochastic force input to a limb for system ID. The design of the actuator is approached with the goal of creating a portable device, which could deployed on robot or human limbs for in situ identification. The viability of the device is demonstrated by performing stochastic system ID on an underdamped elastic beam system with fixed inertia and stiffness, and variable damping. The non-parametric impulse response yielded from the stochastic system ID is modeled as a second order system, and the resultant parameters are found to be in excellent agreement with those found using more traditional system ID techniques. The current design could be further miniaturized and developed as a portable, wireless, on-site multi-axis system identification system for less intrusive and more widespread use.

  6. Sticker-type ECG/PPG concurrent monitoring system hybrid integration of CMOS SoC and organic sensor device.

    Science.gov (United States)

    Yongsu Lee; Hyeonwoo Lee; Seunghyup Yoo; Hoi-Jun Yoo

    2016-08-01

    The sticker-type sensor system is proposed targeting ECG/PPG concurrent monitoring for cardiovascular diseases. The stickers are composed of two types: Hub and Sensor-node (SN) sticker. Low-power CMOS SoC for measuring ECG and PPG signal is hybrid integrated with organic light emitting diodes (OLEDs) and organic photo detector (OPD). The sticker has only 2g weight and only consumes 141μW. The optical calibration loop is adopted for maintaining SNR of PPG signal higher than 30dB. The pulse arrival time (PAT) and SpO2 value can be extracted from various body parts and verified comparing with the reference device from 20 people in-vivo experiments.

  7. Validation of PC-based Sound Card with Biopac for Digitalization of ECG Recording in Short-term HRV Analysis.

    Science.gov (United States)

    Maheshkumar, K; Dilara, K; Maruthy, K N; Sundareswaren, L

    2016-07-01

    Heart rate variability (HRV) analysis is a simple and noninvasive technique capable of assessing autonomic nervous system modulation on heart rate (HR) in healthy as well as disease conditions. The aim of the present study was to compare (validate) the HRV using a temporal series of electrocardiograms (ECG) obtained by simple analog amplifier with PC-based sound card (audacity) and Biopac MP36 module. Based on the inclusion criteria, 120 healthy participants, including 72 males and 48 females, participated in the present study. Following standard protocol, 5-min ECG was recorded after 10 min of supine rest by Portable simple analog amplifier PC-based sound card as well as by Biopac module with surface electrodes in Leads II position simultaneously. All the ECG data was visually screened and was found to be free of ectopic beats and noise. RR intervals from both ECG recordings were analyzed separately in Kubios software. Short-term HRV indexes in both time and frequency domain were used. The unpaired Student's t-test and Pearson correlation coefficient test were used for the analysis using the R statistical software. No statistically significant differences were observed when comparing the values analyzed by means of the two devices for HRV. Correlation analysis revealed perfect positive correlation (r = 0.99, P < 0.001) between the values in time and frequency domain obtained by the devices. On the basis of the results of the present study, we suggest that the calculation of HRV values in the time and frequency domains by RR series obtained from the PC-based sound card is probably as reliable as those obtained by the gold standard Biopac MP36.

  8. Using Intracardiac Vectorcardiographic Loop for Surface ECG Synthesis

    Directory of Open Access Journals (Sweden)

    G. Carrault

    2008-09-01

    Full Text Available Current cardiac implantable devices offer improved processing power and recording capabilities. Some of these devices already provide basic telemonitoring features that may help to reduce health care expenditure. A challenge is posed in particular for the telemonitoring of the patient's cardiac electrical activity. Indeed, only intracardiac electrograms (EGMs are acquired by the implanted device and these signals are difficult to analyze directly by clinicians. In this paper, we propose a patient-specific method to synthesize the surface electrocardiogram (ECG from a set of EGM signals, based on a 3D representation of the cardiac electrical activity and principal component analysis (PCA. The results, in the case of sinus rhythm, show a correlation coefficient between the real ECG and the synthesized ECG of about 0.85. Moreover, the application of the proposed method to the patients who present an abnormal heart rhythm exhibits promising results, especially for characterizing the bundle branch blocs. Finally, in order to evaluate the behavior of our procedure in some practical situations, the quality of the ECG reconstruction is studied as a function of the number of EGM electrodes provided by the CIDs.

  9. Using Intracardiac Vectorcardiographic Loop for Surface ECG Synthesis

    Science.gov (United States)

    Kachenoura, A.; Porée, F.; Hernández, A. I.; Carrault, G.

    2008-12-01

    Current cardiac implantable devices offer improved processing power and recording capabilities. Some of these devices already provide basic telemonitoring features that may help to reduce health care expenditure. A challenge is posed in particular for the telemonitoring of the patient's cardiac electrical activity. Indeed, only intracardiac electrograms (EGMs) are acquired by the implanted device and these signals are difficult to analyze directly by clinicians. In this paper, we propose a patient-specific method to synthesize the surface electrocardiogram (ECG) from a set of EGM signals, based on a 3D representation of the cardiac electrical activity and principal component analysis (PCA). The results, in the case of sinus rhythm, show a correlation coefficient between the real ECG and the synthesized ECG of about 0.85. Moreover, the application of the proposed method to the patients who present an abnormal heart rhythm exhibits promising results, especially for characterizing the bundle branch blocs. Finally, in order to evaluate the behavior of our procedure in some practical situations, the quality of the ECG reconstruction is studied as a function of the number of EGM electrodes provided by the CIDs.

  10. Embryo yield in llamas synchronized with two different intravaginal progesterone-releasing devices and superovulated with eCG

    Directory of Open Access Journals (Sweden)

    Juan F. Aller

    2015-09-01

    Full Text Available The objectives of this study were to compare the effects of two intravaginal devices (ID containing the same dose (0.5 g of progesterone (P4 on subsequent ovarian response, embryo production and circulating P4 concentration profile in llamas (Lama glama treated with equine chorionic gonadotropin (eCG for ovarian superstimulation. Female llamas were randomly assigned (n = 10 llamas per group to one of the following groups and treated (Day 0 with an ID containing 0.5 g of vegetal P4 to synchronize the emergence of a new follicular wave: i DIB 0.5® and ii Cronipres M15®. On Day 3 llamas were intramuscularly treated with 1000 IU of eCG. The IDs were removed on Day 7. Llamas were naturally mated (Day 9 and treated with GnRH analogue to induce ovulation. A second mating was allowed 24 h later. Embryos were collected between 7 and 8 days after the first mating. Blood samples were taken every day from Day 0 to Day 7 to measure circulating P4 concentrations. The results indicated that DIB device maintained greater plasma P4 levels as compared to Cronipres until Day 2. However, the mean (± SD number of corpora lutea and recovered embryos was not affected (p < 0.05 by the type of ID (5.3 ± 2.6 vs 4.2 ± 2.2 and 3.5 ± 2.7 vs 2.6 ± 3.0 for DIB and Cronipres, respectively. In conclusion, both DIB and Cronipres devices can be successfully used to synchronize the emergence of follicular wave prior to a single dose of eCG in superovulation protocol in llamas.

  11. 76 FR 24051 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable...

    Science.gov (United States)

    2011-04-29

    ..., Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components Thereof... certain electronic devices, including mobile phones, mobile tablets, portable music players, and computers...''). The complaint further alleges that an industry in the United States exists or is in the process of...

  12. 76 FR 41522 - In the Matter of Certain Electronic Devices, Including Mobile Phones, Mobile Tablets, Portable...

    Science.gov (United States)

    2011-07-14

    ... Devices, Including Mobile Phones, Mobile Tablets, Portable Music Players, and Computers, and Components.... 1337, in the importation, sale for importation and sale within the United States after importation of certain mobile phones, mobile tablets, portable music players, and computers. 76 FR 24051 (Apr. 29, 2011...

  13. An IoT-cloud Based Wearable ECG Monitoring System for Smart Healthcare.

    Science.gov (United States)

    Yang, Zhe; Zhou, Qihao; Lei, Lei; Zheng, Kan; Xiang, Wei

    2016-12-01

    Public healthcare has been paid an increasing attention given the exponential growth human population and medical expenses. It is well known that an effective health monitoring system can detect abnormalities of health conditions in time and make diagnoses according to the gleaned data. As a vital approach to diagnose heart diseases, ECG monitoring is widely studied and applied. However, nearly all existing portable ECG monitoring systems cannot work without a mobile application, which is responsible for data collection and display. In this paper, we propose a new method for ECG monitoring based on Internet-of-Things (IoT) techniques. ECG data are gathered using a wearable monitoring node and are transmitted directly to the IoT cloud using Wi-Fi. Both the HTTP and MQTT protocols are employed in the IoT cloud in order to provide visual and timely ECG data to users. Nearly all smart terminals with a web browser can acquire ECG data conveniently, which has greatly alleviated the cross-platform issue. Experiments are carried out on healthy volunteers in order to verify the reliability of the entire system. Experimental results reveal that the proposed system is reliable in collecting and displaying real-time ECG data, which can aid in the primary diagnosis of certain heart diseases.

  14. ECG Holter monitor with alert system and mobile application

    Science.gov (United States)

    Teron, Abigail C.; Rivera, Pedro A.; Goenaga, Miguel A.

    2016-05-01

    This paper proposes a new approach on the Holter monitor by creating a portable Electrocardiogram (ECG) Holter monitor that will alert the user by detecting abnormal heart beats using a digital signal processing software. The alarm will be triggered when the patient experiences arrhythmias such as bradycardia and tachycardia. The equipment is simple, comfortable and small in size that fit in the hand. It can be used at any time and any moment by placing three leads to the person's chest which is connected to an electronic circuit. The ECG data will be transmitted via Bluetooth to the memory of a selected mobile phone using an application that will store the collected data for up to 24 hrs. The arrhythmia is identified by comparing the reference signals with the user's signal. The diagnostic results demonstrate that the ECG Holter monitor alerts the user when an arrhythmia is detected thru the Holter monitor and mobile application.

  15. 75 FR 4583 - In the Matter of: Certain Electronic Devices, Including Mobile Phones, Portable Music Players...

    Science.gov (United States)

    2010-01-28

    ..., Including Mobile Phones, Portable Music Players, and Computers; Notice of Investigation AGENCY: U.S... music players, and computers, by reason of infringement of certain claims of U.S. Patent Nos. 6,714,091... importation of certain electronic devices, including mobile phones, portable music players, or computers that...

  16. Appdaptivity: An Internet of Things Device-Decoupled System for Portable Applications in Changing Contexts

    Directory of Open Access Journals (Sweden)

    Cristian Martín

    2018-04-01

    Full Text Available Currently, applications in the Internet of Things (IoT are tightly coupled to the underlying physical devices. As a consequence, upon adding a device, device replacement or user’s relocation to a different physical space, application developers have to re-perform installation and configuration processes to reconfigure applications, which bears costs in time and knowledge of low-level details. In the emerging IoT field, this issue is even more challenging due to its current unpredictable growth in term of applications and connected devices. In addition, IoT applications can be personalised to each end user and can be present in different environments. As a result, IoT scenarios are very changeable, presenting a challenge for IoT applications. In this paper we present Appdaptivity, a system that enables the development of portable device-decoupled applications that can be adapted to changing contexts. Through Appdaptivity, application developers can intuitively create portable and personalised applications, disengaging from the underlying physical infrastructure. Results confirms a good scalability of the system in terms of connected users and components involved.

  17. Appdaptivity: An Internet of Things Device-Decoupled System for Portable Applications in Changing Contexts.

    Science.gov (United States)

    Martín, Cristian; Hoebeke, Jeroen; Rossey, Jen; Díaz, Manuel; Rubio, Bartolomé; Van den Abeele, Floris

    2018-04-26

    Currently, applications in the Internet of Things (IoT) are tightly coupled to the underlying physical devices. As a consequence, upon adding a device, device replacement or user’s relocation to a different physical space, application developers have to re-perform installation and configuration processes to reconfigure applications, which bears costs in time and knowledge of low-level details. In the emerging IoT field, this issue is even more challenging due to its current unpredictable growth in term of applications and connected devices. In addition, IoT applications can be personalised to each end user and can be present in different environments. As a result, IoT scenarios are very changeable, presenting a challenge for IoT applications. In this paper we present Appdaptivity, a system that enables the development of portable device-decoupled applications that can be adapted to changing contexts. Through Appdaptivity, application developers can intuitively create portable and personalised applications, disengaging from the underlying physical infrastructure. Results confirms a good scalability of the system in terms of connected users and components involved.

  18. 78 FR 6834 - Certain Cases for Portable Electronic Devices; Institution of Investigation

    Science.gov (United States)

    2013-01-31

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-867] Certain Cases for Portable Electronic Devices; Institution of Investigation AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on...

  19. Guide for the preparation of applications for licenses for the use of sealed sources in portable gauging devices

    International Nuclear Information System (INIS)

    1985-01-01

    The purpose of this regulatory guide is to provide assistance to applicants and licensees in preparing applications for new licenses, license amendments, and license renewals for the use of sealed sources in portable gauging devices. An example of a portable gauging device is a moisture-density gauge that contains a gamma-emitting sealed source, cesium-137, and a sealed neutron source, americium-242-beryllium

  20. Automated Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment.

    Science.gov (United States)

    Vandecasteele, Kaat; De Cooman, Thomas; Gu, Ying; Cleeren, Evy; Claes, Kasper; Paesschen, Wim Van; Huffel, Sabine Van; Hunyadi, Borbála

    2017-10-13

    Electrocardiography has added value to automatically detect seizures in temporal lobe epilepsy (TLE) patients. The wired hospital system is not suited for a long-term seizure detection system at home. To address this need, the performance of two wearable devices, based on electrocardiography (ECG) and photoplethysmography (PPG), are compared with hospital ECG using an existing seizure detection algorithm. This algorithm classifies the seizures on the basis of heart rate features, extracted from the heart rate increase. The algorithm was applied to recordings of 11 patients in a hospital setting with 701 h capturing 47 (fronto-)temporal lobe seizures. The sensitivities of the hospital system, the wearable ECG device and the wearable PPG device were respectively 57%, 70% and 32%, with corresponding false alarms per hour of 1.92, 2.11 and 1.80. Whereas seizure detection performance using the wrist-worn PPG device was considerably lower, the performance using the wearable ECG is proven to be similar to that of the hospital ECG.

  1. Automated Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment

    Directory of Open Access Journals (Sweden)

    Kaat Vandecasteele

    2017-10-01

    Full Text Available Electrocardiography has added value to automatically detect seizures in temporal lobe epilepsy (TLE patients. The wired hospital system is not suited for a long-term seizure detection system at home. To address this need, the performance of two wearable devices, based on electrocardiography (ECG and photoplethysmography (PPG, are compared with hospital ECG using an existing seizure detection algorithm. This algorithm classifies the seizures on the basis of heart rate features, extracted from the heart rate increase. The algorithm was applied to recordings of 11 patients in a hospital setting with 701 h capturing 47 (fronto-temporal lobe seizures. The sensitivities of the hospital system, the wearable ECG device and the wearable PPG device were respectively 57%, 70% and 32%, with corresponding false alarms per hour of 1.92, 2.11 and 1.80. Whereas seizure detection performance using the wrist-worn PPG device was considerably lower, the performance using the wearable ECG is proven to be similar to that of the hospital ECG.

  2. Using Personal Portable Devices as Learning Tools in the English Class

    Directory of Open Access Journals (Sweden)

    Luz Edith Herrera Díaz

    2014-10-01

    Full Text Available A group of university students used a variety of personal portable devices (cellphones, tablets, laptops, and netbooks which distracted them in English class. This qualitative action research aimed to implement activities entailing the use of such devices and to learn their impact on students’ learning and the use of English in class. Thus, a series of applications was used to promote the use of these devices for the benefit of the English as a Foreign Language class. These applications included a learning management system that resembled a social network, a live interaction application, and an online dictionary. It was found that students were able to productively use these devices as learning tools plus they expressed comfort and interest in using them.

  3. [Implementation of ECG Monitoring System Based on Internet of Things].

    Science.gov (United States)

    Lu, Liangliang; Chen, Minya

    2015-11-01

    In order to expand the capabilities of hospital's traditional ECG device and enhance medical staff's work efficiency, an ECG monitoring system based on internet of things is introduced. The system can monitor ECG signals in real time and analyze data using ECG sensor, PDA, Web servers, which embeds C language, Android systems, .NET, wireless network and other technologies. After experiments, it can be showed that the system has high reliability and stability and can bring the convenience to medical staffs.

  4. An examination of safety reports involving electronic flight bags and portable electronic devices

    Science.gov (United States)

    2014-06-01

    The purpose of this research was to develop a better understanding of safety considerations with the use of Electronic Flight Bags (EFBs) and Portable Electronic Devices (PEDs) by examining safety reports from Aviation Safety Reporting System (ASRS),...

  5. Negative pressure wound therapy using a portable single-use device for free skin grafts on the distal extremity in seven dogs.

    Science.gov (United States)

    Miller, A J; Cashmore, R G; Marchevsky, A M; Havlicek, M; Brown, P M; Fearnside, S M

    2016-09-01

    Retrospective study to describe clinical experience with a portable single-use negative pressure wound therapy device after application of full-thickness meshed skin grafts to wounds on the distal extremities of seven dogs. Seven dogs were treated with portable NPWT after receiving skin grafts; six as the result of tumour resection and one for traumatic injury. Medical records were reviewed and data recorded on patient signalment, cause and location of wound, surgical technique, application and maintenance of portable NPWT, graft survival and outcome, and complications encountered with the system. NPWT was provided for between 4 and 7 days. Five patients were discharged from hospital during the treatment period. Application and maintenance of the portable device was technically easy and no major complications were encountered. Minor complications consisted of fluid accumulation in the evacuation tubing. All dogs achieved 100% graft survival. Application and maintenance of the portable device was technically straightforward. All dogs receiving portable NPWT after transfer of a free skin graft to the distal extremity had a successful outcome. © 2016 Australian Veterinary Association.

  6. Battery-operated, portable, and flexible air microplasma generation device for fabrication of microfluidic paper-based analytical devices on demand.

    Science.gov (United States)

    Kao, Peng-Kai; Hsu, Cheng-Che

    2014-09-02

    A portable microplasma generation device (MGD) operated in ambient air is introduced for making a microfluidic paper-based analytical device (μPAD) that serves as a primary healthcare platform. By utilizing a printed circuit board fabrication process, a flexible and lightweight MGD can be fabricated within 30 min with ultra low-cost. This MGD can be driven by a portable power supply (less than two pounds), which can be powered using 12 V-batteries or ac-dc converters. This MGD is used to perform maskless patterning of hydrophilic patterns with sub-millimeter spatial resolution on hydrophobic paper substrates with good pattern transfer fidelity. Using this MGD to fabricate μPADs is demonstrated. With a proper design of the MGD electrode geometry, μPADs with 500-μm-wide flow channels can be fabricated within 1 min and with a cost of less than $USD 0.05/device. We then test the μPADs by performing quantitative colorimetric assay tests and establish a calibration curve for detection of glucose and nitrite. The results show a linear response to a glucose assay for 1-50 mM and a nitrite assay for 0.1-5 mM. The low cost, miniaturized, and portable MGD can be used to fabricate μPADs on demand, which is suitable for in-field diagnostic tests. We believe this concept brings impact to the field of biomedical analysis, environmental monitoring, and food safety survey.

  7. Interoperability in digital electrocardiography: harmonization of ISO/IEEE x73-PHD and SCP-ECG.

    Science.gov (United States)

    Trigo, Jesús D; Chiarugi, Franco; Alesanco, Alvaro; Martínez-Espronceda, Miguel; Serrano, Luis; Chronaki, Catherine E; Escayola, Javier; Martínez, Ignacio; García, José

    2010-11-01

    The ISO/IEEE 11073 (x73) family of standards is a reference frame for medical device interoperability. A draft for an ECG device specialization (ISO/IEEE 11073-10406-d02) has already been presented to the Personal Health Device (PHD) Working Group, and the Standard Communications Protocol for Computer-Assisted ElectroCardioGraphy (SCP-ECG) Standard for short-term diagnostic ECGs (EN1064:2005+A1:2007) has recently been approved as part of the x73 family (ISO 11073-91064:2009). These factors suggest the coordinated use of these two standards in foreseeable telecardiology environments, and hence the need to harmonize them. Such harmonization is the subject of this paper. Thus, a mapping of the mandatory attributes defined in the second draft of the ISO/IEEE 11073-10406-d02 and the minimum SCP-ECG fields is presented, and various other capabilities of the SCP-ECG Standard (such as the messaging part) are also analyzed from an x73-PHD point of view. As a result, this paper addresses and analyzes the implications of some inconsistencies in the coordinated use of these two standards. Finally, a proof-of-concept implementation of the draft x73-PHD ECG device specialization is presented, along with the conversion from x73-PHD to SCP-ECG. This paper, therefore, provides recommendations for future implementations of telecardiology systems that are compliant with both x73-PHD and SCP-ECG.

  8. 21 CFR 868.5440 - Portable oxygen generator.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Portable oxygen generator. 868.5440 Section 868...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5440 Portable oxygen generator. (a) Identification. A portable oxygen generator is a device that is intended to release oxygen for respiratory...

  9. Application of Handheld Tele-ECG for Health Care Delivery in Rural India

    Directory of Open Access Journals (Sweden)

    Meenu Singh

    2014-01-01

    Full Text Available Telemonitoring is a medical practice that involves remotely monitoring patients who are not at the same location as the health care provider. The purpose of our study was to use handheld tele-electrocardiogram (ECG developed by Bhabha Atomic Research Center (BARC to identify heart conditions in the rural underserved population where the doctor-patient ratio is low and access to health care is difficult. The objective of our study was clinical validation of handheld tele-ECG as a screening tool for evaluation of cardiac diseases in the rural population. ECG was obtained in 450 individuals (mean age 31.49 ± 20.058 residing in the periphery of Chandigarh, India, from April 2011 to March 2013, using the handheld tele-ECG machine. The data were then transmitted to physicians in Postgraduate Institute of Medical Education and Research (PGIMER, Chandigarh, for their expert opinion. ECG was interpreted as normal in 70% individuals. Left ventricular hypertrophy (9.3% was the commonest abnormality followed closely by old myocardial infarction (5.3%. Patient satisfaction was reported to be ~95%. Thus, it can be safely concluded that tele-ECG is a portable, cost-effective, and convenient tool for diagnosis and monitoring of heart diseases and thus improves quality and accessibility, especially in rural areas.

  10. [The development of a portable life support device for transporting pre-hospital critically ill patients].

    Science.gov (United States)

    Song, Zhen-xing; Wu, Tai-hu; Meng, Xing-ju; Lu, Heng-zhi; Zheng, Jie-wen; Wang, Hai-tao

    2012-06-01

    To describe a portable life support device for transportation of pre-hospital patients with critical illness. The characteristics and requirements for urgent management during transportation of critically ill patients to a hospital were analyzed. With adoption of the original equipment, with the aid of staple of the art soft ware, the overall structure, its installation, fixation, freedom from interference, operational function were studied, and the whole system of life support and resuscitation was designed. The system was composed by different modules, including mechanical ventilation, transfusion, aspiration, critical care, oxygen supply and power supply parts. The system could be fastened quickly to a stretcher to form portable intensive care unit (ICU), and it could be carried by different size vehicles to provide nonstop treatment by using power supply of the vehicle, thus raising the efficiency of urgent care. With characteristics of its small size, lightweight and portable, the device is particularly suitable for narrow space and extreme environment.

  11. 78 FR 32689 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-05-31

    ... INTERNATIONAL TRADE COMMISSION [Docket No 2958] Certain Portable Electronic Communications Devices... Relating to the Public Interest AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has received a complaint entitled...

  12. 78 FR 56737 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-09-13

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-885] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Commission Determination Not To Review an... on the Commission's electronic docket (EDIS) at http://edis.usitc.gov . Hearing-impaired persons are...

  13. 78 FR 49764 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-08-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-885] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Commission Determination Not To Review n... for this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc...

  14. 78 FR 72712 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-12-03

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-885] Certain Portable Electronic Communications Devices, Including Mobile Phones and Components Thereof; Commission Determination Not To Review an... this investigation may be viewed on the Commission's electronic docket (EDIS) at http://edis.usitc.gov...

  15. 76 FR 79708 - Certain Portable Electronic Devices And Related Software; Submission for OMB Review; Comment...

    Science.gov (United States)

    2011-12-22

    ... present in the pdQ device. 6. Do the Accused iPhones meet the ``switching the mobile phone system from... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-721] Certain Portable Electronic Devices... into the United States, the sale for importation, and sale within the United States after importation...

  16. Using portable negative pressure wound therapy devices in the home care setting

    Directory of Open Access Journals (Sweden)

    Burke JR

    2014-12-01

    Full Text Available Joshua R Burke, Rachael Morley, Mustafa Khanbhai Academic Surgery Unit, Education and Research Centre, University Hospital of South Manchester, Manchester, UK Abstract: Negative pressure wound therapy (NPWT is the continuous or intermittent application of subatmospheric pressure to the surface of a wound that improves the wound environment, accelerates healing, and reduces wound closure time. Since its first documented use, this technology has lent itself to a number of adaptations, most notably, the development of portable devices facilitating treatment in the home care setting. With advancing surgical standards, wound healing is an important rate-limiting factor in early patient discharge and often a major cost of inpatient treatment. The efficacy of NPWT in the home care setting has been investigated through rate of wound closure, time in care, and patient experience. Rate of wound closure is the most appropriate primary end point. Much can be gleaned from patient experience, but the future success of portable NPWT will be measured on time in care and therefore cost effectiveness. However, there is a lack of level 1a evidence demonstrating increased efficacy of portable over inpatient NPWT. The development of portable NPWT is an encouraging innovation in wound care technology, and extending the benefits to the home care setting is both possible and potentially more beneficial. Keywords: portable, negative pressure wound therapy, vacuum-assisted closure, topical negative pressure therapy

  17. Biventricular assist using a portable driver in combination with implanted devices: preliminary experience.

    Science.gov (United States)

    von Segesser, L K; Tkebuchava, T; Leskosek, B; Marty, B; Pei, Y C; Turina, M

    1997-01-01

    Left ventricular assist systems with portable drive units are increasingly used in the clinical setting. However, such systems usually are not suitable for right ventricular support, and therefore, in the case of biventricular heart failure, they must be combined with other support devices that require additional drive consoles. As a result, most of the benefits of the wearable drive units (early mobilization and outpatient care) are lost. This present study was performed to evaluate biventricular support with implanted assist devices and a portable DC/battery-powered driver (Thoratec TLC-II). Electronic control by nonvolatile RAM accessible via RS232 interface, internal backup emergency battery, and optional manual activation are additional features of this 6 kg biventricular drive unit. In 3 bovine experiments (body weight 70 +/- 5 kg) partial cardiopulmonary bypass (CPB) was established, and two ventricular assist devices were implanted into a preperitoneal pocket on each side after connection to the right atrium and the pulmonary artery and to the left atrium and aorta, respectively. After weaning the patient from CPB, activated coagulation time (ACT) was kept at greater than 180 s, and biventricular support with the portable driver was activated. After 10 min, mean device flow stabilized at 3.5 +/- 0 L/min and remained at that level throughout the ensuing 6 h (3.5 +/- 0.3 L/min; NS). The heart rate moved from 130 +/- 13 beats per minute (bpm) at the end of CPB to 116 +/- 13 bpm after 10 min of assist (p < 0.05). Right atrial pressure moved from 11 +/- 2 mm Hg at the end of CPB to 13 +/- 3 mm Hg after 10 min of assist (not significant [NS]). Mean pulmonary artery pressure was 18 +/- mm Hg at the end of CPB and 17 +/- 5 mm Hg after 10 min of assist (NS). Left atrial pressure was 10 +/- 1 mm Hg at the end of CPB and 13 +/- 3 mm Hg after 10 min of assist (NS). Mean aortic pressure was 73 +/- 11 mm Hg at the end of CPB and 77 +/- 3 mm Hg after 10 min of assist (NS

  18. Near Field Communication-based telemonitoring with integrated ECG recordings.

    Science.gov (United States)

    Morak, J; Kumpusch, H; Hayn, D; Leitner, M; Scherr, D; Fruhwald, F M; Schreier, G

    2011-01-01

    Telemonitoring of vital signs is an established option in treatment of patients with chronic heart failure (CHF). In order to allow for early detection of atrial fibrillation (AF) which is highly prevalent in the CHF population telemonitoring programs should include electrocardiogram (ECG) signals. It was therefore the aim to extend our current home monitoring system based on mobile phones and Near Field Communication technology (NFC) to enable patients acquiring their ECG signals autonomously in an easy-to-use way. We prototypically developed a sensing device for the concurrent acquisition of blood pressure and ECG signals. The design of the device equipped with NFC technology and Bluetooth allowed for intuitive interaction with a mobile phone based patient terminal. This ECG monitoring system was evaluated in the course of a clinical pilot trial to assess the system's technical feasibility, usability and patient's adherence to twice daily usage. 21 patients (4f, 54 ± 14 years) suffering from CHF were included in the study and were asked to transmit two ECG recordings per day via the telemonitoring system autonomously over a monitoring period of seven days. One patient dropped out from the study. 211 data sets were transmitted over a cumulative monitoring period of 140 days (overall adherence rate 82.2%). 55% and 8% of the transmitted ECG signals were sufficient for ventricular and atrial rhythm assessment, respectively. Although ECG signal quality has to be improved for better AF detection the developed communication design of joining Bluetooth and NFC technology in our telemonitoring system allows for ambulatory ECG acquisition with high adherence rates and system usability in heart failure patients.

  19. Wearable Textile Electrodes for ECG Measurement

    Directory of Open Access Journals (Sweden)

    Lukas Vojtech

    2013-01-01

    Full Text Available The electrocardiogram (ECG is one of the most important parameters for monitoring of the physiological state of a person. Currently available systems for ECG monitoring are both stationary and wearable, but the comfort of the monitored person is not at a satisfactory level because these systems are not part of standard clothing. This article is therefore devoted to the development and measurement of wearable textile electrodes for ECG measurement device with high comfort for the user. The electrode material is made of electrically conductive textile. This creates a textile composite that guarantees high comfort for the user while ensuring good quality of ECG measurements. The composite is implemented by a carrier (a T-shirt with flame retardant and sensing electrodes embroidered with yarn based on a mixture of polyester coated with silver nanoparticles and cotton. The electrodes not only provide great comfort but are also antibacterial and antiallergic due to silver nanoparticles.

  20. A Study on the Optimal Positions of ECG Electrodes in a Garment for the Design of ECG-Monitoring Clothing for Male.

    Science.gov (United States)

    Cho, Hakyung; Lee, Joo Hyeon

    2015-09-01

    Smart clothing is a sort of wearable device used for ubiquitous health monitoring. It provides comfort and efficiency in vital sign measurements and has been studied and developed in various types of monitoring platforms such as T-shirt and sports bra. However, despite these previous approaches, smart clothing for electrocardiography (ECG) monitoring has encountered a serious shortcoming relevant to motion artifacts caused by wearer movement. In effect, motion artifacts are one of the major problems in practical implementation of most wearable health-monitoring devices. In the ECG measurements collected by a garment, motion artifacts are usually caused by improper location of the electrode, leading to lack of contact between the electrode and skin with body motion. The aim of this study was to suggest a design for ECG-monitoring clothing contributing to reduction of motion artifacts. Based on the clothing science theory, it was assumed in this study that the stability of the electrode in a dynamic state differed depending on the electrode location in an ECG-monitoring garment. Founded on this assumption, effects of 56 electrode positions were determined by sectioning the surface of the garment into grids with 6 cm intervals in the front and back of the bodice. In order to determine the optimal locations of the ECG electrodes from the 56 positions, ECG measurements were collected from 10 participants at every electrode position in the garment while the wearer was in motion. The electrode locations indicating both an ECG measurement rate higher than 80.0 % and a large amplitude during motion were selected as the optimal electrode locations. The results of this analysis show four electrode locations with consistently higher ECG measurement rates and larger amplitudes amongst the 56 locations. These four locations were abstracted to be least affected by wearer movement in this research. Based on this result, a design of the garment-formed ECG monitoring platform

  1. Portable devices for monitoring radon and its progeny in air

    International Nuclear Information System (INIS)

    Zhang Huaiqin; Yao Wanyuan; Su Jingling; Liu Jinhua

    1990-01-01

    We have developed two kinds of portable monitoring devices to measure the concentration and potential energy concentration of radon and its progeny in air. The thermoluminescence material CaSO4 (Tm) is used as the detection element. One of the devices is called passive radon monitor. The lowest detectable limit for radon in air is about 1.5 Bq/m 3 , as a sampling time being one week. Good reliability and ease to operate are its main advantages. The second kind of device is called a working level monitor which consists of a miniature remembrane pump and an integrating sampling probe. The lowest detectable limit is about 0.00043 WL (9x10 -9 J/m 3 ) for a sampling time of 6 hours. It weighs only 0.35 kg, but maintenance is necessary sometimes. (author). 6 refs, 2 figs, 4 tabs

  2. Use of portable electronic devices in a hospital setting and their potential for bacterial colonization.

    Science.gov (United States)

    Khan, Amber; Rao, Amitha; Reyes-Sacin, Carlos; Hayakawa, Kayoko; Szpunar, Susan; Riederer, Kathleen; Kaye, Keith; Fishbain, Joel T; Levine, Diane

    2015-03-01

    Portable electronic devices are increasingly being used in the hospital setting. As with other fomites, these devices represent a potential reservoir for the transmission of pathogens. We conducted a convenience sampling of devices in 2 large medical centers to identify bacterial colonization rates and potential risk factors. Copyright © 2015 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  3. Microprocessor-based simulator of surface ECG signals

    International Nuclear Information System (INIS)

    MartInez, A E; Rossi, E; Siri, L Nicola

    2007-01-01

    In this work, a simulator of surface electrocardiogram recorded signals (ECG) is presented. The device, based on a microcontroller and commanded by a personal computer, produces an analog signal resembling actual ECGs, not only in time course and voltage levels, but also in source impedance. The simulator is a useful tool for electrocardiograph calibration and monitoring, to incorporate as well in educational tasks and in clinical environments for early detection of faulty behaviour

  4. Assessing ECG signal quality indices to discriminate ECGs with artefacts from pathologically different arrhythmic ECGs.

    Science.gov (United States)

    Daluwatte, C; Johannesen, L; Galeotti, L; Vicente, J; Strauss, D G; Scully, C G

    2016-08-01

    False and non-actionable alarms in critical care can be reduced by developing algorithms which assess the trueness of an arrhythmia alarm from a bedside monitor. Computational approaches that automatically identify artefacts in ECG signals are an important branch of physiological signal processing which tries to address this issue. Signal quality indices (SQIs) derived considering differences between artefacts which occur in ECG signals and normal QRS morphology have the potential to discriminate pathologically different arrhythmic ECG segments as artefacts. Using ECG signals from the PhysioNet/Computing in Cardiology Challenge 2015 training set, we studied previously reported ECG SQIs in the scientific literature to differentiate ECG segments with artefacts from arrhythmic ECG segments. We found that the ability of SQIs to discriminate between ECG artefacts and arrhythmic ECG varies based on arrhythmia type since the pathology of each arrhythmic ECG waveform is different. Therefore, to reduce the risk of SQIs classifying arrhythmic events as noise it is important to validate and test SQIs with databases that include arrhythmias. Arrhythmia specific SQIs may also minimize the risk of misclassifying arrhythmic events as noise.

  5. Improving Quality Control of Asphalt Pavement with RAP Using a Portable Infrared Spectroscopy Device

    Science.gov (United States)

    2016-04-01

    This project has investigated the effectiveness of a Portable Infrared Spectrometer (PIRS) device in estimating percent of Reclaimed Asphalt Pavement (RAP) and its contribution into oxidative aging of a new asphalt mixture immediately after productio...

  6. Portable modular detection system

    Science.gov (United States)

    Brennan, James S [Rodeo, CA; Singh, Anup [Danville, CA; Throckmorton, Daniel J [Tracy, CA; Stamps, James F [Livermore, CA

    2009-10-13

    Disclosed herein are portable and modular detection devices and systems for detecting electromagnetic radiation, such as fluorescence, from an analyte which comprises at least one optical element removably attached to at least one alignment rail. Also disclosed are modular detection devices and systems having an integrated lock-in amplifier and spatial filter and assay methods using the portable and modular detection devices.

  7. 78 FR 34664 - Prospective Grant of Start-up Exclusive Evaluation License: Portable Device and Method for...

    Science.gov (United States)

    2013-06-10

    ...-up Exclusive Evaluation License: Portable Device and Method for Detecting Hematomas AGENCY: National... hematomas. Upon the expiration or termination of the start-up exclusive evaluation license, ArcheOptix will... device and method for detecting hematomas based on near infrared light emitted perpendicularly into a...

  8. Implementation of a wireless ECG acquisition SoC for IEEE 802.15.4 (ZigBee) applications.

    Science.gov (United States)

    Wang, Liang-Hung; Chen, Tsung-Yen; Lin, Kuang-Hao; Fang, Qiang; Lee, Shuenn-Yuh

    2015-01-01

    This paper presents a wireless biosignal acquisition system-on-a-chip (WBSA-SoC) specialized for electrocardiogram (ECG) monitoring. The proposed system consists of three subsystems, namely, 1) the ECG acquisition node, 2) the protocol for standard IEEE 802.15.4 ZigBee system, and 3) the RF transmitter circuits. The ZigBee protocol is adopted for wireless communication to achieve high integration, applicability, and portability. A fully integrated CMOS RF front end containing a quadrature voltage-controlled oscillator and a 2.4-GHz low-IF (i.e., zero-IF) transmitter is employed to transmit ECG signals through wireless communication. The low-power WBSA-SoC is implemented by the TSMC 0.18-μm standard CMOS process. An ARM-based displayer with FPGA demodulation and an RF receiver with analog-to-digital mixed-mode circuits are constructed as verification platform to demonstrate the wireless ECG acquisition system. Measurement results on the human body show that the proposed SoC can effectively acquire ECG signals.

  9. Smart ECG Monitoring Patch with Built-in R-Peak Detection for Long-Term HRV Analysis.

    Science.gov (United States)

    Lee, W K; Yoon, H; Park, K S

    2016-07-01

    Since heart rate variability (HRV) analysis is widely used to evaluate the physiological status of the human body, devices specifically designed for such applications are needed. To this end, we developed a smart electrocardiography (ECG) patch. The smart patch measures ECG using three electrodes integrated into the patch, filters the measured signals to minimize noise, performs analog-to-digital conversion, and detects R-peaks. The measured raw ECG data and the interval between the detected R-peaks can be recorded to enable long-term HRV analysis. Experiments were performed to evaluate the performance of the built-in R-wave detection, robustness of the device under motion, and applicability to the evaluation of mental stress. The R-peak detection results obtained with the device exhibited a sensitivity of 99.29%, a positive predictive value of 100.00%, and an error of 0.71%. The device also exhibited less motional noise than conventional ECG recording, being stable up to a walking speed of 5 km/h. When applied to mental stress analysis, the device evaluated the variation in HRV parameters in the same way as a normal ECG, with very little difference. This device can help users better understand their state of health and provide physicians with more reliable data for objective diagnosis.

  10. Advanced ECG in 2016: is there more than just a tracing?

    Science.gov (United States)

    Reichlin, Tobias; Abächerli, Roger; Twerenbold, Raphael; Kühne, Michael; Schaer, Beat; Müller, Christian; Sticherling, Christian; Osswald, Stefan

    2016-01-01

    The 12-lead electrocardiogram (ECG) is the most frequently used technology in clinical cardiology. It is critical for evidence-based management of patients with most cardiovascular conditions, including patients with acute myocardial infarction, suspected chronic cardiac ischaemia, cardiac arrhythmias, heart failure and implantable cardiac devices. In contrast to many other techniques in cardiology, the ECG is simple, small, mobile, universally available and cheap, and therefore particularly attractive. Standard ECG interpretation mainly relies on direct visual assessment. The progress in biomedical computing and signal processing, and the available computational power offer fascinating new options for ECG analysis relevant to all fields of cardiology. Several digital ECG markers and advanced ECG technologies have shown promise in preliminary studies. This article reviews promising novel surface ECG technologies in three different fields. (1) For the detection of myocardial ischaemia and infarction, QRS morphology feature analysis, the analysis of high frequency QRS components (HF-QRS) and methods using vectorcardiography as well as ECG imaging are discussed. (2) For the identification and management of patients with cardiac arrhythmias, methods of advanced P-wave analysis are discussed and the concept of ECG imaging for noninvasive localisation of cardiac arrhythmias is presented. (3) For risk stratification of sudden cardiac death and the selection of patients for medical device therapy, several novel markers including an automated QRS-score for scar quantification, the QRS-T angle or the T-wave peak-to-end-interval are discussed. Despite the existing preliminary data, none of the advanced ECG markers and technologies has yet accomplished the transition into clinical practice. Further refinement of these technologies and broader validation in large unselected patient cohorts are the critical next step needed to facilitate translation of advanced ECG technologies

  11. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach.

    Science.gov (United States)

    Elgendi, Mohamed; Al-Ali, Abdulla; Mohamed, Amr; Ward, Rabab

    2018-01-16

    Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG) signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR), percentage root-mean-square difference (PRD), and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects), the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 ) and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity) over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.

  12. Improving Remote Health Monitoring: A Low-Complexity ECG Compression Approach

    Directory of Open Access Journals (Sweden)

    Mohamed Elgendi

    2018-01-01

    Full Text Available Recent advances in mobile technology have created a shift towards using battery-driven devices in remote monitoring settings and smart homes. Clinicians are carrying out diagnostic and screening procedures based on the electrocardiogram (ECG signals collected remotely for outpatients who need continuous monitoring. High-speed transmission and analysis of large recorded ECG signals are essential, especially with the increased use of battery-powered devices. Exploring low-power alternative compression methodologies that have high efficiency and that enable ECG signal collection, transmission, and analysis in a smart home or remote location is required. Compression algorithms based on adaptive linear predictors and decimation by a factor B / K are evaluated based on compression ratio (CR, percentage root-mean-square difference (PRD, and heartbeat detection accuracy of the reconstructed ECG signal. With two databases (153 subjects, the new algorithm demonstrates the highest compression performance ( CR = 6 and PRD = 1.88 and overall detection accuracy (99.90% sensitivity, 99.56% positive predictivity over both databases. The proposed algorithm presents an advantage for the real-time transmission of ECG signals using a faster and more efficient method, which meets the growing demand for more efficient remote health monitoring.

  13. Personal Portable Devices in the Light of the Internet of Things.

    Science.gov (United States)

    Lhotska, Lenka; Stechova, Katerina; Pharow, Peter

    2017-01-01

    Personal portable devices have already gained their position in health services. However, mobile technologies and Internet of Things open new areas of applications. The possibility to collect many data types continuously over long time intervals brings various questions that must be answered in the design process. We also discuss briefly the role of the user. We illustrate the complexity of the field by a case study of diabetes management.

  14. [Experience in the use of equipment for ECG system analysis in municipal polyclinics].

    Science.gov (United States)

    Bondarenko, A A

    2006-01-01

    Two electrocardiographs, an analog-digital electrocardiograph with preliminary analog filtering of signal and a smart cardiograph implemented as a PC-compatible device without preliminary analog filtering, are considered. Advantages and disadvantages of ECG systems based on artificial intelligence are discussed. ECG interpretation modes provided by the two electrocardiographs are considered. The reliability of automatic ECG interpretation is assessed. Problems of rational use of automated ECG processing systems are discussed.

  15. Use of smartphones and portable media devices for quantifying human movement characteristics of gait, tendon reflex response, and Parkinson's disease hand tremor.

    Science.gov (United States)

    LeMoyne, Robert; Mastroianni, Timothy

    2015-01-01

    Smartphones and portable media devices are both equipped with sensor components, such as accelerometers. A software application enables these devices to function as a robust wireless accelerometer platform. The recorded accelerometer waveform can be transmitted wireless as an e-mail attachment through connectivity to the Internet. The implication of such devices as a wireless accelerometer platform is the experimental and post-processing locations can be placed anywhere in the world. Gait was quantified by mounting a smartphone or portable media device proximal to the lateral malleolus of the ankle joint. Attributes of the gait cycle were quantified with a considerable accuracy and reliability. The patellar tendon reflex response was quantified by using the device in tandem with a potential energy impact pendulum to evoke the patellar tendon reflex. The acceleration waveform maximum acceleration feature of the reflex response displayed considerable accuracy and reliability. By mounting the smartphone or portable media device to the dorsum of the hand through a glove, Parkinson's disease hand tremor was quantified and contrasted with significance to a non-Parkinson's disease steady hand control. With the methods advocated in this chapter, any aspect of human movement may be quantified through smartphones or portable media devices and post-processed anywhere in the world. These wearable devices are anticipated to substantially impact the biomedical and healthcare industry.

  16. ECG movement artefacts can be greatly reduced with the aid of a movement absorbing device

    DEFF Research Database (Denmark)

    Harrison, Adrian Paul; Wandall, Kirsten; Thorball, Jørgen

    2007-01-01

    Accurate ECG signal analysis can be confounded by electric lead, and/or electrode movements varying in origin from, for example, hiccups, tremor or patient restlessness. ECG signals recorded using either a conventional electrode holder or with the aid of an electrode holder capable of absorbing...... movement artefacts, were measured on a healthy human subject. Results show a greatly improved stability of the ECG signal recorded using an electrode holder capable of absorbing movement artefacts during periods of lead disturbance, and highlight the movement artefacts that develop when the recording lead...... of a conventional ECG electrode holder is tugged or pulled during theperiod of monitoring. It is concluded that the new design of ECG electrode holder will not only enable clearer signal recordings for clinical assessment, but will reduce the ECG artefacts associated with the transportation of patients, and may...

  17. A programmable and portable NMES device for drop foot correction and blood flow assist applications.

    Science.gov (United States)

    Breen, Paul P; Corley, Gavin J; O'Keeffe, Derek T; Conway, Richard; Olaighin, Gearóid

    2009-04-01

    The Duo-STIM, a new, programmable and portable neuromuscular stimulation system for drop foot correction and blood flow assist applications is presented. The system consists of a programmer unit and a portable, programmable stimulator unit. The portable stimulator features fully programmable, sensor-controlled, constant-voltage, dual-channel stimulation and accommodates a range of customized stimulation profiles. Trapezoidal and free-form adaptive stimulation intensity envelope algorithms are provided for drop foot correction applications, while time dependent and activity dependent algorithms are provided for blood flow assist applications. A variety of sensor types can be used with the portable unit, including force sensitive resistor-based foot switches and MEMS-based accelerometer and gyroscope devices. The paper provides a detailed description of the hardware and block-level system design for both units. The programming and operating procedures for the system are also presented. Finally, functional bench test results for the system are presented.

  18. The use and risk of portable electronic devices while cycling among different age groups

    NARCIS (Netherlands)

    Goldenbeld, C.; Houtenbos, M.; Ehlers, E.; De Waard, D.

    Introduction: In the Netherlands, a survey was set up to monitor the extent of the use of portable, electronic devices while cycling amongst different age groups of cyclists and to estimate the possible consequences for safety. Method: The main research questions concerned age differences in the

  19. Speckle-based portable device for in-situ metrology of x-ray mirrors at Diamond Light Source

    Science.gov (United States)

    Wang, Hongchang; Kashyap, Yogesh; Zhou, Tunhe; Sawhney, Kawal

    2017-09-01

    For modern synchrotron light sources, the push toward diffraction-limited and coherence-preserved beams demands accurate metrology on X-ray optics. Moreover, it is important to perform in-situ characterization and optimization of X-ray mirrors since their ultimate performance is critically dependent on the working conditions. Therefore, it is highly desirable to develop a portable metrology device, which can be easily implemented on a range of beamlines for in-situ metrology. An X-ray speckle-based portable device for in-situ metrology of synchrotron X-ray mirrors has been developed at Diamond Light Source. Ultra-high angular sensitivity is achieved by scanning the speckle generator in the X-ray beam. In addition to the compact setup and ease of implementation, a user-friendly graphical user interface has been developed to ensure that characterization and alignment of X-ray mirrors is simple and fast. The functionality and feasibility of this device is presented with representative examples.

  20. The use and risk of portable electronic devices while cycling among different age groups.

    NARCIS (Netherlands)

    Goldenbeld, C. Houtenbos, M. Ehlers, E. & Waard, D. de

    2012-01-01

    In The Netherlands, a survey was set up to monitor the extent of the use of portable, electronic devices while cycling amongst different age groups of cyclists and to estimate the possible consequences for safety. The main research questions concerned age differences in the self-reported use of

  1. A Systematic Review of Tablet Computers and Portable Media Players as Speech Generating Devices for Individuals with Autism Spectrum Disorder.

    Science.gov (United States)

    Lorah, Elizabeth R; Parnell, Ashley; Whitby, Peggy Schaefer; Hantula, Donald

    2015-12-01

    Powerful, portable, off-the-shelf handheld devices, such as tablet based computers (i.e., iPad(®); Galaxy(®)) or portable multimedia players (i.e., iPod(®)), can be adapted to function as speech generating devices for individuals with autism spectrum disorders or related developmental disabilities. This paper reviews the research in this new and rapidly growing area and delineates an agenda for future investigations. In general, participants using these devices acquired verbal repertoires quickly. Studies comparing these devices to picture exchange or manual sign language found that acquisition was often quicker when using a tablet computer and that the vast majority of participants preferred using the device to picture exchange or manual sign language. Future research in interface design, user experience, and extended verbal repertoires is recommended.

  2. Mobile application development for Tele-ECG

    International Nuclear Information System (INIS)

    Srivastava, Shikha; Bharade, Sandeep; Sinha, Vineet; Sarade, Bhagyashree; Jindal, G.D.; Ananthakrishnan, T.S.; Pithawa, C.K.

    2010-01-01

    Mobile computing has caught the attention of research community for quite some time. The constant improvement of hardware and software related to mobile computing (e.g. better computing power, larger wireless network bandwidth) clearly enhance capabilities of mobile devices. The acceptance of mobile technology by the population at large would suggest that this could be the basis of a system for the communication of medical data from patients to remote physician and vice versa. This paper presents a mobile solution, which makes use of a Tele-ECG unit with a mobile phone to collect, store and forward ECG data to a cardiologist for diagnosis and recommendation. (author)

  3. Comparison of a novel bedside portable endoscopy device with nasogastric aspiration for identifying upper gastrointestinal bleeding.

    Science.gov (United States)

    Choi, Jong Hwan; Choi, Jae Hyuk; Lee, Yoo Jin; Lee, Hyung Ki; Choi, Wang Yong; Kim, Eun Soo; Park, Kyung Sik; Cho, Kwang Bum; Jang, Byoung Kuk; Chung, Woo Jin; Hwang, Jae Seok

    2014-07-07

    To compare outcomes using the novel portable endoscopy with that of nasogastric (NG) aspiration in patients with gastrointestinal bleeding. Patients who underwent NG aspiration for the evaluation of upper gastrointestinal (UGI) bleeding were eligible for the study. After NG aspiration, we performed the portable endoscopy to identify bleeding evidence in the UGI tract. Then, all patients underwent conventional esophagogastroduodenoscopy as the gold-standard test. The sensitivity, specificity, and accuracy of the portable endoscopy for confirming UGI bleeding were compared with those of NG aspiration. In total, 129 patients who had GI bleeding signs or symptoms were included in the study (age 64.46 ± 13.79, 91 males). The UGI tract (esophagus, stomach, and duodenum) was the most common site of bleeding (81, 62.8%) and the cause of bleeding was not identified in 12 patients (9.3%). Specificity for identifying UGI bleeding was higher with the portable endoscopy than NG aspiration (85.4% vs 68.8%, P = 0.008) while accuracy was comparable. The accuracy of the portable endoscopy was significantly higher than that of NG in the subgroup analysis of patients with esophageal bleeding (88.2% vs 75%, P = 0.004). Food material could be detected more readily by the portable endoscopy than NG tube aspiration (20.9% vs 9.3%, P = 0.014). No serious adverse effect was observed during the portable endoscopy. The portable endoscopy was not superior to NG aspiration for confirming UGI bleeding site. However, this novel portable endoscopy device might provide a benefit over NG aspiration in patients with esophageal bleeding.

  4. ECG De-noising

    DEFF Research Database (Denmark)

    Kærgaard, Kevin; Jensen, Søren Hjøllund; Puthusserypady, Sadasivan

    2015-01-01

    Electrocardiogram (ECG) is a widely used noninvasive method to study the rhythmic activity of the heart and thereby to detect the abnormalities. However, these signals are often obscured by artifacts from various sources and minimization of these artifacts are of paramount important. This paper...... proposes two adaptive techniques, namely the EEMD-BLMS (Ensemble Empirical Mode Decomposition in conjunction with the Block Least Mean Square algorithm) and DWT-NN (Discrete Wavelet Transform followed by Neural Network) methods in minimizing the artifacts from recorded ECG signals, and compares...... their performance. These methods were first compared on two types of simulated noise corrupted ECG signals: Type-I (desired ECG+noise frequencies outside the ECG frequency band) and Type-II (ECG+noise frequencies both inside and outside the ECG frequency band). Subsequently, they were tested on real ECG recordings...

  5. A compact and portable optofluidic device for detection of liquid properties and label-free sensing

    Science.gov (United States)

    Lahoz, F.; Martín, I. R.; Walo, D.; Gil-Rostra, J.; Yubero, F.; Gonzalez-Elipe, A. R.

    2017-06-01

    Optofluidic lasers have been widely investigated over the last few years mainly because they can be easily integrated in sensor devices. However, high power pulse lasers are required as excitation sources, which, in practice, limit the portability of the system. Trying to overcome some of these limitations, in this paper we propose the combined use of a small CW laser with a Fabry-Perot optofluidic planar microcavity showing high sensitivity and versatility for detection of liquid properties and label-free sensing. Firstly, a fluorescein solution in ethanol is used to demonstrate the high performances of the FP microcavity as a temperature sensor both in the laser (high pump power above laser threshold) and in the fluorescence (low pump power) regimes. A shift in the wavelength of the resonant cavity modes is used to detect changes in the temperature and our results show that high sensitivities could be already obtained using cheap and portable CW diode lasers. In the second part of the paper, the demonstration of this portable device for label-free sensing is illustrated under low CW pumping. The wavelength positions of the optofluidic resonant modes are used to detect glucose concentrations in water solutions using a protein labelled with a fluorescent dye as the active medium.

  6. On the Efficacy of Isolating Shoulder and Elbow Movements with a Soft, Portable, and Wearable Robotic Device

    Science.gov (United States)

    Kadivar, Zahra; Beck, Christopher E.; Rovekamp, Roger N.; O'Malley, Marcia K.; Joyce, Charles A.

    2016-01-01

    Treatment intensity has a profound effect on motor recovery following neurological injury. The use of robotics has potential to automate these labor-intensive therapy procedures that are typically performed by physical therapists. Further, the use of wearable robotics offers an aspect of portability that may allow for rehabilitation outside the clinic. The authors have developed a soft, portable, lightweight upper extremity wearable robotic device to provide motor rehabilitation of patients with affected upper limbs due to traumatic brain injury (TBI). A key feature of the device demonstrated in this paper is the isolation of shoulder and elbow movements necessary for effective rehabilitation interventions. Herein is presented a feasibility study with one subject and demonstration of the device's ability to provide safe, comfortable, and controlled upper extremity movements. Moreover, it is shown that by decoupling shoulder and elbow motions, desired isolated joint actuation can be achieved.

  7. Heart rhythm analysis using ECG recorded with a novel sternum based patch technology

    DEFF Research Database (Denmark)

    Saadi, Dorthe Bodholt; Fauerskov, Inge; Osmanagic, Armin

    2013-01-01

    , reliable long-term ECG recordings. The device is designed for high compliance and low patient burden. This novel patch technology is CE approved for ambulatory ECG recording of two ECG channels on the sternum. This paper describes a clinical pilot study regarding the usefulness of these ECG signals...... for heart rhythm analysis. A clinical technician with experience in ECG interpretation selected 200 noise-free 7 seconds ECG segments from 25 different patients. These 200 ECG segments were evaluated by two medical doctors according to their usefulness for heart rhythm analysis. The first doctor considered...... 98.5% of the segments useful for rhythm analysis, whereas the second doctor considered 99.5% of the segments useful for rhythm analysis. The conclusion of this pilot study indicates that two channel ECG recorded on the sternum is useful for rhythm analysis and could be used as input to diagnosis...

  8. 77 FR 68828 - Certain Cases for Portable Electronic Devices; Institution of Investigation Pursuant to the...

    Science.gov (United States)

    2012-11-16

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-861] Certain Cases for Portable Electronic Devices; Institution of Investigation Pursuant to the Tariff Act of 1930, as Amended AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with...

  9. On the OSL curve shape and preheat treatment of electronic components from portable electronic devices

    DEFF Research Database (Denmark)

    Woda, Clemens; Greilich, Steffen; Beerten, Koen

    2010-01-01

    The shape of the OSL decay curve and the effect of longer time delays between accidental exposure and readout of alumina-rich electronic components from portable electronic devices are investigated. The OSL decay curve follows a hyperbolic decay function, which is interpreted as an approximation ...

  10. Diagnostic accuracy of portable instrumental devices to measure sleep bruxism: a systematic literature review of polysomnographic studies.

    Science.gov (United States)

    Manfredini, D; Ahlberg, J; Castroflorio, T; Poggio, C E; Guarda-Nardini, L; Lobbezoo, F

    2014-11-01

    This study systematically reviews the sleep bruxism (SB) literature published in the MEDLINE and Scopus databases to answer the following question: What is the validity of the different portable instrumental devices that have been proposed to measure SB if compared with polysomnographic (PSG) recordings assumed as the gold standard? Four clinical studies on humans, assessing the diagnostic accuracy of portable instrumental approaches (i.e. Bitestrip, electromyography (EMG)-telemetry recordings and Bruxoff) with respect to PSG, were included in the review. Methodological shortcomings were identified by QUADAS-2 quality assessment. Findings showed contrasting results and supported only in part the validity of the described diagnostic devices with respect to PSG. The positive predictive value (PPV) of the Bitestrip device was 59-100%, with a sensitivity of 71-84·2%, whilst EMG-telemetry recordings had an unacceptable rate of false-positive findings (76·9%), counterbalanced by an almost perfect sensitivity (98·8%). The Bruxoff device had the highest accuracy values, showing an excellent agreement with PSG for both manual (area under ROC = 0·98) and automatic scoring (0·96) options as well as for the simultaneous recording of events with respect to PSG (0·89-0·91). It can be concluded that the available information on the validity of portable instrumental diagnostic approaches with respect to PSG recordings is still scarce and not solid enough to support any non-PSG technique's employ as a stand-alone diagnostic method in the research setting, with the possible exception of the Bruxoff device that needs to be further confirmed with future investigations. © 2014 John Wiley & Sons Ltd.

  11. Real-Time ECG Simulation for Hybrid Mock Circulatory Loops.

    Science.gov (United States)

    Korn, Leonie; Rüschen, Daniel; Zander, Niklas; Leonhardt, Steffen; Walter, Marian

    2018-02-01

    Classically, mock circulatory loops only simulate mechanical properties of the circulation. To connect the hydraulic world with electrophysiology, we present a real-time electrical activity model of the heart and show how to integrate this model into a real-time mock loop simulation. The model incorporates a predefined conduction pathway and a simplified volume conductor to solve the bidomain equations and the forward problem of electrocardiography, resulting in a physiological simulation of the electrocardiogram (ECG) at arbitrary electrode positions. A complete physiological simulation of the heart's excitation would be too CPU intensive. Thus, in our model, complexity was reduced to allow real-time simulation of ECG-triggered medical systems in vitro; this decreases time and cost in the development process. Conversely, the presented model can still be adapted to various pathologies by locally changing the properties of the heart's conduction pathway. To simulate the ECG, the heart is divided into suitable areas, which are innervated by the hierarchically structured conduction system. To distinguish different cardiac regions, a segmentation of the heart was performed. In these regions, Prim's algorithm was applied to identify the directed minimal spanning trees for conduction orientation. Each node of the tree was assigned to a cardiac action potential generated by its hybrid automaton to represent the heart's conduction system by the spatial distribution of action potentials. To generate the ECG output, the bidomain equations were implemented and a simple model of the volume conductor of the body was used to solve the forward problem of electrocardiography. As a result, the model simulates potentials at arbitrary electrode positions in real-time. To verify the developed real-time ECG model, measurements were made within a hybrid mock circulatory loop, including a simple ECG-triggered ventricular assist device control. The model's potential value is to simulate

  12. 76 FR 50253 - Certain Portable Electronic Devices and Related Software; Notice of Institution of Investigation...

    Science.gov (United States)

    2011-08-12

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-797] Certain Portable Electronic Devices and....C. 1337 AGENCY: U.S. International Trade Commission. ACTION: Notice SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on July 8, 2011, under section...

  13. A system for intelligent home care ECG upload and priorisation.

    Science.gov (United States)

    D'Angelo, Lorenzo T; Tarita, Eugeniu; Zywietz, Tosja K; Lueth, Tim C

    2010-01-01

    In this contribution, a system for internet based, automated home care ECG upload and priorisation is presented for the first time. It unifies the advantages of existing telemonitoring ECG systems adding functionalities such as automated priorisation and usability for home care. Chronic cardiac diseases are a big group in the geriatric field. Most of them can be easily diagnosed with help of an electrocardiogram. A frequent or long-term ECG analysis allows early diagnosis of e.g. a cardiac infarction. Nevertheless, patients often aren't willing to visit a doctor for prophylactic purposes. Possible solutions of this problem are home care devices, which are used to investigate patients at home without the presence of a doctor on site. As the diffusion of such systems leads to a huge amount of data which has to be managed and evaluated, the presented approach focuses on an easy to use software for ECG upload from home, a web based management application and an algorithm for ECG preanalysis and priorisation.

  14. Challenges of ECG monitoring and ECG interpretation in dialysis units.

    Science.gov (United States)

    Poulikakos, Dimitrios; Malik, Marek

    Patients on hemodialysis (HD) suffer from high cardiovascular morbidity and mortality due to high rates of coronary artery disease and arrhythmias. Electrocardiography (ECG) is often performed in the dialysis units as part of routine clinical assessment. However, fluid and electrolyte changes have been shown to affect all ECG morphologies and intervals. ECG interpretation thus depends on the time of the recording in relation to the HD session. In addition, arrhythmias during HD are common, and dialysis-related ECG artifacts mimicking arrhythmias have been reported. Studies using advanced ECG analyses have examined the impact of the HD procedure on selected repolarization descriptors and heart rate variability indices. Despite the challenges related to the impact of the fluctuant fluid and electrolyte status on conventional and advanced ECG parameters, further research in ECG monitoring during dialysis has the potential to provide clinically meaningful and practically useful information for diagnostic and risk stratification purposes. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  15. Portable (handheld) clinical device for quantitative spectroscopy of skin, utilizing spatial frequency domain reflectance techniques

    Science.gov (United States)

    Saager, Rolf B.; Dang, An N.; Huang, Samantha S.; Kelly, Kristen M.; Durkin, Anthony J.

    2017-09-01

    Spatial Frequency Domain Spectroscopy (SFDS) is a technique for quantifying in-vivo tissue optical properties. SFDS employs structured light patterns that are projected onto tissues using a spatial light modulator, such as a digital micromirror device. In combination with appropriate models of light propagation, this technique can be used to quantify tissue optical properties (absorption, μa, and scattering, μs', coefficients) and chromophore concentrations. Here we present a handheld implementation of an SFDS device that employs line (one dimensional) imaging. This instrument can measure 1088 spatial locations that span a 3 cm line as opposed to our original benchtop SFDS system that only collects a single 1 mm diameter spot. This imager, however, retains the spectral resolution (˜1 nm) and range (450-1000 nm) of our original benchtop SFDS device. In the context of homogeneous turbid media, we demonstrate that this new system matches the spectral response of our original system to within 1% across a typical range of spatial frequencies (0-0.35 mm-1). With the new form factor, the device has tremendously improved mobility and portability, allowing for greater ease of use in a clinical setting. A smaller size also enables access to different tissue locations, which increases the flexibility of the device. The design of this portable system not only enables SFDS to be used in clinical settings but also enables visualization of properties of layered tissues such as skin.

  16. NInFEA: an embedded framework for the real-time evaluation of fetal ECG extraction algorithms.

    Science.gov (United States)

    Pani, Danilo; Barabino, Gianluca; Raffo, Luigi

    2013-02-01

    Fetal electrocardiogram (ECG) extraction from non-invasive biopotential recordings is a long-standing research topic. Despite the significant number of algorithms presented in the scientific literature, it is difficult to find information about embedded hardware implementations able to provide real-time support for the required features, bridging the gap between theory and practice. This article presents the NInFEA (non-invasive fetal ECG analysis) tool, an embedded hardware/software framework based on the hybrid dual-core OMAP-L137 low-power processor for the real-time evaluation of fetal ECG extraction algorithms. The hybrid platform, including a digital signal processor (DSP) and a general-purpose processor (GPP), allows achieving the best performance compared with single-core architectures. The GPP provides a portable graphical user interface, whereas the DSP is extensively used for advanced signal processing tasks. As a case study, three state-of-the-art fetal ECG extraction algorithms have been ported onto NInFEA, along with some support routines needed to provide the additional information required by the clinicians and supported by the user interface. NInFEA can be regarded both as a reference design for similar applications and as a common embedded low-power testbed for real-time fetal ECG extraction algorithms.

  17. WaveformECG: A Platform for Visualizing, Annotating, and Analyzing ECG Data.

    Science.gov (United States)

    Winslow, Raimond L; Granite, Stephen; Jurado, Christian

    2016-01-01

    The electrocardiogram (ECG) is the most commonly collected data in cardiovascular research because of the ease with which it can be measured and because changes in ECG waveforms reflect underlying aspects of heart disease. Accessed through a browser, WaveformECG is an open source platform supporting interactive analysis, visualization, and annotation of ECGs.

  18. 78 FR 116 - Certain Cases for Portable Electronic Devices: Notice of Receipt of Complaint; Solicitation of...

    Science.gov (United States)

    2013-01-02

    ... INTERNATIONAL TRADE COMMISSION [DN 2927] Certain Cases for Portable Electronic Devices: Notice of Receipt of Complaint; Solicitation of Comments Relating to the Public Interest AGENCY: International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that the U.S. International Trade Commission has...

  19. Use of electrocardiogram (ECG) electrodes for Bioelectrical Impedance Analysis (BIA)

    International Nuclear Information System (INIS)

    Caicedo-Eraso, J C; González-Correa, C H; González-Correa, C A

    2012-01-01

    BIA is a safe, noninvasive, portable and relatively inexpensive method of estimating body composition that is practical and suitable for individual use and large-scale studies. However, the cost of the electrodes recommended by some BIA manufacturers is too high for developing countries; where very often the long and complicated process of importation reduces the time they can be used. The purpose of this study was to evaluate the use of two types of ECG electrodes (2290 and 2228 by 3M ® ) in BIA measurements to decrease the costs of the test. The results showed that the 2228 ECG electrodes can be used in BIA measurements for adult's body composition assessment. These electrodes are available in the domestic market and their costs are 92% lower than the electrodes recommended by manufacturer. The results show a new cost-benefit relation for BIA method and make this a more accessible tool for individual tests, large-scale researches and studies in the community.

  20. Iloprost infusion by a new device as a portable syringe pump: safety, tolerability and agreement

    Directory of Open Access Journals (Sweden)

    Paola Faggioli

    2012-12-01

    Full Text Available Background Iloprost, prostacyclin (PGI2 analogue, effective in treatment of peripheral arterial disease, secondary Raynaud's phenomenon (RP to connective tissue disease (CTD, vasculitis, pulmonary hypertension, is usually infused through peristaltic pump, or recently through a flow regulator.Materials and methods We tested a new portable syringe pump (Pompa Infonde®, Italfarmaco S.p.A., Cinisello Balsamo, Milano on 120 patients affected by RP to CTD and cryoglobulinaemia, in iloprost therapy with a flow regulator.Results Iloprost infused through portable syringe pump is better tolerated, better appreciated by the patients and nurses and no difference was observed on therapeutic effects, with a lower incidence of side effects statistically significant. Only 3 patients were unable to tolerate the device (2 for changes in pressure and 1 for fear and shifted to traditional method of iloprost infusion.Conclusions Iloprost infusion through the portable syringe Pompa Infonde® appears to be safe, better tolerated, more acceptable and equally effective compared to infusion through a flow regulator.

  1. Performance of short ECG recordings twice daily to detect paroxysmal atrial fibrillation in stroke and transient ischemic attack patients

    DEFF Research Database (Denmark)

    Poulsen, Mai Bang; Binici, Zeynep; Domínguez, Helena

    2017-01-01

    Aims Prolonged cardiac monitoring after stroke is recommended though there is no consensus on optimal methods. Short-term ECG recordings with a "thumb-ECG" device have shown promising preliminary results regarding effectiveness and cost benefit. We aimed to examine the performance of thumb...... methods was poor and the trial was not powered to detect a minor difference between the devices. The inter-observer agreement for the thumb-ECG was substantial. www.clinicalTrials.gov UI: NCT02261766....

  2. Intrinsic fluorescence for cervical precancer detection using polarized light based in-house fabricated portable device

    Science.gov (United States)

    Meena, Bharat Lal; Singh, Pankaj; Sah, Amar Nath; Pandey, Kiran; Agarwal, Asha; Pantola, Chayanika; Pradhan, Asima

    2018-01-01

    An in-house fabricated portable device has been tested to detect cervical precancer through the intrinsic fluorescence from human cervix of the whole uterus in a clinical setting. A previously validated technique based on simultaneously acquired polarized fluorescence and polarized elastic scattering spectra from a turbid medium is used to extract the intrinsic fluorescence. Using a diode laser at 405 nm, intrinsic fluorescence of flavin adenine dinucleotide, which is the dominant fluorophore and other contributing fluorophores in the epithelium of cervical tissue, has been extracted. Different grades of cervical precancer (cervical intraepithelial neoplasia; CIN) have been discriminated using principal component analysis-based Mahalanobis distance and linear discriminant analysis. Normal, CIN I and CIN II samples have been discriminated from one another with high sensitivity and specificity at 95% confidence level. This ex vivo study with cervix of whole uterus samples immediately after hysterectomy in a clinical environment indicates that the in-house fabricated portable device has the potential to be used as a screening tool for in vivo precancer detection using intrinsic fluorescence.

  3. Portable device for generation of ultra-pure water vapor feeds

    Science.gov (United States)

    Velin, P.; Stenman, U.; Skoglundh, M.; Carlsson, P.-A.

    2017-11-01

    A portable device for the generation of co-feeds of water vapor has been designed, constructed, and evaluated for flexible use as an add-on component to laboratory chemical reactors. The vapor is formed by catalytic oxidation of hydrogen, which benefits the formation of well-controlled minute concentrations of ultra-pure water. Analysis of the effluent stream by on-line mass spectrometry and Fourier transform infrared spectroscopy confirms that water vapor can be, with high precision, generated both rapidly and steadily over extended periods in the range of 100 ppm to 3 vol. % (limited by safety considerations) using a total flow of 100 to 1500 ml/min at normal temperature and pressure. Further, the device has been used complementary to a commercial water evaporator and mixing system to span water concentrations up to 12 vol. %. Finally, an operando diffuse reflective infrared Fourier transform spectroscopic measurement of palladium catalysed methane oxidation in the absence and presence of up to 1.0 vol. % water has been carried out to demonstrate the applicability of the device for co-feeding well-controlled low concentrations of water vapor to a common type of spectroscopic experiment. The possibilities of creating isotopically labeled water vapor as well as using tracer gases for dynamic experiments are discussed.

  4. Development of a portable quality control application using a tablet-type electronic device.

    Science.gov (United States)

    Ono, Tomohiro; Miyabe, Yuki; Akimoto, Mami; Mukumoto, Nobutaka; Ishihara, Yoshitomo; Nakamura, Mitsuhiro; Mizowaki, Takashi

    2018-03-01

    Our aim was to develop a portable quality control (QC) application using a thermometer, a barometer, an angle gauge, and a range finder implemented in a tablet-type consumer electronic device (CED) and to assess the accuracies of the measurements made. The QC application was programmed using Java and OpenCV libraries. First, temperature and atmospheric pressure were measured over 30 days using the temperature and pressure sensors of the CED and compared with those measured by a double-tube thermometer and a digital barometer. Second, the angle gauge was developed using the accelerometer of the CED. The roll and pitch angles of the CED were measured from 0 to 90° at intervals of 10° in the clockwise (CW) and counterclockwise (CCW) directions. The values were compared with those measured by a digital angle gauge. Third, a range finder was developed using the tablet's built-in camera and image-processing capacities. Surrogate markers were detected by the camera and their positions converted to actual positions using a homographic transformation method. Fiducial markers were placed on a treatment couch and moved 100 mm in 10-mm steps in both the lateral and longitudinal directions. The values were compared with those measured by the digital output of the treatment couch. The differences between CED values and those of other devices were compared by calculating means ± standard deviations (SDs). The means ± SDs of differences in temperature and atmospheric pressure were -0.07 ± 0.25°C and 0.05 ± 0.10 hPa, respectively. The means ± SDs of the difference in angle was -0.17 ± 0.87° (0.15 ± 0.23° degrees excluding the 90° angle). The means ± SDs of distances were 0.01 ± 0.07 mm in both the lateral and longitudinal directions. Our portable QC application was accurate and may be used instead of standard measuring devices. Our portable CED is efficient and simple when used in the field of medical physics. © 2018 American Association of

  5. A portable system for acquiring and removing motion artefact from ECG signals

    Science.gov (United States)

    Griffiths, A.; Das, A.; Fernandes, B.; Gaydecki, P.

    2007-07-01

    A novel electrocardiograph (ECG) signal acquisition and display system is under development. It is designed for patients ranging from the elderly to athletes. The signals are obtained from electrodes integrated into a vest, amplified, digitally processed and transmitted via Bluetooth to a PC with a Labview ® interface. Digital signal processing is performed to remove movement artefact and electromyographic (EMG) noise, which severely distorts signal morphology and complicates clinical diagnosis. Independent component analysis (ICA) is also used to improve the signal quality. The complete system will integrate the electronics into a single module which will be embedded in the vest.

  6. A portable system for acquiring and removing motion artefact from ECG signals

    Energy Technology Data Exchange (ETDEWEB)

    Griffiths, A; Das, A; Fernandes, B; Gaydecki, P [School of Electrical and Electronic Engineering, University of Manchester, PO Box 88, Manchester M60 1QD (United Kingdom)

    2007-07-15

    A novel electrocardiograph (ECG) signal acquisition and display system is under development. It is designed for patients ranging from the elderly to athletes. The signals are obtained from electrodes integrated into a vest, amplified, digitally processed and transmitted via Bluetooth to a PC with a Labview (registered) interface. Digital signal processing is performed to remove movement artefact and electromyographic (EMG) noise, which severely distorts signal morphology and complicates clinical diagnosis. Independent component analysis (ICA) is also used to improve the signal quality. The complete system will integrate the electronics into a single module which will be embedded in the ves000.

  7. Diagnostic accuracy of portable instrumental devices to measure sleep bruxism: a systematic literature review of polysomnographic studies

    NARCIS (Netherlands)

    Manfredini, D.; Ahlberg, J.; Castroflorio, T.; Poggio, C.E.; Guarda-Nardini, L.; Lobbezoo, F.

    2014-01-01

    This study systematically reviews the sleep bruxism (SB) literature published in the MEDLINE and Scopus databases to answer the following question: What is the validity of the different portable instrumental devices that have been proposed to measure SB if compared with polysomnographic (PSG)

  8. Wireless and Non-contact ECG Measurement System – the “Aachen SmartChair”

    Directory of Open Access Journals (Sweden)

    A. Aleksandrowicz

    2007-01-01

    Full Text Available This publication describes a measurement system that obtains an electrocardiogram (ECG by capacitively coupled electrodes. Fordemonstration purposes, this measurement system was integrated into an off-the-shelf office chair (so-called “Aachen SmartChair”.Whereas in usual clinical applications adhesive, conductively-coupled electrodes have to be attached to the skin, the described system is able to measure an ECG without direct skin contact through the cloth. A wireless communication module was integrated for transmitting theECG data to a PC or to an ICU patient monitor. For system validation, a classical ECG with conductive electrodes and an oxygensaturation signal (SpO2 were obtained simultaneously. Finally, system-specific problems of the presented device are discussed.

  9. Analysis And Simulation Of Low Profile Planar Inverted - F Antenna Design For WLAN Operation In Portable Devices

    Directory of Open Access Journals (Sweden)

    Zaw Htet Lwin

    2015-08-01

    Full Text Available This paper presents a compact planar invertedF antenna PIFA design for WLAN operation in portable devices. The proposed design has size of 8 x 21 mm and provides peak directive gain of 5.78dBi with the peak return loss of -33.89dB and input impedance of 50.28amp8486. It covers a 10dB return loss bandwidth of 410MHz 2.37GHz 2.789GHz. Its VSWR varies from 1.96 to 1.93 within the antenna return loss bandwidth. As the dimension of the proposed antenna is very small the antenna is promising to be embedded within the different portable devices employing WiFi applications. This paper includes the return loss as a function of frequency with varying the different parameters VSWR input resistance radiation pattern and current distribution of the proposed antenna.

  10. Noninvasive recording of electrocardiogram in conscious rat: A new device.

    Science.gov (United States)

    Kumar, Pradeep; Srivastava, Pooja; Gupta, Ankit; Bajpai, Manish

    2017-01-01

    Electrocardiogram (ECG) is an important tool for the study of cardiac electrophysiology both in human beings and experimental animals. Existing methods of ECG recording in small animals like rat have several limitations and ECG recordings of the anesthetized rat lack validity for heart rate (HR) variability analysis. The aim of the present study was to validate the ECG data from new device with ECG of anesthetized rat. The ECG was recorded on student's physiograph (BioDevice, Ambala) and suitable coupler and electrodes in six animals first by the newly developed device in conscious state and second in anesthetized state (stabilized technique). The data obtained were analyzed using unpaired t -test showed no significant difference ( P < 0.05) in QTc, QRS, and HR recorded by new device and established device in rats. No previous study describes a similar ECG recording in conscious state of rats. Thus, the present method may be a most physiological and inexpensive alternative to other methods. In this study, the animals were not restrained; they were just secured and represent a potential strength of the study.

  11. 29 CFR 1917.119 - Portable ladders.

    Science.gov (United States)

    2010-07-01

    ... Requirements for Portable Reinforced Plastic Ladders (d) Standards for job-made portable ladders. Job-made... usage. (1) Ladders made by fastening rungs or devices across a single rail are prohibited. (2) Ladders...

  12. A portable device for measuring donor corneal transparency in eye banks.

    Science.gov (United States)

    Parekh, Mohit; Ferrari, Stefano; Ruzza, Alessandro; Pugliese, Mariarosaria; Ponzin, Diego; Salvalaio, Gianni

    2014-03-01

    To develop a portable device for measuring the donor corneal transparency and validate its efficacy for corneal evaluation in the eye-banks and for research. The transparency device (TD) has a light source, a detachable system for corneal insertion and a base for light transmission. The probe detects the transmitted light which is measured by a lux-meter. A contact lens was set as 'control' to reduce the light scattering concern, an empty petri-plate as 'blank' and the cornea as 'sample'. Two experts and non-experts (masked) observed the corneas for subjective analysis which was then compared using the TD. The parameters observed were scars, foreign-body, stromal-deformities, folds, thickness and opacity which were then converted to a relative overall percentage by the observer. Twenty corneas were evaluated for correlation, five tissues to obtain standard-deviation and twenty-four pairs for a comparative study. Experts mimicked the eye-banks with long-term experience while non-experts mimicked the emerging eye-banks. Subjective values by the experts closely resembled the measurements by TD. The average correlation between the experts and the non-experts to TD was 0.985 and 0.960 respectively. TD showed higher reproducibility than experts followed by the non-experts. The comparative study showed that increase in thickness reduces the transparency. TD is portable, easy, efficient, maintains sterility and less expensive hence the emerging eye-banks and researchers can use to raise their standards and evaluate the transparency for in vitro tests and comparative studies. The suitable transparency for the cornea deemed for clinical applications was found to be >75 %.

  13. The experience of using the personal electrocardiograph “ECG-Express”

    Science.gov (United States)

    Lezhnina, I. A.; Overchuk, K. V.; Uvarov, A. A.; Perchatkin, V. A.; Lvova, A. B.

    2017-08-01

    The article describes the results of testing ECG-Express devices, previously developed at the Tomsk Polytechnic University. The testing was carried out on the basis of Tomsk Scientific Research Institute of Cardiology. Here we show the argumentation for application of such a devices in medical practice as well as number of cases of successful use.

  14. Development of maintenance support system using portable device and mobile agent

    International Nuclear Information System (INIS)

    Sato, Hisashi; Ito, Yo; Takahashi, Makoto; Kitamura, Masaharu; Ohi, Tadashi; Wu, Wei

    2004-01-01

    The framework of intelligent support system for the maintenance of nuclear power plant is proposed in this paper with emphasis on the combined use of a portable device and intelligent information processing. The purpose of this system is the realization of flexible inspection process and effective diagnosis process to be performed on-site. The prototype system has been implemented for the experimental facility with mobile-agent technology and PDA (personal digital assistant) to show the basic functionality of the proposed framework. The results of the scenario-based and function-based evaluation showed that the proposed framework is effective for the data management for the maintenance activities. (author)

  15. Non-technical Issues in Design and Development of Personal Portable Devices.

    Science.gov (United States)

    Lhotska, Lenka; Cheshire, Paul; Pharow, Peter; Macku, David

    2016-01-01

    Mobile technologies are constantly evolving and with the development of Internet of Things we can expect continuous increase of various applications. Mobile technologies have undeniable opportunities to play an important role in health services. Concerning purely technical aspects, almost every problem can be solved. However, there are still many unsolved and unclear issues related with ethics and governance mechanisms for mobile phone applications. These issues are even more critical in medical and health care applications of mobile technologies. This paper tries to analyse ethical, and privacy-related challenges that may occur when introducing Personal Portable Devices (PPD) to collect and record personal health data in health care and welfare environment.

  16. Cardiovascular fitness strengthening using portable device.

    Science.gov (United States)

    Alqudah, Hamzah; Kai Cao; Tao Zhang; Haddad, Azzam; Su, Steven; Celler, Branko; Nguyen, Hung T

    2016-08-01

    The paper describes a reliable and valid Portable Exercise Monitoring system developed using TI eZ430-Chronos watch, which can control the exercise intensity through audio stimulation in order to increase the Cardiovascular fitness strengthening.

  17. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology.

    Science.gov (United States)

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M B

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has been processed in Labview where the digital filter techniques have been implemented to remove the noise from the acquired signal. After processing, the algorithm was developed to calculate the heart rate and to analyze the arrhythmia condition. Finally, SMTP technology has been added in our work to make device more communicative and much more cost-effective solution in telemedicine technology which has been key-problem to realize the telediagnosis and monitoring of ECG signals. The technology also can be easily implemented over already existing Internet.

  18. An intelligent telecardiology system using a wearable and wireless ECG to detect atrial fibrillation.

    Science.gov (United States)

    Lin, Chin-Teng; Chang, Kuan-Cheng; Lin, Chun-Ling; Chiang, Chia-Cheng; Lu, Shao-Wei; Chang, Shih-Sheng; Lin, Bor-Shyh; Liang, Hsin-Yueh; Chen, Ray-Jade; Lee, Yuan-Teh; Ko, Li-Wei

    2010-05-01

    This study presents a novel wireless, ambulatory, real-time, and autoalarm intelligent telecardiology system to improve healthcare for cardiovascular disease, which is one of the most prevalent and costly health problems in the world. This system consists of a lightweight and power-saving wireless ECG device equipped with a built-in automatic warning expert system. This device is connected to a mobile and ubiquitous real-time display platform. The acquired ECG signals are instantaneously transmitted to mobile devices, such as netbooks or mobile phones through Bluetooth, and then, processed by the expert system. An alert signal is sent to the remote database server, which can be accessed by an Internet browser, once an abnormal ECG is detected. The current version of the expert system can identify five types of abnormal cardiac rhythms in real-time, including sinus tachycardia, sinus bradycardia, wide QRS complex, atrial fibrillation (AF), and cardiac asystole, which is very important for both the subjects who are being monitored and the healthcare personnel tracking cardiac-rhythm disorders. The proposed system also activates an emergency medical alarm system when problems occur. Clinical testing reveals that the proposed system is approximately 94% accurate, with high sensitivity, specificity, and positive prediction rates for ten normal subjects and 20 AF patients. We believe that in the future a business-card-like ECG device, accompanied with a mobile phone, can make universal cardiac protection service possible.

  19. Ear diseases among secondary school students in Xi'an, China: The role of portable audio device use, insomnia and academic stress

    Directory of Open Access Journals (Sweden)

    He Ya

    2011-06-01

    Full Text Available Abstract Background Hearing impairment negatively impacts students' development of academic, language and social skills. Even minimal unilateral hearing loss can hinder educational performance. We investigated the prevalence of ear diseases among secondary school students in the city of Xi'an, China in order to provide a foundation for evidence-based hearing healthcare. Methods A stratified random sampling survey was conducted in 29 secondary schools. Demographics and medical histories were collected, and otologic examinations were performed. Questionnaires were administered to assess insomnia, academic stress and use of portable audio devices. Logistic regression analysis was used to identify factors associated with hearing impairment, and the association of sensorineural hearing loss with insomnia, academic stress and the use of portable audio devices was analyzed with the chi-square test. Results The percentage of students with some form of ear disease was 3.32%. External ear disease, middle ear disease and sensorineural hearing loss occurred in 1.21%, 0.64% and 1.47% of the students, respectively. Boys had a relatively higher prevalence of ear disease than girls. According to our survey, the prevalence of sensorineural hearing loss increased significantly among the students with insomnia and extended use of portable audio devices, but not among those with elevated levels of academic stress. Hearing aids and surgical treatment were needed in 1.47% and 0.89% of the students, respectively. Conclusions There is a high prevalence of ear disease among secondary school students, and this should be given more attention. Insomnia and the excessive use of portable audio devices may be related to adolescent sensorineural hearing loss. It is important to establish and comply with an evidence-based preventive strategy.

  20. Efficient Skin Temperature Sensor and Stable Gel-Less Sticky ECG Sensor for a Wearable Flexible Healthcare Patch.

    Science.gov (United States)

    Yamamoto, Yuki; Yamamoto, Daisuke; Takada, Makoto; Naito, Hiroyoshi; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2017-09-01

    Wearable, flexible healthcare devices, which can monitor health data to predict and diagnose disease in advance, benefit society. Toward this future, various flexible and stretchable sensors as well as other components are demonstrated by arranging materials, structures, and processes. Although there are many sensor demonstrations, the fundamental characteristics such as the dependence of a temperature sensor on film thickness and the impact of adhesive for an electrocardiogram (ECG) sensor are yet to be explored in detail. In this study, the effect of film thickness for skin temperature measurements, adhesive force, and reliability of gel-less ECG sensors as well as an integrated real-time demonstration is reported. Depending on the ambient conditions, film thickness strongly affects the precision of skin temperature measurements, resulting in a thin flexible film suitable for a temperature sensor in wearable device applications. Furthermore, by arranging the material composition, stable gel-less sticky ECG electrodes are realized. Finally, real-time simultaneous skin temperature and ECG signal recordings are demonstrated by attaching an optimized device onto a volunteer's chest. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Heritability of ECG Biomarkers in the Netherlands Twin Registry Measured from Holter ECGs.

    Directory of Open Access Journals (Sweden)

    Emily C Hodkinson

    2016-04-01

    Full Text Available INTRODUCTIONThe resting ECG is the most commonly used tool to assess cardiac electrophysiology. Previous studies have estimated heritability of ECG parameters based on these snapshots of the cardiac electrical activity. In this study we set out to determine whether analysis of heart rate specific data from Holter ECGs allows more complete assessment of the heritability of ECG parameters.METHODS and RESULTSHolter ECGs were recorded from 221 twin pairs and analyzed using a multi-parameter beat binning approach. Heart rate dependent estimates of heritability for QRS duration, QT interval, Tpeak–Tend and Theight were calculated using structural equation modelling. QRS duration is largely determined by environmental factors whereas repolarization is primarily genetically determined. Heritability estimates of both QT interval and Theight were significantly higher when measured from Holter compared to resting ECGs and the heritability estimate of each was heart rate dependent. Analysis of the genetic contribution to correlation between repolarization parameters demonstrated that covariance of individual ECG parameters at different heart rates overlap but at each specific heart rate there was relatively little overlap in the genetic determinants of the different repolarization parameters.CONCLUSIONSHere we present the first study of heritability of repolarization parameters measured from Holter ECGs. Our data demonstrate that higher heritability can be estimated from the Holter than the resting ECG and reveals rate dependence in the genetic – environmental determinants of the ECG that has not previously been tractable. Future applications include deeper dissection of the ECG of participants with inherited cardiac electrical disease.

  2. Improving ECG Services at a Children’s Hospital: Implementation of a Digital ECG System

    Directory of Open Access Journals (Sweden)

    Frank A. Osei

    2015-01-01

    Full Text Available Background. The use of digital ECG software and services is becoming common. We hypothesized that the introduction of a completely digital ECG system would increase the volume of ECGs interpreted at our children’s hospital. Methods. As part of a hospital wide quality improvement initiative, a digital ECG service (MUSE, GE was implemented at the Children’s Hospital at Montefiore in June 2012. The total volume of ECGs performed in the first 6 months of the digital ECG era was compared to 18 months of the predigital era. Predigital and postdigital data were compared via t-tests. Results. The mean ECGs interpreted per month were 53 ± 16 in the predigital era and 216 ± 37 in the postdigital era (p<0.001, a fourfold increase in ECG volume after introduction of the digital system. There was no significant change in inpatient or outpatient service volume during that time. The mean billing time decreased from 21 ± 27 days in the postdigital era to 12 ± 5 days in the postdigital era (p<0.001. Conclusion. Implementation of a digital ECG system increased the volume of ECGs officially interpreted and reported.

  3. Comparative study of T-amplitude features for fitness monitoring using the ePatch® ECG recorder

    DEFF Research Database (Denmark)

    Thorpe, Julia Rosemary; Saida, Trine; Mehlsen, Jesper

    2014-01-01

    This study investigates ECG features, focusing on T-wave amplitude, from a wearable ECG device as a potential method for fitness monitoring in exercise rehabilitation. An automatic T-peak detection algorithm is presented that uses local baseline detection to overcome baseline drift without the need...

  4. Portable FAIMS: Applications and Future Perspectives.

    Science.gov (United States)

    Costanzo, Michael T; Boock, Jared J; Kemperman, Robin H J; Wei, Michael S; Beekman, Christopher R; Yost, Richard A

    2017-11-01

    Miniaturized mass spectrometry (MMS) is optimal for a wide variety of applications that benefit from field-portable instrumentation. Like MMS, field asymmetric ion mobility spectrometry (FAIMS) has proven capable of providing in situ analysis, allowing researchers to bring the lab to the sample. FAIMS compliments MMS very well, but has the added benefit of operating at atmospheric pressure, unlike MS. This distinct advantage makes FAIMS uniquely suited for portability. Since its inception, FAIMS has been envisioned as a field-portable device, as it affords less expense and greater simplicity than many similar methods. Ideally, these are simple, robust devices that may be operated by non-professional personnel, yet still provide adequate data when in the field. While reducing the size and complexity tends to bring with it a loss of performance and accuracy, this is made up for by the incredibly high throughput and overall convenience of the instrument. Moreover, the FAIMS device used in the field can be brought back to the lab, and coupled to a conventional mass spectrometer to provide any necessary method development and compound validation. This work discusses the various considerations, uses, and applications for portable FAIMS instrumentation, and how the future of each applicable field may benefit from the development and acceptance of such a device.

  5. Estimating actigraphy from motion artifacts in ECG and respiratory effort signals.

    Science.gov (United States)

    Fonseca, Pedro; Aarts, Ronald M; Long, Xi; Rolink, Jérôme; Leonhardt, Steffen

    2016-01-01

    Recent work in unobtrusive sleep/wake classification has shown that cardiac and respiratory features can help improve classification performance. Nevertheless, actigraphy remains the single most discriminative modality for this task. Unfortunately, it requires the use of dedicated devices in addition to the sensors used to measure electrocardiogram (ECG) or respiratory effort. This paper proposes a method to estimate actigraphy from the body movement artifacts present in the ECG and respiratory inductance plethysmography (RIP) based on the time-frequency analysis of those signals. Using a continuous wavelet transform to analyze RIP, and ECG and RIP combined, it provides a surrogate measure of actigraphy with moderate correlation (for ECG+RIP, ρ = 0.74, p  <  0.001) and agreement (mean bias ratio of 0.94 and 95% agreement ratios of 0.11 and 8.45) with reference actigraphy. More important, it can be used as a replacement of actigraphy in sleep/wake classification: after cross-validation with a data set comprising polysomnographic (PSG) recordings of 15 healthy subjects and 25 insomniacs annotated by an external sleep technician, it achieves a statistically non-inferior classification performance when used together with respiratory features (average κ of 0.64 for 15 healthy subjects, and 0.50 for a dataset with 40 healthy and insomniac subjects), and when used together with respiratory and cardiac features (average κ of 0.66 for 15 healthy subjects, and 0.56 for 40 healthy and insomniac subjects). Since this method eliminates the need for a dedicated actigraphy device, it reduces the number of sensors needed for sleep/wake classification to a single sensor when using respiratory features, and to two sensors when using respiratory and cardiac features without any loss in performance. It offers a major benefit in terms of comfort for long-term home monitoring and is immediately applicable for legacy ECG and RIP monitoring devices already used in clinical

  6. 75 FR 34484 - In the Matter of: Certain Portable Electronic Devices and Related Software; Notice of Investigation

    Science.gov (United States)

    2010-06-17

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-721] In the Matter of: Certain Portable Electronic Devices and Related Software; Notice of Investigation AGENCY: U.S. International Trade Commission. ACTION... filed with the U.S. International Trade Commission on May 12, 2010, under section 337 of the Tariff Act...

  7. Labview Based ECG Patient Monitoring System for Cardiovascular Patient Using SMTP Technology

    OpenAIRE

    Singh, Om Prakash; Mekonnen, Dawit; Malarvili, M. B.

    2015-01-01

    This paper leads to developing a Labview based ECG patient monitoring system for cardiovascular patient using Simple Mail Transfer Protocol technology. The designed device has been divided into three parts. First part is ECG amplifier circuit, built using instrumentation amplifier (AD620) followed by signal conditioning circuit with the operation amplifier (lm741). Secondly, the DAQ card is used to convert the analog signal into digital form for the further process. Furthermore, the data has ...

  8. Portable Ultraviolet Light Surface-Disinfecting Devices for Prevention of Hospital-Acquired Infections: A Health Technology Assessment

    Science.gov (United States)

    Nikitovic-Jokic, Milica; Kabali, Conrad; Li, Chunmei; Higgins, Caroline

    2018-01-01

    Background Hospital-acquired infections (HAIs) are infections that patients contract while in the hospital that were neither present nor developing at the time of admission. In Canada an estimated 10% of adults with short-term hospitalization have HAIs. According to 2003 Canadian data, between 4% and 6% of these patients die from these infections. The most common HAIs in Ontario are caused by Clostridium difficile. The standard method of reducing and preventing these infections is decontamination of patient rooms through manual cleaning and disinfection. Several portable no-touch ultraviolet (UV) light systems have been proposed to supplement current hospital cleaning and disinfecting practices. Methods We searched for studies published from inception of UV disinfection technology to January 23, 2017. We compared portable UV surface-disinfecting devices used together with standard hospital room cleaning and disinfecting versus standard hospital cleaning and disinfecting alone. The primary outcome was HAI from C. difficile. Other outcomes were combined HAIs, colonization (i.e., carrying an infectious agent without exhibiting disease symptoms), and the HAI-associated mortality rate. We used Grading of Recommendations Assessment, Development, and Evaluation (GRADE) to rate the quality of evidence of included studies. We also performed a 5-year budget impact analysis from the hospital's perspective. This assessment was limited to portable devices and did not examine wall mounted devices, which are used in some hospitals. Results The database search for the clinical review yielded 10 peer-reviewed publications that met eligibility criteria. Three studies focused on mercury UV-C–based technology, seven on pulsed xenon UV technology. Findings were either inconsistent or produced very low-quality evidence using the GRADE rating system. The intervention was effective in reducing the rate of the composite outcome of HAIs (combined) and colonization (but quality of evidence

  9. ECG Electrocardiogram (For Parents)

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español ECG (Electrocardiogram) KidsHealth / For Parents / ECG (Electrocardiogram) Print en ... whether there is any damage. How Is an ECG Done? There is nothing painful about getting an ...

  10. [Extension of cardiac monitoring function by used of ordinary ECG machine].

    Science.gov (United States)

    Chen, Zhencheng; Jiang, Yong; Ni, Lili; Wang, Hongyan

    2002-06-01

    This paper deals with a portable monitor system on liquid crystal display (LCD) based on this available ordinary ECG machine, which is low power and suitable for China's specific condition. Apart from developing the overall scheme of the system, this paper also has completed the design of the hardware and the software. The 80c196 single chip microcomputer is taken as the central microprocessor and real time electrocardiac single is data treated and analyzed in the system. With the performance of ordinary monitor, this machine also possesses the following functions: five types of arrhythmia analysis, alarm, freeze, and record of automatic pappering, convenient in carrying, with alternate-current (AC) or direct-current (DC) powered. The hardware circuit is simplified and the software structure is optimized in this paper. Multiple low power designs and LCD unit design are adopted and completed in it. Popular in usage, low in cost price, the portable monitor system will have a valuable influence on China's monitor system field.

  11. New small devices for radiation detection: the Wee Pocket Chirper and the Portable Multichannel Analyzer

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1980-08-01

    Recent events have demonstrated the need for improved capability to monitor the exposure of workers to radiation and, in general, to identify and measure the many forms of radioactive materials found throughout the nuclear industry. Two radiation monitoring devices have been developed that are much smaller than existing instruments, yet exhibit superior performance and a longer battery life. The first instrument, the Wee Pocket Chirper, is a tiny, battery-powered warning device that chirps when exposed to radiation. The second instrument is a portable battery-powered, computer-based, multichannel analyzer that allows the user to examine radiation fields and to identify the types and amounts of radioactive materials present

  12. Portable bladder ultrasound: an evidence-based analysis.

    Science.gov (United States)

    2006-01-01

    retention, requiring intermittent catheterization, whereas a PVR urine volume of 100 mL to 150 mL or less is generally considered an acceptable result of bladder training. Urinary retention has been associated with poor outcomes including UTI, bladder overdistension, and higher hospital mortality rates. The standard method of determining PVR urine volumes is intermittent catheterization, which is associated with increased risk of UTI, urethral trauma and discomfort. Portable bladder ultrasound products are transportable ultrasound devices that use automated technology to register bladder volume digitally, including PVR volume, and provide three-dimensional images of the bladder. The main clinical use of portable bladder ultrasound is as a diagnostic aid. Health care professionals (primarily nurses) administer the device to measure PVR volume and prevent unnecessary catheterization. An adjunctive use of the bladder ultrasound device is to visualize the placement and removal of catheters. Also, portable bladder ultrasound products may improve the diagnosis and differentiation of urological problems and their management and treatment, including the establishment of voiding schedules, study of bladder biofeedback, fewer UTIs, and monitoring of potential urinary incontinence after surgery or trauma. To determine the effectiveness and clinical utility of portable bladder ultrasound as reported in the published literature, the Medical Advisory Secretariat used its standard search strategy to retrieve international health technology assessments and English-language journal articles from selected databases. Nonsystematic reviews, nonhuman studies, case reports, letters, editorials, and comments were excluded. Of the 4 included studies that examined the clinical utility of portable bladder ultrasound in the elderly population, all found the device to be acceptable. One study reported that the device underestimated catheterized bladder volume In patients with urology problems, 2 of

  13. A portable blood plasma clot micro-elastometry device based on resonant acoustic spectroscopy.

    Science.gov (United States)

    Krebs, C R; Li, Ling; Wolberg, Alisa S; Oldenburg, Amy L

    2015-07-01

    Abnormal blood clot stiffness is an important indicator of coagulation disorders arising from a variety of cardiovascular diseases and drug treatments. Here, we present a portable instrument for elastometry of microliter volume blood samples based upon the principle of resonant acoustic spectroscopy, where a sample of well-defined dimensions exhibits a fundamental longitudinal resonance mode proportional to the square root of the Young's modulus. In contrast to commercial thromboelastography, the resonant acoustic method offers improved repeatability and accuracy due to the high signal-to-noise ratio of the resonant vibration. We review the measurement principles and the design of a magnetically actuated microbead force transducer applying between 23 pN and 6.7 nN, providing a wide dynamic range of elastic moduli (3 Pa-27 kPa) appropriate for measurement of clot elastic modulus (CEM). An automated and portable device, the CEMport, is introduced and implemented using a 2 nm resolution displacement sensor with demonstrated accuracy and precision of 3% and 2%, respectively, of CEM in biogels. Importantly, the small strains (diagnostics and therapeutic monitoring.

  14. Optimization of Ecg Gating in Quantitative Femoral Angiography

    International Nuclear Information System (INIS)

    Nilsson, S.; Berglund, I.; Erikson, U.; Johansson, J.; Walldius, G.

    2003-01-01

    Purpose: To determine which phase of the heart cycle would yield the highest reproducibility in measuring atherosclerosis-related variables such as arterial lumen volume and edge roughness. Material and Methods: 35 patients with hypercholesterolemia underwent select ive femoral angiography, repeated four times at 10-min intervals. The angiographies were performed with Ecg-gated exposures. In angiographies 1 and 2 the delay from R-wave maximum to each exposure was 0.1 s, in angiographies 3 and 4 the delay was 0.1, 0.3, 0.5 or 0.7 s or the exposures were performed 1/s without Ecg gating. Arterial lumen volume and edge roughness were measured in a 20-cm segment of the superficial femoral artery using a computer-based densitometric method. Measurement reproducibility was determined by comparing angiographies 1-2 and angiographies 3-4. Results: When measuring arterial lumen volume and edge roughness of a 20-cm segment of the femoral artery, reproducibility was not dependent on Ecg gating. In measuring single arterial diameters and cross-sectional areas, the reproducibility was better when exposures were made 0.1 s after the R-wave maximum than when using other settings of the Ecg gating device or without Ecg gating. Conclusion: The influence of pulsatile flow upon quantitative measurement in femoral angiograms seems to be the smallest possible in early systole, as can be demonstrated when measuring single diameters and cross-sectional areas. In variables based on integration over longer segments, measurement reproducibility seems to be independent of phase

  15. Optimization of Ecg Gating in Quantitative Femoral Angiography

    Energy Technology Data Exchange (ETDEWEB)

    Nilsson, S.; Berglund, I.; Erikson, U. [Univ. Hospital, Uppsala (Sweden). Dept. of Oncology, Radiology and Clinical Immunology; Johansson, J.; Walldius, G. [Karolinska Hospital, Stockholm (Sweden). King Gustav V Research Inst.

    2003-09-01

    Purpose: To determine which phase of the heart cycle would yield the highest reproducibility in measuring atherosclerosis-related variables such as arterial lumen volume and edge roughness. Material and Methods: 35 patients with hypercholesterolemia underwent select ive femoral angiography, repeated four times at 10-min intervals. The angiographies were performed with Ecg-gated exposures. In angiographies 1 and 2 the delay from R-wave maximum to each exposure was 0.1 s, in angiographies 3 and 4 the delay was 0.1, 0.3, 0.5 or 0.7 s or the exposures were performed 1/s without Ecg gating. Arterial lumen volume and edge roughness were measured in a 20-cm segment of the superficial femoral artery using a computer-based densitometric method. Measurement reproducibility was determined by comparing angiographies 1-2 and angiographies 3-4. Results: When measuring arterial lumen volume and edge roughness of a 20-cm segment of the femoral artery, reproducibility was not dependent on Ecg gating. In measuring single arterial diameters and cross-sectional areas, the reproducibility was better when exposures were made 0.1 s after the R-wave maximum than when using other settings of the Ecg gating device or without Ecg gating. Conclusion: The influence of pulsatile flow upon quantitative measurement in femoral angiograms seems to be the smallest possible in early systole, as can be demonstrated when measuring single diameters and cross-sectional areas. In variables based on integration over longer segments, measurement reproducibility seems to be independent of phase.

  16. Passive direct methanol fuel cells for portable electronic devices

    International Nuclear Information System (INIS)

    Achmad, F.; Kamarudin, S.K.; Daud, W.R.W.; Majlan, E.H.

    2011-01-01

    Due to the increasing demand for electricity, clean, renewable energy resources must be developed. Thus, the objective of the present study was to develop a passive direct methanol fuel cell (DMFC) for portable electronic devices. The power output of six dual DMFCs connected in series with an active area of 4 cm 2 was approximately 600 mW, and the power density of the DMFCs was 25 mW cm -2 . The DMFCs were evaluated as a power source for mobile phone chargers and media players. The results indicated that the open circuit voltage of the DMFC was between 6.0 V and 6.5 V, and the voltage under operating conditions was 4.0 V. The fuel cell was tested on a variety of cell phone chargers, media players and PDAs. The cost of energy consumption by the proposed DMFC was estimated to be USD 20 W -1 , and the cost of methanol is USD 4 kW h. Alternatively, the local conventional electricity tariff is USD 2 kW h. However, for the large-scale production of electronic devices, the cost of methanol will be significantly lower. Moreover, the electricity tariff is expected to increase due to the constraints of fossil fuel resources and pollution. As a result, DMFCs will become competitive with conventional power sources.

  17. CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring.

    Science.gov (United States)

    Jung, Ha-Chul; Moon, Jin-Hee; Baek, Dong-Hyun; Lee, Jae-Hee; Choi, Yoon-Young; Hong, Joung-Sook; Lee, Sang-Hoon

    2012-05-01

    We fabricated a carbon nanotube (CNT)/ polydimethylsiloxane (PDMS) composite-based dry ECG electrode that can be readily connected to conventional ECG devices, and showed its long-term wearable monitoring capability and robustness to motion and sweat. While the dispersion of CNTs in PDMS is challenging, we optimized the process to disperse untreated CNTs within PDMS by mechanical force only. The electrical and mechanical characteristics of the CNT/PDMS electrode were tested according to the concentration of CNTs and its thickness. The performances of ECG electrodes were evaluated by using 36 types of electrodes which were fabricated with different concentrations of CNTs, and with a differing diameter and thickness. The ECG signals were obtained by using electrodes of diverse sizes to observe the effects of motion and sweat, and the proposed electrode was shown to be robust to both factors. The CNT concentration and diameter of the electrodes were critical parameters in obtaining high-quality ECG signals. The electrode was shown to be biocompatible from the cytotoxicity test. A seven-day continuous wearability test showed that the quality of the ECG signal did not degrade over time, and skin reactions such as itching or erythema were not observed. This electrode could be used for the long-term measurement of other electrical biosignals for ubiquitous health monitoring including EMG, EEG, and ERG.

  18. Comparative analysis of a portable smartphone­based electrocardiograph (D­Heart® versus standard 6­leads electrocardiograph in the canine patient.

    Directory of Open Access Journals (Sweden)

    Alice Savarese

    2017-05-01

    Full Text Available D-Heart® is a portable, smartphone-based device, which streams tracing via Bluetooth, enabling multiple leads electrocardiograms (ECGs acquisition, currently used in human cardiology (Maurizi et al. 2017. The aim was to determine the accuracy of D­Heart® compared with the gold standard non­portable 6­lead electrocardiograph in the evaluation of cardiac rhythm in dogs. Standard 6­lead and D­Heart® ECGs were acquired in conscious dogs. Concordance between methods was assessed by weighted k Cohen index, with its relative significance, taking as end point variable standard 6­lead ECG group. Bland ­ Altman method (95% confidence level was applied for P, PR, QRS, T and QT. Since differences didn’t follow a normal distribution, a non­parametric approach was used to determine limits of agreement. P was significant when < 0.05 (Maurizi et al. 2017. Amplitude of waves was not considered because currently the software doesn’t allow voltage variation. 115 dogs of different weights and breeds admitted to the Cardiology Service of DIMEVET were enrolled. Mean age was 7,5±4 years. Most were intact males (45%, n=51. The most represented breed was mongrel (27%, n=32. Weighted Cohen's kappa test demonstrated excellent concordance in the evaluation of the heart rhythm (0.989, p<0.001, for ST segment morphology (0.991, p<0,001 and for T wave morphology (0.838, p=0.040. There was a 100% concordance in P morphology determination. P, PR, QRS, T and QT intervals comparison with Bland­Altman showed an extremely good concordance for D­Heart® measurements (95% limit of agreement ±0.9 ms for P, ±10 ms for PR, ±35 ms for QRS, ±5 ms for T wave. Less concordance resulted for QT (±80 ms. In Conclusion, D­Heart® proved effective accurate recording of ECG comparable to standard 6­lead electrocardiographs, opening new perspectives to improve diagnostic tools in veterinary cardiology. Future perspective will be the development of a telecardiology network

  19. A mobile and portable trusted computing platform

    Directory of Open Access Journals (Sweden)

    Nepal Surya

    2011-01-01

    Full Text Available Abstract The mechanism of establishing trust in a computing platform is tightly coupled with the characteristics of a specific machine. This limits the portability and mobility of trust as demanded by many emerging applications that go beyond the organizational boundaries. In order to address this problem, we propose a mobile and portable trusted computing platform in a form of a USB device. First, we describe the design and implementation of the hardware and software architectures of the device. We then demonstrate the capabilities of the proposed device by developing a trusted application.

  20. A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks

    Science.gov (United States)

    Liang, Wei; Zhang, Yinlong; Tan, Jindong; Li, Yang

    2014-01-01

    This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient's ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS) filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs) are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC) in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN) platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen. PMID:24681668

  1. Wireless Self-Acquistion of 12-Lead ECG via Android Smart Phone

    Science.gov (United States)

    Schlegel, Todd T.

    2012-01-01

    Researchers at NASA s Johnson Space Center and at Orbital Research, Inc. (a NASA SBIR grant recipient) have recently developed a dry-electrode harness that allows for self-acquisition of resting 12-lead ECGs by minimally trained laypersons. When used in conjunction with commercial wireless (e.g., Bluetooth(TM) or 802.11-enabled) 12-lead ECG devices and custom smart phone-based software, the collected 12-lead ECG data can also immediately be forwarded from any geographic location within cellular range to the user s physician(s) of choice. The system can also be used to immediately forward to central receiving stations 12-lead ECG data collected during space flight or during activities in any remote terrestrial location supported by an internet or cellular phone infrastructure. The main novel aspects of the system are first, the dry-electrode 12-lead ECG harness itself, and second, an accompanying Android(TM) smart phone-based wireless 12-lead ECG capability. The ECG harness nominally employs dry electrodes manufactured by Orbital Research, Inc, recently cleared through the Food and Drug Administration (FDA). However, other dry electrodes that are not yet FDA cleared, for example those recently developed by Nanosonic, Inc as part of another NASA SBIR grant, can also be used. The various advantageous features of the harness include: 1) laypersons can be quickly instructed on its correct use, remotely if necessary; 2) all tangled "leadwire spaghetti" is eliminated, as is the common clinical problem of "leadwire reversal"; 3) all adhesives and disposables are also eliminated, the harness being fully reusable; if multiple individuals intend to use use the same harness, then standard antimicrobial wipes can be employed to sterilize the dry electrodes (and harness surface if needed) between users; 5) padded cushions at the lateral sides of the torso function to press the left arm (LA) and right arm (RA) dry electrodes mounted on the cushions against sideward or downward

  2. Cultural and Demographic Factors Influencing Noise Exposure Estimates from Use of Portable Listening Devices in an Urban Environment

    Science.gov (United States)

    Fligor, Brian J.; Levey, Sandra; Levey, Tania

    2014-01-01

    Purpose: This study examined listening levels and duration of portable listening devices (PLDs) used by people with diversity of ethnicity, education, music genre, and PLD manufacturer. The goal was to estimate participants' PLD noise exposure and identify factors influencing user behavior. Method: This study measured listening levels of 160…

  3. A portable device for rapid nondestructive detection of fresh meat quality

    Science.gov (United States)

    Lin, Wan; Peng, Yankun

    2014-05-01

    Quality attributes of fresh meat influence nutritional value and consumers' purchasing power. In order to meet the demand of inspection department for portable device, a rapid and nondestructive detection device for fresh meat quality based on ARM (Advanced RISC Machines) processor and VIS/NIR technology was designed. Working principal, hardware composition, software system and functional test were introduced. Hardware system consisted of ARM processing unit, light source unit, detection probe unit, spectral data acquisition unit, LCD (Liquid Crystal Display) touch screen display unit, power unit and the cooling unit. Linux operating system and quality parameters acquisition processing application were designed. This system has realized collecting spectral signal, storing, displaying and processing as integration with the weight of 3.5 kg. 40 pieces of beef were used in experiment to validate the stability and reliability. The results indicated that prediction model developed using PLSR method using SNV as pre-processing method had good performance, with the correlation coefficient of 0.90 and root mean square error of 1.56 for validation set for L*, 0.95 and 1.74 for a*,0.94 and 0.59 for b*, 0.88 and 0.13 for pH, 0.79 and 12.46 for tenderness, 0.89 and 0.91 for water content, respectively. The experimental result shows that this device can be a useful tool for detecting quality of meat.

  4. Real-time QRS detection using integrated variance for ECG gated cardiac MRI

    Directory of Open Access Journals (Sweden)

    Schmidt Marcus

    2016-09-01

    Full Text Available During magnetic resonance imaging (MRI, a patient’s vital signs are required for different purposes. In cardiac MRI (CMR, an electrocardiogram (ECG of the patient is required for triggering the image acquisition process. However, a reliable QRS detection of an ECG signal acquired inside an MRI scanner is a challenging task due to the magnetohydrodynamic (MHD effect which interferes with the ECG. The aim of this work was to develop a reliable QRS detector usable inside the MRI which also fulfills the standards for medical devices (IEC 60601-2-27. Therefore, a novel real-time QRS detector based on integrated variance measurements is presented. The algorithm was trained on ANSI/AAMI EC13 test waveforms and was then applied to two databases with 12-lead ECG signals recorded inside and outside an MRI scanner. Reliable results for both databases were achieved for the ECG signals recorded inside (DBMRI: sensitivity Se = 99.94%, positive predictive value +P = 99.84% and outside (DBInCarT: Se = 99.29%, +P = 99.72% the MRI. Due to the accurate R-peak detection in real-time this can be used for monitoring and triggering in MRI exams.

  5. A Novel Approach to ECG Classification Based upon Two-Layered HMMs in Body Sensor Networks

    Directory of Open Access Journals (Sweden)

    Wei Liang

    2014-03-01

    Full Text Available This paper presents a novel approach to ECG signal filtering and classification. Unlike the traditional techniques which aim at collecting and processing the ECG signals with the patient being still, lying in bed in hospitals, our proposed algorithm is intentionally designed for monitoring and classifying the patient’s ECG signals in the free-living environment. The patients are equipped with wearable ambulatory devices the whole day, which facilitates the real-time heart attack detection. In ECG preprocessing, an integral-coefficient-band-stop (ICBS filter is applied, which omits time-consuming floating-point computations. In addition, two-layered Hidden Markov Models (HMMs are applied to achieve ECG feature extraction and classification. The periodic ECG waveforms are segmented into ISO intervals, P subwave, QRS complex and T subwave respectively in the first HMM layer where expert-annotation assisted Baum-Welch algorithm is utilized in HMM modeling. Then the corresponding interval features are selected and applied to categorize the ECG into normal type or abnormal type (PVC, APC in the second HMM layer. For verifying the effectiveness of our algorithm on abnormal signal detection, we have developed an ECG body sensor network (BSN platform, whereby real-time ECG signals are collected, transmitted, displayed and the corresponding classification outcomes are deduced and shown on the BSN screen.

  6. Feasibility of Using Mobile ECG Recording Technology to Detect Atrial Fibrillation in Low-Resource Settings.

    Science.gov (United States)

    Evans, Grahame F; Shirk, Arianna; Muturi, Peter; Soliman, Elsayed Z

    2017-12-01

    Screening for atrial fibrillation (AF), a major risk factor for stroke that is on the rise in Africa, is becoming increasingly critical. This study sought to examine the feasibility of using mobile electrocardiogram (ECG) recording technology to detect AF. In this prospective observational study, we used a mobile ECG recorder to screen 50 African adults (66% women; mean age 54.3 ± 20.5 years) attending Kijabe Hospital (Kijabe, Kenya). Five hospital health providers involved in this study's data collection process also completed a self-administered survey to obtain information on their access to the Internet and mobile devices, both factors necessary to implement ECG mobile technology. Outcome measures included feasibility (completion of the study and recruitment of the patients on the planned study time frame) and the yield of the screening by the mobile ECG technology (ability to detect previously undiagnosed AF). Patients were recruited in a 2-week period as planned; only 1 of the 51 patients approached refused to participate (98% acceptance rate). All of the 50 patients who agreed to participate completed the test and produced readable ECGs (100% study completion rate). ECG tracings of 4 of the 50 patients who completed the study showed AF (8% AF yield), and none had been previously diagnosed with AF. When asked about continuous access to Internet and personal mobile devices, almost all of the health care providers surveyed answered affirmatively. Using mobile ECG technology in screening for AF in low-resource settings is feasible, and can detect a significant proportion of AF cases that will otherwise go undiagnosed. Further study is needed to examine the cost-effectiveness of this approach for detection of AF and its effect on reducing the risk of stroke in developing countries. Copyright © 2016 World Heart Federation (Geneva). Published by Elsevier B.V. All rights reserved.

  7. Use of portable blood physiology point-of-care devices for basic and applied research on vertebrates: a review.

    Science.gov (United States)

    Stoot, Lauren J; Cairns, Nicholas A; Cull, Felicia; Taylor, Jessica J; Jeffrey, Jennifer D; Morin, Félix; Mandelman, John W; Clark, Timothy D; Cooke, Steven J

    2014-01-01

    Non-human vertebrate blood is commonly collected and assayed for a variety of applications, including veterinary diagnostics and physiological research. Small, often non-lethal samples enable the assessment and monitoring of the physiological state and health of the individual. Traditionally, studies that rely on blood physiology have focused on captive animals or, in studies conducted in remote settings, have required the preservation and transport of samples for later analysis. In either situation, large, laboratory-bound equipment and traditional assays and analytical protocols are required. The use of point-of-care (POC) devices to measure various secondary blood physiological parameters, such as metabolites, blood gases and ions, has become increasingly popular recently, due to immediate results and their portability, which allows the freedom to study organisms in the wild. Here, we review the current uses of POC devices and their applicability to basic and applied studies on a variety of non-domesticated species. We located 79 individual studies that focused on non-domesticated vertebrates, including validation and application of POC tools. Studies focused on a wide spectrum of taxa, including mammals, birds and herptiles, although the majority of studies focused on fish, and typical variables measured included blood glucose, lactate and pH. We found that calibrations for species-specific blood physiology values are necessary, because ranges can vary within and among taxa and are sometimes outside the measurable range of the devices. In addition, although POC devices are portable and robust, most require durable cases, they are seldom waterproof/water-resistant, and factors such as humidity and temperature can affect the performance of the device. Overall, most studies concluded that POC devices are suitable alternatives to traditional laboratory devices and eliminate the need for transport of samples; however, there is a need for greater emphasis on rigorous

  8. Mobile Cloud-Computing-Based Healthcare Service by Noncontact ECG Monitoring

    Directory of Open Access Journals (Sweden)

    Ee-May Fong

    2013-12-01

    Full Text Available Noncontact electrocardiogram (ECG measurement technique has gained popularity these days owing to its noninvasive features and convenience in daily life use. This paper presents mobile cloud computing for a healthcare system where a noncontact ECG measurement method is employed to capture biomedical signals from users. Healthcare service is provided to continuously collect biomedical signals from multiple locations. To observe and analyze the ECG signals in real time, a mobile device is used as a mobile monitoring terminal. In addition, a personalized healthcare assistant is installed on the mobile device; several healthcare features such as health status summaries, medication QR code scanning, and reminders are integrated into the mobile application. Health data are being synchronized into the healthcare cloud computing service (Web server system and Web server dataset to ensure a seamless healthcare monitoring system and anytime and anywhere coverage of network connection is available. Together with a Web page application, medical data are easily accessed by medical professionals or family members. Web page performance evaluation was conducted to ensure minimal Web server latency. The system demonstrates better availability of off-site and up-to-the-minute patient data, which can help detect health problems early and keep elderly patients out of the emergency room, thus providing a better and more comprehensive healthcare cloud computing service.

  9. Conditional Random Fields for Morphological Analysis of Wireless ECG Signals

    Science.gov (United States)

    Natarajan, Annamalai; Gaiser, Edward; Angarita, Gustavo; Malison, Robert; Ganesan, Deepak; Marlin, Benjamin

    2015-01-01

    Thanks to advances in mobile sensing technologies, it has recently become practical to deploy wireless electrocardiograph sensors for continuous recording of ECG signals. This capability has diverse applications in the study of human health and behavior, but to realize its full potential, new computational tools are required to effectively deal with the uncertainty that results from the noisy and highly non-stationary signals collected using these devices. In this work, we present a novel approach to the problem of extracting the morphological structure of ECG signals based on the use of dynamically structured conditional random field (CRF) models. We apply this framework to the problem of extracting morphological structure from wireless ECG sensor data collected in a lab-based study of habituated cocaine users. Our results show that the proposed CRF-based approach significantly out-performs independent prediction models using the same features, as well as a widely cited open source toolkit. PMID:26726321

  10. Telepositional portable real time radiation monitoring system

    International Nuclear Information System (INIS)

    Talpalariu, Jeni; Matei, Corina; Popescu, Oana

    2010-01-01

    Technology development for complex portable networks is on going to meet the area dosimetry challenge, improving the basic design using new telepositional GPS satellite methods and GSM terrestrial civil radio transmission networks. The system and devices proposed overcome the limitations of fixed and portable dosimeters, providing wireless real time radiations data and geospatial information's means, using many portable dosimeter stations and a mobile dosimeter computerised central console. (authors)

  11. Visualization of neonatal coronary arteries on multidetector row CT: ECG-gated versus non-ECG-gated technique

    International Nuclear Information System (INIS)

    Tsai, I.C.; Lee, Tain; Chen, Min-Chi; Fu, Yun-Ching; Jan, Sheng-Lin; Wang, Chung-Chi; Chang, Yen

    2007-01-01

    Multidetector CT (MDCT) seems to be a promising tool for detection of neonatal coronary arteries, but whether the ECG-gated or non-ECG-gated technique should be used has not been established. To compare the detection rate and image quality of neonatal coronary arteries on MDCT using ECG-gated and non-ECG-gated techniques. Twelve neonates with complex congenital heart disease were included. The CT scan was acquired using an ECG-gated technique, and the most quiescent phase of the RR interval was selected to represent the ECG-gated images. The raw data were then reconstructed without the ECG signal to obtain non-ECG-gated images. The detection rate and image quality of nine coronary artery segments in the two sets of images were then compared. A two-tailed paired t test was used with P values <0.05 considered as statistically significant. In all coronary segments the ECG-gated technique had a better detection rate and produced images of better quality. The difference between the two techniques ranged from 25% in the left main coronary artery to 100% in the distal right coronary artery. For neonates referred for MDCT, if evaluation of coronary artery anatomy is important for the clinical management or surgical planning, the ECG-gated technique should be used because it can reliably detect the coronary arteries. (orig.)

  12. Sequential Total Variation Denoising for the Extraction of Fetal ECG from Single-Channel Maternal Abdominal ECG.

    Science.gov (United States)

    Lee, Kwang Jin; Lee, Boreom

    2016-07-01

    Fetal heart rate (FHR) is an important determinant of fetal health. Cardiotocography (CTG) is widely used for measuring the FHR in the clinical field. However, fetal movement and blood flow through the maternal blood vessels can critically influence Doppler ultrasound signals. Moreover, CTG is not suitable for long-term monitoring. Therefore, researchers have been developing algorithms to estimate the FHR using electrocardiograms (ECGs) from the abdomen of pregnant women. However, separating the weak fetal ECG signal from the abdominal ECG signal is a challenging problem. In this paper, we propose a method for estimating the FHR using sequential total variation denoising and compare its performance with that of other single-channel fetal ECG extraction methods via simulation using the Fetal ECG Synthetic Database (FECGSYNDB). Moreover, we used real data from PhysioNet fetal ECG databases for the evaluation of the algorithm performance. The R-peak detection rate is calculated to evaluate the performance of our algorithm. Our approach could not only separate the fetal ECG signals from the abdominal ECG signals but also accurately estimate the FHR.

  13. ECG signal processing

    NARCIS (Netherlands)

    2009-01-01

    A system extracts an ECG signal from a composite signal (308) representing an electric measurement of a living subject. Identification means (304) identify a plurality of temporal segments (309) of the composite signal corresponding to a plurality of predetermined segments (202,204,206) of an ECG

  14. A novel portable device to measure the temperature of both the inner and the outer tubes of a parabolic receiver in the field

    Science.gov (United States)

    Hermoso, J. L. Navarro; Espinosa-Rueda, Guillermo; Martinez, Noelia; Heras, Carlos; Osta, Marta

    2016-05-01

    The performance of parabolic trough (PT) receiver tubes (RT) has a direct impact on Solar Thermal Energy (STE) plant production. As a result, one major need of operation and maintenance (O&M) in STE plants is to monitor the state of the receiver tube as a key element in the solar field. However the lack of specific devices so far has limited the proper evaluation of operating receiver tubés thermal performance. As a consequence non-accurate approximations have been accepted until now using infrared thermal images of the glass outer tube. In order to fulfill this need, Abengoa has developed a unique portable device for evaluating the thermal performance and vacuum state of parabolic trough receiver tubes placed in the field. The novel device described in this paper, simultaneously provides the temperature of both the inner steel tube and the outer glass tube enabling a check on manufacturers specifications. The on-field evaluation of any receiver tube at any operating temperature has become possible thanks to this new measuring device. The features and usability of this new measurement system as a workable portable device in operating solar fields provide a very useful tool for all companies in the sector contributing to technology progress. The originality of the device, patent pending P201431969, is not limited to the CSP sector, also having scientific significance in the general measuring instruments field. This paper presents the work carried out to develop and validate the device, also detailing its functioning properties and including the excellent results obtained in the laboratory to determine its accuracy and standard deviation. This information was validated with data collected by O&M teams using this instrument in a commercial CSP plant. The relevance of the device has been evidenced by evaluating a wide sample of RT and the results are discussed in this paper. Finally, all the on field collected data is used to demonstrate the high impact that using

  15. The acquisition and retention of ECG interpretation skills after a standardized web-based ECG tutorial

    DEFF Research Database (Denmark)

    Rolskov Bojsen, Signe; Räder, Sune Bernd Emil Werner; Holst, Anders Gaardsdal

    2015-01-01

    BACKGROUND: Electrocardiogram (ECG) interpretation is of great importance for patient management. However, medical students frequently lack proficiency in ECG interpretation and rate their ECG training as inadequate. Our aim was to examine the effect of a standalone web-based ECG tutorial...... and to assess the retention of skills using multiple follow-up intervals. METHODS: 203 medical students were included in the study. All participants completed a pre-test, an ECG tutorial, and a post-test. The participants were also randomised to complete a retention-test after short (2-4 weeks), medium (10.......6), respectively). When comparing the pre-test to retention-test delta scores, junior students had learned significantly more than senior students (junior students improved 10.7 points and senior students improved 4.7 points, p = 0.003). CONCLUSION: A standalone web-based ECG tutorial can be an effective means...

  16. Specificity of elevated intercostal space ECG recording for the type 1 Brugada ECG pattern

    DEFF Research Database (Denmark)

    Holst, Anders G; Tangø, Mogens; Batchvarov, Velislav

    2012-01-01

    Right precordial (V1-3) elevated electrode placement ECG (EEP-ECG) is often used in the diagnosis of Brugada syndrome (BrS). However, the specificity of this has only been studied in smaller studies in Asian populations. We aimed to study this in a larger European population.......Right precordial (V1-3) elevated electrode placement ECG (EEP-ECG) is often used in the diagnosis of Brugada syndrome (BrS). However, the specificity of this has only been studied in smaller studies in Asian populations. We aimed to study this in a larger European population....

  17. Assessing subacute mild traumatic brain injury with a portable virtual reality balance device.

    Science.gov (United States)

    Wright, W Geoffrey; McDevitt, Jane; Tierney, Ryan; Haran, F Jay; Appiah-Kubi, Kwadwo Osei; Dumont, Alex

    2017-07-01

    Balance impairment is a common sensorimotor symptom in mild traumatic brain injury (mTBI). We designed an affordable, portable virtual reality (VR)-based balance screening device (Virtual Environment TBI Screen [VETS]), which will be validated relative to the Neurocom Sensory Organization Test (SOT) to determine if it can replace commonly used postural assessments. This preliminary study examines healthy adults (n = 56) and adults with mTBI (n = 11). Participants performed six upright postural tasks on the VETS and the SOT. Analysis of variance was used to determine between-group differences. Pearson's correlations were used to establish construct validity. Known-groups approach was used to establish classification accuracy. The mTBI cohort performed significantly worse than the healthy cohort on the new device (p = 0.001). The new device has 91.0% accuracy and an ROC curve with a significant area-under-the-curve (AUC = 0.865, p virtual reality can be economically integrated into the clinical setting for easy testing of postural control in neurologically impaired populations. Tailoring postural assessments to include tasks that rely on visual and vestibular integration will increase the accuracy of detecting balance impairment following mild traumatic brain injury.

  18. Portable telepathology: methods and tools.

    Science.gov (United States)

    Alfaro, Luis; Roca, Ma José

    2008-07-15

    Telepathology is becoming easier to implement in most pathology departments. In fact e-mail image transmit can be done from almost any pathologist as a simplistic telepathology system. We tried to develop a way to improve capabilities of communication among pathologists with the idea that the system should be affordable for everybody. We took the premise that any pathology department would have microscopes and computers with Internet connection, and selected a few elements to convert them into a telepathology station. Needs were reduced to a camera to collect images, a universal microscope adapter for the camera, a device to connect the camera to the computer, and a software for the remote image transmit. We found out a microscope adapter (MaxView Plus) that allowed us connect almost any domestic digital camera to any microscope. The video out signal from the camera was sent to the computer through an Aver Media USB connector. At last, we selected a group of portable applications that were assembled into a USB memory device. Portable applications are computer programs that can be carried generally on USB flash drives, but also in any other portable device, and used on any (Windows) computer without installation. Besides, when unplugging the device, none of personal data is left behind. We selected open-source applications, and based the pathology image transmission to VLC Media Player due to its functionality as streaming server, portability and ease of use and configuration. Audio transmission was usually done through normal phone lines. We also employed alternative videoconferencing software, SightSpeed for bi-directional image transmission from microscopes, and conventional cameras allowing visual communication and also image transmit from gross pathology specimens. All these elements allowed us to install and use a telepathology system in a few minutes, fully prepared for real time image broadcast.

  19. Biometric security based on ECG

    NARCIS (Netherlands)

    Ma, L.; Groot, de J.A.; Linnartz, J.P.M.G.

    2011-01-01

    Recently the electrocardiogram (ECG) has been proposed as a novel biometric. This paper aims to construct a reliable ECG verification system, in terms of privacy protection. To this end, an improved expression to estimate the capacity in the autocorrelation (AC) of the ECG is derived, which not only

  20. A Portable Passive Physiotherapeutic Exoskeleton

    Directory of Open Access Journals (Sweden)

    Dasheek Naidu

    2012-10-01

    Full Text Available The public healthcare system in South Africa is in need of urgent attention in no small part because there has been an escalation in the number of stroke victims which could be due to the increase in hypertension in this urbanizing society. There is a growing need for physiotherapists and occupational therapists in the country, which is further hindered by the division between urban and rural areas. A possible solution is a portable passive physiotherapeutic exoskeleton device. The exoskeleton device has been formulated to encapsulate methodologies that enable the anthropomorphic integration between a biological and mechatronic limb. A physiotherapeutic mechanism was designed to be portable and adjustable, without limiting the spherical motion and workspace of the human arm. The exoskeleton was designed to be portable in the sense that it could be transported geographically. It is a complete device allowing for motion in the shoulder, elbow, wrist and hand joints. The inverse kinematics was solved iteratively via the Damped Least Squares (DLS method. The electronic and computer system allowed for professional personnel to either change an individual joint or a combination of joints angles via the kinematic models. A ramp PI controller was established to provide a smooth response to simulate the passive therapy motion.

  1. Oxygen therapy devices and portable ventilators for improved physical activity in daily life in patients with chronic respiratory disease.

    Science.gov (United States)

    Furlanetto, Karina Couto; Pitta, Fabio

    2017-02-01

    Patients with hypoxemia and chronic respiratory failure may need to use oxygen therapy to correct hypoxemia and to use ventilatory support to augment alveolar ventilation, reverse abnormalities in blood gases (in particular hypercapnia) and reduce the work of breathing. Areas covered: This narrative review provides an overview on the use of oxygen therapy devices or portable ventilators for improved physical activity in daily life (PADL) as well as discusses the issue of lower mobility in daily life among stable patients with chronic respiratory disease who present indication for long-term oxygen therapy (LTOT) or home-based noninvasive ventilation (NIV). A literature review of these concepts was performed by using all related search terms. Expert commentary: Technological advances led to the development of light and small oxygen therapy devices and portable ventilators which aim to facilitate patients' mobility and ambulation. However, the day-by-day dependence of a device may reduce mobility and partially impair patients' PADL. Nocturnal NIV implementation in hypercapnic patients seems promising to improve PADL. The magnitude of their equipment-related physical inactivity is underexplored up to this moment and more long-term randomized clinical trials and meta-analysis examining the effects of ambulatory oxygen and NIV on PADL are required.

  2. Competency in ECG Interpretation Among Medical Students

    Science.gov (United States)

    Kopeć, Grzegorz; Magoń, Wojciech; Hołda, Mateusz; Podolec, Piotr

    2015-01-01

    Background Electrocardiogram (ECG) is commonly used in diagnosis of heart diseases, including many life-threatening disorders. We aimed to assess skills in ECG interpretation among Polish medical students and to analyze the determinants of these skills. Material/Methods Undergraduates from all Polish medical schools were asked to complete a web-based survey containing 18 ECG strips. Questions concerned primary ECG parameters (rate, rhythm, and axis), emergencies, and common ECG abnormalities. Analysis was restricted to students in their clinical years (4th–6th), and students in their preclinical years (1st–3rd) were used as controls. Results We enrolled 536 medical students (females: n=299; 55.8%), aged 19 to 31 (23±1.6) years from all Polish medical schools. Most (72%) were in their clinical years. The overall rate of good response was better in students in years 4th–5th than those in years 1st–3rd (66% vs. 56%; pECG interpretation was higher in students who reported ECG self-learning (69% vs. 62%; pECG classes (66% vs. 66%; p=0.99). On multivariable analysis (pECG interpretation. Conclusions Polish medical students in their clinical years have a good level of competency in interpreting the primary ECG parameters, but their ability to recognize ECG signs of emergencies and common heart abnormalities is low. ECG interpretation skills are determined by self-education but not by attendance at regular ECG classes. Our results indicate qualitative and quantitative deficiencies in teaching ECG interpretation at medical schools. PMID:26541993

  3. Quality assessment of digital annotated ECG data from clinical trials by the FDA ECG Warehouse.

    Science.gov (United States)

    Sarapa, Nenad

    2007-09-01

    The FDA mandates that digital electrocardiograms (ECGs) from 'thorough' QTc trials be submitted into the ECG Warehouse in Health Level 7 extended markup language format with annotated onset and offset points of waveforms. The FDA did not disclose the exact Warehouse metrics and minimal acceptable quality standards. The author describes the Warehouse scoring algorithms and metrics used by FDA, points out ways to improve FDA review and suggests Warehouse benefits for pharmaceutical sponsors. The Warehouse ranks individual ECGs according to their score for each quality metric and produces histogram distributions with Warehouse-specific thresholds that identify ECGs of questionable quality. Automatic Warehouse algorithms assess the quality of QT annotation and duration of manual QT measurement by the central ECG laboratory.

  4. WAVELET ANALYSIS OF ABNORMAL ECGS

    Directory of Open Access Journals (Sweden)

    Vasudha Nannaparaju

    2014-02-01

    Full Text Available Detection of the warning signals by the heart can be diagnosed from ECG. An accurate and reliable diagnosis of ECG is very important however which is cumbersome and at times ambiguous in time domain due to the presence of noise. Study of ECG in wavelet domain using both continuous Wavelet transform (CWT and discrete Wavelet transform (DWT, with well known wavelet as well as a wavelet proposed by the authors for this investigation is found to be useful and yields fairly reliable results. In this study, Wavelet analysis of ECGs of Normal, Hypertensive, Diabetic and Cardiac are carried out. The salient feature of the study is that detection of P and T phases in wavelet domain is feasible which are otherwise feeble or absent in raw ECGs.

  5. Ecg manifestations in dengue infection

    International Nuclear Information System (INIS)

    Tarique, S.; Murtaza, G.; Asif, S.; Qureshi, I.H.

    2013-01-01

    To determine the frequency of ECG changes in patients with dengue fever and dengue hemorrhagic fever. Place of study: Department of Medicine, Mayo Hospital Lahore Duration of study: September to November 201 Study design: Cross sectional analytical study Patient and methods: 116 patients with dengue infection were enrolled in the study. Their clinical presentation and examination was duly noted. Each patient had baseline and then regular monitoring of blood counts, metabolic profile and fluid status. Patients with Dengue Hemorrhagic fever underwent radiological examination in form of chest radiograph and ultrasound abdomen. ECG was carried out in all patients. Results: Out of 116 patients, 61(52.6%) suffered from Dengue Fever and 55(47.4%) had Dengue Hemorrhagic Fever. Overall 78 patients had normal ECG. Abnormal ECG findings like tachycardia, bradycardia, supraventricular tachycardia, left bundle branch block, ST depression, poor progression of R wave were noted. There was no significant relationship of ECG findings with the disease. Conclusion: ECG changes can occur in dengue infection with or without cardiac symptoms. Commonly noted findings were ST depression and bradycardia. (author)

  6. Utility of the CORD ECG Database in Evaluating ECG Interpretation by Emergency Medicine Residents

    Directory of Open Access Journals (Sweden)

    Wong, Hubert E

    2002-10-01

    Full Text Available OBJECTIVES: Electrocardiograph (ECG interpretation is a vital component of Emergency Medicine (EM resident education, but few studies have formally examined ECG teaching methods used in residency training. Recently, the Council of EM Residency Directors (CORD developed an Internet database of 395 ECGs that have been extensively peer-reviewed to incorporate all findings and abnormalities. We examined the efficacy of this database in assessing EM residents' skills in ECG interpretation. METHODS: We used the CORD ECG database to evaluate residents at our academic three-year EM residency. Thirteen residents participated, including four first-year, four second-year, and five third-year residents. Twenty ECGs were selected using 14 search criteria representing a broad range of abnormalities, including infarction, rhythm, and conduction abnormalities. Exams were scored based on all abnormalities and findings listed in the teaching points accompanying each ECG. We assigned points to each abnormal finding based on clinical relevance. RESULTS: Out of a total of 183 points in our clinically weighted scoring system, first-year residents scored an average of 99 points (54.1% [9 1- 1191, second-year residents 11 1 points (60.4% [97-1261, and third-year residents 130 points (7 1.0% [94- 1501, p = 0.12. Clinically relevant abnormalities, including anterior and inferior myocardial infarctions, were most frequently diagnosed correctly, while posterior infarction was more frequently missed. Rhythm abnormalities including ventricular and supraventricular tachycardias were most frequently diagnosed correctly, while conduction abnormalities including left bundle branch block and atrioventricular (AV block were more frequently missed. CONCLUSION: The CORD database represents a valuable resource in the assessment and teaching of ECG skills, allowing more precise identification of areas upon which instruction should be further focused or individually tailored. Our

  7. Design, data, and theory regarding a digital hand inclinometer: a portable device for studying slant perception.

    Science.gov (United States)

    Li, Zhi; Durgin, Frank H

    2011-06-01

    Palm boards are often used as a nonverbal measure in human slant perception studies. It was recently found that palm boards are biased and relatively insensitive measures, and that an unrestricted hand gesture provides a more sensitive response (Durgin, Hajnal, Li, Tonge, & Stigliani, Acta Psychologica, 134, 182-197, 2010a). In this article, we describe an original design for a portable lightweight digital device for measuring hand orientation. This device is microcontroller-based and uses a micro inclinometer chip as its inclination sensor. The parts are fairly inexpensive. This device, used to measure hand orientation, provides a sensitive nonverbal method for studying slant perception, which can be used in both indoor and outdoor environments. We present data comparing the use of a free hand to palm-board and verbal measures for surfaces within reach and explain how to interpret free-hand measures for outdoor hills.

  8. Recent Advances in Portable Analytical Electromigration Devices

    Directory of Open Access Journals (Sweden)

    Ann Van Schepdael

    2016-01-01

    Full Text Available This article presents an overview of recent advances in the field of portable capillary electrophoresis and microchip electrophoresis equipment during the period 2013–Mid 2015. Instrumental achievements in the separation as well as the detection part of the equipment are discussed. Several applications from a variety of fields are described.

  9. Economic and organizational sustainability of a negative-pressure portable device for the prevention of surgical-site complications

    Directory of Open Access Journals (Sweden)

    Foglia E

    2017-06-01

    Full Text Available Emanuela Foglia,1 Lucrezia Ferrario,1 Elisabetta Garagiola,1 Giuseppe Signoriello,2 Gianluca Pellino,3 Davide Croce,1,4 Silvestro Canonico3 1Centre for Health Economics, Social and Health Care Management - LIUC University, Castellanza, Italy; 2Department of Mental Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy; 3School of Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy; 4School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South \tAfrica Purpose: Surgical-site complications (SSCs affect patients’ clinical pathway, prolonging their hospitalization and incrementing their management costs. The present study aimed to assess the economic and organizational implications of a portable device for negative-pressure wound therapy (NPWT implementation, compared with the administration of pharmacological therapies alone for preventing surgical complications in patients undergoing general, cardiac, obstetrical–gynecological, or orthopedic surgical procedures.Patients and methods: A total of 8,566 hospital procedures, related to the year 2015 from one hospital, were evaluated considering infection risk index, occurrence rates of SSCs, drug therapies, and surgical, diagnostic, and specialist procedures and hematological exams. Activity-based costing and budget impact analyses were implemented for the economic assessment.Results: Patients developing an SSC absorbed i 64.27% more economic resources considering the length of stay (€ 8,269±2,096 versus € 5,034±2,901, p<0.05 and ii 42.43% more economic resources related to hematological and diagnostic procedures (€ 639±117 versus € 449±72, p<0.05. If the innovative device had been used over the 12-month time period, it would have decreased the risk of developing SSCs; the hospital would have realized an average reduction in health care expenditure equal to −0.69% (−€ 483

  10. Portable smartphone based quantitative phase microscope

    Science.gov (United States)

    Meng, Xin; Tian, Xiaolin; Yu, Wei; Kong, Yan; Jiang, Zhilong; Liu, Fei; Xue, Liang; Liu, Cheng; Wang, Shouyu

    2018-01-01

    To realize portable device with high contrast imaging capability, we designed a quantitative phase microscope using transport of intensity equation method based on a smartphone. The whole system employs an objective and an eyepiece as imaging system and a cost-effective LED as illumination source. A 3-D printed cradle is used to align these components. Images of different focal planes are captured by manual focusing, followed by calculation of sample phase via a self-developed Android application. To validate its accuracy, we first tested the device by measuring a random phase plate with known phases, and then red blood cell smear, Pap smear, broad bean epidermis sections and monocot root were also measured to show its performance. Owing to its advantages as accuracy, high-contrast, cost-effective and portability, the portable smartphone based quantitative phase microscope is a promising tool which can be future adopted in remote healthcare and medical diagnosis.

  11. Evaluating ECG and carboxyhemoglobin changes due to smoking narghile.

    Science.gov (United States)

    Yıldırım, Fazıl; Çevik, Yunsur; Emektar, Emine; Çorbacıoğlu, Şeref Kerem; Katırcı, Yavuz

    2016-10-01

    This study aimed to investigate whether increased carboxyhemoglobin (COHB) levels and ECG changes, which associated with fatal ventricular dysrhythmias, including increased QT, P-wave and T peak (Tp)-Tend (Te) dispersion, can be detected after smoking narghile, which is a traditional method of smoking tobacco that is smoked from hookah device. After local ethics committee approval, this prospective study was conducted using healthy volunteer subjects at a "narghile café," which is used by people smoking narghile in an open area. Before beginning to smoke narghile, all subjects' 12-lead electrocardiographs (ECG), measurements of COHB levels, and vital signs were recorded. After smoking narghile for 30 min, the recording of the 12-lead ECGs and the measurements of COHB level and all vital signs were repeated. The mean age of subjects was 26.8 ± 6.2 years (min-max: 18-40), and 28 subjects (84.8%) were male. Before smoking narghile, the median value of subjects' COHB levels was 1.3% (min-max: 0-6), whereas after smoking, the median value of COHB was 23.7% (min-max: 6-44), a statistically significant increase (p < 0.001). Analysis of the subjects' ECG changes after smoking narghile showed that dispersions of QT, QTc, P-wave and Tp-Te were increased, and all changes were statistically significant (p < 0.001 for all parameters). Although, especially among young people, it is commonly thought that smoking narghile has less harmful or toxic effects than other tobacco products. The results of this study and past studies clearly demonstrated that smoking narghile can cause several ECG changes - including increased QT, P-wave and Tp-Te dispersion - which can be associated with ventricular dysrhythmias.

  12. Deep Learning for ECG Classification

    Science.gov (United States)

    Pyakillya, B.; Kazachenko, N.; Mikhailovsky, N.

    2017-10-01

    The importance of ECG classification is very high now due to many current medical applications where this problem can be stated. Currently, there are many machine learning (ML) solutions which can be used for analyzing and classifying ECG data. However, the main disadvantages of these ML results is use of heuristic hand-crafted or engineered features with shallow feature learning architectures. The problem relies in the possibility not to find most appropriate features which will give high classification accuracy in this ECG problem. One of the proposing solution is to use deep learning architectures where first layers of convolutional neurons behave as feature extractors and in the end some fully-connected (FCN) layers are used for making final decision about ECG classes. In this work the deep learning architecture with 1D convolutional layers and FCN layers for ECG classification is presented and some classification results are showed.

  13. Electrocardiographic Patch Devices and Contemporary Wireless Cardiac Monitoring

    Directory of Open Access Journals (Sweden)

    Erik eFung

    2015-05-01

    Full Text Available Cardiac electrophysiologic derangements often coexist with disorders of the circulatory system. Capturing and diagnosing arrhythmias and conduction system disease may lead to a change in diagnosis, clinical management and patient outcomes. Standard 12-lead electrocardiogram (ECG, Holter monitors and event recorders have served as useful diagnostic tools over the last few decades. However, their shortcomings are only recently being addressed by emerging technologies. With advances in device miniaturization and wireless technologies, and changing consumer expectations, wearable ‘on-body’ ECG patch devices have evolved to meet contemporary needs. These devices are unobtrusive and easy to use, leading to increased device wear time and diagnostic yield. While becoming the standard for detecting arrhythmias and conduction system disorders in the outpatient setting where continuous ECG monitoring in the short to medium term (days to weeks is indicated, these cardiac devices and related digital mobile health technologies are reshaping the clinician-patient interface with important implications for future healthcare delivery.

  14. Comparative study of measured heart cycle phase durations: standard lead ECG versus original ascending aorta lead ECG

    Directory of Open Access Journals (Sweden)

    Sergey V. Kolmakov

    2012-11-01

    Full Text Available Aims The present paper aims at evaluating the existing difference in duration measurements of the same heart cycle phases in the standard V3, V4, V5, V6 leads ECG versus original HDA lead ECG of the ascending aorta. Materials and methods The method of changing the filter pass band is used. Its essence is in artificial changing of the conditions of the signal recording carrying the informative indications of the initial information used in hemodynamic equations. The method also enables calculating the percentage deviation from the initial values. The principle of balance of the blood volume entering the heart and the blood volume leaving the heart is used to trace the minimal deviations and their respective recording conditions. Results In each of the V3, V4, V5, V6 ECG leads durations of the same phases have different values. The values measured on the ECG of the ascending aorta and those measured using the standard V4 ECG lead differ slightly. Conclusion For heart cycle phase analysis it is possible to use only the ECG of the ascending aorta and V4 standard lead ECG. Using conventional standard ECG leads causes an error up to 25%.

  15. A portable smart-phone device for rapid and sensitive detection of E. coli O157:H7 in Yoghurt and Egg.

    Science.gov (United States)

    Zeinhom, Mohamed Maarouf Ali; Wang, Yijia; Song, Yang; Zhu, Mei-Jun; Lin, Yuehe; Du, Dan

    2018-01-15

    The detection of E. coli O157:H7 in foods has held the attention of many researchers because of the seriousness attributed to this pathogen. In this study, we present a simple, sensitive, rapid and portable smartphone based fluorescence device for E. coli O157:H7 detection. This field-portable fluorescent imager on the smartphone involves a compact laser-diode-based photosource, a long-pass (LP) thin-film interference filter and a high-quality insert lenses. The design of the device provided a low noise to background imaging system. Based on a sandwich ELISA and the specific recognition of antibody to E. coli O157:H7, the sensitive detection of E. coli O157:H7 were realized both in standard samples and real matrix in yoghurt and egg on our device. The detection limit are 1 CFU/mL and 10 CFU/mL correspondingly. Recovery percentages of spiked yogurt and egg samples with 10 3 , 10 4 and 10 5 CFU/mL E. coli O157:H7 were 106.98, 96.52 and 102.65 (in yogurt) and 107.37, 105.64 and 93.84 (in egg) samples using our device, respectively. Most importantly, the entire process could be quickly completed within two hours. This smartphone based device provides a simple, rapid, sensitive detection platform for fluorescent imaging which applied in pathogen detection for food safety monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Resting ECG findings in elite football players.

    Science.gov (United States)

    Bohm, Philipp; Ditzel, Roman; Ditzel, Heribert; Urhausen, Axel; Meyer, Tim

    2013-01-01

    The purpose of the study was to evaluate ECG abnormalities in a large sample of elite football players. Data from 566 elite male football players (57 of them of African origin) above 16 years of age were screened retrospectively (age: 20.9 ± 5.3 years; BMI: 22.9 ± 1.7 kg · m(-2), training history: 13.8 ± 4.7 years). The resting ECGs were analysed and classified according to the most current ECG categorisation of the European Society of Cardiology (ESC) (2010) and a classification of Pelliccia et al. (2000) in order to assess the impact of the new ESC-approach. According to the classification of Pelliccia, 52.5% showed mildly abnormal ECG patterns and 12% were classified as distinctly abnormal ECG patterns. According to the classification of the ESC, 33.7% showed 'uncommon ECG patterns'. Short-QT interval was the most frequent ECG pattern in this group (41.9%), followed by a shortened PR-interval (19.9%). When assessed with a QTc cut-off-point of 340 ms (instead of 360 ms), only 22.2% would have had 'uncommon ECG patterns'. Resting ECG changes amongst elite football players are common. Adjustment of the ESC criteria by adapting proposed time limits for the ECG (e.g. QTc, PR) should further reduce the rate of false-positive results.

  17. Portable Weather Intelligence for the Soldier

    National Research Council Canada - National Science Library

    Sauter, David

    2008-01-01

    Enhancements in computer hardware and software technology have allowed the development and porting of advanced environmental effects applications on highly portable lightweight computing devices. The U.S...

  18. Manycore Performance-Portability: Kokkos Multidimensional Array Library

    Directory of Open Access Journals (Sweden)

    H. Carter Edwards

    2012-01-01

    Full Text Available Large, complex scientific and engineering application code have a significant investment in computational kernels to implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs, and performance requirements. The Kokkos Array programming model provides library-based approach to implement computational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is based upon three fundamental concepts: (1 manycore compute devices each with its own memory space, (2 data parallel kernels and (3 multidimensional arrays. Kernel execution performance is, especially for NVIDIA® devices, extremely dependent on data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports performance-portable kernels by (1 separating data access patterns from computational kernels through a multidimensional array API and (2 introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].

  19. A review of the development of portable laser induced breakdown spectroscopy and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Rakovský, J., E-mail: jozef.rakovsky@jh-inst.cas.cz [J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 3, 18223 Prague 8 (Czech Republic); Čermák, P. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia); Musset, O. [Laboratoire interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, BP 47 870, F-21078 Dijon Cedex (France); Veis, P. [Department of Experimental Physics, Faculty of Mathematics, Physics and Informatics, Comenius University, Mlynská dolina F2, 842 48 Bratislava (Slovakia)

    2014-11-01

    In this review, we present person-transportable laser induced breakdown spectroscopy (LIBS) devices that have previously been developed and reported in the literature as well as their applications. They are compared with X-ray fluorescent (XRF) devices, which represent their strongest competition. Although LIBS devices have advantages over XRF devices, such as sensitivity to the light elements, high spatial resolution and the possibility to distinguish between different layers of the sample, there are also disadvantages and both are discussed here. Furthermore, the essential portable LIBS instrumentation (laser, spectrograph and detector) is presented, and published results related to new laser sources (diode-pumped solid-state, microchip and fiber lasers) used in LIBS are overviewed. Compared to conventional compact flashlamp pumped solid-state lasers, the new laser sources provide higher repetition rates, higher efficiency (less power consumption) and higher beam quality, resulting in higher fluences, even for lower energies, and could potentially increase the figure of merit of portable LIBS instruments. Compact spectrometers used in portable LIBS devices and their parts (spectrograph, detector) are also discussed. - Highlights: • Overview of portable LIBS devices transportable by a person • Discussion and new trends about portable LIBS instrumentation: laser, spectrograph and detector • Overview of applications of DPSS, microchip and fiber lasers in LIBS.

  20. Palm top plasma focus device as a portable pulsed neutron source

    International Nuclear Information System (INIS)

    Rout, R. K.; Niranjan, Ram; Srivastava, R.; Rawool, A. M.; Kaushik, T. C.; Gupta, Satish C.; Mishra, P.

    2013-01-01

    Development of a palm top plasma focus device generating (5.2 ± 0.8) × 10 4 neutrons/pulse into 4π steradians with a pulse width of 15 ± 3 ns is reported for the first time. The weight of the system is less than 1.5 kg. The system comprises a compact capacitor bank, a triggered open air spark gap switch, and a sealed type miniature plasma focus tube. The setup is around 14 cm in diameter and 12.5 cm in length. The energy driver for the unit is a capacitor bank of four cylindrical commercially available electrolytic capacitors. Each capacitor is of 2 μF capacity, 4.5 cm in diameter, and 9.8 cm in length. The cost of each capacitor is less than US$ 10. The internal diameter and the effective length of the plasma focus unit are 2.9 cm and 5 cm, respectively. A DC to DC converter power supply powered by two rechargeable batteries charges the capacitor bank to the desired voltage and also provides a trigger pulse of −15 kV to the spark gap. The maximum energy of operation of the device is 100 J (8 μF, 5 kV, 59 kA) with deuterium gas filling pressure of 3 mbar. The neutrons have also been produced at energy as low as 36 J (3 kV) of operation. The neutron diagnostics are carried out with a bank of 3 He detectors and with a plastic scintillator detector. The device is portable, reusable, and can be operated for multiple shots with a single gas filling.

  1. Portable Diagnostics and Rapid Germination

    Energy Technology Data Exchange (ETDEWEB)

    Dunn, Zachary Spencer [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-12-01

    In the Bioenergy and Defense Department of Sandia National Laboratories, characterization of the BaDx (Bacillus anthracis diagnostic cartridge) was performed and rapid germination chemistry was investigated. BaDx was tested with complex sample matrixes inoculated with Bacillus anthracis, and the trials proved that BaDx will detect Bacillus anthracis in a variety of the medium, such as dirt, serum, blood, milk, and horse fluids. The dimensions of the device were altered to accommodate an E. coli or Listeria lateral flow immunoassay, and using a laser printer, BaDx devices were manufactured to identify E. coli and Listeria. Initial testing with E. coli versions of BaDx indicate that the device will be viable as a portable diagnostic cartridge. The device would be more effective with faster bacteria germination; hence studies were performed the use of rapid germination chemistry. Trials with calcium dipicolinic acid displayed increased cell germination, as shown by control studies using a microplate reader. Upon lyophilization the rapid germination chemistry failed to change growth patterns, indicating that the calcium dipicolinic acid was not solubilized under the conditions tested. Although incompatible with the portable diagnostic device, the experiments proved that the rapid germination chemistry was effective in increasing cell germination.

  2. Intrarater reliability of hand held dynamometry in measuring lower extremity isometric strength using a portable stabilization device.

    Science.gov (United States)

    Jackson, Steven M; Cheng, M Samuel; Smith, A Russell; Kolber, Morey J

    2017-02-01

    Hand held dynamometry (HHD) is a more objective way to quantify muscle force production (MP) compared to traditional manual muscle testing. HHD reliability can be negatively impacted by both the strength of the tester and the subject particularly in the lower extremities due to larger muscle groups. The primary aim of this investigation was to assess intrarater reliability of HHD with use of a portable stabilization device for lower extremity MP in an athletic population. Isometric lower extremity strength was measured for bilateral lower extremities including hip abductors, external rotators, adductors, knee extensors, and ankle plantar flexors was measured in a sample of healthy recreational runners (8 male, 7 females, = 30 limbs) training for a marathon. These measurements were assessed using an intrasession intrarater reliability design. Intraclass correlation coefficients (ICC) were calculated using 3,1 model based on the single rater design. The standard error of measurement (SEM) for each muscle group was also calculated. ICC were excellent ranging from ICC (3,1) = 0.93-0.98 with standard error of measurements ranging from 0.58 to 17.2 N. This study establishes the use of a HHD with a portable stabilization device as demonstrating good reliability within testers for measuring lower extremity muscle performance in an active healthy population. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Wearable technology and ECG processing for fall risk assessment, prevention and detection.

    Science.gov (United States)

    Melillo, Paolo; Castaldo, Rossana; Sannino, Giovanna; Orrico, Ada; de Pietro, Giuseppe; Pecchia, Leandro

    2015-01-01

    Falls represent one of the most common causes of injury-related morbidity and mortality in later life. Subjects with cardiovascular disorders (e.g., related to autonomic dysfunctions and postural hypotension) are at higher risk of falling. Autonomic dysfunctions increasing the risk of falling in the short and mid-term could be assessed by Heart Rate Variability (HRV) extracted by electrocardiograph (ECG). We developed three trials for assessing the usefulness of ECG monitoring using wearable devices for: risk assessment of falling in the next few weeks; prevention of imminent falls due to standing hypotension; and fall detection. Statistical and data-mining methods are adopted to develop classification and regression models, validated with the cross-validation approach. The first classifier based on HRV features enabled to identify future fallers among hypertensive patients with an accuracy of 72% (sensitivity: 51.1%, specificity: 80.2%). The regression model to predict falls due to orthostatic dropdown from HRV recorded before standing achieved an overall accuracy of 80% (sensitivity: 92%, specificity: 90%). Finally, the classifier to detect simulated falls using ECG achieved an accuracy of 77.3% (sensitivity: 81.8%, specificity: 72.7%). The evidence from these three studies showed that ECG monitoring and processing could achieve satisfactory performances compared to other system for risk assessment, fall prevention and detection. This is interesting as differently from other technologies actually employed to prevent falls, ECG is recommended for many other pathologies of later life and is more accepted by senior citizens.

  4. 'Brugada ECG' elicited by imipramine overdose

    NARCIS (Netherlands)

    van den Berg, M. P.; Tulleken, J. E.; Wilde, A. A. M.

    2004-01-01

    The ECG hallmark of the Brugada syndrome is ST-segment elevation in the right precordial leads. However, a 'Brugada ECG' may also occasionally be caused by other conditions. We report a case of a Brugada ECG due to an overdose of imipramine, a tricyclic antidepressant. The patient, a 66-year-old

  5. Power Conditioning of Fuel Cell Systems in Portable Applications

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Benitez, E.; Brey, J. J.; Rodriguez-Bordallo, C.; Carrasco, J. M.; Galvan, E.

    2005-07-01

    The achieving of high performance and long useful life are the two fundamental objectives of portable application designers. Cost and size conditions make these objectives more complex and always lead to a compromise solution having to be reached. The most significant parameters as regards portables devices are cost, efficiency (useful life), output crimps and noise, and quiescent current. Most portable products have two fundamental operating modes: active and standby. During the active period, current consumption is generally high and this means that excellent conversion is essential in order to maximize the useful life of the device that supplies current and voltage. However, most portable devices spend most of their time on standby and draw little energy from the source. It is equally important for the source to be very efficient under these conditions. This means that the quiescent current from the source (the current that supplies in low or nil load conditions) must be much lower than the load current in order to maintain high efficiency. Topologies Different power conditioning topologies to be used in portable applications are indicated with their corresponding advantages and inconveniences being specified. Low dropout voltage regulator (LDO) This type of conditioning is one of minimum cost, noise and quiescent current. This makes this device a favorite for many applications. Its external components are minimal: usually a bypass capacity. Its efficiency, although poor when Vin is much greater than Vout, increases greatly when their values are somewhat similar. In this event, the benefits of using LDOs are almost impossible to beat. In fact, these circuits are much used to reach output voltages of up to 3 volts. (Author)

  6. Retrospectively ECG-gated multi-detector row CT of the chest: does ECG-gating improve three-dimensional visualization of the bronchial tree?

    International Nuclear Information System (INIS)

    Schertler, T.; Wildermuth, S.; Willmann, J.K.; Crook, D.W.; Marincek, B.; Boehm, T.

    2004-01-01

    Purpose: To determine the impact of retrospectively ECG-gated multi-detector row CT (MDCT) on three-dimensional (3D) visualization of the bronchial tree and virtual bronchoscopy (VB) as compared to non-ECG-gated data acquisition. Materials and Methods: Contrast-enhanced retrospectively ECG-gated and non-ECG-gated MDCT of the chest was performed in 25 consecutive patients referred for assessment of coronary artery bypass grafts and pathology of the ascending aorta. ECG-gated MDCT data were reconstructed in diastole using an absolute reverse delay of -400 msec in all patients. In 10 patients additional reconstructions at -200 msec, -300 msec, and -500 msec prior to the R-wave were performed. Shaded surface display (SSD) and virtual bronchoscopy (VB) for visualization of the bronchial segments was performed with ECG-gated and non-ECG-gated MDCT data. The visualization of the bronchial tree underwent blinded scoring. Effective radiation dose and signal-to-noise ratio (SNR) for both techniques were compared. Results: There was no significant difference in visualizing single bronchial segments using ECG-gated compared to non-ECG-gated MDCT data. However, the total sum of scores for all bronchial segments visualized with non-ECG-gated MDCT was significantly higher compared to ECG-gated MDCT (P [de

  7. iPad Portable Genius

    CERN Document Server

    McFedries, Paul

    2010-01-01

    Everything everyone wants to know about using the Apple iPad. On January 27, 2010, Apple announced the latest in its line of revolutionary, ultraportable devices - the iPad. iPad Portable Genius is the latest in a line of ultra handy, go-to and goes-with you anywhere guides for getting the most out of a new Apple product. Written to provide readers with highly useful information that's easily accessible, iPad Portable Genius is full of tips, tricks and techniques for maximizing each of the iPad's most popular features.:; Designed in full-color with an Apple look and feel, and written in a hip,

  8. Study on data compression algorithm and its implementation in portable electronic device for Internet of Things applications

    Directory of Open Access Journals (Sweden)

    Khairi Nor Asilah

    2017-01-01

    Full Text Available An Internet of Things (IoT device is usually powered by a small battery, which does not last long. As a result, saving energy in IoT devices has become an important issue when it comes to this subject. Since power consumption is the primary cause of radio communication, some researchers have proposed several compression algorithms with the purpose of overcoming this particular problem. Several data compression algorithms from previous reference papers are discussed in this paper. The description of the compression algorithm in the reference papers was collected and summarized in a table form. From the analysis, MAS compression algorithm was selected as a project prototype due to its high potential for meeting the project requirements. Besides that, it also produced better performance regarding energy-saving, better memory usage, and data transmission efficiency. This method is also suitable to be implemented in WSN. MAS compression algorithm will be prototyped and applied in portable electronic devices for Internet of Things applications.

  9. Study on data compression algorithm and its implementation in portable electronic device for Internet of Things applications

    Science.gov (United States)

    Asilah Khairi, Nor; Bahari Jambek, Asral

    2017-11-01

    An Internet of Things (IoT) device is usually powered by a small battery, which does not last long. As a result, saving energy in IoT devices has become an important issue when it comes to this subject. Since power consumption is the primary cause of radio communication, some researchers have proposed several compression algorithms with the purpose of overcoming this particular problem. Several data compression algorithms from previous reference papers are discussed in this paper. The description of the compression algorithm in the reference papers was collected and summarized in a table form. From the analysis, MAS compression algorithm was selected as a project prototype due to its high potential for meeting the project requirements. Besides that, it also produced better performance regarding energy-saving, better memory usage, and data transmission efficiency. This method is also suitable to be implemented in WSN. MAS compression algorithm will be prototyped and applied in portable electronic devices for Internet of Things applications.

  10. Forensic Analysis of the Sony Playstation Portable

    Science.gov (United States)

    Conrad, Scott; Rodriguez, Carlos; Marberry, Chris; Craiger, Philip

    The Sony PlayStation Portable (PSP) is a popular portable gaming device with features such as wireless Internet access and image, music and movie playback. As with most systems built around a processor and storage, the PSP can be used for purposes other than it was originally intended - legal as well as illegal. This paper discusses the features of the PSP browser and suggests best practices for extracting digital evidence.

  11. [Analysis of pacemaker ECGs].

    Science.gov (United States)

    Israel, Carsten W; Ekosso-Ejangue, Lucy; Sheta, Mohamed-Karim

    2015-09-01

    The key to a successful analysis of a pacemaker electrocardiogram (ECG) is the application of the systematic approach used for any other ECG without a pacemaker: analysis of (1) basic rhythm and rate, (2) QRS axis, (3) PQ, QRS and QT intervals, (4) morphology of P waves, QRS, ST segments and T(U) waves and (5) the presence of arrhythmias. If only the most obvious abnormality of a pacemaker ECG is considered, wrong conclusions can easily be drawn. If a systematic approach is skipped it may be overlooked that e.g. atrial pacing is ineffective, the left ventricle is paced instead of the right ventricle, pacing competes with intrinsic conduction or that the atrioventricular (AV) conduction time is programmed too long. Apart from this analysis, a pacemaker ECG which is not clear should be checked for the presence of arrhythmias (e.g. atrial fibrillation, atrial flutter, junctional escape rhythm and endless loop tachycardia), pacemaker malfunction (e.g. atrial or ventricular undersensing or oversensing, atrial or ventricular loss of capture) and activity of specific pacing algorithms, such as automatic mode switching, rate adaptation, AV delay modifying algorithms, reaction to premature ventricular contractions (PVC), safety window pacing, hysteresis and noise mode. A systematic analysis of the pacemaker ECG almost always allows a probable diagnosis of arrhythmias and malfunctions to be made, which can be confirmed by pacemaker control and can often be corrected at the touch of the right button to the patient's benefit.

  12. Portable formaldehyde monitoring device using porous glass sensor and its applications in indoor air quality studies.

    Science.gov (United States)

    Maruo, Yasuko Yamada; Nakamura, Jiro

    2011-09-30

    We have developed a portable device for formaldehyde monitoring with both high sensitivity and high temporal resolution, and carried out indoor air formaldehyde concentration analysis. The absorbance difference of the sensor element was measured in the monitoring device at regular intervals of, for example, one hour or 30 min, and the result was converted into the formaldehyde concentration. This was possible because we found that the lutidine derivative that was formed as a yellow product of the reaction between 1-phenyl-1,3-butandione and formaldehyde was stable in porous glass for at least six months. We estimated the reaction rate and to be 0.049 min(-1) and the reaction occurred quickly enough for us to monitor hourly changes in the formaldehyde concentration. The detection limit was 5 μg m(-3) h. We achieved hourly formaldehyde monitoring using the developed device under several indoor conditions, and estimated the air exchange rate and formaldehyde adsorption rate, which we adopted as a new term in the mass balance equation for formaldehyde, in one office. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Multi detector computed tomography (MDCT) of the aortic root; ECG-gated verses non-ECG-gated examinations

    International Nuclear Information System (INIS)

    Kristiansen, Joanna; Guenther, Anne; Aalokken, Trond Mogens; Andersen, Rune

    2011-01-01

    Purpose: Motion artifacts may degrade a conventional CT examination of the ascending aorta and hinder accurate diagnosis. We quantitatively compared retrospectively electrocardiographic (ECG) -gated multi detector computed tomography (MDCT) with non-ECG-gated MDCT in order to demonstrate whether or not one of the methods should be preferred. Method: The study included seventeen patients with surgically reconstructed aortic root and reimplanted coronary arteries. All patients had undergone both non-gated MDCT and retrospectively ECG-gated MDCT employing a stringently modulated tube current with single phase image reconstruction. The incidence of motion artifacts in the left main coronary artery (LM), proximal right coronary artery (RCA), and aortic root and ascending aorta were rated using a four point scale. The effective dose for each scan was calculated and normalized to a 15 cm scan length. Statistical analysis of motion artifacts and radiation dose was performed using Wilcoxon matched pairs signed rank sum test. Results: A significant reduction in motion artifacts was found in all three vessels in images from the retrospectively ECG-gated scans (LM: P = 0.005, RCA: P = 0.015, aorta: P = 0.003). The mean normalized effective radiation dose was 3.69 mSv (±1.03) for the non-ECG-gated scans and 16.37 mSv (±2.53) for the ECG-gated scans. Conclusion: Retrospective ECG-gating with single phase reconstruction significantly reduces the incidence of motion artifacts in the aortic root and the proximal portion of the coronary arteries but at the expense of a fourfold increase in radiation dose.

  14. Exploring the capability of wireless near infrared spectroscopy as a portable seizure detection device for epilepsy patients.

    Science.gov (United States)

    Jeppesen, Jesper; Beniczky, Sándor; Johansen, Peter; Sidenius, Per; Fuglsang-Frederiksen, Anders

    2015-03-01

    Near infrared spectroscopy (NIRS) has proved useful in measuring significant hemodynamic changes in the brain during epileptic seizures. The advance of NIRS-technology into wireless and portable devices raises the possibility of using the NIRS-technology for portable seizure detection. This study used NIRS to measure changes in oxygenated (HbO), deoxygenated (HbR), and total hemoglobin (HbT) at left and right side of the frontal lobe in 33 patients with epilepsy undergoing long-term video-EEG monitoring. Fifteen patients had 34 focal seizures (20 temporal-, 11 frontal-, 2 parietal-lobe, one unspecific) recorded and analyzed with NIRS. Twelve parameters consisting of maximum increase and decrease changes of HbO, HbR and HbT during seizures (1 min before- to 3 min after seizure-onset) for left and right side, were compared with the patients' own non-seizure periods (a 2-h period and a 30-min exercise-period). In both non-seizure periods 4 min moving windows with maximum overlapping were applied to find non-seizure maxima of the 12 parameters. Detection was defined as positive when seizure maximum change exceeded non-seizure maximum change. When analyzing the 12 parameters separately the positive seizure detection was in the range of 6-24%. The increase in hemodynamics was in general better at detecting seizures (15-24%) than the decrease in hemodynamics (6-18%) (P=0.02). NIRS did not seem to be a suitable technology for generic seizure detection given the device, settings, and methods used in this study. There are still several challenges to overcome before the NIRS-technology can be used as a home-monitoring seizure detection device. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  15. Smart and accurate state-of-charge indication in portable applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Notten, P.H.L.; Regtien, P.P.L.

    2005-01-01

    Accurate state-of-charge (SoC) and remaining run-time indication for portable devices is important for the user-convenience and to prolong the lifetime of batteries. However, the known methods of SoC indication in portable applications are not accurate enough under all practical conditions. The

  16. Smart and accurate State-of-Charge indication in Portable Applications

    NARCIS (Netherlands)

    Pop, V.; Bergveld, H.J.; Notten, P.H.L.; Regtien, Paulus P.L.

    2006-01-01

    Accurate state-of-charge (SoC) and remaining run-time indication for portable devices is important for the user-convenience and to prolong the lifetime of batteries. However, the known methods of SoC indication in portable applications are not accurate enough under all practical conditions. The

  17. Study design and rationale for biomedical shirt-based electrocardiography monitoring in relevant clinical situations: ECG-shirt study.

    Science.gov (United States)

    Balsam, Paweł; Lodziński, Piotr; Tymińska, Agata; Ozierański, Krzysztof; Januszkiewicz, Łukasz; Główczyńska, Renata; Wesołowska, Katarzyna; Peller, Michał; Pietrzak, Radosław; Książczyk, Tomasz; Borodzicz, Sonia; Kołtowski, Łukasz; Borkowski, Mariusz; Werner, Bożena; Opolski, Grzegorz; Grabowski, Marcin

    2018-01-01

    Today, the main challenge for researchers is to develop new technologies which may help to improve the diagnoses of cardiovascular disease (CVD), thereby reducing healthcare costs and improving the quality of life for patients. This study aims to show the utility of biomedical shirt-based electrocardiography (ECG) monitoring of patients with CVD in different clinical situations using the Nuubo® ECG (nECG) system. An investigator-initiated, multicenter, prospective observational study was carried out in a cardiology (adult and pediatric) and cardiac rehabilitation wards. ECG monitoring was used with the biomedical shirt in the following four independent groups of patients: 1) 30 patients after pulmonary vein isolation (PVI), 2) 30 cardiac resynchronization therapy (CRT) recipients, 3) 120 patients during cardiac rehabilitation after myocardial infarction, and 4) 40 pediatric patients with supraventricular tachycardia (SVT) before electrophysiology study. Approval for all study groups was obtained from the institutional review board. The biomedical shirt captures the electrocardiographic signal via textile electrodes integrated into a garment. The software allows the visualization and analysis of data such as ECG, heart rate, arrhythmia detecting algorithm and relative position of the body is captured by an electronic device. The major advantages of the nECG system are continuous ECG monitoring during daily activities, high quality of ECG recordings, as well as assurance of a proper adherence due to adequate comfort while wearing the shirt. There are only a few studies that have examined wearable systems, especially in pediatric populations. This study is registered in ClinicalTrials.gov: Identifier NCT03068169. (Cardiol J 2018; 25, 1: 52-59).

  18. A Portable Burn Pan for the Disposal of Excess Propellants

    Science.gov (United States)

    2016-06-01

    2013 - 06/01/2016 A Portable Burn Pan for the Disposal of Excess Propellants Michael Walsh USA CRREL USA CRREL 72 Lyme Road Hanover, NH 03755...Army Alaska XRF X-Ray Florescence vii ACKNOWLEDGEMENTS Project ER-201323, A Portable Burn Pan for the Disposal of Gun Propellants, was a very...contamination problem while allowing troops to train as they fight, we have developed a portable training device for burning excess gun propellants. 1.1

  19. The Role of Retinal Imaging and Portable Screening Devices in Tele-ophthalmology Applications for Diabetic Retinopathy Management.

    Science.gov (United States)

    DeBuc, Delia Cabrera

    2016-12-01

    In the years since its introduction, retinal imaging has transformed our capability to visualize the posterior pole of the eye. Increasing practical advances in mobile technology, regular monitoring, and population screening for diabetic retinopathy management offer the opportunity for further development of cost-effective applications through remote assessment of the diabetic eye using portable retinal cameras, smart-phone-based devices and telemedicine networks. Numerous retinal imaging methods and mobile technologies in tele-ophthalmology applications have been reported for diabetic retinopathy screening and management. They provide several advantages of automation, sensitivity, specificity, portability, and miniaturization for the development of point-of-care diagnostics for eye complications in diabetes. The aim of this paper is to review the role of retinal imaging and mobile technologies in tele-ophthalmology applications for diabetic retinopathy screening and management. At large, although improvements in current technology and telemedicine services are still needed, telemedicine has demonstrated to be a worthy tool to support health caregivers in the effective management and prevention of diabetes and its complications.

  20. PORTABLE SOURCE OF RADIOACTIVITY

    Science.gov (United States)

    Goertz, R.C.; Ferguson, K.R.; Rylander, E.W.; Safranski, L.M.

    1959-06-16

    A portable source for radiogiaphy or radiotherapy is described. It consists of a Tl/sup 170/ or Co/sup 60/ source mounted in a rotatable tungsten alloy plug. The plug rotates within a brass body to positions of safety or exposure. Provision is made for reloading and carrying the device safely. (T.R.H.)

  1. Portable energy: autonomy and integration in the human environment; Energie portable: autonomie et integration dans l'environnement humain

    Energy Technology Data Exchange (ETDEWEB)

    Multon, F; Delamarche, P [Rennes-2 Universite, Lab. de Physiologie et de Biomecanique de l& #x27; Exercice Mulsculaire, UMR. APS, 35 (France); Lucchese, P [CEA Fontenay-aux-Roses, Dir. de la Recherche Technologique, Hydrogene et Pile a Combustible, 92 (France); and others

    2002-07-01

    This colloquium was motivated by the possibility to recover in our environment the energy produced by our movements, but also the heat emitted and the radiations received by the human body in order to supply the energy needs of portable electronic devices (telephones, micro-computers, watches, prostheses etc..). It tries to answer the different problems raised by the implementation of portable energy sources: the energy resources in the human environment, the physical and technological processes of energy production and storage, the electronic energy conversion and remote transmission means, the intelligent energy management, and the existing and potential applications of these processes. This document brings together 16 communications presented by searchers from various domains (biology, medicine, electrochemistry, computer science, mechanics, thermodynamics, electronics etc..) on the following topics: energy in the human body, possibilities of miniaturization of fuel cells, thermo-mechanical micro-generators, thermoelectric generation, solar cells and autonomy, micro-chargeable batteries, double-layer super-capacitors (principles and electrical behaviour), renewable energies in watches, electro-mechanical devices for the exploitation of human movements energy, trans-dermal power supply, new mechanical-aided systems for blood circulation, problems and their solutions related to portable telephones, low voltage and high efficiency power electronic systems for portable applications, remote energy transmission, intelligent energy management (equipments and softwares), electromagnetic environments and health. (J.S.)

  2. ECG acquisition and automated remote processing

    CERN Document Server

    Gupta, Rajarshi; Bera, Jitendranath

    2014-01-01

    The book is focused on the area of remote processing of ECG in the context of telecardiology, an emerging area in the field of Biomedical Engineering Application. Considering the poor infrastructure and inadequate numbers of physicians in rural healthcare clinics in India and other developing nations, telemedicine services assume special importance. Telecardiology, a specialized area of telemedicine, is taken up in this book considering the importance of cardiac diseases, which is prevalent in the population under discussion. The main focus of this book is to discuss different aspects of ECG acquisition, its remote transmission and computerized ECG signal analysis for feature extraction. It also discusses ECG compression and application of standalone embedded systems, to develop a cost effective solution of a telecardiology system.

  3. Conditional Random Fields for Morphological Analysis of Wireless ECG Signals

    OpenAIRE

    Natarajan, Annamalai; Gaiser, Edward; Angarita, Gustavo; Malison, Robert; Ganesan, Deepak; Marlin, Benjamin

    2014-01-01

    Thanks to advances in mobile sensing technologies, it has recently become practical to deploy wireless electrocardiograph sensors for continuous recording of ECG signals. This capability has diverse applications in the study of human health and behavior, but to realize its full potential, new computational tools are required to effectively deal with the uncertainty that results from the noisy and highly non-stationary signals collected using these devices. In this work, we present a novel app...

  4. New methodologies for measuring Brugada ECG patterns cannot differentiate the ECG pattern of Brugada syndrome from Brugada phenocopy.

    Science.gov (United States)

    Gottschalk, Byron H; Garcia-Niebla, Javier; Anselm, Daniel D; Jaidka, Atul; De Luna, Antoni Bayés; Baranchuk, Adrian

    2016-01-01

    Brugada phenocopies (BrP) are clinical entities characterized by ECG patterns that are identical to true Brugada syndrome (BrS), but are elicited by various clinical circumstances. A recent study demonstrated that the patterns of BrP and BrS are indistinguishable under the naked eye, thereby validating the concept that the patterns are identical. The aim of our study was to determine whether recently developed ECG criteria would allow for discrimination between type-2 BrS ECG pattern and type-2 BrP ECG pattern. Ten ECGs from confirmed BrS (aborted sudden death, transformation into type 1 upon sodium channel blocking test and/or ventricular arrhythmias, positive genetics) cases and 9 ECGs from confirmed BrP were included in the study. Surface 12-lead ECGs were scanned, saved in JPEG format for blind measurement of two values: (i) β-angle; and (ii) the base of the triangle. Cut-off values of ≥58° for the β-angle and ≥4mm for the base of the triangle were used to determine the BrS ECG pattern. Mean values for the β-angle in leads V1 and V2 were 66.7±25.5 and 55.4±28.1 for BrS and 54.1±26.5 and 43.1±16.1 for BrP respectively (p=NS). Mean values for the base of the triangle in V1 and V2 were 7.5±3.9 and 5.7±3.9 for BrS and 5.6±3.2 and 4.7±2.7 for BrP respectively (p=NS). The β-angle had a sensitivity of 60%, specificity of 78% (LR+ 2.7, LR- 0.5). The base of the triangle had a sensitivity of 80%, specificity of 40% (LR+ 1.4, LR- 0.5). New ECG criteria presented relatively low sensitivity and specificity, positive and negative predictive values to discriminate between BrS and BrP ECG patterns, providing further evidence that the two patterns are identical. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Research and Development of a portable microfocus x-ray system capable of providing ultra-high resolutions images of improvised explosive devices

    International Nuclear Information System (INIS)

    Korkala, G.

    1989-01-01

    The utilization of x-ray screening has long been a recognized valuable tool as a means to evaluate and identify suspect articles for possible improvised explosive devices. Recent bombings indicate an increase in technical sophistication by the terrorist which demand additional means to further the possibility of detecting these devices before they reach their target or detonate. This paper discusses history of the use of x-ray and the design parameters of a portable micro-focus x-ray system capable of providing ultra high resolution radiographs as well as being able to be used with additional state-of-the-art imaging systems

  6. Correlation of resting ECG, stress ECG and thallium scan in the evaluation of coronary artery disease

    International Nuclear Information System (INIS)

    Khan, A.; Amin, W.; Khan, M.Z.A.; Ahmed, A.; Kiani, M.R.

    1987-01-01

    This study includes 70 cases who underwent myocardial perfusion studies with thallium 201 during the year 1984-85. They were studied clinically, had their resting ECGs, stress ECGs and coronary angiograms. Majority of these patients were males, their ages ranged between 34-70 years. The patients population included with typical/atypical chest pain, some with resting ECG abnormalities, after coronary angiography and a few after coronary artery bypass graft surgery. The result of all the modalities were compared with the conventional gold standard for ischaemic heart disease, i.e. coronary angiogram. It is concluded that the sensitivity of resting ECG in the diagnosis of ischaemic heart disease is very low. The exercise test alone was found conclusive in about 74% of patients while sensitivity of thallium scan was 66% in this particular group of patients. (author)

  7. Noise Maps for Quantitative and Clinical Severity Towards Long-Term ECG Monitoring.

    Science.gov (United States)

    Everss-Villalba, Estrella; Melgarejo-Meseguer, Francisco Manuel; Blanco-Velasco, Manuel; Gimeno-Blanes, Francisco Javier; Sala-Pla, Salvador; Rojo-Álvarez, José Luis; García-Alberola, Arcadi

    2017-10-25

    Noise and artifacts are inherent contaminating components and are particularly present in Holter electrocardiogram (ECG) monitoring. The presence of noise is even more significant in long-term monitoring (LTM) recordings, as these are collected for several days in patients following their daily activities; hence, strong artifact components can temporarily impair the clinical measurements from the LTM recordings. Traditionally, the noise presence has been dealt with as a problem of non-desirable component removal by means of several quantitative signal metrics such as the signal-to-noise ratio (SNR), but current systems do not provide any information about the true impact of noise on the ECG clinical evaluation. As a first step towards an alternative to classical approaches, this work assesses the ECG quality under the assumption that an ECG has good quality when it is clinically interpretable. Therefore, our hypotheses are that it is possible (a) to create a clinical severity score for the effect of the noise on the ECG, (b) to characterize its consistency in terms of its temporal and statistical distribution, and (c) to use it for signal quality evaluation in LTM scenarios. For this purpose, a database of external event recorder (EER) signals is assembled and labeled from a clinical point of view for its use as the gold standard of noise severity categorization. These devices are assumed to capture those signal segments more prone to be corrupted with noise during long-term periods. Then, the ECG noise is characterized through the comparison of these clinical severity criteria with conventional quantitative metrics taken from traditional noise-removal approaches, and noise maps are proposed as a novel representation tool to achieve this comparison. Our results showed that neither of the benchmarked quantitative noise measurement criteria represent an accurate enough estimation of the clinical severity of the noise. A case study of long-term ECG is reported

  8. Predicting aged pork quality using a portable raman device

    Science.gov (United States)

    Objectives: A need exists for a better on-line evaluation method for pork quality. Raman spectroscopy evaluates structure and composition of food samples, with advantage of being portable, non-invasive and insensitive to water. The objectives of this study were to evaluate the correlation between Ra...

  9. Variable threshold method for ECG R-peak detection.

    Science.gov (United States)

    Kew, Hsein-Ping; Jeong, Do-Un

    2011-10-01

    In this paper, a wearable belt-type ECG electrode worn around the chest by measuring the real-time ECG is produced in order to minimize the inconvenient in wearing. ECG signal is detected using a potential instrument system. The measured ECG signal is transmits via an ultra low power consumption wireless data communications unit to personal computer using Zigbee-compatible wireless sensor node. ECG signals carry a lot of clinical information for a cardiologist especially the R-peak detection in ECG. R-peak detection generally uses the threshold value which is fixed. There will be errors in peak detection when the baseline changes due to motion artifacts and signal size changes. Preprocessing process which includes differentiation process and Hilbert transform is used as signal preprocessing algorithm. Thereafter, variable threshold method is used to detect the R-peak which is more accurate and efficient than fixed threshold value method. R-peak detection using MIT-BIH databases and Long Term Real-Time ECG is performed in this research in order to evaluate the performance analysis.

  10. Common ECG Lead Placement Errors. Part I: Limb Lead Reversals

    Directory of Open Access Journals (Sweden)

    Allison V. Rosen

    2015-10-01

    Full Text Available Background: Electrocardiography (ECG is a very useful diagnostic tool. However, errors in placement of ECG leads can create artifacts, mimic pathologies, and hinder proper ECG interpretation. It is important for members of the health care team to be able to recognize the common patterns resulting from lead placement errors. Methods: 12-lead ECGs were recorded in a single male healthy subject in his mid 20s. Six different limb lead reversals were compared to ECG recordings from correct lead placement. Results: Classic ECG patterns were observed when leads were reversed. Methods of discriminating these ECG patterns from true pathologic findings were described. Conclusion: Correct recording and interpretation of ECGs is key to providing optimal patient care. It is therefore crucial to be able to recognize common ECG patterns that are indicative of lead reversals.

  11. Portable recording in the assessment of obstructive sleep apnea. ASDA standards of practice.

    Science.gov (United States)

    Ferber, R; Millman, R; Coppola, M; Fleetham, J; Murray, C F; Iber, C; McCall, V; Nino-Murcia, G; Pressman, M; Sanders, M

    1994-06-01

    The objective assessment of patients with a presumptive diagnosis of obstructive sleep apnea (OSA) has primarily used attended polysomnographic study. Recent technologic advances and issues of availability, convenience and cost have led to a rapid increase in the use of portable recording devices. However, limited scientific information has been published regarding the evaluation of the efficacy, accuracy, validity, utility, cost effectiveness and limitations of this portable equipment. Attaining a clear assessment of the role of portable devices is complicated by the multiplicity of recording systems and the variability of clinical settings in which they have been analyzed. This paper reviews the current knowledge base regarding portable recording in the assessment of OSA, including technical considerations, validation studies, potential advantages and disadvantages, issues of safety, current clinical usage and areas most in need of further study.

  12. Application of mobile agent technology with portable information device to the maintenance support of nuclear power plant

    International Nuclear Information System (INIS)

    Takahashi, Makoto; Ito, Yo; Sato, Hisashi; Kitamura, Masaharu

    2004-01-01

    A support system for trouble shooting activities has been developed based on the distributed DB and mobile agent technology. The main purpose of the proposed system is to provide field workers with effective functions for realizing trouble-shooting with the aid of the mobile agents, which performs data retrieval from DB and fault diagnosis. In the proposed scheme of trouble shooting support, a portable information device is utilized by the maintenance personnel, which is connected to the local data base (LDB) via wireless network. The important point is that these functions can be accessed by the field workers through wearable information device with the lower cognitive burden. The prototype system has been developed using the JAVA-based Aglets Framework SDK and applied to the actual objective system. It has been confirmed through the experiments that the developed prototype system is capable of performing the tasks to support diagnostic activities. (author)

  13. ECG-gating in non-cardiac digital subtraction angiography

    International Nuclear Information System (INIS)

    Gattoni, F.; Baldini, V.; Cairo, F.

    1987-01-01

    This paper reports the results of the ECG-gating in non-cardiac digital subtraction angiography (DSA). One hundred and fifteen patients underwent DSA (126 examinations); ECG-gating was applied in 66/126 examinations: images recorded at 70% of R wave were subtracted. Artifacts produced by vascular movements were evaluated in all patients: only 40 examinations, carried out whithout ECG-gating, showed vascular artifacts. The major advantage of the ECG-gated DSA is the more efficent subtraction because of the better images superimposition: therefore, ECG-gating can be clinically helpful. On the contrary, it could be a problem in arrhytmic or bradycardic patients. ECG-gating is helpful in DSA imaging of the thoracic and abdominal aorta and of the cervical and renal arteries. In the examinations of peripheral vessels of the limbs it is not so efficent as in the trunk or in the neck

  14. Reliability of Computer Analysis of Electrocardiograms (ECG) of ...

    African Journals Online (AJOL)

    Background: Computer programmes have been introduced to electrocardiography (ECG) with most physicians in Africa depending on computer interpretation of ECG. This study was undertaken to evaluate the reliability of computer interpretation of the 12-Lead ECG in the Black race. Methodology: Using the SCHILLER ...

  15. Thermostatted dual-channel portable capillary electrophoresis instrument

    Czech Academy of Sciences Publication Activity Database

    Koenka, I.J.; Küng, N.; Kubáň, Pavel; Chwalek, T.; Furrer, G.; Wehrli, B.; Müller, B.; Hauser, P.C.

    2016-01-01

    Roč. 37, 17-18 (2016), s. 2368-2375 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : portable devices * on-site measurements * capillary electrophoresis Subject RIV: CB - Analytical Chemistry , Separation Impact factor: 2.744, year: 2016

  16. Thermostatted dual-channel portable capillary electrophoresis instrument

    Czech Academy of Sciences Publication Activity Database

    Koenka, I.J.; Küng, N.; Kubáň, Pavel; Chwalek, T.; Furrer, G.; Wehrli, B.; Müller, B.; Hauser, P.C.

    2016-01-01

    Roč. 37, 17-18 (2016), s. 2368-2375 ISSN 0173-0835 Institutional support: RVO:68081715 Keywords : portable devices * on-site measurements * capillary electrophoresis Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.744, year: 2016

  17. Comparison of four different mobile devices for measuring heart rate and ECG with respect to aspects of usability and acceptance by older people.

    Science.gov (United States)

    Ehmen, Hilko; Haesner, Marten; Steinke, Ines; Dorn, Mario; Gövercin, Mehmet; Steinhagen-Thiessen, Elisabeth

    2012-05-01

    In the area of product design and usability, most products are developed for the mass-market by technically oriented designers and developers for use by persons who themselves are also technically adept by today's standards. The demands of older people are commonly not given sufficient consideration within the early developmental process. In the present study, the usability and acceptability of four different devices meant to be worn for the measurement of heart rate or ECG were analyzed on the basis of qualitative subjective user ratings and structured interviews of twelve older participants. The data suggest that there was a relatively high acceptance concerning these belts by older adults but none of the four harnesses was completely usable. Especially problematic to the point of limiting satisfaction among older subjects were problems encountered while adjusting the length of the belt and/or closing the locking mechanism. The two devices intended for dedicated heart rate recording yielded the highest user ratings for design, and were clearly preferred for extended wearing time. Yet for all the devices participants identified several important deficiencies in their design, as well as suggestions for improvement. We conclude that the creation of an acceptable monitoring device for older persons requires designers and developers to consider the special demands and abilities of the target group. Copyright © 2011 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  18. Expert knowledge for computerized ECG interpretation

    NARCIS (Netherlands)

    J.A. Kors (Jan)

    1992-01-01

    textabstractIn this study, two main questions are addressed: (1) Can the time consuming and cumbersome development and refinement of (heuristic) ECG classifiers be alleviated, and (2) Is it possible to increase diagnostic performance of ECG computer programs by combining knowledge from multiple

  19. ECG authentication in post-exercise situation.

    Science.gov (United States)

    Dongsuk Sung; Jeehoon Kim; Myungjun Koh; Kwangsuk Park

    2017-07-01

    Human authentication based on electrocardiogram (ECG) has been a remarkable issue for recent ten years. This paper proposed an authentication technology with the ECG data recorded after the harsh exercise. 55 subjects voluntarily attended to this experiment. A stepper was used as an exercise equipment. The subjects are asked to do stepper for 5 minutes and their ECG signals are acquired before and after the exercise in rest, sitting posture. Linear discriminant analysis (LDA) was used for both feature extraction and classification. Even though, within the first 1 minute recording, the subject recognition accuracy was 59.64%, which is too low to utilize, after one minute the accuracy was higher than 90% and it increased up to 96.22% within 5 minutes, which is plausible to use in authentication circumstances. Therefore, we have concluded that ECG authentication techniques will be able to be used after 1 minute of catching breath.

  20. Sparse Matrix for ECG Identification with Two-Lead Features

    Directory of Open Access Journals (Sweden)

    Kuo-Kun Tseng

    2015-01-01

    Full Text Available Electrocardiograph (ECG human identification has the potential to improve biometric security. However, improvements in ECG identification and feature extraction are required. Previous work has focused on single lead ECG signals. Our work proposes a new algorithm for human identification by mapping two-lead ECG signals onto a two-dimensional matrix then employing a sparse matrix method to process the matrix. And that is the first application of sparse matrix techniques for ECG identification. Moreover, the results of our experiments demonstrate the benefits of our approach over existing methods.

  1. A capacitive ECG array with visual patient feedback.

    Science.gov (United States)

    Eilebrecht, Benjamin; Schommartz, Antje; Walter, Marian; Wartzek, Tobias; Czaplik, Michael; Leonhardt, Steffen

    2010-01-01

    Capacitive electrocardiogram (ECG) sensing is a promising technique for less constraining vital signal measurement and close to a commercial application. Even bigger trials testing the diagnostic significance were already done with single lead systems. Anyway, most applications to be found in research are limited to one channel and thus limited in its diagnostic relevance as only diseases coming along with a change of the heart rate can be diagnosed adequately. As a consequence the need for capacitive multi-channel ECGs combining the diagnostic relevance and the advantages of capacitive ECG sensing emerges. This paper introduces a capacitive ECG measurement system which allows the recording of standardized ECG leads according to Einthoven and Goldberger by means of an electrode array with nine electrodes.

  2. A cloud computing based 12-lead ECG telemedicine service.

    Science.gov (United States)

    Hsieh, Jui-Chien; Hsu, Meng-Wei

    2012-07-28

    Due to the great variability of 12-lead ECG instruments and medical specialists' interpretation skills, it remains a challenge to deliver rapid and accurate 12-lead ECG reports with senior cardiologists' decision making support in emergency telecardiology. We create a new cloud and pervasive computing based 12-lead Electrocardiography (ECG) service to realize ubiquitous 12-lead ECG tele-diagnosis. This developed service enables ECG to be transmitted and interpreted via mobile phones. That is, tele-consultation can take place while the patient is on the ambulance, between the onsite clinicians and the off-site senior cardiologists, or among hospitals. Most importantly, this developed service is convenient, efficient, and inexpensive. This cloud computing based ECG tele-consultation service expands the traditional 12-lead ECG applications onto the collaboration of clinicians at different locations or among hospitals. In short, this service can greatly improve medical service quality and efficiency, especially for patients in rural areas. This service has been evaluated and proved to be useful by cardiologists in Taiwan.

  3. Evaluation of 4 new generation portable ventilators.

    Science.gov (United States)

    Blakeman, Thomas C; Branson, Richard D

    2013-02-01

    Portable ventilators are increasingly utilized in the intra- and inter-hospital transport of patients. We evaluated 4 portable ventilators, Impact EMV, CareFusion LTV 1200, Newport HT70, and Hamilton T1, in terms of triggering, delivered tidal volume (V(T)) accuracy, battery duration, delivered F(IO(2)) accuracy, and gas consumption. Triggering was tested using a microprocessor controlled breathing simulator that simulated a weak, normal, and aggressive inspiratory effort using muscle pressures of -2, -4, and -8 cm H2O respectively. Delivered V(T) and F(IO(2)) accuracy were evaluated across a range of operation. To determine gas consumption, the ventilators were attached to an E type oxygen cylinder and operated at an F(IO(2)) of 1.0 until the tank was depleted. Battery duration was tested by operating each ventilator at an F(IO(2)) of 0.21 until the device ceased to operate. Differences remain among devices in several aspects of the testing protocol. Gas consumption ranged from 9.2 to 16 L/min. Battery duration ranged from 101 to 640 min. Triggering performance varied among devices but was consistent breath to breath within the same device, using the fastest and slowest rise time settings. F(IO(2)) accuracy varied at the low range on the 50 mL V(T) setting with one device, and at the high range on both the 50 mL and 500 mL V(T) settings with another. Manufacturers continue to improve the performance of portable ventilators. All the ventilators we tested performed well on V(T) delivery across a range of settings, using both the internal drive mechanism (F(IO(2)) 0.21) and compressed oxygen (F(IO(2)) 1.0). Two of the ventilators were unable to deliver accurate F(IO(2)) across the range of V(T). None of the devices was clearly superior to the others in all aspects of our evaluation. © 2013 Daedalus Enterprises.

  4. Association Between Portable Screen-Based Media Device Access or Use and Sleep Outcomes: A Systematic Review and Meta-analysis.

    Science.gov (United States)

    Carter, Ben; Rees, Philippa; Hale, Lauren; Bhattacharjee, Darsharna; Paradkar, Mandar S

    2016-12-01

    Sleep is vital to children's biopsychosocial development. Inadequate sleep quantity and quality is a public health concern with an array of detrimental health outcomes. Portable mobile and media devices have become a ubiquitous part of children's lives and may affect their sleep duration and quality. To conduct a systematic review and meta-analysis to examine whether there is an association between portable screen-based media device (eg, cell phones and tablet devices) access or use in the sleep environment and sleep outcomes. A search strategy consisting of gray literature and 24 Medical Subject Headings was developed in Ovid MEDLINE and adapted for other databases between January 1, 2011, and June 15, 2015. Searches of the published literature were conducted across 12 databases. No language restriction was applied. The analysis included randomized clinical trials, cohort studies, and cross-sectional study designs. Inclusion criteria were studies of school-age children between 6 and 19 years. Exclusion criteria were studies of stationary exposures, such as televisions or desktop or personal computers, or studies investigating electromagnetic radiation. Of 467 studies identified, 20 cross-sectional studies were assessed for methodological quality. Two reviewers independently extracted data. The primary outcomes were inadequate sleep quantity, poor sleep quality, and excessive daytime sleepiness, studied according to an a priori protocol. Twenty studies were included, and their quality was assessed. The studies involved 125 198 children (mean [SD] age, 14.5 [2.2] years; 50.1% male). There was a strong and consistent association between bedtime media device use and inadequate sleep quantity (odds ratio [OR], 2.17; 95% CI, 1.42-3.32) (P sleep quality (OR, 1.46; 95% CI, 1.14-1.88) (P = .003, I2 = 76%), and excessive daytime sleepiness (OR, 2.72; 95% CI, 1.32-5.61) (P = .007, I2 = 50%). In addition, children who had access to (but did not use) media

  5. Design and implementation of an electrocardiographical signal acquisition and digital processing system orientated to the detection of paroxysmal arrhythmias

    International Nuclear Information System (INIS)

    Braceli, Agustín Iriart; Morani, Jorge Exequiel

    2011-01-01

    This article describes the design, technical aspects and implementation of a device capable of acquiring electrocardiograph signals; visualize them in real time over a graphic liquid crystal display (GLCD), and the storage of these ECG registers on a SD memory card. It also details a noise suppression algorithm using the Wavelet Transform. This system was specially developed to cover some bankruptcy that presents actual Holters or ECG regarding the detection of paroxysmal arrhythmias. The contribution of this work is settled on its portability and low production cost. The filtering method used provides an ECG signal without any significant noise and appropriate to the diagnosis of cardiac pathologies.

  6. Design and implementation of an electrocardiographical signal acquisition and digital processing system orientated to the detection of paroxysmal arrhythmias

    Science.gov (United States)

    Iriart Braceli, Agustín; Exequiel Morani, Jorge

    2011-12-01

    This article describes the design, technical aspects and implementation of a device capable of acquiring electrocardiograph signals; visualize them in real time over a graphic liquid crystal display (GLCD), and the storage of these ECG registers on a SD memory card. It also details a noise suppression algorithm using the Wavelet Transform. This system was specially developed to cover some bankruptcy that presents actual Holters or ECG regarding the detection of paroxysmal arrhythmias. The contribution of this work is settled on its portability and low production cost. The filtering method used provides an ECG signal without any significant noise and appropriate to the diagnosis of cardiac pathologies.

  7. Research on comparison of exposure with electrocardiographic gated mA modulation (ECG) and ECG and CAREDose 4D mode in coronary multi-slice spiral CT angiography

    International Nuclear Information System (INIS)

    Liu Bin; Guo Senlin; Wei Lan; Fei Xiaolu; Bai Mei

    2009-01-01

    Objective: The objective of this article was to compare patients dose with electrocardiographic gated mA modulation (ECG) and ECG and CAREDose 4D mode during coronary MSCT angiography. Methods: The research was based on phantom experiment and computer simulation to get the mean value of peak skin dose data and effective dose data respectively and to analyze deterministic and stochastic radiation risk. Results: The peak skin dose using ECG mode alone and using ECG and CAREDose 4D mode with the same image noise level was (87.4 ± 0.9) and (45.9 ± 1.2) mGy respectively. Effective dose was 17 and 10 rosy for ECG mode and ECG and CAREDose 4D mode respectively. Comparing with ECG mode alone, ECG and CAREDose 4D mode reduced organ dose of gonad, red marrow, lung, stomach, breast and thyroid by 40.0%, 36.7%, 39.3%, 37.7%, 38.8% and 38.9%, respectively. Conclusion: Results showed that ECG and CAREDose 4D mode can reduce radiation dose effectively comparing using ECG mode alone, and that ECG and CAREDose 4D mode should be widely applied clinically with appropriate initial settings. (authors)

  8. Conception of modular hydrogen storage systems for portable applications

    International Nuclear Information System (INIS)

    Paladini, V.; Miotti, P.; Manzoni, G.; Ozebec, J.

    2003-01-01

    Hydrogen, till now the most prominent candidate as a future sustainable energy carrier, yields a gravimetric energy density three times as high as liquid hydrocarbon. Furthermore it is proven to be the most environmentally friendly fuel. Unfortunately, a few components regarding storage and tank solutions have not yet reached a technology level required for broad use. Thus, we intend to propose solutions and device concepts for both devices everyday use and space applications. This contribution assesses both state of the art of storage materials and existing technologies of power generation systems for application in portable devices. The aim of this work is to define the characteristics of a modular system, being suitable for a wide range of different devices, operating on advanced metal hydrides as the active hydrogen supply component. The concept has been studied and modelled with respect to volumes, mass and power requirements of different devices. The smallest system developed is intended to run, for example, a mobile phone. Minor tuning and straightforward scale up of this power supply module should make it suitable for general applicability in any portable device. (author)

  9. Position statement on use of hand-held portable dental X-ray equipment

    International Nuclear Information System (INIS)

    2014-06-01

    The position statement focuses on justification in the medical field, in particular on the use of hand-held portable dental x-ray equipment. It supplements another HERCA position paper, providing a general overview of the use of all hand-held portable X-ray equipment. Key Messages: - HERCA finds that the use of hand-held portable X-ray devices should be discouraged except in special circumstances. - As a general rule, these devices should only be used in scenarios where an intraoral radiograph is deemed necessary for a patient and the use of a fixed or semi-mobile x-ray unit is impractical, e.g.: - nursing homes, residential care facilities or homes for persons with disabilities; - forensic odontology, - military operations abroad without dental facilities

  10. NAFFS: network attached flash file system for cloud storage on portable consumer electronics

    Science.gov (United States)

    Han, Lin; Huang, Hao; Xie, Changsheng

    Cloud storage technology has become a research hotspot in recent years, while the existing cloud storage services are mainly designed for data storage needs with stable high speed Internet connection. Mobile Internet connections are often unstable and the speed is relatively low. These native features of mobile Internet limit the use of cloud storage in portable consumer electronics. The Network Attached Flash File System (NAFFS) presented the idea of taking the portable device built-in NAND flash memory as the front-end cache of virtualized cloud storage device. Modern portable devices with Internet connection have built-in more than 1GB NAND Flash, which is quite enough for daily data storage. The data transfer rate of NAND flash device is much higher than mobile Internet connections[1], and its non-volatile feature makes it very suitable as the cache device of Internet cloud storage on portable device, which often have unstable power supply and intermittent Internet connection. In the present work, NAFFS is evaluated with several benchmarks, and its performance is compared with traditional network attached file systems, such as NFS. Our evaluation results indicate that the NAFFS achieves an average accessing speed of 3.38MB/s, which is about 3 times faster than directly accessing cloud storage by mobile Internet connection, and offers a more stable interface than that of directly using cloud storage API. Unstable Internet connection and sudden power off condition are tolerable, and no data in cache will be lost in such situation.

  11. Automatic ECG quality scoring methodology: mimicking human annotators

    International Nuclear Information System (INIS)

    Johannesen, Lars; Galeotti, Loriano

    2012-01-01

    An algorithm to determine the quality of electrocardiograms (ECGs) can enable inexperienced nurses and paramedics to record ECGs of sufficient diagnostic quality. Previously, we proposed an algorithm for determining if ECG recordings are of acceptable quality, which was entered in the PhysioNet Challenge 2011. In the present work, we propose an improved two-step algorithm, which first rejects ECGs with macroscopic errors (signal absent, large voltage shifts or saturation) and subsequently quantifies the noise (baseline, powerline or muscular noise) on a continuous scale. The performance of the improved algorithm was evaluated using the PhysioNet Challenge database (1500 ECGs rated by humans for signal quality). We achieved a classification accuracy of 92.3% on the training set and 90.0% on the test set. The improved algorithm is capable of detecting ECGs with macroscopic errors and giving the user a score of the overall quality. This allows the user to assess the degree of noise and decide if it is acceptable depending on the purpose of the recording. (paper)

  12. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    Science.gov (United States)

    O'Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-08-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact. This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface.

  13. Design, fabrication and skin-electrode contact analysis of polymer microneedle-based ECG electrodes

    International Nuclear Information System (INIS)

    O’Mahony, Conor; Grygoryev, Konstantin; Ciarlone, Antonio; Giannoni, Giuseppe; Kenthao, Anan; Galvin, Paul

    2016-01-01

    Microneedle-based ‘dry’ electrodes have immense potential for use in diagnostic procedures such as electrocardiography (ECG) analysis, as they eliminate several of the drawbacks associated with the conventional ‘wet’ electrodes currently used for physiological signal recording. To be commercially successful in such a competitive market, it is essential that dry electrodes are manufacturable in high volumes and at low cost. In addition, the topographical nature of these emerging devices means that electrode performance is likely to be highly dependent on the quality of the skin-electrode contact.This paper presents a low-cost, wafer-level micromoulding technology for the fabrication of polymeric ECG electrodes that use microneedle structures to make a direct electrical contact to the body. The double-sided moulding process can be used to eliminate post-process via creation and wafer dicing steps. In addition, measurement techniques have been developed to characterize the skin-electrode contact force. We perform the first analysis of signal-to-noise ratio dependency on contact force, and show that although microneedle-based electrodes can outperform conventional gel electrodes, the quality of ECG recordings is significantly dependent on temporal and mechanical aspects of the skin-electrode interface. (paper)

  14. Basic principles of the ECG. The normal ECG

    African Journals Online (AJOL)

    Angel_D

    Southern Sudan Medical Journal vol 3. no 2. 26. How to read an ... Reduce some of the anxiety juniors often experience when faced with an ECG. ... This overall direction of travel of the electrical .... Anne Lancey, Education Centre, St Mary's Hospital, Isle of Wight, UK. .... 'method' section explains how the literature search.

  15. Development of a portable, high-energy radiographic source

    International Nuclear Information System (INIS)

    Reinhart, E.R.; Wenk, S.A.; Schonberg, R.G.; Mixon, G.L.

    1979-01-01

    The Electric Power Research Institute (EPRI) is sponsoring a two-year program to develop a portable, high-energy (3 to 4 MeV) radiographic system for inservice and repair inspections of components at nuclear power stations. The basic design concept uses a lightweight, portable linear accelerator (LINAC). The design objectives, concepts employed, and progress to date are described. Specific potential applications and accompanying radiographic techniques are discussed, along with the novel beam angulation devices to permit utilization in areas of highly restricted access

  16. Are ECG abnormalities in Noonan syndrome characteristic for the syndrome?

    Science.gov (United States)

    Raaijmakers, R; Noordam, C; Noonan, J A; Croonen, E A; van der Burgt, C J A M; Draaisma, J M T

    2008-12-01

    Of all patients with Noonan syndrome, 50-90% have one or more congenital heart defects. The most frequent occurring are pulmonary stenosis (PS) and hypertrophic cardiomyopathy. The electrocardiogram (ECG) of a patient with Noonan syndrome often shows a characteristic pattern, with a left axis deviation, abnormal R/S ratio over the left precordium, and an abnormal Q wave. The objective of this study was to determine if these ECG characteristics are an independent feature of the Noonan syndrome or if they are related to the congenital heart defect. A cohort study was performed with 118 patients from two university hospitals in the United States and in The Netherlands. All patients were diagnosed with definite Noonan syndrome and had had an ECG and echocardiography. Sixty-nine patients (58%) had characteristic abnormalities of the ECG. In the patient group without a cardiac defect (n = 21), ten patients had a characteristic ECG abnormality. There was no statistical relationship between the presence of a characteristic ECG abnormality and the presence of a cardiac defect (p = 0.33). Patients with hypertrophic cardiomyopathy had more ECG abnormalities in total (p = 0.05), without correlation with a specific ECG abnormality. We conclude that the ECG features in patients with Noonan syndrome are characteristic for the syndrome and are not related to a specific cardiac defect. An ECG is very useful in the diagnosis of Noonan syndrome; every child with a Noonan phenotype should have an ECG and echocardiogram for evaluation.

  17. Freeware eLearning Flash-ECG for learning electrocardiography.

    Science.gov (United States)

    Romanov, Kalle; Kuusi, Timo

    2009-06-01

    Electrocardiographic (ECG) analysis can be taught in eLearning programmes with suitable software that permits the effective use of basic tools such as a ruler and a magnifier, required for measurements. The Flash-ECG (Research & Development Unit for Medical Education, University of Helsinki, Finland) was developed to enable teachers and students to use scanned and archived ECGs on computer screens and classroom projectors. The software requires only a standard web browser with a Flash plug-in and can be integrated with learning environments (Blackboard/WebCT, Moodle). The Flash-ECG is freeware and is available to medical teachers worldwide.

  18. A cloud computing based 12-lead ECG telemedicine service

    Science.gov (United States)

    2012-01-01

    Background Due to the great variability of 12-lead ECG instruments and medical specialists’ interpretation skills, it remains a challenge to deliver rapid and accurate 12-lead ECG reports with senior cardiologists’ decision making support in emergency telecardiology. Methods We create a new cloud and pervasive computing based 12-lead Electrocardiography (ECG) service to realize ubiquitous 12-lead ECG tele-diagnosis. Results This developed service enables ECG to be transmitted and interpreted via mobile phones. That is, tele-consultation can take place while the patient is on the ambulance, between the onsite clinicians and the off-site senior cardiologists, or among hospitals. Most importantly, this developed service is convenient, efficient, and inexpensive. Conclusions This cloud computing based ECG tele-consultation service expands the traditional 12-lead ECG applications onto the collaboration of clinicians at different locations or among hospitals. In short, this service can greatly improve medical service quality and efficiency, especially for patients in rural areas. This service has been evaluated and proved to be useful by cardiologists in Taiwan. PMID:22838382

  19. A cloud computing based 12-lead ECG telemedicine service

    Directory of Open Access Journals (Sweden)

    Hsieh Jui-chien

    2012-07-01

    Full Text Available Abstract Background Due to the great variability of 12-lead ECG instruments and medical specialists’ interpretation skills, it remains a challenge to deliver rapid and accurate 12-lead ECG reports with senior cardiologists’ decision making support in emergency telecardiology. Methods We create a new cloud and pervasive computing based 12-lead Electrocardiography (ECG service to realize ubiquitous 12-lead ECG tele-diagnosis. Results This developed service enables ECG to be transmitted and interpreted via mobile phones. That is, tele-consultation can take place while the patient is on the ambulance, between the onsite clinicians and the off-site senior cardiologists, or among hospitals. Most importantly, this developed service is convenient, efficient, and inexpensive. Conclusions This cloud computing based ECG tele-consultation service expands the traditional 12-lead ECG applications onto the collaboration of clinicians at different locations or among hospitals. In short, this service can greatly improve medical service quality and efficiency, especially for patients in rural areas. This service has been evaluated and proved to be useful by cardiologists in Taiwan.

  20. A model-based Bayesian framework for ECG beat segmentation

    International Nuclear Information System (INIS)

    Sayadi, O; Shamsollahi, M B

    2009-01-01

    The study of electrocardiogram (ECG) waveform amplitudes, timings and patterns has been the subject of intense research, for it provides a deep insight into the diagnostic features of the heart's functionality. In some recent works, a Bayesian filtering paradigm has been proposed for denoising and compression of ECG signals. In this paper, it is shown that this framework may be effectively used for ECG beat segmentation and extraction of fiducial points. Analytic expressions for the determination of points and intervals are derived and evaluated on various real ECG signals. Simulation results show that the method can contribute to and enhance the clinical ECG beat segmentation performance

  1. Smart Device for the Determination of Heart Rate Variability in Real Time

    Directory of Open Access Journals (Sweden)

    David Naranjo-Hernández

    2017-01-01

    Full Text Available This work presents a first approach to the design, development, and implementation of a smart device for the real-time measurement and detection of alterations in heart rate variability (HRV. The smart device follows a modular design scheme, which consists of an electrocardiogram (ECG signal acquisition module, a processing module and a wireless communications module. From five-minute ECG signals, the processing module algorithms perform a spectral estimation of the HRV. The experimental results demonstrate the viability of the smart device and the proposed processing algorithms.

  2. ECG telemetry in conscious guinea pigs.

    Science.gov (United States)

    Ruppert, Sabine; Vormberge, Thomas; Igl, Bernd-Wolfgang; Hoffmann, Michael

    2016-01-01

    During preclinical drug development, monitoring of the electrocardiogram (ECG) is an important part of cardiac safety assessment. To detect potential pro-arrhythmic liabilities of a drug candidate and for internal decision-making during early stage drug development an in vivo model in small animals with translatability to human cardiac function is required. Over the last years, modifications/improvements regarding animal housing, ECG electrode placement, and data evaluation have been introduced into an established model for ECG recordings using telemetry in conscious, freely moving guinea pigs. Pharmacological validation using selected reference compounds affecting different mechanisms relevant for cardiac electrophysiology (quinidine, flecainide, atenolol, dl-sotalol, dofetilide, nifedipine, moxifloxacin) was conducted and findings were compared with results obtained in telemetered Beagle dogs. Under standardized conditions, reliable ECG data with low variability allowing largely automated evaluation were obtained from the telemetered guinea pig model. The model is sensitive to compounds blocking cardiac sodium channels, hERG K(+) channels and calcium channels, and appears to be even more sensitive to β-blockers as observed in dogs at rest. QT interval correction according to Bazett and Sarma appears to be appropriate methods in conscious guinea pigs. Overall, the telemetered guinea pig is a suitable model for the conduct of early stage preclinical ECG assessment. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Methods for Improving the Diagnosis of a Brugada ECG Pattern.

    Science.gov (United States)

    Gottschalk, Byron H; Garcia-Niebla, Javier; Anselm, Daniel D; Glover, Benedict; Baranchuk, Adrian

    2016-03-01

    Brugada syndrome (BrS) is an inherited channelopathy that predisposes individuals to malignant arrhythmias and can lead to sudden cardiac death. The condition is characterized by two electrocardiography (ECG) patterns: the type-1 or "coved" ECG and the type-2 or "saddleback" ECG. Although the type-1 Brugada ECG pattern is diagnostic for the condition, the type-2 Brugada ECG pattern requires differential diagnosis from conditions that produce a similar morphology. In this article, we present a case that is suspicious but not diagnostic for BrS and discuss the application of ECG methodologies for increasing or decreasing suspicion for a diagnosis of BrS. © 2015 Wiley Periodicals, Inc.

  4. Spectroelectrochemical Sensing Based on Multimode Selectivity simultaneously Achievable in a Single Device. 11. Design and Evaluation of a Small Portable Sensor for the Determination of Ferrocyanide in Hanford Waste Samples

    International Nuclear Information System (INIS)

    Stegemiller, Michael L.; Heineman, William R.; Seliskar, Carl J.; Ridgway, Thomas H.; Bryan, Samuel A.; Hubler, Timothy L.; Sell, Richard L.

    2003-01-01

    Spectroelectrochemical sensing based on multimode selectivity simultaneously achievable in a single device. 11. Design and evaluation of a small portable sensor for the determination of ferrocyanide in Hanford waste samples

  5. New system for digital to analog transformation and reconstruction of 12-lead ECGs.

    Science.gov (United States)

    Kothadia, Roshni; Kulecz, Walter B; Kofman, Igor S; Black, Adam J; Grier, James W; Schlegel, Todd T

    2013-01-01

    We describe initial validation of a new system for digital to analog conversion (DAC) and reconstruction of 12-lead ECGs. The system utilizes an open and optimized software format with a commensurately optimized DAC hardware configuration to accurately reproduce, from digital files, the original analog electrocardiographic signals of previously instrumented patients. By doing so, the system also ultimately allows for transmission of data collected on one manufacturer's 12-lead ECG hardware/software into that of any other. To initially validate the system, we compared original and post-DAC re-digitized 12-lead ECG data files (∼5-minutes long) in two types of validation studies in 10 patients. The first type quantitatively compared the total waveform voltage differences between the original and re-digitized data while the second type qualitatively compared the automated electrocardiographic diagnostic statements generated by the original versus re-digitized data. The grand-averaged difference in root mean squared voltage between the original and re-digitized data was 20.8 µV per channel when re-digitization involved the same manufacturer's analog to digital converter (ADC) as the original digitization, and 28.4 µV per channel when it involved a different manufacturer's ADC. Automated diagnostic statements generated by the original versus reconstructed data did not differ when using the diagnostic algorithm from the same manufacturer on whose device the original data were collected, and differed only slightly for just 1 of 10 patients when using a third-party diagnostic algorithm throughout. Original analog 12-lead ECG signals can be reconstructed from digital data files with accuracy sufficient for clinical use. Such reconstructions can readily enable automated second opinions for difficult-to-interpret 12-lead ECGs, either locally or remotely through the use of dedicated or cloud-based servers.

  6. New system for digital to analog transformation and reconstruction of 12-lead ECGs.

    Directory of Open Access Journals (Sweden)

    Roshni Kothadia

    Full Text Available INTRODUCTION: We describe initial validation of a new system for digital to analog conversion (DAC and reconstruction of 12-lead ECGs. The system utilizes an open and optimized software format with a commensurately optimized DAC hardware configuration to accurately reproduce, from digital files, the original analog electrocardiographic signals of previously instrumented patients. By doing so, the system also ultimately allows for transmission of data collected on one manufacturer's 12-lead ECG hardware/software into that of any other. MATERIALS AND METHODS: To initially validate the system, we compared original and post-DAC re-digitized 12-lead ECG data files (∼5-minutes long in two types of validation studies in 10 patients. The first type quantitatively compared the total waveform voltage differences between the original and re-digitized data while the second type qualitatively compared the automated electrocardiographic diagnostic statements generated by the original versus re-digitized data. RESULTS: The grand-averaged difference in root mean squared voltage between the original and re-digitized data was 20.8 µV per channel when re-digitization involved the same manufacturer's analog to digital converter (ADC as the original digitization, and 28.4 µV per channel when it involved a different manufacturer's ADC. Automated diagnostic statements generated by the original versus reconstructed data did not differ when using the diagnostic algorithm from the same manufacturer on whose device the original data were collected, and differed only slightly for just 1 of 10 patients when using a third-party diagnostic algorithm throughout. CONCLUSION: Original analog 12-lead ECG signals can be reconstructed from digital data files with accuracy sufficient for clinical use. Such reconstructions can readily enable automated second opinions for difficult-to-interpret 12-lead ECGs, either locally or remotely through the use of dedicated or cloud

  7. Usefulness of ST elevation score by using vector-projected virtual 187-channel ECG for risk stratification in patients with Brugada-type ECG pattern

    Directory of Open Access Journals (Sweden)

    Shoko Ishikawa

    2012-08-01

    Conclusion: The ST elevation score in VP-ECG objectively documented the degree of ST elevation in surface ECG in Brugada-type ECG patterns. The ST-elevation score might be useful for risk stratification in patients with asymptomatic Brugada syndrome.

  8. Empirical mode decomposition of the ECG signal for noise removal

    Science.gov (United States)

    Khan, Jesmin; Bhuiyan, Sharif; Murphy, Gregory; Alam, Mohammad

    2011-04-01

    Electrocardiography is a diagnostic procedure for the detection and diagnosis of heart abnormalities. The electrocardiogram (ECG) signal contains important information that is utilized by physicians for the diagnosis and analysis of heart diseases. So good quality ECG signal plays a vital role for the interpretation and identification of pathological, anatomical and physiological aspects of the whole cardiac muscle. However, the ECG signals are corrupted by noise which severely limit the utility of the recorded ECG signal for medical evaluation. The most common noise presents in the ECG signal is the high frequency noise caused by the forces acting on the electrodes. In this paper, we propose a new ECG denoising method based on the empirical mode decomposition (EMD). The proposed method is able to enhance the ECG signal upon removing the noise with minimum signal distortion. Simulation is done on the MIT-BIH database to verify the efficacy of the proposed algorithm. Experiments show that the presented method offers very good results to remove noise from the ECG signal.

  9. Hardware-efficient robust biometric identification from 0.58 second template and 12 features of limb (Lead I) ECG signal using logistic regression classifier.

    Science.gov (United States)

    Sahadat, Md Nazmus; Jacobs, Eddie L; Morshed, Bashir I

    2014-01-01

    The electrocardiogram (ECG), widely known as a cardiac diagnostic signal, has recently been proposed for biometric identification of individuals; however reliability and reproducibility are of research interest. In this paper, we propose a template matching technique with 12 features using logistic regression classifier that achieved high reliability and identification accuracy. Non-invasive ECG signals were captured using our custom-built ambulatory EEG/ECG embedded device (NeuroMonitor). ECG data were collected from healthy subjects (10), between 25-35 years, for 10 seconds per trial. The number of trials from each subject was 10. From each trial, only 0.58 seconds of Lead I ECG data were used as template. Hardware-efficient fiducial point detection technique was implemented for feature extraction. To obtain repeated random sub-sampling validation, data were randomly separated into training and testing sets at a ratio of 80:20. Test data were used to find the classification accuracy. ECG template data with 12 extracted features provided the best performance in terms of accuracy (up to 100%) and processing complexity (computation time of 1.2ms). This work shows that a single limb (Lead I) ECG can robustly identify an individual quickly and reliably with minimal contact and data processing using the proposed algorithm.

  10. Biometric and Emotion Identification: An ECG Compression Based Method.

    Science.gov (United States)

    Brás, Susana; Ferreira, Jacqueline H T; Soares, Sandra C; Pinho, Armando J

    2018-01-01

    We present an innovative and robust solution to both biometric and emotion identification using the electrocardiogram (ECG). The ECG represents the electrical signal that comes from the contraction of the heart muscles, indirectly representing the flow of blood inside the heart, it is known to convey a key that allows biometric identification. Moreover, due to its relationship with the nervous system, it also varies as a function of the emotional state. The use of information-theoretic data models, associated with data compression algorithms, allowed to effectively compare ECG records and infer the person identity, as well as emotional state at the time of data collection. The proposed method does not require ECG wave delineation or alignment, which reduces preprocessing error. The method is divided into three steps: (1) conversion of the real-valued ECG record into a symbolic time-series, using a quantization process; (2) conditional compression of the symbolic representation of the ECG, using the symbolic ECG records stored in the database as reference; (3) identification of the ECG record class, using a 1-NN (nearest neighbor) classifier. We obtained over 98% of accuracy in biometric identification, whereas in emotion recognition we attained over 90%. Therefore, the method adequately identify the person, and his/her emotion. Also, the proposed method is flexible and may be adapted to different problems, by the alteration of the templates for training the model.

  11. Industrial gamma radiography on a building site with a portable device. Recommendations to operators - gammagraphy sheet ED 4243; Recommendations to intervening companies (subcontractors) -gammagraphy sheet ED 4244; Recommendations to user companies - gammagraphy sheet ED 4245

    International Nuclear Information System (INIS)

    Vaisseau, Bernard; Bourdon, Patrick; Laurent, Pierre; Servent, Jean-Pierre; Biau, Alain

    2006-12-01

    Based on best practices, three sheets indicate sets of recommendations regarding the use of an industrial gamma radiography portable device on a building site either by operators, intervening companies (or subcontractors), or user companies. As far as operators are concerned, recommendations concern preparation and transport, arrival on the building site, examination performance, end of examination, occurrence of an incident other than radiological, and occurrence of a radiological incident. As far as subcontractors are concerned, recommendations concern the actors of the intervening company, the permanent storage site of portable devices, the film development laboratory, portable devices and their accessories, other equipment used for examination, vehicles, operators, intervention preparation, the return on experience, and the immediate processing of anomalies. As far as user companies are concerned, recommendations concern actors of the user company, the definition of the operation, the previous inspection of premises and the definition of a prevention plan, the storage of equipment containing depleted uranium, loading and unloading operations, the coordination of exposure doses, the immediate processing of anomalies, and the return on experience. Moreover, the three sheets indicate the associated legal texts

  12. Hyperkalemia on ECG

    Directory of Open Access Journals (Sweden)

    Bryson Hicks

    2016-09-01

    Full Text Available History of present illness: A 34-year-old diabetic female presented to the emergency department with chest pain status-post AICD firing. She described the pain as a “12 out of 10” which woke her from sleep at 0200, one hour prior to arrival. Vitals were unremarkable. She had no known history of renal failure. Due to frequent ED visits for chronic pain, patient had difficult vascular access and nursing was initially unable to obtain IV access. An abnormal rhythm was noted on the cardiac monitor, and ECG was ordered. Significant findings: Initial ECG shows tall, peaked T waves, most prominently in V3 and V4, as well as QRS widening. These findings are consistent with hyperkalemia, which was promptly treated. Follow-up ECG post-treatment shows narrowing of the QRS complexes and normalization of peaked T waves. Discussion: The etiology of hyperkalemia may be due to an acute insult such as crush injury, drug side effect, or in acute renal failure, but may also occur in the setting of a chronic insult such as chronic kidney disease.1 As potassium rises, several abnormalities can be identified on ECG. Initially the T waves become peaked and the QRS complexes widen.2,3 This can devolve into a wide complex rhythm, ventricular tachycardia, ventricular fibrillation, or asystole. Patients may also experience systemic symptoms such as weakness or paralysis.1 In this particular case, labs showed a potassium of 7.6-mmol/L after initial treatment (see repeat EKG. While the incidence of hyperkalemia in the general population is not defined, the incidence in hospitalized patients is 1.3-10%.4-8 Impaired kidney function is the most common risk factor found in 33-83% of affected patients.4,5,8,9 Treatment for hyperkalemia generally includes IV insulin and IV dextrose and nebulized albuterol for intracellular shift of potassium, IV furosemide and IV fluids for dilution and renal excretion of furosemide, and IV calcium for stabilization of cardiac membranes.2,3

  13. Ability of a 5-minute electrocardiography (ECG) for predicting arrhythmias in Doberman Pinschers with cardiomyopathy in comparison with a 24-hour ambulatory ECG.

    Science.gov (United States)

    Wess, G; Schulze, A; Geraghty, N; Hartmann, K

    2010-01-01

    Ventricular premature contractions (VPCs) are common in the occult stage of cardiomyopathy in Doberman Pinschers. Although the gold standard for detecting arrhythmia is the 24-hour ambulatory electrocardiography (ECG) (Holter), this method is more expensive, time-consuming and often not as readily available as common ECG. Comparison of 5-minute ECGs with Holter examinations. Eight hundred and seventy-five 5-minute ECGs and Holter examinations of 431 Doberman Pinschers. Each examination included a 5-minute ECG and Holter examination. A cut-off value of > 100 VPCs/24 hours using Holter was considered diagnostic for the presence of cardiomyopathy. Statistical evaluation included calculation of sensitivity, specificity, positive predictive value, and negative predictive value. Holter examinations revealed > 100 VPCs/24 hours in 204/875 examinations. At least 1 VPC during a 5-minute ECG was detected in 131 (64.2%) of these 204 examinations. No VPCs were found in the 5-minute ECG in 73 (35.8%) examinations of affected Doberman Pinschers. A 5-minute ECG with at least 1 VPC as cut-off had a sensitivity of 64.2%, a specificity of 96.7%, a positive predictive value of 85.6% and a negative predictive value of 89.9% for the presence of > 100 VPCs/24 hours. A 5-minute ECG is a rather insensitive method for detecting arrhythmias in Doberman Pinschers. However, the occurrence of at least 1 VPC in 5 minutes strongly warrants further examination of the dog, because specificity (96.7%) and positive predictive value (85.6%) are high and could suggest occult cardiomyopathy.

  14. [ECG for non-competitive sports in childhood: strengths and disputes].

    Science.gov (United States)

    Poggi, Elena; Giannattasio, Alessandro; Bolloli, Sara; Beccaria, Andrea; Mezzano, Paola; Rocca, Paola; Del Vecchio, Cecilia

    2016-11-01

    Sport is very important for health promotion and conservation. Active lifestyle and regular exercise reduce cardiovascular disease incidence. The Italian Ministry of Health issued the Law Decree no. 243 (10/18/2014) concerning "guidelines for certification about non-competitive sports" to promote safety in sports. This regulation defines the activities for which a certificate is required, the professional actors involved and the clinical exams to be performed according to the patient's health status. In particular, the Law Decree recommends to perform an electrocardiogram (ECG) "at least once in a lifetime", introducing much greater news into pediatric practice. We proposed a survey evaluating frequency of ECG implementation for non-competitive sports and cardiovascular diseases incidence was administered to 7 Ligurian pediatricians. The number of ECG/year for pediatrician increased from 10 ECG/year to 50 ECG/year with an indication of suitability to non-competitive sports. One case of QT prolongation and 2 cases of type 1 Brugada ECG pattern were diagnosed. In addition, 3 patients had an atrial septal defect and 3 children had a ventricular septal defect. Forty-three percent of the pediatricians considered useful performing the ECG. ECG in children has enhanced the positive effects on the community health. However, it remains to be defined in agreement with scientific societies the age at which to perform ECG, the sports for which ECG is required and the cost-benefit ratio for the National Health System and families.

  15. Female False Positive Exercise Stress ECG Testing - Fact Verses Fiction.

    Science.gov (United States)

    Fitzgerald, Benjamin T; Scalia, William M; Scalia, Gregory M

    2018-03-07

    Exercise stress testing is a well validated cardiovascular investigation. Accuracy for treadmill stress electrocardiograph (ECG) testing has been documented at 60%. False positive stress ECGs (exercise ECG changes with non-obstructive disease on anatomical testing) are common, especially in women, limiting the effectiveness of the test. This study investigates the incidence and predictors of false positive stress ECG findings, referenced against stress echocardiography (SE) as a standard. Stress echocardiography was performed using the Bruce treadmill protocol. False positive stress ECG tests were defined as greater than 1mm of ST depression on ECG during exertion, without pain, with a normal SE. Potential causes for false positive tests were recorded before the test. Three thousand consecutive negative stress echocardiograms (1036 females, 34.5%) were analysed (age 59+/-14 years. False positive (F+) stress ECGs were documented in 565/3000 tests (18.8%). F+ stress ECGs were equally prevalent in females (194/1036, 18.7%) and males (371/1964, 18.9%, p=0.85 for the difference). Potential causes (hypertension, left ventricular hypertrophy, known coronary disease, arrhythmia, diabetes mellitus, valvular heart disease) were recorded in 36/194 (18.6%) of the female F+ ECG tests and 249/371 (68.2%) of the male F+ ECG tests (preinforce the value of stress imaging, particularly in women. Copyright © 2018 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). All rights reserved.

  16. Illumination-Invariant and Deformation-Tolerant Inner Knuckle Print Recognition Using Portable Devices

    Directory of Open Access Journals (Sweden)

    Xuemiao Xu

    2015-02-01

    Full Text Available We propose a novel biometric recognition method that identifies the inner knuckle print (IKP. It is robust enough to confront uncontrolled lighting conditions, pose variations and low imaging quality. Such robustness is crucial for its application on portable devices equipped with consumer-level cameras. We achieve this robustness by two means. First, we propose a novel feature extraction scheme that highlights the salient structure and suppresses incorrect and/or unwanted features. The extracted IKP features retain simple geometry and morphology and reduce the interference of illumination. Second, to counteract the deformation induced by different hand orientations, we propose a novel structure-context descriptor based on local statistics. To our best knowledge, we are the first to simultaneously consider the illumination invariance and deformation tolerance for appearance-based low-resolution hand biometrics. Settings in previous works are more restrictive. They made strong assumptions either about the illumination condition or the restrictive hand orientation. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods in terms of recognition accuracy, especially under uncontrolled lighting conditions and the flexible hand orientation requirement.

  17. ECG abnormalities in patients with chronic kidney disease

    International Nuclear Information System (INIS)

    Shafi, S.; Saleem, M.; Anjum, R.; Abdullah, W.; Shafi, T.

    2017-01-01

    Chronic kidney disease (CKD) is associated with increased risk of cardiovascular disease. Electrocardiographic (ECG) abnormalities are common in CKD patients. However, there is variation in literature regarding frequency of ECG abnormalities in CKD patients and limited information in local population. Methods: The study design was cross-sectional in nature. All patients between ages of 20-80 years with CKD not previously on renal replacement therapy who were admitted to nephrology ward at a tertiary care facility over a 6-month period were included. All patients underwent 12 lead electrocardiograms (ECG). ECG abnormalities were defined based on accepted standard criteria. Results: Total number of patients included in the study was 124. Mean age of all patients was 49.9+-13.8 years, 106 (84.8%) had hypertension, 84 (70%) had diabetes mellitus, and 35 (29.9%) had known cardiovascular disease. Mean serum creatinine was 7.2+-3.4 mg/dl, mean eGFR was 10.6+-9.2 ml/min/1.73 m/sup 2/. Overall 78.4% of all CKD patients have one or more ECG abnormality. Left ventricular hypertrophy (40%), Q waves (27.2%), ST segment elevation or depression (23.4%), prolonged QRS duration (19.2%), tachycardia (17.6%) and left and right atrial enlargement (17.6%) were the most common abnormalities. Conclusion: ECG abnormalities are common in hospitalized CKD patients in local population. All hospitalized CKD patients should undergo ECG to screen for cardiovascular disease. (author)

  18. The PLR-DTW method for ECG based biometric identification.

    Science.gov (United States)

    Shen, Jun; Bao, Shu-Di; Yang, Li-Cai; Li, Ye

    2011-01-01

    There has been a surge of research on electrocardiogram (ECG) signal based biometric for person identification. Though most of the existing studies claimed that ECG signal is unique to an individual and can be a viable biometric, one of the main difficulties for real-world applications of ECG biometric is the accuracy performance. To address this problem, this study proposes a PLR-DTW method for ECG biometric, where the Piecewise Linear Representation (PLR) is used to keep important information of an ECG signal segment while reduce the data dimension at the same time if necessary, and the Dynamic Time Warping (DTW) is used for similarity measures between two signal segments. The performance evaluation was carried out on three ECG databases, and the existing method using wavelet coefficients, which was proved to have good accuracy performance, was selected for comparison. The analysis results show that the PLR-DTW method achieves an accuracy rate of 100% for identification, while the one using wavelet coefficients achieved only around 93%.

  19. Unveiling the Biometric Potential of Finger-Based ECG Signals

    Science.gov (United States)

    Lourenço, André; Silva, Hugo; Fred, Ana

    2011-01-01

    The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications. PMID:21837235

  20. Unveiling the biometric potential of finger-based ECG signals.

    Science.gov (United States)

    Lourenço, André; Silva, Hugo; Fred, Ana

    2011-01-01

    The ECG signal has been shown to contain relevant information for human identification. Even though results validate the potential of these signals, data acquisition methods and apparatus explored so far compromise user acceptability, requiring the acquisition of ECG at the chest. In this paper, we propose a finger-based ECG biometric system, that uses signals collected at the fingers, through a minimally intrusive 1-lead ECG setup recurring to Ag/AgCl electrodes without gel as interface with the skin. The collected signal is significantly more noisy than the ECG acquired at the chest, motivating the application of feature extraction and signal processing techniques to the problem. Time domain ECG signal processing is performed, which comprises the usual steps of filtering, peak detection, heartbeat waveform segmentation, and amplitude normalization, plus an additional step of time normalization. Through a simple minimum distance criterion between the test patterns and the enrollment database, results have revealed this to be a promising technique for biometric applications.

  1. A novel biometric authentication approach using ECG and EMG signals.

    Science.gov (United States)

    Belgacem, Noureddine; Fournier, Régis; Nait-Ali, Amine; Bereksi-Reguig, Fethi

    2015-05-01

    Security biometrics is a secure alternative to traditional methods of identity verification of individuals, such as authentication systems based on user name and password. Recently, it has been found that the electrocardiogram (ECG) signal formed by five successive waves (P, Q, R, S and T) is unique to each individual. In fact, better than any other biometrics' measures, it delivers proof of subject's being alive as extra information which other biometrics cannot deliver. The main purpose of this work is to present a low-cost method for online acquisition and processing of ECG signals for person authentication and to study the possibility of providing additional information and retrieve personal data from an electrocardiogram signal to yield a reliable decision. This study explores the effectiveness of a novel biometric system resulting from the fusion of information and knowledge provided by ECG and EMG (Electromyogram) physiological recordings. It is shown that biometrics based on these ECG/EMG signals offers a novel way to robustly authenticate subjects. Five ECG databases (MIT-BIH, ST-T, NSR, PTB and ECG-ID) and several ECG signals collected in-house from volunteers were exploited. A palm-based ECG biometric system was developed where the signals are collected from the palm of the subject through a minimally intrusive one-lead ECG set-up. A total of 3750 ECG beats were used in this work. Feature extraction was performed on ECG signals using Fourier descriptors (spectral coefficients). Optimum-Path Forest classifier was used to calculate the degree of similarity between individuals. The obtained results from the proposed approach look promising for individuals' authentication.

  2. Design of Instantaneous High Power Supply System with power distribution management for portable military devices

    Science.gov (United States)

    Kwak, Kiho; Kwak, Dongmin; Yoon, Joohong

    2015-08-01

    A design of an Instantaneous High Power Supply System (IHPSS) with a power distribution management (PDM) for portable military devices is newly addressed. The system includes a power board and a hybrid battery that can not only supply instantaneous high power but also maintain stable operation at critical low temperature (-30 °C). The power leakage and battery overcharge are effectively prevented by the optimal PDM. The performance of the proposed system under the required pulse loads and the operating conditions of a Korean Advanced Combat Rifle employed in the battlefield is modeled with simulations and verified experimentally. The system with the IHPSS charged the fuse setter with 1.7 times higher voltage (8.6 V) than the one without (5.4 V) under the pulse discharging rate (1 A at 0.5 duty, 1 ms) for 500 ms.

  3. PIC microcontroller-based RF wireless ECG monitoring system.

    Science.gov (United States)

    Oweis, R J; Barhoum, A

    2007-01-01

    This paper presents a radio-telemetry system that provides the possibility of ECG signal transmission from a patient detection circuit via an RF data link. A PC then receives the signal through the National Instrument data acquisition card (NIDAQ). The PC is equipped with software allowing the received ECG signals to be saved, analysed, and sent by email to another part of the world. The proposed telemetry system consists of a patient unit and a PC unit. The amplified and filtered ECG signal is sampled 360 times per second, and the A/D conversion is performed by a PIC16f877 microcontroller. The major contribution of the final proposed system is that it detects, processes and sends patients ECG data over a wireless RF link to a maximum distance of 200 m. Transmitted ECG data with different numbers of samples were received, decoded by means of another PIC microcontroller, and displayed using MATLAB program. The designed software is presented in a graphical user interface utility.

  4. Embedded RFID Recorder in short-range wireless devices

    DEFF Research Database (Denmark)

    2010-01-01

    range communication devices. The problem is solved in that the portable communications device comprises a wireless communications interface for communicating with another device, a memory and an RFID-recorder for receiving an RFID-signal transmitted from an RFID-interrogator, wherein the device...... is adapted for storing individual received RFID-signals in the memory. An advantage of the invention is that it provides a relatively simple scheme for extracting information from a current environment of a portable communications device. The invention may e.g. be used for adapting listening devices, e...

  5. A green-color portable waveguide eyewear display system

    Science.gov (United States)

    Xia, Lingbo; Xu, Ke; Wu, Zhengming; Hu, Yingtian; Li, Zhenzhen; Wang, Yongtian; Liu, Juan

    2013-08-01

    Waveguide display systems are widely used in various display fields, especially in head mounted display. Comparing with the traditional head mounted display system, this device dramatically reduce the size and mass. However, there are still several fatal problems such as high scatting, the cumbersome design and chromatic aberration that should be solved. We designed and fabricated a monochromatic portable eyewear display system consist of a comfortable eyewear device and waveguide system with two holographic gratings located on the substrate symmetrically. We record the gratings on the photopolymer medium with high efficiency and wavelength sensitivity. The light emitting from the micro-display is diffracted by the grating and trapped in the glass substrate by total internal reflection. The relationship between the diffraction efficiency and exposure value is studied and analyzed, and we fabricated the gratings with appropriate diffraction efficiency in a optimization condition. To avoid the disturbance of the stray light, we optimize the waveguide system numerically and perform the optical experiments. With this system, people can both see through the waveguide to obtain the information outside and catch the information from the micro display. After considering the human body engineering and industrial production, we design the structure in a compact and portable way. It has the advantage of small-type configuration and economic acceptable. It is believe that this kind of planar waveguide system is a potentially replaceable choice for the portable devices in future mobile communications.

  6. Development and validation of a novel algorithm based on the ECG magnet response for rapid identification of any unknown pacemaker.

    Science.gov (United States)

    Squara, Fabien; Chik, William W; Benhayon, Daniel; Maeda, Shingo; Latcu, Decebal Gabriel; Lacaze-Gadonneix, Jonathan; Tibi, Thierry; Thomas, Olivier; Cooper, Joshua M; Duthoit, Guillaume

    2014-08-01

    Pacemaker (PM) interrogation requires correct manufacturer identification. However, an unidentified PM is a frequent occurrence, requiring time-consuming steps to identify the device. The purpose of this study was to develop and validate a novel algorithm for PM manufacturer identification, using the ECG response to magnet application. Data on the magnet responses of all recent PM models (≤15 years) from the 5 major manufacturers were collected. An algorithm based on the ECG response to magnet application to identify the PM manufacturer was subsequently developed. Patients undergoing ECG during magnet application in various clinical situations were prospectively recruited in 7 centers. The algorithm was applied in the analysis of every ECG by a cardiologist blinded to PM information. A second blinded cardiologist analyzed a sample of randomly selected ECGs in order to assess the reproducibility of the results. A total of 250 ECGs were analyzed during magnet application. The algorithm led to the correct single manufacturer choice in 242 ECGs (96.8%), whereas 7 (2.8%) could only be narrowed to either 1 of 2 manufacturer possibilities. Only 2 (0.4%) incorrect manufacturer identifications occurred. The algorithm identified Medtronic and Sorin Group PMs with 100% sensitivity and specificity, Biotronik PMs with 100% sensitivity and 99.5% specificity, and St. Jude and Boston Scientific PMs with 92% sensitivity and 100% specificity. The results were reproducible between the 2 blinded cardiologists with 92% concordant findings. Unknown PM manufacturers can be accurately identified by analyzing the ECG magnet response using this newly developed algorithm. Copyright © 2014 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.

  7. A wearable 12-lead ECG acquisition system with fabric electrodes.

    Science.gov (United States)

    Haoshi Zhang; Lan Tian; Huiyang Lu; Ming Zhou; Haiqing Zou; Peng Fang; Fuan Yao; Guanglin Li

    2017-07-01

    Continuous electrocardiogram (ECG) monitoring is significant for prevention of heart disease and is becoming an important part of personal and family health care. In most of the existing wearable solutions, conventional metal sensors and corresponding chips are simply integrated into clothes and usually could only collect few leads of ECG signals that could not provide enough information for diagnosis of cardiac diseases such as arrhythmia and myocardial ischemia. In this study, a wearable 12-lead ECG acquisition system with fabric electrodes was developed and could simultaneously process 12 leads of ECG signals. By integrating the fabric electrodes into a T-shirt, the wearable system would provide a comfortable and convenient user interface for ECG recording. For comparison, the proposed fabric electrode and the gelled traditional metal electrodes were used to collect ECG signals on a subject, respectively. The approximate entropy (ApEn) of ECG signals from both types of electrodes were calculated. The experimental results show that the fabric electrodes could achieve similar performance as the gelled metal electrodes. This preliminary work has demonstrated that the developed ECG system with fabric electrodes could be utilized for wearable health management and telemedicine applications.

  8. Biometric and Emotion Identification: An ECG Compression Based Method

    Directory of Open Access Journals (Sweden)

    Susana Brás

    2018-04-01

    Full Text Available We present an innovative and robust solution to both biometric and emotion identification using the electrocardiogram (ECG. The ECG represents the electrical signal that comes from the contraction of the heart muscles, indirectly representing the flow of blood inside the heart, it is known to convey a key that allows biometric identification. Moreover, due to its relationship with the nervous system, it also varies as a function of the emotional state. The use of information-theoretic data models, associated with data compression algorithms, allowed to effectively compare ECG records and infer the person identity, as well as emotional state at the time of data collection. The proposed method does not require ECG wave delineation or alignment, which reduces preprocessing error. The method is divided into three steps: (1 conversion of the real-valued ECG record into a symbolic time-series, using a quantization process; (2 conditional compression of the symbolic representation of the ECG, using the symbolic ECG records stored in the database as reference; (3 identification of the ECG record class, using a 1-NN (nearest neighbor classifier. We obtained over 98% of accuracy in biometric identification, whereas in emotion recognition we attained over 90%. Therefore, the method adequately identify the person, and his/her emotion. Also, the proposed method is flexible and may be adapted to different problems, by the alteration of the templates for training the model.

  9. Biometric and Emotion Identification: An ECG Compression Based Method

    Science.gov (United States)

    Brás, Susana; Ferreira, Jacqueline H. T.; Soares, Sandra C.; Pinho, Armando J.

    2018-01-01

    We present an innovative and robust solution to both biometric and emotion identification using the electrocardiogram (ECG). The ECG represents the electrical signal that comes from the contraction of the heart muscles, indirectly representing the flow of blood inside the heart, it is known to convey a key that allows biometric identification. Moreover, due to its relationship with the nervous system, it also varies as a function of the emotional state. The use of information-theoretic data models, associated with data compression algorithms, allowed to effectively compare ECG records and infer the person identity, as well as emotional state at the time of data collection. The proposed method does not require ECG wave delineation or alignment, which reduces preprocessing error. The method is divided into three steps: (1) conversion of the real-valued ECG record into a symbolic time-series, using a quantization process; (2) conditional compression of the symbolic representation of the ECG, using the symbolic ECG records stored in the database as reference; (3) identification of the ECG record class, using a 1-NN (nearest neighbor) classifier. We obtained over 98% of accuracy in biometric identification, whereas in emotion recognition we attained over 90%. Therefore, the method adequately identify the person, and his/her emotion. Also, the proposed method is flexible and may be adapted to different problems, by the alteration of the templates for training the model. PMID:29670564

  10. A set of portable radioisotopic control and measuring instruments

    International Nuclear Information System (INIS)

    Pospeev, V.V.; Sidorov, V.N.; Tesnavs, Eh.R.; Uleksin, V.I.

    1979-01-01

    The problems and perspectives are examined of the portable radioisotope instruments application in agriculture, building industry, engeeniring and geological survay and in melioration. Principles are given of creation a series of radioisotopic instruments based on the principle of ganging. The series described consists of radioisotopic densimeters and moisture gages of the portable type, based on the ganging principle. The instruments differ in the measuring converters and have unified information processing and power supply devices. Criteria are stated for the ganging principle estimation, in particular, estimation of the technical means' compatibility. Four different types of compatibility are distinguished: an information compatibility; a metrological compatibility; structural and operational compatibility. Description is given of the unified information processing device - the unified pulse counter of the SIP-1M type and description of a row of radioisotopic measuring converters, which provides a possibility for completing the portable radioisotope densimeter of the RPP-2 type, intended for measuring densities of concrets and soils in the surface layer up to 30 cm and the density range from 1000 to 2500 kg/m 3 ; portable radioisotope densimeter of the RPP-1 type having measuring range from 600 to 1500 kg/m 3 ; surface-depth radioisotopic densimeter of the PPGR-1 type and surface-depth radioisotopic moisture gage of the VPGR-1 type [ru

  11. Portable wireless neurofeedback system of EEG alpha rhythm enhances memory.

    Science.gov (United States)

    Wei, Ting-Ying; Chang, Da-Wei; Liu, You-De; Liu, Chen-Wei; Young, Chung-Ping; Liang, Sheng-Fu; Shaw, Fu-Zen

    2017-11-13

    Effect of neurofeedback training (NFT) on enhancement of cognitive function or amelioration of clinical symptoms is inconclusive. The trainability of brain rhythm using a neurofeedback system is uncertainty because various experimental designs are used in previous studies. The current study aimed to develop a portable wireless NFT system for alpha rhythm and to validate effect of the NFT system on memory with a sham-controlled group. The proposed system contained an EEG signal analysis device and a smartphone with wireless Bluetooth low-energy technology. Instantaneous 1-s EEG power and contiguous 5-min EEG power throughout the training were developed as feedback information. The training performance and its progression were kept to boost usability of our device. Participants were blinded and randomly assigned into either the control group receiving random 4-Hz power or Alpha group receiving 8-12-Hz power. Working memory and episodic memory were assessed by the backward digital span task and word-pair task, respectively. The portable neurofeedback system had advantages of a tiny size and long-term recording and demonstrated trainability of alpha rhythm in terms of significant increase of power and duration of 8-12 Hz. Moreover, accuracies of the backward digital span task and word-pair task showed significant enhancement in the Alpha group after training compared to the control group. Our tiny portable device demonstrated success trainability of alpha rhythm and enhanced two kinds of memories. The present study suggest that the portable neurofeedback system provides an alternative intervention for memory enhancement.

  12. Deep Arm/Ear-ECG Image Learning for Highly Wearable Biometric Human Identification.

    Science.gov (United States)

    Zhang, Qingxue; Zhou, Dian

    2018-01-01

    In this study, to advance smart health applications which have increasing security/privacy requirements, we propose a novel highly wearable ECG-based user identification system, empowered by both non-standard convenient ECG lead configurations and deep learning techniques. Specifically, to achieve a super wearability, we suggest situating all the ECG electrodes on the left upper-arm, or behind the ears, and successfully obtain weak but distinguishable ECG waveforms. Afterwards, to identify individuals from weak ECG, we further present a two-stage framework, including ECG imaging and deep feature learning/identification. In the former stage, the ECG heartbeats are projected to a 2D state space, to reveal heartbeats' trajectory behaviors and produce 2D images by a split-then-hit method. In the second stage, a convolutional neural network is introduced to automatically learn the intricate patterns directly from the ECG image representations without heavy feature engineering, and then perform user identification. Experimental results on two acquired datasets using our wearable prototype, show a promising identification rate of 98.4% (single-arm-ECG) and 91.1% (ear-ECG), respectively. To the best of our knowledge, it is the first study on the feasibility of using single-arm-ECG/ear-ECG for user identification purpose, which is expected to contribute to pervasive ECG-based user identification in smart health applications.

  13. An ECG simulator for generating maternal-foetal activity mixtures on abdominal ECG recordings

    International Nuclear Information System (INIS)

    Behar, Joachim; Andreotti, Fernando; Li, Qiao; Oster, Julien; Clifford, Gari D; Zaunseder, Sebastian

    2014-01-01

    Accurate foetal electrocardiogram (FECG) morphology extraction from non-invasive sensors remains an open problem. This is partly due to the paucity of available public databases. Even when gold standard information (i.e derived from the scalp electrode) is present, the collection of FECG can be problematic, particularly during stressful or clinically important events. In order to address this problem we have introduced an FECG simulator based on earlier work on foetal and adult ECG modelling. The open source foetal ECG synthetic simulator, fecgsyn, is able to generate maternal-foetal ECG mixtures with realistic amplitudes, morphology, beat-to-beat variability, heart rate changes and noise. Positional (rotation and translation-related) movements in the foetal and maternal heart due to respiration, foetal activity and uterine contractions were also added to the simulator. The simulator was used to generate some of the signals that were part of the 2013 PhysioNet Computing in Cardiology Challenge dataset and has been posted on Physionet.org (together with scripts to generate realistic scenarios) under an open source license. The toolbox enables further research in the field and provides part of a standard for industry and regulatory testing of rare pathological scenarios. (paper)

  14. Portable low-cost flat panel detectors for real-time digital radiography

    International Nuclear Information System (INIS)

    Iovea, Mihai; Neagu, Marian; Stefanescu, Bogdan; Mateiasi, Gabriela; Porosnicu, Ioana; Angheluta, Elena

    2015-01-01

    The X-ray inspection is one of the most common used non-destructive testing methods in industry applications, but for the portable X-ray digital solution are not so many accessible, low-cost and versatile detection devices. The efficiency of a non-destructive X-ray portable device is represented by the quality of digital images, by its low acquisition time combined with a high resolution, in condition of low noise and at an affordable cost. The paper presents two X-ray portable imaging systems developed by us, suitable also for aerospace NDT applications, which are also very versatile for being easily adapted for other fields that requires mobile solutions. The first device described in the paper represent a portable large-size (210 mm X 550 mm) and high-resolution (27/54 microns) flat panel detector based on linear translation of a X-Ray TDI detector, destined for various components/parts real-time transmission measurements. The second system it is also a flat panel detectors, with a size of 510 mm X 610 mm, with the detector size from 0.2 mm until 1.5 mm, which can operate by applying the dual-energy method, very useful for discriminating materials by evaluating their Atomic effective number. The high resolution and low-cost of this flat-panels widens their applicability by covering large requirements, from identifying unwanted materials within a structure until detection of very thin cracks in complex components.

  15. Portable low-cost flat panel detectors for real-time digital radiography

    Energy Technology Data Exchange (ETDEWEB)

    Iovea, Mihai; Neagu, Marian; Stefanescu, Bogdan; Mateiasi, Gabriela; Porosnicu, Ioana; Angheluta, Elena [Accent Pro 2000 S.R.L., Bucharest (Romania)

    2015-07-01

    The X-ray inspection is one of the most common used non-destructive testing methods in industry applications, but for the portable X-ray digital solution are not so many accessible, low-cost and versatile detection devices. The efficiency of a non-destructive X-ray portable device is represented by the quality of digital images, by its low acquisition time combined with a high resolution, in condition of low noise and at an affordable cost. The paper presents two X-ray portable imaging systems developed by us, suitable also for aerospace NDT applications, which are also very versatile for being easily adapted for other fields that requires mobile solutions. The first device described in the paper represent a portable large-size (210 mm X 550 mm) and high-resolution (27/54 microns) flat panel detector based on linear translation of a X-Ray TDI detector, destined for various components/parts real-time transmission measurements. The second system it is also a flat panel detectors, with a size of 510 mm X 610 mm, with the detector size from 0.2 mm until 1.5 mm, which can operate by applying the dual-energy method, very useful for discriminating materials by evaluating their Atomic effective number. The high resolution and low-cost of this flat-panels widens their applicability by covering large requirements, from identifying unwanted materials within a structure until detection of very thin cracks in complex components.

  16. Usefulness of exercise ECG test with nitroglycerin and exercise cardiac scintigraphy in patients with false positive exercise ECG test

    International Nuclear Information System (INIS)

    Moritani, Kohshiro

    1984-01-01

    The purpose of this study is to evaluate the clinical usefulness of exercise (Ex) ECG test with sublingual nitroglycerin (NTG) and Ex cardiac scintigraphy in differentiating false positive responses from true positive responses of Ex ECG test. We examined 7 pts (age : 46+-7 years) with true positive Ex ECG test (TP) and 8 pts (age : 55+-10 years) with false positive Ex ECG test (FP). TP had significant coronary artery disease and FP did not. Ex test was done by multistage ergometer test. In 5 pts of TP and all pts of FP, Ex cardiac scintigraphy was performed. In TP, Ex cardiac scintigraphy revealed reversible perfusion deficit, but not in FP. NTG was administered 3 minutes before Ex test was started. Ex test with NTG was terminated at the same load as Ex test without NTG. Pressure-rate products at the end point of Ex test did not show significant difference between Ex test without NTG and that with NTG (TP: 203x10 2 , 213x10 2 , FP: 196x10 2 , 206x10 2 , respectively). In 7 pts of FP, ST depression in Ex test without NTG was not improved in Ex test with NTG. On the other hand, in all pts of TP, ST depression seen in Ex test without NTG, was not observed in Ex test with NTG. It may be concluded that Ex cardiac scintigraphy is diagnostic for differentiation of false positive responses from true positive responses of Ex ECG test, as well as Ex ECG test with NTG is. (author)

  17. Enhancement of Twins Fetal ECG Signal Extraction Based on Hybrid Blind Extraction Techniques

    Directory of Open Access Journals (Sweden)

    Ahmed Kareem Abdullah

    2017-07-01

    Full Text Available ECG machines are noninvasive system used to measure the heartbeat signal. It’s very important to monitor the fetus ECG signals during pregnancy to check the heat activity and to detect any problem early before born, therefore the monitoring of ECG signals have clinical significance and importance. For multi-fetal pregnancy case the classical filtering algorithms are not sufficient to separate the ECG signals between mother and fetal. In this paper the mixture consists of mixing from three ECG signals, the first signal is the mother ECG (M-ECG signal, second signal the Fetal-1 ECG (F1-ECG, and third signal is the Fetal-2 ECG (F2-ECG, these signals are extracted based on modified blind source extraction (BSE techniques. The proposed work based on hybridization between two BSE techniques to ensure that the extracted signals separated well. The results demonstrate that the proposed work very efficiently to extract the useful ECG signals

  18. Development and calibration of a portable detection device for in vivo measurement of high-energy photon emitters incorporated by humans

    International Nuclear Information System (INIS)

    Soares, A.B.; Arbach, M.N.; Lucena, E.A.; Dantas, A.L.A.; Dantas, B.M.

    2017-01-01

    This work presents the evaluation of the applicability and sensitivity of a portable detection device specially designed for in vivo measurement of high-energy photon emitters in the human body. The calibration was performed at the In-Vivo Monitoring Laboratory of the IRD. The equipment consists of a lead-collimated NaI (Tl) 3″ x 3″ scintillation detector assembled on a tripod. The detector and its compact associated electronics are connected via USB cable to a portable PC. Spectrum acquisition and analysis is controlled by specific commercially available software. The calibration was performed using a standard liquid source of 152 Eu contained in 3 L polyethylene bottles. The evaluation of the system is based on the estimation of the minimum committed effective doses associated to the minimum detectable activities, calculated using current biokinetic and dosimetric models available in the literature. The dose detection limits for selected radionuclides of interest in an emergency scenario have shown to be far below 1 mSv allowing the system to be useful in accident situations. (author)

  19. Development and calibration of a portable detection device for in vivo measurement of high-energy photon emitters incorporated by humans

    Energy Technology Data Exchange (ETDEWEB)

    Soares, A.B.; Arbach, M.N.; Lucena, E.A.; Dantas, A.L.A.; Dantas, B.M., E-mail: alexandrebaso@globo.com [Instituto de Radioproteção e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Monitoração Interna

    2017-07-01

    This work presents the evaluation of the applicability and sensitivity of a portable detection device specially designed for in vivo measurement of high-energy photon emitters in the human body. The calibration was performed at the In-Vivo Monitoring Laboratory of the IRD. The equipment consists of a lead-collimated NaI (Tl) 3″ x 3″ scintillation detector assembled on a tripod. The detector and its compact associated electronics are connected via USB cable to a portable PC. Spectrum acquisition and analysis is controlled by specific commercially available software. The calibration was performed using a standard liquid source of {sup 152}Eu contained in 3 L polyethylene bottles. The evaluation of the system is based on the estimation of the minimum committed effective doses associated to the minimum detectable activities, calculated using current biokinetic and dosimetric models available in the literature. The dose detection limits for selected radionuclides of interest in an emergency scenario have shown to be far below 1 mSv allowing the system to be useful in accident situations. (author)

  20. System Control Applications of Low-Power Radio Frequency Devices

    Science.gov (United States)

    van Rensburg, Roger

    2017-09-01

    This paper conceptualizes a low-power wireless sensor network design for application employment to reduce theft of portable computer devices used in educational institutions today. The aim of this study is to design and develop a reliable and robust wireless network that can eradicate accessibility of a device’s human interface. An embedded system supplied by an energy harvesting source, installed on the portable computer device, may represent one of multiple slave nodes which request regular updates from a standalone master station. A portable computer device which is operated in an undesignated area or in a field perimeter where master to slave communication is restricted, indicating a possible theft scenario, will initiate a shutdown of its operating system and render the device unusable. Consequently, an algorithm in the device firmware may ensure the necessary steps are executed to track the device, irrespective whether the device is enabled. Design outcomes thus far indicate that a wireless network using low-power embedded hardware, is feasible for anti-theft applications. By incorporating one of the latest Bluetooth low-energy, ANT+, ZigBee or Thread wireless technologies, an anti-theft system may be implemented that has the potential to reduce major portable computer device theft in institutions of digitized learning.

  1. From Pacemaker to Wearable: Techniques for ECG Detection Systems.

    Science.gov (United States)

    Kumar, Ashish; Komaragiri, Rama; Kumar, Manjeet

    2018-01-11

    With the alarming rise in the deaths due to cardiovascular diseases (CVD), present medical research scenario places notable importance on techniques and methods to detect CVDs. As adduced by world health organization, technological proceeds in the field of cardiac function assessment have become the nucleus and heart of all leading research studies in CVDs in which electrocardiogram (ECG) analysis is the most functional and convenient tool used to test the range of heart-related irregularities. Most of the approaches present in the literature of ECG signal analysis consider noise removal, rhythm-based analysis, and heartbeat detection to improve the performance of a cardiac pacemaker. Advancements achieved in the field of ECG segments detection and beat classification have a limited evaluation and still require clinical approvals. In this paper, approaches on techniques to implement on-chip ECG detector for a cardiac pacemaker system are discussed. Moreover, different challenges regarding the ECG signal morphology analysis deriving from medical literature is extensively reviewed. It is found that robustness to noise, wavelet parameter choice, numerical efficiency, and detection performance are essential performance indicators required by a state-of-the-art ECG detector. Furthermore, many algorithms described in the existing literature are not verified using ECG data from the standard databases. Some ECG detection algorithms show very high detection performance with the total number of detected QRS complexes. However, the high detection performance of the algorithm is verified using only a few datasets. Finally, gaps in current advancements and testing are identified, and the primary challenge remains to be implementing bullseye test for morphology analysis evaluation.

  2. Computer-Aided Detection with a Portable Electrocardiographic Recorder and Acceleration Sensors for Monitoring Obstructive Sleep Apnea

    Directory of Open Access Journals (Sweden)

    Ji-Won Baek

    2014-03-01

    Full Text Available Obstructive sleep apnea syndrome is a sleep-related breathing disorder that is caused by obstruction of the upper airway. This condition may be related with many clinical sequelae such as cardiovascular disease, high blood pressure, stroke, diabetes, and clinical depression. To diagnosis obstructive sleep apnea, in-laboratory full polysomnography is considered as a standard test to determine the severity of respiratory disturbance. However, polysomnography is expensive and complicated to perform. In this research, we explore a computer-aided diagnosis system with portable ECG equipment and tri-accelerometer (x, y, and z-axes that can automatically analyze biosignals and test for OSA. Traditional approaches to sleep apnea data analysis have been criticized; however, there are not enough suggestions to resolve the existing problems. As an effort to resolve this issue, we developed an approach to record ECG signals and abdominal movements induced by breathing by affixing ECG-enabled electrodes onto a triaxial accelerometer. With the two signals simultaneously measured, the apnea data obtained would be more accurate, relative to cases where a single signal is measured. This would be helpful in diagnosing OSA. Moreover, a useful feature point can be extracted from the two signals after applying a signal processing algorithm, and the extracted feature point can be applied in designing a computer-aided diagnosis algorithm using a machine learning technique.

  3. A portable and independent edge fluctuation diagnostic

    International Nuclear Information System (INIS)

    Tsui, H.Y.W.; Ritz, C.P.; Wootton, A.J.

    1991-01-01

    The measurements of fluctuations and its associated transport with Langmuir probes have provided essential experimental information for some understanding of the turbulent transport. While such measurements have been conducted in the edge region of several tokamaks, only limited effort has been devoted to link and to consolidate these results: such effort can provide information for a more global understanding of the transport process. The purpose of this project is to provide a portable diagnostic facility to measure the edge turbulence on different devices, a signal processing package to analyze the data in a systematic manner and a database to consolidate the experimental results. The end product which provides a collection of information for the comparisons with the theoretical models may lead to a more global understanding of the transport process. A compact self contained portable system has been designed and developed to diagnose the edge plasma of devices with a wide range of sizes and configurations. The system is capable of measuring both the mean and the fluctuation quantities of density, temperature and potential from a standardized Langmuir probe array using a fast reciprocating probe drive. The system can also be used for other fluctuation diagnostics, such as magnetic probes, if necessary. The data acquisition and analysis is performed on a Macintosh 2fx which provides a user-friendly environment. The results obtained by the signal processing routines are stored in a tabloid format to allow comparative studies. The database is a core part of the portable signal analysis system. It allows a fast display of shot data versus each other, as well as comparison between different devices

  4. Bivariate empirical mode decomposition for ECG-based biometric identification with emotional data.

    Science.gov (United States)

    Ferdinando, Hany; Seppanen, Tapio; Alasaarela, Esko

    2017-07-01

    Emotions modulate ECG signals such that they might affect ECG-based biometric identification in real life application. It motivated in finding good feature extraction methods where the emotional state of the subjects has minimum impacts. This paper evaluates feature extraction based on bivariate empirical mode decomposition (BEMD) for biometric identification when emotion is considered. Using the ECG signal from the Mahnob-HCI database for affect recognition, the features were statistical distributions of dominant frequency after applying BEMD analysis to ECG signals. The achieved accuracy was 99.5% with high consistency using kNN classifier in 10-fold cross validation to identify 26 subjects when the emotional states of the subjects were ignored. When the emotional states of the subject were considered, the proposed method also delivered high accuracy, around 99.4%. We concluded that the proposed method offers emotion-independent features for ECG-based biometric identification. The proposed method needs more evaluation related to testing with other classifier and variation in ECG signals, e.g. normal ECG vs. ECG with arrhythmias, ECG from various ages, and ECG from other affective databases.

  5. A method of ECG template extraction for biometrics applications.

    Science.gov (United States)

    Zhou, Xiang; Lu, Yang; Chen, Meng; Bao, Shu-Di; Miao, Fen

    2014-01-01

    ECG has attracted widespread attention as one of the most important non-invasive physiological signals in healthcare-system related biometrics for its characteristics like ease-of-monitoring, individual uniqueness as well as important clinical value. This study proposes a method of dynamic threshold setting to extract the most stable ECG waveform as the template for the consequent ECG identification process. With the proposed method, the accuracy of ECG biometrics using the dynamic time wraping for difference measures has been significantly improved. Analysis results with the self-built electrocardiogram database show that the deployment of the proposed method was able to reduce the half total error rate of the ECG biometric system from 3.35% to 1.45%. Its average running time on the platform of android mobile terminal was around 0.06 seconds, and thus demonstrates acceptable real-time performance.

  6. A User Interface Toolkit for a Small Screen Device.

    OpenAIRE

    UOTILA, ALEKSI

    2000-01-01

    The appearance of different kinds of networked mobile devices and network appliances creates special requirements for user interfaces that are not met by existing widget based user interface creation toolkits. This thesis studies the problem domain of user interface creation toolkits for portable network connected devices. The portable nature of these devices places great restrictions on the user interface capabilities. One main characteristic of the devices is that they have small screens co...

  7. FastICA peel-off for ECG interference removal from surface EMG.

    Science.gov (United States)

    Chen, Maoqi; Zhang, Xu; Chen, Xiang; Zhu, Mingxing; Li, Guanglin; Zhou, Ping

    2016-06-13

    Multi-channel recording of surface electromyographyic (EMG) signals is very likely to be contaminated by electrocardiographic (ECG) interference, specifically when the surface electrode is placed on muscles close to the heart. A novel fast independent component analysis (FastICA) based peel-off method is presented to remove ECG interference contaminating multi-channel surface EMG signals. Although demonstrating spatial variability in waveform shape, the ECG interference in different channels shares the same firing instants. Utilizing the firing information estimated from FastICA, ECG interference can be separated from surface EMG by a "peel off" processing. The performance of the method was quantified with synthetic signals by combining a series of experimentally recorded "clean" surface EMG and "pure" ECG interference. It was demonstrated that the new method can remove ECG interference efficiently with little distortion to surface EMG amplitude and frequency. The proposed method was also validated using experimental surface EMG signals contaminated by ECG interference. The proposed FastICA peel-off method can be used as a new and practical solution to eliminating ECG interference from multichannel EMG recordings.

  8. Extraction of ECG signal with adaptive filter for hearth abnormalities detection

    Science.gov (United States)

    Turnip, Mardi; Saragih, Rijois. I. E.; Dharma, Abdi; Esti Kusumandari, Dwi; Turnip, Arjon; Sitanggang, Delima; Aisyah, Siti

    2018-04-01

    This paper demonstrates an adaptive filter method for extraction ofelectrocardiogram (ECG) feature in hearth abnormalities detection. In particular, electrocardiogram (ECG) is a recording of the heart's electrical activity by capturing a tracingof cardiac electrical impulse as it moves from the atrium to the ventricles. The applied algorithm is to evaluate and analyze ECG signals for abnormalities detection based on P, Q, R and S peaks. In the first phase, the real-time ECG data is acquired and pre-processed. In the second phase, the procured ECG signal is subjected to feature extraction process. The extracted features detect abnormal peaks present in the waveform. Thus the normal and abnormal ECG signal could be differentiated based on the features extracted.

  9. QRS detection based ECG quality assessment

    International Nuclear Information System (INIS)

    Hayn, Dieter; Jammerbund, Bernhard; Schreier, Günter

    2012-01-01

    Although immediate feedback concerning ECG signal quality during recording is useful, up to now not much literature describing quality measures is available. We have implemented and evaluated four ECG quality measures. Empty lead criterion (A), spike detection criterion (B) and lead crossing point criterion (C) were calculated from basic signal properties. Measure D quantified the robustness of QRS detection when applied to the signal. An advanced Matlab-based algorithm combining all four measures and a simplified algorithm for Android platforms, excluding measure D, were developed. Both algorithms were evaluated by taking part in the Computing in Cardiology Challenge 2011. Each measure's accuracy and computing time was evaluated separately. During the challenge, the advanced algorithm correctly classified 93.3% of the ECGs in the training-set and 91.6 % in the test-set. Scores for the simplified algorithm were 0.834 in event 2 and 0.873 in event 3. Computing time for measure D was almost five times higher than for other measures. Required accuracy levels depend on the application and are related to computing time. While our simplified algorithm may be accurate for real-time feedback during ECG self-recordings, QRS detection based measures can further increase the performance if sufficient computing power is available. (paper)

  10. Development and Applications of Portable Biosensors.

    Science.gov (United States)

    Srinivasan, Balaji; Tung, Steve

    2015-08-01

    The significance of microfluidics-based and microelectromechanical systems-based biosensors has been widely acknowledged, and many reviews have explored their potential applications in clinical diagnostics, personalized medicine, global health, drug discovery, food safety, and forensics. Because health care costs are increasing, there is an increasing need to remotely monitor the health condition of patients by point-of-care-testing. The demand for biosensors for detection of biological warfare agents has increased, and research is focused on ways of producing small portable devices that would allow fast, accurate, and on-site detection. In the past decade, the demand for rapid and accurate on-site detection of plant disease diagnosis has increased due to emerging pathogens with resistance to pesticides, increased human mobility, and regulations limiting the application of toxic chemicals to prevent spread of diseases. The portability of biosensors for on-site diagnosis is limited due to various issues, including sample preparation techniques, fluid-handling techniques, the limited lifetime of biological reagents, device packaging, integrating electronics for data collection/analysis, and the requirement of external accessories and power. Many microfluidic, electronic, and biological design strategies, such as handling liquids in biosensors without pumps/valves, the application of droplet-based microfluidics, paper-based microfluidic devices, and wireless networking capabilities for data transmission, are being explored. © 2015 Society for Laboratory Automation and Screening.

  11. ECG fiducial point extraction using switching Kalman filter.

    Science.gov (United States)

    Akhbari, Mahsa; Ghahjaverestan, Nasim Montazeri; Shamsollahi, Mohammad B; Jutten, Christian

    2018-04-01

    In this paper, we propose a novel method for extracting fiducial points (FPs) of the beats in electrocardiogram (ECG) signals using switching Kalman filter (SKF). In this method, according to McSharry's model, ECG waveforms (P-wave, QRS complex and T-wave) are modeled with Gaussian functions and ECG baselines are modeled with first order auto regressive models. In the proposed method, a discrete state variable called "switch" is considered that affects only the observation equations. We denote a mode as a specific observation equation and switch changes between 7 modes and corresponds to different segments of an ECG beat. At each time instant, the probability of each mode is calculated and compared among two consecutive modes and a path is estimated, which shows the relation of each part of the ECG signal to the mode with the maximum probability. ECG FPs are found from the estimated path. For performance evaluation, the Physionet QT database is used and the proposed method is compared with methods based on wavelet transform, partially collapsed Gibbs sampler (PCGS) and extended Kalman filter. For our proposed method, the mean error and the root mean square error across all FPs are 2 ms (i.e. less than one sample) and 14 ms, respectively. These errors are significantly smaller than those obtained using other methods. The proposed method achieves lesser RMSE and smaller variability with respect to others. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. New generation non-stationary portable neutron generators for biophysical applications of Neutron Activation Analysis.

    Science.gov (United States)

    Marchese, N; Cannuli, A; Caccamo, M T; Pace, C

    2017-01-01

    Neutron sources are increasingly employed in a wide range of research fields. For some specific purposes an alternative to existing large-scale neutron scattering facilities, can be offered by the new generation of portable neutron devices. This review reports an overview for such recently available neutron generators mainly addressed to biophysics applications with specific reference to portable non-stationary neutron generators applied in Neutron Activation Analysis (NAA). The review reports a description of a typical portable neutron generator set-up addressed to biophysics applications. New generation portable neutron devices, for some specific applications, can constitute an alternative to existing large-scale neutron scattering facilities. Deuterium-Deuterium pulsed neutron sources able to generate 2.5MeV neutrons, with a neutron yield of 1.0×10 6 n/s, a pulse rate of 250Hz to 20kHz and a duty factor varying from 5% to 100%, when combined with solid-state photon detectors, show that this kind of compact devices allow rapid and user-friendly elemental analysis. "This article is part of a Special Issue entitled "Science for Life" Guest Editor: Dr. Austen Angell, Dr. Salvatore Magazù and Dr. Federica Migliardo". Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Method and apparatus of a portable imaging-based measurement with self calibration

    Science.gov (United States)

    Chang, Tzyy-Shuh [Ann Arbor, MI; Huang, Hsun-Hau [Ann Arbor, MI

    2012-07-31

    A portable imaging-based measurement device is developed to perform 2D projection based measurements on an object that is difficult or dangerous to access. This device is equipped with self calibration capability and built-in operating procedures to ensure proper imaging based measurement.

  14. ECG changes after a session of regional intraarterial hyperglycemia

    International Nuclear Information System (INIS)

    Korobchenko, Z.A.; Livshits, L.I.

    1988-01-01

    ECG changes after a session of regional intraarterial hyperglycemia (RIH) in 13 patients (the mean age of 49 years) with locally advanced cancer of the tongue, oral mucosa and oropharynx were presented. Taking into account the mean age of patients and the negative ECG time course after a RIH session, the necessity of patients' examination (including ECG after a RIH session and, when indicated, a consultation by a cardiologist) was emphasized

  15. Feasibility of epicardial adipose tissue quantification in non-ECG-gated low-radiation-dose CT: comparison with prospectively ECG-gated cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Simon-Yarza, Isabel; Viteri-Ramirez, Guillermo; Saiz-Mendiguren, Ramon; Slon-Roblero, Pedro J.; Paramo, Maria [Dept. of Radiology, Clinica Univ. de Navarra, Pamplona (Spain); Bastarrika, Gorka [Dept. of Radiology, Clinica Univ. de Navarra, Pamplona (Spain); Cardiac Imaging Unit, Clinica Univ. de Navarra, Pamplona (Spain)], e-mail: bastarrika@unav.es

    2012-06-15

    Background: Epicardial adipose tissue (EAT) is an important indicator of cardiovascular risk. This parameter is generally assessed on ECG-gated computed tomography (CT) images. Purpose: To evaluate feasibility and reliability of EAT quantification on non-gated thoracic low-radiation-dose CT examinations with respect to prospectively ECG-gated cardiac CT acquisition. Material and Methods: Sixty consecutive asymptomatic smokers (47 men; mean age 64 {+-} 9.8 years) underwent low-dose CT of the chest and prospectively ECG-gated cardiac CT acquisitions (64-slice dual-source CT). The two examinations were reconstructed with the same range, field of view, slice thickness, and convolution algorithm. Two independent observers blindly quantified EAT volume using commercially available software. Data were compared with paired sample Student t-test, concordance correlation coefficients (CCC), and Bland-Altman plots. Results: No statistically significant difference was observed for EAT volume quantification with low-dose-CT (141.7 {+-} 58.3 mL) with respect to ECG-gated CT (142.7 {+-} 57.9 mL). Estimation of CCC showed almost perfect concordance between the two techniques for EAT-volume assessment (CCC, 0.99; mean difference, 0.98 {+-} 5.1 mL). Inter-observer agreement for EAT volume estimation was CCC: 0.96 for low-dose-CT examinations and 0.95 for ECG-gated CT. Conclusion: Non-gated low-dose CT allows quantifying EAT with almost the same concordance and reliability as using dedicated prospectively ECG-gated cardiac CT acquisition protocols.

  16. Feasibility of epicardial adipose tissue quantification in non-ECG-gated low-radiation-dose CT: comparison with prospectively ECG-gated cardiac CT

    International Nuclear Information System (INIS)

    Simon-Yarza, Isabel; Viteri-Ramirez, Guillermo; Saiz-Mendiguren, Ramon; Slon-Roblero, Pedro J.; Paramo, Maria; Bastarrika, Gorka

    2012-01-01

    Background: Epicardial adipose tissue (EAT) is an important indicator of cardiovascular risk. This parameter is generally assessed on ECG-gated computed tomography (CT) images. Purpose: To evaluate feasibility and reliability of EAT quantification on non-gated thoracic low-radiation-dose CT examinations with respect to prospectively ECG-gated cardiac CT acquisition. Material and Methods: Sixty consecutive asymptomatic smokers (47 men; mean age 64 ± 9.8 years) underwent low-dose CT of the chest and prospectively ECG-gated cardiac CT acquisitions (64-slice dual-source CT). The two examinations were reconstructed with the same range, field of view, slice thickness, and convolution algorithm. Two independent observers blindly quantified EAT volume using commercially available software. Data were compared with paired sample Student t-test, concordance correlation coefficients (CCC), and Bland-Altman plots. Results: No statistically significant difference was observed for EAT volume quantification with low-dose-CT (141.7 ± 58.3 mL) with respect to ECG-gated CT (142.7 ± 57.9 mL). Estimation of CCC showed almost perfect concordance between the two techniques for EAT-volume assessment (CCC, 0.99; mean difference, 0.98 ± 5.1 mL). Inter-observer agreement for EAT volume estimation was CCC: 0.96 for low-dose-CT examinations and 0.95 for ECG-gated CT. Conclusion: Non-gated low-dose CT allows quantifying EAT with almost the same concordance and reliability as using dedicated prospectively ECG-gated cardiac CT acquisition protocols

  17. Artifact reduction in maternal abdominal ECG recordings for fetal ECG estimation.

    NARCIS (Netherlands)

    Vullings, R.; Peters, C.H.L.; Mischi, M.; Sluijter, R.J.; Oei, S.G.; Bergmans, J.W.M.

    2010-01-01

    Monitoring the fetal electrocardiogram (1ECG) is currently one of the most promising methods to assess fetal health. However, the main problem associated with this method is that the signals recorded from the maternal abdomen are affected by noise and interferences: the maternal electrocardiogram

  18. Robust and Accurate Anomaly Detection in ECG Artifacts Using Time Series Motif Discovery

    Science.gov (United States)

    Sivaraks, Haemwaan

    2015-01-01

    Electrocardiogram (ECG) anomaly detection is an important technique for detecting dissimilar heartbeats which helps identify abnormal ECGs before the diagnosis process. Currently available ECG anomaly detection methods, ranging from academic research to commercial ECG machines, still suffer from a high false alarm rate because these methods are not able to differentiate ECG artifacts from real ECG signal, especially, in ECG artifacts that are similar to ECG signals in terms of shape and/or frequency. The problem leads to high vigilance for physicians and misinterpretation risk for nonspecialists. Therefore, this work proposes a novel anomaly detection technique that is highly robust and accurate in the presence of ECG artifacts which can effectively reduce the false alarm rate. Expert knowledge from cardiologists and motif discovery technique is utilized in our design. In addition, every step of the algorithm conforms to the interpretation of cardiologists. Our method can be utilized to both single-lead ECGs and multilead ECGs. Our experiment results on real ECG datasets are interpreted and evaluated by cardiologists. Our proposed algorithm can mostly achieve 100% of accuracy on detection (AoD), sensitivity, specificity, and positive predictive value with 0% false alarm rate. The results demonstrate that our proposed method is highly accurate and robust to artifacts, compared with competitive anomaly detection methods. PMID:25688284

  19. One-port portable SAW sensor system

    Science.gov (United States)

    Hoa Nguyen, Vu; Peters, Oliver; Schnakenberg, Uwe

    2018-01-01

    A portable device using the SAW-based impedance sensor type based on one interdigital transducer simultaneously as SAW generator and sensor element (1-port approach) is introduced. As a novelty, the so far required expensive vector network analyzer (VNA) is replaced by a hand-held device to measure the impedance spectrum of the SAW sensor by RF-gain-phase meters. Hence, some of the best features from the conventional oscillator and VNA approaches are combined to develop a low-cost and self-contained measurement system, including signal in- and output ability for real-time measurements. The pivotal aspect of the portable system is the transfer of the sophisticated high frequency approach into a quasi-static one. This enables the use of simple lumped electronics without the need of impedance matching circuits. Proof-of-concept was carried out by measuring conductivities of phosphate-buffered solutions and viscosities of glycerin. Sensitivities for temperature of 0.3%/°C, viscosity of 10.1% (mPa s)-1 and conductivity of 0.5% (S cm)-1 have been determined, respectively, which are competitive results compared to the benchmark approaches.

  20. A systematic review of portable electronic technology for health education in resource-limited settings.

    Science.gov (United States)

    McHenry, Megan S; Fischer, Lydia J; Chun, Yeona; Vreeman, Rachel C

    2017-08-01

    The objective of this study is to conduct a systematic review of the literature of how portable electronic technologies with offline functionality are perceived and used to provide health education in resource-limited settings. Three reviewers evaluated articles and performed a bibliography search to identify studies describing health education delivered by portable electronic device with offline functionality in low- or middle-income countries. Data extracted included: study population; study design and type of analysis; type of technology used; method of use; setting of technology use; impact on caregivers, patients, or overall health outcomes; and reported limitations. Searches yielded 5514 unique titles. Out of 75 critically reviewed full-text articles, 10 met inclusion criteria. Study locations included Botswana, Peru, Kenya, Thailand, Nigeria, India, Ghana, and Tanzania. Topics addressed included: development of healthcare worker training modules, clinical decision support tools, patient education tools, perceptions and usability of portable electronic technology, and comparisons of technologies and/or mobile applications. Studies primarily looked at the assessment of developed educational modules on trainee health knowledge, perceptions and usability of technology, and comparisons of technologies. Overall, studies reported positive results for portable electronic device-based health education, frequently reporting increased provider/patient knowledge, improved patient outcomes in both quality of care and management, increased provider comfort level with technology, and an environment characterized by increased levels of technology-based, informal learning situations. Negative assessments included high investment costs, lack of technical support, and fear of device theft. While the research is limited, portable electronic educational resources present promising avenues to increase access to effective health education in resource-limited settings, contingent

  1. Concept Design for a 1-Lead Wearable/Implantable ECG Front-End: Power Management.

    Science.gov (United States)

    George, Libin; Gargiulo, Gaetano Dario; Lehmann, Torsten; Hamilton, Tara Julia

    2015-11-19

    Power supply quality and stability are critical for wearable and implantable biomedical applications. For this reason we have designed a reconfigurable switched-capacitor DC-DC converter that, aside from having an extremely small footprint (with an active on-chip area of only 0.04 mm²), uses a novel output voltage control method based upon a combination of adaptive gain and discrete frequency scaling control schemes. This novel DC-DC converter achieves a measured output voltage range of 1.0 to 2.2 V with power delivery up to 7.5 mW with 75% efficiency. In this paper, we present the use of this converter as a power supply for a concept design of a wearable (15 mm × 15 mm) 1-lead ECG front-end sensor device that simultaneously harvests power and communicates with external receivers when exposed to a suitable RF field. Due to voltage range limitations of the fabrication process of the current prototype chip, we focus our analysis solely on the power supply of the ECG front-end whose design is also detailed in this paper. Measurement results show not just that the power supplied is regulated, clean and does not infringe upon the ECG bandwidth, but that there is negligible difference between signals acquired using standard linear power-supplies and when the power is regulated by our power management chip.

  2. Portable lactate analyzer for measuring lactate in cerebrospinal fluid (CSF and plasma ? method-comparison evaluations

    Directory of Open Access Journals (Sweden)

    Sérgio Monteiro de Almeida

    2014-07-01

    Full Text Available Increased plasma lactate levels can indicate the presence of metabolic disorders in HIV infected individuals. Objective: To determine whether a portable analyzer is valid for measuring cerebrospinal fluid (CSF and plasma lactate levels in HIV infected individuals. Method: CSF and plasma were collected from 178 subjects. Samples tested by the Accutrend® portable analyzer were compared to those tested by a reference device (SYNCHRON LX® 20. Results: The portable analyzer had in plasma sensitivity of 0.95 and specificity 0.87. For CSF the specificity was 0.95; the sensitivity 0.33; the negative predictive value was 95% and the positive predictive value 33%. Conclusions: These findings support the validity of the portable analyzer in measuring lactate concentrations in CSF that fall within the normal range. The relatively poor positive predictive value indicates that a result above the reference range may represent a “false positive test”, and should be confirmed by the reference device before concluding abnormality.

  3. Portable Pbars, traps that travel

    International Nuclear Information System (INIS)

    Howe, S.D.; Hynes, M.V.; Picklesimer, A.

    1987-10-01

    The advent of antiproton research utilizing relatively small scale storage devices for very large numbers of these particles opens the possibility of transporting these devices to a research site removed from the accelerator center that produced the antiprotons. Such a portable source of antiprotons could open many new areas of research and make antiprotons available to a new research community. At present antiprotons are available at energies down to 1 MeV. From a portable source these particles can be made available at energies ranging from several tens of kilovolts down to a few millielectron volts. These low energies are in the domain of interest to the atomic and condensed matter physicist. In addition such a source can be used as an injector for an accelerator which could increase the energy domain even further. Moreover, the availability of such a source at a university will open research with antiprotons to a broader range of students than possible at a centralized research facility. This report focuses on the use of ion traps, in particular cylindrical traps, for the antiproton storage device. These devices store the charged antiprotons in a combination of electric and magnet fields. At high enough density and low enough temperature the charged cloud will be susceptible to plasma instabilities. Present day ion trap work is just starting to explore this domain. Our assessment of feasibility is based on what could be done with present day technology and what future technology could achieve. We conclude our report with a radiation safety study that shows that about 10 11 antiprotons can be transported safely, however the federal guidelines for this transport must be reviewed in detail. More antiprotons than this will require special transportation arrangements. 28 refs., 8 figs

  4. Diagnostic Role of ECG Recording Simultaneously With EEG Testing.

    Science.gov (United States)

    Kendirli, Mustafa Tansel; Aparci, Mustafa; Kendirli, Nurten; Tekeli, Hakan; Karaoglan, Mustafa; Senol, Mehmet Guney; Togrol, Erdem

    2015-07-01

    Arrhythmia is not uncommon in the etiology of syncope which mimics epilepsy. Data about the epilepsy induced vagal tonus abnormalities have being increasingly reported. So we aimed to evaluate what a neurologist may gain by a simultaneous electrocardiogram (ECG) and electroencephalogram (EEG) recording in the patients who underwent EEG testing due to prediagnosis of epilepsy. We retrospectively evaluated and detected ECG abnormalities in 68 (18%) of 376 patients who underwent EEG testing. A minimum of 20 of minutes artifact-free recording were required for each patient. Standard 1-channel ECG was simultaneously recorded in conjunction with the EEG. In all, 28% of females and 14% of males had ECG abnormalities. Females (mean age 49 years, range 18-88 years) were older compared with the male group (mean age 28 years, range 16-83 years). Atrial fibrillation was more frequent in female group whereas bradycardia and respiratory sinus arrhythmia was higher in male group. One case had been detected a critical asystole indicating sick sinus syndrome in the female group and treated with a pacemaker implantation in the following period. Simultaneous ECG recording in conjunction with EEG testing is a clinical prerequisite to detect and to clarify the coexisting ECG and EEG abnormalities and their clinical relevance. Potentially rare lethal causes of syncope that mimic seizure or those that could cause resistance to antiepileptic therapy could effectively be distinguished by detecting ECG abnormalities coinciding with the signs and abnormalities during EEG recording. © EEG and Clinical Neuroscience Society (ECNS) 2014.

  5. Countermeasures (iRED, ARED CEVIS, MEC, TVIS, T2, Periodic Fitness Evaluation, BP-ECG, HRM). Critical Readiness Review Increment 23 and 24

    Science.gov (United States)

    Toder, Carly; Gipson, Iona; Conly, Danielle; Nieschwitz, Linda; Perk, Austin

    2010-01-01

    This slide presentation reviews attempts to counteract the effects of being in space. It includes information on the Resistive Exercise Device (RED), the Advanced Resistive Exercise Device (ARED), Cycle Ergometer with Vibration Isolation and Stabilization (CEVIS), Treadmill with Vibration Isolation and Stabilization (TVIS) and periodic fitness evaluation with specific information on BP/ECG, heart rate monitor 2 and data distribution.

  6. The design of a wireless portable device for personalized ultraviolet monitoring

    Science.gov (United States)

    Amini, Navid; Matthews, Jerrid E.; Vahdatpour, Alireza; Sarrafzadeh, Majid

    2009-08-01

    The skin care product market is growing due to the threat of ultraviolet (UV) radiation caused by the destruction of the ozone layer, increasing demand for tanning, and the tendency to wear less clothing. Accordingly, there is a potential demand for a personalized UV monitoring system, which can play a fundamental role in skin cancer prevention by providing measurements of UV radiation intensities and corresponding recommendations. Furthermore, the need for such device becomes more vital since it has turned out that in some places (e.g., on snowy mountains) the UV exposure gets doubled, while individuals are unaware of this fact. This paper highlights the development and initial validation of a wireless and portable embedded system for personalized UV monitoring which is based on a novel software architecture, a high-end UV sensor, and conventional PDA (or a cell phone). In terms of short-term applications, by calculating the UV index, it informs the users about their maximum recommended sun exposure time by taking their skin type and sun protection factor (SPF) of the applied sunscreen into consideration. As for long-term applications, given that the damage caused by UV light is accumulated over days, it is able to keep a record of the amount of UV received over a certain course of time, from a single day to a month. Low energy consumption and high accuracy in estimating the UV index are salient features of this system.

  7. In vivo quantification of lead in bone with a portable x-ray fluorescence system--methodology and feasibility.

    Science.gov (United States)

    Nie, L H; Sanchez, S; Newton, K; Grodzins, L; Cleveland, R O; Weisskopf, M G

    2011-02-07

    This study was conducted to investigate the methodology and feasibility of developing a portable x-ray fluorescence (XRF) technology to quantify lead (Pb) in bone in vivo. A portable XRF device was set up and optimal settings of voltage, current, and filter combination for bone lead quantification were selected to achieve the lowest detection limit. The minimum radiation dose delivered to the subject was calculated by Monte Carlo simulations. An ultrasound device was used to measure soft tissue thickness to account for signal attenuation, and an alternative method to obtain soft tissue thickness from the XRF spectrum was developed and shown to be equivalent to the ultrasound measurements (intraclass correlation coefficient, ICC = 0.82). We tested the correlation of in vivo bone lead concentrations between the standard KXRF technology and the portable XRF technology. There was a significant correlation between the bone lead concentrations obtained from the standard KXRF technology and those obtained from the portable XRF technology (ICC = 0.65). The detection limit for the portable XRF device was about 8.4 ppm with 2 mm soft tissue thickness. The entrance skin dose delivered to the human subject was about 13 mSv and the total body effective dose was about 1.5 µSv and should pose minimal radiation risk. In conclusion, portable XRF technology can be used for in vivo bone lead measurement with sensitivity comparable to the KXRF technology and good correlation with KXRF measurements.

  8. In vivo quantification of lead in bone with a portable x-ray fluorescence system-methodology and feasibility

    International Nuclear Information System (INIS)

    Nie, L H; Sanchez, S; Newton, K; Weisskopf, M G; Grodzins, L; Cleveland, R O

    2011-01-01

    This study was conducted to investigate the methodology and feasibility of developing a portable x-ray fluorescence (XRF) technology to quantify lead (Pb) in bone in vivo. A portable XRF device was set up and optimal settings of voltage, current, and filter combination for bone lead quantification were selected to achieve the lowest detection limit. The minimum radiation dose delivered to the subject was calculated by Monte Carlo simulations. An ultrasound device was used to measure soft tissue thickness to account for signal attenuation, and an alternative method to obtain soft tissue thickness from the XRF spectrum was developed and shown to be equivalent to the ultrasound measurements (intraclass correlation coefficient, ICC = 0.82). We tested the correlation of in vivo bone lead concentrations between the standard KXRF technology and the portable XRF technology. There was a significant correlation between the bone lead concentrations obtained from the standard KXRF technology and those obtained from the portable XRF technology (ICC = 0.65). The detection limit for the portable XRF device was about 8.4 ppm with 2 mm soft tissue thickness. The entrance skin dose delivered to the human subject was about 13 mSv and the total body effective dose was about 1.5 μSv and should pose minimal radiation risk. In conclusion, portable XRF technology can be used for in vivo bone lead measurement with sensitivity comparable to the KXRF technology and good correlation with KXRF measurements. (note)

  9. Consolidated guidance about materials licenses: Program-specific guidance about portable gauge licenses. Final report; Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Vacca, P.C.; Whitten, J.E.; Pelchat, J.M.; Arredondo, S.A.; Matson, E.R.; Lewis, S.H.; Collins, D.J.; Santiago, P.A. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Industrial and Medical Nuclear Safety; Tingle, W. [Dept. of Environment, Health, and Natural Resources, Raleigh, NC (United States). Div. of Radiation Protection

    1997-05-01

    As part of its redesign of the materials licensing process, NRC is consolidating and updating numerous guidance documents into a single comprehensive repository as described in NUREG-1539 and draft NUREG-1541. NUREG-1556, Vol. 1, is the first program-specific guidance developed for the new process and will serve as a template for subsequent program-specific guidance. This document is intended for use by applicants, licensees, and NRC staff and will also be available to Agreement States. This document supersedes the guidance previously found in draft Regulatory Guide DG-0008, ``Applications for the Use of Sealed Sources in Portable Gauging Devices,`` and in NMSs Policy and guidance Directive 2-07, ``Standard Review Plan for Applications for Use of Sealed Sources in Portable Gauging Devices.`` This final report takes a more risk-informed, performance-based approach to licensing portable gauges, and reduces the information(amount and level of detail) needed to support an application to use these devices. It incorporates many suggests submitted during the comment period on draft NUREG-1556, Volume 1. When published, this final report should be used in preparing portable gauge license applications. NRC staff will use this final report in reviewing these applications.

  10. Consolidated guidance about materials licenses: Program-specific guidance about portable gauge licenses. Final report; Volume 1

    International Nuclear Information System (INIS)

    Vacca, P.C.; Whitten, J.E.; Pelchat, J.M.; Arredondo, S.A.; Matson, E.R.; Lewis, S.H.; Collins, D.J.; Santiago, P.A.; Tingle, W.

    1997-05-01

    As part of its redesign of the materials licensing process, NRC is consolidating and updating numerous guidance documents into a single comprehensive repository as described in NUREG-1539 and draft NUREG-1541. NUREG-1556, Vol. 1, is the first program-specific guidance developed for the new process and will serve as a template for subsequent program-specific guidance. This document is intended for use by applicants, licensees, and NRC staff and will also be available to Agreement States. This document supersedes the guidance previously found in draft Regulatory Guide DG-0008, ''Applications for the Use of Sealed Sources in Portable Gauging Devices,'' and in NMSs Policy and guidance Directive 2-07, ''Standard Review Plan for Applications for Use of Sealed Sources in Portable Gauging Devices.'' This final report takes a more risk-informed, performance-based approach to licensing portable gauges, and reduces the information(amount and level of detail) needed to support an application to use these devices. It incorporates many suggests submitted during the comment period on draft NUREG-1556, Volume 1. When published, this final report should be used in preparing portable gauge license applications. NRC staff will use this final report in reviewing these applications

  11. Portable wireless metering

    Energy Technology Data Exchange (ETDEWEB)

    DiPaola, L [Powtel Monitoring Systems, Inc., Ajax, ON (Canada)

    1996-12-31

    Portable meters were discussed as alternatives to standard billing meters for temporary installations. Current, voltage and power factor at a distribution station were measured to calculate kW and kVAR, using an easy to install product that communicates live readings directly to the existing billing system. A background of situations where temporary metering is a possible alternative to regular meters was presented. Use of electronic, clamp on Electronic Recording Ammeters (ERA) and their drawbacks were discussed. An improved temporary metering solution using FM radio transmission to deliver live data to a receiving device, the Eagle Series 3500, was introduced. Improvements over previous ERA systems were discussed, including accuracy, lack of batteries, immediate confirmation of functionality, current, voltage and power factor monitoring, direct feed to billing system, line crew savings, need for only a single unit at any given site, bi-directional power flow metering, independent report storage media, and a portable voltage and P.F. diagnostic tool. Details of trial applications at the Utopia distribution station west of Barrie, ON were presented. This technology was said to be still in the testing stage, but its flexibility and economy were sonsidered to be very promising for future application.

  12. Design of portable ultraminiature flow cytometers for medical diagnostics

    Science.gov (United States)

    Leary, James F.

    2018-02-01

    Design of portable microfluidic flow/image cytometry devices for measurements in the field (e.g. initial medical diagnostics) requires careful design in terms of power requirements and weight to allow for realistic portability. True portability with high-throughput microfluidic systems also requires sampling systems without the need for sheath hydrodynamic focusing both to avoid the need for sheath fluid and to enable higher volumes of actual sample, rather than sheath/sample combinations. Weight/power requirements dictate use of super-bright LEDs with top-hat excitation beam architectures and very small silicon photodiodes or nanophotonic sensors that can both be powered by small batteries. Signal-to-noise characteristics can be greatly improved by appropriately pulsing the LED excitation sources and sampling and subtracting noise in between excitation pulses. Microfluidic cytometry also requires judicious use of small sample volumes and appropriate statistical sampling by microfluidic cytometry or imaging for adequate statistical significance to permit real-time (typically in less than 15 minutes) initial medical decisions for patients in the field. This is not something conventional cytometry traditionally worries about, but is very important for development of small, portable microfluidic devices with small-volume throughputs. It also provides a more reasonable alternative to conventional tubes of blood when sampling geriatric and newborn patients for whom a conventional peripheral blood draw can be problematical. Instead one or two drops of blood obtained by pin-prick should be able to provide statistically meaningful results for use in making real-time medical decisions without the need for blood fractionation, which is not realistic in the doctor's office or field.

  13. Portable and low-cost colorimetric office paper-based device for phenacetin detection in seized cocaine samples.

    Science.gov (United States)

    da Silva, Gabriela O; de Araujo, William R; Paixão, Thiago R L C

    2018-01-01

    An office paper-based colorimetric device is proposed as a portable, rapid, and low-cost sensor for forensic applications aiming to detect phenacetin used as adulterant in illicit seized materials such as cocaine. The proposed method uses white office paper as the substrate and wax printing technology to fabricate the detection zones. Based on the optimum conditions, a linear analytical curve was obtained for phenacetin concentrations ranging from 0 to 64.52µgmL ‒1 , and the straight line was in accordance with the following equation: (Magenta percentage color) = 1.19 + 0.458 (C Phe /µgmL ‒1 ), R 2 = 0.990. The limit of detection was calculated as 3.5µgmL ‒1 (3σ/slope). The accuracy of the proposed method was evaluated using real seized cocaine samples and the spike-recovery procedure. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Live ECG readings using Google Glass in emergency situations.

    Science.gov (United States)

    Schaer, Roger; Salamin, Fanny; Jimenez Del Toro, Oscar Alfonso; Atzori, Manfredo; Muller, Henning; Widmer, Antoine

    2015-01-01

    Most sudden cardiac problems require rapid treatment to preserve life. In this regard, electrocardiograms (ECG) shown on vital parameter monitoring systems help medical staff to detect problems. In some situations, such monitoring systems may display information in a less than convenient way for medical staff. For example, vital parameters are displayed on large screens outside the field of view of a surgeon during cardiac surgery. This may lead to losing time and to mistakes when problems occur during cardiac operations. In this paper we present a novel approach to display vital parameters such as the second derivative of the ECG rhythm and heart rate close to the field of view of a surgeon using Google Glass. As a preliminary assessment, we run an experimental study to verify the possibility for medical staff to identify abnormal ECG rhythms from Google Glass. This study compares 6 ECG rhythms readings from a 13.3 inch laptop screen and from the prism of Google Glass. Seven medical residents in internal medicine participated in the study. The preliminary results show that there is no difference between identifying these 6 ECG rhythms from the laptop screen versus Google Glass. Both allow close to perfect identification of the 6 common ECG rhythms. This shows the potential of connected glasses such as Google Glass to be useful in selected medical applications.

  15. Syringe-vacuum microfluidics: A portable technique to create monodisperse emulsions.

    Science.gov (United States)

    Abate, Adam R; Weitz, David A

    2011-03-16

    We present a simple method for creating monodisperse emulsions with microfluidic devices. Unlike conventional approaches that require bulky pumps, control computers, and expertise with device physics to operate devices, our method requires only the microfluidic device and a hand-operated syringe. The fluids needed for the emulsion are loaded into the device inlets, while the syringe is used to create a vacuum at the device outlet; this sucks the fluids through the channels, generating the drops. By controlling the hydrodynamic resistances of the channels using hydrodynamic resistors and valves, we are able to control the properties of the drops. This provides a simple and highly portable method for creating monodisperse emulsions.

  16. Design of Portable Turbidimeter Based on Cygnal Microcomputer

    International Nuclear Information System (INIS)

    Sun, M J; Sun, X H; Zhou, J; Song, X C; Zhang, T; Zhang, X J

    2006-01-01

    Based on the characteristics of turbidity measurement, we have researched upon the portable light-scattering turbidity testing device by applying C8051F020. We try to simplify the circuit structure and improve the anti-interference of the device through the collection and process of data of the photoelectrical signal, as well as the control of circuit by C8051F020. Besides, the bubble disturbance inside light pathway is eliminated by means of mechanical agitating. Therefore the measurement is stablized

  17. High performance 3D adaptive filtering for DSP based portable medical imaging systems

    Science.gov (United States)

    Bockenbach, Olivier; Ali, Murtaza; Wainwright, Ian; Nadeski, Mark

    2015-03-01

    Portable medical imaging devices have proven valuable for emergency medical services both in the field and hospital environments and are becoming more prevalent in clinical settings where the use of larger imaging machines is impractical. Despite their constraints on power, size and cost, portable imaging devices must still deliver high quality images. 3D adaptive filtering is one of the most advanced techniques aimed at noise reduction and feature enhancement, but is computationally very demanding and hence often cannot be run with sufficient performance on a portable platform. In recent years, advanced multicore digital signal processors (DSP) have been developed that attain high processing performance while maintaining low levels of power dissipation. These processors enable the implementation of complex algorithms on a portable platform. In this study, the performance of a 3D adaptive filtering algorithm on a DSP is investigated. The performance is assessed by filtering a volume of size 512x256x128 voxels sampled at a pace of 10 MVoxels/sec with an Ultrasound 3D probe. Relative performance and power is addressed between a reference PC (Quad Core CPU) and a TMS320C6678 DSP from Texas Instruments.

  18. Portable Fuel Cell Battery Charger with Integrated Hydrogen Generator

    Energy Technology Data Exchange (ETDEWEB)

    Bossel, Ulf G. [CH-5452 Oberrohrdorf (Switzerland)

    1999-10-01

    A fully self-sufficient portable fuel cell battery charger has been designed, built, operated and is now prepared for commercialisation. The lightweight device is equipped with 24 circular polymer electrolyte cells of an innovative design. Each cell is a complete unit and can be tested prior to stacking. Hydrogen is admitted to the anode chamber from the centre of the cell. Air can reach the cathode by diffusion through a porous metal foam layer placed between cathode and separator plate. Soft seals surround the centre hole of the cells to separate hydrogen from air. Water vapour generated by the electrochemical conversion is released into the atmosphere via the porous metal foam on the cathode. All hydrogen fed to the dead-ended anode chamber is converted to electric power. The device is equipped with a chemical hydrogen generator. The fuel gas is formed by adding small amounts of water to a particular chemical compound which is contained in disposable cartridges. With one such cartridge enough hydrogen can be generated to operate CD-players, radios, recorders or portable computers for some hours, depending on the current drawn by the electronic device. The handy portable battery charger delivers about 10 W at 12 V DC. It is designed to be used in remote areas as autonomous power source for charging batteries used in radios, CD players, cellular telephones, radio transmitters, flash lights or model air planes. The power can also be used directly to provide light, sound or motion. Patents have been filed and partners are sought for commercialisation. (author) 4 figs.

  19. Dose reduction in multi-slice CT of the heart by use of ECG-controlled tube current modulation (''ECG pulsing''): phantom measurements

    International Nuclear Information System (INIS)

    Poll, L.W.; Cohnen, M.; Brachten, S.; Moedder, U.; Ewen, K.

    2002-01-01

    To evaluate the effect of ECG-controlled tube current modulation on radiation exposure in retrospectively-ECG-gated multislice CT (MSCT) of the heart. Material and methods: Three different cardiac MSCT protocols with different slice collimation (4 x 1, and 4 x 2.5 mm), and a pitch-factor of 1.5 and 1.8 were investigated at a multi-slice CT scanner Somatom Volume Zoom, Siemens. An anthropomorphic Alderson-Rando phantom was equipped with LiF-Thermoluminescence dosimeters at several organ sites, and effective doses were calculated using ICRP-weighting factors. Scan protocols were performed with ECG-controlled tube current modulation ('ECG pulsing') at two different heart rates (60 and 80 bpm). These data were compared to previous data from MSCT of the heart without use of 'ECG pulsing'. Results: Radiation exposure with (60 bpm) and without tube current modulation using a 2.5 mm collimation was 1.8 mSv and 2.9 mSv for females, and 1.5 mSv and 2.4 mSv for males, respectively. For protocols using a 1 mm collimation with a pitch-factor of 1.5 (1.8), radiation exposure with and without tube current modulation was 5.6 (6.3) mSv and 9.5 (11.2) mSv for females, and 4.6 (5.2) mSv and 7.7 (9.2) mSv for males, respectively. At higher heart rates (80 bpm) radiation exposure is increased from 1.5-1.8 mSv to 1.8-2.1 mSv, using the 2.5 mm collimation, and from 4.6-5.6 mSv to 5.9-7.2 mSv, for protocols using 1 mm collimation. Conclusions: The ECG-controlled tube current modulation allows a dose reduction of 37% to 44% when retrospectively ECG-gated MSCT of the heart is performed. The tube current - as a function over time - and therefore the radiation exposure is dependent on the heart rate. (orig.) [de

  20. Threshold-based system for noise detection in multilead ECG recordings

    International Nuclear Information System (INIS)

    Jekova, Irena; Krasteva, Vessela; Christov, Ivaylo; Abächerli, Roger

    2012-01-01

    This paper presents a system for detection of the most common noise types seen on the electrocardiogram (ECG) in order to evaluate whether an episode from 12-lead ECG is reliable for diagnosis. It implements criteria for estimation of the noise corruption level in specific frequency bands, aiming to identify the main sources of ECG quality disruption, such as missing signal or limited dynamics of the QRS components above 4 Hz; presence of high amplitude and steep artifacts seen above 1 Hz; baseline drift estimated at frequencies below 1 Hz; power–line interference in a band ±2 Hz around its central frequency; high-frequency and electromyographic noises above 20 Hz. All noise tests are designed to process the ECG series in the time domain, including 13 adjustable thresholds for amplitude and slope criteria which are evaluated in adjustable time intervals, as well as number of leads. The system allows flexible extension toward application-specific requirements for the noise levels in acceptable quality ECGs. Training of different thresholds’ settings to determine different positive noise detection rates is performed with the annotated set of 1000 ECGs from the PhysioNet database created for the Computing in Cardiology Challenge 2011. Two implementations are highlighted on the receiver operating characteristic (area 0.968) to fit to different applications. The implementation with high sensitivity (Se = 98.7%, Sp = 80.9%) appears as a reliable alarm when there are any incidental problems with the ECG acquisition, while the implementation with high specificity (Sp = 97.8%, Se = 81.8%) is less susceptible to transient problems but rather validates noisy ECGs with acceptable quality during a small portion of the recording. (paper)

  1. Training Program for Cardiology Residents to Perform Focused Cardiac Ultrasound Examination with Portable Device.

    Science.gov (United States)

    Siqueira, Vicente N; Mancuso, Frederico J N; Campos, Orlando; De Paola, Angelo A; Carvalho, Antonio C; Moises, Valdir A

    2015-10-01

    Training requirements for general cardiologists without echocardiographic expertise to perform focused cardiac ultrasound (FCU) with portable devices have not yet been defined. The objective of this study was to evaluate a training program to instruct cardiology residents to perform FCU with a hand-carried device (HCD) in different clinical settings. Twelve cardiology residents were subjected to a 50-question test, 4 lectures on basic echocardiography and imaging interpretation, the supervised interpretation of 50 echocardiograms and performance of 30 exams using HCD. After this period, they repeated the written test and were administered a practical test comprising 30 exams each (360 patients) in different clinical settings. They reported on 15 parameters and a final diagnosis; their findings were compared to the HCD exam of a specialist in echocardiography. The proportion of correct answers on the theoretical test was higher after training (86%) than before (51%; P = 0.001). The agreement was substantial among the 15 parameters analyzed (kappa ranging from 0.615 to 0.891; P < 0.001). The percentage of correct interpretation was lower for abnormal (75%) than normal (95%) items, for valve abnormalities (85%) compared to other items (92%) and for graded scale (87%) than for dichotomous (95%) items (P < 0.0001, for all). For the final diagnoses, the kappa value was higher than 0.941 (P < 0.001; 95% CI [0.914, 0.955]). The training proposed enabled residents to perform FCU with HCD, and their findings were in good agreement with those of a cardiologist specialized in echocardiography. © 2015, Wiley Periodicals, Inc.

  2. Multistage principal component analysis based method for abdominal ECG decomposition

    International Nuclear Information System (INIS)

    Petrolis, Robertas; Krisciukaitis, Algimantas; Gintautas, Vladas

    2015-01-01

    Reflection of fetal heart electrical activity is present in registered abdominal ECG signals. However this signal component has noticeably less energy than concurrent signals, especially maternal ECG. Therefore traditionally recommended independent component analysis, fails to separate these two ECG signals. Multistage principal component analysis (PCA) is proposed for step-by-step extraction of abdominal ECG signal components. Truncated representation and subsequent subtraction of cardio cycles of maternal ECG are the first steps. The energy of fetal ECG component then becomes comparable or even exceeds energy of other components in the remaining signal. Second stage PCA concentrates energy of the sought signal in one principal component assuring its maximal amplitude regardless to the orientation of the fetus in multilead recordings. Third stage PCA is performed on signal excerpts representing detected fetal heart beats in aim to perform their truncated representation reconstructing their shape for further analysis. The algorithm was tested with PhysioNet Challenge 2013 signals and signals recorded in the Department of Obstetrics and Gynecology, Lithuanian University of Health Sciences. Results of our method in PhysioNet Challenge 2013 on open data set were: average score: 341.503 bpm 2 and 32.81 ms. (paper)

  3. One-Dimensional Signal Extraction Of Paper-Written ECG Image And Its Archiving

    Science.gov (United States)

    Zhang, Zhi-ni; Zhang, Hong; Zhuang, Tian-ge

    1987-10-01

    A method for converting paper-written electrocardiograms to one dimensional (1-D) signals for archival storage on floppy disk is presented here. Appropriate image processing techniques were employed to remove the back-ground noise inherent to ECG recorder charts and to reconstruct the ECG waveform. The entire process consists of (1) digitization of paper-written ECGs with an image processing system via a TV camera; (2) image preprocessing, including histogram filtering and binary image generation; (3) ECG feature extraction and ECG wave tracing, and (4) transmission of the processed ECG data to IBM-PC compatible floppy disks for storage and retrieval. The algorithms employed here may also be used in the recognition of paper-written EEG or EMG and may be useful in robotic vision.

  4. ECG-triggered MDR-CT for the detection of pulmonary metastases

    International Nuclear Information System (INIS)

    Pauls, S.; Wahl, J.; Aschoff, A.J.; Brambs, H.J.; Fleiter, T.R.

    2003-01-01

    Purpose: Comparison of multidetector-row CT (MDR-CT) of the chest with and without ECG triggering for the detection of pulmonary metastases. Materials and Methods: Fifty patients with malignant tumors underwent CT of the chest. The unenhanced phase was performed with ECG-triggered MDR-CT and the contrast-enhanced phase with helical MDR-CT. The ECG-triggered and standard helical scans were interpreted in separate sessions, with the analysis determining the number and demarcation of the intrapulmonary nodules and the delineation of the mediastinal structure (rated 1 = excellent to 5 = poor). Results: ECG-MDR-CT images detected 38% more pulmonary nodules than MDR-CT. The detection rate for tumors [de

  5. ECG Identification System Using Neural Network with Global and Local Features

    Science.gov (United States)

    Tseng, Kuo-Kun; Lee, Dachao; Chen, Charles

    2016-01-01

    This paper proposes a human identification system via extracted electrocardiogram (ECG) signals. Two hierarchical classification structures based on global shape feature and local statistical feature is used to extract ECG signals. Global shape feature represents the outline information of ECG signals and local statistical feature extracts the…

  6. Risk stratifying asymptomatic aortic stenosis: role of the resting 12-lead ECG.

    Science.gov (United States)

    Greve, Anders M

    2014-02-01

    Despite being routinely performed in the clinical follow-up of asymptomatic AS patients, little or no evidence describes the prognostic value of ECG findings in asymptomatic AS populations. This PhD thesis examined the correlates of resting 12-lead ECG variables with echocardiographic measures of AS severity and cardiovascular outcomes in the till date largest cohort (n=1,563) of asymptomatic patients with mild-to-moderate AS. Most importantly, this PhD thesis demonstrated that QRS-duration adds independent predictive value of sudden cardiac death and that the additional presence of ECG LVH/strain for fixed AS severity represents a lethal risk attribute. Finally, ECG abnormalities displayed low/moderate concordance with echocardiographic parameters. This argues that the ECG should be regarded as a separate tool for obtaining prognostically important information. Treatment was not randomized by ECG findings, future studies should therefore examine if and which ECG variables should elicit closer follow-up and/or earlier intervention to improve prognosis in asymptomatic AS populations.

  7. Bedside identification of patients at risk for PVC-induced cardiomyopathy: Is ECG useful?

    Science.gov (United States)

    Garster, Noelle C; Henrikson, Charles A

    2017-07-01

    Premature ventricular complexes (PVCs) are an underrecognized cause of cardiomyopathy. Standard 12-lead electrocardiogram (ECG) has potential to direct attention toward at-risk patients. We performed a single-center, retrospective chart review of 1,240 patients who completed ECG and Holter monitoring at Oregon Health and Science University Hospital between January 1, 2011 and December 31, 2013 to investigate the relationship of PVC frequency on ECG with burden on Holter. Primary outcome measures included PVC quantity on ECG, mean PVC quantity on Holter, and percentage of total beats on Holter recorded as PVCs. High PVC burden was defined as ≥10% of total beats. Weighted mean percentages of total beats on Holter monitor recorded as PVCs were calculated for 0, 1, 2, and ≥3 PVCs on ECG and found to be 1.4% (n = 1,128), 3.5% (n = 32), 4.3% (n = 25), and 16.6% (n = 55), respectively, which represent statistically significant differences (P ECG for ≥10% PVC Holter burden was 58%. Negative predictive value for 0 PVCs on ECG was 98%. The sensitivity and specificity of ECG to identify high PVC burden on Holter was 72% and 93.6%, respectively, when utilizing a positive ECG result as one PVC or more, and 44% and 98.9%, respectively, with ≥3 PVCs on ECG. The positive likelihood ratio corresponding to ≥3 PVCs on ECG was 40. These findings demonstrate that the number of PVCs on ECG can be utilized for quick bedside estimation of high PVC burden. © 2017 Wiley Periodicals, Inc.

  8. Dynamic segmentation and linear prediction for maternal ECG removal in antenatal abdominal recordings

    International Nuclear Information System (INIS)

    Vullings, R; Sluijter, R J; Mischi, M; Bergmans, J W M; Peters, C H L; Oei, S G

    2009-01-01

    Monitoring the fetal heart rate (fHR) and fetal electrocardiogram (fECG) during pregnancy is important to support medical decision making. Before labor, the fHR is usually monitored using Doppler ultrasound. This method is inaccurate and therefore of limited clinical value. During labor, the fHR can be monitored more accurately using an invasive electrode; this method also enables monitoring of the fECG. Antenatally, the fECG and fHR can also be monitored using electrodes on the maternal abdomen. The signal-to-noise ratio of these recordings is, however, low, the maternal electrocardiogram (mECG) being the main interference. Existing techniques to remove the mECG from these non-invasive recordings are insufficiently accurate or do not provide all spatial information of the fECG. In this paper a new technique for mECG removal in antenatal abdominal recordings is presented. This technique operates by the linear prediction of each separate wave in the mECG. Its performance in mECG removal and fHR detection is evaluated by comparison with spatial filtering, adaptive filtering, template subtraction and independent component analysis techniques. The new technique outperforms the other techniques in both mECG removal and fHR detection (by more than 3%)

  9. Ambulatory stress monitoring with a wearable bluetooth electrocardiographic device.

    Science.gov (United States)

    Hong, Sungyoup; Yang, Youngmo; Lee, Jangyoung; Yang, Heebum; Park, Kyungnam; Lee, Suyeul; Lee, Inbum; Jang, Yongwon

    2010-01-01

    We tried to monitor stress by using a wearable one channel ECG device that can send ECG signals through Bluetooth wireless communication. Noxious physical and mental arithmetic stress was given three times repeatedly to healthy adults, and cortisol and catecholamines were measured serially from peripheral blood. At the same time, time domain and frequency domain parameters of heart rate variability (HRV) were calculated by taking precordial electrocardiogram. The intensity of correlation between subjective visual analogue scale (VAS) and catecholamine, cortisol, and HRV parameters according to stress was analyzed by using concordance correlation coefficients. The HRV triangular index and LF/HF ratio had high concordance correlation with the degree of stress in the physical stress model. In mental arithmetic stress model, the HRV triangular index and LF/HF ratio had weak concordance correlation with the degree of stress, and it had lower predictability than epinephrine. In both models, cortisol had some correlation with catecholamine, but it had little correlation with HRV parameters. HRV parameters using wearable one channel ECG device can be useful in predicting acute stress and also in many other areas.

  10. Portable system for auscultation and lung sound analysis.

    Science.gov (United States)

    Nabiev, Rustam; Glazova, Anna; Olyinik, Valery; Makarenkova, Anastasiia; Makarenkov, Anatolii; Rakhimov, Abdulvosid; Felländer-Tsai, Li

    2014-01-01

    A portable system for auscultation and lung sound analysis has been developed, including the original electronic stethoscope coupled with mobile devices and special algorithms for the automated analysis of pulmonary sound signals. It's planned that the developed system will be used for monitoring of health status of patients with various pulmonary diseases.

  11. Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology

    Directory of Open Access Journals (Sweden)

    José Vicente Lidón-Roger

    2018-01-01

    Full Text Available Among many of the electrode designs used in electrocardiography (ECG, concentric ring electrodes (CREs are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene polystyrene sulfonate; PEDOT:PSS. Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining

  12. Textile Concentric Ring Electrodes for ECG Recording Based on Screen-Printing Technology.

    Science.gov (United States)

    Lidón-Roger, José Vicente; Prats-Boluda, Gema; Ye-Lin, Yiyao; Garcia-Casado, Javier; Garcia-Breijo, Eduardo

    2018-01-21

    Among many of the electrode designs used in electrocardiography (ECG), concentric ring electrodes (CREs) are one of the most promising due to their enhanced spatial resolution. Their development has undergone a great push due to their use in recent years; however, they are not yet widely used in clinical practice. CRE implementation in textiles will lead to a low cost, flexible, comfortable, and robust electrode capable of detecting high spatial resolution ECG signals. A textile CRE set has been designed and developed using screen-printing technology. This is a mature technology in the textile industry and, therefore, does not require heavy investments. Inks employed as conductive elements have been silver and a conducting polymer (poly (3,4-ethylenedioxythiophene) polystyrene sulfonate; PEDOT:PSS). Conducting polymers have biocompatibility advantages, they can be used with flexible substrates, and they are available for several printing technologies. CREs implemented with both inks have been compared by analyzing their electric features and their performance in detecting ECG signals. The results reveal that silver CREs present a higher average thickness and slightly lower skin-electrode impedance than PEDOT:PSS CREs. As for ECG recordings with subjects at rest, both CREs allowed the uptake of bipolar concentric ECG signals (BC-ECG) with signal-to-noise ratios similar to that of conventional ECG recordings. Regarding the saturation and alterations of ECGs captured with textile CREs caused by intentional subject movements, silver CREs presented a more stable response (fewer saturations and alterations) than those of PEDOT:PSS. Moreover, BC-ECG signals provided higher spatial resolution compared to conventional ECG. This improved spatial resolution was manifested in the identification of P1 and P2 waves of atrial activity in most of the BC-ECG signals. It can be concluded that textile silver CREs are more suitable than those of PEDOT:PSS for obtaining BC-ECG records

  13. Development of portable flow calibrator

    International Nuclear Information System (INIS)

    Akiyama, Kiyomitsu; Iijima, Nobuo

    1995-01-01

    In the nuclear facilities, air sniffer system is often utilized to evaluate atmospheric concentration of radioactivity in the working environment. The system collects airborne dust on the filter during some sampling period. In this method, total air flow during the sampling period is an important parameter to evaluate the radioactivity concentration correctly. Therefore, calibration for the flow meter of air sniffer system must be done periodically according to Japan Industry Standards (JIS). As we have had to available device to calibrate the flow meter in the working area, we had to remove the flow meters from the installed place and carry them to another place where calibration can be made. This work required a great deal of labor. Now we have developed a portable flow calibrator for air sniffer system which enables us to make in-site calibration of the flow meter in the working area more easily. This report describes the outline of portable flow calibrator and it's experimental results. (author)

  14. A Portable Source of Lattice-Trapped and Ultracold Strontium (PLUS), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to demonstrate the portable source of lattice-trapped, ultracold strontium (PLUS) designed during Phase I. The device uses simplified and robust...

  15. New approach to ECG's features recognition involving neural network

    International Nuclear Information System (INIS)

    Babloyantz, A.; Ivanov, V.V.; Zrelov, P.V.

    2001-01-01

    A new approach for the detection of slight changes in the form of the ECG signal is proposed. It is based on the approximation of raw ECG data inside each RR-interval by the expansion in polynomials of special type and on the classification of samples represented by sets of expansion coefficients using a layered feed-forward neural network. The transformation applied provides significantly simpler data structure, stability to noise and to other accidental factors. A by-product of the method is the compression of ECG data with factor 5

  16. Arrhythmia Classification Based on Multi-Domain Feature Extraction for an ECG Recognition System

    Directory of Open Access Journals (Sweden)

    Hongqiang Li

    2016-10-01

    Full Text Available Automatic recognition of arrhythmias is particularly important in the diagnosis of heart diseases. This study presents an electrocardiogram (ECG recognition system based on multi-domain feature extraction to classify ECG beats. An improved wavelet threshold method for ECG signal pre-processing is applied to remove noise interference. A novel multi-domain feature extraction method is proposed; this method employs kernel-independent component analysis in nonlinear feature extraction and uses discrete wavelet transform to extract frequency domain features. The proposed system utilises a support vector machine classifier optimized with a genetic algorithm to recognize different types of heartbeats. An ECG acquisition experimental platform, in which ECG beats are collected as ECG data for classification, is constructed to demonstrate the effectiveness of the system in ECG beat classification. The presented system, when applied to the MIT-BIH arrhythmia database, achieves a high classification accuracy of 98.8%. Experimental results based on the ECG acquisition experimental platform show that the system obtains a satisfactory classification accuracy of 97.3% and is able to classify ECG beats efficiently for the automatic identification of cardiac arrhythmias.

  17. Disease Classification and Biomarker Discovery Using ECG Data

    Directory of Open Access Journals (Sweden)

    Rong Huang

    2015-01-01

    Full Text Available In the recent decade, disease classification and biomarker discovery have become increasingly important in modern biological and medical research. ECGs are comparatively low-cost and noninvasive in screening and diagnosing heart diseases. With the development of personal ECG monitors, large amounts of ECGs are recorded and stored; therefore, fast and efficient algorithms are called for to analyze the data and make diagnosis. In this paper, an efficient and easy-to-interpret procedure of cardiac disease classification is developed through novel feature extraction methods and comparison of classifiers. Motivated by the observation that the distributions of various measures on ECGs of the diseased group are often skewed, heavy-tailed, or multimodal, we characterize the distributions by sample quantiles which outperform sample means. Three classifiers are compared in application both to all features and to dimension-reduced features by PCA: stepwise discriminant analysis (SDA, SVM, and LASSO logistic regression. It is found that SDA applied to dimension-reduced features by PCA is the most stable and effective procedure, with sensitivity, specificity, and accuracy being 89.68%, 84.62%, and 88.52%, respectively.

  18. ECG-Based Measurements of Drug-induced Repolarization Changes

    DEFF Research Database (Denmark)

    Bhuiyan, Tanveer Ahmed

    The purpose of this thesis is to investigate the abnormal repolarization both in the cellular and the surface ECG along with their relationship. It has been identified that the certain morphological changes of the monophasic action potential are predictor of TdP arrhythmia. Therefore the proporti......The purpose of this thesis is to investigate the abnormal repolarization both in the cellular and the surface ECG along with their relationship. It has been identified that the certain morphological changes of the monophasic action potential are predictor of TdP arrhythmia. Therefore...... the proportional changes of the surface ECG which corresponds to the arrhythmia-triggering MAP morphology is warranted to increase the confidence of determining cardiotoxicity of drugs....

  19. ECG changes in gamma-therapy of esophagus cancer

    International Nuclear Information System (INIS)

    Khajrushev, Zh.A.; Abdrakhmanov, Zh.N.

    1978-01-01

    Effect of ionizing radiation dose distribution with time in gamma therapy of esophagus cancer has been studied on the basis of the results obtained with electrocardiography. 700 persons were examined before treatment and after completing the full course of irradiation, 426 persons were examined repeatedly. Radiation treatment methods used are given. In most cases ECG changes result in the quickened systole rhythm and diffuse changes in the myocardium due to intoxication. ECG changes associated with the irradiation for patients with esophagus cancer amounted to 16%. Frequency of postirradiation ECG changes depends on the position of esophagus area under irradiation. Different variants of mean dose fractionation were the most sparing with respect to the heart

  20. Polymeric ionic liquid-based portable tip microextraction device for on-site sample preparation of water samples.

    Science.gov (United States)

    Chen, Lei; Pei, Junxian; Huang, Xiaojia; Lu, Min

    2018-06-05

    On-site sample preparation is highly desired because it avoids the transportation of large-volume samples and ensures the accuracy of the analytical results. In this work, a portable prototype of tip microextraction device (TMD) was designed and developed for on-site sample pretreatment. The assembly procedure of TMD is quite simple. Firstly, polymeric ionic liquid (PIL)-based adsorbent was in-situ prepared in a pipette tip. After that, the tip was connected with a syringe which was driven by a bidirectional motor. The flow rates in adsorption and desorption steps were controlled accurately by the motor. To evaluate the practicability of the developed device, the TMD was used to on-site sample preparation of waters and combined with high-performance liquid chromatography with diode array detection to measure trace estrogens in water samples. Under the most favorable conditions, the limits of detection (LODs, S/N = 3) for the target analytes were in the range of 4.9-22 ng/L, with good coefficients of determination. Confirmatory study well evidences that the extraction performance of TMD is comparable to that of the traditional laboratory solid-phase extraction process, but the proposed TMD is more simple and convenient. At the same time, the TMD avoids complicated sampling and transferring steps of large-volume water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Enhancement of low sampling frequency recordings for ECG biometric matching using interpolation.

    Science.gov (United States)

    Sidek, Khairul Azami; Khalil, Ibrahim

    2013-01-01

    Electrocardiogram (ECG) based biometric matching suffers from high misclassification error with lower sampling frequency data. This situation may lead to an unreliable and vulnerable identity authentication process in high security applications. In this paper, quality enhancement techniques for ECG data with low sampling frequency has been proposed for person identification based on piecewise cubic Hermite interpolation (PCHIP) and piecewise cubic spline interpolation (SPLINE). A total of 70 ECG recordings from 4 different public ECG databases with 2 different sampling frequencies were applied for development and performance comparison purposes. An analytical method was used for feature extraction. The ECG recordings were segmented into two parts: the enrolment and recognition datasets. Three biometric matching methods, namely, Cross Correlation (CC), Percent Root-Mean-Square Deviation (PRD) and Wavelet Distance Measurement (WDM) were used for performance evaluation before and after applying interpolation techniques. Results of the experiments suggest that biometric matching with interpolated ECG data on average achieved higher matching percentage value of up to 4% for CC, 3% for PRD and 94% for WDM. These results are compared with the existing method when using ECG recordings with lower sampling frequency. Moreover, increasing the sample size from 56 to 70 subjects improves the results of the experiment by 4% for CC, 14.6% for PRD and 0.3% for WDM. Furthermore, higher classification accuracy of up to 99.1% for PCHIP and 99.2% for SPLINE with interpolated ECG data as compared of up to 97.2% without interpolation ECG data verifies the study claim that applying interpolation techniques enhances the quality of the ECG data. Crown Copyright © 2012. Published by Elsevier Ireland Ltd. All rights reserved.

  2. A portable source of lattice-trapped and ultracold strontium (PLUS), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to design and demonstrate a portable source of lattice-trapped, ultracold strontium (PLUS). The device uses simplified and robust techniques for loading...

  3. Performance of handheld electrocardiogram devices to detect atrial fibrillation in a cardiology and geriatric ward setting.

    Science.gov (United States)

    Desteghe, Lien; Raymaekers, Zina; Lutin, Mark; Vijgen, Johan; Dilling-Boer, Dagmara; Koopman, Pieter; Schurmans, Joris; Vanduynhoven, Philippe; Dendale, Paul; Heidbuchel, Hein

    2017-01-01

    To determine the usability, accuracy, and cost-effectiveness of two handheld single-lead electrocardiogram (ECG) devices for atrial fibrillation (AF) screening in a hospital population with an increased risk for AF. Hospitalized patients (n = 445) at cardiological or geriatric wards were screened for AF by two handheld ECG devices (MyDiagnostick and AliveCor). The performance of the automated algorithm of each device was evaluated against a full 12-lead or 6-lead ECG recording. All ECGs and monitor tracings were also independently reviewed in a blinded fashion by two electrophysiologists. Time investments by nurses and physicians were tracked and used to estimate cost-effectiveness of different screening strategies. Handheld recordings were not possible in 7 and 21.4% of cardiology and geriatric patients, respectively, because they were not able to hold the devices properly. Even after the exclusion of patients with an implanted device, sensitivity and specificity of the automated algorithms were suboptimal (Cardiology: 81.8 and 94.2%, respectively, for MyDiagnostick; 54.5 and 97.5%, respectively, for AliveCor; Geriatrics: 89.5 and 95.7%, respectively, for MyDiagnostick; 78.9 and 97.9%, respectively, for AliveCor). A scenario based on automated AliveCor evaluation in patients without AF history and without an implanted device proved to be the most cost-effective method, with a provider cost to identify one new AF patient of €193 and €82 at cardiology and geriatrics, respectively. The cost to detect one preventable stroke per year would be €7535 and €1916, respectively (based on average CHA 2 DS 2 -VASc of 3.9 ± 2.0 and 5.0 ± 1.5, respectively). Manual interpretation increases sensitivity, but decreases specificity, doubling the cost per detected patient, but remains cheaper than sole 12-lead ECG screening. Using AliveCor or MyDiagnostick handheld recorders requires a structured screening strategy to be effective and cost-effective in a hospital setting

  4. Can Wearable Devices Accurately Measure Heart Rate Variability? A Systematic Review.

    Science.gov (United States)

    Georgiou, Konstantinos; Larentzakis, Andreas V; Khamis, Nehal N; Alsuhaibani, Ghadah I; Alaska, Yasser A; Giallafos, Elias J

    2018-03-01

    A growing number of wearable devices claim to provide accurate, cheap and easily applicable heart rate variability (HRV) indices. This is mainly accomplished by using wearable photoplethysmography (PPG) and/or electrocardiography (ECG), through simple and non-invasive techniques, as a substitute of the gold standard RR interval estimation through electrocardiogram. Although the agreement between pulse rate variability (PRV) and HRV has been evaluated in the literature, the reported results are still inconclusive especially when using wearable devices. The purpose of this systematic review is to investigate if wearable devices provide a reliable and precise measurement of classic HRV parameters in rest as well as during exercise. A search strategy was implemented to retrieve relevant articles from MEDLINE and SCOPUS databases, as well as, through internet search. The 308 articles retrieved were reviewed for further evaluation according to the predetermined inclusion/exclusion criteria. Eighteen studies were included. Sixteen of them integrated ECG - HRV technology and two of them PPG - PRV technology. All of them examined wearable devices accuracy in RV detection during rest, while only eight of them during exercise. The correlation between classic ECG derived HRV and the wearable RV ranged from very good to excellent during rest, yet it declined progressively as exercise level increased. Wearable devices may provide a promising alternative solution for measuring RV. However, more robust studies in non-stationary conditions are needed using appropriate methodology in terms of number of subjects involved, acquisition and analysis techniques implied.

  5. Clinical evaluation of the Tl-201 ECG-gated myocardial SPECT

    International Nuclear Information System (INIS)

    Mochizuki, Teruhito

    1989-01-01

    In order to evaluate the clinical usefulness of the Tl-201 ECG-gated myocardial single photon emission computed tomography (SPECT), we compared the wall motion and the grade of the Tl-201 uptake of the ECG-gated myocardial SPECT with the wall motion of the ECG-gated blood pool SPECT. Materials were 87 patients of 50 old myocardial infarctions (OMIs), 19 hypertrophic cardiomyopathies (HCMs), 2 dilated cardiomyopathies (DCMs) and 16 others. After intravenous injection of 111-185 MBq (3-5 mCi) of Tl-201 at rest, the projection data were acquired using a rotating gamma-camera through 180deg, from RAO 45deg in 24 directions, each of which consisted of 80-100 beats. For the reconstruction of ED, ES and non-gated images, R-R interval was divided into about 20 (18-22) fractions. In 348 regions of interest (anterior, septal, lateral and inferior wall) in 87 cases, wall motion and the Tl-201 uptake were evaluated to three grades (normal, hypokinesis and akinesis; normal, low and defect, respectively), which were compared with the wall motion of the ECG-gated blood pool SPECT. The wall motion and the grade of the Tl-201 uptake of the ECG-gated myocardial SPECT correlated well with the wall motion of the ECG-gated blood pool SPECT (96.6% and 87.9%, respectively). In conclusion, the ECG-gated myocardial SPECT can provide clear perfusion images and is a very useful diagnostic strategy to evaluate the regional wall motion and perfusion simultaneously. (author)

  6. A portable cell-based optical detection device for rapid detection of Listeria and Bacillus toxins

    Science.gov (United States)

    Banerjee, Pratik; Banada, Padmapriya P.; Rickus, Jenna L.; Morgan, Mark T.; Bhunia, Arun K.

    2005-11-01

    A mammalian cell-based optical biosensor was built to detect pathogenic Listeria and Bacillus species. This sensor measures the ability of the pathogens to infect and induce cytotoxicity on hybrid lymphocyte cell line (Ped-2E9) resulting in the release of alkaline phosphatase (ALP) that can be detected optically using a portable spectrophotometer. The Ped-2E9 cells were encapsulated in collagen gel matrices and grown in 48-well plates or in specially designed filtration tube units. Toxin preparations or bacterial cells were introduced and ALP release was assayed after 3-5 h. Pathogenic L. monocytogenes strains or the listeriolysin toxins preparation showed cytotoxicity ranging from 55% - 92%. Toxin preparations (~20 μg/ml) from B. cereus strains showed 24 - 98% cytotoxicity. In contrast, a non-pathogenic L. innocua (F4247) and a B. substilis induced only 2% and 8% cytotoxicity, respectively. This cell-based detection device demonstrates its ability to detect the presence of pathogenic Listeria and Bacillus species and can potentially be used onsite for food safety or in biosecurity application.

  7. High-pressure portable pneumatic drive unit.

    Science.gov (United States)

    Hete, B F; Savage, M; Batur, C; Smith, W A; Golding, L A; Nosé, Y

    1989-12-01

    The left ventricular assist device (LVAD) of the Cleveland Clinic Foundation (CCF) is a single-chamber assist pump, driven by a high-pressure pneumatic cylinder. A low-cost, portable driver that will allow cardiac care patients, with a high-pressure pneumatic ventricle assist, more freedom of movement has been developed. The compact and light-weight configuration can provide periods of 2 h of freedom from a fixed position driver and does not use exotic technology.

  8. Development of a Portable Taste Sensor with a Lipid/Polymer Membrane

    Directory of Open Access Journals (Sweden)

    Kiyoshi Toko

    2013-01-01

    Full Text Available We have developed a new portable taste sensor with a lipid/polymer membrane and conducted experiments to evaluate the sensor’s performance. The fabricated sensor consists of a taste sensor chip (40 mm × 26 mm × 2.2 mm with working and reference electrodes and a portable sensor device (80 mm × 25 mm × 20 mm. The working electrode consists of a taste-sensing site comprising a poly(hydroxyethylmethacrylate (pHEMA hydrogel layer with KCl as the electrolyte layer and a lipid/polymer membrane as the taste sensing element. The reference electrode comprises a polyvinyl chloride (PVC membrane layer with a small hole and a pHEMA layer with KCl. The whole device is the size of a USB memory stick, making it suitable for portable use. The sensor’s response to tannic acid as the standard astringency substance showed good accuracy and reproducibility, and was comparable with the performance of a commercially available taste sensing system. Thus, it is possible for this sensor to be used for in-field evaluations and it can make a significant contribution to the food industry, as well as in various fields of research.

  9. Alexander fractional differential window filter for ECG denoising.

    Science.gov (United States)

    Verma, Atul Kumar; Saini, Indu; Saini, Barjinder Singh

    2018-06-01

    The electrocardiogram (ECG) non-invasively monitors the electrical activities of the heart. During the process of recording and transmission, ECG signals are often corrupted by various types of noises. Minimizations of these noises facilitate accurate detection of various anomalies. In the present paper, Alexander fractional differential window (AFDW) filter is proposed for ECG signal denoising. The designed filter is based on the concept of generalized Alexander polynomial and the R-L differential equation of fractional calculus. This concept is utilized to formulate a window that acts as a forward filter. Thereafter, the backward filter is constructed by reversing the coefficients of the forward filter. The proposed AFDW filter is then obtained by averaging of the forward and backward filter coefficients. The performance of the designed AFDW filter is validated by adding the various type of noise to the original ECG signal obtained from MIT-BIH arrhythmia database. The two non-diagnostic measure, i.e., SNR, MSE, and one diagnostic measure, i.e., wavelet energy based diagnostic distortion (WEDD) have been employed for the quantitative evaluation of the designed filter. Extensive experimentations on all the 48-records of MIT-BIH arrhythmia database resulted in average SNR of 22.014 ± 3.806365, 14.703 ± 3.790275, 13.3183 ± 3.748230; average MSE of 0.001458 ± 0.00028, 0.0078 ± 0.000319, 0.01061 ± 0.000472; and average WEDD value of 0.020169 ± 0.01306, 0.1207 ± 0.061272, 0.1432 ± 0.073588, for ECG signal contaminated by the power line, random, and the white Gaussian noise respectively. A new metric named as morphological power preservation measure (MPPM) is also proposed that account for the power preservance (as indicated by PSD plots) and the QRS morphology. The proposed AFDW filter retained much of the original (clean) signal power without any significant morphological distortion as validated by MPPM measure that were 0

  10. Progress Toward a Microfabricated Gas Turbine Generator for Soldier Portable Power Applications

    National Research Council Canada - National Science Library

    Jacobson, S. A; Das, S; Savoulides, N; Steyn, J. L; Lang, J; Li, H. Q; Livermore, C; Schmidt, M. A; Teo, C. J; Umans, S. D; Epstein, A. H; Arnold, D. P; Park, J-W; Zana, I; Allen, M. G

    2004-01-01

    Microelectromechanical systems (MEMS) turbocharger and electric generator devices have been fabricated and tested as part of a program at MIT to develop a microfabricated gas turbine generator for portable power applications...

  11. A protocol for a prospective observational study using chest and thumb ECG: transient ECG assessment in stroke evaluation (TEASE) in Sweden.

    Science.gov (United States)

    Magnusson, Peter; Koyi, Hirsh; Mattsson, Gustav

    2018-04-03

    Atrial fibrillation (AF) causes ischaemic stroke and based on risk factor evaluation warrants anticoagulation therapy. In stroke survivors, AF is typically detected with short-term ECG monitoring in the stroke unit. Prolonged continuous ECG monitoring requires substantial resources while insertable cardiac monitors are invasive and costly. Chest and thumb ECG could provide an alternative for AF detection poststroke.The primary objective of our study is to assess the incidence of newly diagnosed AF during 28 days of chest and thumb ECG monitoring in cryptogenic stroke. Secondary objectives are to assess health-related quality of life (HRQoL) using short-form health survey (SF-36) and the feasibility of the Coala Heart Monitor in patients who had a stroke. Stroke survivors in Region Gävleborg, Sweden, will be eligible for the study from October 2017. Patients with a history of ischaemic stroke without documented AF before or during ECG evaluation in the stroke unit will be evaluated by the chest and thumb ECG system Coala Heart Monitor. The monitoring system is connected to a smartphone application which allows for remote monitoring and prompt advice on clinical management. Over a period of 28 days, patients will be monitored two times a day and may activate the ECG recording at symptoms. On completion, the system is returned by mail. This system offers a possibility to evaluate the presence of AF poststroke, but the feasibility of this system in patients who recently suffered from a stroke is unknown. In addition, HRQoL using SF-36 in comparison to Swedish population norms will be assessed. The feasibility of the Coala Heart Monitor will be assessed by a self-developed questionnaire. The study was approved by The Regional Ethical Committee in Uppsala (2017/321). The database will be closed after the last follow-up, followed by statistical analyses, interpretation of results and dissemination to a scientific journal. NCT03301662; Pre-results. © Article author

  12. Portable computers - portable operating systems

    International Nuclear Information System (INIS)

    Wiegandt, D.

    1985-01-01

    Hardware development has made rapid progress over the past decade. Computers used to have attributes like ''general purpose'' or ''universal'', nowadays they are labelled ''personal'' and ''portable''. Recently, a major manufacturing company started marketing a portable version of their personal computer. But even for these small computers the old truth still holds that the biggest disadvantage of a computer is that it must be programmed, hardware by itself does not make a computer. (orig.)

  13. Validation of Portable Muscle Tone Measurement Device Based on a Motor-Driven System

    National Research Council Canada - National Science Library

    Chen, Jia-Jin

    2001-01-01

    .... The aim of this study is to extend a sophisticated motor-driven measurement system, developed in our previous research, as a validation platform for developing a portable muscle tone measurement system...

  14. Left Ventricular Hypertrophy: An allometric comparative analysis of different ECG markers

    International Nuclear Information System (INIS)

    Bonomini, MP; Valentinuzzi, M E; Arini, P D; Ingallina, F; Barone, V

    2011-01-01

    Allometry, in general biology, measures the relative growth of a part in relation to the whole living organism. Left ventricular hypertrophy (LVH) is the heart adaptation to excessive load (systolic or diastolic). The increase in left ventricular mass leads to an increase in the electrocardiographic voltages. Based on clinical data, we compared the allometric behavior of three different ECG markers of LVH. To do this, the allometric fit AECG δ + β (VM) relating left ventricular mass (estimated from ecocardiographic data) and ECG amplitudes (expressed as the Cornell-Voltage, Sokolow and the ECG overall voltage indexes) were compared. Besides, sensitivity and specificity for each index were analyzed. The more sensitive the ECG criteria, the better the allometric fit. In conclusion: The allometric paradigm should be regarded as the way to design new and more sensitive ECG-based LVH markers.

  15. In Vivo Quantification of Lead in Bone with a Portable X-ray Fluorescence (XRF) System – Methodology and Feasibility

    Science.gov (United States)

    Nie, LH; Sanchez, S; Newton, K; Grodzins, L; Cleveland, RO; Weisskopf, MG

    2013-01-01

    This study was conducted to investigate the methodology and feasibility of developing a portable XRF technology to quantify lead (Pb) in bone in vivo. A portable XRF device was set up and optimal setting of voltage, current, and filter combination for bone lead quantification were selected to achieve the lowest detection limit. The minimum radiation dose delivered to the subject was calculated by Monte Carlo simulations. An ultrasound device was used to measure soft tissue thickness to account for signal attenuation, and an alternative method to obtain soft tissue thickness from the XRF spectrum was developed and shown to be equivalent to the ultrasound measurements (Intraclass Correlation Coefficient, ICC=0.82). We tested the correlation of in vivo bone lead concentrations between the standard KXRF technology and the portable XRF technology. There was a significant correlation between the bone lead concentrations obtained from the standard KXRF technology and those obtained from the portable XRF technology (ICC=0.65). The detection limit for the portable XRF device was about 8.4 ppm with 2 mm soft tissue thickness. The entrance skin dose delivered to the human subject was about 13 mSv and the total body effective dose was about 1.5 μSv and should pose a minimal radiation risk. In conclusion, portable XRF technology can be used for in vivo bone lead measurement with sensitivity comparable to the KXRF technology and good correlation with KXRF measurements. PMID:21242629

  16. A Pilot Study Assessing ECG versus ECHO Ventriculoventricular Optimization in Pediatric Resynchronization Patients.

    Science.gov (United States)

    Punn, Rajesh; Hanisch, Debra; Motonaga, Kara S; Rosenthal, David N; Ceresnak, Scott R; Dubin, Anne M

    2016-02-01

    Cardiac resynchronization therapy indications and management are well described in adults. Echocardiography (ECHO) has been used to optimize mechanical synchrony in these patients; however, there are issues with reproducibility and time intensity. Pediatric patients add challenges, with diverse substrates and limited capacity for cooperation. Electrocardiographic (ECG) methods to assess electrical synchrony are expeditious but have not been extensively studied in children. We sought to compare ECHO and ECG CRT optimization in children. Prospective, pediatric, single-center cross-over trial comparing ECHO and ECG optimization with CRT. Patients were assigned to undergo either ECHO or ECG optimization, followed for 6 months, and crossed-over to the other assignment for another 6 months. ECHO pulsed-wave tissue Doppler and 12-lead ECG were obtained for 5 VV delays. ECG optimization was defined as the shortest QRSD and ECHO optimization as the lowest dyssynchrony index. ECHOs/ECGs were interpreted by readers blinded to optimization technique. After each 6 month period, these data were collected: ejection fraction, velocimetry-derived cardiac index, quality of life, ECHO-derived stroke distance, M-mode dyssynchrony, study cost, and time. Outcomes for each optimization method were compared. From June 2012 to December 2013, 19 patients enrolled. Mean age was 9.1 ± 4.3 years; 14 (74%) had structural heart disease. The mean time for optimization was shorter using ECG than ECHO (9 ± 1 min vs. 68 ± 13 min, P cost for charges was $4,400 ± 700 less for ECG. No other outcome differed between groups. ECHO optimization of synchrony was not superior to ECG optimization in this pilot study. ECG optimization required less time and cost than ECHO optimization. © 2015 Wiley Periodicals, Inc.

  17. [An Algorithm to Eliminate Power Frequency Interference in ECG Using Template].

    Science.gov (United States)

    Shi, Guohua; Li, Jiang; Xu, Yan; Feng, Liang

    2017-01-01

    Researching an algorithm to eliminate power frequency interference in ECG. The algorithm first creates power frequency interference template, then, subtracts the template from the original ECG signals, final y, the algorithm gets the ECG signals without interference. Experiment shows the algorithm can eliminate interference effectively and has none side effect to normal signal. It’s efficient and suitable for practice.

  18. ECG biometric identification: A compression based approach.

    Science.gov (United States)

    Bras, Susana; Pinho, Armando J

    2015-08-01

    Using the electrocardiogram signal (ECG) to identify and/or authenticate persons are problems still lacking satisfactory solutions. Yet, ECG possesses characteristics that are unique or difficult to get from other signals used in biometrics: (1) it requires contact and liveliness for acquisition (2) it changes under stress, rendering it potentially useless if acquired under threatening. Our main objective is to present an innovative and robust solution to the above-mentioned problem. To successfully conduct this goal, we rely on information-theoretic data models for data compression and on similarity metrics related to the approximation of the Kolmogorov complexity. The proposed measure allows the comparison of two (or more) ECG segments, without having to follow traditional approaches that require heartbeat segmentation (described as highly influenced by external or internal interferences). As a first approach, the method was able to cluster the data in three groups: identical record, same participant, different participant, by the stratification of the proposed measure with values near 0 for the same participant and closer to 1 for different participants. A leave-one-out strategy was implemented in order to identify the participant in the database based on his/her ECG. A 1NN classifier was implemented, using as distance measure the method proposed in this work. The classifier was able to identify correctly almost all participants, with an accuracy of 99% in the database used.

  19. Using cloud models of heartbeats as the entity identifier to secure mobile devices.

    Science.gov (United States)

    Fu, Donglai; Liu, Yanhua

    2017-01-01

    Mobile devices are extensively used to store more private and often sensitive information. Therefore, it is important to protect them against unauthorised access. Authentication ensures that authorised users can use mobile devices. However, traditional authentication methods, such as numerical or graphic passwords, are vulnerable to passive attacks. For example, an adversary can steal the password by snooping from a shorter distance. To avoid these problems, this study presents a biometric approach that uses cloud models of heartbeats as the entity identifier to secure mobile devices. Here, it is identified that these concepts including cloud model or cloud have nothing to do with cloud computing. The cloud model appearing in the study is the cognitive model. In the proposed method, heartbeats are collected by two ECG electrodes that are connected to one mobile device. The backward normal cloud generator is used to generate ECG standard cloud models characterising the heartbeat template. When a user tries to have access to their mobile device, cloud models regenerated by fresh heartbeats will be compared with ECG standard cloud models to determine if the current user can use this mobile device. This authentication method was evaluated from three aspects including accuracy, authentication time and energy consumption. The proposed method gives 86.04% of true acceptance rate with 2.73% of false acceptance rate. One authentication can be done in 6s, and this processing consumes about 2000 mW of power.

  20. Wireless biopotential acquisition system for portable healthcare monitoring.

    Science.gov (United States)

    Wang, W-S; Huang, H-Y; Wu, Z-C; Chen, S-C; Wang, W-F; Wu, C-F; Luo, C-H

    2011-07-01

    A complete biopotential acquisition system with an analogue front-end (AFE) chip is proposed for portable healthcare monitoring. A graphical user interface (GUI) is also implemented to display the extracted biopotential signals in real-time on a computer for patients or in a hospital via the internet for doctors. The AFE circuit defines the quality of the acquired biosignals. Thus, an AFE chip with low power consumption and a high common-mode rejection ratio (CMRR) was implemented in the TSMC 0.18-μm CMOS process. The measurement results show that the proposed AFE, with a core area of 0.1 mm(2), has a CMRR of 90 dB, and power consumption of 21.6 μW. Biopotential signals of electroencephalogram (EEG), electrocardiogram (ECG) and electromyogram (EMG) were measured to verify the proposed system. The board size of the proposed system is 6 cm × 2.5 cm and the weight is 30 g. The total power consumption of the proposed system is 66 mW. Copyright © 2011 Informa UK, Ltd.

  1. FPGA Controller Design and Simulation of a Portable Dough Mixing ...

    African Journals Online (AJOL)

    With the advent of Microcontrollers, Application Specic Integrated Circuits, Digital Signal Processors (DSP) and Programmable Logic Devices, complex industrial systems and controls can now be integrated into portable embedded household electronic systems. In this paper, the design and simulation of a Dough Mixer ...

  2. ECG-cryptography and authentication in body area networks.

    Science.gov (United States)

    Zhang, Zhaoyang; Wang, Honggang; Vasilakos, Athanasios V; Fang, Hua

    2012-11-01

    Wireless body area networks (BANs) have drawn much attention from research community and industry in recent years. Multimedia healthcare services provided by BANs can be available to anyone, anywhere, and anytime seamlessly. A critical issue in BANs is how to preserve the integrity and privacy of a person's medical data over wireless environments in a resource efficient manner. This paper presents a novel key agreement scheme that allows neighboring nodes in BANs to share a common key generated by electrocardiogram (ECG) signals. The improved Jules Sudan (IJS) algorithm is proposed to set up the key agreement for the message authentication. The proposed ECG-IJS key agreement can secure data communications over BANs in a plug-n-play manner without any key distribution overheads. Both the simulation and experimental results are presented, which demonstrate that the proposed ECG-IJS scheme can achieve better security performance in terms of serval performance metrics such as false acceptance rate (FAR) and false rejection rate (FRR) than other existing approaches. In addition, the power consumption analysis also shows that the proposed ECG-IJS scheme can achieve energy efficiency for BANs.

  3. Whole house particle removal and clean air delivery rates for in-duct and portable ventilation systems.

    Science.gov (United States)

    Macintosh, David L; Myatt, Theodore A; Ludwig, Jerry F; Baker, Brian J; Suh, Helen H; Spengler, John D

    2008-11-01

    A novel method for determining whole house particle removal and clean air delivery rates attributable to central and portable ventilation/air cleaning systems is described. The method is used to characterize total and air-cleaner-specific particle removal rates during operation of four in-duct air cleaners and two portable air-cleaning devices in a fully instrumented test home. Operation of in-duct and portable air cleaners typically increased particle removal rates over the baseline rates determined in the absence of operating a central fan or an indoor air cleaner. Removal rates of 0.3- to 0.5-microm particles ranged from 1.5 hr(-1) during operation of an in-duct, 5-in. pleated media filter to 7.2 hr(-1) for an in-duct electrostatic air cleaner in comparison to a baseline rate of 0 hr(-1) when the air handler was operating without a filter. Removal rates for total particulate matter less than 2.5 microm in aerodynamic diameter (PM2.5) mass concentrations were 0.5 hr(-1) under baseline conditions, 0.5 hr(-1) during operation of three portable ionic air cleaners, 1 hr(-1) for an in-duct 1-in. media filter, 2.4 hr(-1) for a single high-efficiency particle arrestance (HEPA) portable air cleaner, 4.6 hr(-1) for an in-duct 5-in. media filter, 4.7 hr(-1) during operation of five portable HEPA filters, 6.1 hr(-1) for a conventional in-duct electronic air cleaner, and 7.5 hr(-1) for a high efficiency in-duct electrostatic air cleaner. Corresponding whole house clean air delivery rates for PM2.5 attributable to the air cleaner independent of losses within the central ventilation system ranged from 2 m3/min for the conventional media filter to 32 m3/min for the high efficiency in-duct electrostatic device. Except for the portable ionic air cleaner, the devices considered here increased particle removal indoors over baseline deposition rates.

  4. Integrated processing of ECG's in a hospital information system

    NARCIS (Netherlands)

    Helder, J.C.; Schram, P.H.; Verwey, H.; Meijler, F.L.; Robles de Medina, E.O.

    The ECG handling in the University Hospital of Utrecht is composed by a system consisting of acquisition and storage of ECG signals, computer analysis, data management, and storage of readings in a patient data base. The last two modules are part of a Hospital Information System (HIS). The modular

  5. Smartphone ECG for evaluation of STEMI: results of the ST LEUIS Pilot Study.

    Science.gov (United States)

    Muhlestein, Joseph Boone; Le, Viet; Albert, David; Moreno, Fidela Ll; Anderson, Jeffrey L; Yanowitz, Frank; Vranian, Robert B; Barsness, Gregory W; Bethea, Charles F; Severance, Harry W; Ramo, Barry; Pierce, John; Barbagelata, Alejandro; Muhlestein, Joseph Brent

    2015-01-01

    12-lead ECG is a critical component of initial evaluation of cardiac ischemia, but has traditionally been limited to large, dedicated equipment in medical care environments. Smartphones provide a potential alternative platform for the extension of ECG to new care settings and to improve timeliness of care. To gain experience with smartphone electrocardiography prior to designing a larger multicenter study evaluating standard 12-lead ECG compared to smartphone ECG. 6 patients for whom the hospital STEMI protocol was activated were evaluated with traditional 12-lead ECG followed immediately by a smartphone ECG using right (VnR) and left (VnL) limb leads for precordial grounding. The AliveCor™ Heart Monitor was utilized for this study. All tracings were taken prior to catheterization or immediately after revascularization while still in the catheterization laboratory. The smartphone ECG had excellent correlation with the gold standard 12-lead ECG in all patients. Four out of six tracings were judged to meet STEMI criteria on both modalities as determined by three experienced cardiologists, and in the remaining two, consensus indicated a non-STEMI ECG diagnosis. No significant difference was noted between VnR and VnL. Smartphone based electrocardiography is a promising, developing technology intended to increase availability and speed of electrocardiographic evaluation. This study confirmed the potential of a smartphone ECG for evaluation of acute ischemia and the feasibility of studying this technology further to define the diagnostic accuracy, limitations and appropriate use of this new technology. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. ECG denoising with adaptive bionic wavelet transform.

    Science.gov (United States)

    Sayadi, Omid; Shamsollahi, Mohammad Bagher

    2006-01-01

    In this paper a new ECG denoising scheme is proposed using a novel adaptive wavelet transform, named bionic wavelet transform (BWT), which had been first developed based on a model of the active auditory system. There has been some outstanding features with the BWT such as nonlinearity, high sensitivity and frequency selectivity, concentrated energy distribution and its ability to reconstruct signal via inverse transform but the most distinguishing characteristic of BWT is that its resolution in the time-frequency domain can be adaptively adjusted not only by the signal frequency but also by the signal instantaneous amplitude and its first-order differential. Besides by optimizing the BWT parameters parallel to modifying a new threshold value, one can handle ECG denoising with results comparing to those of wavelet transform (WT). Preliminary tests of BWT application to ECG denoising were constructed on the signals of MIT-BIH database which showed high performance of noise reduction.

  7. Statistical performance evaluation of ECG transmission using wireless networks.

    Science.gov (United States)

    Shakhatreh, Walid; Gharaibeh, Khaled; Al-Zaben, Awad

    2013-07-01

    This paper presents simulation of the transmission of biomedical signals (using ECG signal as an example) over wireless networks. Investigation of the effect of channel impairments including SNR, pathloss exponent, path delay and network impairments such as packet loss probability; on the diagnosability of the received ECG signal are presented. The ECG signal is transmitted through a wireless network system composed of two communication protocols; an 802.15.4- ZigBee protocol and an 802.11b protocol. The performance of the transmission is evaluated using higher order statistics parameters such as kurtosis and Negative Entropy in addition to the common techniques such as the PRD, RMS and Cross Correlation.

  8. An investigation of hydrogen storage methods for fuel cell operation with man-portable equipment

    Energy Technology Data Exchange (ETDEWEB)

    Browning, D [Defence Evaluation and Research Agency, Haslar (United Kingdom); Jones, P [Defence Evaluation and Research Agency, Haslar (United Kingdom); Packer, K [Defence Evaluation and Research Agency, Haslar (United Kingdom)

    1997-03-01

    Air breathing proton exchange membrane fuel cells (PEMFC) are being considered as a power source for man-portable equipment, such as army radios. In addition to the weight and volume of the fuel cell itself, the device producing hydrogen with which to fuel the cell is also of crucial importance. This paper describes a number of hydrogen storage methods and discusses their applicability to man-portable equipment. (orig.)

  9. Decomposition of ECG by linear filtering.

    Science.gov (United States)

    Murthy, I S; Niranjan, U C

    1992-01-01

    A simple method is developed for the delineation of a given electrocardiogram (ECG) signal into its component waves. The properties of discrete cosine transform (DCT) are exploited for the purpose. The transformed signal is convolved with appropriate filters and the component waves are obtained by computing the inverse transform (IDCT) of the filtered signals. The filters are derived from the time signal itself. Analysis of continuous strips of ECG signals with various arrhythmias showed that the performance of the method is satisfactory both qualitatively and quantitatively. The small amplitude P wave usually had a high percentage rms difference (PRD) compared to the other large component waves.

  10. Portable laboratories for radioactivity measurements

    International Nuclear Information System (INIS)

    Damljanovic, D.; Smelcerovic, M.; Koturovic, A.; Drndarevic, V.; Sobajic, M.

    1989-01-01

    The portable radiometric laboratories LARA-10, LARA-GS, LARA-86 and ALARA-10 designed, developed and produced at the Boris Kidric Institute are described. Earlier models (LARA-1, LARA-1D, LARA-2 and LARA-5) are presented in brief. The basic characteristics of the devices and methods of measurements are given. All the instruments are battery operated and almost all can also use 220V/50Hz supply. They are a very suitable facility for radiological monitoring of soil, water, food, clothes etc., when working in field conditions (author)

  11. Electricity generation devices using formic acid

    KAUST Repository

    Huang, Kuo-Wei; Zheng, Junrong

    2017-01-01

    The present disclosure relates generally to new forms of portable energy generation devices and methods. The devices are designed to covert formic acid into released hydrogen, alleviating the need for a hydrogen tank as a hydrogen source for fuel

  12. Wearable Current-Based ECG Monitoring System with Non-Insulated Electrodes for Underwater Application

    Directory of Open Access Journals (Sweden)

    Stefan Gradl

    2017-12-01

    Full Text Available The second most common cause of diving fatalities is cardiovascular diseases. Monitoring the cardiovascular system in actual underwater conditions is necessary to gain insights into cardiac activity during immersion and to trigger preventive measures. We developed a wearable, current-based electrocardiogram (ECG device in the eco-system of the FitnessSHIRT platform. It can be used for normal/dry ECG measuring purposes but is specifically designed to allow underwater signal acquisition without having to use insulated electrodes. Our design is based on a transimpedance amplifier circuit including active current feedback. We integrated additional cascaded filter components to counter noise characteristics specific to the immersed condition of such a system. The results of the evaluation show that our design is able to deliver high-quality ECG signals underwater with no interferences or loss of signal quality. To further evaluate the applicability of the system, we performed an applied study with it using 12 healthy subjects to examine whether differences in the heart rate variability exist between sitting and supine positions of the human body immersed in water and outside of it. We saw significant differences, for example, in the RMSSD and SDSD between sitting outside the water (36 ms and sitting immersed in water (76 ms and the pNN50 outside the water (6.4% and immersed in water (18.2%. The power spectral density for the sitting positions in the TP and HF increased significantly during water immersion while the LF/HF decreased significantly. No significant changes were found for the supine position.

  13. A review of digital microfluidics as portable platforms for lab-on a-chip applications.

    Science.gov (United States)

    Samiei, Ehsan; Tabrizian, Maryam; Hoorfar, Mina

    2016-07-07

    Following the development of microfluidic systems, there has been a high tendency towards developing lab-on-a-chip devices for biochemical applications. A great deal of effort has been devoted to improve and advance these devices with the goal of performing complete sets of biochemical assays on the device and possibly developing portable platforms for point of care applications. Among the different microfluidic systems used for such a purpose, digital microfluidics (DMF) shows high flexibility and capability of performing multiplex and parallel biochemical operations, and hence, has been considered as a suitable candidate for lab-on-a-chip applications. In this review, we discuss the most recent advances in the DMF platforms, and evaluate the feasibility of developing multifunctional packages for performing complete sets of processes of biochemical assays, particularly for point-of-care applications. The progress in the development of DMF systems is reviewed from eight different aspects, including device fabrication, basic fluidic operations, automation, manipulation of biological samples, advanced operations, detection, biological applications, and finally, packaging and portability of the DMF devices. Success in developing the lab-on-a-chip DMF devices will be concluded based on the advances achieved in each of these aspects.

  14. A Hygroscopic Sensor Electrode for Fast Stabilized Non-Contact ECG Signal Acquisition.

    Science.gov (United States)

    Fong, Ee-May; Chung, Wan-Young

    2015-08-05

    A capacitive electrocardiography (cECG) technique using a non-invasive ECG measuring technology that does not require direct contact between the sensor and the skin has attracted much interest. The system encounters several challenges when the sensor electrode and subject's skin are weakly coupled. Because there is no direct physical contact between the subject and any grounding point, there is no discharge path for the built-up electrostatic charge. Subsequently, the electrostatic charge build-up can temporarily contaminate the ECG signal from being clearly visible; a stabilization period (3-15 min) is required for the measurement of a clean, stable ECG signal at low humidity levels (below 55% relative humidity). Therefore, to obtain a clear ECG signal without noise and to reduce the ECG signal stabilization time to within 2 min in a dry ambient environment, we have developed a fabric electrode with embedded polymer (FEEP). The designed hygroscopic FEEP has an embedded superabsorbent polymer layer. The principle of FEEP as a conductive electrode is to provide humidity to the capacitive coupling to ensure strong coupling and to allow for the measurement of a stable, clear biomedical signal. The evaluation results show that hygroscopic FEEP is capable of rapidly measuring high-accuracy ECG signals with a higher SNR ratio.

  15. An Adaptive and Time-Efficient ECG R-Peak Detection Algorithm.

    Science.gov (United States)

    Qin, Qin; Li, Jianqing; Yue, Yinggao; Liu, Chengyu

    2017-01-01

    R-peak detection is crucial in electrocardiogram (ECG) signal analysis. This study proposed an adaptive and time-efficient R-peak detection algorithm for ECG processing. First, wavelet multiresolution analysis was applied to enhance the ECG signal representation. Then, ECG was mirrored to convert large negative R-peaks to positive ones. After that, local maximums were calculated by the first-order forward differential approach and were truncated by the amplitude and time interval thresholds to locate the R-peaks. The algorithm performances, including detection accuracy and time consumption, were tested on the MIT-BIH arrhythmia database and the QT database. Experimental results showed that the proposed algorithm achieved mean sensitivity of 99.39%, positive predictivity of 99.49%, and accuracy of 98.89% on the MIT-BIH arrhythmia database and 99.83%, 99.90%, and 99.73%, respectively, on the QT database. By processing one ECG record, the mean time consumptions were 0.872 s and 0.763 s for the MIT-BIH arrhythmia database and QT database, respectively, yielding 30.6% and 32.9% of time reduction compared to the traditional Pan-Tompkins method.

  16. Accurate Interpretation of the 12-Lead ECG Electrode Placement: A Systematic Review

    Science.gov (United States)

    Khunti, Kirti

    2014-01-01

    Background: Coronary heart disease (CHD) patients require monitoring through ECGs; the 12-lead electrocardiogram (ECG) is considered to be the non-invasive gold standard. Examples of incorrect treatment because of inaccurate or poor ECG monitoring techniques have been reported in the literature. The findings that only 50% of nurses and less than…

  17. Alterations of the ECG after frationated radiotherapy of the mediastine

    International Nuclear Information System (INIS)

    Alheit, C.; Alheit, H.D.; Herrmann, T.

    1986-01-01

    In 72 patients with irradiation of the mediastine the ECGs were examined before, immediately after, and 3-6 months after termination of radiotherapy. In comparison with starting findings 41.7% ECG alterations were found at the end of irradiation and 40.1% in control examinations. Mainly it was the question of alterations in ST-lines, in type of position, in P-waves, and an increase of the heart rate. However, in result of uni- and multivariant variance analyses it could be shown, that extracardiac factors and general reactions of the irradiated organism resulted in ECG alterations too. Considering the correlation of ECG alterations to the heart dose however, a direct influence of the capillary system of the heart has also to be discussed and an adequate after-care of patients with irradiation of the mediastine must be recommended. (author)

  18. Can Functional Cardiac Age be Predicted from ECG in a Normal Healthy Population

    Science.gov (United States)

    Schlegel, Todd; Starc, Vito; Leban, Manja; Sinigoj, Petra; Vrhovec, Milos

    2011-01-01

    In a normal healthy population, we desired to determine the most age-dependent conventional and advanced ECG parameters. We hypothesized that changes in several ECG parameters might correlate with age and together reliably characterize the functional age of the heart. Methods: An initial study population of 313 apparently healthy subjects was ultimately reduced to 148 subjects (74 men, 84 women, in the range from 10 to 75 years of age) after exclusion criteria. In all subjects, ECG recordings (resting 5-minute 12-lead high frequency ECG) were evaluated via custom software programs to calculate up to 85 different conventional and advanced ECG parameters including beat-to-beat QT and RR variability, waveform complexity, and signal-averaged, high-frequency and spatial/spatiotemporal ECG parameters. The prediction of functional age was evaluated by multiple linear regression analysis using the best 5 univariate predictors. Results: Ignoring what were ultimately small differences between males and females, the functional age was found to be predicted (R2= 0.69, P ECGs, functional cardiac age can be estimated by multiple linear regression analysis of mostly advanced ECG results. Because some parameters in the regression formula, such as QTcorr, high frequency QRS amplitude and P-wave width also change with disease in the same direction as with increased age, increased functional age of the heart may reflect subtle age-related pathologies in cardiac electrical function that are usually hidden on conventional ECG.

  19. Electricity generation devices using formic acid

    KAUST Repository

    Huang, Kuo-Wei

    2017-06-22

    The present disclosure relates generally to new forms of portable energy generation devices and methods. The devices are designed to covert formic acid into released hydrogen, alleviating the need for a hydrogen tank as a hydrogen source for fuel cell power.

  20. Performance of human body communication-based wearable ECG with capacitive coupling electrodes.

    Science.gov (United States)

    Sakuma, Jun; Anzai, Daisuke; Wang, Jianqing

    2016-09-01

    Wearable electrocardiogram (ECG) is attracting much attention in daily healthcare applications, and human body communication (HBC) technology provides an evident advantage in making the sensing electrodes of ECG also working for transmission through the human body. In view of actual usage in daily life, however, non-contact electrodes to the human body are desirable. In this Letter, the authors discussed the ECG circuit structure in the HBC-based wearable ECG for removing the common mode noise when employing non-contact capacitive coupling electrodes. Through the comparison of experimental results, they have shown that the authors' proposed circuit structure with the third electrode directly connected to signal ground can provide an effect on common mode noise reduction similar to the usual drive-right-leg circuit, and a sufficiently good acquisition performance of ECG signals.

  1. A portable accelerator control toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Watson, W.A. III

    1997-06-01

    In recent years, the expense of creating good control software has led to a number of collaborative efforts among laboratories to share this cost. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the CDEV (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. In principle, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on CDEV now provide a growing suite of tools for accelerator operations, including general purpose displays, an on-line accelerator model, beamline steering, machine status displays incorporating both hardware and model information (such as beam positions overlaid with beta functions) and more. A survey of CDEV compatible portable applications will be presented, as well as plans for future development.

  2. A portable accelerator control toolkit

    International Nuclear Information System (INIS)

    Watson, W.A. III.

    1997-01-01

    In recent years, the expense of creating good control software has led to a number of collaborative efforts among laboratories to share this cost. The EPICS collaboration is a particularly successful example of this trend. More recently another collaborative effort has addressed the need for sophisticated high level software, including model driven accelerator controls. This work builds upon the CDEV (Common DEVice) software framework, which provides a generic abstraction of a control system, and maps that abstraction onto a number of site-specific control systems including EPICS, the SLAC control system, CERN/PS and others. In principle, it is now possible to create portable accelerator control applications which have no knowledge of the underlying and site-specific control system. Applications based on CDEV now provide a growing suite of tools for accelerator operations, including general purpose displays, an on-line accelerator model, beamline steering, machine status displays incorporating both hardware and model information (such as beam positions overlaid with beta functions) and more. A survey of CDEV compatible portable applications will be presented, as well as plans for future development

  3. Evaluation of a web-based ECG-interpretation programme for undergraduate medical students.

    Science.gov (United States)

    Nilsson, Mikael; Bolinder, Gunilla; Held, Claes; Johansson, Bo-Lennart; Fors, Uno; Ostergren, Jan

    2008-04-23

    Most clinicians and teachers agree that knowledge about ECG is of importance in the medical curriculum. Students at Karolinska Institute have asked for more training in ECG-interpretation during their undergraduate studies. Clinical tutors, however, have difficulties in meeting these demands due to shortage of time. Thus, alternative ways to learn and practice ECG-interpretation are needed. Education offered via the Internet is readily available, geographically independent and flexible. Furthermore, the quality of education may increase and become more effective through a superior educational approach, improved visualization and interactivity. A Web-based comprehensive ECG-interpretation programme has been evaluated. Medical students from the sixth semester were given an optional opportunity to access the programme from the start of their course. Usage logs and an initial evaluation survey were obtained from each student. A diagnostic test was performed in order to assess the effect on skills in ECG interpretation. Students from the corresponding course, at another teaching hospital and without access to the ECG-programme but with conventional teaching of ECG served as a control group. 20 of the 32 students in the intervention group had tested the programme after 2 months. On a five-graded scale (1- bad to 5 - very good) they ranked the utility of a web-based programme for this purpose as 4.1 and the quality of the programme software as 3.9. At the diagnostic test (maximal points 16) by the end of the 5-month course at the 6th semester the mean result for the students in the intervention group was 9.7 compared with 8.1 for the control group (p = 0.03). Students ranked the Web-based ECG-interpretation programme as a useful instrument to learn ECG. Furthermore, Internet-delivered education may be more effective than traditional teaching methods due to greater immediacy, improved visualisation and interactivity.

  4. Performance evaluation of carbon black based electrodes for underwater ECG monitoring.

    Science.gov (United States)

    Reyes, Bersain A; Posada-Quintero, Hugo F; Bales, Justin R; Chon, Ki H

    2014-01-01

    Underwater electrocardiogram (ECG) monitoring currently uses Ag/AgCl electrodes and requires sealing of the electrodes to avoid water intrusion, but this procedure is time consuming and often results in severe irritations or even tearing of the skin. To alleviate these problems, our research team developed hydrophobic electrodes comprised of a mixture of carbon black powder (CB) and polydimethylsiloxane (PDMS) that provide all morphological waveforms without distortion of an ECG signal for dry and water-immersed conditions. Performance comparison of CB/PDMS electrodes to adhesive Ag/AgCl hydrogel electrodes was carried out in three different scenarios which included recordings from a dry surface, water immersion, and post-water immersion conditions. CB/PDMS electrodes were able to acquire ECG signals highly correlated with those from adhesive Ag/AgCl electrodes during all conditions. Statistical reduction in ECG amplitude (pelectrodes when compared to Ag/AgCl electrodes sealed with their waterproof adhesive tape. Besides this reduction readability of the recordings was not obscured and all morphological waveforms of the ECG signal were discernible. The advantages of our CB/PDMS electrodes are that they are reusable, can be fabricated economically, and most importantly, high-fidelity underwater ECG signals can be acquired without relying on the heavy use of waterproof sealing.

  5. Cancelable ECG biometrics using GLRT and performance improvement using guided filter with irreversible guide signal.

    Science.gov (United States)

    Kim, Hanvit; Minh Phuong Nguyen; Se Young Chun

    2017-07-01

    Biometrics such as ECG provides a convenient and powerful security tool to verify or identify an individual. However, one important drawback of biometrics is that it is irrevocable. In other words, biometrics cannot be re-used practically once it is compromised. Cancelable biometrics has been investigated to overcome this drawback. In this paper, we propose a cancelable ECG biometrics by deriving a generalized likelihood ratio test (GLRT) detector from a composite hypothesis testing in randomly projected domain. Since it is common to observe performance degradation for cancelable biometrics, we also propose a guided filtering (GF) with irreversible guide signal that is a non-invertibly transformed signal of ECG authentication template. We evaluated our proposed method using ECG-ID database with 89 subjects. Conventional Euclidean detector with original ECG template yielded 93.9% PD1 (detection probability at 1% FAR) while Euclidean detector with 10% compressed ECG (1/10 of the original data size) yielded 90.8% PD1. Our proposed GLRT detector with 10% compressed ECG yielded 91.4%, which is better than Euclidean with the same compressed ECG. GF with our proposed irreversible ECG template further improved the performance of our GLRT with 10% compressed ECG up to 94.3%, which is higher than Euclidean detector with original ECG. Lastly, we showed that our proposed cancelable ECG biometrics practically met cancelable biometrics criteria such as efficiency, re-usability, diversity and non-invertibility.

  6. Portable Exhauster Position Paper

    International Nuclear Information System (INIS)

    KRISKOVICH, J.R.

    1999-01-01

    This document identifies the tasks that are involved in preparing the ''standby'' portable exhauster to support Interim Stabilization's schedule for saltwell pumping. A standby portable exhaust system will be assigned to any facility scheduled to be saltwell pumped with the exception of 241-S farm, 241-SX farm or 241-T farm. The standby portable exhauster shall be prepared for use and placed in storage. The standby portable exhaust system shall be removed from storage and installed to ventilate tanks being pumped that reach 25% LFL. There are three tasks that are evaluated in this document. Each task shall be completed to support portable exhaust system installation and operation. They are: Pre Installation Task; Portable Exhaust System Storage Task; and Portable Exhaust System Installation and Operation Task

  7. Design and implementation of a multiband digital filter using FPGA to extract the ECG signal in the presence of different interference signals.

    Science.gov (United States)

    Aboutabikh, Kamal; Aboukerdah, Nader

    2015-07-01

    In this paper, we propose a practical way to synthesize and filter an ECG signal in the presence of four types of interference signals: (1) those arising from power networks with a fundamental frequency of 50Hz, (2) those arising from respiration, having a frequency range from 0.05 to 0.5Hz, (3) muscle signals with a frequency of 25Hz, and (4) white noise present within the ECG signal band. This was done by implementing a multiband digital filter (seven bands) of type FIR Multiband Least Squares using a digital programmable device (Cyclone II EP2C70F896C6 FPGA, Altera), which was placed on an education and development board (DE2-70, Terasic). This filter was designed using the VHDL language in the Quartus II 9.1 design environment. The proposed method depends on Direct Digital Frequency Synthesizers (DDFS) designed to synthesize the ECG signal and various interference signals. So that the synthetic ECG specifications would be closer to actual ECG signals after filtering, we designed in a single multiband digital filter instead of using three separate digital filters LPF, HPF, BSF. Thus all interference signals were removed with a single digital filter. The multiband digital filter results were studied using a digital oscilloscope to characterize input and output signals in the presence of differing sinusoidal interference signals and white noise. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Design and tests of a portable mini gamma camera

    International Nuclear Information System (INIS)

    Sanchez, F.; Benlloch, J.M.; Escat, B.; Pavon, N.; Porras, E.; Kadi-Hanifi, D.; Ruiz, J.A.; Mora, F.J.; Sebastia, A.

    2004-01-01

    Design optimization, manufacturing, and tests, both laboratory and clinical, of a portable gamma camera for medical applications are presented. This camera, based on a continuous scintillation crystal and a position-sensitive photomultiplier tube, has an intrinsic spatial resolution of ≅2 mm, an energy resolution of 13% at 140 keV, and linearities of 0.28 mm (absolute) and 0.15 mm (differential), with a useful field of view of 4.6 cm diameter. Our camera can image small organs with high efficiency and so it can address the demand for devices of specific clinical applications like thyroid and sentinel node scintigraphy as well as scintimammography and radio-guided surgery. The main advantages of the gamma camera with respect to those previously reported in the literature are high portability, low cost, and weight (2 kg), with no significant loss of sensitivity and spatial resolution. All the electronic components are packed inside the minigamma camera, and no external electronic devices are required. The camera is only connected through the universal serial bus port to a portable personal computer (PC), where a specific software allows to control both the camera parameters and the measuring process, by displaying on the PC the acquired image on 'real time'. In this article, we present the camera and describe the procedures that have led us to choose its configuration. Laboratory and clinical tests are presented together with diagnostic capabilities of the gamma camera

  9. SUPPRESSION OF POWERLINE INTERFERENCE IN ECG USING ADAPTIVE DIGITAL FILTER BY

    OpenAIRE

    Mbachu C.B; Onoh G. N; Idigo V.E; Oguejiofor O.S

    2011-01-01

    Artifacts in electrocardiogram (ECG) records are caused by various factors, such as powerline interference, electroencephalogram (EEG), electromyogram (EMG) and baseline wander. These noise sources increase the difficulty in analyzing the ECG and to obtaining clinical information. For that reason, it is necessary to designspecific filters to decrease such artifacts in ECG records. In this paper, FIR adaptive filter based on a least mean square (LMS) algorithm for eliminating 50Hz powerline in...

  10. A new feature detection mechanism and its application in secured ECG transmission with noise masking.

    Science.gov (United States)

    Sufi, Fahim; Khalil, Ibrahim

    2009-04-01

    With cardiovascular disease as the number one killer of modern era, Electrocardiogram (ECG) is collected, stored and transmitted in greater frequency than ever before. However, in reality, ECG is rarely transmitted and stored in a secured manner. Recent research shows that eavesdropper can reveal the identity and cardiovascular condition from an intercepted ECG. Therefore, ECG data must be anonymized before transmission over the network and also stored as such in medical repositories. To achieve this, first of all, this paper presents a new ECG feature detection mechanism, which was compared against existing cross correlation (CC) based template matching algorithms. Two types of CC methods were used for comparison. Compared to the CC based approaches, which had 40% and 53% misclassification rates, the proposed detection algorithm did not perform any single misclassification. Secondly, a new ECG obfuscation method was designed and implemented on 15 subjects using added noises corresponding to each of the ECG features. This obfuscated ECG can be freely distributed over the internet without the necessity of encryption, since the original features needed to identify personal information of the patient remain concealed. Only authorized personnel possessing a secret key will be able to reconstruct the original ECG from the obfuscated ECG. Distribution of the would appear as regular ECG without encryption. Therefore, traditional decryption techniques including powerful brute force attack are useless against this obfuscation.

  11. Portable vibration-assisted filtration device for on-site isolation of blood cells or pathogenic bacteria from whole human blood.

    Science.gov (United States)

    Kim, Yong Tae; Park, Kyun Joo; Kim, Seyl; Kim, Soon Ae; Lee, Seok Jae; Kim, Do Hyun; Lee, Tae Jae; Lee, Kyoung G

    2018-03-01

    Isolation of specific cells from whole blood is important to monitor disease prognosis and diagnosis. In this study, a vibration-assisted filtration (VF) device has been developed for isolation and recovery of specific cells such as leukocytes and pathogenic bacteria from human whole blood. The VF device is composed of three layers which was fabricated using injection molding with cyclic olefin copolymer (COC) pellets consisting of: a top layer with coin-type vibration motor (Ф = 10mm), a middle plate with a 1μm or 3μm-pore filter membrane to separate of Staphylococcus aureus (S. aureus) cells or leukocytes (i.e. white blood cells) respectively, and a bottom chamber with conical-shaped microstructure. One milliliter of human whole blood was injected into a sample loading chamber using a 3μm-pore filter equipped in the VF device and the coin-type vibration motor applied external vibration force by generating a rotational fluid which enhances the filtration velocity due to the prevention of the cell clogging on the filter membrane. The effluent blood such as erythrocytes, platelet, and plasma was collected at the bottom chamber while the leukocytes were sieved by the filter membrane. The vibration-assisted leukocyte separation was able to finish within 200s while leukocyte separation took 1200s without vibration. Moreover, we successfully separated S. aureus from human whole blood using a 1μm-pore filter equipped VF device and it was further confirmed by genetic analysis. The proposed VF device provides an advanced cell separation platform in terms of simplicity, fast separation, and portability in the fields of point-of-care diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. ECG Signal Processing, Classification and Interpretation A Comprehensive Framework of Computational Intelligence

    CERN Document Server

    Pedrycz, Witold

    2012-01-01

    Electrocardiogram (ECG) signals are among the most important sources of diagnostic information in healthcare so improvements in their analysis may also have telling consequences. Both the underlying signal technology and a burgeoning variety of algorithms and systems developments have proved successful targets for recent rapid advances in research. ECG Signal Processing, Classification and Interpretation shows how the various paradigms of Computational Intelligence, employed either singly or in combination, can produce an effective structure for obtaining often vital information from ECG signals. Neural networks do well at capturing the nonlinear nature of the signals, information granules realized as fuzzy sets help to confer interpretability on the data and evolutionary optimization may be critical in supporting the structural development of ECG classifiers and models of ECG signals. The contributors address concepts, methodology, algorithms, and case studies and applications exploiting the paradigm of Comp...

  13. Performance Analysis of Ten Common QRS Detectors on Different ECG Application Cases

    Directory of Open Access Journals (Sweden)

    Feifei Liu

    2018-01-01

    Full Text Available A systematical evaluation work was performed on ten widely used and high-efficient QRS detection algorithms in this study, aiming at verifying their performances and usefulness in different application situations. Four experiments were carried on six internationally recognized databases. Firstly, in the test of high-quality ECG database versus low-quality ECG database, for high signal quality database, all ten QRS detection algorithms had very high detection accuracy (F1 >99%, whereas the F1 results decrease significantly for the poor signal-quality ECG signals (all 95% except RS slope algorithm with 94.24% on normal ECG database and 94.44% on arrhythmia database. Thirdly, for the paced rhythm ECG database, all ten algorithms were immune to the paced beats (>94% except the RS slope method, which only output a low F1 result of 78.99%. At last, the detection accuracies had obvious decreases when dealing with the dynamic telehealth ECG signals (all <80% except OKB algorithm with 80.43%. Furthermore, the time costs from analyzing a 10 s ECG segment were given as the quantitative index of the computational complexity. All ten algorithms had high numerical efficiency (all <4 ms except RS slope (94.07 ms and sixth power algorithms (8.25 ms. And OKB algorithm had the highest numerical efficiency (1.54 ms.

  14. Portable Wind Energy Harvesters for Low-Power Applications: A Survey.

    Science.gov (United States)

    Nabavi, Seyedfakhreddin; Zhang, Lihong

    2016-07-16

    Energy harvesting has become an increasingly important topic thanks to the advantages in renewability and environmental friendliness. In this paper, a comprehensive study on contemporary portable wind energy harvesters has been conducted. The electrical power generation methods of portable wind energy harvesters are surveyed in three major groups, piezoelectric-, electromagnetic-, and electrostatic-based generators. The paper also takes another view of this area by gauging the required mechanisms for trapping wind flow from ambient environment. In this regard, rotational and aeroelastic mechanisms are analyzed for the portable wind energy harvesting devices. The comparison between both mechanisms shows that the aeroelastic mechanism has promising potential in producing an energy harvester in smaller scale although how to maintain the resonator perpendicular to wind flow for collecting the maximum vibration is still a major challenge to overcome for this mechanism. Furthermore, this paper categorizes the previously published portable wind energy harvesters to macro and micro scales in terms of their physical dimensions. The power management systems are also surveyed to explore the possibility of improving energy conversion efficiency. Finally some insights and research trends are pointed out based on an overall analysis of the previously published works along the historical timeline.

  15. Power-line Interference Removal from ECG in Case of Power-line Frequency Variations

    Directory of Open Access Journals (Sweden)

    Todor Stoyanov

    2008-10-01

    Full Text Available The original version of the most successful approach for power-line (PL interference removal from ECG, called subtraction procedure, is based on linear segment detection in the signal and hardware synchronised analogue-to-digital conversion to cope with the PL frequency variations. However, this is not feasible for battery supplied devices and some computer-aided ECG systems. Recent improvements of the procedure apply software measurement of the frequency variations that allow a re-sampling of the contaminated signal with the rated PL frequency followed by interference removal and back re-sampling for restoration of the original time intervals. This study deals with a more accurate software frequency measurement and introduces a notch filtration as alternative to the procedure when no linear segments are encountered for long time, e.g. in cases of ventricular fibrillation or tachycardia. The result obtained with large PL frequency variations demonstrate very small errors, usually in the range of ± 20 μV for the subtraction procedure and ± 60 μV for the notch filtration, the last values strongly depending on the frequency contents of the QRS complexes.

  16. Step-and-shoot prospectively ECG-gated vs. retrospectively ECG-gated with tube current modulation coronary CT angiography using 128-slice MDCT patients with chest pain: diagnostic performance and radiation dose

    International Nuclear Information System (INIS)

    Kim, Jeong Su; Choo, Ki Seok; Jeong, Dong Wook

    2011-01-01

    Background With increasing awareness for radiation exposure, the study of diagnostic accuracy of coronary CT angiography (CCTA) with low radiation dose techniques is mandatory to both radiologist and clinician. Purpose To compare diagnostic performance and effective radiation dose between step-and-shoot prospectively ECG-gated and retrospectively ECG-gated with tube current modulation (TCM) CCTA using 128-slice multidetector computed tomography (MDCT). Material and Methods We retrospectively evaluated 60 patients who underwent CCTA with either of two different low-dose techniques using 128-slice MDCT (23 patients for step-and shoot-prospectively ECG-gated and 37 patients for retrospectively ECG-gated with TCM CCTA) followed by conventional coronary angiography. All coronary arteries and all segments thereof, except anatomical variants or small size (< 1.5 mm) ones, were included in analysis. Results In per-segment analysis, sensitivity, specificity, positive predictive value, and negative predictive value were 91/96%, 95/94%, 75/73%, and 98/99% for step-and-shoot prospectively ECG-gated and retrospectively ECG gated with TCM CCTA, respectively, relative to conventional coronary angiography. Effective radiation dose were 1.75 ± 0.83 mSv, 4.91 ± 1.71 mSv in the step-and-shoot prospectively ECG-gated and retrospectively ECG-gated with TCM CCTA groups, respectively. Conclusion The two low-radiation dose CCTA techniques using 128-slice MDCT yields comparable diagnostic performance for coronary artery disease in symptomatic patients with low heart rates

  17. Efficacy and safety of dextrose-insulin in unmasking non-diagnostic Brugada ECG patterns.

    Science.gov (United States)

    Velázquez-Rodríguez, Enrique; Rodríguez-Piña, Horacio; Pacheco-Bouthillier, Alex; Jiménez-Cruz, Marcelo Paz

    Typical diagnostic, coved-type 1, Brugada ECG patterns fluctuate spontaneously over time with a high proportion of non-diagnostic ECG patterns. Insulin modulates ion transport mechanisms and causes hyperpolarization of the resting potential. We report our experience with unmasking J-ST changes in response to a dextrose-insulin test. Nine patients, mean age 40.5±19.4years (range: 15-65years), presented initially with a non-diagnostic ECG pattern, which was suggestive of Brugada syndrome (group I). They were compared with 10 patients with normal ECG patterns (group II). Participants received an infusion of 50g of 50% dextrose, followed by 10IU of intravenous regular insulin. Positive changes were defined by conversion to a diagnostic ECG pattern. The dextrose-insulin test was positive in six of seven (85.7%) patients (kappa 0.79, p=0.02) that was confirmed with a pharmacologic test (kappa 1, p=0.003). One had an inconclusive test, and two with a negative test had an early repolarization ECG pattern. All subjects in group II had a negative test (pECG patterns. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. A comprehensive survey of wearable and wireless ECG monitoring systems for older adults.

    Science.gov (United States)

    Baig, Mirza Mansoor; Gholamhosseini, Hamid; Connolly, Martin J

    2013-05-01

    Wearable health monitoring is an emerging technology for continuous monitoring of vital signs including the electrocardiogram (ECG). This signal is widely adopted to diagnose and assess major health risks and chronic cardiac diseases. This paper focuses on reviewing wearable ECG monitoring systems in the form of wireless, mobile and remote technologies related to older adults. Furthermore, the efficiency, user acceptability, strategies and recommendations on improving current ECG monitoring systems with an overview of the design and modelling are presented. In this paper, over 120 ECG monitoring systems were reviewed and classified into smart wearable, wireless, mobile ECG monitoring systems with related signal processing algorithms. The results of the review suggest that most research in wearable ECG monitoring systems focus on the older adults and this technology has been adopted in aged care facilitates. Moreover, it is shown that how mobile telemedicine systems have evolved and how advances in wearable wireless textile-based systems could ensure better quality of healthcare delivery. The main drawbacks of deployed ECG monitoring systems including imposed limitations on patients, short battery life, lack of user acceptability and medical professional's feedback, and lack of security and privacy of essential data have been also discussed.

  19. Fetal ECG extraction using independent component analysis by Jade approach

    Science.gov (United States)

    Giraldo-Guzmán, Jader; Contreras-Ortiz, Sonia H.; Lasprilla, Gloria Isabel Bautista; Kotas, Marian

    2017-11-01

    Fetal ECG monitoring is a useful method to assess the fetus health and detect abnormal conditions. In this paper we propose an approach to extract fetal ECG from abdomen and chest signals using independent component analysis based on the joint approximate diagonalization of eigenmatrices approach. The JADE approach avoids redundancy, what reduces matrix dimension and computational costs. Signals were filtered with a high pass filter to eliminate low frequency noise. Several levels of decomposition were tested until the fetal ECG was recognized in one of the separated sources output. The proposed method shows fast and good performance.

  20. Portable mass spectrometer for express analysis of dissolved in water substances

    International Nuclear Information System (INIS)

    Kogan, V.T.; Pavlov, A.K.; Savchenko, M.I.; Dobychin, O.E.

    1999-01-01

    The mass spectrometer for analysis under field conditions of chemical composition of dissolved in water substances is described. Special attention is paid to developing portable mass analyzer and device for a probe inlet. The device is intended for the systems of direct autonomous control of water basins contamination. Depending on the level of required work degree of autonomy and loading rate of the device, its dimensions and consumption way vary. The tests of the pilot device having 370x420x570 mm size, 23 kg mass and ≤ 40 W consumption capacity were carried out. The resolution capacity of the device is 100 (at the level of ≤ 3%) and relative sensitivity - ≤ 10 -6 [ru

  1. The ECG component of thallium-201 exercise testing significantly alters patient management

    International Nuclear Information System (INIS)

    Deague, J.; Salehi, N.; Grigg, L.; Lichtenstein, M.; Better, N.

    1998-01-01

    Full text: Thallium exercise testing (Tlex) offers superior sensitivity and specificity to exercise electrocardiography (ECG), but the value of the ECG data in Tlex remains poorly studied. While a normal Tlex is associated with an excellent prognosis, patients with a positive Tlex have a higher cardiac event rate. We aimed to see if a negative ECG component of the Tlex (ECGTI) was associated with an improved outcome compared with a positive ECGTI, in those patients with a reversible Tlex defect. We followed 100 consecutive patients retrospectively with a reversible defect on Tlex (50 with negative and 50 with positive (ECGTI) for 12 months. The ECG was reviewed as positive (1 mm ST depression 0.08 seconds after J point or > 2 mm if on digoxin or prior ECG changes), negative, equivocal or uninterpretable. We excluded patients with pharmacological testing, and those with equivocal or uninterpretable ECGs. Over the ensuing 12 months no patients with negative ECGTl was admitted with unstable angina, myocardium infarction or had a cardiac death. It is concluded that in patients with reversible defects on Tlex, a negative ECGTl is associated with a low incidence of cardiac events and a decreased incidence of a cardiac intervention

  2. 78 FR 38361 - Certain Portable Electronic Communications Devices, Including Mobile Phones and Components...

    Science.gov (United States)

    2013-06-26

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-885] Certain Portable Electronic Communications... States Code AGENCY: U.S. International Trade Commission. ACTION: Notice. SUMMARY: Notice is hereby given that a complaint was filed with the U.S. International Trade Commission on May 23, 2013, under section...

  3. A novel ECG data compression method based on adaptive Fourier decomposition

    Science.gov (United States)

    Tan, Chunyu; Zhang, Liming

    2017-12-01

    This paper presents a novel electrocardiogram (ECG) compression method based on adaptive Fourier decomposition (AFD). AFD is a newly developed signal decomposition approach, which can decompose a signal with fast convergence, and hence reconstruct ECG signals with high fidelity. Unlike most of the high performance algorithms, our method does not make use of any preprocessing operation before compression. Huffman coding is employed for further compression. Validated with 48 ECG recordings of MIT-BIH arrhythmia database, the proposed method achieves the compression ratio (CR) of 35.53 and the percentage root mean square difference (PRD) of 1.47% on average with N = 8 decomposition times and a robust PRD-CR relationship. The results demonstrate that the proposed method has a good performance compared with the state-of-the-art ECG compressors.

  4. Evaluation of a web-based ECG-interpretation programme for undergraduate medical students

    Directory of Open Access Journals (Sweden)

    Johansson Bo-Lennart

    2008-04-01

    Full Text Available Abstract Background Most clinicians and teachers agree that knowledge about ECG is of importance in the medical curriculum. Students at Karolinska Institutet have asked for more training in ECG-interpretation during their undergraduate studies. Clinical tutors, however, have difficulties in meeting these demands due to shortage of time. Thus, alternative ways to learn and practice ECG-interpretation are needed. Education offered via the Internet is readily available, geographically independent and flexible. Furthermore, the quality of education may increase and become more effective through a superior educational approach, improved visualization and interactivity. Methods A Web-based comprehensive ECG-interpretation programme has been evaluated. Medical students from the sixth semester were given an optional opportunity to access the programme from the start of their course. Usage logs and an initial evaluation survey were obtained from each student. A diagnostic test was performed in order to assess the effect on skills in ECG interpretation. Students from the corresponding course, at another teaching hospital and without access to the ECG-programme but with conventional teaching of ECG served as a control group. Results 20 of the 32 students in the intervention group had tested the programme after 2 months. On a five-graded scale (1- bad to 5 – very good they ranked the utility of a web-based programme for this purpose as 4.1 and the quality of the programme software as 3.9. At the diagnostic test (maximal points 16 by the end of the 5-month course at the 6th semester the mean result for the students in the intervention group was 9.7 compared with 8.1 for the control group (p = 0.03. Conclusion Students ranked the Web-based ECG-interpretation programme as a useful instrument to learn ECG. Furthermore, Internet-delivered education may be more effective than traditional teaching methods due to greater immediacy, improved visualisation and

  5. ECG changes in epilepsy patients

    DEFF Research Database (Denmark)

    Tigaran, S; Rasmussen, V; Dam, M

    1997-01-01

    To investigate the frequency of ECG abnormalities suggestive of myocardial ischaemia in patients with severe drug resistant epilepsy and without any indication of previous cardiac disease, assuming that these changes may be of significance for the group of epileptic patients with sudden unexpected...

  6. Utility of Electrocardiography (ECG)-Gated Computed Tomography (CT) for Preoperative Evaluations of Thymic Epithelial Tumors.

    Science.gov (United States)

    Ozawa, Yoshiyuki; Hara, Masaki; Nakagawa, Motoo; Shibamoto, Yuta

    2016-01-01

    Preoperative evaluation of invasion to the adjacent organs is important for the thymic epithelial tumors on CT. The purpose of our study was to evaluate the utility of electrocardiography (ECG)-gated CT for assessing thymic epithelial tumors with regard to the motion artifacts produced and the preoperative diagnostic accuracy of the technique. Forty thymic epithelial tumors (36 thymomas and 4 thymic carcinomas) were examined with ECG-gated contrast-enhanced CT using a dual source scanner. The scan delay after the contrast media injection was 30 s for the non-ECG-gated CT and 100 s for the ECG-gated CT. Two radiologists blindly evaluated both the non-ECG-gated and ECG-gated CT images for motion artifacts and determined whether the tumors had invaded adjacent structures (mediastinal fat, superior vena cava, brachiocephalic veins, aorta, pulmonary artery, pericardium, or lungs) on each image. Motion artifacts were evaluated using a 3-grade scale. Surgical and pathological findings were used as a reference standard for tumor invasion. Motion artifacts were significantly reduced for all structures by ECG gating ( p =0.0089 for the lungs and p ECG-gated CT and ECG-gated CT demonstrated 79% and 95% accuracy, respectively, during assessments of pericardial invasion ( p =0.03). ECG-gated CT reduced the severity of motion artifacts and might be useful for preoperative assessment whether thymic epithelial tumors have invaded adjacent structures.

  7. Pattern recognition in paediatric ecgs: the hidden secrets to clinical ...

    African Journals Online (AJOL)

    remain as important as ever, but may play only secondary roles in the diagnostic value of ... the more complex ones are best left to the experts. This article ... ECG 1 is a normal ECG of an 8-year-old child, showing sinus rhythm, a heart rate of ...

  8. The use of a portable gamma camera for preoperative lymphatic mapping: a comparison with a conventional gamma camera

    Energy Technology Data Exchange (ETDEWEB)

    Vidal-Sicart, Sergi; Paredes, Pilar [Hospital Clinic Barcelona, Nuclear Medicine Department (CDIC), Barcelona (Spain); Institut d' Investigacio Biomedica Agusti Pi Sunyer (IDIBAPS), Barcelona (Spain); Vermeeren, Lenka; Valdes-Olmos, Renato A. [Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital (NKI-AVL), Nuclear Medicine Department, Amsterdam (Netherlands); Sola, Oriol [Hospital Clinic Barcelona, Nuclear Medicine Department (CDIC), Barcelona (Spain)

    2011-04-15

    Planar lymphoscintigraphy is routinely used for preoperative sentinel node visualization, but large gamma cameras are not always available. We evaluated the reproducibility of lymphatic mapping with a smaller and portable gamma camera. In two centres, 52 patients with breast cancer received preoperative lymphoscintigraphy with a conventional gamma camera with a field of view of 40 x 40 cm. Static anterior and lateral images were performed at 15 min, 2 h and 4 h after injection of the radiotracer ({sup 99m}Tc-nanocolloid). At 2 h after injection, anterior and oblique images were also performed with a portable gamma camera (Sentinella, Oncovision) positioned to obtain a field of view of 20 x 20 cm. Visualization of lymphatic drainage on conventional images and images with the portable device were compared for number of nodes depicted, their intensity and localization of sentinel nodes. The images performed with the conventional gamma camera depicted sentinel nodes in 94%, while the portable gamma camera showed drainage in 73%. There was however no significant difference in visualization between the two devices when a lead shield was used to mask the injection area in 43 patients (95 vs 88%, p = 0.25). Second-echelon nodes were visualized in 62% of the patients with the conventional gamma camera and in 29% of the cases with the portable gamma camera. Preoperative imaging with a portable gamma camera fitted with a pinhole collimator to obtain a field of view of 20 x 20 cm is able to depict sentinel nodes in 88% of the cases, if a lead shield is used to mask the injection site. This device may be useful in centres without the possibility to perform a preoperative image. (orig.)

  9. The use of a portable gamma camera for preoperative lymphatic mapping: a comparison with a conventional gamma camera

    International Nuclear Information System (INIS)

    Vidal-Sicart, Sergi; Paredes, Pilar; Vermeeren, Lenka; Valdes-Olmos, Renato A.; Sola, Oriol

    2011-01-01

    Planar lymphoscintigraphy is routinely used for preoperative sentinel node visualization, but large gamma cameras are not always available. We evaluated the reproducibility of lymphatic mapping with a smaller and portable gamma camera. In two centres, 52 patients with breast cancer received preoperative lymphoscintigraphy with a conventional gamma camera with a field of view of 40 x 40 cm. Static anterior and lateral images were performed at 15 min, 2 h and 4 h after injection of the radiotracer ( 99m Tc-nanocolloid). At 2 h after injection, anterior and oblique images were also performed with a portable gamma camera (Sentinella, Oncovision) positioned to obtain a field of view of 20 x 20 cm. Visualization of lymphatic drainage on conventional images and images with the portable device were compared for number of nodes depicted, their intensity and localization of sentinel nodes. The images performed with the conventional gamma camera depicted sentinel nodes in 94%, while the portable gamma camera showed drainage in 73%. There was however no significant difference in visualization between the two devices when a lead shield was used to mask the injection area in 43 patients (95 vs 88%, p = 0.25). Second-echelon nodes were visualized in 62% of the patients with the conventional gamma camera and in 29% of the cases with the portable gamma camera. Preoperative imaging with a portable gamma camera fitted with a pinhole collimator to obtain a field of view of 20 x 20 cm is able to depict sentinel nodes in 88% of the cases, if a lead shield is used to mask the injection site. This device may be useful in centres without the possibility to perform a preoperative image. (orig.)

  10. A portable microscopy system for fluorescence, polarized, and brightfield imaging

    Science.gov (United States)

    Gordon, Paul; Wattinger, Rolla; Lewis, Cody; Venancio, Vinicius Paula; Mertens-Talcott, Susanne U.; Coté, Gerard

    2018-02-01

    The use of mobile phones to conduct diagnostic microscopy at the point-of-care presents intriguing possibilities for the advancement of high-quality medical care in remote settings. However, it is challenging to create a single device that can adapt to the ever-varying camera technologies in phones or that can image with the customization that multiple modalities require for applications such as malaria diagnosis. A portable multi-modal microscope system is presented that utilizes a Raspberry Pi to collect and transmit data wirelessly to a myriad of electronic devices for image analysis. The microscopy system is capable of providing to the user correlated brightfield, polarized, and fluorescent images of samples fixed on traditional microscopy slides. The multimodal diagnostic capabilities of the microscope were assessed by measuring parasitemia of Plasmodium falciparum-infected thin blood smears. The device is capable of detecting fluorescently-labeled DNA using FITC excitation (490 nm) and emission (525 nm), the birefringent P. falciparum byproduct hemozoin, and detecting brightfield absorption with a resolution of 0.78 micrometers (element 9-3 of a 1951 Air Force Target). This microscopy system is a novel portable imaging tool that may be a viable candidate for field implementation if challenges of system durability, cost considerations, and full automation can be overcome.

  11. Development of Data Storage System for Portable Multichannel Analyzer using S D Card

    International Nuclear Information System (INIS)

    Suksompong, Tanate; Ngernvijit, Narippawaj; Sudprasert, Wanwisa

    2009-07-01

    Full text: The development of data storage system for portable multichannel analyzer (MCA) focused on the application of SD card as a storage device instead of the older devices that could not easily extend their capacity. The entire work consisted of two parts: the first part was the study for pulse detection by designing the input pulse detecting circuit. The second part dealed with the accuracy testing of data storage system for portable MCA, consisting of the design of connecting circuit between micro controller and SD card, the transfer of input pulse data into SD card and the ability of data storage system for radiation detection. It was found that the input pulse detecting circuit could detect the input pulse with the maximum voltage, then the signal was transferred to micro controller for data processing. The micro controller could connect to SD card via SPI MODE. The portable MCA could perfectly verify the input signal ranging from 0.2 to 5.0 volts. The SD card could store the data as . xls file which could easily be accessed by the compatible software such as Microsoft Excel

  12. Design and setup of a portable stirring device for transfer and dissolution of 99Mo applied to the use of a 99mTc generator

    International Nuclear Information System (INIS)

    Lopez, Yon; Rojas, Jorge

    2014-01-01

    This work shows the design and implementation of a portable magnetic stirring device for transfer and efficient dissolution of Mo O 3 coupled to a 99m Tc generator prototype. The development of this equipment will enable an efficient and safe transfer of 99 Mo at a 2 Ci of maximum activity from the nuclear reactor Huarangal to the point of operation of the 99m Tc generator equipment. This article describes the mechanical design, volume and shielding calculation, the electronics design and the programmable speed control of the stirring system for radioactive samples. (authors).

  13. Prospectively ECG-triggered sequential dual-source coronary CT angiography in patients with atrial fibrillation: comparison with retrospectively ECG-gated helical CT

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Lei; Yang, Lin; Zhang, Zhaoqi [Capital Medical University, Department of Radiology, Beijing Anzhen Hospital, Beijing (China); Wang, Yining; Jin, Zhengyu [Chinese Academy of Medical Sciences, Department of Radiology, Peking Union Medical College Hospital, Beijing (China); Zhang, Longjiang; Lu, Guangming [Nanjing University, Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing, Jiangsu (China)

    2013-07-15

    To investigate the feasibility of applying prospectively ECG-triggered sequential coronary CT angiography (CCTA) to patients with atrial fibrillation (AF) and evaluate the image quality and radiation dose compared with a retrospectively ECG-gated helical protocol. 100 patients with persistent AF were enrolled. Fifty patients were randomly assigned to a prospective protocol and the other patients to a retrospective protocol using a second-generation dual-source CT (DS-CT). Image quality was evaluated using a four-point grading scale (1 = excellent, 2 = good, 3 = moderate, 4 = poor) by two reviewers on a per-segment basis. The coronary artery segments were considered non-diagnostic with a quality score of 4. The radiation dose was evaluated. Diagnostic segment rate in the prospective group was 99.4 % (642/646 segments), while that in the retrospective group was 96.5 % (604/626 segments) (P < 0.001). Effective dose was 4.29 {+-} 1.86 and 11.95 {+-} 5.34 mSv for each of the two protocols (P < 0.001), which was a 64 % reduction in the radiation dose for prospective sequential imaging compared with retrospective helical imaging. In AF patients, prospectively ECG-triggered sequential CCTA is feasible using second-generation DS-CT and can decrease >60 % radiation exposure compared with retrospectively ECG-gated helical imaging while improving diagnostic image quality. (orig.)

  14. MYBPC3 hypertrophic cardiomyopathy can be detected by using advanced ECG in children and young adults.

    Science.gov (United States)

    Fernlund, E; Liuba, P; Carlson, J; Platonov, P G; Schlegel, T T

    2016-01-01

    The conventional ECG is commonly used to screen for hypertrophic cardiomyopathy (HCM), but up to 25% of adults and possibly larger percentages of children with HCM have no distinctive abnormalities on the conventional ECG, whereas 5 to 15% of healthy young athletes do. Recently, a 5-min resting advanced 12-lead ECG test ("A-ECG score") showed superiority to pooled criteria from the strictly conventional ECG in correctly identifying adult HCM. The purpose of this study was to evaluate whether in children and young adults, A-ECG scoring could detect echocardiographic HCM associated with the MYBPC3 genetic mutation with greater sensitivity than conventional ECG criteria and distinguish healthy young controls and athletes from persons with MYBPC3 HCM with greater specificity. Five-minute 12-lead ECGs were obtained from 15 young patients (mean age 13.2years, range 0-30years) with MYBPC3 mutation and phenotypic HCM. The conventional and A-ECG results of these patients were compared to those of 198 healthy children and young adults (mean age 13.2, range 1month-30years) with unremarkable echocardiograms, and to those of 36 young endurance-trained athletes, 20 of whom had athletic (physiologic) left ventricular hypertrophy. Compared with commonly used, age-specific pooled criteria from the conventional ECG, a retrospectively generated A-ECG score incorporating results from just 2 derived vectorcardiographic parameters (spatial QRS-T angle and the change in the vectorcardiographic QRS azimuth angle from the second to the third eighth of the QRS interval) increased the sensitivity of ECG for identifying MYBPC3 HCM from 46% to 87% (pyoung endurance-trained athletes (100% vs. 69% for conventional ECG criteria, pyoung adults, a 2-parameter 12-lead A-ECG score is retrospectively significantly more sensitive and specific than pooled, age-specific conventional ECG criteria for detecting MYBPC3-HCM and in distinguishing such patients from healthy controls, including endurance

  15. Extraction of the fetal ECG in noninvasive recordings by signal decompositions

    International Nuclear Information System (INIS)

    Christov, I; Simova, I; Abächerli, R

    2014-01-01

    No signal processing technique has been able to reliably deliver an undistorted fetal electrocardiographic (fECG) signal from electrodes placed on the maternal abdomen because of the low signal-to-noise ratio of the fECG recorded from the maternal body surface. As a result, this led to increased rates of Caesarean deliveries of healthy infants. In an attempt to solve the problem, Physionet/Computing in Cardiology announced the 2013 Challenge: noninvasive fetal ECG. We are suggesting a method for cancellation of the maternal ECG consisting of: maternal QRS detection, heart rate dependant P-QRS-T interval selection, location of the fiducial points inside this interval for best matching by cross correlation, superimposition of the intervals, calculation of the mean signal of the P-QRS-T interval, and sequential subtraction of the mean signal from the whole fECG recording. Three signal decomposition methods were further applied in order to enhance the fetal QRSs (fQRS): principal component analysis, root-mean-square and Hotelling’s T-squared. A combined lead of all decompositions was synthesized and fQRS detection was performed on it. The current research differs from the Challenge in that it uses three signal decomposition methods to enhance the fECG. The new results for 97 recordings of test set B are: 305.657 for Event 4: Fetal heart rate (FHR) and 23.062 for Event 5: Fetal RR interval (FRR). (paper)

  16. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography

    Directory of Open Access Journals (Sweden)

    Thomas Penzel

    2016-10-01

    Full Text Available The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG and cardio-respiratory couplings in a chronological (historical sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave.

  17. Modulations of Heart Rate, ECG, and Cardio-Respiratory Coupling Observed in Polysomnography.

    Science.gov (United States)

    Penzel, Thomas; Kantelhardt, Jan W; Bartsch, Ronny P; Riedl, Maik; Kraemer, Jan F; Wessel, Niels; Garcia, Carmen; Glos, Martin; Fietze, Ingo; Schöbel, Christoph

    2016-01-01

    The cardiac component of cardio-respiratory polysomnography is covered by ECG and heart rate recordings. However, their evaluation is often underrepresented in summarizing reports. As complements to EEG, EOG, and EMG, these signals provide diagnostic information for autonomic nervous activity during sleep. This review presents major methodological developments in sleep research regarding heart rate, ECG, and cardio-respiratory couplings in a chronological (historical) sequence. It presents physiological and pathophysiological insights related to sleep medicine obtained by new technical developments. Recorded nocturnal ECG facilitates conventional heart rate variability (HRV) analysis, studies of cyclical variations of heart rate, and analysis of ECG waveform. In healthy adults, the autonomous nervous system is regulated in totally different ways during wakefulness, slow-wave sleep, and REM sleep. Analysis of beat-to-beat heart-rate variations with statistical methods enables us to estimate sleep stages based on the differences in autonomic nervous system regulation. Furthermore, up to some degree, it is possible to track transitions from wakefulness to sleep by analysis of heart-rate variations. ECG and heart rate analysis allow assessment of selected sleep disorders as well. Sleep disordered breathing can be detected reliably by studying cyclical variation of heart rate combined with respiration-modulated changes in ECG morphology (amplitude of R wave and T wave).

  18. Electrocardiogram (ECG Signal Modeling and Noise Reduction Using Hopfield Neural Networks

    Directory of Open Access Journals (Sweden)

    F. Bagheri

    2013-02-01

    Full Text Available The Electrocardiogram (ECG signal is one of the diagnosing approaches to detect heart disease. In this study the Hopfield Neural Network (HNN is applied and proposed for ECG signal modeling and noise reduction. The Hopfield Neural Network (HNN is a recurrent neural network that stores the information in a dynamic stable pattern. This algorithm retrieves a pattern stored in memory in response to the presentation of an incomplete or noisy version of that pattern. Computer simulation results show that this method can successfully model the ECG signal and remove high-frequency noise.

  19. A Novel Automatic Detection System for ECG Arrhythmias Using Maximum Margin Clustering with Immune Evolutionary Algorithm

    Directory of Open Access Journals (Sweden)

    Bohui Zhu

    2013-01-01

    Full Text Available This paper presents a novel maximum margin clustering method with immune evolution (IEMMC for automatic diagnosis of electrocardiogram (ECG arrhythmias. This diagnostic system consists of signal processing, feature extraction, and the IEMMC algorithm for clustering of ECG arrhythmias. First, raw ECG signal is processed by an adaptive ECG filter based on wavelet transforms, and waveform of the ECG signal is detected; then, features are extracted from ECG signal to cluster different types of arrhythmias by the IEMMC algorithm. Three types of performance evaluation indicators are used to assess the effect of the IEMMC method for ECG arrhythmias, such as sensitivity, specificity, and accuracy. Compared with K-means and iterSVR algorithms, the IEMMC algorithm reflects better performance not only in clustering result but also in terms of global search ability and convergence ability, which proves its effectiveness for the detection of ECG arrhythmias.

  20. Evaluation of a portable urinary pH meter and reagent strips.

    Science.gov (United States)

    De Coninck, Vincent; Keller, Etienne Xavier; Rodríguez-Monsalve, María; Haymann, Jean-Philippe; Doizi, Steeve; Traxer, Olivier

    2018-04-27

    To evaluate a portable electronic pH meter and to put its accuracy in perspective with reagent strips read by a layperson, a healthcare professional and an electronic reading device. Based on a pre-analysis on 20 patients, a sample size of 77 urine aliquots from healthy volunteers was necessary to obtain sufficient study power. Measurements of urinary pH were obtained by use of reagent strips, a portable pH meter and a laboratory pH meter (gold standard). Reagents strips were read by a professional experienced in interpreting strips, a layperson, and an electronic strip reader. The mean matched pair difference between measurement methods was analyzed by the paired t-test. The degree of correlation and agreement were evaluated by the Pearson's correlation coefficient and Bland-Altman plots, respectively. The mean matched pair difference between the gold standard and all other pH measurement methods was the smallest with the portable electronic pH meter (bias 0.01, 95% CI -0.07 to 0.08; p=0.89), followed by strips read by a professional (bias -0.09, 95% CI -0.21 to 0.02; p=0.10), layperson (bias -0.17, 95% CI -0.31 to -0.04; p=0.015) and electronic strip reader (bias -0.29, 95% CI -0.41 to -0.16; pmeter achieved the highest Pearson's correlation coefficient and narrowest 95% limits of agreement, followed by strip interpretation by a professional, the electronic strip reader and the layperson. In order to quantify the ability of pH measurement methods to correctly classify values within a predefined urinary pH target range, we performed classification tests for several stones. The portable electronic pH meter outperformed all other measurement methods for negative predictive values. Findings of the current study support that the portable electronic pH meter is a reliable pH measuring device. It seems to be more accurate compared to reagent strips readings.

  1. 75 FR 739 - Use of Additional Portable Oxygen Concentrator Devices on Board Aircraft

    Science.gov (United States)

    2010-01-06

    ...;Prices of new books are listed in the first FEDERAL REGISTER issue of each #0;week. #0; #0; #0; #0;#0... approved by the Food and Drug Administration (FDA) reduce the risks typically associated with compressed... developed small portable oxygen concentrators (POC) that work by separating oxygen from nitrogen and other...

  2. A portable UV-fluorescence multispectral imaging system for the analysis of painted surfaces

    Science.gov (United States)

    Comelli, Daniela; Valentini, Gianluca; Nevin, Austin; Farina, Andrea; Toniolo, Lucia; Cubeddu, Rinaldo

    2008-08-01

    A portable fluorescence multispectral imaging system was developed and has been used for the analysis of artistic surfaces. The imaging apparatus exploits two UV lamps for fluorescence excitation and a liquid crystal tunable filter coupled to a low-noise charge coupled device as the image detector. The main features of the system are critically presented, outlining the assets, drawbacks, and practical considerations of portability. A multivariate statistical treatment of spectral data is further considered. Finally, the in situ analysis with the new apparatus of recently restored Renaissance wall paintings is presented.

  3. WiFi-Aided Magnetic Matching for Indoor Navigation with Consumer Portable Devices

    Directory of Open Access Journals (Sweden)

    You Li

    2015-06-01

    Full Text Available This paper presents a WiFi-aided magnetic matching (MM algorithm for indoor pedestrian navigation with consumer portable devices. This algorithm reduces both the mismatching rate (i.e., the rate of matching to an incorrect point that is more than 20 m away from the true value and computational load of MM by using WiFi positioning solutions to limit the MM search space. Walking tests with Samsung Galaxy S3 and S4 smartphones in two different indoor environments (i.e., Environment #1 with abundant WiFi APs and significant magnetic features, and Environment #2 with less WiFi and magnetic information were conducted to evaluate the proposed algorithm. It was found that WiFi fingerprinting accuracy is related to the signal distributions. MM provided results with small fluctuations but had a significant mismatch rate; when aided by WiFi, MM’s robustness was significantly improved. The outcome of this research indicates that WiFi and MM have complementary characteristics as the former is a point-by-point matching approach and the latter is based on profile-matching. Furthermore, performance improvement through integrating WiFi and MM depends on the environment (e.g., the signal distributions of magnetic intensity and WiFi RSS: In Environment #1 tests, WiFi-aided MM and WiFi provided similar results; in Environment #2 tests, the former was approximately 41.6% better. Our results supported that the WiFi-aided MM algorithm provided more reliable solutions than both WiFi and MM in the areas that have poor WiFi signal distribution or indistinctive magnetic-gradient features.

  4. Portable audio electronics for impedance-based measurements in microfluidics

    International Nuclear Information System (INIS)

    Wood, Paul; Sinton, David

    2010-01-01

    We demonstrate the use of audio electronics-based signals to perform on-chip electrochemical measurements. Cell phones and portable music players are examples of consumer electronics that are easily operated and are ubiquitous worldwide. Audio output (play) and input (record) signals are voltage based and contain frequency and amplitude information. A cell phone, laptop soundcard and two compact audio players are compared with respect to frequency response; the laptop soundcard provides the most uniform frequency response, while the cell phone performance is found to be insufficient. The audio signals in the common portable music players and laptop soundcard operate in the range of 20 Hz to 20 kHz and are found to be applicable, as voltage input and output signals, to impedance-based electrochemical measurements in microfluidic systems. Validated impedance-based measurements of concentration (0.1–50 mM), flow rate (2–120 µL min −1 ) and particle detection (32 µm diameter) are demonstrated. The prevailing, lossless, wave audio file format is found to be suitable for data transmission to and from external sources, such as a centralized lab, and the cost of all hardware (in addition to audio devices) is ∼10 USD. The utility demonstrated here, in combination with the ubiquitous nature of portable audio electronics, presents new opportunities for impedance-based measurements in portable microfluidic systems. (technical note)

  5. A Comprehensive Ubiquitous Healthcare Solution on an Android™ Mobile Device

    Directory of Open Access Journals (Sweden)

    Pei-Cheng Hii

    2011-06-01

    Full Text Available Provision of ubiquitous healthcare solutions which provide healthcare services at anytime anywhere has become more favorable nowadays due to the emphasis on healthcare awareness and also the growth of mobile wireless technologies. Following this approach, an Android™ smart phone device is proposed as a mobile monitoring terminal to observe and analyze ECG (electrocardiography waveforms from wearable ECG devices in real time under the coverage of a wireless sensor network (WSN. The exploitation of WSN in healthcare is able to substitute the complicated wired technology, moving healthcare away from a fixed location setting. As an extension to the monitoring scheme, medicine care is taken into consideration by utilizing the mobile phone as a barcode decoder, to verify and assist out-patients in the medication administration process, providing a better and more comprehensive healthcare service.

  6. Comparative determination of physical stress and strain on milkers in milking parlours on dairy farms in Upper Austria, using ECG, an activity sensor and spirometer

    Directory of Open Access Journals (Sweden)

    Magdalena Mayrhofer

    2017-05-01

    Full Text Available To-date, the impact of modern milking parlors in dairy farming on physical strain has not been the subject of many studies. Therefore, this case study aims to record and evaluate the physical strain during the entire milking process, including the oxygen consumption (VO2, heart rate (HR and metabolic rate (WkJ, Watt of milkers. The recording was conducted with a portable respiratory gas analysis system and an ECG and activity sensor on 4 dairy farms in Austria. Eight subjects aged from 45–52 years, with a mean age 50±2.4 SD, participated and the data were recorded during the milking process in 2 types of milking parlours. For assessment, the entire milking process was divided into preparation, milking and follow-up work. The entire milking process was performed with an average oxygen consumption of 46.5 l/h and a heart rate of 98 bpm, which is below the anaerobic threshold; whereas in the preparation and follow-up work, this threshold was exceeded. Generally, during the milking process, a moderate physical strain (32.4% and a balanced metabolic rate (143 watt/m2 were determined. The physical strain in female milkers was 9.2% higher than in male milkers throughout the entire process. Reduction of physical strain can be achieved through additional breaks, reduced work speed, division of labour and technical devices.

  7. Architectural Vulnerabilities of Third-Generation Portable Devices

    National Research Council Canada - National Science Library

    Chin, Shiu-Kai

    2007-01-01

    .... We developed a handheld evidence recovery operator to address the challenges created by user passwords and PINs, and a standalone tool to copy the data located on the device to an external storage...

  8. Portable system for periodical verification of area monitors for neutrons

    International Nuclear Information System (INIS)

    Souza, Luciane de R.; Leite, Sandro Passos; Lopes, Ricardo Tadeu; Patrao, Karla C. de Souza; Fonseca, Evaldo S. da; Pereira, Walsan W.

    2009-01-01

    The Neutrons Laboratory develops a project viewing the construction of a portable test system for verification of functioning conditions of neutron area monitors. This device will allow to the users the verification of the calibration maintenance of his instruments at the use installations, avoiding the use of an inadequate equipment related to his answer to the neutron beam response

  9. Portable Wind Energy Harvesters for Low-Power Applications: A Survey

    Directory of Open Access Journals (Sweden)

    Seyedfakhreddin Nabavi

    2016-07-01

    Full Text Available Energy harvesting has become an increasingly important topic thanks to the advantages in renewability and environmental friendliness. In this paper, a comprehensive study on contemporary portable wind energy harvesters has been conducted. The electrical power generation methods of portable wind energy harvesters are surveyed in three major groups, piezoelectric-, electromagnetic-, and electrostatic-based generators. The paper also takes another view of this area by gauging the required mechanisms for trapping wind flow from ambient environment. In this regard, rotational and aeroelastic mechanisms are analyzed for the portable wind energy harvesting devices. The comparison between both mechanisms shows that the aeroelastic mechanism has promising potential in producing an energy harvester in smaller scale although how to maintain the resonator perpendicular to wind flow for collecting the maximum vibration is still a major challenge to overcome for this mechanism. Furthermore, this paper categorizes the previously published portable wind energy harvesters to macro and micro scales in terms of their physical dimensions. The power management systems are also surveyed to explore the possibility of improving energy conversion efficiency. Finally some insights and research trends are pointed out based on an overall analysis of the previously published works along the historical timeline.

  10. Making Sense of the ECG - Cases for Self-Assessment Houghton Andrew R Gray David Making Sense of the ECG - Cases for Self-Assessment 290pp Hodder Education 9780340946893 034094689X [Formula: see text].

    Science.gov (United States)

    2010-10-27

    This practical, pocket-book approach to ECG interpretation accompanies the well-known text Making Sense of the ECG, by the same authors. It is also designed to be used alone to test knowledge of ECG interpretation and to make clinical decisions based on presented scenarios.

  11. Reliability of the exercise ECG in detecting silent ischemia in patients with prior myocardial infarction

    International Nuclear Information System (INIS)

    Yamagishi, Takashi; Matsuda, Yasuo; Satoh, Akira

    1991-01-01

    To assess the reliability of the exercise ECG in detecting silent ischemia, ECG results were compared with those of stress-redistribution thallium-201 single-photon emission computed tomography (SPECT) in 116 patients with prior myocardial infarction and in 20 normal subjects used as a control. The left ventricle (LV) was divided into 20 segmental images, which were scored blindly on a 5-point scale. The redistribution score was defined as thallium defect score of exercise subtracted by that of redistribution image and was used as a measure of amount of ischemic but viable myocardium. The upper limit of normal redistribution score (=4.32) was defined as mean+2 standard deviations derived from 20 normal subjects. Of 116 patients, 47 had the redistribution score above the normal range. Twenty-five (53%) of the 47 patients showed positive ECG response. Fourteen (20%) of the 69 patients, who had the normal redistribution score, showed positive ECG response. Thus, the ECG response had a sensitivity of 53% and a specificity of 80% in detecting transient ischemia. Furthermore, the 116 patients were subdivided into 4 groups according to the presence or absence of chest pain and ECG change during exercise. Fourteen patients showed both chest pain and ECG change and all these patients had the redistribution score above the normal range. Twenty-five patients showed ECG change without chest pain and 11 (44%) of the 25 patients had the abnormal redistribution. Three (43%) of 7 patients who showed chest pain without ECG change had the abnormal redistribution score. Of 70 patients who had neither chest pain nor ECG change, 19 (27%) had the redistribution score above the normal range. Thus, limitations exist in detecting silent ischemia by ECG in patients with a prior myocardial infarction, because the ECG response to the exercise test may have a low degree of sensitivity and a high degree of false positive and false negative results in detecting silent ischemia. (author)

  12. Wearable thermoelectric generators for body-powered devices

    NARCIS (Netherlands)

    Leonov, V.; Vullers, R.J.M.

    2009-01-01

    This paper presents a discussion on energy scavenging for wearable devices in conjunction with human body properties. Motivation, analysis of the relevant properties of the human body, and results of optimization of a thermopile and a thermoelectric generator for wearable and portable devices are

  13. A Capacitive Touch Screen Sensor for Detection of Urinary Tract Infections in Portable Biomedical Devices

    Science.gov (United States)

    Honrado, Carlos; Dong, Tao

    2014-01-01

    Incidence of urinary tract infections (UTIs) is the second highest among all infections; thus, there is a high demand for bacteriuria detection. Escherichia coli are the main cause of UTIs, with microscopy methods and urine culture being the detection standard of these bacteria. However, the urine sampling and analysis required for these methods can be both time-consuming and complex. This work proposes a capacitive touch screen sensor (CTSS) concept as feasible alternative for a portable UTI detection device. Finite element method (FEM) simulations were conducted with a CTSS model. An exponential response of the model to increasing amounts of E. coli and liquid samples was observed. A measurable capacitance change due to E. coli presence and a tangible difference in the response given to urine and water samples were also detected. Preliminary experimental studies were also conducted on a commercial CTSS using liquid solutions with increasing amounts of dissolved ions. The CTSS was capable of distinguishing different volumes of liquids, also giving an exponential response. Furthermore, the CTSS gave higher responses to solutions with a superior amount of ions. Urine samples gave the top response among tested liquids. Thus, the CTSS showed the capability to differentiate solutions by their ionic content. PMID:25196109

  14. Cohort Study of ECG Left Ventricular Hypertrophy Trajectories: Ethnic Disparities, Associations With Cardiovascular Outcomes, and Clinical Utility.

    Science.gov (United States)

    Iribarren, Carlos; Round, Alfred D; Lu, Meng; Okin, Peter M; McNulty, Edward J

    2017-10-05

    ECG left ventricular hypertrophy (LVH) is a well-known predictor of cardiovascular disease. However, no prior study has characterized patterns of presence/absence of ECG LVH ("ECG LVH trajectories") across the adult lifespan in both sexes and across ethnicities. We examined: (1) correlates of ECG LVH trajectories; (2) the association of ECG LVH trajectories with incident coronary heart disease, transient ischemic attack, ischemic stroke, hemorrhagic stroke, and heart failure; and (3) reclassification of cardiovascular disease risk using ECG LVH trajectories. We performed a cohort study among 75 412 men and 107 954 women in the Northern California Kaiser Permanente Medical Care Program who had available longitudinal exposures of ECG LVH and covariates, followed for a median of 4.8 (range ECG LVH was measured by Cornell voltage-duration product. Adverse trajectories of ECG LVH (persistent, new development, or variable pattern) were more common among blacks and Native American men and were independently related to incident cardiovascular disease with hazard ratios ranging from 1.2 for ECG LVH variable pattern and transient ischemic attack in women to 2.8 for persistent ECG LVH and heart failure in men. ECG LVH trajectories reclassified 4% and 7% of men and women with intermediate coronary heart disease risk, respectively. ECG LVH trajectories were significant indicators of coronary heart disease, stroke, and heart failure risk, independently of level and change in cardiovascular disease risk factors, and may have clinical utility. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  15. Simultaneous ECG-gated PET imaging of multiple mice

    International Nuclear Information System (INIS)

    Seidel, Jurgen; Bernardo, Marcelino L.; Wong, Karen J.; Xu, Biying; Williams, Mark R.; Kuo, Frank; Jagoda, Elaine M.; Basuli, Falguni; Li, Changhui; Griffiths, Gary L.

    2014-01-01

    Introduction: We describe and illustrate a method for creating ECG-gated PET images of the heart for each of several mice imaged at the same time. The method is intended to increase “throughput” in PET research studies of cardiac dynamics or to obtain information derived from such studies, e.g. tracer concentration in end-diastolic left ventricular blood. Methods: An imaging bed with provisions for warming, anesthetic delivery, etc., was fabricated by 3D printing to allow simultaneous PET imaging of two side-by-side mice. After electrode attachment, tracer injection and placement of the animals in the scanner field of view, ECG signals from each animal were continuously analyzed and independent trigger markers generated whenever an R-wave was detected in each signal. PET image data were acquired in “list” mode and these trigger markers were inserted into this list along with the image data. Since each mouse is in a different spatial location in the FOV, sorting of these data using trigger markers first from one animal and then the other yields two independent and correctly formed ECG-gated image sequences that reflect the dynamical properties of the heart during an “average” cardiac cycle. Results: The described method yields two independent ECG-gated image sequences that exhibit the expected properties in each animal, e.g. variation of the ventricular cavity volumes from maximum to minimum and back during the cardiac cycle in the processed animal with little or no variation in these volumes during the cardiac cycle in the unprocessed animal. Conclusion: ECG-gated image sequences for each of several animals can be created from a single list mode data collection using the described method. In principle, this method can be extended to more than two mice (or other animals) and to other forms of physiological gating, e.g. respiratory gating, when several subjects are imaged at the same time

  16. Image quality assessment and medical physics evaluation of different portable dental X-ray units.

    Science.gov (United States)

    Pittayapat, Pisha; Oliveira-Santos, Christiano; Thevissen, Patrick; Michielsen, Koen; Bergans, Niki; Willems, Guy; Debruyckere, Deborah; Jacobs, Reinhilde

    2010-09-10

    Recently developed portable dental X-ray units increase the mobility of the forensic odontologists and allow more efficient X-ray work in a disaster field, especially when used in combination with digital sensors. This type of machines might also have potential for application in remote areas, military and humanitarian missions, dental care of patients with mobility limitation, as well as imaging in operating rooms. To evaluate radiographic image quality acquired by three portable X-ray devices in combination with four image receptors and to evaluate their medical physics parameters. Images of five samples consisting of four teeth and one formalin-fixed mandible were acquired by one conventional wall-mounted X-ray unit, MinRay 60/70 kVp, used as a clinical standard, and three portable dental X-ray devices: AnyRay 60 kVp, Nomad 60 kVp and Rextar 70 kVp, in combination with a phosphor image plate (PSP), a CCD, or a CMOS sensor. Three observers evaluated images for standard image quality besides forensic diagnostic quality on a 4-point rating scale. Furthermore, all machines underwent tests for occupational as well as patient dosimetry. Statistical analysis showed good quality imaging for all system, with the combination of Nomad and PSP yielding the best score. A significant difference in image quality between the combination of the four X-ray devices and four sensors was established (p1m: Rextar <0.2 microGy, MinRay <0.1 microGy). The present study demonstrated the feasibility of three portable X-ray systems to be used for specific indications, based on acceptable image quality and sufficient accuracy of the machines and following the standard guidelines for radiation hygiene. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  17. An integrated bioimpedance—ECG gating technique for respiratory and cardiac motion compensation in cardiac PET

    International Nuclear Information System (INIS)

    Koivumäki, Tuomas; Nekolla, Stephan G; Fürst, Sebastian; Loher, Simone; Schwaiger, Markus; Vauhkonen, Marko; Hakulinen, Mikko A

    2014-01-01

    Respiratory motion may degrade image quality in cardiac PET imaging. Since cardiac PET studies often involve cardiac gating by ECG, a separate respiratory monitoring system is required increasing the logistic complexity of the examination, in case respiratory gating is also needed. Thus, we investigated the simultaneous acquisition of both respiratory and cardiac gating signals using II limb lead mimicking electrode configuration during cardiac PET scans of 11 patients. In addition to conventional static and ECG-gated images, bioimpedance technique was utilized to generate respiratory- and dual-gated images. The ability of the bioimpedance technique to monitor intrathoracic respiratory motion was assessed estimating cardiac displacement between end-inspiration and -expiration. The relevance of dual gating was evaluated in left ventricular volume and myocardial wall thickness measurements. An average 7.6  ±  3.3 mm respiratory motion was observed in the study population. Dual gating showed a small but significant increase (4 ml, p = 0.042) in left ventricular myocardial volume compared to plain cardiac gating. In addition, a thinner myocardial wall was observed in dual-gated images (9.3  ±  1.3 mm) compared to cardiac-gated images (11.3  ±  1.3 mm, p = 0.003). This study shows the feasibility of bioimpedance measurements for dual gating in a clinical setting. The method enables simultaneous acquisition of respiratory and cardiac gating signals using a single device with standard ECG electrodes. (paper)

  18. Preliminary application of 320-detector spiral CT with ECG editing for assessing coronary artery in-stent restenosis

    International Nuclear Information System (INIS)

    Li Zhiming; Tan Lilian; Li Shuxin; Fu Xi; He Weihong; Liu Ke; Huang Yong; Yu Lin

    2011-01-01

    Objective: To determine the value of 320-detector spiral CT with retrospective ECG gating and editing software for detecting coronary artery in-stent restenosis. Methods: CT scans of 14 patients with coronary artery stnets were retrospectively analyzed. The examinations were performed using a 320-detector spiral CT scanner and retrospective ECG gating combined with ECG editing software. The image quality of reconstructed coronary artery in-stents was compared before and after the editing of synchronously recorded ECG. The paired-sample t test was used for statistical analysis. Results: Before ECG editing, arrhythmia and in-stent artifact resulted in image blurring, missing arterial segments, significant stepladder artifacts or non-visualization of the interior of stents. Of 14 cases before ECG editing, in-stent restenosis was detected in 10 and patency in 3. The coronary artery stent and distal bifurcation were delineated in one patient. After ECG editing, the image quality of coronary artery stents was improved with detection of in-stent restenosis (4 cases) including the one case that not evaluable before ECG editing. The average image quality score before ECG editing (2.14±0.86) was significantly (P<0.001) lower than that after ECG editing (3.07±0.73). Conclusion: Retrospective ECG gating combined with ECG editing of 320-detector spiral CT can reduce the artifacts produced by arrhythmia or in-stent swings and improve the imaging quality of coronary artery stents. (authors)

  19. ECG Based Heart Arrhythmia Detection Using Wavelet Coherence and Bat Algorithm

    Science.gov (United States)

    Kora, Padmavathi; Sri Rama Krishna, K.

    2016-12-01

    Atrial fibrillation (AF) is a type of heart abnormality, during the AF electrical discharges in the atrium are rapid, results in abnormal heart beat. The morphology of ECG changes due to the abnormalities in the heart. This paper consists of three major steps for the detection of heart diseases: signal pre-processing, feature extraction and classification. Feature extraction is the key process in detecting the heart abnormality. Most of the ECG detection systems depend on the time domain features for cardiac signal classification. In this paper we proposed a wavelet coherence (WTC) technique for ECG signal analysis. The WTC calculates the similarity between two waveforms in frequency domain. Parameters extracted from WTC function is used as the features of the ECG signal. These features are optimized using Bat algorithm. The Levenberg Marquardt neural network classifier is used to classify the optimized features. The performance of the classifier can be improved with the optimized features.

  20. Effects of electrocardiography contamination and comparison of ECG removal methods on upper trapezius electromyography recordings.

    Science.gov (United States)

    Marker, Ryan J; Maluf, Katrina S

    2014-12-01

    Electromyography (EMG) recordings from the trapezius are often contaminated by the electrocardiography (ECG) signal, making it difficult to distinguish low-level muscle activity from muscular rest. This study investigates the influence of ECG contamination on EMG amplitude and frequency estimations in the upper trapezius during muscular rest and low-level contractions. A new method of ECG contamination removal, filtered template subtraction (FTS), is described and compared to 30 Hz high-pass filter (HPF) and averaged template subtraction (ATS) methods. FTS creates a unique template of each ECG artifact using a low-pass filtered copy of the contaminated signal, which is subtracted from contaminated periods in the original signal. ECG contamination results in an over-estimation of EMG amplitude during rest in the upper trapezius, with negligible effects on amplitude and frequency estimations during low-intensity isometric contractions. FTS and HPF successfully removed ECG contamination from periods of muscular rest, yet introduced errors during muscle contraction. Conversely, ATS failed to fully remove ECG contamination during muscular rest, yet did not introduce errors during muscle contraction. The relative advantages and disadvantages of different ECG contamination removal methods should be considered in the context of the specific motor tasks that require analysis. Copyright © 2014 Elsevier Ltd. All rights reserved.