WorldWideScience

Sample records for porphyry-related hydrothermal system

  1. Mo isotope fractionation during hydrothermal evolution of porphyry Cu systems

    Science.gov (United States)

    Shafiei, Behnam; Shamanian, GholamHossein; Mathur, Ryan; Mirnejad, Hassan

    2015-03-01

    We present Mo isotope compositions of molybdenite types from three successive stages of ore deposition in several porphyry copper deposits of the Kerman region, Iran. The data provide new insights into controlling processes on Mo isotope fractionation during the hydrothermal evolution of porphyry systems. The Mo isotope compositions of 27 molybdenite samples show wide variations in δ97Mo ranging from -0.37 to +0.92 ‰. The data reveal that molybdenites in the early and transitional stages of mineralization (preferentially 2H polytypes; δ97Mo mean = 0.35 ‰) have higher δ97Mo values than late stage (mainly 3R polytypes; δ97Mo mean = 0.02 ‰) molybdenites. This trend suggests that fractionation of Mo isotopes occurred in high-temperature stages of mineralization and that hydrothermal systems generally evolve towards precipitation of molybdenite with lower δ97Mo values. Taking into account the genetic models proposed for porphyry Cu deposits along with the temperature-dependent fractionation of Mo isotope ratios, it is proposed that large variations of Mo isotopes in the early and the transitional stages of ore deposition could be controlled by the separation of the immiscible ore-forming fluid phases with different density, pH, and ƒO2 properties (i.e., brine and vapor). The fractionation of Mo isotopes during fluid boiling and Rayleigh distillation processes likely dominates the Mo isotope budget of the remaining ore-forming fluids for the late stage of mineralization. The lower δ97Mo values in the late stage of mineralization can be explained by depletion of the late ore-forming hydrothermal solutions in 97Mo, as these fluids have moved to considerable distance from the source. Finally, the relationship observed between MoS2 polytypes (2H and 3R) and their Mo isotopic compositions can be explained by the molecular vibration theory, in which heavier isotopes are preferentially partitioned into denser primary 2H MoS2 crystals.

  2. The El Teniente porphyry Cu-Mo deposit from a hydrothermal rutile perspective

    Science.gov (United States)

    Rabbia, Osvaldo M.; Hernández, Laura B.; French, David H.; King, Robert W.; Ayers, John C.

    2009-11-01

    Mineralogical, textural, and chemical analyses (EPMA and PIXE) of hydrothermal rutile in the El Teniente porphyry Cu-Mo deposit help to better constrain ore formation processes. Rutile formed from igneous Ti-rich phases (sphene, biotite, Ti-magnetite, and ilmenite) by re-equilibration and/or breakdown under hydrothermal conditions at temperatures ranging between 400°C and 700°C. Most rutile nucleate and grow at the original textural position of its Ti-rich igneous parent mineral phase. The distribution of Mo content in rutile indicates that low-temperature (˜400-550°C), Mo-poor rutile (5.4 ± 1.1 ppm) is dominantly in the Mo-rich mafic wallrocks (high-grade ore), while high-temperature (˜550-700°C), Mo-rich rutile (186 ± 20 ppm) is found in the Mo-poor felsic porphyries (low-grade ore). Rutile from late dacite ring dikes is a notable exception to this distribution pattern. The Sb content in rutile from the high-temperature potassic core of the deposit to its low-temperature propylitic fringe remains relatively constant (35 ± 3 ppm). Temperature and Mo content of the hydrothermal fluids in addition to Mo/Ti ratio, modal abundance and stability of Ti-rich parental phases are key factors constraining Mo content and provenance in high-temperature (≥550°C) rutile. The initial Mo content of parent mineral phases is controlled by melt composition and oxygen fugacity as well as timing and efficiency of fluid-melt separation. Enhanced reduction of SO2-rich fluids and sulfide deposition in the Fe-rich mafic wallrocks influences the low-temperature (≤550°C) rutile chemistry. The data are consistent with a model of fluid circulation of hot (>550°C), oxidized (ƒO2 ≥ NNO + 1.3), SO2-rich and Mo-bearing fluids, likely exsolved from deeper crystallizing parts of the porphyry system and fluxed through the upper dacite porphyries and related structures, with metal deposition dominantly in the Fe-rich mafic wallrocks.

  3. Timing of porphyry (Cu-Mo) and base metal (Zn-Pb-Ag-Cu) mineralisation in a magmatic-hydrothermal system—Morococha district, Peru

    Science.gov (United States)

    Catchpole, Honza; Kouzmanov, Kalin; Bendezú, Aldo; Ovtcharova, Maria; Spikings, Richard; Stein, Holly; Fontboté, Lluís

    2015-12-01

    The Morococha district in central Peru is characterised by economically important Cordilleran polymetallic (Zn-Pb-Ag-Cu) vein and replacement bodies and the large Toromocho porphyry Cu-Mo deposit in its centre. U-Pb, Re-Os, and 40Ar/39Ar geochronology data for various porphyry-related hydrothermal mineralisation styles record a 3.5-Ma multi-stage history of magmatic-hydrothermal activity in the district. In the late Miocene, three individual magmatic-hydrothermal centres were active: the Codiciada, Toromocho, and Ticlio centres, each separated in time and space. The Codiciada centre is the oldest magmatic-hydrothermal system in the district and consists of a composite porphyry stock associated with anhydrous skarn and quartz-molybdenite veins. The hydrothermal events are recorded by a titanite U-Pb age at 9.3 ± 0.2 Ma and a molybdenite Re-Os age at 9.26 ± 0.03 Ma. These ages are indistinguishable from zircon U-Pb ages for porphyry intrusions of the composite stock and indicate a time span of 0.2 Ma for magmatic-hydrothermal activity. The small Ticlio magmatic-hydrothermal centre in the west of the district has a maximum duration of 0.3 Ma, ranging from porphyry emplacement to porphyry mineralisation at 8.04 ± 0.14 Ma (40Ar/39Ar muscovite cooling age). The Toromocho magmatic-hydrothermal centre has a minimum of five recorded porphyry intrusions that span a total of 1.3 Ma and is responsible for the formation of the giant Toromocho Cu-Mo deposit. At least two hydrothermal pulses are identified. Post-dating a first pulse of molybdenite mineralisation, wide-spread hydrous skarn covers an area of over 6 km2 and is recorded by five 40Ar/39Ar cooling ages at 7.2-6.8 Ma. These ages mark the end of the slowly cooling and long-lived Toromocho magmatic-hydrothermal centre soon after last magmatic activity at 7.26 ± 0.02 Ma. District-wide (50 km2) Cordilleran base metal vein and replacement bodies post-date the youngest recorded porphyry mineralisation event at Toromocho

  4. Magmatic-hydrothermal fluid evolution of the Dalli porphyry Cu-Au deposit; using Amphibole and Plagioclas mineral chemistry

    Directory of Open Access Journals (Sweden)

    Houshang Pourkaseb

    2017-07-01

    Full Text Available Introduction The formation of porphyry copper deposits is attributed to the shallow emplacement, and subsequent cooling of the hydrothermal system of porphyritic intrusive rocks (Titley and Bean, 1981. These deposits have usually been developed along the chain of subduction-related volcanic and calc-alkalin batholiths (Sillitoe, 2010. Nevertheless, it is now confirmed that porphyry copper systems can also form in collisional and post collisional settings (Zarasvandi et al., 2015b. Detailed studies on the geochemical features of ore-hosting porphyry Cu-Mo-Au intrusions indicate that they are generally adakitic, water and sulfur- riched, and oxidized (Wang et al., 2014. For example, high oxygen fugacity of magma has decisive role in transmission of copper and gold to the porphyry systems as revealed in (Wang et al., 2014. In this regard, the present work deals with the mineral chemistry of amphibole and plagioclase in the Dalli porphyry Cu-Au deposit. The data is used to achieve the physical and chemical conditions of magma and its impact on mineralization. Moreover, the results of previous studies on the hydrothermal system of the Dalli deposit such as Raman laser spectroscopy and fluid inclusion studies are included for determination of the evolution from magmatic to hydrothermal conditions. Materials and methods In order to correctly characterize the physical and chemical conditions affecting the trend of mineralization, 20 least altered and fractured samples of diorite and quartz-diorite intrusions were chosen from boreholes. Subsequently, 20 thin-polished sections were prepared in the Shahid Chamran University of Ahvaz. Finally, mineral chemistry of amphibole and plagioclase were determined using electron micro probe analyses (EMPA in the central lab of the Leoben University. Results Amphibole that is one of the the main rock-forming minerals can form in a wide variety of igneous and metamorphic rocks. Accordingly, amphibole chemistry can be

  5. Halogen Chemistry of Hydrothermal Micas: a Possible Geochemical Tool in Vectoring to Ore for Porphyry Copper-Gold Deposit

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2018-03-01

    Full Text Available Porphyry copper-gold deposit commonly exhibits an extensive alteration zone of hydrothermal micas particularly biotite and sericite. This study is aimed to analyze and utilize the chemistry of halogen fluorine and chlorine of biotite and sericite to be a possible tool in vectoring to ore for copper porphyry deposits. To achieve the objectives, several selected altered rock samples were taken crossing the Batu Hijau copper-gold mine from inner to outer of the deposit, and hydrothermal micas contained by the rocks were analyzed petrographically and chemically. Mineral chemistry was detected by electron microprobe analyzer, whilst biotite is petrographically classified as either magmatic or hydrothermal types. Sericite replacing plagioclase occurred as fine-grained mineral and predominantly associated with argillic-related alteration types. Biotites in the Batu Hijau deposit are classified as phlogopite with a relatively low mole fraction magnesium (XMg (~0.75 compared to the “typical” copper porphyry deposit (~0.82. The relationship between the XMg and halogen contents are generally consistent with “Fe-F and Mg-Cl avoidance rules”.  F content in biotite and sericite decrease systematically from inner part of the deposit which is represented by early biotite (potassic zone where the main copper-gold hosted, to the outer part of the deposit. However, chlorine in both biotite and sericite from each of the alteration zones shows a relative similar concentration, which suggests that it is not suitable to be used in identification of the alteration zones associated with strong copper-gold mineralization. H2O content of the biotite and sericite also exhibits a systematic increase outward which may also provide a possible geochemical vector to ore for the copper porphyry deposits. This is well correlated with fluorine content of biotite in rocks and bulk concentration of copper from the corresponding rocks.

  6. Halogen Chemistry of Hydrothermal Micas: a Possible Geochemical Tool in Vectoring to Ore for Porphyry Copper-Gold Deposit

    OpenAIRE

    Arifudin Idrus

    2018-01-01

    Porphyry copper-gold deposit commonly exhibits an extensive alteration zone of hydrothermal micas particularly biotite and sericite. This study is aimed to analyze and utilize the chemistry of halogen fluorine and chlorine of biotite and sericite to be a possible tool in vectoring to ore for copper porphyry deposits. To achieve the objectives, several selected altered rock samples were taken crossing the Batu Hijau copper-gold mine from inner to outer of the deposit, and hydrothermal micas co...

  7. Zircon U-Pb dating of Maherabad porphyry copper-gold prospect area: evidence for a late Eocene porphyry-related metallogenic epoch in east of Iran

    Directory of Open Access Journals (Sweden)

    Azadeh Malekzadeh Shafaroudi

    2011-04-01

    Full Text Available Eastern Iran has great potential for porphyry copper deposits, as a result of its past subduction zone tectonic setting that lead to extensive alkaline to calc-alkaline magmatic activity in Tertiary time. Maherabad is the first porphyry Cu-Au prospecting area which is discovered in eastern Iran. This is related to a succession o f monzonitic to dioritic porphyries stocks that were emplaced within volcanic rocks. Monzonitic porphyries have basic role in mineralization. Hydrothermal alteration zones are well developed including potassic, sericitic-potassic, quartz-sericite-carbonate-pyrite, quartz-carbonate-pyrite, silicified-propylitic, propylitic, carbonate and silicified zones. Mineralization occurs as Disseminated, stockwork and hydrothermal breccia. Based on early stage of exploration, Cu is between 179- 6830 ppm (ave. 3200 ppm and Au is up to 1000 ppb (ave. 570 ppb. This prospect is gold- rich porphyry copper deposit. Laser-ablation U-Pb dating of two samples from ore-related intrusive rocks indicate that these two monzonitic porphyries crystallized at 39.0 ± 0.8 Ma to 38.2 ± 0.8 Ma, within a short time span of less than ca. 1 Ma during the middle Eocene. This provides the first precise ages for metallogenic episode of porphyry-type mineralization. Also, the initial 87Sr/86Sr and (143Nd/144Ndi was recalculated to an age of 39 Ma. Initial 87Sr/86Sr ratios for monzonitic rocks are 0.7047-0.7048. The (143Nd/144Ndi isotope composition are 0.512694-0.512713. Initial ε Nd isotope values 1.45-1.81. Based on isotopic data the magma had originated beyond the continental crust. The study will be used for tectonic-magmatic setting and evolution of eastern Iran. Keywords: Lut block, Middle Eocene, Zircon, Geochronology, Laser ablation ICP-MS,

  8. Fluid Evolution of the Magmatic Hydrothermal Porphyry Copper Deposit Based on Fluid Inclusion and Stable Isotope Studies at Darrehzar, Iran

    OpenAIRE

    Alizadeh Sevari, B.; Hezarkhani, A.

    2014-01-01

    The Darrehzar porphyry Cu-Mo deposit is located in southwestern Iran (~70 km southwest of Kerman City). The porphyries occur as Tertiary quartz-monzonite stocks and dikes, ranging in composition from microdiorite to diorite and granodiorite. Hydrothermal alteration and mineralization at Darrehzar are centered on the stock and were broadly synchronous with its emplacement. Early hydrothermal alteration was dominantly potassic and propylitic and was followed by later phyllic and argillic altera...

  9. Hydrothermal Fluid evolution in the Dalli porphyry Cu-Au Deposit: Fluid Inclusion microthermometry studies

    Directory of Open Access Journals (Sweden)

    Alireza Zarasvandi

    2015-10-01

    results, the Dalli fluid inclusions can be divided into two distinct groups: (1 medium-high temperature, hypersaline (Types IIIA, IIIB and IIIAB and (2 low-medium temperature, low salinity group (Types IIA and IIB. Type IIB inclusions, which homogenize to the vapor phase and have a relatively low cooling rate, provide a fairly good estimate of entrapment pressure (Roedder and Bodnar, 1980. Based on the pressure estimated for the Dalli deposit, mineralization likely occurred at depth of 0.6-1.1 km. The calculated depth is coincident with the estimated mineralization depths of the porphyry deposits in the world (Pirajno, 2009. Fluid inclusions with a wide range of vapor and liquid ratios are abundant in all of the Dalli samples. This represents heterogeneous trapping of liquid and vapor. The coexistence of inclusions with different volumes of vapor contents, which homogenize either to liquid (Th(L-V or vapor (Th(V-L, are interpreted as an evidence for the prevailing wide range of physico-chemical conditions during the cooling history of ore-forming fluid at the Dalliporphyry Cu-Au deposit. The boiling process is documented by the abundance of heterogeneously trapped fluid inclusions with extremely variable liquid to vapor ratios (Ahmad and Rose, 1980. Acknowledgements We thank of ShahidChamran University of Ahvaz for their support and moreover, Lorestan University for microthermometric studies. References Ahmad, S.N. and Rose, A.W., 1980. Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico. Economic Geology, 75(3: 229–250. Pirajno, F., 2009. Hydrothermal processes and mineral systems. Geological Survey of Western Australia. Springer, 1250 pp. Roedder, E. and Bodnar R.J., 1980. Geologic pressure determinations from fluid inclusion studies, Annu. Review Earth Planet, 8(6: 263–301. Shahabpour, J., 1999. The role of deep structures in the distri¬bution of some major ore deposits in Iran, NE of the Zagros thrust zone. Journal of Geodynamics, 28(3: 237

  10. Magmatic-hydrothermal fluids and volatile metals in the Spirit Lake pluton and Margaret Cu-Mo porphyry system, SW Washington, USA

    Science.gov (United States)

    Iveson, Alexander A.; Webster, James D.; Rowe, Michael C.; Neill, Owen K.

    2016-03-01

    late-stage pervasive metasomatism by halogen-bearing exsolved fluid(s) is provided by the high Mg# (>70) secondary amphiboles and biotites from within the Spirit Lake pluton, where the amphiboles are clear replacement products of primary pyroxenes. Fluid halogen fugacity ratios calculated from the biotite compositions overlap with other global mineralised porphyry systems, despite not being immediately associated with sulphide ores. The evidence suggests complex fluid processes and the coincidental development of the mineralised porphyry system within the pluton. Heat, fluids, and metals were therefore likely supplied by a later phase of magmatism, unrelated to the consolidation of the main Spirit Lake granitoid. These new constraints on magmatic-hydrothermal fluid signatures have wider applicability to potentially tracing proximal barren and mineralised processes, and for distinguishing between formation mechanisms for primary and secondary halogen-bearing minerals.

  11. Tempo of magma degassing and the genesis of porphyry copper deposits.

    Science.gov (United States)

    Chelle-Michou, Cyril; Rottier, Bertrand; Caricchi, Luca; Simpson, Guy

    2017-01-12

    Porphyry deposits are copper-rich orebodies formed by precipitation of metal sulphides from hydrothermal fluids released from magmatic intrusions that cooled at depth within the Earth's crust. Finding new porphyry deposits is essential because they are our largest source of copper and they also contain other strategic metals including gold and molybdenum. However, the discovery of giant porphyry deposits is hindered by a lack of understanding of the factors governing their size. Here, we use thermal modelling and statistical simulations to quantify the tempo and the chemistry of fluids released from cooling magmatic systems. We confirm that typical arc magmas produce fluids similar in composition to those that form porphyry deposits and conclude that the volume and duration of magmatic activity exert a first order control on the endowment (total mass of deposited copper) of economic porphyry copper deposits. Therefore, initial magma enrichment in copper and sulphur, although adding to the metallogenic potential, is not necessary to form a giant deposit. Our results link the respective durations of magmatic and hydrothermal activity from well-known large to supergiant deposits to their metal endowment. This novel approach can readily be implemented as an additional exploration tool that can help assess the economic potential of magmatic-hydrothermal systems.

  12. Comparison of hydrothermal alteration patterns associated with porphyry Cu deposits hosted by granitoids and intermediate-mafic volcanic rocks, Kerman Magmatic Arc, Iran: Application of geological, mineralogical and remote sensing data

    Science.gov (United States)

    Yousefi, Seyyed Jabber; Ranjbar, Hojjatollah; Alirezaei, Saeed; Dargahi, Sara; Lentz, David R.

    2018-06-01

    The southern section of the Cenozoic Urumieh-Dokhtar Magmatic Arc (UDMA) of Iran, known as Kerman Magmatic Arc (KMA) or Kerman copper belt, is a major host to porphyry Cu ± Mo ± Au deposits, collectively known as PCDs. In this study, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and spectral angle mapper (SAM) method, combined with field data, mineralogical studies, and spectral analysis are used to determine hydrothermal alteration patterns related to PCDs in the KMA. Gossans developed over some of these porphyry type deposits were mapped using Landsat 8 data. In the NKMA gossans are more developed than in the SKMA due to comparatively lower rate of erosion. The hydrothermal alteration pattern mapped by ASTER data were evaluated using mineralogical and spectral data. ASTER data proved to be useful for mapping the hydrothermal alteration in this semi-arid type of climate. Also Landsat 8 was useful for mapping the iron oxide minerals in the gossans that are associated with the porphyry copper deposits. Our multidisciplinary approach indicates that unlike the PCDs in the northern KMA that are associated with distinct and widespread propylitic alteration, those in the granitoid country rocks lack propylitic alteration or the alteration is only weakly and irregularly developed. The porphyry systems in southern KMA are further distinguished by development of quartz-rich phyllic alteration zones in the outer parts of the PCDs that could be mapped using remote sensing data. Consideration of variations in alteration patterns and specific alteration assemblages are critical in regional exploration for PCDs.

  13. Japan-U. S. seminar on magmatic contributions to hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Muffler, L. (U. S. Geological Survey, CA (United States)); Hedenquist, J. (Geological Survey of Japan, Tsukuba (Japan)); Kesler, S. (University of Michigan, MI (United States)); Izawa, E. (Kyushu University, Fukuoka (Japan). Faculty of Engineering)

    1992-08-31

    A multidisciplinary Seminar on Magmatic Contributions to Hydrothermal Systems'' was held at Ebino and Kagoshima at Kyushu, November, 1991. The principal purpose of the Ebino/Kagoshima Seminar was to bring together a small group of individuals which have been conducting active research on magmatic contributions to hydrothermal systems. The Seminar focussed on the porphyry and epithermal ore environments because of the potential to relate these environments to active volcanic and geothermal systems. Disciplines included valcanology, volcanic gas geochemistry, water geochemistry, isotope geochemistry, geochemical modeling, experimental geochemistry, igneous petrology, geothermal geology, economic geology, fluid-inclusion study, geophysics, and physical modeling. This paper summarizes the outline and significance of the Seminar. It was pointed out that understanding magmatic contributions to hydrothermal systems would require augmented experimental investigations, numerical modeling, field studies, and drilling.

  14. Geochemical behavior of rare earth elements of the hydrothermal alterations within the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    Science.gov (United States)

    Doner, Zeynep; Abdelnasser, Amr; Kiran Yildirim, Demet; Kumral, Mustafa

    2016-04-01

    This work reports the geochemical characteristics and behavior of the rare earth elements (REE) of the hydrothermal alteration of the Tepeoba porphyry Cu-Mo-Au deposit located in the Anatolian tectonic belt at Biga peninsula (Locally Balikesir province), NW Turkey. The Cu-Mo-Au mineralization at this deposit hosted in the hornfels rocks and related to the silicic to intermediate intrusion of Eybek pluton. It locally formed with brecciated zones and quartz vein stockworks, as well as the brittle fracture zones associated with intense hydrothermal alteration. Three main alteration zones with gradual boundaries formed in the mine area in the hornfels rock that represents the host rock, along that contact the Eybek pluton; potassic, propylitic and phyllic alteration zones. The potassic alteration zone that formed at the center having high amount of Cu-sulfide minerals contains biotite, muscovite, and sericite with less amount of K-feldspar and associated with tourmalinization alteration. The propylitic alteration surrounds the potassic alteration having high amount of Mo and Au and contains chlorite, albite, epidote, calcite and pyrite. The phyllic alteration zone also surrounds the potassic alteration containing quartz, sericite and pyrite minerals. Based on the REE characteristics and content and when we correlate the Alteration index (AI) with the light REEs and heavy REEs of each alteration zone, it concluded that the light REEs decrease and heavy REEs increase during the alteration processes. The relationships between K2O index with Eu/Eu* and Sr/Sr* reveals a positive correlation in the potassic and phyllic alteration zones and a negative correlation in the propylitic alteration zone. This refers to the hydrothermal solution which is responsible for the studied porphyry deposits and associated potassic and phyllic alterations has a positive Eu and Sr anomaly as well as these elements were added to the altered rock from the hydrothermal solution. Keywords: Rare

  15. The nature of hydrothermal fluids in the Kahang porphyry copper deposit (Northeast of Isfahan based on mineralography, fluid inclusion and stable isotopic data

    Directory of Open Access Journals (Sweden)

    Salimeh Sadat Komeili

    2017-02-01

    hypogene sulfide mineral and chalcopyrite is the predominant Cu- sulfide in the Kahang mineralized area. Primary magnetite grains having irregular boundaries formed in association with phyllic –potassic altered zones (Afshooni et al., 2014. Chalcocite and covellite as secondary copper minerals in the enriched supergene zone replaced the chalcopyrite. Thermometric studies on fluid inclusions conducted on quartz veins was related to the phyllic zone. Almost all studied fluid inclusions were homogenized to the liquid phase. Hydrothermal solutions with salinity over 26% wt equivalent NaCl, comparable with those of the other porphyry deposits (Morales Ruano et al., 2002; Hezarkhani, 2006; Hezarkhani, 2009 were responsible for the formation of the Kahang porphyry copper deposit. Homogenization temperatures of 200-450°C and 500-550°C were obtained from heating- cooling experiments on the two and multi phase fluid inclusions. The presence of gas riched fluid inclusions together with those of liquid riched and multiphase different salinities in the quartz veins as well as the occurrence of hydrothermal breccias are indicative of boiling fluids. Result In the Kahang porphyry Cu- deposit, the oxidation zone is characterized by hematite, goethite, jarosite, malachite, and azurite; the supergene zone is identified by chalcocite, chalcopyrite and coevllite; and chalcopyrite, pyrite and magnetite are the mineral assemblage of the hypogene zone. The volcanic as well as the plutonic rocks of the area have been hydrothermally altered which gave rise to the formation of propyllitic, intermediate argillic and mineralized phyllic zones. Fluid inclusion study on quartz veins revealed salinity over 26% wt equivalent NaCl and homogenization temperature of 200-450°C and 500-550°C. The presence of gas riched fluid inclusions together with those of liquid riched and multiphase different salinities in the quartz veins as well as the occurrence of hydrothermal breccias are indicative of boiling

  16. Petrography and Mineral Chemistry of Magmatic and Hydrothermal Biotite in Porphyry Copper-Gold Deposits: A Tool for Understanding Mineralizing Fluid Compositional Changes During Alteration Processes

    OpenAIRE

    Arifudin Idrus

    2018-01-01

    DOI: 10.17014/ijog.5.1.47-64This study aims to understand the petrography and chemistry of both magmatic and hydrothermal biotites in porphyry copper-gold deposits, and to evaluate the fluid compositional changes during alteration processes. A total of 206 biotite grains from selected rock samples taken from the Batu Hijau porphyry Cu-Au deposit was analyzed. Detailed petrography and biotite chemistry analysis were performed on thin sections and polished thin sections, respectively, represent...

  17. Geochemical element mobility during the hydrothermal alteration in the Tepeoba porphyry Cu-Mo-Au deposits at Balikesir, NW Turkey

    Science.gov (United States)

    Abdelnasser, Amr; Kiran Yildirim, Demet; Doner, Zeynep; Kumral, Mustafa

    2016-04-01

    The Tepeoba porphyry Cu-Mo-Au deposit represents one of the important copper source and mineral deposits in the Anatolian tectonic belt at Balikesir province, NW Turkey. It considered as a vein-type deposit locally associated with intense hydrothermal alteration within the brecciation, quartz stockwork veining, and brittle fracture zones in the main host rock that represented by hornfels, as well as generally related to the shallow intermediate to silicic intrusive Eybek pluton. Based on the field and geologic relationships and types of ore mineral assemblages and the accompanied alteration types, there are two mineralization zones; hypogene (primary) and oxidation/supergene zones are observed associated with three alteration zones; potassic, phyllic, and propylitic zones related to this porphyry deposit. The phyllic and propylitic alterations locally surrounded the potassic alteration. The ore minerals related to the hypogene zone represented by mostly chalcopyrite, Molybdenite, and pyrite with subordinate amount of marcasite, enargite, and gold. On the other hand they include mainly cuprite with chalcopyrite, pyrite and gold as well as hematite and goethite at the oxidation/supergene zone. This study deals with the quantitative calculations of the mass/volume changes (gains and losses) of the major and trace elements during the different episodes of alteration in this porphyry deposit. These mass balance data reveal that the potassic alteration zone that the main Cu- and Mo-enriched zone, has enrichment of K, Si, Fe, and Mg, and depletion of Na referring to replacement of plagioclase and amphibole by K-feldspar, sericite and biotite. While the propylitic alteration that is the main Mo- and Au-enriched zone is accompanied with K and Na depletion with enrichment of Si, Fe, Mg, and Ca forming chlorite, epidote, carbonate and pyrite. On the other hand the phyllic alteration that occurred in the outer part around the potassic alteration, characterized by less amount

  18. Hydrothermal alteration and mass exchange in the hornblende latite porphyry, Rico, Colorado

    Science.gov (United States)

    Larson, P.B.; Cunningham, C.G.; Naeser, C.W.

    1994-01-01

    The Rico paleothermal anomaly, southwestern Colorado, records the effects of a large hydrothermal system that was active at 4 Ma. This hydrothermal system produced the deep Silver Creek stockwork Mo deposit, which formed above the anomaly's heat source, and shallower base and precious-metal vein and replacement deposits. A 65 Ma hornblende latite porphyry is present as widespread sills throughout the area and provided a homogenous material that recorded the effects of the hydrothermal system up to 8 km from the center. Hydrothermal alteration in the latite can be divided into a proximal facies which consists of two assemblages, quartz-illite-calcite and chlorite-epidote, and a distal facies which consists of a distinct propylitic assemblage. Temperatures were gradational vertically and laterally in the anomaly, and decreased away from the centra heat source. A convective hydrothermal plume, 3 km wide and at least 2 km high, was present above the stock-work molybdenum deposit and consisted of upwelling, high-temperature fluids that produced the proximal alteration facies. Distal facies alteration was produced by shallower cooler fluids. The most important shallow base and precious-metal vein deposits in the Rico district are at or close to the boundary of the thermal plume. Latite within the plume had a large loss of Na2O, large addition of CaO, and variable SiO2 exchante. Distal propylitized latite samples lost small amounts of Na2O and CaO and exchanged minor variable amounts of SiO2. The edge of the plume is marked by steep Na2O exchange gradients. Na2O exchange throughout the paleothermal anomaly was controlled by the reaction of the albite components in primary plagioclase and alkali feldspars. Initial feldspar alteration in the distal facies was dominated by reaction of the plagioclase, and the initial molar ratio of reactants (alkali feldspar albite component to plagioclase albite component) was 0.35. This ratio of the moles of plagioclase to alkali feldspar

  19. Micas at magmatic and hydrothermal stages in the environment of the Cerro Verde Santa Rosa porphyry copper type deposit

    Energy Technology Data Exchange (ETDEWEB)

    Le Bel, L

    1979-01-01

    The chemical composition of biotites and sericites from the Cerro Verde porphyry copper type deposit have been investigated in detail, using an electron microprobe. The main results of the study are: Al/sup vi/ and Ti contents of biotites of magmatic as well as hydrothermal origin may be related to the temperature of crystallization estimed by independent methods. On the other hand the Mg/Fe and Mg/(Mg + Fe) ratios are almost constant. This fact is interpreted in terms of fO/sub 2/; sericites have a phengitic composition in which the solubilities of the two end-members celadonite and paragonite are controlled by a fluid phase under P, T conditions that could be estimated.

  20. Melt recharge, f O2-T conditions, and metal fertility of felsic magmas: zircon trace element chemistry of Cu-Au porphyries in the Sanjiang orogenic belt, southwest China

    Science.gov (United States)

    Meng, Xuyang; Mao, Jingwen; Zhang, Changqing; Zhang, Dongyang; Liu, Huan

    2018-06-01

    The magmatic hydrothermal Pulang Cu deposit (Triassic) and the Beiya Au-Cu deposits (Eocene) are located in the Sanjiang copper porphyry belt, southwest China. Zircon chemistry was used to constrain the magmatic evolution and oxidation state of the porphyries. The results show that porphyries of the Beiya district formed from an early oxidized melt and a later relatively reduced and more evolved magma, whereas Pulang experienced a normal Cu porphyry evolutionary trend. The Pulang porphyries crystallized from more oxidized magma (ΔFMQ + 2.9-4.6, average = 4.0 ± 1.0, n = 3) with an average temperature of 709 ± 6 °C compared to the Beiya porphyries (ΔFMQ + 0.6-3.5, average = 1.9 ± 1.3, n = 5) with a mean magmatic temperature of 780 ± 22 °C. These data, combined with data from other Cu- and Au-rich porphyries in the Sanjiang belt (i.e., Machangjing Cu, Yao'an Au), are consistent with previous experimental work showing that elevated Cu and Au solubilities in magma require oxidizing conditions. A compilation of existing geochemical data for magmatic zircons from fertile and barren porphyry systems worldwide establishes an optimal diagnostic interval on CeIV/CeIII-TTi-in-zircon and (Eu/Eu*)N plots for generating magmatic hydrothermal Cu-Au deposits.

  1. Geology and ore fluid geochemistry of the Jinduicheng porphyry molybdenum deposit, East Qinling, China

    Science.gov (United States)

    Li, Hongying; Ye, Huishou; Wang, Xiaoxia; Yang, Lei; Wang, Xiuyuan

    2014-01-01

    Jinduicheng deposit is a giant Mesozoic porphyry Mo system deposit in the East Qinling molybdenum belt, Shaanxi Province, China. The mineralization is associated with the I-type Jinduicheng granite porphyry. Both the porphyry stock and country rocks underwent intense hydrothermal alteration. The alteration, with increasing distance from the parent intrusion, changes from silicification, through potassic and phyllic assemblages, carbonation, to propylitic assemblages. Molybdenite, the dominant ore mineral, occurs in veinlets, most of which are hosted by the altered country rocks, with less than 25% of the ore in the porphyry body. The hydrothermal system comprises four stages, including pre-ore quartz and K-feldspar; two ore stages of quartz, K-feldspar, molybdenite, and Pb- And Zn-bearing sulfides; and post-ore quartz and carbonate. Six main types of primary fluid inclusions are present in hydrothermal quartz, including two-phase aqueous, one-phase aqueous, three-phase CO2-bearing, CO2-dominated fluid inclusions, gas inclusions, and melt inclusions. The homogenization temperatures of fluid inclusions range from 210 to 290 °C in the pre-ore stage, 150-310 °C in ore stage I, 150-360 °C in the ore stage II, and 195-325 °C in the post-ore stage quartz. Estimated salinities of the ore-forming fluids range from 6.9 to 13.5, 4.3 to 12.3, 6.2 to 12.4, and 3.4 to 9.9 wt.% NaCl equiv. in stages 1-4, respectively. The δ34S values of pyrite in the two ore stages range from 2.8‰ to 4.3‰, whereas the δ34S values of molybdenite range from 2.9‰ to 6.2‰. The data suggest both magmatic and crustal sources of sulfur. The δD and δ18O values for the hydrothermal fluids are -57.2‰ to -84.4‰ and 8.0‰ to -3.2‰, respectively. The fluid inclusion and stable data indicate that the pre-ore hydrothermal fluids were mostly of magmatic origin, but the fluids responsible for ore deposition were mixed magmatic and meteoric, and eventually meteoric water dominated the system

  2. Lithological and Hydrothermal Alteration Mapping of Epithermal, Porphyry and Tourmaline Breccia Districts in the Argentine Andes Using ASTER Imagery

    Directory of Open Access Journals (Sweden)

    Francisco J. Testa

    2018-01-01

    Full Text Available The area of interest is located on the eastern flank of the Andean Cordillera, San Juan province, Argentina. The 3600 km2 area is characterized by Siluro-Devonian to Neogene sedimentary and igneous rocks and unconsolidated Quaternary sediments. Epithermal, porphyry-related, and magmatic-hydrothermal breccia-hosted ore deposits, common in this part of the Frontal Cordillera, are associated with various types of hydrothermal alteration assemblages. Kaolinite – alunite-rich argillic, quartz – illite-rich phyllic, epidote – chlorite – calcite-rich propylitic and silicic are the most common hydrothermal alteration assemblages in the study area. VNIR, SWIR and TIR ASTER data were used to characterize geological features on a portion of the Frontal Cordillera. Red-green-blue band combinations, band ratios, logical operations, mineral indices and principal component analysis were applied to successfully identify rock types and hydrothermal alteration zones in the study area. These techniques were used to enhance geological features to contrast different lithologies and zones with high concentrations of argillic, phyllic, propylitic alteration mineral assemblages and silicic altered rocks. Alteration minerals detected with portable short-wave infrared spectrometry in hand specimens confirmed the capability of ASTER to identify hydrothermal alteration assemblages. The results from field control areas confirmed the presence of those minerals in the areas classified by ASTER processing techniques and allowed mapping the same mineralogy where pixels had similar information. The current study proved ASTER processing techniques to be valuable mapping tools for geological reconnaissance of a large area of the Argentinean Frontal Cordillera, providing preliminary lithologic and hydrothermal alteration maps that are accurate as well as cost and time effective.

  3. Hydrothermal alteration mapping using ASTER data in Baogutu porphyry deposit, China

    International Nuclear Information System (INIS)

    Li, Q; Zhang, B; Lu, L; Lin, Q

    2014-01-01

    Remote sensing plays an important role in mineral exploration. One of its proven applications is extracting host-rock lithology and alteration zones that are related to porphyry copper deposits. An Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to map the Baogutu porphyry deposit alteration area. A circular alteration mineral zoning pattern was clearly observed in the classification result of potassic, phyllic, argillic, propylitic zones. The potassic is characterized by biotite and anhydrite with an absorption feature centered at 1.94 and 2.1um. The phyllic zone is characterized by illite and sericite that indicates an intense Al-OH absorption feature centered at 2.20um. The narrower argillic zone including kaolinite and alunite displays a secondary Al-OH absorption feature at 2.17 um. The mineral assemblages of the outer propylitic zone are epidote, chlorite and calcite that exhibit absorption features at 2.335um.The performance of Principal Component Analysis(PCA), Minimum Noise Fraction (MNF), band ratio(BR) and Constrained Energy Minimization(CEM) has been evaluated. These techniques identified new prospects of porphyry copper mineralization in the study areas. These results indicate that ASTER is a powerful tool in the initial steps of mineral exploration

  4. Hydrothermal alteration mapping using ASTER data in Baogutu porphyry deposit, China

    Science.gov (United States)

    Li, Q.; Zhang, B.; Lu, L.; Lin, Q.

    2014-03-01

    Remote sensing plays an important role in mineral exploration. One of its proven applications is extracting host-rock lithology and alteration zones that are related to porphyry copper deposits. An Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) was used to map the Baogutu porphyry deposit alteration area. A circular alteration mineral zoning pattern was clearly observed in the classification result of potassic, phyllic, argillic, propylitic zones. The potassic is characterized by biotite and anhydrite with an absorption feature centered at 1.94 and 2.1um. The phyllic zone is characterized by illite and sericite that indicates an intense Al-OH absorption feature centered at 2.20um. The narrower argillic zone including kaolinite and alunite displays a secondary Al-OH absorption feature at 2.17 um. The mineral assemblages of the outer propylitic zone are epidote, chlorite and calcite that exhibit absorption features at 2.335um.The performance of Principal Component Analysis(PCA), Minimum Noise Fraction (MNF), band ratio(BR) and Constrained Energy Minimization(CEM) has been evaluated. These techniques identified new prospects of porphyry copper mineralization in the study areas. These results indicate that ASTER is a powerful tool in the initial steps of mineral exploration.

  5. Gold in primary high thermal transformations of the Au porphyry deposit Biely vrch

    International Nuclear Information System (INIS)

    Kozak, J.; Kodera, P.; Lexa, J.; Chovan, M.

    2014-01-01

    Porphyry gold deposit Biely vrch is situated in northern part of the Javorie stratovolcano in eastern part of Central Slovakia Volcanic Field. Intrusion of diorite to andesite porphyry with andesites is affected by hydrothermal alterations with dominant intermediate argillic alteration. Accumulations of gold are spatially associated with stockwork, formed by different types of quartz veinlets. Gold grains occur in altered rocks in the vicinity of quartz veinlets and rarely also as inclusions in vein. Analysed gold grains are chemically very homogenous and have fineness between 87 to 99.50 wt % Au while silver is the only significant element in addition to gold. In deeper parts of the deposit gold also occurs associated with K and Ca-Na silicate alteration which confirms precipitation of gold already in early stages of the hydrothermal system from high salinity Fe-K rich salt melt based on analyses of corresponding fluid inclusions. Difference in the fineness of gold is not significant between primary and secondary hydrothermal alterations. The highest fineness of gold (more than 99 wt %) in advanced argillic alteration is probably caused by remobilisation by acidic hydrothermal fluids. (authors)

  6. The mass balance calculation of hydrothermal alteration in Sarcheshmeh porphyry copper deposit

    Directory of Open Access Journals (Sweden)

    Mohammad Maanijou

    2013-10-01

    Full Text Available Sarcheshmeh porphyry copper deposit is located 65 km southwest of Rafsanjan in Kerman province. The Sarcheshmeh deposit belongs to the southeastern part of Urumieh-Dokhtar magmatic assemblage (i.e., Dehaj-Sarduyeh zone. Intrusion of Sarcheshmeh granodiorite stock in faulted and thrusted early-Tertiary volcano-sedimentary deposits, led to mineralization in Miocene. In this research, the mass changes and element mobilities during hydrothermal process of potassic alteration were studied relative to fresh rock from the deeper parts of the plutonic body, phyllic relative to potassic, argillic relative to phyllic and propylitic alteration relative to fresh andesites surrounding the deposit. In the potassic zone, enrichment in Fe2O3 and K2O is so clear, because of increasing Fe coming from biotite alteration and presence of K-feldspar, respectively. Copper and molybdenum enrichments resulted from presence of chalcopyrite, bornite and molybdenite mineralization in this zone. Enrichment of SiO2 and depletion of CaO, MgO, Na2O and K2O in the phyllic zone resulted from leaching of sodium, calcium and magnesium from the aluminosilicate rocks and alteration of K-feldspar to sericite and quartz. In the argillic zone, Al2O3, CaO, MgO, Na2O and MnO have also been enriched in which increasing Al2O3 may be from kaolinite and illite formation. Also, enrichment in SiO2, Al2O3 and CaO in propylitic alteration zone can be attributed to the formation of chlorite, epidote and calcite as indicative minerals of this zone.

  7. Alteration zone Mapping in the Meiduk and Sar Cheshmeh Porphyry Copper Mining Districts of Iran using Advanced Land Imager (ALI Satellite Data

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2015-10-01

    Full Text Available This study evaluates the capability of Earth Observing-1 (EO1 Advanced Land Imager (ALI data for hydrothermal alteration mapping in the Meiduk and Sar Cheshmeh porphyry copper mining districts, SE Iran. Feature-oriented principal components selection, 4/2, 8/9, 5/4 band ratioing were applied to ALI data for enhancing the hydrothermally altered rocks associated with porphyry copper mineralization, lithological units and vegetation. Mixture-tuned matched-filtering (MTMF was tested to discriminate the hydrothermal alteration areas of porphyry copper mineralization from surrounding environment using the shortwave infrared bands of ALI. Results indicate that the tested methods are able to yield spectral information for identifying vegetation, iron oxide/hydroxide and clay minerals, lithological units and the discrimination of hydrothermally altered rocks from unaltered rocks using ALI data.

  8. Fluid inclusion characteristics and molybdenite Re-Os geochronology of the Qulong porphyry copper-molybdenum deposit, Tibet

    Science.gov (United States)

    Li, Yang; Selby, David; Feely, Martin; Costanzo, Alessandra; Li, Xian-Hua

    2017-02-01

    The Qulong porphyry copper and molybdenum deposit is located at the southwest margin of the Lhasa Terrane and in the eastern region of the Gangdese magmatic belt. It represents China's largest porphyry copper system, with ˜2200 million tonnes of ore comprising 0.5 % Cu and 0.03 % Mo. The mineralization is associated with Miocene granodiorite, monzogranite and quartz-diorite units, which intruded into Jurassic volcanic units in a post-collisional (Indian-Asian) tectonic setting. Field observations and core logging demonstrate the alteration and mineralization at Qulong are akin to typical porphyry copper systems in subduction settings, which comprise similar magmatic-hydrothermal, potassic, propylitic and phyllic alteration assemblages. Molybdenite Re-Os geochronology confirms the relative timeframe defined by field observations and core logging and indicates that the bulk copper and molybdenum at Qulong were deposited within 350,000 years: between 16.10 ± 0.06 [0.08] (without and with decay constant uncertainty) and 15.88 ± 0.06 [0.08] Ma. This duration for mineralization is in direct contrast to a long-lived intrusive episode associated with mineralization based on previous zircon U-Pb data. Our fluid inclusion study indicates that the ore-forming fluid was oxidized and contained Na, K, Ca, Fe, Cu, Mo, Cl and S. The magmatic-hydrothermal transition occurred at ˜425 °C under lithostatic pressure, while potassic, propylitic and phyllic alteration occurred at hydrostatic pressure with temperature progressively decreasing from 425 to 280 °C. The fluid inclusion data presented here suggests that there has been ˜2.3 km of erosion at Qulong after its formation, and this erosion may be related to regional uplift of the Lhasa Terrane.

  9. Critical Factors Controlling Pd and Pt Potential in Porphyry Cu–Au Deposits: Evidence from the Balkan Peninsula

    Directory of Open Access Journals (Sweden)

    Demetrios G. Eliopoulos

    2014-03-01

    Full Text Available Porphyry Cu–Au–Pd±Pt deposits are significant Au resources, but their Pd and Pt potential is still unknown. Elevated Pd, Pt (hundreds of ppb and Au contents are associated with typical stockwork magnetite-bornite-chalcopyrite assemblages, at the central parts of certain porphyry deposits. Unexpected high grade Cu–(Pd+Pt (up to 6 ppm mineralization with high Pd/Pt ratios at the Elatsite porphyry deposit, which is found in a spatial association with the Chelopech epithermal deposit (Bulgaria and the Skouries porphyry deposit, may have formed during late stages of an evolved hydrothermal system. Estimated Pd, Pt and Au potential for porphyry deposits is consistent with literature model calculations demonstrating the capacity of aqueous vapor and brine to scavenge sufficient quantities of Pt and Pd, and could contribute to the global platinum-group element (PGE production. Critical requirements controlling potential of porphyry deposits may be from the metals contained in magma (metasomatized asthenospheric mantle wedge as indicated by significant Cr, Co, Ni and Re contents. The Cr content may be an indicator for the mantle input.

  10. The fossil hydrothermal system from Volta Grande, Lavras do Sul, RS. Part 2: Geochemical of chlorites

    International Nuclear Information System (INIS)

    Mexias, A.S.; Formoso, M.L.L.; Mattos, I.C.; Gomes, M.E.B.; Meunier, A.; Beaufort, D.

    1990-01-01

    Chlorites related to propylitic phyllic processes in Fossil Hydrothermal System of Volta Grande/RS, quite similar to porphyry copper type deposit, were studied. Electron probe analysis in chlorites and chemical total rock analysis made the study of macro and micro system possible. The geochemical study of the micro system enable to characterize the inactive and active flow regimes of hydrothermal process in propylitic and phyllic, respectively. Geo-thermometric data, at least qualitatively, indicate that the phyllic alteration is the same or slightly higher than propylitic alteration. The detailed study of the composition of chlorites in micro system permitted to know the diadochic replacement of elements, especially in chloritization of biotite, in which the mobility of Al 3+ (at least in mineral scale) is possible under constant volume and Ti 4+ . The rocks were analysed by absorption spectroscopy, X-ray fluorescence analysis and gravimetry. (author)

  11. Geochemistry and statistical analyses of porphyry system and epithermal veins at Hizehjan in northwestern Iran

    Directory of Open Access Journals (Sweden)

    Radmard Kaikhosrov

    2017-12-01

    Full Text Available Situated about 130 km northeast of Tabriz (northwest Iran, the Mazra’eh Shadi deposit is in the Arasbaran metallogenic belt (AAB. Intrusion of subvolcanic rocks, such as quartz monzodiorite-diorite porphyry, into Eocene volcanic and volcano-sedimentary units led to mineralisation and alteration. Mineralisation can be subdivided into a porphyry system and Au-bearing quartz veins within andesite and trachyandesite which is controlled by fault distribution. Rock samples from quartz veins show maximum values of Au (17100 ppb, Pb (21100 ppm, Ag (9.43ppm, Cu (611ppm and Zn (333 ppm. Au is strongly correlated with Ag, Zn and Pb. In the Au-bearing quartz veins, factor group 1 indicates a strong correlation between Au, Pb, Ag, Zn and W. Factor group 2 indicates a correlation between Cu, Te, Sb and Zn, while factor group 3 comprises Mo and As. Based on Spearman correlation coefficients, Sb and Te can be very good indicator minerals for Au, Ag and Pb epithermal mineralisation in the study area. The zoning pattern shows clearly that base metals, such as Cu, Pb, Zn and Mo, occur at the deepest levels, whereas Au and Ag are found at higher elevations than base metals in boreholes in northern Mazra’eh Shadi. This observation contrasts with the typical zoning pattern caused by boiling in epithermal veins. At Mazra’eh Shadi, quartz veins containing co-existing liquid-rich and vapour-rich inclusions, as strong evidence of boiling during hydrothermal evolution, have relatively high Au grades (up to 813 ppb. In the quartz veins, Au is strongly correlated with Ag, and these elements are in the same group with Fe and S. Mineralisation of Au and Ag is a result of pyrite precipitation, boiling of hydrothermal fluids and a pH decrease.

  12. Geologic and geochemical insights into the formation of the Taiyangshan porphyry copper–molybdenum deposit, Western Qinling Orogenic Belt, China

    Science.gov (United States)

    Kun-Feng Qiu,; Taylor, Ryan D.; Yao-Hui Song,; Hao-Cheng Yu,; Kai-Rui Song,; Nan Li,

    2016-01-01

    Taiyangshan is a poorly studied copper–molybdenum deposit located in the Triassic Western Qinling collisional belt of northwest China. The intrusions exposed in the vicinity of the Taiyangshan deposit record episodic magmatism over 20–30 million years. Pre-mineralization quartz diorite porphyries, which host some of the deposit, were emplaced at 226.6 ± 6.2 Ma. Syn-collisional monzonite and quartz monzonite porphyries, which also host mineralization, were emplaced at 218.0 ± 6.1 Ma and 215.0 ± 5.8 Ma, respectively. Mineralization occurred during the transition from a syn-collisional to a post-collisional setting at ca. 208 Ma. A barren post-mineralization granite porphyry marked the end of post-collisional magmatism at 200.7 ± 5.1 Ma. The ore-bearing monzonite and quartz monzonite porphyries have a εHf(t) range from − 2.0 to + 12.5, which is much more variable than that of the slightly older quartz diorite porphyries, with TDM2 of 1.15–1.23 Ga corresponding to the positive εHf(t) values and TDM1 of 0.62–0.90 Ga corresponding to the negative εHf(t) values. Molybdenite in the Taiyangshan deposit with 27.70 to 38.43 ppm Re suggests metal sourced from a mantle–crust mixture or from mafic and ultramafic rocks in the lower crust. The δ34S values obtained for pyrite, chalcopyrite, and molybdenite from the deposit range from + 1.3‰ to + 4.0‰, + 0.2‰ to + 1.1‰, and + 5.3‰ to + 5.9‰, respectively, suggesting a magmatic source for the sulfur. Calculated δ18Ofluid values for magmatic K-feldspar from porphyries (+ 13.3‰), hydrothermal K-feldspar from stockwork veins related to potassic alteration (+ 11.6‰), and hydrothermal sericite from quartz–pyrite veins (+ 8.6 to + 10.6‰) indicate the Taiyangshan deposit formed dominantly from magmatic water. Hydrogen isotope values for hydrothermal sericite ranging from − 85 to − 50‰ may indicate that magma degassing progressively depleted residual liquid in

  13. Chronology of magmatism and mineralization in the Kassandra mining area, Greece: The potentials and limitations of dating hydrothermal illites

    Science.gov (United States)

    Gilg, H. Albert; Frei, Robert

    1994-05-01

    Various geochronological methods ( U/Pb, Rb/Sr, and K/Ar) have been applied to constrain the timing of magmatism and polymetallic mineralization in the Kassandra mining district, northern Greece. These data provide the first geochronological evidence that porphyry copper mineralization, proximal copper skarns, and distal high-temperature carbonate-hosted Pb-Zn-Ag-Au replacement ores formed contemporaneously and probably within less than 2 million years. Polymetallic mineralization is temporally related to the emplacement of granodioritic to quartz dioritic porphyries (24-25 Ma) that postdate the largest post-tectonic intrusion of the area, the Stratoni granodiorite (27.9 ± 1.2 Ma). Andesite porphyry dikes, which crosscut the Pb-Zn-Ag-Au ores and associated alterations, represent the last magmatic phase in the area (19.1 ± 0.6 Ma) and did not contribute to metal concentration. The combination of K/Ar, Rb/Sr, and oxygen isotope studies of hydrothermal illite-rich clays and careful granulometric analysis constrains the reliability of these geochronological methods and emphasizes the importance of characterizing the post-formational history of the sample. We identify various processes which partly disturbed the K/Ar and Rb/Sr system of some clays, such as retrograde alteration by heated meteoric waters, superimposed supergene illitization, and resetting of both isotopic systems due to a hydrothermal overprint related to the intrusion of the andesite porphyry. Our data, however, suggest that diffusive Ar loss from the finest clay fractions ( 200°C), therefore, do not give reliable formation ages. The loss of Ar may be used to model the cooling history of the hydrothermal system applying the concept of closure temperatures ( DODSON, 1973). 40K- 40Ar rad isochrons of natural, coarser grained (> 0.6 μm) size fractions of illites from single samples, even when slightly contaminated with feldspars, may yield meaningful ages either of the formation or of a reheating event

  14. Petrography and Mineral Chemistry of Magmatic and Hydrothermal Biotite in Porphyry Copper-Gold Deposits: A Tool for Understanding Mineralizing Fluid Compositional Changes During Alteration Processes

    Directory of Open Access Journals (Sweden)

    Arifudin Idrus

    2018-01-01

    Full Text Available DOI: 10.17014/ijog.5.1.47-64This study aims to understand the petrography and chemistry of both magmatic and hydrothermal biotites in porphyry copper-gold deposits, and to evaluate the fluid compositional changes during alteration processes. A total of 206 biotite grains from selected rock samples taken from the Batu Hijau porphyry Cu-Au deposit was analyzed. Detailed petrography and biotite chemistry analysis were performed on thin sections and polished thin sections, respectively, representing various rocks and alteration types. A JEOL JXA-8900R electron microprobe analyzer (EMPA was used for the chemistry analysis. The biotite is texturally divided into magmatic and hydrothermal types. Ti, Fe, and F contents can be used to distinguish the two biotite types chemically. Some oxide and halogen contents of biotite from various rocks and alteration types demonstrate a systematic variation in chemical composition. Biotite halogen chemistry shows a systematic increase in log (XCl/XOH and decrease in log (XF/XOH values from biotite (potassic through chlorite-sericite (intermediate argillic to actinolite (inner propylitic zones. The y-intercepts on the log (XCl/XOH vs. XMg and log (XF/XOH vs. XFe plotted for biotite from potassic and intermediate argillic zones are similar or slightly different. In contrast, the y-intercepts on the log (XCl/XOH vs. XMg and log (XF/XOH vs. XFe plotted for biotite from inner propylitic zone display different values in comparison to the two alteration zones. Halogen (F,Cl fugacity ratios in biotite show a similar pattern: in the potassic and intermediate argillic zones they show little variation, whereas in the inner propylitic zone they are distinctly different. These features suggest the hydrothermal fluid composition remained fairly constant in the inner part of the deposit during the potassic and intermediate argillic alteration events, but changed significantly towards the outer part affected by inner propylitic

  15. Reconstructing Magmatic-Hydrothermal Systems via Geologic Mapping of the Tilted, Cross-sectional Exposures of the Yerington District, Nevada

    Science.gov (United States)

    Dilles, J. H.; Proffett, J. M.

    2011-12-01

    The Jurassic Yerington batholith was cut by Miocene to recent normal faults and tilted ~90° west (Proffett, 1977). Exposures range from the volcanic environment to ~6 km depth in the batholith. Magmatic-hydrothermal fluids derived from the Luhr Hill granite and associated porphyry dikes produced characteristic porphyry copper mineralization and rock alteration (K-silicate, sericitic, and advanced argillic) in near-vertical columnar zones above cupolas on the deep granite. In addition, saline brines derived from the early Mesozoic volcanic and sedimentary section intruded by the batholith were heated and circulated through the batholith producing voluminous sodic-calcic and propylitic alteration. The magnetite-copper ore body at Pumpkin Hollow is hosted in early Mesozoic sedimentary rocks in the contact aureole of the batholith, and appears to be an IOCG type deposit produced where the sedimentary brines exited the batholith. Although many advances in understanding of Yerington have been made by lab-based geochronology and geochemistry studies, the first order igneous and hydrothermal features were recognized first in the 1960s and 1970s and are best documented by geological mapping at a variety of scales ranging from 1:500 to 1:24,000. The Anaconda technique of mapping mine benches, trenches, and drill cores was perfected here (Einaudi, 1997), and other techniques were used for surface exposures. The geologic and hydrothermal alteration maps establish that hydrothermal alteration accompanied each of several porphyry dike intrusions, and affected more than 100 km3 of rock. Both zonation in alteration mineralogy and vein orientations allow reconstruction of source areas and >5 km-long flow-paths of hydrothermal fluids through the batholith and contact aureole.

  16. Arc-related porphyry molybdenum deposit model: Chapter D in Mineral deposit models for resource assessment

    Science.gov (United States)

    Taylor, Ryan D.; Hammarstrom, Jane M.; Piatak, Nadine M.; Seal, Robert R.

    2012-01-01

    This report provides a descriptive model for arc-related porphyry molybdenum deposits. Presented within are geological, geochemical, and mineralogical characteristics that differentiate this deposit type from porphyry copper and alkali-feldspar rhyolite-granite porphyry molybdenum deposits. The U.S. Geological Survey's effort to update existing mineral deposit models spurred this research, which is intended to supplement previously published models for this deposit type that help guide mineral-resource and mineral-environmental assessments.

  17. Main copper-porphyry systems of the Lesser Caucasus

    International Nuclear Information System (INIS)

    Melkonyan, R.L.; Tayan, P.N.; Goukassyan, R.Kh.; Hovakimyan, S.E.; Moritz, R.; Selbi, D.

    2013-01-01

    Two belts of porphyry-copper systems were identified the Late Jurassic Early Cretaceous Somkheto-Karabakh (S-K) island-arc belt within the same name terrain of the southern termination of the Eurasian Plate stretching for 230 km (the tonalitic model) and the Early Miocene Tsaghkounk-Zanghezour (Ts-Z) post-collision belt (Tz-Z) within the same name terrain of the northern margin of the Gondwana, stretching over 280 km (the monzonite-granodiorite model). The formation of the S-K and Ts-Z belts had proceeded in pulses and spanned intervals of 12 million years and 24 million years, respectively. The Rb-Sr isochrones and TIMS U-Pb estimations of the age of zircons from the Meghri pluton ( 1,500 km 2 ), the largest one in the Lesser Caucasus, it appeared possible to establish the three stages of its formation: the Late Eocene, Early Oligocene, and Early Miocene, each accompanied by development of deposits having similar ages. The PC deposits of the S-K and Ts-Z belts have distinct differences of age, geodynamic regime of formation, specificity of mineral composition, sources of water and sulfur of hydrothermal solutions, and formation models. The single, discrete Armenian-Iranian belt of PC deposits was identified; it has a Late Eocene-Middle Miocene age and a length of about 2,000 km, being related with intrusive complexes of the monzonite-granite-granodiorite series, the activity of which had been manifesting itself over 32 million years. This belt, including giant-deposits such as Kajaran and Sar-Cheshmeh, was identified as the special Armenian-Iranian PC province

  18. Heat flux from magmatic hydrothermal systems related to availability of fluid recharge

    Science.gov (United States)

    Harvey, M. C.; Rowland, J.V.; Chiodini, G.; Rissmann, C.F.; Bloomberg, S.; Hernandez, P.A.; Mazot, A.; Viveiros, F.; Werner, Cynthia A.

    2015-01-01

    Magmatic hydrothermal systems are of increasing interest as a renewable energy source. Surface heat flux indicates system resource potential, and can be inferred from soil CO2 flux measurements and fumarole gas chemistry. Here we compile and reanalyze results from previous CO2 flux surveys worldwide to compare heat flux from a variety of magma-hydrothermal areas. We infer that availability of water to recharge magmatic hydrothermal systems is correlated with heat flux. Recharge availability is in turn governed by permeability, structure, lithology, rainfall, topography, and perhaps unsurprisingly, proximity to a large supply of water such as the ocean. The relationship between recharge and heat flux interpreted by this study is consistent with recent numerical modeling that relates hydrothermal system heat output to rainfall catchment area. This result highlights the importance of recharge as a consideration when evaluating hydrothermal systems for electricity generation, and the utility of CO2 flux as a resource evaluation tool.

  19. The Stypsi-Megala Therma porphyry-epithermal mineralization, Lesvos Island, Greece: new mineralogical and geochemical data

    Science.gov (United States)

    Periferakis, Argyrios; Voudouris, Panagiotis; Melfos, Vasilios; Mavrogonatos, Constantinos; Alfieris, Dimitrios

    2017-04-01

    Lesvos Island is located at the NE part of the Aegean Sea and mostly comprises post-collisional Miocene volcanic rocks of shoshonitic to calc-alkaline geochemical affinities. In the northern part of the Island, the Stypsi Cu-Mo±Au porphyry prospect, part of the Stypsi caldera, is hosted within hydrothermally altered intrusives and volcanics [1]. Porphyry-style mineralization is developed in a microgranite porphyry that has intruded basaltic trachyandesitic lavas. Propylitic alteration occurs distal to the mineralization, whereas sodic-calcic alteration related to quartz-actinolite veinlets, and a phyllic overprint associated with a dense stockwork of banded black quartz±carbonate veinlets, characterizes the core of the system. Alunite-kaolinite advanced argillic alteration occurs at higher topographic levels and represents a barren lithocap to the porphyry mineralization. Intermediate-sulfidation (IS) milky quartz-carbonate veins overprint the porphyry mineralization along a NNE-trending fault that extends further northwards to Megala Therma, where it hosts IS base metal-rich Ag-Au mineralization [2]. New mineralogical data from the Megala Therma deposit suggest Ag-famatinite, Te-polybasite and Ag-tetrahedrite as the main carriers of Ag in the mineralization. Porphyry-style ores at Stypsi consist of magnetite postdated by pyrite and then by chalcopyrite, molybdenite, sphalerite, galena and bismuthinite within the black quartz stockworks or disseminated in the wallrock [1]. The dark coloration of quartz in the veinlets is due to abundant vapor-rich fluid inclusions. Quartz is granular and fine-grained and locally elongated perpendicular to the vein walls. Botryoidal textures are continuous through quartz grains, suggesting quartz recrystallization from a silica gel, a feature already described by [3] from banded quartz veinlets in porphyry Au deposits at Maricunga, Chile. Bulk ore analyses from porphyry-style mineralization at Stypsi displayed similar geochemical

  20. 40Ar/39Ar geochronology of the El Teniente porphyry copper deposit

    International Nuclear Information System (INIS)

    Maksaev, V; Munizaga, F; McWilliams, M; Thiele, K; Arevalo, A; Zuniga, P; Floody, R

    2001-01-01

    Chile's El Teniente deposit is the largest known porphyry Cu-Mo orebody (>70 Mt Cu ), and is genetically related to Late Miocene-Early Pliocene igneous activity on the western slopes of the Andean Cordillera (cf. Howell and Molloy, 1960, Camus, 1975, Cuadra, 1986, Skewes and Stern, 1995). The deposit is 2700 m long by 1000 to 1700 m wide and is elongated in a N-S direction, with a recognized vertical extent of about 1800 m. Approximately 80% of the copper at El Teniente is distributed within a stockwork of mineralized veinlets and minor hydrothermal breccias within pervasively altered andesites, basalts and gabbros that are part of the Upper Miocene country rocks. Two intrusive bodies occur within the deposit, the Sewell Diorite (actually a tonalite) in the southeast part of the orebody and the dacitic Teniente Porphyry in its northern part. The Teniente Porphyry occurs as a north-south trending dike 1500 m long and 200 m wide. Minor quartz-diorite or tonalite intrusions known as the Central Diorite and the Northern Diorite occur along the eastern side of the deposit. Hydrothermal breccias commonly occur along the contacts of intrusive bodies with the country rocks. The Braden Breccia is a conspicuous diatreme in the center of the deposit that forms a pipe 1200 m in diameter at the surface, narrowing to 600 m at a depth of 1800 m. The Braden diatreme pipe is poorly mineralized (∼0.3% Cu), but it is surrounded by the copper-rich Marginal Breccia, a discontinuous rim of tourmaline-matrix hydrothermal breccia. Latite dikes intrude El Teniente, some forming altered ring dikes that encircle the Braden breccia pipe. After mineralization had ceased, the southern section of the deposit was cut by a 3.8 ± 0.3 Ma lamprophyre dyke, marking the end of igneous activity (Cuadra, 1986). Biotite-dominated K-silicate alteration is widespread within the orebody. In contrast, pervasive phyllic alteration is restricted to 'diorite' intrusions, and to the Braden and Marginal

  1. Role of Sulfur in the Formation of Magmatic-Hydrothermal Copper-Gold Deposits

    Science.gov (United States)

    Seo, J.; Guillong, M.; Heinrich, C.

    2009-05-01

    Sulfur plays essential roles in hydrothermal ore-forming processes [1], which calls for precise and accurate quantitative sulfur determination in fluid inclusions. Feasibility tests for sulfur quantification by comparing data from both LA-Quadrupole (Q) - ICP-MS and LA-High Resolution (HR) - ICP-MS show that reliable sulfur quantification in fluid inclusions is possible [2], provided that a very careful baseline correction is applied. We investigate the metal transporting capabilities of sulfur by measuring sulfur together with copper and other elements in cogenetic brine and vapor inclusions ('boiling assemblages') in single healed crack hosted by quartz veins. Samples are from high-temperature magmatic-hydrothermal ore deposits and miarolitic cavities of barren granitoid. Clear compositional correlations of sulfur with copper and gold were found. A molar S/Cu ratio commonly close to 2 but never above 2, indicates sulfur-complexed metal transportation in the high-temperature hydrothermal vapor, and probably also in the Na-Fe-K-Cl-enriched brines. Vapor/brine partitioning trends of the S and Cu are shown to be related with the chemistry of the fluids (possibly by various sulfur speciations in varying pH, fO2) and causative magma source. In the boiling hydrothermal environments, higher vapor partitioning of Cu and S is observed at reduced and peraluminous Sn-W granite, whereas oxidized and perakaline porphyry-style deposits have a lower partitioning to the vapor although the total concentration of S, Cu, Au in both fluid phase is higher than in the Sn-W granite [3]. Vapor inclusion in the boiling assemblages from magmatic-hydrothermal ore deposits and granitic intrusions generally contain an excess of sulfur over ore metals such as Cu, Fe, and Mo. This allows efficient sulfide ore precipitation in high-temperature porphyry-type deposits, and complexation of gold by the remaining sulfide down to lower temperatures. The results confirm earlier interpretations [1] and

  2. The chemistry of hydrothermal magnetite: a review

    Science.gov (United States)

    Nadoll, Patrick; Angerer, Thomas; Mauk, Jeffrey L.; French, David; Walshe, John

    2014-01-01

    Magnetite (Fe3O4) is a well-recognized petrogenetic indicator and is a common accessory mineral in many ore deposits and their host rocks. Recent years have seen an increased interest in the use of hydrothermal magnetite for provenance studies and as a pathfinder for mineral exploration. A number of studies have investigated how specific formation conditions are reflected in the composition of the respective magnetite. Two fundamental questions underlie these efforts — (i) How can the composition of igneous and, more importantly, hydrothermal magnetite be used to discriminate mineralized areas from barren host rocks, and (ii) how can this assist exploration geologists to target ore deposits at greater and greater distances from the main mineralization? Similar to igneous magnetite, the most important factors that govern compositional variations in hydrothermal magnetite are (A) temperature, (B) fluid composition — element availability, (C) oxygen and sulfur fugacity, (D) silicate and sulfide activity, (E) host rock buffering, (F) re-equilibration processes, and (G) intrinsic crystallographic controls such as ionic radius and charge balance. We discuss how specific formation conditions are reflected in the composition of magnetite and review studies that investigate the chemistry of hydrothermal and igneous magnetite from various mineral deposits and their host rocks. Furthermore, we discuss the redox-related alteration of magnetite (martitization and mushketovitization) and mineral inclusions in magnetite and their effect on chemical analyses. Our database includes published and previously unpublished magnetite minor and trace element data for magnetite from (1) banded iron formations (BIF) and related high-grade iron ore deposits in Western Australia, India, and Brazil, (2) Ag–Pb–Zn veins of the Coeur d'Alene district, United States, (3) porphyry Cu–(Au)–(Mo) deposits and associated (4) calcic and magnesian skarn deposits in the southwestern United

  3. Mineralized breccia clasts: a window into hidden porphyry-type mineralization underlying the epithermal polymetallic deposit of Cerro de Pasco (Peru)

    Science.gov (United States)

    Rottier, Bertrand; Kouzmanov, Kalin; Casanova, Vincent; Bouvier, Anne-Sophie; Baumgartner, Lukas P.; Wälle, Markus; Fontboté, Lluís

    2018-01-01

    Cerro de Pasco (Peru) is known for its large epithermal polymetallic (Zn-Pb-Ag-Cu-Bi) mineralization emplaced at shallow level, a few hundred meters below the paleo-surface, at the border of a large diatreme-dome complex. Porphyry-style veins crosscutting hornfels and magmatic rock clasts are found in the diatreme breccia and in quartz-monzonite porphyry dikes. Such mineralized veins in clasts allow investigation of high-temperature porphyry-style mineralization developed in the deep portions of magmatic-hydrothermal systems. Quartz in porphyry-style veins contains silicate melt inclusions as well as fluid and solid mineral inclusions. Two types of high-temperature (> 600 °C) quartz-molybdenite-(chalcopyrite)-(pyrite) veins are found in the clasts. Early, thin (1-2 mm), and sinuous HT1 veins are crosscut by slightly thicker (up to 2 cm) and more regular HT2 veins. The HT1 vein quartz hosts CO2- and sulfur-rich high-density vapor inclusions. Two subtypes of the HT1 veins have been defined, based on the nature of mineral inclusions hosted in quartz: (i) HT1bt veins with inclusions of K-feldspar, biotite, rutile, and minor titanite and (ii) HT1px veins with inclusions of actinolite, augite, titanite, apatite, and minor rutile. Using an emplacement depth of the veins of between 2 and 3 km (500 to 800 bar), derived from the diatreme breccia architecture and the supposed erosion preceding the diatreme formation, multiple mineral thermobarometers are applied. The data indicate that HT1 veins were formed at temperatures > 700 °C. HT2 veins host assemblages of polyphase brine inclusions, generally coexisting with low-density vapor-rich inclusions, trapped at temperatures around 600 °C. Rhyolitic silicate melt inclusions found in both HT1 and HT2 veins represent melt droplets transported by the ascending hydrothermal fluids. LA-ICP-MS analyses reveal a chemical evolution coherent with the crystallization of an evolved rhyolitic melt. Quartz from both HT1 and HT2 veins

  4. Investigations of alteration zones based on fluid inclusion microthermometry at Sungun porphyry copper deposit, Iran

    Directory of Open Access Journals (Sweden)

    Omid ASGHARI

    2010-06-01

    Full Text Available The Sungun porphyry copper deposit is located in East Azerbaijan, NW of Iran. The porphyries occur as stocks and dikes ranging in composition from quartz monzodiorite to quartz monzonite. Four types of hypogene alteration are developed; potassic, phyllic, propylitic and argillic. Three types of fluid inclusions are typically observed at Sungun; (1 vapor-rich, (2 liquid-rich and (3 multi-phase. Halite is the principal solid phase in the latter. The primary multiphase inclusions within the quartz crystals were chosen for micro-thermometric analyses and considered to calculate the geological pressure and hydrothermal fluid density. In potassic zone, the average of homogenization temperature is 413.6 °C while in phyllic alteration, 375.9 °C. As expected in potassic alteration, the temperature of hydrothermal solutions is higher than that in the phyllic zone. The salinity of the hydrothermal fluids has a high coherency with homogenization temperature, so the average of salinity in potassic samples is 46.3 (wt% NaCl which is higher than phyllic samples. Based on the location of potassic alteration, as expected, the lithostatic pressure is much more than the phyllic one. Finally, the average density of hydrothermal fluids in the potassically altered samples is 1.124 (gr/cm3 which is higher than the ones in phyllic zone (1.083 gr/cm3 .

  5. Geological model of supercritical geothermal reservoir related to subduction system

    Science.gov (United States)

    Tsuchiya, Noriyoshi

    2017-04-01

    Following the Great East Japan Earthquake and the accident at the Fukushima Daiichi Nuclear power station on 3.11 (11th March) 2011, geothermal energy came to be considered one of the most promising sources of renewable energy for the future in Japan. The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. Supercritical geothermal resources could be evaluated in terms of present volcanic activities, thermal structure, dimension of hydrothermal circulation, properties of fracture system, depth of heat source, depth of brittle factures zone, dimension of geothermal reservoir. On the basis of the GIS, potential of supercritical geothermal resources could be characterized into the following four categories. 1. Promising: surface manifestation d shallow high temperature, 2 Probability: high geothermal gradient, 3 Possibility: Aseismic zone which indicates an existence of melt, 4 Potential : low velocity zone which indicates magma input. Base on geophysical data for geothermal reservoirs, we have propose adequate tectonic model of development of the supercritical geothermal reservoirs. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550

  6. Age and tectonomagmatic setting of the Eocene Çöpler-Kabataş magmatic complex and porphyry-epithermal Au deposit, East Central Anatolia, Turkey

    Science.gov (United States)

    İmer, Ali; Richards, Jeremy P.; Creaser, Robert A.

    2013-06-01

    The Çöpler epithermal Au deposit and related subeconomic porphyry Cu-Au deposit is hosted by the middle Eocene Çöpler-Kabataş magmatic complex in central eastern Anatolia. The intrusive rocks of the complex were emplaced into Late Paleozoic-Mesozoic metamorphosed sedimentary basement rocks near the northeastern margin of the Tauride-Anatolide Block. Igneous biotite from two samples of the magmatic complex yielded 40Ar/39Ar plateau ages of 43.75 ± 0.26 Ma and 44.19 ± 0.23, whereas igneous hornblende from a third sample yielded a plateau age of 44.13 ± 0.38. These ages closely overlap with 40Ar/39Ar ages of hydrothermal sericite (44.44 ± 0.28 Ma) and biotite (43.84 ± 0.26 Ma), and Re-Os ages from two molybdenite samples (44.6 ± 0.2 and 43.9 ± 0.2 Ma) suggesting a short-lived (history at Çöpler. No suitable minerals were found that could be used to date the epithermal system, but it is inferred to be close in age to the precursor porphyry system. The Çöpler-Kabataş intrusive rocks show I-type calc-alkaline affinities. Their normalized trace element patterns show enrichments in large ion lithophile and light rare earth elements and relative depletions in middle and heavy rare earth elements, resembling magmas generated in convergent margins. However, given its distance from the coeval Eocene Maden-Helete volcanic arc, the complex is interpreted to be formed in a back-arc setting, in response to Paleocene slab roll-back and upper-plate extension. The tectonomagmatic environment of porphyry-epithermal mineralization at Çöpler is comparable to some other isolated back-arc porphyry systems such as Bajo de la Alumbrera (Argentina) or Bingham Canyon (USA).

  7. Constraints on the source of Cu in a submarine magmatic-hydrothermal system, Brothers volcano, Kermadec island arc

    Science.gov (United States)

    Keith, Manuel; Haase, Karsten M.; Klemd, Reiner; Smith, Daniel J.; Schwarz-Schampera, Ulrich; Bach, Wolfgang

    2018-05-01

    Most magmatic-hydrothermal Cu deposits are genetically linked to arc magmas. However, most continental or oceanic arc magmas are barren, and hence new methods have to be developed to distinguish between barren and mineralised arc systems. Source composition, melting conditions, the timing of S saturation and an initial chalcophile element-enrichment represent important parameters that control the potential of a subduction setting to host an economically valuable deposit. Brothers volcano in the Kermadec island arc is one of the best-studied examples of arc-related submarine magmatic-hydrothermal activity. This study, for the first time, compares the chemical and mineralogical composition of the Brothers seafloor massive sulphides and the associated dacitic to rhyolitic lavas that host the hydrothermal system. Incompatible trace element ratios, such as La/Sm and Ce/Pb, indicate that the basaltic melts from L'Esperance volcano may represent a parental analogue to the more evolved Brothers lavas. Copper-rich magmatic sulphides (Cu > 2 wt%) identified in fresh volcanic glass and phenocryst phases, such as clinopyroxene, plagioclase and Fe-Ti oxide suggest that the surrounding lavas that host the Brothers hydrothermal system represent a potential Cu source for the sulphide ores at the seafloor. Thermodynamic calculations reveal that the Brothers melts reached volatile saturation during their evolution. Melt inclusion data and the occurrence of sulphides along vesicle margins indicate that an exsolving volatile phase extracted Cu from the silicate melt and probably contributed it to the overlying hydrothermal system. Hence, the formation of the Cu-rich seafloor massive sulphides (up to 35.6 wt%) is probably due to the contribution of Cu from a bimodal source including wall rock leaching and magmatic degassing, in a mineralisation style that is hybrid between Cyprus-type volcanic-hosted massive sulphide and subaerial epithermal-porphyry deposits.

  8. The Jebel Ohier deposit—a newly discovered porphyry copper-gold system in the Neoproterozoic Arabian-Nubian Shield, Red Sea Hills, NE Sudan

    Science.gov (United States)

    Bierlein, F. P.; McKeag, S.; Reynolds, N.; Bargmann, C. J.; Bullen, W.; Murphy, F. C.; Al-Athbah, H.; Brauhart, C.; Potma, W.; Meffre, S.; McKnight, S.

    2016-08-01

    Ongoing exploration in the Red Sea Hills of NE Sudan has led to the identification of a large alteration-mineralization system within a relatively undeformed Neoproterozoic intrusive-extrusive succession centered on Jebel Ohier. The style of mineralization, presence of an extensive stockwork vein network within a zoned potassic-propylitic-argillic-advanced argillic-altered system, a mineralization assemblage comprising magnetite-pyrite-chalcopyrite-bornite (±gold, silver and tellurides), and the recurrence of fertile mafic to intermediate magmatism in a developing convergent plate setting all point to a porphyry copper-gold association, analogous to major porphyry Cu-Au-Mo deposits in Phanerozoic supra-subduction settings such as the SW Pacific. Preliminary U-Pb age dating yielded a maximum constraint of c. 730 Ma for the emplacement of the stockwork system into a significantly older ( c. 800 Ma) volcanic edifice. The mineralization formed prior to regional deformation and accretion of the host terrane to a stable continental margin at by c. 700 Ma, thus ensuring preservation of the deposit. The Jebel Ohier deposit is interpreted as a relatively well-preserved, rare example of a Neoproterozoic porphyry Cu-Au system and the first porphyry Cu-Au deposit to be identified in the Arabian-Nubian Shield.

  9. Timing of multiple hydrothermal events in the iron oxide-copper-gold deposits of the Southern Copper Belt, Carajás Province, Brazil

    Science.gov (United States)

    Moreto, Carolina P. N.; Monteiro, Lena V. S.; Xavier, Roberto P.; Creaser, Robert A.; DuFrane, S. Andrew; Melo, Gustavo H. C.; Delinardo da Silva, Marco A.; Tassinari, Colombo C. G.; Sato, Kei

    2015-06-01

    The Southern Copper Belt, Carajás Province, Brazil, hosts several iron oxide-copper-gold (IOCG) deposits, including Sossego, Cristalino, Alvo 118, Bacuri, Bacaba, Castanha, and Visconde. Mapping and U-Pb sensitive high-resolution ion microprobe (SHRIMP) IIe zircon geochronology allowed the characterization of the host rocks, situated within regional WNW-ESE shear zones. They encompass Mesoarchean (3.08-2.85 Ga) TTG orthogneiss, granites, and remains of greenstone belts, Neoarchean (ca. 2.74 Ga) granite, shallow-emplaced porphyries, and granophyric granite coeval with gabbro, and Paleoproterozoic (1.88 Ga) porphyry dykes. Extensive hydrothermal zones include albite-scapolite, biotite-scapolite-tourmaline-magnetite alteration, and proximal potassium feldspar, chlorite-epidote and chalcopyrite formation. U-Pb laser ablation multicollector inductively coupled mass spectrometry (LA-MC-ICP-MS) analysis of ore-related monazite and Re-Os NTIMS analysis of molybdenite suggest multiple Neoarchean (2.76 and 2.72-2.68 Ga) and Paleoproterozoic (2.06 Ga) hydrothermal events at the Bacaba and Bacuri deposits. These results, combined with available geochronological data from the literature, indicate recurrence of hydrothermal systems in the Southern Copper Belt, including 1.90-1.88-Ga ore formation in the Sossego-Curral ore bodies and the Alvo 118 deposit. Although early hydrothermal evolution at 2.76 Ga points to fluid migration coeval with the Carajás Basin formation, the main episode of IOCG genesis (2.72-2.68 Ga) is related to basin inversion coupled with Neoarchean (ca. 2.7 Ga) felsic magmatism. The data suggest that the IOCG deposits in the Southern Copper Belt and those in the Northern Copper Belt (2.57-Ga Salobo and Igarapé Bahia-Alemão deposits) do not share a common metallogenic evolution. Therefore, the association of all IOCG deposits of the Carajás Province with a single extensive hydrothermal system is precluded.

  10. A new look on Imperial Porphyry: a famous ancient dimension stone from the Eastern Desert of Egypt—petrogenesis and cultural relevance

    Science.gov (United States)

    Abu El-Enen, Mahrous M.; Lorenz, Joachim; Ali, Kamal A.; von Seckendorff, Volker; Okrusch, Martin; Schüssler, Ulrich; Brätz, Helene; Schmitt, Ralf-Thomas

    2018-03-01

    Imperial Porphyry, a famous dimension stone of spectacular purple color, was quarried in the Mons Porphyrites area north of Jabal Dokhan in the Eastern Desert of Egypt, from the beginning of the first until the middle of the fifth century AD. During this period, the valuable material was processed as decorative stone and was used for objects of art, reserved exclusively for the Imperial court of the Roman Empire. Later on, only antique spoils of smaller or bigger size have been re-used for these purposes. The Imperial Porphyry is a porphyritic rock of trachyandesitic to dacitic composition that occurs in the uppermost levels of shallow subvolcanic sill-like intrusions, forming a member of the Dokhan Volcanic Suite. Its purple color is mainly due to dispersed flakes of hematite, resulting from hydrothermal alteration of a dark green Common Porphyry of similar composition, underlying the Imperial Porphyry. Both, the Common Porphyry and the purple Imperial Porphyry', are extensively exposed in the Roman quarries. Contacts between Common and Imperial Porphyry are irregular and gradational. In both rock types, intrusive breccias are frequent, indicating a complex intrusion history. U-Th-Pb zircon geochronology on two samples of Imperial Porphyry and one sample of the Common Porphyry yielded an age range of 609-600 Ma, thus confirming earlier results of radiometric dating. Geochemical evidence indicates that both the Imperial and the Common Porphyry are of medium- to high-K calc-alkaline affinity. The magmas have formed by partial melting of a subduction-modified upper mantle. The subsequent intrusion took place within a highly extended terrane (HET).

  11. Magmatic gases in fluid inclusions from hydrothermal ore deposits

    Energy Technology Data Exchange (ETDEWEB)

    Graney, J.; Kesler, S. (University of Michigan, MI (United States))

    1992-08-31

    In this study, magmatic gases in fluid inclusions from hydrothermal ore deposits have been analyzed. The gas composition of fluid inclusions from a wide range of extinct hydrothermal systems as represented by different ore deposit types was determined using a quadrupole mass spectrometer. Most samples used for analysis consisted of transparent quartz, although barite, jasperoid, opal, sphalerite, pyrite, chalcopyrite, and bornite were also analyzed. H2O was the dominant volatile component in fluid inclusions, and composed 95-99 mole percent of the inclusion fluid. CO2 comprised most of the remaining volatile component and the other gases were generally present in amounts smaller than 0.1 mole percent. Analysis from porphyry and acid-sulfate deposits, in which magmatic gas contributions are considered to be largest, plotted closest to the fumarolic gas compositions. These inclusion fluid volatile component comparisons have shown that there are systematic differences in inclusion fluids from different hydrothermal systems. 9 refs., 3 figs.

  12. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  13. The Interplay Between Saline Fluid Flow and Dynamic Permeability in Magmatic-Hydrothermal Systems

    Science.gov (United States)

    Weis, P.

    2014-12-01

    Magmatic-hydrothermal ore deposits document the interplay between saline fluid flow and rock permeability. Numerical simulations of multi-phase flow of variably miscible, compressible H20-NaCl fluids in concert with a dynamic permeability model can reproduce characteristics of porphyry copper and epithermal gold systems. This dynamic permeability model incorporates depth-dependent permeability profiles characteristic for tectonically active crust as well as pressure- and temperature-dependent relationships describing hydraulic fracturing and the transition from brittle to ductile rock behavior. In response to focused expulsion of magmatic fluids from a crystallizing upper crustal magma chamber, the hydrothermal system self-organizes into a hydrological divide, separating an inner part dominated by ascending magmatic fluids under near-lithostatic pressures from a surrounding outer part dominated by convection of colder meteoric fluids under near-hydrostatic pressures. This hydrological divide also provides a mechanism to transport magmatic salt through the crust, and prevents the hydrothermal system to become "clogged" by precipitation of solid halite due to depressurization of saline, high-temperature magmatic fluids. The same physical processes at similar permeability ranges, crustal depths and flow rates are relevant for a number of active systems, including geothermal resources and excess degassing at volcanos. The simulations further suggest that the described mechanism can separate the base of free convection in high-enthalpy geothermal systems from the magma chamber as a driving heat source by several kilometers in the vertical direction in tectonic settings with hydrous magmatism. This hydrology would be in contrast to settings with anhydrous magmatism, where the base of the geothermal systems may be closer to the magma chamber.

  14. Integrating Data of ASTER and Landsat-8 OLI (AO for Hydrothermal Alteration Mineral Mapping in Duolong Porphyry Cu-Au Deposit, Tibetan Plateau, China

    Directory of Open Access Journals (Sweden)

    Tingbin Zhang

    2016-10-01

    Full Text Available One of the most important characteristics of porphyry copper deposits (PCDs is the type and distribution pattern of alteration zones which can be used for screening and recognizing these deposits. Hydrothermal alteration minerals with diagnostic spectral absorption properties in the visible and near-infrared (VNIR through the shortwave infrared (SWIR regions can be identified by multispectral and hyperspectral remote sensing data. Six Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER bands in SWIR have been shown to be effective in the mapping of Al-OH, Fe-OH, Mg-OH group minerals. The five VNIR bands of Landsat-8 (L8 Operational Land Imager (OLI are useful for discriminating ferric iron alteration minerals. In the absence of complete hyperspectral coverage area, an opportunity, however, exists to integrate ASTER and L8-OLI (AO to compensate each other’s shortcomings in covering area for mineral mapping. This study examines the potential of AO data in mineral mapping in an arid area of the Duolong porphyry Cu-Au deposit(Tibetan Plateau in China by using spectral analysis techniques. Results show the following conclusions: (1 Combination of ASTER and L8-OLI data (AO has more mineral information content than either alone; (2 The Duolong PCD alteration zones of phyllic, argillic and propylitic zones are mapped using ASTER SWIR bands and the iron-bearing mineral information is best mapped using AO VNIR bands; (3 The multispectral integration data of AO can provide a compensatory data of ASTER VNIR bands for iron-bearing mineral mapping in the arid and semi-arid areas.

  15. The physical hydrology of magmatic-hydrothermal systems: High-resolution 18O records of magmatic-meteoric water interaction from the Yankee Lode tin deposit (Mole Granite, Australia)

    Science.gov (United States)

    Fekete, Szandra; Weis, Philipp; Driesner, Thomas; Heinrich, Christoph A.; Baumgartner, Lukas; Bouvier, Anne-Sophie

    2016-04-01

    apparent discrepancy can be explained by the presence of a fluid of meteoric origin that was isotopically equilibrated with a hot, but already solidified and fractured granitic intrusion under rock-dominated conditions prior their transfer to the cold ore deposition site (Heinrich, 1990). Conversely, in porphyry copper systems meteoric fluid incursion has been assumed to participate in formation of peripheral or post-mineralization processes (Bowman et al., 1987; Sillitoe, 2010; Williams-Jones and Migdisov, 2014). However, recent numerical simulations of porphyry copper systems identify a significant role of meteoric fluids for the enrichment process, providing a cooling mechanism for metal-rich fluids expelled from an upper crustal magma chamber (Weis et al. 2012, Weis 2015). Furthermore, new petrographic and fluid inclusion work of ore-mineralized quartz veins (Landtwing et al., 2010; Stefanova et al., 2014) indicates lower (˜ 450r{ }C) than magmatic fluid temperatures for copper precipitation. Given that the Yankee Lode study validated the capability of high resolution, in situ δ 18O analysis to trace meteoric water incursion, we will apply this method to hydrothermal quartz samples from two significant porphyry copper deposits (Bingham Canyon, USA and Elatsite, Bulgaria). By this we intend to better constrain a potential role of meteoric water incursion in porphyry copper ore precipitation. REFERENCES Audétat, A., Günther, D., Heinrich, C. A. 1998: Formation of a Magmatic-Hydrothermal Ore Deposit: Insights with LA-ICP-MS Analysis of Fluid Inclusions: Science, 279, 2091-2094. Audétat, A. 1999: The magmatic-hydrothermal evolution of the Sn/W-mineralized Mole Granite (Eastern Australia): PhD Thesis, 211. Bowman, J. R., Parry, W. T., Kropp, W. P., and Kruer, S. A., 1987: Chemical and isotopic evolution of hydrothermal solutions at Bingham, Utah: Economic Geology, 82, 395-428. Heinrich, C.A. 1990: The Chemistry of Hydrothermal Tin(-Tungsten) Ore Deposition: Economic

  16. Lytological characterization and hydrothermal alteration Infiernillo porphyry, provincia Mendoza, Argentina

    International Nuclear Information System (INIS)

    Gomez, A.; Rubinstein, N.; Kleiman, L.. E.mail: kleiman@cae.cnea.gov.ar

    2007-01-01

    El Infiernillo porphyry copper and Mo deposit, in southern Mendoza, Argentina is hosted by ignimbrites of the Cochico Group (lower Permian). The alteration zone consists of a small central quartz neck with appreciable hematite surrounded by an intense quartz-injected zone with local pervasive potassic alteration. Outwards, there is a well-developed phyllic halo with intense bleaching which consists of pervasive and vein-type silicification, sericitization and pyritization. In the outer part of the alteration zone, small polymetallic veins with pyrite, arsenopyrite, galena and minor, chalcopyrite, sphalerite and electrum in quartz gangue crop out. New field, petro-mineralogic and geochemical data confirmed that the host rocks are equivalent to the dacitic and rhyodacitic ignimbrites of the Toba Vieja Gorda Member (Yacimiento Los Reyunos Formation, Cochico Group)

  17. Hydrothermal modification of host rock geochemistry within Mo-Cu porphyry deposits in the Galway Granite, western Ireland

    Science.gov (United States)

    Tolometti, Gavin; McCarthy, Will

    2016-04-01

    Hydrothermal alteration of host rock is a process inherent to the formation of porphyry deposits and the required geochemical modification of these rocks is regularly used to indicate proximity to an economic target. The study involves examining the changes in major, minor and trace elements to understand how the quartz vein structures have influenced the chemistry within the Murvey Granite that forms part of the 380-425Ma Galway Granite Complex in western Ireland. Molybdenite mineralisation within the Galway Granite Complex occurred in close association with protracted magmatism at 423Ma, 410Ma, 407Ma, 397Ma and 383Ma and this continues to be of interest to active exploration. The aim of the project is to characterize hydrothermal alteration associated with Mo-Cu mineralisation and identify geochemical indicators that can guide future exploration work. The Murvey Granite intrudes metagabbros and gneiss that form part of the Connemara Metamorphic complex. The intrusion is composed of albite-rich pink granite, garnetiferous granite and phenocrytic orthoclase granite. Minor doleritic dykes post-date the Murvey Granite, found commonly along its margins. Field mapping shows that the granite is truncated to the east by a regional NW-SE fault and that several small subparallel structures host Mo-Cu bearing quartz veins. Petrographic observations show heavily sericitized feldspars and plagioclase and biotite which have undergone kaolinization and chloritisation. Chalcopyrite minerals are fine grained, heavily fractured found crystallized along the margins of the feldspars and 2mm pyrite crystals. Molybdenite are also seen along the margins of the feldspars, crystallized whilst the Murvey Granite cooled. Field and petrographic observations indicate that mineralisation is structurally controlled by NW-SE faults from the selected mineralization zones and conjugate NE-SW cross cutting the Murvey Granite. Both fault orientations exhibit quartz and disseminated molybdenite

  18. Porphyry Cu-Au mineralization in the Mirkuh Ali Mirza magmatic complex, NW Iran

    Science.gov (United States)

    Maghsoudi, A.; Yazdi, M.; Mehrpartou, M.; Vosoughi, M.; Younesi, S.

    2014-01-01

    The Mirkuh Ali Mirza Cu-Au porphyry system in East Azerbaijan Province is located on the western part of the Cenozoic Alborz-Azerbaijan volcanic belt. The belt is also an important Cu-Mo-Au metallogenic province in northwestern Iran. The exposed rocks in the study area consist of a volcaniclastic sequence, subvolcanic rocks and intermediate to mafic lava flows of Neogene age. The volcanic rocks show a typical subduction-related magmatic arc geological and geochemical signature, with low concentration of Nb, Ta, and Ti. Mineralization is hosted by Neogene dacitic tuff and porphyritic dacite situated at the intersections of northeast and northwest faults. Field observations, alteration zonation, geochemical haloes and isotopic data of the Mirkuh Ali Mirza magmatic complex show similarities with typical convergent margin Cu-Au porphyry type deposits. The following features confirm the classic model for Cu-Au porphyry systems: (a) close spatial association with high-K calcalkaline to shoshonitic rock related to post-collision extensional setting (b) low grade Cu (0.57%) (c) stockworks as well as disseminated sulfides (c) zonality of the alteration patterns from intense phyllic at the center to outward weak-phyllic, argillic, and propylitic (d) the presence of a pyritic halo (e) accompanied by sheeted veins and low-sulfidation epithermal gold (f) mineralization spatially associated with intersection of structures, (g) genetically related to diorite porphyry stocks at depth (h) geochemical zonation of (Cu ± Au ± Ag ± Bi) → (Cu + Mo ± Bi ± Au ± Pb ± Zn ± As) → (Au + Mo ± Pb ± Zn) → (As + Ag + Sb + Mn + Ba + Pb + Zn + Hg) → Hg from center to outwards (i) The range of sulfur isotopic values is approximately zero (interpreted to have magmatic source) and similar to other subduction-related porphyry Cu deposits.

  19. Mineralogical, stable isotope, and fluid inclusion studies of spatially related porphyry Cu and epithermal Au-Te mineralization, Fakos Peninsula, Limnos Island, Greece

    Science.gov (United States)

    Fornadel, Andrew P.; Voudouris, Panagiotis Ch.; Spry, Paul G.; Melfos, Vasilios

    2012-05-01

    of magmatic fluids with meteoric water in the epithermal environment is responsible for the dilution of the ore fluids that formed Stage 3 veins. Eutectic melting temperatures of -35.4 to -24.3 °C for Type I inclusions hosted in both porphyry- and epithermal-style veins suggest the presence of CaCl2, MgCl2, and/or FeCl2 in the magmatic-hydrothermal fluids. Sulfur isotope values of pyrite, galena, sphalerite, and molybdenite range from δ34S = -6.82 to -0.82 per mil and overlap for porphyry and epithermal sulfides, which suggests a common sulfur source for the two styles of mineralization. The source of sulfur in the system was likely the Fakos quartz monzonite for which the isotopically light sulfur isotope values are the result of changes in oxidation state during sulfide deposition (i.e., boiling) and/or disproportionation of sulfur-rich magmatic volatiles upon cooling. It is less likely that sulfur in the sulfides was derived from the reduction of seawater sulfate or leaching of sulfides from sedimentary rocks given the absence of primary sulfides in sedimentary rocks in the vicinity of the deposit. Late-stage barite (δ34S = 10.5 per mil) is inferred to have formed during mixing of seawater with magmatic ore fluids. Petrological, mineralogical, fluid inclusion, and sulfur isotope data indicate that the metallic mineralization at Fakos Peninsula represents an early porphyry system that is transitional to a later high- to intermediate-sulfidation epithermal gold system. This style of mineralization is similar to porphyry-epithermal metallic mineralization found elsewhere in northeastern Greece (e.g., Pagoni Rachi, St. Demetrios, St. Barbara, Perama Hill, Mavrokoryfi, and Pefka).

  20. Relative Importance of Chemoautotrophy for Primary Production in a Light Exposed Marine Shallow Hydrothermal System

    Directory of Open Access Journals (Sweden)

    Gonzalo V. Gomez-Saez

    2017-04-01

    Full Text Available The unique geochemistry of marine shallow-water hydrothermal systems promotes the establishment of diverse microbial communities with a range of metabolic pathways. In contrast to deep-sea vents, shallow-water vents not only support chemosynthesis, but also phototrophic primary production due to the availability of light. However, comprehensive studies targeting the predominant biogeochemical processes are rare, and consequently a holistic understanding of the functioning of these ecosystems is currently lacking. To this end, we combined stable isotope probing of lipid biomarkers with an analysis of the bacterial communities to investigate if chemoautotrophy, in parallel to photoautotrophy, plays an important role in autotrophic carbon fixation and to identify the key players. The study was carried out at a marine shallow-water hydrothermal system located at 5 m water depth off Dominica Island (Lesser Antilles, characterized by up to 55°C warm hydrothermal fluids that contain high amounts of dissolved Fe2+. Analysis of the bacterial diversity revealed Anaerolineae of the Chloroflexi as the most abundant bacterial class. Furthermore, the presence of key players involved in iron cycling generally known from deep-sea hydrothermal vents (e.g., Zetaproteobacteria and Geothermobacter, supported the importance of iron-driven redox processes in this hydrothermal system. Uptake of 13C-bicarbonate into bacterial fatty acids under light and dark conditions revealed active photo- and chemoautotrophic communities, with chemoautotrophy accounting for up to 65% of the observed autotrophic carbon fixation. Relatively increased 13C-incorporation in the dark allowed the classification of aiC15:0, C15:0, and iC16:0 as potential lipid biomarkers for bacterial chemoautotrophy in this ecosystem. Highest total 13C-incorporation into fatty acids took place at the sediment surface, but chemosynthesis was found to be active down to 8 cm sediment depth. In conclusion

  1. Dynamic behavior of Kilauea Volcano and its relation to hydrothermal systems and geothermal energy

    Science.gov (United States)

    Kauhikaua, Jim; Moore, R.B.; ,

    1993-01-01

    Exploitation of hydrothermal systems on active basaltic volcanoes poses some unique questions about the role of volcanism and hydrothermal system evolution. Volcanic activity creates and maintains hydrothermal systems while earthquakes create permeable fractures that, at least temporarily, enhance circulation. Magma and water, possibly hydrothermal water, can interact violently to produce explosive eruptions. Finally, we speculate on whether volcanic behavior can be affected by high rates of heat extraction.

  2. Exploration for porphyry copper deposits in Pakistan using digital processing of Landsat-1 data

    Science.gov (United States)

    Schmidt, R. G.

    1976-01-01

    Rock-type classification by digital-computer processing of Landsat-1 multispectral scanner data has been used to select 23 prospecting targets in the Chagai District, Pakistan, five of which have proved to be large areas of hydrothermally altered porphyry containing pyrite. Empirical maximum and minimum apparent reflectance limits were selected for each multispectral scanner band in each rock type classified, and a relatively unrefined classification table was prepared. Where the values for all four bands fitted within the limits designated for a particular class, a symbol for the presumed rock type was printed by the computer at the appropriate location. Drainage channels, areas of mineralized quartz diorite, areas of pyrite-rich rock, and the approximate limit of propylitic alteration were very well delineated on the computer-generated map of the test area. The classification method was used to evaluate 2,100 sq km in the Mashki Chah region. The results of the experiment show that outcrops of hydrothermally altered and mineralized rock can be identified from Landsat-1 data under favorable conditions.

  3. The genesis of the Hashitu porphyry molybdenum deposit, Inner Mongolia, NE China: constraints from mineralogical, fluid inclusion, and multiple isotope (H, O, S, Mo, Pb) studies

    Science.gov (United States)

    Zhai, Degao; Liu, Jiajun; Tombros, Stylianos; Williams-Jones, Anthony E.

    2018-03-01

    The Hashitu porphyry molybdenum deposit is located in the Great Hinggan Range Cu-Mo-Pb-Zn-Ag polymetallic metallogenic province of NE China, in which the Mo-bearing quartz veins are hosted in approximately coeval granites and porphyries. The deposit contains more than 100 Mt of ore with an average grade of 0.13 wt.% Mo. This well-preserved magmatic-hydrothermal system provides an excellent opportunity to determine the source of the molybdenum, the evolution of the hydrothermal fluids and the controls on molybdenite precipitation in a potentially important but poorly understood metallogenic province. Studies of fluid inclusions hosted in quartz veins demonstrate that the Hashitu hydrothermal system evolved to progressively lower pressure and temperature. Mineralogical and fluid inclusion analyses and physicochemical calculations suggest that molybdenite deposition occurred at a temperature of 285 to 325 °C, a pressure from 80 to 230 bars, a pH from 3.5 to 5.6, and a Δlog fO2 (HM) of -3.0, respectively. Results of multiple isotope (O, H, S, Mo, and Pb) analyses are consistent in indicating a genetic relationship between the ore-forming fluids, metals, and the Mesozoic granitic magmatism (i.e., δ 18OH2O from +1.9 to +9.7‰, δDH2O from -106 to -87‰, δ 34SH2S from +0.3 to +3.9‰, δ 98/95Mo from 0 to +0.37‰, 206Pb/204Pb from 18.2579 to 18.8958, 207Pb/204Pb from 15.5384 to 15.5783, and 208Pb/204Pb from 38.0984 to 42.9744). Molybdenite deposition is interpreted to have occurred from a low-density magmatic-hydrothermal fluid in response to decreases in temperature, pressure, and fO2.

  4. Petrography, geochemistry and geochronology of the host porphyries and associated alteration at the Tuwu Cu deposit, NW China: a case for increased depositional efficiency by reaction with mafic hostrock?

    Science.gov (United States)

    Shen, Ping; Pan, Hongdi; Zhou, Taofa; Wang, Jingbin

    2014-08-01

    Tuwu is the largest porphyry copper deposit discovered in the Eastern Tianshan Mountains, Xinjiang, China. A newly recognized volcanic complex in the Early Carboniferous Qi'eshan Group at Tuwu consists of basalt, andesite, and diorite porphyry. The plagiogranite porphyry was emplaced into this complex at 332.8±2.5 Ma (U-Pb zircon SIMS determination). Whole-rock element geochemistry shows that the volcanic complex and plagiogranite porphyry formed in the same island arc, although the complex was derived by partial melting of the mantle wedge and the plagiogranite porphyry by partial melting of a subducting slab. The diorite and the plagiogranite porphyries have both been subjected to intense hydrothermal alteration and associated mineralization, but the productive porphyry is the plagiogranite porphyry. Three alteration and mineralization stages, including pre-, syn- and post-ore stages, have been recognized. The pre-ore stage formed a barren propylitic alteration which is widespread in the volcanic complex. The syn-ore stage is divided into three sub-stages: Stage 1 is characterized by potassic alteration with chalcopyrite + bornite + chalcocite; Stage 2 is marked by chlorite-sericite-albite alteration with chalcopyrite ± pyrite ± bornite; Stage 3 is represented by phyllic alteration with chalcopyrite + pyrite ± molybdenite. The post-ore stage produced a barren argillic alteration limited to the diorite porphyry. A specific feature of the Tuwu deposit is that the productive porphyry was emplaced into a very mafic package, and reaction of the resulting fluids with the ferrous iron-rich hostrocks was a likely reason that Tuwu is the largest porphyry in the district.

  5. Dynamics of the Yellowstone hydrothermal system

    Science.gov (United States)

    Hurwitz, Shaul; Lowenstern, Jacob B.

    2014-01-01

    The Yellowstone Plateau Volcanic Field is characterized by extensive seismicity, episodes of uplift and subsidence, and a hydrothermal system that comprises more than 10,000 thermal features, including geysers, fumaroles, mud pots, thermal springs, and hydrothermal explosion craters. The diverse chemical and isotopic compositions of waters and gases derive from mantle, crustal, and meteoric sources and extensive water-gas-rock interaction at variable pressures and temperatures. The thermal features are host to all domains of life that utilize diverse inorganic sources of energy for metabolism. The unique and exceptional features of the hydrothermal system have attracted numerous researchers to Yellowstone beginning with the Washburn and Hayden expeditions in the 1870s. Since a seminal review published a quarter of a century ago, research in many fields has greatly advanced our understanding of the many coupled processes operating in and on the hydrothermal system. Specific advances include more refined geophysical images of the magmatic system, better constraints on the time scale of magmatic processes, characterization of fluid sources and water-rock interactions, quantitative estimates of heat and magmatic volatile fluxes, discovering and quantifying the role of thermophile microorganisms in the geochemical cycle, defining the chronology of hydrothermal explosions and their relation to glacial cycles, defining possible links between hydrothermal activity, deformation, and seismicity; quantifying geyser dynamics; and the discovery of extensive hydrothermal activity in Yellowstone Lake. Discussion of these many advances forms the basis of this review.

  6. Molybdenite Re/Os dating, zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt), China: Implications for petrogenesis, mineralization and geodynamic setting

    Science.gov (United States)

    Mao, Jingwen; Xiong, Bikang; Liu, Jun; Pirajno, Franco; Cheng, Yanbo; Ye, Huishou; Song, Shiwei; Dai, Pan

    2017-08-01

    The Yangchuling W-Mo deposit, located in the Jiangnan porphyry-skarn (JNB) tungsten ore belt, is the first recognized typical porphyry W-Mo deposit in China in the 1980's. Stockworks and disseminated W-Mo mineralization occur in the roof pendant of a 0.3 km2 monzogranitic porphyry stock that intruded into a granodiorite stock, hosted by Neoproterozoic phyllite and slate. LA-ICPMS zircon U-Pb analyses suggest that of the monzogranitic porphyry and granodiorite were formed at 143.8 ± 0.5 Ma and 149.8 ± 0.6 Ma, respectively. Six molybdenite samples yielded a Re-Os weighted mean age of 146.4 ± 1.0 Ma. Geochemical data show that both granodiorite and monzogranitic porphyry are characterized by enrichment of large ion lithophile elements (LILE) relative to high field strength elements (HFSE), indicating a peraluminous nature (A/CNK = 1.01-1.08). Two granitoids are characterized by a negative slope with significant light REE/heavy REE fractionation [(La/Yb)N = 8.38-23.20] and negative Eu anomalies (Eu/Eu* = 0.69-0.76). The P2O5 contents of the Yangchuling granitoids range from 0.12% to 0.17% and exhibit a negative correlation with SiO2, reflecting that they are highly fractionated I-type. They have high initial 87Sr/86Sr ratios (0.7104-0.7116), low negative εNd(t) (- 5.05 to - 5.67), and homogeneous εHf(t) between - 1.39 and - 2.17, indicating similar sources. Additionally, two-stage Nd model ages (TDM2) of 1.3-1.4 Ga and two-stage Hf model ages (TDM2) of 1.2-1.3 Ga are consistent, indicating that Neoproterozoic crustal rocks of the Shuangqiaoshan Group could have contributed to form the Yangchuling magmas. Considering the two groups of parallel Late Mesozoic ore belts, namely the Jiangnan porphyry-skarn tungsten belt (JNB) in the south and the Middle-Lower Yangtze River porphyry-skarn Cu-Au-Mo-Fe ore belt (YRB) in the north, the Nanling granite-related W-Sn ore belt (NLB) in the south, the neighboring Qin-Hang porphyry-skarn Cu-Mo-hydrothermal Pb-Zn-Ag ore belt (QHB

  7. Effects Of Hydrothermal Alteration On Magnetic Properties And Magnetic Signatures - Implications For Predictive Magnetic Exploration Models

    Science.gov (United States)

    Clark, D.

    2012-12-01

    Magnetics is the most widely used geophysical method in hard rock exploration and magnetic surveys are an integral part of exploration programs for many types of mineral deposit, including porphyry Cu, intrusive-related gold, volcanic-hosted epithermal Au, IOCG, VMS, and Ni sulfide deposits. However, the magnetic signatures of ore deposits and their associated mineralized systems are extremely variable and exploration that is based simply on searching for signatures that resemble those of known deposits and systems is rarely successful. Predictive magnetic exploration models are based upon well-established geological models, combined with magnetic property measurements and geological information from well-studied deposits, and guided by magnetic petrological understanding of the processes that create, destroy and modify magnetic minerals in rocks. These models are designed to guide exploration by predicting magnetic signatures that are appropriate to specific geological settings, taking into account factors such as tectonic province; protolith composition; post-formation tilting/faulting/ burial/ exhumation and partial erosion; and metamorphism. Patterns of zoned hydrothermal alteration are important indicators of potentially mineralized systems and, if properly interpreted, can provided vectors to ore. Magnetic signatures associated with these patterns at a range of scales can provide valuable information on prospectivity and can guide drilling, provided they are correctly interpreted in geological terms. This presentation reviews effects of the important types of hydrothermal alteration on magnetic properties within mineralized systems, with particular reference to porphyry copper and IOCG deposits. For example, an unmodified gold-rich porphyry copper system, emplaced into mafic-intermediate volcanic host rocks (such as Bajo de la Alumbrera, Argentina) exhibits an inner potassic zone that is strongly mineralized and magnetite-rich, which is surrounded by an outer

  8. Late Cretaceous porphyry copper mineralization in Sonora, Mexico: Implications for the evolution of the Southwest North America porphyry copper province

    Science.gov (United States)

    Barra, Fernando; Valencia, Victor A.

    2014-10-01

    Two porphyry Cu-Mo prospects in northern Sonora, Mexico (Fortuna del Cobre and Los Humos) located within the southwestern North American porphyry province have been dated in order to constrain the timing of crystallization and mineralization of these ore deposits. In Fortuna del Cobre, the pre-mineralization granodiorite porphyry yielded an U-Pb zircon age of 76.5 ± 2.3 Ma, whereas two samples from the ore-bearing quartz feldespathic porphyry were dated at 74.6 ± 1.3 and 75.0 ± 1.4 Ma. Four molybdenite samples from Los Humos porphyry Cu prospect yielded a weighted average Re-Os age of 73.5 ± 0.2 Ma, whereas two samples from the ore-bearing quartz monzonite porphyry gave U-Pb zircon ages of 74.4 ± 1.1 and 74.5 ± 1.3 Ma, showing a Late Cretaceous age for the emplacement of this ore deposit. The results indicate that Laramide porphyry Cu mineralization of Late Cretaceous age is not restricted to northern Arizona as previously thought and provide evidence for the definition of NS trending metallogenic belts that are parallel to the paleo-trench. Porphyry copper mineralization follows the inland migration trend of the magmatic arc as a result of the Farallon slab flattening during the Laramide orogeny.

  9. Geological and geochemical studies of the Shujiadian porphyry Cu deposit, Anhui Province, Eastern China: Implications for ore genesis

    Science.gov (United States)

    Wang, Shiwei; Zhou, Taofa; Yuan, Feng; Fan, Yu; White, Noel C.; Lin, Fengjie

    2015-05-01

    Most porphyry deposits in the world occur in magmatic arc settings and are related to subduction of oceanic plates. A small proportion of porphyry deposits occur in intracontinental settings, however they are still poorly understood. Shujiadian, a newly-discovered porphyry Cu deposit, is located in the Middle-Lower Yangtze River Valley metallogenic belt and belongs to the intracontinental class. The deposit has classic alteration zones defined by a core of potassic alteration and local Ca-silicate alteration, which is overprinted by a feldspar-destructive alteration zone and cut by veins containing epidote and chlorite. Wallrocks of the deposit are unreactive quartz-rich sedimentary rocks. Three main paragenetic stages have been recognized based on petrographic observations; silicate stage, quartz-sulfide stage, and sulfide-carbonate stage. Quartz + pyrite + chalcopyrite ± molybdenite veins, and quartz + chalcopyrite + pyrite veins of the quartz-sulfide stage contribute most of the copper, and chalcopyrite + chlorite ± pyrite ± pyrrhotite ± quartz ± illite veins of the sulfide-carbonate stage also contribute part of the copper; all the mineralized veins are associated with feldspar-destructive alteration. Investigations on the fluid inclusions in Shujiadian indicate that the ore-forming fluids had four evolutionary episodes: immiscibility and overpressure in the silicate stage, boiling in the quartz-sulfide stage and mixing with meteoric water in the sulfide-carbonate stage. Sulfur and strontium isotope studies suggest that ore metals were mainly derived from magmatic-hydrothermal fluids, and combined with our study of fluid inclusions, we infer that decompression, changes in oxygen fugacity and sulfur content were the main factors that caused Cu precipitation. Compared with porphyry deposits in magmatic arc settings, there are some differences in the ore-bearing rock, alteration, and the composition of ore-forming fluids.

  10. Temporal Evolution of Volcanic and Plutonic Magmas Related to Porphyry Copper Ores Based on Zircon Geochemistry

    Science.gov (United States)

    Dilles, J. H.; Lee, R. G.; Wooden, J. L.; Koleszar, A. M.

    2015-12-01

    Porphyry Cu (Mo-Au) and epithermal Au-Ag ores are globally associated with shallow hydrous, strongly oxidized, and sulfur-rich arc intrusions. In many localities, long-lived magmatism includes evolution from early andesitic volcanic (v) and plutonic (p) rocks to later dacitic or rhyolitic compositions dominated by plutons. We compare zircon compositions from three igneous suites with different time spans: Yerington, USA (1 m.y., p>v), El Salvador, Chile (4 m.y., p>v), and Yanacocha, Peru (6 m.y., v>p). At Yerington granite dikes and ores formed in one event, at ES in 2 to 3 events spanning 3 m.y., and at Yanacocha in 6 events spanning 5 m.y. At both ES and Yanacocha, high-Al amphiboles likely crystallized at high temperature in the mid-crust and attest to deep magmas that periodically recharged the shallow chambers. At Yanacocha, these amphiboles contain anhydrite inclusions that require magmas were sulfur-rich and strongly oxidized (~NNO+2). The Ti-in-zircon geothermometer provides estimates of 920º to 620º C for zircon crystallization, and records both core to rim cooling and locally high temperature rim overgrowths. Ore-related silicic porphyries yield near-solidus crystallization temperatures of 750-650°C consistent with low zircon saturation temperatures. The latter zircons have large positive Ce/Ce* and small negative Eu/Eu*≥0.4 anomalies attesting to strongly oxidized conditions (Ballard et al., 2001), which we propose result from crystallization and SO2 loss to the magmatic-hydrothermal ore fluid (Dilles et al., 2015). The Hf, REE, Y, U, and Th contents of zircons are diverse in the magma suites, and Th/U vs Yb/Gd plots suggest a dominant role of crystal fractionation with lesser roles for both crustal contamination and mixing with high temperature deep-sourced mafic magma. Ce/Sm vs Yb/Gd plots suggest that magma REE contents at contamination are most evident in pre-ore magmas, whereas ore-forming intrusions at low temperatures are dominated by crystal

  11. Telescoped porphyry-style and epithermal veins and alteration at the central Maratoto valley prospect, Hauraki Goldfield, New Zealand

    International Nuclear Information System (INIS)

    Simpson, M.P.; Mauk, J.L.; Kendrick, R.G.

    2004-01-01

    multi-cation magmatic fluids. These are telescoped by later widespread epithermal veins and alteration following descent of the paleowater table possibly due to rapid erosion or sector collapse of a volcanic edifice. Main-stage epithermal alteration and deposition produced quartz, chlorite, illite, interlayered illite-smectite, pyrite, and isotopically heavy ankerite-dolomite from deeply circulating upwelling alkali chloride waters. Late-stage collapse of the hydrothermal system resulted in the formation of overprinting calcite and siderite from isotopically lighter descending marginal steam-heated CO 2 -rich waters. (author). 64 refs., 11 figs., 3 tabs

  12. Noble Gas Isotope Evidence for Mantle Volatiles in the Cu-Mo Porphyry and Main Stage Polymetallic Veins at Butte, Montana

    Science.gov (United States)

    Hofstra, A. H.; Rusk, B. G.; Manning, A. H.; Hunt, A. G.; Landis, G. P.

    2017-12-01

    Recent studies suggest that volatiles released from mafic intrusions may be important sources of heat, sulfur, and metals in porphyry Cu-Mo-Au and epithermal Au-Ag deposits associated with intermediate to silicic stocks. The huge Cu-Mo porphyry and Main Stage polymetallic vein deposits at Butte are well suited to test this hypothesis because there is no geologic or isotopic evidence of basaltic intrusions in the mine or drill holes. The Butte porphyry-vein system is associated with quartz monzonite stocks and dikes within the southwest part of the Late Cretaceous Boulder batholith. The Boulder batholith was emplaced into Mesoproterozoic to Mesozoic sedimentary rocks and Late Cretaceous volcanic rocks. The Boulder batholith and Butte intrusions have Sri and eNd values indicative of crustal contamination. Eu and Ce anomalies in zircon from Butte intrusions provide evidence of oxidation due to magma degassing. To ascertain the source of volatiles in this system, 11 samples from the Cu-Mo porphyry and 16 from Main Stage veins were selected. The isotopic composition of Ar, Ne, and He extracted from fluid inclusions in quartz, magnetite, pyrite, chalcopyrite, sphalerite, galena, enargite, and covellite were determined. Helium isotopes exceed blank levels in all samples and Ne and Ar in some samples. On a 38Ar/36Ar vs. 40Ar/36Ar diagram, data plot near air. On a 20Ne/22Ne vs. 21Ne/22Ne diagram, data extend from air along the trajectories of OIB and MORB. On a 36Ar/4He vs. 3He/4He RA diagram, data extend from crust toward the air-mantle mixing line. The maximum 3He/4He RA values in the Cu-Mo porphyry (2.86) and Main Stage veins (3.46) are from pyrite and these values correspond to 36 and 43 % mantle helium. The Ne and He results show that fluid inclusions contain volatiles discharged from mantle magmas and that these volatiles were diluted by groundwater containing He derived from country rocks. Despite the lack of mafic intrusions in the Butte magmatic center, noble gas

  13. The investigation on physico-chemical conditions of sulfides and sulfates based on petrographic and sulfur - oxygen stable isotope studies from the Darreh-Zar porphyry copper deposit, Kerman

    Directory of Open Access Journals (Sweden)

    Anis Parsapoor

    2014-04-01

    Full Text Available The Darreh-Zar porphyry copper deposit, located in the Urumieh – Dokhtar magmatic belt, lies about 10 km southeast of Sar-Cheshmeh porphyry copper deposit. The ore body with hydrothermally altered zones including potassic, chlorite-sericite, sericite, argillic and propylitic all related to the Darreh-Zar porphyry stock intruded the Eocene volcanic rocks. Pyrite, chalcopyrite, molybdenite, with different textures as disseminated and veinlet, are the major sulfide minerals and chalcocite and covellite are considered as the secondary minerals. Sulfur isotopic composition of the sulfates and sulfides studied fall on the magmatic values. Two different origins may be suggested for the gypsums studied: 1- hydration of anhydrite and 2- oxidation of pyrite during supergene enrichment. The stable isotopic data calculated on couple minerals (pyrite-anhydrite point to the formation temperature of about 485-515οC for the fluids involved in mineralization. The fluid responsible for mineralization suggests magmatic sources for all sulfide phases and reduced aqueous sulfur species. Isotopic zoning, based on the δ34S pyrite values, divided the area into the east and the west parts with negative and positive correlation against the depth, respectively. Also, a negative correlation is observed between the Cu and the δ34S in the eastern portion of the area.

  14. Relations of ammonium minerals at several hydrothermal systems in the western U.S.

    Science.gov (United States)

    Krohn, M.D.; Kendall, C.; Evans, J.R.; Fries, T.L.

    1993-01-01

    Ammonium bound to silicate and sulfate minerals has recently been located at several major hydrothermal systems in the western U.S. utilizing newly-discovered near-infrared spectral properties. Knowledge of the origin and mineralogic relations of ammonium minerals at known hydrothermal systems is critical for the proper interpretation of remote sensing data and for testing of possible links to mineralization. Submicroscopic analysis of ammonium minerals from two mercury- and gold-bearing hot-springs deposits at Ivanhoe, Nevada and McLaughlin, California shows that the ammonium feldspar, buddingtonite, occurs as fine-grained euhedral crystals coating larger sulfide and quartz crystals. Ammonium feldspar seems to precipitate relatively late in the crystallization sequence and shows evidence for replacement of NH4+ by K+ or other monovalent cations. Some buddingtonite is observed in close association with mercury, but not with gold. Ammonioalunite is found in a variety of isolated crystal forms at both deposits. Nitrogen isotopic values for ammonium-bearing minerals show a 14??? range in composition, precluding assignment of a specific provenance to the nitrogen. The correlations of nitrogen isotopic values with depth and ammonium content suggest some loss of nitrogen in the oxidizing supergene environment, possibly as a metastable mineral. The high ammonium content in these hydrothermal systems, the close association to mercury, and the small crystal size of the ammonium-bearing minerals all suggest that ammonium may be transported in a late-stage vapor phase or as an organic volatile. Such a process could lead to the formation of a non-carbonaceous organic aureole above a buried geothermal source. The discovery of a 10-km outcrop of ammonium minerals confirms that significant substitution of ammonium in minerals is possible over an extensive area and that remote sensing is a feasible means to detect such aureoles. ?? 1993.

  15. Temporal and spatial distribution of alteration, mineralization and fluid inclusions in the transitional high-sulfidation epithermal-porphyry copper system at Red Mountain, Arizona

    Science.gov (United States)

    Lecumberri-Sanchez, Pilar; Newton, M. Claiborne; Westman, Erik C.; Kamilli, Robert J.; Canby, Vertrees M.; Bodnar, Robert J.

    2013-01-01

    Red Mountain, Arizona, is a Laramide porphyry Cu system (PCD) that has experienced only a modest level of erosion compared to most other similar deposits in the southwestern United States. As a result, the upper portion of the magmatic–hydrothermal system, which represents the transition from shallower high-sulfidation epithermal mineralization to deeper porphyry Cu mineralization, is well preserved. Within the Red Mountain system, alteration, mineralization and fluid inclusion assemblages show a systematic distribution in both time and space. Early-potassic alteration (characterized by the minerals biotite and magnetite) is paragenetically earlier than late-potassic alteration (K-feldspar–anhydrite) and both are followed by later phyllic (sericite–pyrite) alteration. Advanced argillic alteration (pyrophyllite–alunite–other clay minerals) is thought to be coeval with or postdate phyllic alteration. Minerals characteristic of advanced argillic alteration are present in the near surface. Phyllic alteration extends to greater depths compared to advanced argillic alteration. Early-potassic and late-potassic alteration are only observed in the deepest part of the system. Considerable overlap of phyllic alteration with both early-potassic and late-potassic alteration zones is observed. The hypogene mineralization contains 0.4–1.2% Cu and is spatially and temporally related to the late-potassic alteration event. Molybdenum concentration is typically In the deepest part of the system, an early generation of low-to-moderate density and salinity liquid + vapor inclusions with opaque daughter minerals is followed in time by halite-bearing inclusions that also contain opaque daughter minerals indicating that an early intermediate-density magmatic fluid evolved to a high-density, high-salinity mineralizing fluid. The increase in density and salinity of fluids with time observed in the deeper parts of the system may be the result of immiscibility (“boiling”) of

  16. Chemical environments of submarine hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.

    1992-01-01

    Perhaps because black-smoker chimneys make tremendous subjects for magazine covers, the proposal that submarine hydrothermal systems were involved in the origin of life has caused many investigators to focus on the eye-catching hydrothermal vents. In much the same way that tourists rush to watch the spectacular eruptions of Old Faithful geyser with little regard for the hydrology of the Yellowstone basin, attention is focused on the spectacular, high-temperature hydrothermal vents to the near exclusion of the enormous underlying hydrothermal systems. Nevertheless, the magnitude and complexity of geologic structures, heat flow, and hydrologic parameters which characterize the geyser basins at Yellowstone also characterize submarine hydrothermal systems. However, in the submarine systems the scale can be considerably more vast. Like Old Faithful, submarine hydrothermal vents have a spectacular quality, but they are only one fascinating aspect of enormous geologic systems operating at seafloor spreading centers throughout all of the ocean basins. A critical study of the possible role of hydrothermal processes in the origin of life should include the full spectrum of probable environments. The goals of this chapter are to synthesize diverse information about the inorganic geochemistry of submarine hydrothermal systems, assemble a description of the fundamental physical and chemical attributes of these systems, and consider the implications of high-temperature, fluid-driven processes for organic synthesis. Information about submarine hydrothermal systems comes from many directions. Measurements made directly on venting fluids provide useful, but remarkably limited, clues about processes operating at depth. The oceanic crust has been drilled to approximately 2.0 km depth providing many other pieces of information, but drilling technology has not allowed the bore holes and core samples to reach the maximum depths to which aqueous fluids circulate in oceanic crust. Such

  17. Hydrothermal Evolution of the Giant Cenozoic Kadjaran porphyry Cu-Mo deposit, Tethyan metallogenic belt, Armenia, Lesser Caucasus: mineral paragenetic, cathodoluminescence and fluid inclusion constraints

    Science.gov (United States)

    Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik; Rezeau, Hervé

    2016-04-01

    The Lesser Caucasus belongs to the Central segment of the Tethyan metallogenic belt and it is a key area to understand the metallogenic evolution between the Western & Central parts of the Tethyan belt and its extension into Iran. Zangezur is the most important mineral district in the southernmost Lesser Caucasus. It is a component of the South Armenian block, and it was generated during the convergence and collision of the southern margin of the Eurasian plate and the northern margin of the Arabian plate, and terranes of Gondwana origin (Moritz et al., in press). The Zangezur ore district consists of the Tertiary Meghri-Ordubad composite pluton, which is characterized by a long-lasting Eocene to Pliocene magmatic, tectonic and metallogenic evolution. It hosts major porphyries Cu-Mo and epithermal Au - polymetallic deposits and occurrences, including the giant world class Kadjaran porphyry Cu-Mo deposit (2244 Mt reserves, 0.3% Cu, 0.05% Mo and 0.02 g/t Au). The Kadjaran deposit is hosted by a monzonite intrusion (31.83±0.02Ma; Moritz et al., in press). Detailed field studies of the porphyry stockwork and veins of the different mineralization stages, their crosscutting and displacement relationships and the age relationship between different paragenetic mineral associations were the criteria for distinction of the main stages of porphyry mineralization at the Kadjaran deposit. The economic stages being: quartz- molybdenite, quartz-molybdenite-chalcopyrite, and quartz-chalcopyrite. The main paragenetic association of the Kadjaran porphyry deposit includes pyrite, molybdenite, chalcopyrite, bornite, chalcocite, pyrrhotite, covellite, sphalerite, and galena. Recent field observations in the Kadjaran open pit revealed the presence of epithermal veins with late vuggy silica and advanced argillic alteration in the north-eastern and eastern parts of the deposit. They are distributed as separate veins and have also been recognized in re-opened porphyry veins and in

  18. A new indicator mineral methodology based on a generic Bi-Pb-Te-S mineral inclusion signature in detrital gold from porphyry and low/intermediate sulfidation epithermal environments in Yukon Territory, Canada

    Science.gov (United States)

    Chapman, R. J.; Allan, M. M.; Mortensen, J. K.; Wrighton, T. M.; Grimshaw, M. R.

    2017-12-01

    Porphyry-epithermal and orogenic gold are two of the most important styles of gold-bearing mineralization within orogenic belts. Populations of detrital gold resulting from bulk erosion of such regions may exhibit a compositional continuum wherein Ag, Cu, and Hg in the gold alloy may vary across the full range exhibited by natural gold. This paper describes a new methodology whereby orogenic and porphyry-epithermal gold may be distinguished according to the mineralogy of microscopic inclusions observed within detrital gold particles. A total of 1459 gold grains from hypogene, eluvial, and placer environments around calc-alkaline porphyry deposits in Yukon (Nucleus-Revenue, Casino, Sonora Gulch, and Cyprus-Klaza) have been characterized in terms of their alloy compositions (Au, Ag, Cu, and Hg) and their inclusion mineralogy. Despite differences in the evolution of the different magmatic hydrothermal systems, the gold exhibits a clear Bi-Pb-Te-S mineralogy in the inclusion suite, a signature which is either extremely weak or (most commonly) absent in both Yukon orogenic gold and gold from orogenic settings worldwide. Generic systematic compositional changes in ore mineralogy previously identified across the porphyry-epithermal transition have been identified in the corresponding inclusion suites observed in samples from Yukon. However, the Bi-Te association repeatedly observed in gold from the porphyry mineralization persists into the epithermal environment. Ranges of P-T-X conditions are replicated in the geological environments which define generic styles of mineralization. These parameters influence both gold alloy composition and ore mineralogy, of which inclusion suites are a manifestation. Consequently, we propose that this methodology approach can underpin a widely applicable indicator methodology based on detrital gold.

  19. Geophysical and geochemical methods applied to investigate fissure-related hydrothermal systems on the summit area of Mt. Etna volcano (Italy)

    Science.gov (United States)

    Maucourant, Samuel; Giammanco, Salvatore; Greco, Filippo; Dorizon, Sophie; Del Negro, Ciro

    2014-06-01

    A multidisciplinary approach integrating self-potential, soil temperature, heat flux, CO2 efflux and gravity gradiometry signals was used to investigate a relatively small fissure-related hydrothermal system near the summit of Mt. Etna volcano (Italy). Measurements were performed through two different surveys carried out at the beginning and at the end of July 2009, right after the end of the long-lived 2008-2009 flank eruption and in coincidence with an increase in diffuse flank degassing related to a reactivation of the volcano, leading to the opening of a new summit vent (NSEC). The main goal was to use a multidisciplinary approach to the detection of hidden fractures in an area of evident near-surface hydrothermal activity. Despite the different methodologies used and the different geometry of the sampling grid between the surveys, all parameters concurred in confirming that the study area is crossed by faults related with the main fracture systems of the south flank of the volcano, where a continuous hydrothermal circulation is established. Results also highlighted that hydrothermal activity in this area changed both in space and in time. These changes were a clear response to variations in the magmatic system, notably to migration of magma at various depth within the main feeder system of the volcano. The results suggest that this specific area, initially chosen as the optimal test-site for the proposed approach, can be useful in order to get information on the potential reactivation of the summit craters of Mt. Etna.

  20. Petrography and fluid inclusions study in Marbin porphyry Molybdenum (Sn) index (northeast of Isfahan)

    International Nuclear Information System (INIS)

    Mirzaei, M.; Bagheri, H.; Ayati, F.

    2016-01-01

    Marbin Tin and Molybdenum index is located in north of Zefreh Village the Isfahan Province and Uromieh-Dokhtar magmatic zone. The main rock units in this area are Eocene subvolcanic and volcanic rocks with rhyolite to dacite composition. Based on petrography studies the main minerals are plagioclase, quartz, sanidine and biotite and secondary minerals are chlorite, calcite, epidote and sericite. The main hydrothermal alterations are including sericitic, propylitic, intermediate argillic and silisification. Average grade of tin, molybdenum, copper and gold is about 4850, 157, 330 ppm and 82 ppb, respectively. Microthermometric studies on silica veins and veinlet indicate five different types of fluid inclusion, 1-three-phase type (L+V+S→L), 2- three-phase type (L+V+S→V), 3- two-phase type (L+V→L), 4- two-phase type (V+L→V), 5- vapor rich single phase type (V). Fluid inclusion studies in mineralized veins in phyllic and propylitic zones, show the wide range of homogenization temperature from 248 to 600 ºC and salinity from 28 to 65 wt% NaCl equivalent. The temperature, salinity and density of fluids decrease from phyllic to propylitic alteration zone. The wide range of homogenization temperatures for the studied fluid inclusions in index show dilution with surface water and fluid boiling, as the most important factor in ore deposition. According to field, mineralogical, geochemical and fluid inclusion studies Marbin index has been considered as a porphyry deposit type which show the most similarity with Mo porphyry systems in world wide.

  1. Porphyry of Russian Empires in Paris

    Science.gov (United States)

    Bulakh, Andrey

    2014-05-01

    Porphyry of Russian Empires in Paris A. G. Bulakh (St Petersburg State University, Russia) So called "Schokhan porphyry" from Lake Onega, Russia, belongs surely to stones of World cultural heritage. One can see this "porphyry" at facades of a lovely palace of Pavel I and in pedestal of the monument after Nicolas I in St Petersburg. There are many other cases of using this stone in Russia. In Paris, sarcophagus of Napoleon I Bonaparte is constructed of blocks of this stone. Really, it is Proterozoic quartzite. Geology situation, petrography and mineralogical characteristic will be reported too. Comparison with antique porphyre from the Egyptian Province of the Roma Empire is given. References: 1) A.G.Bulakh, N.B.Abakumova, J.V.Romanovsky. St Petersburg: a History in Stone. 2010. Print House of St Petersburg State University. 173 p.

  2. Variation of molybdenum isotopes in molybdenite from porphyry and vein Mo deposits in the Gangdese metallogenic belt, Tibetan plateau and its implications

    Science.gov (United States)

    Wang, Yong; Zhou, Lian; Gao, Shan; Li, Jian-Wei; Hu, Zhi-Fang; Yang, Lu; Hu, Zhao-Chu

    2016-02-01

    We present Mo isotopic ratios of molybdenite from five porphyry molybdenum deposits (Chagele, Sharang, Jiru, Qulong, and Zhuonuo) and one quartz-molybdenite vein-type deposit (Jigongcun) along the Gangdese metallogenic belt in the Tibetan Plateau. These deposits represent a sequence of consecutive events of the India-Asia collision at different periods. Additional molybdenite samples from the Henderson Mo deposit (USA), the oceanic subduction-related El Teniente (Chile), and Bingham (USA) porphyry Cu-(Mo) deposits were analyzed for better understanding the controls on the Mo isotope systematics of molybdenite. The results show that molybdenite from Sharang, Jiru, Qulong, and Zhuonuo deposits have similar δ97Mo (˜0 ‰), in agreement with the values of the Henderson Mo deposit (-0.10 ‰). In contrast, samples from the Changle and Jigongcun deposit have δ97Mo of 0.85 ‰ to 0.88 ‰ and -0.48 %, respectively. Molybdenite from the El Teniente and Bingham deposits yields intermediate δ97Mo of 0.27 and 0.46 ‰, respectively. The Mo isotopes, combined with Nd isotope data of the ore-bearing porphyries, indicate that source of the ore-related magmas has fundamental effects on the Mo isotopic compositions of molybdenite. Our study indicates that molybdenite related to crustal-, and mantle-derived magmas has positive or negative δ97Mo values, respectively, whereas molybdenite from porphyries formed by crust-mantle mixing has δ97Mo close to 0 ‰. It is concluded that the Mo isotope composition in the porphyry system is a huge source signature, without relation to the tectonic setting under which the porphyry deposits formed.

  3. A climate signal in exhumation patterns revealed by porphyry copper deposits

    Science.gov (United States)

    Yanites, Brian J.; Kesler, Stephen E.

    2015-06-01

    The processes that build and shape mountain landscapes expose important mineral resources. Mountain landscapes are widely thought to result from the interaction between tectonic uplift and exhumation by erosion. Both climate and tectonics affect rates of exhumation, but estimates of their relative importance vary. Porphyry copper deposits are emplaced at a depth of about 2 km in convergent tectonic settings; their exposure at the surface therefore can be used to track landscape exhumation. Here we analyse the distribution, ages and spatial density of exposed Cenozoic porphyry copper deposits using a global data set to quantify exhumation. We find that the deposits exhibit young ages and are sparsely distributed--both consistent with rapid exhumation--in regions with high precipitation, and deposits are older and more abundant in dry regions. This suggests that climate is driving erosion and mineral exposure in deposit-bearing mountain landscapes. Our findings show that the emplacement ages of porphyry copper deposits provide a means to estimate long-term exhumation rates in active orogens, and we conclude that climate-driven exhumation influences the age and abundance of exposed porphyry copper deposits around the world.

  4. Biosphere in 3.5 Ga submarine hydrothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Yuichiro [Tokyo Univ. (Japan). Dept. of Earth Science and Astronomy

    2003-04-01

    Abundant organic matter (kerogen) was identified in {approx}3.5 Ga hydrothermal silica dikes from the North Pole area in the Pilbara craton, Western Australia. The silica dikes developed in the uppermost 1000 m of the ancient oceanic crust. Thus, they would have been deposited in the 3.5 Ga sub-seafloor hydrothermal system. The carbon and nitrogen isotopic compositions of the kerogen were analyzed in this study. Their highly {sup 13}C-depleted isotopic compositions ({delta}{sup 13}C = -38 to -33 per mille) strongly suggest that they are originally derived from biologically produced organic matter. The remarkable similarity of the {delta}{sup 13}C values between the kerogen and modern hydrothermal vent organisms may suggest that the kerogen was derived from chemoautotrophic organisms. This idea is also consistent with their nitrogen isotopic compositions ({delta}{sup 15}N = -4 to +4 per mille). The silica dikes consist mainly of fine-grained silica with minor pyrite and sphalerite. These mineral assemblages indicate that the silica dike was deposited from relatively low-temperature (probably less than 150degC) reducing hydrothermal fluid. Thus, anaerobic thermophilic/hyperthermophilic organisms could have survived in the hydrothermal fluid, which formed the silica dikes. Therefore, it is plausible that a chemoautotrophic-based biosphere (possibly methanogenesis) probably existed in the Early Archean sub-seafloor hydrothermal system. (author)

  5. Geology and porphyry copper-type alteration-mineralization of igneous rocks at the Christmas Mine, Gila County, Arizona

    Science.gov (United States)

    Koski, Randolph A.

    1979-01-01

    The Christmas copper deposit, located in southern Gila County, Arizona, is part of the major porphyry copper province of southwestern North America. Although Christmas is known for skarn deposits in Paleozoic carbonate rocks, ore-grade porphyry-type copper mineralization also occurs in a composite granodioritic intrusive complex and adjacent mafic volcanic country rocks. This study considers the nature, distribution, and genesis of alteration-mineralization in the igneous rock environment at Christmas. At the southeast end of the Dripping Spring Mountains, the Pennsylvanian Naco Limestone is unconformably overlain by the Cretaceous Williamson Canyon Volcanics, a westward-thinning sequence of basaltic volcanic breccia and lava flows, and subordinate clastic sedimentary rocks. Paleozoic and Mesozoic strata are intruded by Laramide-age dikes, sills, and small stocks of hornblende andesite porphyry and hornblende rhyodacite porphyry, and the mineralized Christmas intrusive complex. Rocks of the elongate Christmas stock, intruded along an east-northeast-trending fracture zone, are grouped into early, veined quartz diorite (Dark Phase), biotite granodiorite porphyry (Light Phase), and granodiorite; and late, unveined dacite porphyry and granodiorite porphyry. Biotite rhyodacite porphyry dikes extending east and west from the vicinity of the stock are probably coeval with biotite granodiorite porphyry. Accumulated normal displacement of approximately 1 km along the northwest-trending Christmas-Joker fault system has juxtaposed contrasting levels (lower, intrusive-carbonate rock environment and upper, intrusive-volcanic rock environment) within the porphyry copper system. K-Ar age determinations and whole-rock chemical analyses of the major intrusive rock types indicate that Laramide calc-alkaline magmatism and ore deposition at Christmas evolved over an extended period from within the Late Cretaceous (~75-80 m.y. ago) to early Paleocene (~63-61 m.y. ago). The sequence of

  6. Extremely Re-Rich Molybdenite from Porphyry Cu-Mo-Au Prospects in Northeastern Greece: Mode of Occurrence, Causes of Enrichment, and Implications for Gold Exploration

    Directory of Open Access Journals (Sweden)

    Tamara Kartal

    2013-05-01

    Full Text Available Extremely Re-rich molybdenite occurs with pyrite in sodic–calcic, sodic–sericitic and sericitic-altered porphyritic stocks of granodioritic–tonalitic and granitic composition in the Sapes–Kirki–Esymi, Melitena and Maronia areas, northeastern Greece. Molybdenite in the Pagoni Rachi and Sapes deposits is spatially associated with rheniite, as well as with intermediate (Mo,ReS2 and (Re,MoS2 phases, with up to 46 wt % Re. Nanodomains and/or microinclusions of rheniite may produce the observed Re enrichment in the intermediate molybdenite–rheniite phases. The extreme Re content in molybdenite and the unique presence of rheniite in porphyry-type mineralization, combined with preliminary geochemical data (Cu/Mo ratio, Au grades may indicate that these deposits have affinities with Cu–Au deposits, and should be considered potential targets for gold mineralization in the porphyry environment. In the post-subduction tectonic regime of northern Greece, the extreme Re and Te enrichments in the magmatic-hydrothermal systems over a large areal extent are attributed to an anomalous source (e.g., chemical inhomogenities in the mantle-wedge triggered magmatism, although local scale processes cannot be underestimated.

  7. Re-Os dating of mineralization in Siah Kamar porphyry Mo deposit (NW Iran) and investigating on its temporal relationship with porphyry Cu-Mo deposits in the southern Lesser Caucasus, NW and central Iran

    Science.gov (United States)

    Simmonds, Vartan; Moazzen, Mohssen; Selby, David

    2017-04-01

    correlates with the Siah Kamar PMD. This signifies the episodic nature of magmatic activities and the related mineralizations along the UDMA and meanwhile, indicates that collision between the Arabian and Iranian plates was dischronous, being earlier in NW Iran and later in SE Iran, which can be resulted from the oblique convergence of these plates. Therefore, while the north-western part of the Neo-Tethyan basin (in the Lesser Caucasus and NW Iran) was closed in lower Eocene [1], its SE section was still open and so, the magmatism and mineralizations resulted from the melting of subducting slab and mantle metasomatism vary temporally along the UDMA. [1] Moritz, R., Rezeau, H., Ovtcharova, M., Tayan, R., Melkonyan, R., Hovakimyan, S., Ramazanov, V., Selby, D., Ulianov, A., Chiaradia, M., and Putlitz, B. (2016) Long-lived, stationary magmatism and pulsed porphyry systems during Tethyan subduction to post-collision evolution in the southernmost Lesser Caucasus, Armenia and Nakhitchevan. Gondwana Research, 37, 465-503. [2] Simmonds, V., Moazzen, M., and Mathur, R. (2016) Investigation on the age of mineralization in the Sungun porphyry Cu-Mo deposit, NW Iran with a regional metallogenic perspective. EGU General Assembly, 17-22 April 2016, Vienna.

  8. Undiscovered porphyry copper resources in the Urals—A probabilistic mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Mihalasky, Mark J.; Ludington, Stephen; Phillips, Jeffrey; Berger, Byron R.; Denning, Paul; Dicken, Connie; Mars, John; Zientek, Michael L.; Herrington, Richard J.; Seltmann, Reimar

    2017-01-01

    A probabilistic mineral resource assessment of metal resources in undiscovered porphyry copper deposits of the Ural Mountains in Russia and Kazakhstan was done using a quantitative form of mineral resource assessment. Permissive tracts were delineated on the basis of mapped and inferred subsurface distributions of igneous rocks assigned to tectonic zones that include magmatic arcs where the occurrence of porphyry copper deposits within 1 km of the Earth's surface are possible. These permissive tracts outline four north-south trending volcano-plutonic belts in major structural zones of the Urals. From west to east, these include permissive lithologies for porphyry copper deposits associated with Paleozoic subduction-related island-arc complexes preserved in the Tagil and Magnitogorsk arcs, Paleozoic island-arc fragments and associated tonalite-granodiorite intrusions in the East Uralian zone, and Carboniferous continental-margin arcs developed on the Kazakh craton in the Transuralian zone. The tracts range from about 50,000 to 130,000 km2 in area. The Urals host 8 known porphyry copper deposits with total identified resources of about 6.4 million metric tons of copper, at least 20 additional porphyry copper prospect areas, and numerous copper-bearing skarns and copper occurrences.Probabilistic estimates predict a mean of 22 undiscovered porphyry copper deposits within the four permissive tracts delineated in the Urals. Combining estimates with established grade and tonnage models predicts a mean of 82 million metric tons of undiscovered copper. Application of an economic filter suggests that about half of that amount could be economically recoverable based on assumed depth distributions, availability of infrastructure, recovery rates, current metals prices, and investment environment.

  9. Fluid Inclusion and Oxygen Isotope Constraints on the Origin and Hydrothermal Evolution of the Haisugou Porphyry Mo Deposit in the Northern Xilamulun District, NE China

    Directory of Open Access Journals (Sweden)

    Qihai Shu

    2017-01-01

    Full Text Available The Haisugou porphyry Mo deposit is located in the northern Xilamulun district, northeastern China. Based on alteration and mineralization styles and crosscutting relationships, the hydrothermal evolution in Haisugou can be divided into three stages: an early potassic alteration stage with no significant metal deposition, a synmineralization sericite-chlorite alteration stage with extensive Mo precipitation, and a postmineralization stage characterized by barren quartz and minor calcite and fluorite. The coexistence of high-salinity brine inclusions with low-salinity inclusions both in potassic alteration stage (~440°C and locally in the early time of mineralization stage (380–320°C indicates the occurrence of fluid boiling. The positive correlations between the homogenization temperatures and the salinities of the fluids and the low oxygen isotopic compositions (δ18Ofluid < 3‰ of the syn- to postmineralization quartz together suggest the mixing of magmatic fluids with meteoric water, which dominated the whole mineralization process. The early boiling fluids were not responsible for ore precipitation, whereas the mixing with meteoric water, which resulted in temperature decrease and dilution that significantly reduced the metal solubility, should have played the major role in Mo mineralization. Combined fluid inclusion microthermometry and chlorite geothermometer results reveal that ore deposition mainly occurred between 350 and 290°C in Haisugou.

  10. Paleozoic–Mesozoic Porphyry Cu(Mo and Mo(Cu Deposits within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (a Review

    Directory of Open Access Journals (Sweden)

    Anita N. Berzina

    2016-11-01

    Full Text Available The southern margin of the Siberian craton hosts numerous Cu(Mo and Mo(Cu porphyry deposits. This review provides the first comprehensive set of geological characteristics, geochronological data, petrochemistry, and Sr–Nd isotopic data of representative porphyry Cu(Mo and Mo(Cu deposits within the southern margin of the Siberian craton and discusses the igneous processes that controlled the evolution of these magmatic systems related to mineralization. Geochronological data show that these porphyry deposits have an eastward-younging trend evolving from the Early Paleozoic to Middle Mesozoic. The western part of the area (Altay-Sayan segment hosts porphyry Cu and Mo–Cu deposits that generally formed in the Early Paleozoic time, whereas porphyry Cu–Mo deposits in the central part (Northern Mongolia formed in the Late Paleozoic–Early Mesozoic. The geodynamic setting of the region during these mineralizing events is consistent with Early Paleozoic subduction of Paleo-Asian Ocean plate with the continuous accretion of oceanic components to the Siberian continent and Late Paleozoic–Early Mesozoic subduction of the west gulf of the Mongol–Okhotsk Ocean under the Siberian continent. The eastern part of the study area (Eastern Transbaikalia hosts molybdenum-dominated Mo and Mo–Cu porphyry deposits that formed in the Jurassic. The regional geodynamic setting during this mineralizing process is related to the collision of the Siberian and North China–Mongolia continents during the closure of the central part of the Mongol–Okhotsk Ocean in the Jurassic. Available isotopic data show that the magmas related to porphyritic Cu–Mo and Mo–Cu mineralization during the Early Paleozoic and Late Paleozoic–Early Mesozoic were mainly derived from mantle materials. The generation of fertile melts, related to porphyritic Mo and Mo–Cu mineralization during the Jurassic involved variable amounts of metasomatized mantle source component, the

  11. Multiple and prolonged porphyry Cu–Au mineralization and alteration events in the Halasu deposit, Chinese Altai, Xinjiang, northwestern China

    Directory of Open Access Journals (Sweden)

    Chunji Xue

    2016-09-01

    Full Text Available The Halasu area is located in the southeastern margin of the Chinese Altai in Xinjiang, China. It is part of the Altaid orogenic collage where a number of porphyry-type Cu–Mo–Au deposits have been discovered in recent years. Geological mapping and drilling indicate the presence of various mineralized porphyritic intrusions in the Halasu Cu–Au deposit, which is currently under exploration. U–Pb dating of zircon crystals from four different mineralized porphyries reveals three significantly different ages of magmatic intrusion, i.e., ca. 372–382 Ma granodioritic porphyry and porphyritic granite, ca. 266 Ma quartz monzonitic porphyry, and ca. 216 Ma quartz dioritic porphyry. Re–Os dating of molybdenite from veinlet-dissemination ores in the granodioritic porphyry yields an age of mineralization of ca. 377 Ma, and Ar–Ar dating of K-feldspar from K-feldspar–quartz–chalcopyrite veins produces ages of ca. 269 and ca. 198 Ma. The mineralization (and alteration ages correspond broadly to the three episodes of magmatic intrusion, suggesting three overprinting porphyry mineralization events that are significantly separated in time. The first episode of porphyry intrusion and mineralization may be related to the magmatic arc being above a plate subduction zone, and the second was formed in a late-collisional environment during the closing of the Junggar Ocean, whereas the third episode of mineralization took place in the post-collisional stage. This case study suggests that in orogens where major porphyry deposits have been found in magmatic arc environments, the potential of discovering late- to post-collisional porphyry deposits cannot be neglected; conversely, in orogens where most porphyry deposits have late- to post-collisional ages, more attention should be paid to porphyries that were formed earlier in magmatic arc environments.

  12. Molybdenum mineralization related to the Yangtze's lower crust and differentiation in the Dabie Orogen: Evidence from the geochemical features of the Yaochong porphyry Mo deposit

    Science.gov (United States)

    Liu, Qing-Quan; Li, Bin; Shao, Yong-Jun; Lu, An-Huai; Lai, Jian-Qing; Li, Yong-Feng; Luo, Zheng-Zhuan

    2017-06-01

    The Dabie Orogen is a world-class case for large amounts of Mo mineralization in that it contains at least 10 porphyry Mo deposits with Mo metal reserves over 3 Mt from the time period of 156-110 Ma. However, the principal mechanism for the Mo mineralization remains controversial due to the lack of a precise definition of its source and shallow ore-forming process, which is essential to understand these rare large Mo deposits. Detailed geochronology, geochemistry, and isotopic data for ore-related granites and minerals were analyzed in order to place constraints on the massive Mo mineralization in the Dabie Orogen in eastern China. The Yaochong molybdenum orebodies were hosted in the transition belt and alteration zone between the granitic stocks and the Dabie Complex and were characterized as numerous veinlets with potassic, phyllic and propylitic alterations. The buried Yaochong granitic intrusions and associated molybdenum mineralization yield Early Cretaceous ages of magmatic activities at ca. 138 Ma and extremely similar Re-Os isotope ages for the corresponding Mo metallogenic event at ca. 137 Ma. The Yaochong monzogranite and granite porphyry belong to the highly fractionated I-type granites, which are believed to be derived from the dominantly Yangtze's lower crust mixed with the Northern Dabie Complex due to their geochemical and isotope features. The elemental diversity and isotopic homogeneity suggest that the formation of the Yaochong monzogranite involved the fractionation of biotite, garnet and minor feldspar and accessory minerals combined with a weak crustal assimilation process. In contrast, the granite porphyry was possibly generated by the partial melting of the same mixed lower continental crust via the differentiation process involving the fractionation of feldspar, apatite, and/or titanite. Fractional crystallization processes can significantly elevate the molybdenum concentration in the residual melts. The biotite fractional crystallization

  13. Distribution and composition of gold in porphyry gold systems: example from the Biely Vrch deposit, Slovakia

    Science.gov (United States)

    Koděra, Peter; Kozák, Jaroslav; Brčeková, Jana; Chovan, Martin; Lexa, Jaroslav; Jánošík, Michal; Biroň, Adrián; Uhlík, Peter; Bakos, František

    2018-03-01

    The Biely Vrch deposit in the Western Carpathians is assigned to the shallow, sulfide-poor porphyry gold deposit type and has an exceptionally low Cu/Au ratio. According to 3-D geochemical models, there is a limited spatial correlation between Au and Cu due to the primary introduction of gold by a salt melt and Cu by low-density vapor. Despite a rough spatial correlation of gold grades with quartz stockwork intensity, gold is hosted mostly by altered rock, exclusively in native form. Three main gold mineral assemblages were recognized here. In the deepest parts of the system, the K- and Ca-Na silicate gold assemblage is associated with minerals of high-temperature alteration (plagioclase, K-feldspar, actinolite), with gold grades and fineness depending on depth and potassium content of the host rock: K-silicate alteration hosts the lowest fineness gold ( 914), whereas Ca-Na silicate alteration has the highest ( 983). The intermediate argillic gold assemblage is the most widespread, with gold hosted mainly by chlorite, illite, smectite, and interstratified illite-chlorite-smectite minerals. The gold fineness is mostly variable (875-990) and inherited from the former gold mineral assemblages. The latest advanced argillic gold assemblage has its gold mostly in kaolinite. The extremely high fineness ( 994) results from gold remobilization by late-stage aqueous magmatic-hydrothermal fluids. Uncommon bonanza-grade appears where the earlier gold mineral assemblages were further enriched by this remobilized gold. Primary precipitation of gold occurred during ascent and cooling of salt melts at 450 to 309 °C, mostly during retrograde quartz solubility.

  14. Modeling of the fault-controlled hydrothermal ore-forming systems

    International Nuclear Information System (INIS)

    Pek, A.A.; Malkovsky, V.I.

    1993-07-01

    A necessary precondition for the formation of hydrothermal ore deposits is a strong focusing of hydrothermal flow as fluids move from the fluid source to the site of ore deposition. The spatial distribution of hydrothermal deposits favors the concept that such fluid flow focusing is controlled, for the most part, by regional faults which provide a low resistance path for hydrothermal solutions. Results of electric analog simulations, analytical solutions, and computer simulations of the fluid flow, in a fault-controlled single-pass advective system, confirm this concept. The influence of the fluid flow focusing on the heat and mass transfer in a single-pass advective system was investigated for a simplified version of the metamorphic model for the genesis of greenstone-hosted gold deposits. The spatial distribution of ore mineralization, predicted by computer simulation, is in reasonable agreement with geological observations. Computer simulations of the fault-controlled thermoconvective system revealed a complex pattern of mixing hydrothermal solutions in the model, which also simulates the development of the modern hydrothermal systems on the ocean floor. The specific feature of the model considered, is the development under certain conditions of an intra-fault convective cell that operates essentially independently of the large scale circulation. These and other results obtained during the study indicate that modeling of natural fault-controlled hydrothermal systems is instructive for the analysis of transport processes in man-made hydrothermal systems that could develop in geologic high-level nuclear waste repositories

  15. Non-traditional Stable Isotope Systematics of Seafloor Hydrothermal Systems

    Science.gov (United States)

    Rouxel, O. J.

    2009-05-01

    Seafloor hydrothermal activity at mid-ocean ridges is one of the fundamental processes controlling the chemistry of the oceans and the altered oceanic crust. Past studies have demonstrated the complexity and diversity of seafloor hydrothermal systems and have highlighted the importance of subsurface environments in controlling the composition of hydrothermal fluids and mineralization types. Traditionally, the behavior of metals in seafloor hydrothermal systems have been investigated by integrating results from laboratory studies, theoretical models, mineralogy and fluid and mineral chemistry. Isotope ratios of various metals and metalloids, such as Fe, Cu, Zn, Se, Cd and Sb have recently provided new approaches for the study of seafloor hydrothermal systems. Despite these initial investigations, the cause of the isotopic variability of these elements remains poorly constrained. We have little understanding of the isotope variations between vent types (black or white smokers) as well as the influence of source rock composition (basalt, felsic or ultrabasic rocks) and alteration types. Here, I will review and present new results of metal isotope systematics of seafloor hydrothermal systems, in particular: (1) determination of empirical isotope fractionation factors for Zn, Fe and Cu-isotopes through isotopic analysis of mono-mineralic sulfide grains lining the internal chimney wall in contact with hydrothermal fluid; (2) comparison of Fe- and Cu-isotope signatures of vent fluids from mid- oceanic and back-arc hydrothermal fields, spanning wide ranges of pH, temperature, metal concentrations and contributions of magmatic fluids enriched in SO2. Ultimately, the use of complementary non-traditional stable isotope systems may help identify and constrain the complex interactions between fluids,minerals, and organisms in seafloor hydrothermal systems.

  16. Basin scale permeability and thermal evolution of a magmatic hydrothermal system

    Science.gov (United States)

    Taron, J.; Hickman, S. H.; Ingebritsen, S.; Williams, C.

    2013-12-01

    Large-scale hydrothermal systems are potentially valuable energy resources and are of general scientific interest due to extreme conditions of stress, temperature, and reactive chemistry that can act to modify crustal rheology and composition. With many proposed sites for Enhanced Geothermal Systems (EGS) located on the margins of large-scale hydrothermal systems, understanding the temporal evolution of these systems contributes to site selection, characterization and design of EGS. This understanding is also needed to address the long-term sustainability of EGS once they are created. Many important insights into heat and mass transfer within natural hydrothermal systems can be obtained through hydrothermal modeling assuming that stress and permeability structure do not evolve over time. However, this is not fully representative of natural systems, where the effects of thermo-elastic stress changes, chemical fluid-rock interactions, and rock failure on fluid flow and thermal evolution can be significant. The quantitative importance of an evolving permeability field within the overall behavior of a large-scale hydrothermal system is somewhat untested, and providing such a parametric understanding is one of the goals of this study. We explore the thermal evolution of a sedimentary basin hydrothermal system following the emplacement of a magma body. The Salton Sea geothermal field and its associated magmatic system in southern California is utilized as a general backdrop to define the initial state. Working within the general framework of the open-source scientific computing initiative OpenGeoSys (www.opengeosys.org), we introduce full treatment of thermodynamic properties at the extreme conditions following magma emplacement. This treatment utilizes a combination of standard Galerkin and control-volume finite elements to balance fluid mass, mechanical deformation, and thermal energy with consideration of local thermal non-equilibrium (LTNE) between fluids and solids

  17. Climax-Type Porphyry Molybdenum Deposits

    Science.gov (United States)

    Ludington, Steve; Plumlee, Geoffrey S.

    2009-01-01

    Climax-type porphyry molybdenum deposits, as defined here, are extremely rare; thirteen deposits are known, all in western North America and ranging in age from Late Cretaceous to mainly Tertiary. They are consistently found in a postsubduction, extensional tectonic setting and are invariably associated with A-type granites that formed after peak activity of a magmatic cycle. The deposits consist of ore shells of quartz-molybdenite stockwork veins that lie above and surrounding the apices of cupola-like, highly evolved, calc-alkaline granite and subvolcanic rhyolite-porphyry bodies. These plutons are invariably enriched in fluorine (commonly >1 percent), rubidium (commonly >500 parts per million), and niobium-tantalum (Nb commonly >50 parts per million). The deposits are relatively high grade (typically 0.1-0.3 percent Mo) and may be very large (typically 100-1,000 million tons). Molybdenum, as MoS2, is the primary commodity in all known deposits. The effect on surface-water quality owing to natural influx of water or sediment from a Climax-type mineralized area can extend many kilometers downstream from the mineralized area. Waste piles composed of quartz-silica-pyrite altered rocks will likely produce acidic drainage waters. The potential exists for concentrations of fluorine or rare metals in surface water and groundwater to exceed recommended limits for human consumption near both mined and unmined Climax-type deposits.

  18. Geochronology and geochemistry constraints of the Early Cretaceous Taibudai porphyry Cu deposit, northeast China, and its tectonic significance

    Science.gov (United States)

    Zhou, Zhen-Hua; Mao, Jing-Wen; Wu, Xin-Li; Ouyang, Hen-Gen

    2015-05-01

    The southern Great Xing'an Range (SGXR), located in the southeastern part of Inner Mongolia, China, shows intense Mesozoic tectono-magmatic activity and hosts economically important polymetallic (Cu-Pb-Zn-Sn-Fe-Ag-Au-Mo) mineralization. Here, we present new zircon U-Pb ages, whole-rock geochemical data, Nd-Sr-Hf isotopic data and Re-Os ages for the Taibudai deposit in the SGXR. The Taibudai granitoids show high SiO2 (70.62-72.13 wt.%) and alkali (Na2O + K2O = 7.04-8.60 wt.%) concentrations, low MgO (0.89-1.37 wt.%) and Al2O3 (∼14 wt.%), ASI ratios molybdenite from the deposit yield an ore-forming age of 137.1 ± 1.4 Ma. Re contents range from 4.37 to 41.77 ppm, implying ore material components have a mixed crust-mantle origin. SHRIMP analysis of zircons show that the monzogranitic porphyry and biotite granite in the Taibudai deposit were formed at 137.0 ± 0.9 Ma and 138.3 ± 0.9 Ma, respectively, indicating a temporal link between granitic magmatism and Cu mineralization. This result, combined with the regional geology, tectonic evolution, and age data from the literature, suggests that the Early Cretaceous (∼140 Ma) was the peak metallogenic epoch for the Great Xing'an Range, and the mineralization in this period generally takes the form of porphyry, skarn, or hydrothermal polymetallic ore deposits in an active extensional continental margin environment. The Taibudai porphyry and associated mineralization provides a typical example of magmatism and metallogeny associated with a Paleo-Pacific plate subduction, continental margin, back-arc extensional setting.

  19. Porphyry copper assessment of Europe, exclusive of the Fennoscandian Shield: Chapter K in Global mineral resource assessment

    Science.gov (United States)

    Sutphin, David M.; Hammarstrom, Jane M.; Drew, Lawrence J.; Large, Duncan E.; Berger, Byron R.; Dicken, Connie L.; DeMarr, Michael W.; with contributions from Billa, Mario; Briskey, Joseph A.; Cassard, Daniel; Lips, Andor; Pertold, Zdeněk; Roşu, Emilian

    2013-01-01

    The U.S. Geological Survey (USGS) collaborated with European geologists to assess resources in porphyry copper deposits in Europe, exclusive of Scandinavia (Sweden, Denmark, Norway, and Finland) and Russia. Porphyry copper deposits in Europe are Paleozoic and Late Cretaceous to Miocene in age. A number of the 31 known Phanerozoic deposits contain more than 1 million metric tons of contained copper, including the Majdanpek deposit, Serbia; Assarel, Bulgaria; Skouries, Greece; and Rosia Poeni, Romania. Five geographic areas were delineated as permissive tracts for post-Paleozoic porphyry copper deposits. Two additional tracts were delineated to show the extent of permissive igneous rocks associated with porphyry copper mineralization related to the Paleozoic Caledonian and Variscan orogenies. The tracts are based on mapped and inferred subsurface distributions of igneous rocks of specific age ranges that define areas where the occurrence of porphyry copper deposits within 1 kilometer of the Earth’s surface is possible. These tracts range in area from about 4,000 to 93,000 square kilometers. Although maps at a variety of different scales were used in the assessment, the final tract boundaries are intended for use at a scale of 1:1,000,000.

  20. Asymmetrical hydrothermal system below Merapi volcano imaged by geophysical data.

    Science.gov (United States)

    Byrdina, Svetlana; Friedel, Sven; Budi-Santoso, Agus; Suryanto, Wiwit; Suhari, Aldjarishy; Vandemeulebrouck, Jean; Rizal, Mohhamed H.; Grandis, Hendra

    2017-04-01

    A high-resolution image of the hydrothermal system of Merapi volcano is obtained using electrical resistivity tomography (ERT), self-potential, and CO2 flux mappings. The ERT inversions identify two distinct low-resistivity bodies, at the base of the south flank and in the summit area, that represent likely two parts of an interconnected hydrothermal system. In the summit area, the extension of the hydrothermal system is clearly limited by the main geological structures which are actual and ancient craters. A sharp resistivity contrast at ancient crater rim Pasar-Bubar separates a conductive hydrothermal system (20 - 50 Ωm) from the resistive andesite lava flows and pyroclastic deposits (2000 - 50 000 Ωm). High diffuse CO2 degassing (with a median value of 400g m -2 d -1) is observed in a narrow vicinity of the active crater rim and close to the Pasar-Bubar. The existence of preferential fluid circulation along this ancient crater rim is also evidenced by self-potential data. The total CO2 degassing across the accessible summit area with a surface of 1.4 · 10 5 m 2 is around 20 td -1. Before the 2010 eruption, Toutain et al. (2009) estimated a higher value of the total diffuse degassing from the summit area (about 200 - 230 td -1). This drop in the diffuse degassing can be related to the decrease in the magmatic activity, to the change of the summit morphology or to a combination of these factors. On the south flank of Merapi, the resistivity model shows spectacular stratification. While surficial recent andesite lava flows are characterized by resistivity exceeding 100 000 Ωm, resistivity as low as 10 Ωm has been encountered at a depth of 200 m at the base of the south flank and was interpreted as a presence of the hydrothermal system. We suggest that a sandwich-like structure of stratified pyroclastic deposits on the flanks of Merapi screen and separate the flow of hydrothermal fluids with the degassing occurring mostly through the fractured crater rims

  1. Fractionation of boron isotopes in Icelandic hydrothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.K.

    1995-01-01

    Boron isotope ratios have been determined in a variety of different geothermal waters from hydrothermal systems across Iceland. Isotope ratios from the high temperature meteoric water recharged systems reflect the isotope ratio of the host rocks without any apparent fractionation. Seawater recharged geothermal systems exhibit more positive δ 1 1B values than the meteoric water recharged geothermal systems. Water/rock ratios can be assessed from boron isotope ratios in the saline hydrothermal systems. Low temperature hydrothermal systems also exhibit more positive δ 1 1B than the high temperature systems, indicating fractionation of boron due to absorption of the lighter isotope onto secondary minerals. Fractionation of boron in carbonate deposits may indicate the level of equilibrium attained within the systems. (author). 14 refs., 2 figs

  2. Rb-Sr and Sm-Nd isotopic compositions and Petrogenesis of ore-related intrusive rocks of gold-rich porphyry copper Maherabad prospect area (North of Hanich), east of Iran

    International Nuclear Information System (INIS)

    Malekzadeh Shafaroudi, A.; Karimpour, M. H.; Mazaheri, S. A.

    2010-01-01

    The Maherabad gold-rich porphyry copper prospect area is located in the eastern part of Lut block, east of Iran. This is the first porphyry Cu-Au prospecting area which is discovered in eastern Iran. Fifteen mineralization-related intrusive rocks range (Middle Eocene 39 Ma) in composition from diorite to monzonite have been distinguished. Monzonitic porphyries had major role in Cu-Au mineralization. The ore bearing porphyries are I-type, meta luminous, high-Kcalc-alkaline to shoshonite intrusive rocks which were formed in island arc setting. These rocks are characterized by average of SiO 2 > 59 wt %, Al 2 O 3 > 15 wt %, MgO 2 O> 3 wt %, Sr> 870 ppm, Y 55, moderate Light rare earth elements, relatively low heavy rare earth elements and enrichment LILE (Sr, Cs, Rb, K and Ba) relative to HFSE (Nb, Ta, Ti, Hf and Zr). They are chemically similar to some adakites, but their chemical signatures differ in some ways from normal adakites, including higher K 2 O contents and K 2 O/Na 2 O ratios and lower Mg, (La/Yb) N , (Ce/Yb) N and εNd in Maherabad rocks. Maherabad intrusive rocks are the first K-rich adakites that can be related with subduction zone. Partial melting of mantle hybridized by hydrous, silica-rich slab-derived melts or/and input of enriched mantle-derived ultra-potassic magmas during or prior to the formation and migration of adakitic melts could be explain their high K 2 O contents and K 2 O/Na 2r atios. Low Mg values and relatively low MgO, Cr and Ni contents imply limited interaction between adakite-like magma and mantle wedge peridotite. The initial 87 Sr/ 86 Sr and ( 143 Nd/ 144 Nd)i was recalculated to an age of 39 Ma (unpublished data). Initial 87 Sr/ 86 Sr ratios for hornblende monzonite porphyry are 0.7047-0.7048. The ( 143 Nd/ 144 Nd)i isotope composition are 0.512694-0.512713. Initial εNd isotope values 1.45-1.81. These values could be considered as representative of oceanic slab-derived magmas. Source modeling indicates that high-degree of

  3. Spatial coincidence and similar geochemistry of Late Triassic and Eocene-Oligocene magmatism in the Andes of northern Chile: evidence from the MMH porphyry type Cu-Mo deposit, Chuquicamata District

    Science.gov (United States)

    Zentilli, Marcos; Maksaev, Victor; Boric, Ricardo; Wilson, Jessica

    2018-04-01

    The MMH porphyry type copper-molybdenum deposit in northern Chile is the newest mine in the Chuquicamata District, one of largest copper concentrations on Earth. Mineralized Eocene-Oligocene porphyry intrusions are hosted by essentially barren Triassic granodiorites. Despite a century of exploitation, geologists still have problems in the mine distinguishing the Triassic granodiorite from the most important ore-carrying Eocene porphyries in the district. To resolve the problem, internally consistent high-quality geochemical analyses of the Triassic and Tertiary intrusives were carried out: explaining the confusion, they show that the rock units in question are nearly identical in composition and thus respond equally to hydrothermal alteration. In detail, the only difference in terms of chemical composition is that the main Eocene-Oligocene porphyries carry relatively less Fe and Ni. Unexpectedly, the mineralized Eocene-Oligocene porphyries have consistently less U and Th than other Tertiary intrusions in the district, a characteristic that may be valuable in exploration. The supergiant copper-molybdenum deposits in the Central Andes were formed within a narrow interval between 45 and 31 Ma, close to 7% of the 200 My duration of "Andean" magmatism, which resulted from subduction of oceanic lithosphere under South America since the Jurassic. Although recent work has shown that subduction was active on the margin since Paleozoic times, pre-Andean (pre-Jurassic) "Gondwanan" magmatism is often described as being very different, having involved crustal melting and the generation of massive peraluminous rhyolites and granites. This study shows that the indistinguishable Late Triassic and Eocene-Oligocene intrusions occupy the same narrow NS geographic belt in northern Chile. If it is accepted that magma character may determine the potential to generate economic Cu-Mo deposits, then Late Triassic volcano-plutonic centres in the same location in the South American margin

  4. Magmatic fluid inclusions from the Zaldivar Deposits, Northern Chile: The role of early metal-bearing fluids in a Porphyry copper system

    NARCIS (Netherlands)

    drs Campos, E.; Touret, J.L.R.; Nikogosian, I.

    2006-01-01

    The occurrence of a distinct type of multi-solid, highly-saline fluid inclusions, hosted in igneous quartz phenocrysts from the Llamo porphyry, in the Zaldívar porphyry copper deposit of northern Chile is documented. Total homogenization of the multi-solid type inclusions occurs at magmatic

  5. "Magmatic fluid inclusions from the Zaldivar deposit, Northern Chile: The role of Early metal-bearing fluids in a porphyry copper system."

    NARCIS (Netherlands)

    drs Campos, E.; Touret, J.L.R.; Nikogosian, I.

    2006-01-01

    The occurrence of a distinct type of multi-solid, highly-saline fluid inclusions, hosted in igneous quartz phenocrysts from the Llamo porphyry, in the Zaldívar porphyry copper deposit of northern Chile is documented. Total homogenization of the multi-solid type inclusions occurs at magmatic

  6. Late Carboniferous porphyry copper mineralization at La Voluntad, Neuquén, Argentina: Constraints from Re-Os molybdenite dating

    Science.gov (United States)

    Garrido, Mirta; Barra, Fernando; Domínguez, Eduardo; Ruiz, Joaquin; Valencia, Victor A.

    2008-07-01

    The La Voluntad porphyry Cu-Mo deposit in Neuquén, Argentina, is one of several poorly known porphyry-type deposits of Paleozoic to Early Jurassic age in the central and southern Andes. Mineralization at La Voluntad is related to a tonalite porphyry from the Chachil Plutonic Complex that intruded metasedimentary units of the Piedra Santa Complex. Five new Re-Os molybdenite ages from four samples representing three different vein types (i.e., quartz-molybdenite, quartz-sericite-molybdenite and quartz-sericite-molybdenite ± chalcopyrite-pyrite) are identical within error and were formed between ~312 to ~316 Ma. Rhenium and Os concentrations range between 34 to 183 ppm and 112 to 599 ppb, respectively. The new Re-Os ages indicate that the main mineralization event at La Voluntad, associated to sericitic alteration, was emplaced during a time span of 1.7 ± 3.2 Ma and that the deposit is Carboniferous in age, not Permian as previously thought. La Voluntad is the oldest porphyry copper deposit so far recognized in the Andes and indicates the presence of an active magmatic arc, with associated porphyry style mineralization, at the proto-Pacific margin of Gondwana during the Early Pennsylvanian.

  7. Hydrothermal systems in small ocean planets.

    Science.gov (United States)

    Vance, Steve; Harnmeijer, Jelte; Kimura, Jun; Hussmann, Hauke; Demartin, Brian; Brown, J Michael

    2007-12-01

    We examine means for driving hydrothermal activity in extraterrestrial oceans on planets and satellites of less than one Earth mass, with implications for sustaining a low level of biological activity over geological timescales. Assuming ocean planets have olivine-dominated lithospheres, a model for cooling-induced thermal cracking shows how variation in planet size and internal thermal energy may drive variation in the dominant type of hydrothermal system-for example, high or low temperature system or chemically driven system. As radiogenic heating diminishes over time, progressive exposure of new rock continues to the current epoch. Where fluid-rock interactions propagate slowly into a deep brittle layer, thermal energy from serpentinization may be the primary cause of hydrothermal activity in small ocean planets. We show that the time-varying hydrostatic head of a tidally forced ice shell may drive hydrothermal fluid flow through the seafloor, which can generate moderate but potentially important heat through viscous interaction with the matrix of porous seafloor rock. Considering all presently known potential ocean planets-Mars, a number of icy satellites, Pluto, and other trans-neptunian objects-and applying Earth-like material properties and cooling rates, we find depths of circulation are more than an order of magnitude greater than in Earth. In Europa and Enceladus, tidal flexing may drive hydrothermal circulation and, in Europa, may generate heat on the same order as present-day radiogenic heat flux at Earth's surface. In all objects, progressive serpentinization generates heat on a globally averaged basis at a fraction of a percent of present-day radiogenic heating and hydrogen is produced at rates between 10(9) and 10(10) molecules cm(2) s(1).

  8. Characterization of fluid inclusions and sulfur isotopes in the Iju porphyry copper deposit, North West of Shahr-e-Babak

    Directory of Open Access Journals (Sweden)

    Malihe Golestani

    2017-07-01

    chemical composition and under different temperature and pressure conditions (Rusk and Reed, 2008. The wide range in fluid inclusions data of the Iju deposit can be justified by physicochemical changes in the fluid as it is boiling and mixing with the surface fluids. Cooling, fluids mixing, boiling and fluid-rock reaction play important roles in the settling of chalcopyrite from the hydrothermal fluid and the dilution of saline ore-bearing fluids can cause the formation of copper ores from the ore-bearing fluid (Ulrich et al., 2002. Pyrite δ34S value ranges from -0.86 to +1.27‰ (average, +0.22‰ and the δ34SH2S value of the syngenetic fluid with pyrite ranges from -0.23 to -2.36‰ (average, -1.17‰. The limited and near zero range that is observed about δ34S value of the sulfur minerals indicates the controlling role of magmatic processes in the mineralization events (Chen et al., 2009. Acknowledgments This article is related to Project No. 27124.3 dated 2015, 2, 7 at the Ferdowsi University of Mashhad. We are thankful to and appreciate the Research and Development center of National Iranian Cu Industries (Shahr-e-Babak, Meiduk, especially S.M. Mousavi, for the financial support of this project and the necessary proceedings. References Chen, Y.J., Piranjno, F., Li, N., Guo, D.Sh. and Lai, Y., 2009. Isotope systematica and fluid inclusion studies of the Qiyugou breccia pipe- hosted gold deposit, Qinling Orogen, Henan province, China: Implication for ore genesis. Ore Geology Reviews, 35(2: 245-261. Dimitrijevic, M.D., 1973. Geology of Kerman region. Geological Survey of Iran, Tehran, Report No. Yu/52, 334 pp. Hassanzadeh, J., 1993. Metallogenic and tectonomagmatic events in the SE sector of the Cenozoic active continental margin of central Iran (Shahr e Babak area, Keman Province. Ph.D. thesis, University of California, Los Angeles, America, 204 pp. Rusk, B.G. and Reed, M.H., 2008. Fluid inclusion evidence for magmatic-hydrothermal fluid evolution in the porphyry

  9. Re-Os dating on pyrite and metal sources tracing in porphyry-type and neutral epithermal deposits: example of the Bolcana, Troita and Magura deposits, Apuseni Mountains, Romania

    International Nuclear Information System (INIS)

    Cardon, Olivier

    2007-01-01

    Many porphyry-type (Cu-Au) and neutral epithermal (Pb-Zn and Au ± Ag) ore deposits are encountered in the region of the Apuseni Mountains, located at the foot of the Carpathian chain in the Western Romania. These deposits are related to a Neogene andesitic volcanism. In order to demonstrate possible genetic relationships between the porphyry-type and neutral epithermal deposits, the Bolcana porphyry has been investigated since it is surrounded by a number of epithermal low-sulfidation veins with a Pb-Zn ± Au mineralisation. These veins are currently mined at the Troita and Magura sites. A structural analysis and a 3D modelling pf these deposits indicate that the geometry and orientation of fractures and mineralized vein are consistent both with direction of regional extension and with a NW-SE progression of the different andesitic intrusions. In order to establish precisely the temporal relationship between the different ore deposits, a Re-Os dating method has been developed and applied on pyrite which is ubiquitous in all of the deposits. This method enabled us to assign an age of 10.9 ± 1.9 Ma for the porphyry-hosted mineralization. The ages obtained for the epithermal systems are somewhat approximative as perturbations of the Re-Os system are observed for these environments. A fractionation of rhenium responsible for a significant enrichment in this element for the apical zone of the porphyry has been demonstrated. This enrichment is most probably related to a maximum boiling event, which may also explain a similar enrichment in arsenic for the pyrite in the same zone. The sources for the metals have been characterized at the district scale by combining two isotopic systems (Re-Os and Pb-Pb) on both pyrite and galena. The osmium data indicate that the Troita deposit has composition which is similar to that of the Bolcana porphyry. In contrast the results obtained for the Magura deposits indicate the Re-OS system has in this case been perturbed due to a

  10. Imperial porphyry from Gebel Abu Dokhan, the Red Sea Mountains, Egypt

    DEFF Research Database (Denmark)

    Makovicky, Emil; Frei, Robert; Karup-Møller, Sven

    2016-01-01

    The prestigious red Imperial Porphyry was quarried from Mons Porphyrites in the Red Sea Mountains of Egypt. The porphyry, reserved for imperial use in Rome and Constantinople, was widely reused in Romanesque and Renaissance times, and in the Ottoman Empire. At the locality, the rocks vary from da...

  11. Reconstruction of Ancestral Hydrothermal Systems on Mount Rainier Using Hydrothermally Altered Rocks in Holocene Debris Flows and Tephras

    Science.gov (United States)

    John, D. A.; Breit, G. N.; Sisson, T. W.; Vallance, J. W.; Rye, R. O.

    2005-12-01

    geophysical data, as well as analog fossil hydrothermal systems in volcanoes elsewhere, constrain hydrothermal alteration geometry on the pre-Osceola-collapse edifice of Mount Rainier. Relatively narrow zones of acid magmatic-hydrothermal alteration in the central core of the volcano grade to more widely distributed smectite-pyrite alteration farther out on the upper flanks, capped by steam-heated alteration with a large component of alteration resulting from condensation of fumarolic vapor above the water table. Alteration was polygenetic in zones formed episodically, and was strongly controlled by fluxes of heat and magmatic fluid and by local permeability.

  12. Characterization and zircon SHRIMP U-Pb geochronology of the subvolcanic rocks from Yarumalito Porphyry System, Marmato District, Colombia; Caracterizacao e geocronologia SHRIMP U-Pb em zircao das rochas subvulcanicas do sistema porfiro Yarumalito, Distrito de Marmato, Colombia

    Energy Technology Data Exchange (ETDEWEB)

    Henrichs, Isadora A.; Frantz, Jose Carlos; Marques, Juliana C.; Castoldi, Marco S., E-mail: isahenrichs@gmail.com, E-mail: jose.frantz@ufrgs.br, E-mail: juliana.marques@ufrgs.br [Universidade Federal do Rio Grande do Sul (UFRS), Porto Alegre, RS (Brazil). Instituto de Geociencias; Ordonez-Carmona, Oswaldo, E-mail: oswaldo.geologo@gmail.com [Universidad Nacional de Colombia, Medellin (Colombia). Facultad de Minas; Sato, Kei, E-mail: keisato@usp.br [Universidade de Sao Paulo (USP), Sao Paulo, SP (Brazil). Centro de Pesquisas Geocronologicas

    2014-09-15

    The mining District of Marmato, located in the Central Cordillera, is considered one of the oldest gold districts in Colombia and its exploration dates back to the Inca’s times, being exploited regularly for more than a thousand years. Inserted in this context lies the Yarumalito porphyry system (YPS), characterized to concentrate ore in structure related veins and stockworks. The YPS is related to the Miocene magmatism of the Combia Formation. In this paper, the subvolcanic rocks directly associated with the mineralized zones were described in order to obtain U-Pb ages in zircon to the intrusions. Selected samples from two fertile intrusions, one andesitic (more abundant in the area) and other dioritic (more restricted), were carefully described and dated by SHRIMP. The results points to a very restricted interval for the ages, with weighted average {sup 206}Pb/{sup 238}U varying from 7,00 ± 0,15 Ma for the andesitic porphyry and 6.95 ± 0.16 Ma for the dioritic porphyry. These results constrain the Yarumalito system to the final stages of the Combia magmatism and suggest a brief period for the crystallization of the mineralized subvolcanic rocks in the area and in the Marmato District. (author)

  13. Ring structures and copper mineralization in Kerman porphyry copper belt, SE Iran

    Directory of Open Access Journals (Sweden)

    Gholamreza Mirzababaei

    2012-10-01

    Full Text Available The role of some ring structures in the distribution of porphyry copper deposits in south Kerman porphyry copper belt is discussed. In the study area, ring structures are circular or elliptical shaped features which are partly recognized on satellite images. In this study, Landsat multispectral images were used to identify ring structures in the area. The rudimentary identification stages of the circles were mainly based on their circular characteristics on the images. These structures match with the regional tectonic features and can be seen mainly in two types; namely, large-magnitude and small scale circles. The associated mineralization in the study area is mainly porphyry Cu and vein type base metal sulfide deposits. There is a sensible relationship between the large circles and mineralization. These circles have encompassed almost entire Cu deposits and prospects in south part of Kerman porphyry copper belt. The small circles seem to be external traces of (porphyritic intrusive bodies that appear on surface as small circles. Formation of the large circular structures do not appear to be related to the external processes and there is no clear indication of how they came into existence but, their arrangement around the edges of a positive residual anomaly area shows the probable role of this anomaly in their formation. This matter is also recognized on the generalized crustal thickness map of the region in which an updoming of the upper mantle is observed. This study can improve our collective knowledge for copper exploration in this region.

  14. Hydrothermal systems and volcano geochemistry

    Science.gov (United States)

    Fournier, R.O.

    2007-01-01

    The upward intrusion of magma from deeper to shallower levels beneath volcanoes obviously plays an important role in their surface deformation. This chapter will examine less obvious roles that hydrothermal processes might play in volcanic deformation. Emphasis will be placed on the effect that the transition from brittle to plastic behavior of rocks is likely to have on magma degassing and hydrothermal processes, and on the likely chemical variations in brine and gas compositions that occur as a result of movement of aqueous-rich fluids from plastic into brittle rock at different depths. To a great extent, the model of hydrothermal processes in sub-volcanic systems that is presented here is inferential, based in part on information obtained from deep drilling for geothermal resources, and in part on the study of ore deposits that are thought to have formed in volcanic and shallow plutonic environments.

  15. Element migration of pyrites during ductile deformation of the Yuleken porphyry Cu deposit (NW-China)

    Science.gov (United States)

    Hong, Tao; Xu, Xing-Wang; Gao, Jun; Peters, Stephen; Li, Jilei; Cao, Mingjian; Xiang, Peng; Wu, Chu; You, Jun

    2017-01-01

    The strongly deformed Yuleken porphyry Cu deposit (YPCD) occurs in the Kalaxiangar porphyry Cu belt (KPCB), which occupies the central area of the Central Asian Orogenic Belt (CAOB) between the Sawu’er island arc and the Altay Terrane in northern Xinjiang. The YPCD is one of several typical subduction-related deposits in the KPCB, which has undergone syn-collisional and post-collisional metallogenic overprinting. The YPCD is characterized by three pyrite-forming stages, namely a hydrothermal stage A (Py I), a syn-ductile deformation stage B (Py II) characterized by Cu-Au enrichment, and a fracture-filling stage C (Py III). In this study, we conducted systematic petrographic and geochemical studies of pyrites and coexist biotite, which formed during different stages, in order to constrain the physicochemical conditions of the ore formation. Euhedral, fragmented Py I has low Pb and high Te and Se concentration and Ni contents are low with Co/Ni ratios mostly between 1 and 10 (average 9.00). Py I is further characterized by enrichments of Bi, As, Ni, Cu, Te and Se in the core relative to the rim domains. Anhedral round Py II has moderate Co and Ni contents with high Co/Ni ratios >10 (average 95.2), and average contents of 46.5 ppm Pb and 5.80 ppm Te. Py II is further characterized by decreasing Bi, Cu, Pb, Zn, Ag, Te, Mo, Sb and Au contents from the rim to the core domains. Annealed Py III has the lowest Co content of all pyrite types with Co/Ni ratios mostly <0.1 (average 1.33). Furthermore, Py III has average contents of 3.31 ppm Pb, 1.33 ppm Te and 94.6 ppm Se. In addition, Fe does not correlate with Cu and S in the Py I and Py III, while Py II displays a negative correlation between Fe and Cu as well as a positive correlation between Fe and S. Therefore, pyrites which formed during different tectonic regimes also have different chemical compositions. Biotite geothermometer and oxygen fugacity estimates display increasing temperatures and oxygen

  16. The Mesozoic Caosiyao giant porphyry Mo deposit in Inner Mongolia, North China and Paleo-Pacific subduction-related magmatism in the northern North China Craton

    Science.gov (United States)

    Wu, Huaying; Zhang, Lianchang; Pirajno, Franco; Shu, Qihai; Zhang, Min; Zhu, Mingtian; Xiang, Peng

    2016-09-01

    The Caosiyao giant porphyry Mo deposit is located in the Wulanchabu area of Inner Mongolia, within the northern North China Craton (NCC). It contains more than 2385 Mt of ore with an average grade of 0.075% Mo. In the Caosiyao mining district, Mo mineralization occurs mainly in a Mesozoic granite porphyry as disseminations and stockworks, with some Mo distributed in Archean metamorphic rocks and diabase as stockworks and veins. The host granite porphyry is composed of two different phases that can be distinguished based on mineral assemblages and textures: one phase contains large and abundant phenocrysts (coarse-grained), while the other phase is characterized by fewer and smaller phenocrysts (medium-grained). Zircon U-Pb-Hf analyses of the former phase yielded a concordant 206Pb/238U age of 149.8 ± 2.4 Ma with a 206Pb/238U weighted mean age of 149.9 ± 2.4 Ma and εHf(t) values ranging from -12.2 to 18.3, while the latter phase gave a concordant 206Pb/238U age of 149.0 ± 2.2 Ma with a 206Pb/238U weighted mean age of 149.0 ± 2.1 Ma and εHf(t) values ranging from -13.1 to 17.7. Five samples of disseminated molybdenite have a 187Re-187Os isochron age of 149.5 ± 5.3 Ma with a weighted average age of 149.0 ± 1.8 Ma, whereas six veinlet-type molybdenite samples have a well-constrained 187Re-187Os isochron age of 146.9 ± 3.1 Ma and a weighted average age of 146.5 ± 0.8 Ma. Thus, it is suggested that the Mo mineralization of the Caosiyao deposit occurred during the Late Jurassic (ca. 147-149 Ma), almost coeval with the emplacement of the host granite porphyry (ca. 149-150 Ma). The host granite porphyry is characterized by high silica (SiO2 = 71.52-74.10 wt%), relatively high levels of oxidation (Fe2O3/FeO = 0.32-0.94 wt%) and high alkali element concentrations (Na2O + K2O = 8.21-8.76 wt%). The host granite porphyry also shows enrichments in U and K, and depletion in Ba, Sr, P, Eu, and Ti, suggesting strong fractional crystallization of plagioclase, biotite, and

  17. Alteration Mineralogy and Geochemical Characteristics of Porphyry Cu-Mo Mineralization in Domaniç (Kütahya) Area

    Science.gov (United States)

    Sariiz, K.; Sendir, H.

    2012-04-01

    The study area is located at 30 km northwest of Domaniç (Kütahya) and covers on approximately 250 square kilometers. The Devonian (Paleozoic) schists which are composed of gneiss, mica schist and chlorite schist is the oldest unit of the study area. This units are overlain unconformably by the Permian Allıkaya Marbles. Eocene granodioritic intrusives cut other rock series and located as a batholite. Magmatic units present porphyric and holocrystalline textures. Granodioritic intrusions are represented by tonalite, tonalite porphyr, granodiorite, granodiorite porphyr, granite, diorite, diorite porphyries. Potassic, phyllitic and prophyllitic hydrothermal alteration zones are determined in host rocks and wallrocks. Mineralizations are observed as disseminated, and stockwork types within the granodioritic rocks. Ore minerals are pyrotine, pyrite, chalcopyrite, molybdenite, rutile, bornite, sphalerite, marcasite and limonite. Geochemically, it is of sub-alkaline affinity, belongs to the high-K, calc-alkaline series and displays features of typical I-type affinity. They show enrichment in large-ion lithophile elements (LIL) and depletion Nb and Ti indicating a subduction zone related magmatic signature for their origin. δ18O (quartz) values range from 8,8 to 12,1 ‰. δ18O (biotite) and δD (biotite) values range from 2,6 to 6,1 ‰ and -87 - -125 (SMOW). These values indicate that mixture magmatic-meteoric of hydrothermal solutions origin which are potassic to propylitic zones. δ13C (calcite) values range from 1,9 to 3,3 ‰ (PDB). Calcite values within the marine carbonates in the study area.

  18. Radionuclides in hydrothermal systems as indicators of repository conditions

    International Nuclear Information System (INIS)

    Wollenberg, H.A.; Flexser, S.; Smith, A.R.

    1990-11-01

    Hydrothermal systems in tuffaceous and older sedimentary rocks contain evidence of the interaction of radionuclides in fluids with rock matrix minerals and with materials lining fractures, in settings somewhat analogous to the candidate repository site at Yucca Mountain, NV. Earlier studies encompassed the occurrences of U and Th in a ''fossil'' hydrothermal system in tuffaceous rock of the San Juan Mountains volcanic field, CO. More recent and ongoing studies examine active hydrothermal systems in calderas at Long Valley, CA and Valles, NM. At the Nevada Test Site, occurrences of U and Th in fractured and unfractured rhyolitic tuff that was heated to simulate the introduction of radioactive waste are also under investigation. Observations to date suggest that U is mobile in hydrothermal systems, but that localized reducing environments provided by Fe-rich minerals and/or carbonaceous material concentrate U and thus attenuate its migration. 11 refs., 6 figs., 1 tab

  19. Comparison of microbial communities associated with three Atlantic ultramafic hydrothermal systems.

    Science.gov (United States)

    Roussel, Erwan G; Konn, Cécile; Charlou, Jean-Luc; Donval, Jean-Pierre; Fouquet, Yves; Querellou, Joël; Prieur, Daniel; Bonavita, Marie-Anne Cambon

    2011-09-01

    The distribution of Archaea and methanogenic, methanotrophic and sulfate-reducing communities in three Atlantic ultramafic-hosted hydrothermal systems (Rainbow, Ashadze, Lost City) was compared using 16S rRNA gene and functional gene (mcrA, pmoA and dsrA) clone libraries. The overall archaeal community was diverse and heterogeneously distributed between the hydrothermal sites and the types of samples analyzed (seawater, hydrothermal fluid, chimney and sediment). The Lost City hydrothermal field, characterized by high alkaline warm fluids (pH>11; Tphylum and Methanopyrales order were also retrieved from the Rainbow and Ashadze hydrothermal fluids. However, the methanogenic Methanococcales was the most widely distributed hyper/thermophilic archaeal group among the hot and acidic ultramafic-hosted hydrothermal system environments. Most of the lineages detected are linked to methane and hydrogen cycling, suggesting that in ultramafic-hosted hydrothermal systems, large methanogenic and methanotrophic communities could be fuelled by hydrothermal fluids highly enriched in methane and hydrogen. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  20. Magma Fertility is the First-Order Factor for the Formation of Porphyry Cu±Au Deposits

    Science.gov (United States)

    Park, J. W.; Campbell, I. H.; Malaviarachchi, S. P. K.; Cocker, H.; Nakamura, E.; Kay, S. M.

    2017-12-01

    Magma fertility, the metal abundance in magma, has been considered to be one of the key factors for the formation of porphyry Cu±Au deposits. In this study we provide clear evidence to support the hypothesis that the platinum group element (PGE) can be used to distinguish barren from ore-bearing Cu±Au felsic suites. We determined the PGE contents of three barren volcanic and subvolcanic suites from Argentina and Japan, and compare the results with two porphyry Cu-bearing subvolcanic suites from Chile and two porphyry Cu-Au-bearing suites from Australia. The barren suites are significantly depleted in PGE abundances by the time of fluid exsolution, which is attributed to early sulfide saturation at mid to lower crust depths or assimilation of chalcophile element-poor crustal materials. Barren magma, produced by melting continental crust, may have been initially deficient in chalcophile elements. In contrast, the Cu±Au ore-bearing suites contain at least an order of magnitude higher PGE contents than those of the barren suites by the time of fluid saturation. They are characterized by late sulfide saturation in a shallow magma chamber, which allows the chalcophile elements to concentrate in the fractionating magma from which they are sequestered by ore-forming fluids. We suggest the Pd/MgO and Pd/Pt ratios of igneous rocks can be used as magma fertility indicators, and to distinguish between barren, porphyry Cu and porphyry Cu-Au magmatic systems.

  1. Investigation on the age of mineralization in the Sungun porphyry Cu-Mo deposit, NW Iran with a regional metallogenic perspective

    Science.gov (United States)

    Simmonds, Vartan; Moazzen, Mohssen; Mathur, Ryan

    2016-04-01

    The Sungun porphyry copper deposit (PCD) is located in NW Iran, neighbouring several other PCDs and prospects in the region and the Lesser Caucasus (south Armenia). It lies on the Urumieh-Dokhtar magmatic arc (UDMA), which formed through the northeast-ward subduction of the Neo-Tethyan oceanic crust beneath the Central Iranian plate during late-Mesozoic and early-Cenozoic [1], and hosts the porphyry copper metallogenic belt of Iran. The Sungun PCD is the second largest deposit in Iran with ore reserves of about 850 Mt at 0.62 wt% Cu and 0.01 wt% Mo and probable reserves over 1Gt. The monzonitic to quartz monzonitic porphyry stock intruded the upper Cretaceous carbonates and Eocene volcano-sedimentary rocks. It produced a skarn-type mineralization at its contact zone with the carbonate rocks, as well as vast hydrothermal alteration zones and porphyry-type Cu and Mo mineralization. The zircon U-Pb age of the host porphyry stock is about 22.5±0.4 to 20.1±0.4 Ma [2]. Re-Os dating of four molybdenite separates from this PCD shows ages ranging between 22.9±0.2 to 21.7±0.2 Ma, with an average of 22.57±0.2 Ma, corresponding to the early Miocene (Aquitanian). These ages indicate that both the porphyry stock and the Cu-Mo mineralization are post-collisional events, similar to many other deposits and prospects in NW and central Iran and south Armenia, and the mineralization occurred shortly after the emplacement of the host stock, corresponding better to the ages obtained from the marginal parts of the stock. Magmatism and mineralization in Sungun coincides with the third metallogenic epoch in the Lesser Caucasus (Eocene to Miocene; [3]), though it is considerably younger than all of the dated PCDs and prospects in the south Armenia. It also postdates Cu-Mo mineralizations in the Saheb Divan (35 Ma), Qaradagh batholith (31.22±0.28 to 25.19±0.19 Ma), as well as Haft Cheshmeh PCD (28.18±0.42 to 27.05±0.37 Ma) in NW Iran, while it seems to be coeval with the Kighal

  2. The hydrothermal evolution of the Kawerau geothermal system, New Zealand

    Science.gov (United States)

    Milicich, S. D.; Chambefort, I.; Wilson, C. J. N.; Charlier, B. L. A.; Tepley, F. J.

    2018-03-01

    Hydrothermal alteration zoning and processes provide insights into the evolution of heat source(s) and fluid compositions associated with geothermal systems. Traditional petrological techniques, combined with hydrothermal alteration studies, stable isotope analyses and geochronology can resolve the nature of the fluids involved in hydrothermal processes and their changes through time. We report here new findings along with previous unpublished works on alteration patterns, fluid inclusion measurements and stable isotope data to provide insights into the thermal and chemical evolution of the Kawerau geothermal system, New Zealand. These data indicate the presence of two hydrothermal events that can be coupled with chronological data. The earlier period of hydrothermal activity was initiated at 400 ka, with the heat driving the hydrothermal system inferred to be from the magmatic system that gave rise to rhyolite lavas and sills of the Caxton Formation. Isotopic data fingerprint fluids attributed to this event as meteoric, indicating that the magma primarily served as a heat source driving fluid circulation, and was not releasing magmatic fluids in sufficient quantity to affect the rock mineralogy and thus inferred fluid compositions. The modern Kawerau system was initiated at 16 ka with hydrothermal eruptions linked to shallow intrusion of magma at the onset of activity that gave rise to the Putauaki andesite cone. Likely associated with this later event was a pulse of magmatic CO2, resulting in large-scale deposition of hydrothermal calcite enriched in 18O. Meteoric water-dominated fluids subsequently overwhelmed the magmatic fluids associated with this 18O-rich signature, and both the fluid inclusion microthermometry and stable isotope data reflect a change to the present-day fluid chemistry of low salinity, meteoric-dominated waters.

  3. Imperial porphyry from Gebel Abu Dokhan, the Red Sea Mountains, Egypt

    DEFF Research Database (Denmark)

    Makovicky, Emil; Frei, Robert; Karup-Møller, Sven

    2016-01-01

    were treated in Part I of this report. The rocks were moderately altered ; greenschist facies alteration took place under essentially isochemical conditions but relatively high oxygen fugacity. The rocks retain many magmatic textures. Whole-rock chemical analyses show that we deal with high-K to medium.......88 Ga and εNd from +5.1 to +5.7 were inferred. The magmas which led to formation of the Imperial Porphyry appear to be derived from a subduction-modified depleted mantle and underwent only minor contamination by older continental crust. Trace-element features, notably the high Th, U, K, Rb and Cs...... contents, are consistent with crust contamination. Imperial Porphyry erupted during the second Great Oxygenation Event of the Earth atmosphere. Mineralogical observations as well as rock colour and texture, particularly the pleochroic epidote – piemontite, should allow archaeologists to reliably assign...

  4. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems

    Science.gov (United States)

    Shock, Everett L.; McCollom, Thomas; Schulte, Mitchell D.

    1995-06-01

    Thermodynamic calculations provide the means to quantify the chemical disequilibrium inherent in the mixing of redeuced hydrothermal fluids with seawater. The chemical energy available for metabolic processes in these environments can be evaluated by taking into account the pressure and temperature dependence of the apparent standard Gibbs free energies of reactions in the S-H2-H2O system together with geochemical constraints on pH, activities of aqueous sulfur species and fugacities of H2 and/or O2. Using present-day mixing of hydrothermal fluids and seawater as a starting point, it is shown that each mole of H2S entering seawater from hydrothermal fluids represents about 200,000 calories of chemical energy for metabolic systems able to catalyze H2S oxidation. Extrapolating to the early Earth, which was likely to have had an atmosphere more reduced than at present, shows that this chemical energy may have been a factor of two or so less. Nevertheless, mixing of hydrothermal fluids with seawater would have been an abundant source of chemical energy, and an inevitable consequence of the presence of an ocean on an initially hot Earth. The amount of energy available was more than enough for organic synthesis from CO2 or CO, and/or polymer formation, indicating that the vicinity of hydrothermal systems at the sea floor was an ideal location for the emergence of the first chemolithoautotrophic metabolic systems.

  5. Magmatic Hydrothermal Fluids: Experimental Constraints on the Role of Magmatic Sulfide Crystallization and Other Early Magmatic Processes in Moderating the Metal Content of Ore-Forming Fluids

    Science.gov (United States)

    Piccoli, P. M.; Candela, P. A.

    2006-05-01

    It has been recognized for some time that sulfide phases, although common in intermediate-felsic volcanic rocks, are not as common in their plutonic equivalents. That sulfide crystallization, or the lack thereof, is important in the protracted magmatic history of porphyry Cu and related systems is supported by the work of e.g., Rowins (2000). Candela and Holland (1986) suggested that sulfide crystallization could moderate the ore metal concentrations in porphyry environments. Experiments show clearly that Au and Cu can partition into Cl-bearing vapor and brine. This effect can be enhanced by S (Simon, this session). However, in some instances enhances this effect. That is, the partitioning of Au and Cu into vapor+brine is highly efficient (e.g. Simon et al. 2003; Frank et al 2003). This suggests that if sulfides do not sequester ore metals early during the history of a magma body from the melt, they will partition strongly into the volatile phases. Whether volatile release occurs in the porphyry ore environment, or at deeper levels upon magma rise, is a yet unsolved question. Little is known about deep release of volatiles (during magma transport at lower- to mid-crustal levels). Saturation of melts with a CO2-bearing fluid could happen at levels much deeper than those typical of ore formation. CO2 is released preferentially, so a high CO2 concentration in fluids in the porphyry ore environment argues against deep fluid release. Of course, this depends upon the specific processes of crystallization and fluid release, which may be complex. Our experiments on sulfides have concentrated on pyrrhotite and Iss. Our partitioning data for Po/melt exhibit wide variations from metal to metal: Cu (2600); Co (170); Au (140); Ni (100); Bi, Zn and Mn (2). These results suggest that crystallization of Po can contribute to variable ore metal ratios (e.g. Cu/Au). Other sulfides behave differently. If a melt is Iss (Cpy) saturated, then Cu will be buffered at a high value, and Au

  6. Copper isotopic zonation in the Northparkes porphyry Cu-Au deposit, SE Australia

    Science.gov (United States)

    Li, Weiqiang; Jackson, Simon E.; Pearson, Norman J.; Graham, Stuart

    2010-07-01

    Significant, systematic Cu isotopic variations have been found in the Northparkes porphyry Cu-Au deposit, NSW, Australia, which is an orthomagmatic porphyry Cu deposit. Copper isotope ratios have been measured in sulfide minerals (chalcopyrite and bornite) by both solution and laser ablation multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). The results from both methods show a variation in δ 65Cu of hypogene sulfide minerals of greater than 1‰ (relative to NIST976). Significantly, the results from four drill holes through two separate ore bodies show strikingly similar patterns of Cu isotope variation. The patterns are characterized by a sharp down-hole decrease from up to 0.8‰ (0.29 ± 0.56‰, 1 σ, n = 20) in the low-grade peripheral alteration zones (phyllic-propylitic alteration zone) to a low of ˜-0.4‰ (-0.25 ± 0.36‰, 1 σ, n = 30) at the margins of the most mineralized zones (Cu grade >1 wt%). In the high-grade cores of the systems, the compositions are more consistent at around 0.2‰ (0.19 ± 0.14‰, 1 σ, n = 40). The Cu isotopic zonation may be explained by isotope fractionation of Cu between vapor, solution and sulfides at high temperature, during boiling and sulfide precipitation processes. Sulfur isotopes also show an isotopically light shell at the margins of the high-grade ore zones, but these are displaced from the low δ 65Cu shells, such that there is no correlation between the Cu and S isotope signatures. Fe isotope data do not show any discernable variation along the drill core. This work demonstrates that Cu isotopes show a large response to high-temperature porphyry mineralizing processes, and that they may act as a vector to buried mineralization.

  7. Examination of chloritization of biotite as a tool for reconstructing the physicochemical parameters of mineralization and associated alteration in the Zafarghand porphyry copper system, Ardestan, Central Iran: mineral-chemistry and stable isotope analyses

    Science.gov (United States)

    Aminroayaei Yamini, Maryam; Tutti, Faramarz; Aminoroayaei Yamini, Mohammad Reza; Ahmadian, Jamshid; Wan, Bo

    2017-10-01

    The chloritization of biotite and stable isotopes of silicate have been studied for the Zafarghand porphyry copper deposit, Ardestan, Iran. The studied area, in the central part of the Urumieh-Dokhtar magmatic belt, contains porphyry-style Cu mineralization and associated hydrothermal alteration within the Miocene (19-26 Ma, Zircon U-Pb age) granodioritc stock and adjacent andesitic to rhyodacitic volcanic rocks (ca. 56 Ma, zircon U-Pb age). The primary and secondary biotite that formed during potassic alteration in this porphyry and these volcanic host rocks are variably chloritized. Chloritization of biotite pseudomorphically is characterized by an increase in MgO, FeOt, and MnO, with decreasing in SiO2, K2O, and TiO2. Based on the Ti-in-biotite geothermometer of Henry et al. (Am Mineral 90:316-328, 2005) and Al-in-chlorite geothermometer of Cathelineau (Clay Miner 23:417-485, 1988), crystallization temperatures of primary biotite representative of magmatic conditions and later chloritization temperature range from 617° to 675 °C ± 24 °C and 177° to 346 °C, respectively. Calculated isotopic compositions of fluids that chloritized primary and secondary biotite display isotopic compositions of 1.1 to 1.7 per mil for δ18O and -19.9 to -20.5 per mil for δD consistent with meteoric water. Sericite, barren, and A-type-quartz veins from phyllic alteration were produced by mixed magmatic and meteoric water with δ18O values from -2.8 to 2.5 and δD values of ˜ -23 per mil; the narrow range of δD values of the propylitic epidote may be due to a meteoric water with δ18O values from 0.8 to 1.6 and δD values from -14.6 to -16.9 per mil.

  8. Geochemistry of sericite and chlorite in well 14-2 Roosevelt Hot Springs geothermal system and in mineralized hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Ballantyne, J.M.

    1980-06-01

    Chemical compositions of chlorite and sericite from one production well in the Roosevelt geothermal system have been determined by electron probe methods and compared with compositions of chlorite and sericite from porphyry copper deposits. Modern system sericite and chlorite occur over a depth interval of 2 km and a temperature interval of 250/sup 0/C.

  9. Geophysical image of the hydrothermal system of Merapi volcano

    Science.gov (United States)

    Byrdina, S.; Friedel, S.; Vandemeulebrouck, J.; Budi-Santoso, A.; Suhari; Suryanto, W.; Rizal, M. H.; Winata, E.; Kusdaryanto

    2017-01-01

    We present an image of the hydrothermal system of Merapi volcano based on results from electrical resistivity tomography (ERT), self-potential, and CO2 flux mappings. The ERT models identify two distinct low-resistivity bodies interpreted as two parts of a probably interconnected hydrothermal system: at the base of the south flank and in the summit area. In the summit area, a sharp resistivity contrast at ancient crater rim Pasar-Bubar separates a conductive hydrothermal system (20-50 Ω m) from the resistive andesite lava flows and pyroclastic deposits (2000-50,000 Ω m). The existence of preferential fluid circulation along this ancient crater rim is also evidenced by self-potential data. The significative diffuse CO2 degassing (with a median value of 400 g m-2 d-1) is observed in a narrow vicinity of the active crater rim and close to the ancient rim of Pasar-Bubar. The total CO2 degassing across the accessible summital area with a surface of 1.4 ṡ 105 m2 is around 20 t d-1. Before the 2010 eruption, Toutain et al. (2009) estimated a higher value of the total diffuse degassing from the summit area (about 200-230 t d-1). This drop in the diffuse degassing from the summit area can be related to the decrease in the magmatic activity, to the change of the summit morphology, to the approximations used by Toutain et al. (2009), or, more likely, to a combination of these factors. On the south flank of Merapi, the resistivity model shows spectacular stratification. While surficial recent andesite lava flows are characterized by resistivity exceeding 100,000 Ω m, resistivity as low as 10 Ω m has been encountered at a depth of 200 m at the base of the south flank and was interpreted as a presence of the hydrothermal system. No evidence of the hydrothermal system is found on the basis of the north flank at the same depth. This asymmetry might be caused by the asymmetry of the heat supply source of Merapi whose activity is moving south or/and to the asymmetry in

  10. The discovery and geophysical response of the Atlántida Cu-Au porphyry deposit, Chile

    Science.gov (United States)

    Hope, Matthew; Andersson, Steve

    2016-03-01

    The discovery of the Atlántida Cu-Au-Mo porphyry deposit, which is unconformably overlain by 25-80 m of gravels, is a recent example of exploration success under cover in a traditional mining jurisdiction. Early acquisition of geophysics was a key tool in the discovery, and in later guiding further exploration drilling throughout the life of the project. Detailed review of the geophysical response of the deposit, with respect to the distribution of lithologies and alteration, coupled with their petrophysical properties has allowed full characterisation, despite no exposure at the surface of host rock nor porphyry-style mineralisation. Data acquired over the project include induced polarisation, magnetotellurics, ground and airborne magnetics, ground-based gravimetry, and petrophysical sampling. The distribution of the key geological features of the deposit has been inferred via acquisition of petrophysical properties and interpretation of surface geophysical datasets. Magnetic susceptibility is influenced strongly by both alteration and primary lithology, whilst density variations are dominated by primary lithological control. Several studies have shown that electrical properties may map the footprint of the hydrothermal system and associated mineralisation, via a combination of chargeability and resistivity. These properties are observed in geophysical datasets acquired at surface and allow further targeting and sterilisation at the deposit and project scale. By understanding these geophysical characteristics in a geological context, these data can be used to infer distribution of lithological units, depth to exploration targets and the potential for high grade mineralisation. Future exploration will likely be increasingly reliant on the understanding of the surface manifestations of buried deposits in remotely acquired data. This review summarises the application and results of these principles at the Atlántida project of northern Chile. Geophysical data can be

  11. Porphyry copper assessment of the Tibetan Plateau, China: Chapter F in Global mineral resource assessment

    Science.gov (United States)

    Ludington, Steve; Hammarstrom, Jane M.; Robinson, Gilpin R.; Mars, John L.; Miller, Robert J.

    2012-01-01

    The U.S. Geological Survey collaborated with the China Geological Survey to conduct a mineral-resource assessment of resources in porphyry copper deposits on the Tibetan Plateau in western China. This area hosts several very large porphyry deposits, exemplified by the Yulong and Qulong deposits, each containing at least 7,000,000 metric tons (t) of copper. However, large parts of the area are underexplored and are likely to contain undiscovered porphyry copper deposits.

  12. Petrogenesis of the Pulang porphyry complex, southwestern China: Implications for porphyry copper metallogenesis and subduction of the Paleo-Tethys Oceanic lithosphere

    Science.gov (United States)

    Wang, Peng; Dong, Guo-Chen; Zhao, Guo-Chun; Han, Yi-Gui; Li, Yong-Ping

    2018-04-01

    mineralization. Moreover, the separation/exsolution of the quartz monzonite from the quartz diorite is vital to the enrichment of Cu in the Pulang deposit. The emplacement of the Pulang pluton, posterior to the closure of the Jiangshajiang Ocean (a branch of the paleo-Tethys), is consistent with the igneous rocks associated with the westward subduction of the Ganzi-Litang oceanic plate during late Triassic Time. The Zhongdian Arc in the southern segment of the Yidun Arc was close to the arc front that was conducive to Cu mineralization in the porphyry system.

  13. Anhydrite precipitation in seafloor hydrothermal systems

    Science.gov (United States)

    Theissen-Krah, Sonja; Rüpke, Lars H.

    2016-04-01

    The composition and metal concentration of hydrothermal fluids venting at the seafloor is strongly temperature-dependent and fluids above 300°C are required to transport metals to the seafloor (Hannington et al. 2010). Ore-forming hydrothermal systems and high temperature vents in general are often associated with faults and fracture zones, i.e. zones of enhanced permeabilities that act as channels for the uprising hydrothermal fluid (Heinrich & Candela, 2014). Previous numerical models (Jupp and Schultz, 2000; Andersen et al. 2015) however have shown that high permeabilities tend to decrease fluid flow temperatures due to mixing with cold seawater and the resulting high fluid fluxes that lead to short residence times of the fluid near the heat source. A possible mechanism to reduce the permeability and thereby to focus high temperature fluid flow are mineral precipitation reactions that clog the pore space. Anhydrite for example precipitates from seawater if it is heated to temperatures above ~150°C or due to mixing of seawater with hydrothermal fluids that usually have high Calcium concentrations. We have implemented anhydrite reactions (precipitation and dissolution) in our finite element numerical models of hydrothermal circulation. The initial results show that the precipitation of anhydrite efficiently alters the permeability field, which affects the hydrothermal flow field as well as the resulting vent temperatures. C. Andersen et al. (2015), Fault geometry and permeability contrast control vent temperatures at the Logatchev 1 hydrothermal field, Mid-Atlantic Ridge, Geology, 43(1), 51-54. M. D. Hannington et al. (2010), Modern Sea-Floor Massive Sulfides and Base Metal Resources: Toward an Estimate of Global Sea-Floor Massive Sulfide Potential, in The Challenge of Finding New Mineral Resources: Global Metallogeny, Innovative Exploration, and New Discoveries, edited by R. J. Goldfarb, E. E. Marsh and T. Monecke, pp. 317-338, Society of Economic Geologists

  14. Combined hydrothermal liquefaction and catalytic hydrothermal gasification system and process for conversion of biomass feedstocks

    Science.gov (United States)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.

    2017-09-12

    A combined hydrothermal liquefaction (HTL) and catalytic hydrothermal gasification (CHG) system and process are described that convert various biomass-containing sources into separable bio-oils and aqueous effluents that contain residual organics. Bio-oils may be converted to useful bio-based fuels and other chemical feedstocks. Residual organics in HTL aqueous effluents may be gasified and converted into medium-BTU product gases and directly used for process heating or to provide energy.

  15. The geology, structure and mineralisation of the Oyu Tolgoi porphyry copper-gold-molybdenum deposits, Mongolia: A review

    Directory of Open Access Journals (Sweden)

    T.M. (Mike Porter

    2016-05-01

    Mineralisation is characterised by varying, telescoped stages of intrusion and alteration. Early A-type quartz veined dykes were followed by Cu-Au mineralisation associated with potassic alteration, mainly K-feldspar in quartz-monzodiorite and biotite-magnetite in basaltic hosts. Downward reflux of cooled, late-magmatic hydrothermal fluid resulted in intense quartz-sericite retrograde alteration in the upper parts of the main syn-mineral intrusions, and an equivalent chlorite-muscovite/illite-hematite assemblage in basaltic host rocks. Uplift, facilitated by syn-mineral longitudinal faulting, brought sections of the porphyry deposit to shallower depths, to be overprinted and upgraded by late stage, shallower, advanced argillic alteration and high sulphidation mineralisation. Key controls on the location, size and grade of the deposit cluster include (i a long-lived, narrow faulted corridor; (ii multiple pulses of overlapping intrusion within the same structure; and (iii enclosing reactive, mafic dominated wall rocks, focussing ore.

  16. Application of Hydrothermal and Non-Hydrothermal TiO2 Nanoporous Materials as New Adsorbents for Removal of Heavy Metal Ions from Aqueous System

    Directory of Open Access Journals (Sweden)

    Mansoor Anbia

    2016-06-01

    Full Text Available Hydrothermal and non-hydrothermal spherical TiO2 nanoporous with crystalline framework were prepared by sol-gel method. The Crystalline structures, morphologies and surface texturing of materials were determined by X-ray diffraction (XRD, scanning electron microscopy (SEM and N2 adsorption-desorption isotherms. The Hydrothermal spherical TiO2 nanoporous was found to have a narrow and strong pore size distribution peaks with average of 37.8 Å and pore volume of 0.41 cm3/g and the (Brunauer–Emmett–TellerBET specific surface area of 365 m2/g. Hydrothermal and non-hydrothermal spherical TiO2 nanoporous have been used as adsorbent to study of the adsorption behavior of Pb(II, Co(II and Ni(II ions from aqueous system in a batch system. Effect of equilibrium time on adsorption Pb(II, Co(II and Ni(II ions on these adsorbent was studied The results show that the shaking time 0.5 to 10h has no serious effect on the percentage of ions removal, and the adsorption is fast in all cases. The maximum uptake capacities of Hydrothermal and non-hydrothermal spherical TiO2 nanoporous was calculated. Both hydrothermal and non-hydrothermal TiO2 nanoporous materials were found to have very good potential as new adsorbents in removal of these ions. In batch systems the maximum uptake capacities of Pb(II, Ni(II and Co(II on the hydrothermal and non-hydrothermal TiO2 nanoporous materials was Co(II > Pb(II > Ni(II and Co(II > Ni(II > Pb(II, respectively.

  17. Geochemistry and fluid characteristics of the Dalli porphyry Cu-Au deposit, Central Iran

    Science.gov (United States)

    Zarasvandi, Alireza; Rezaei, Mohsen; Raith, Johann; Lentz, David; Azimzadeh, Amir-Mortaza; Pourkaseb, Hooshang

    2015-11-01

    The Miocene Dalli porphyry Cu-Au deposit in the central part of Urumieh-Dokhtar magmatic arc is the first reported Au-rich porphyry Cu deposit in the Zagros orogenic belt. The Cu-Au mineralization is mainly hosted in diorite and quartz diorite intrusions, presenting as numerous veinlets in the altered wall rocks, with potassic, phyllic, and propylitic alteration developed. Based on the mineral assemblages and crosscutting relations of veinlets, hydrothermal mineralization-alteration occurred in at least three stages, characterized by veinlets of (1) Qtz + Kfs + Mag ± Ccp, (2) Qtz + Py + Ccp ± Bn ± Cv ± Cc and, (3) Qtz + Chl + Bt. The ore-bearing intrusions exhibit typical geochemical characteristics of subduction zone magmas, including LREE fractionated pattern, strong enrichment in LILE (Cs, Rb, Ba, Pb, and U), and depletion of HFSE, with marked negative Ti and Nb anomalies. The adakite-like ore-hosting porphyry intrusions are characterized by a systematic gradual decreasing and increasing of Y and Eu/Eu∗ with increasing SiO2 content, respectively. Moreover, they exhibit a significant increasing trend of Sr/Y with decreasing of Y, which indicates progressive hornblende fractionation and suppression of plagioclase fractionation during the evolution toward high water content of parental magma. A relatively flat HREE pattern with low Dyn/Ybn and Nb/Ta values may represent that amphibole played a more important role than garnet in the generation of the adakitic melts in the thickened lower crust. Based on the phase assemblages confirmed by detailed laser Raman spectroscopy analyses and proportion of solid, liquid, and gaseous components, five types of fluid inclusions were recognized, which are categorized as; (1) liquid-rich two phase (liquidH2O + vaporH2O) (IIA), (2) vapor-rich two phase (vaporH2O/CO2 + liquidH2O) (IIB), (3) high saline simple fluids (IIIA; liquidH2O + vaporH2O + Hl), (4) high saline opaque mineral-bearing fluids (IIIB; liquidH2O + vaporH2O

  18. Hydrothermal systems on Mars: an assessment of present evidence

    Science.gov (United States)

    Farmer, J. D.

    1996-01-01

    Hydrothermal processes have been suggested to explain a number of observations for Mars, including D/H ratios of water extracted from Martian meteorites, as a means for removing CO2 from the Martian atmosphere and sequestering it in the crust as carbonates, and as a possible origin for iron oxide-rich spectral units on the floors of some rifted basins (chasmata). There are numerous examples of Martian channels formed by discharges of subsurface water near potential magmatic heat sources, and hydrothermal processes have also been proposed as a mechanism for aquifer recharge needed to sustain long term erosion of sapping channels. The following geological settings have been identified as targets for ancient hydrothermal systems on Mars: channels located along the margins of impact crater melt sheets and on the slopes of ancient volcanoes; chaotic and fretted terranes where shallow subsurface heat sources are thought to have interacted with ground ice; and the floors of calderas and rifted basins (e.g. chasmata). On Earth, such geological environments are often a locus for hydrothermal mineralization. But we presently lack the mineralogical information needed for a definitive evaluation of hypotheses. A preferred tool for identifying minerals by remote sensing methods on Earth is high spatial resolution, hyperspectral, near-infrared spectroscopy, a technique that has been extensively developed by mineral explorationists. Future efforts to explore Mars for ancient hydrothermal systems would benefit from the application of methods developed by the mining industry to look for similar deposits on Earth. But Earth-based exploration models must be adapted to account for the large differences in the climatic and geological history of Mars. For example, it is likely that the early surface environment of Mars was cool, perhaps consistently below freezing, with the shallow portions of hydrothermal systems being dominated by magma-cryosphere interactions. Given the smaller

  19. Porosity evolution in Icelandic hydrothermal systems

    Science.gov (United States)

    Thien, B.; Kosakowski, G.; Kulik, D. A.

    2014-12-01

    Mineralogical alteration of reservoir rocks, driven by fluid circulation in natural or enhanced hydrothermal systems, is likely to influence the long-term performance of geothermal power generation. A key factor is the change of porosity due to dissolution of primary minerals and precipitation of secondary phases. Porosity changes will affect fluid circulation and solute transport, which, in turn, influence mineralogical alteration. This study is part of the Sinergia COTHERM project (COmbined hydrological, geochemical and geophysical modeling of geotTHERMal systems, grant number CRSII2_141843/1) that is an integrative research project aimed at improving our understanding of the sub-surface processes in magmatically-driven natural geothermal systems. These are typically high enthalphy systems where a magmatic pluton is located at a few kilometers depth. These shallow plutons increase the geothermal gradient and trigger the circulation of hydrothermal waters with a steam cap forming at shallow depth. Field observations suggest that active and fossil Icelandic hydrothermal systems are built from a superposition of completely altered and completely unaltered layers. With help of 1D and 2D reactive transport models (OpenGeoSys-GEM code), we investigate the reasons for this finding, by studying the mineralogical evolution of protoliths with different initial porosities at different temperatures and pressures, different leaching water composition and gas content, and different porosity geometries (i.e. porous medium versus fractured medium). From this study, we believe that the initial porosity of protoliths and volume changes due to their transformation into secondary minerals are key factors to explain the different alteration extents observed in field studies. We also discuss how precipitation and dissolution kinetics can influence the alteration time scales.

  20. Porphyry copper assessment of Southeast Asia and Melanesia: Chapter D in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Dicken, Connie L.; Drenth, Benjamin J.; Ludington, Steve; Robinson, Gilpin R.; Setiabudi, Bambang Tjahjono; Sukserm, Wudhikarn; Sunuhadi, Dwi Nugroho; Wah, Alexander Yan Sze; Zientek, Michael L.

    2013-01-01

    The U.S. Geological Survey collaborated with member countries of the Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP) on an assessment of the porphyry copper resources of Southeast Asia and Melanesia as part of a global mineral resource assessment. The region hosts world-class porphyry copper deposits and underexplored areas that are likely to contain undiscovered deposits. Examples of known porphyry copper deposits include Batu Hijau and Grasberg in Indonesia; Panguna, Frieda River, and Ok Tedi in Papua New Guinea; and Namosi in Fiji.

  1. Porphyry copper assessment of western Central Asia: Chapter N in Global mineral resource assessment

    Science.gov (United States)

    Berger, Byron R.; Mars, John L.; Denning, Paul; Phillips, Jeffrey D.; Hammarstrom, Jane M.; Zientek, Michael L.; Dicken, Connie L.; Drew, Lawrence J.; with contributions from Alexeiev, Dmitriy; Seltmann, Reimar; Herrington, Richard J.

    2014-01-01

    The U.S. Geological Survey conducted an assessment of resources associated with porphyry copper deposits in the western Central Asia countries of Kyrgyzstan, Uzbekistan, Kazakhstan, and Tajikistan and the southern Urals of Kazakhstan and Russia as part of a global mineral resource assessment. The purpose of the study was to (1) delineate permissive areas (tracts) for undiscovered porphyry copper deposits; (2) compile a database of known porphyry copper deposits and significant prospects; (3) where data permit, estimate numbers of undiscovered deposits within those permissive tracts; and (4) provide probabilistic estimates the amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) that could be contained in those undiscovered deposits.

  2. Geological Model of Supercritical Geothermal Reservoir on the Top of the Magma Chamber

    Science.gov (United States)

    Tsuchiya, N.

    2017-12-01

    We are conducting supercritical geothermal project, and deep drilling project named as "JBBP: Japan Beyond Brittle Project" The temperatures of geothermal fields operating in Japan range from 200 to 300 °C (average 250 °C), and the depths range from 1000 to 2000 m (average 1500 m). In conventional geothermal reservoirs, the mechanical behavior of the rocks is presumed to be brittle, and convection of the hydrothermal fluid through existing network is the main method of circulation in the reservoir. In order to minimize induced seismicity, a rock mass that is "beyond brittle" is one possible candidate, because the rock mechanics of "beyond brittle" material is one of plastic deformation rather than brittle failure. To understand the geological model of a supercritical geothermal reservoir, granite-porphyry system, which had been formed in subduction zone, was investigated as a natural analog of the supercritical geothermal energy system. Quartz veins, hydrothermal breccia veins, and glassy veins are observed in a granitic body. The glassy veins formed at 500-550 °C under lithostatic pressures, and then pressures dropped drastically. The solubility of silica also dropped, resulting in formation of quartz veins under a hydrostatic pressure regime. Connections between the lithostatic and hydrostatic pressure regimes were key to the formation of the hydrothermal breccia veins, and the granite-porphyry system provides useful information for creation of fracture clouds in supercritical geothermal reservoirs. A granite-porphyry system, associated with hydrothermal activity and mineralization, provides a suitable natural analog for studying a deep-seated geothermal reservoir where stockwork fracture systems are created in the presence of supercritical geothermal fluids. I describe fracture networks and their formation mechanisms using petrology and fluid inclusion studies in order to understand this "beyond brittle" supercritical geothermal reservoir, and a geological

  3. Origin of dioritic magma and its contribution to porphyry Cu-Au mineralization at Pulang in the Yidun arc, eastern Tibet

    Science.gov (United States)

    Cao, Kang; Yang, Zhi-Ming; Xu, Ji-Feng; Fu, Bin; Li, Wei-Kai; Sun, Mao-Yu

    2018-04-01

    The giant Pulang porphyry Cu-Au deposit in the Yidun arc, eastern Tibet, formed due to westward subduction of the Garze-Litang oceanic plate in the Late Triassic. The deposit is hosted in an intrusive complex comprising primarily coarse-grained quartz diorite and cored quartz monzonite. Here, we investigate a suite of simultaneous (216.6 ± 1.9 Ma) diorite porphyries within the complex. The diorite porphyries are geochemically similar to mafic magmatic enclaves (MME) hosted in coarse-grained quartz diorite, and both are characterized by low SiO2 (59.4-63.0 wt%) and high total alkali (Na2O + K2O = 7.0-9.2 wt%), K2O (3.5-6.4 wt%), MgO (3.2-5.5 wt%), and compatible trace element (e.g., Cr = 72-149 ppm) concentrations. They are enriched in large-ion lithophile and light rare earth elements (LILE and LREE, respectively), but depleted in high field-strength and heavy rare earth elements (HFSE and HREE, respectively), and yield variably high (La/Yb)N ratios (17-126, average 65) with weak to negligible Eu anomalies. Furthermore, they yield low (87Sr/86Sr)i ratios (0.7054-0.7067), weakly negative εNd(t) (-2.8 to -0.8) values, and variable zircon εHf(t) (-5.4 to +0.8) and δ18O (6.0‰-6.7‰) values. These geochemical features indicate that the diorite porphyry and MME formed through crustal assimilation of a magma produced during low-degree partial melting of metasomatized phlogopite-rich subcontinental lithospheric mantle. In contrast, the coarse-grained quartz diorite and quartz monzonite have relatively high concentrations of SiO2 (61.1-65.3 wt%), K2O (4.1-5.4 wt%), and total alkali (Na2O + K2O = 7.1-8.1 wt%), and low concentrations of MgO (generally Y ratios (50-63) that indicate an adakitic affinity, and are enriched in LILE, depleted in HFSE, and yield lower (La/Yb)N values (13-20, average 17) than the diorite porphyry and MME. They yield low (87Sr/86Sr)i ratios (0.7046-0.7066), negative εNd(t) (-3.3 to -1.7) values, and zircon εHf(t) and δ18O values of -2.9 to

  4. Identifying areas of high economic-potential copper mineralization using ASTER data in the Urumieh-Dokhtar Volcanic Belt, Iran

    Science.gov (United States)

    Pour, Amin Beiranvand; Hashim, Mazlan

    2012-02-01

    This study investigates the application of spectral image processing methods to ASTER data for mapping hydrothermal alteration zones associated with porphyry copper mineralization and related host rock. The study area is located in the southeastern segment of the Urumieh-Dokhtar Volcanic Belt of Iran. This area has been selected because it is a potential zone for exploration of new porphyry copper deposits. Spectral transform approaches, namely principal component analysis, band ratio and minimum noise fraction were used for mapping hydrothermally altered rocks and lithological units at regional scale. Spectral mapping methods, including spectral angle mapper, linear spectral unmixing, matched filtering and mixture tuned matched filtering were applied to differentiate hydrothermal alteration zones associated with porphyry copper mineralization such as phyllic, argillic and propylitic mineral assemblages.Spectral transform methods enhanced hydrothermally altered rocks associated with the known porphyry copper deposits and new identified prospects using shortwave infrared (SWIR) bands of ASTER. These methods showed the discrimination of quartz rich igneous rocks from the magmatic background and the boundary between igneous and sedimentary rocks using the thermal infrared (TIR) bands of ASTER at regional scale. Spectral mapping methods distinguished the sericitically- and argillically-altered rocks (the phyllic and argillic alteration zones) that surrounded by discontinuous to extensive zones of propylitized rocks (the propylitic alteration zone) using SWIR bands of ASTER at both regional and district scales. Linear spectral unmixing method can be best suited for distinguishing specific high economic-potential hydrothermal alteration zone (the phyllic zone) and mineral assemblages using SWIR bands of ASTER. Results have proven to be effective, and in accordance with the results of field surveying, spectral reflectance measurements and X-ray diffraction (XRD) analysis

  5. Application of cultural algorithm to generation scheduling of hydrothermal systems

    International Nuclear Information System (INIS)

    Yuan Xiaohui; Yuan Yanbin

    2006-01-01

    The daily generation scheduling of hydrothermal power systems plays an important role in the operation of electric power systems for economics and security, which is a large scale dynamic non-linear constrained optimization problem. It is difficult to solve using traditional optimization methods. This paper proposes a new cultural algorithm to solve the optimal daily generation scheduling of hydrothermal power systems. The approach takes the water transport delay time between connected reservoirs into consideration and can conveniently deal with the complicated hydraulic coupling simultaneously. An example is used to verify the correctness and effectiveness of the proposed cultural algorithm, comparing with both the Lagrange method and the genetic algorithm method. The simulation results demonstrate that the proposed algorithm has rapid convergence speed and higher solution precision. Thus, an effective method is provided to solve the optimal daily generation scheduling of hydrothermal systems

  6. Metallogenic hydrothermal solution system of post volcanic magma in Xiangshan ore field

    International Nuclear Information System (INIS)

    Xu Hengli; Shao Fei; Zou Maoqin

    2009-01-01

    This paper has systematically described uranium metallogenic characteristics of Xiangshan ore field.Sources of metallogenic materials are discussed in different temporal and spatial scale. Combining with background analysis of metallogenic tectonic-magmatic-geodynamics, formation and evolution of metallogenic hydrothermal solution system in Xiangshan volcanic basin are studied. Metallogenic hydrothermal solution system in Xiangshan ore field is considered as the objective product of systematic evolution of hydrothermal solution in post volcanic magma constrained by regional tectonic environment. In time scale, metallogenic hydrothermal solution system developed for about 50 Ma, but its active spaces varied in different time domains. So temporal and spatial distribution of uranium mineralization is constrained. Further exploration for the ore field is also suggested in this paper. (authors)

  7. Magmatic Vapor Phase Transport of Copper in Reduced Porphyry Copper-Gold Deposits: Evidence From PIXE Microanalysis of Fluid Inclusions

    Science.gov (United States)

    Rowins, S. M.; Yeats, C. J.; Ryan, C. G.

    2002-05-01

    Nondestructive proton-induced X-ray emission (PIXE) studies of magmatic fluid inclusions in granite-related Sn-W deposits [1] reveal that copper transport out of reduced felsic magmas is favored by low-salinity vapor and not co-existing high-salinity liquid (halite-saturated brine). Copper transport by magmatic vapor also has been documented in oxidized porphyry Cu-Au deposits, but the magnitude of Cu partitioning into the vapor compared to the brine generally is less pronounced than in the reduced magmatic Sn-W systems [2]. Consideration of these microanalytical data leads to the hypothesis that Cu and, by inference, Au in the recently established "reduced porphyry copper-gold" (RPCG) subclass should partition preferentially into vapor and not high-salinity liquid exsolving directly from fluid-saturated magmas [3-4]. To test this hypothesis, PIXE microanalysis of primary fluid inclusions in quartz-sulfide (pyrite, pyrrhotite & chalcopyrite) veins from two RPCG deposits was undertaken using the CSIRO-GEMOC nuclear microprobe. PIXE microanalysis for the ~30 Ma San Anton deposit (Mexico) was done on halite-saturated aqueous brine (deposit (W. Australia) was done on halite-saturated "aqueous" inclusions, which contain a small (deposits of the new RPCG subclass demonstrate the greater potential of these systems, compared to the classically oxidized porphyry Cu-Au systems, to transport Cu and probably precious metals in a magmatic aqueous vapor phase. These PIXE data also support the possibility that Cu partitions preferentially into an immiscible CO2-rich magmatic fluid. References: [1] Heinrich, C.A. et al. (1992) Econ. Geol., 87, 1566-1583. [2] Heinrich, C.A. et al. (1999) Geology, 27, 755-758. [3] Rowins, S.M. (2000) Geology, 28, 491-494. [4] Rowins, S.M. (2000) The Gangue, GAC-MDD Newsletter, 67, 1-7 (www.gac.ca). [5] Rowins, S.M. et al. (1993) Geol. Soc. Australia Abs., 34, 68-70.

  8. Origin of the subduction-related Carboniferous intrusions associated with the Yandong porphyry Cu deposit in eastern Tianshan, NW China: constraints from geology, geochronology, geochemistry, and Sr-Nd-Pb-Hf-O isotopes

    Science.gov (United States)

    Wang, Yin-Hong; Xue, Chun-Ji; Liu, Jia-Jun; Zhang, Fang-Fang

    2018-06-01

    The Yandong porphyry Cu deposit is located at the south margin of the Dananhu-Tousuquan arc belt in eastern Tianshan, northwest China. The Cu ores comprise mainly disseminations and vein zones in the potassic and phyllic alteration zones, and are predominantly hosted in diorite porphyry, tonalite, and quartz porphyry, which intruded into Carboniferous Qi'eshan Group volcanic rocks. The U-Pb ages indicate that four intrusions were emplaced between 338.6 ± 2.9 and 326.1 ± 2.6 Ma. Five molybdenite samples yield Re-Os model ages of 333.8-329.5 Ma with a weighted average age of 331.8 ± 2.1 Ma. Fourteen pyrite samples have 206Pb/204Pb of 17.776-18.959, 207Pb/204Pb of 15.410-15.534, and 208Pb/204Pb of 37.323-38.127, similar to the age-corrected data of the Yandong tonalite. The tonalite shows adakite-like characteristics (e.g., high Sr/Y ratios and low Y contents), and has positive ɛNd(t) and ɛHf(t) values, and low zircon O isotopes (3.7-4.6 ‰), suggesting that the melt was derived from partial melting of a subducted oceanic slab followed by mantle peridotite interaction. The diorite porphyry exhibits high Mg# and low Sr/Y values, slightly negative Eu anomalies, and positive ɛHf(t) values, indicating a lithospheric mantle source. The quartz porphyry, with stronger negative Eu anomalies, less evolved ɛHf(t) values, and low δ18O values (4.7-5.5 ‰), was probably derived from mantle melts that experienced mixing with lower crustal materials (melts or assimilation). The new data suggest that the Yandong intrusions formed in an arc setting. As the tonalite is genetically linked to the Cu mineralization, subduction-related slab melts must have played a key role in the formation of the Yandong deposit.

  9. Origin of the subduction-related Carboniferous intrusions associated with the Yandong porphyry Cu deposit in eastern Tianshan, NW China: constraints from geology, geochronology, geochemistry, and Sr-Nd-Pb-Hf-O isotopes

    Science.gov (United States)

    Wang, Yin-Hong; Xue, Chun-Ji; Liu, Jia-Jun; Zhang, Fang-Fang

    2017-10-01

    The Yandong porphyry Cu deposit is located at the south margin of the Dananhu-Tousuquan arc belt in eastern Tianshan, northwest China. The Cu ores comprise mainly disseminations and vein zones in the potassic and phyllic alteration zones, and are predominantly hosted in diorite porphyry, tonalite, and quartz porphyry, which intruded into Carboniferous Qi'eshan Group volcanic rocks. The U-Pb ages indicate that four intrusions were emplaced between 338.6 ± 2.9 and 326.1 ± 2.6 Ma. Five molybdenite samples yield Re-Os model ages of 333.8-329.5 Ma with a weighted average age of 331.8 ± 2.1 Ma. Fourteen pyrite samples have 206Pb/204Pb of 17.776-18.959, 207Pb/204Pb of 15.410-15.534, and 208Pb/204Pb of 37.323-38.127, similar to the age-corrected data of the Yandong tonalite. The tonalite shows adakite-like characteristics (e.g., high Sr/Y ratios and low Y contents), and has positive ɛNd(t) and ɛHf(t) values, and low zircon O isotopes (3.7-4.6 ‰), suggesting that the melt was derived from partial melting of a subducted oceanic slab followed by mantle peridotite interaction. The diorite porphyry exhibits high Mg# and low Sr/Y values, slightly negative Eu anomalies, and positive ɛHf(t) values, indicating a lithospheric mantle source. The quartz porphyry, with stronger negative Eu anomalies, less evolved ɛHf(t) values, and low δ18O values (4.7-5.5 ‰), was probably derived from mantle melts that experienced mixing with lower crustal materials (melts or assimilation). The new data suggest that the Yandong intrusions formed in an arc setting. As the tonalite is genetically linked to the Cu mineralization, subduction-related slab melts must have played a key role in the formation of the Yandong deposit.

  10. Relationships between mineralization and silicic volcanism in the central Andes

    Science.gov (United States)

    Francis, P. W.; Halls, C.; Baker, M. C. W.

    1983-01-01

    Existing models for the genesis of porphyry copper deposits indicate that they formed in granodioritic stocks located in the infrastructure of andesitic stratovolcanoes. It is noted that sites of porphyry-type subvolcanic tin mineralization in the Eastern Cordillera of Bolivia are distinguished by the absence of such andesitic structures. The surface expression of a typical subvolcanic porphyry tin deposit is thought to be an extrusive dome of quartz latite porphyry, sometimes related to a larger caldera structure. Evidence from the El Salvador porphyry copper deposit in the Eocene magmatic belt in Chile indicates that it too may be more closely related to a silicic volcanic structure than to an andesitic stratovolcano. The dome of La Soufriere, Guadeloupe is offered as a modern analog for the surface expression of subvolcanic mineralization processes, with the phreatic eruptions there indicating the formation of hydrothermal breccia bodies in depths. It is pointed out that the occurrence of mineralized porphyries, millions of years after caldera formation, does not necessarily indicate that tin intrusions and mineralization are not genetically related to the subcaldera pluton, but may be a consequence of the long thermal histories (1-10 million years) of the lowermost parts of large plutons.

  11. Geochronology and geochemistry of the Badaguan porphyry Cu-Mo deposit in Derbugan metallogenic belt of the NE China, and their geological significances

    Science.gov (United States)

    Gao, Bingyu; Zhang, Lianchang; Jin, Xindi; Li, Wenjun; Chen, Zhiguang; Zhu, Mingtian

    2016-03-01

    The Badaguan porphyry Cu-Mo deposit belongs to the Derbugan metallogenic belt, which is located in the Ergun block, NE China. In the mining area, the Cu-Mo mineralization mainly occurs in quartz diorite porphyry and is hosted within silicified-sericitized and sericite alteration zone. Geochemical results of the host porphyry is characterized by high SiO2, high Al2O3, low MgO, weak positive Eu anomalies and clearly HREE depletion, high Sr, low Y and low Yb, similar to those of adakite. The Sr-Nd isotopic composition of the host porphyry displays an initial (87Sr/86Sr)i ratio of 0.7036-0.7055 and positive Nd( t) values of +0.1 to +0.6, which are similar to the OIB, reflecting the source of the host porphyry may derive from subducted ocean slab, and the new lower crust also had some contribution to the magma sources. The SIMS zircon U-Pb age from the host porphyry is 229 ± 2 Ma. The Re-Os isochron age for the molybdenite in the deposit is 225 ± 2 Ma closed to zircon U-Pb age of the host porphyry, indicating that Cu-Mo mineralization event occurred in Triassic. Combining the geology-geochemistry of the host porphyry and the regional tectonic evolution, we infer that the subduction processes of Mongol-Okhotsk oceanic slab under the Ergun block led to the formation of the Badaguan porphyry Cu-Mo deposit during the Triassic.

  12. Mineralization and geophysical exploration by IP/RS and ground magnetic survey in MA-I and surrounding area, Maherabad porphyry Cu-Au prospect area, east of Iran

    OpenAIRE

    Azadeh Malekzadeh Shafaroudi; Mohammad Reza Hidarian Shahri; Mohammad Hassan Karimpour

    2009-01-01

    Maherabad prospect area, which is studied in detail, is the first porphyry Cu-Au mineralization in the east of Iran. Based on relation of mineralization with subvolcanic intrusive bodies mostly monzonitic with porphyry texture, extent and types of alteration including potassic, sericitic- potassic, quartz- sericite- carbonate- pyrite, quartz- carbonate- pyrite, silicification- propylitic, propylitic, stockwork mineralization, assemblages hypogene mineralization including pyrite, chalcopyrite,...

  13. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.

    Science.gov (United States)

    McCollom, Thomas M

    2007-12-01

    Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.

  14. Resistivity structure and geochemistry of the Jigokudani Valley hydrothermal system, Mt. Tateyama, Japan

    Science.gov (United States)

    Seki, Kaori; Kanda, Wataru; Tanbo, Toshiya; Ohba, Takeshi; Ogawa, Yasuo; Takakura, Shinichi; Nogami, Kenji; Ushioda, Masashi; Suzuki, Atsushi; Saito, Zenshiro; Matsunaga, Yasuo

    2016-10-01

    This study clarifies the hydrothermal system of Jigokudani Valley near Mt. Tateyama volcano in Japan by using a combination of audio-frequency magnetotelluric (AMT) survey and hot-spring water analysis in order to assess the potential of future phreatic eruptions in the area. Repeated phreatic eruptions in the area about 40,000 years ago produced the current valley morphology, which is now an active solfatara field dotted with hot springs and fumaroles indicative of a well-developed hydrothermal system. The three-dimensional (3D) resistivity structure of the hydrothermal system was modeled by using the results of an AMT survey conducted at 25 locations across the valley in 2013-2014. The model suggests the presence of a near-surface highly conductive layer of falling largely on a mixing line between magmatic fluids and local meteoric water (LMW). The geochemical analysis suggests that the hydrothermal system includes a two-phase zone of vapor-liquid. A comparison of the resistivity structure and the geochemically inferred structure suggests that a hydrothermal reservoir is present at a depth of approximately 500 m, from which hot-spring water differentiates into the three observed types. The two-phase zone appears to be located immediately beneath the cap rock structure. These findings suggest that the hydrothermal system of Jigokudani Valley exhibits a number of factors that could trigger a future phreatic eruption.

  15. Inversion Approach For Thermal Data From A Convecting Hydrothermal System

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1985-01-01

    Hydrothermal systems are often studied by collecting thermal gradient data and temperature depth curves. These data contain important information about the flow field, the evolution of the hydrothermal system, and the location and nature of the ultimate heat sources. Thermal data are conventionally interpreted by the ''forward'' method; the thermal field is calculated based on selected initial conditions and boundary conditions such as temperature and permeability distributions. If the calculated thermal field matches the data, the chosen conditions are inferred to be possibly correct. Because many sets of initial conditions may produce similar thermal fields, users of the ''forward'' method may inadvertently miss the correct set of initial conditions. Analytical methods for ''inverting'' data also allow the determination of all the possible solutions consistent with the definition of the problem. In this paper we suggest an approach for inverting thermal data from a hydrothermal system, and compare it to the more conventional approach. We illustrate the difference in the methods by comparing their application to the Salton Sea Geothermal Field by Lau (1980a) and Kasameyer, et al. (1984). In this particular example, the inverse method was used to draw conclusions about the age and total rate of fluid flow into the hydrothermal system.

  16. Formation of the Vysoká-Zlatno Cu-Au skarn-porphyry deposit, Slovakia

    Science.gov (United States)

    Koděra, Peter; Lexa, Jaroslav; Fallick, Anthony E.

    2010-12-01

    The central zone of the Miocene Štiavnica stratovolcano hosts several occurrences of Cu-Au skarn-porphyry mineralisation, related to granodiorite/quartz-diorite porphyry dyke clusters and stocks. Vysoká-Zlatno is the largest deposit (13.4 Mt at 0.52% Cu), with mineralised Mg-Ca exo- and endoskarns, developed at the prevolcanic basement level. The alteration pattern includes an internal K- and Na-Ca silicate zone, surrounded by phyllic and argillic zones, laterally grading into a propylitic zone. Fluid inclusions in quartz veinlets in the internal zone contain mostly saline brines with 31-70 wt.% NaCl eq. and temperatures of liquid-vapour homogenization (Th) of 186-575°C, indicating fluid heterogenisation. Garnet contains inclusions of variable salinity with 1-31 wt.% NaCl eq. and Th of 320-360°C. Quartz-chalcopyrite veinlets host mostly low-salinity fluid inclusions with 0-3 wt.% NaCl eq. and Th of 323-364°C. Data from sphalerite from the margin of the system indicate mixing with dilute and cooler fluids. The isotopic composition of fluids in equilibrium with K-alteration and most skarn minerals (both prograde and retrograde) indicates predominantly a magmatic origin (δ18Ofluid 2.5-12.3‰) with a minor meteoric component. Corresponding low δDfluid values are probably related to isotopic fractionation during exsolution of the fluid from crystallising magma in an open system. The data suggest the general pattern of a distant source of magmatic fluids that ascended above a zone of hydraulic fracturing below the temperature of ductile-brittle transition. The magma chamber at ˜5-6 km depth exsolved single-phase fluids, whose properties were controlled by changing PT conditions along their fluid paths. During early stages, ascending fluids display liquid-vapour immiscibility, followed by physical separation of both phases. Low-salinity liquid associated with ore veinlets probably represents a single-phase magmatic fluid/magmatic vapour which contracted into

  17. The importance of shallow hydrothermal island arc systems in ocean biogeochemistry

    NARCIS (Netherlands)

    Hawkes, J.A.; Connelly, D.P.; Rijkenberg, M.J.A.; Achterberg, E.P.

    2014-01-01

    Hydrothermal venting often occurs at submarine volcanic calderas on island arc chains, typically at shallower depths than mid-ocean ridges. The effect of these systems on ocean biogeochemistry has been under-investigated to date. Here we show that hydrothermal effluent from an island arc caldera was

  18. Pressure-temperature condition and hydrothermal-magmatic fluid evolution of the Cu-Mo Senj deposit, Central Alborz: fluid inclusion evidence

    Directory of Open Access Journals (Sweden)

    Ebrahim Tale Fazel

    2017-02-01

    Full Text Available Introduction The Senj deposit has significant potential for different types of mineralization, particularly porphyry-like Cu deposits, associated with subduction-related Eocene–Oligocene calc-alkaline porphyritic volcano-plutonic rocks. The study of fluid inclusions in hydrothermal ore deposits aims to identify and characterize the pressure, temperature, volume and fluid composition, (PTX conditions of fluids under which they were trapped (Heinrich et al., 1999; Ulrich and Heinrich, 2001; Redmond et al., 2004. Different characteristics of the deposit such as porphyrtic nature, alteration assemblage and the quartz-sulfide veins of the stockwork were poorly known. In this approach on the basis of alterations, vein cutting relationship and field distribution of fluid inclusions, the physical and chemical evolution of the hydrothermal system forming the porphyry Cu-Mo (±Au-Ag deposit in Senj is reconstructed. Materials and Methods Over 1000 m of drill core was logged at a scale of 1:1000 by Pichab Kavosh Co. and samples containing various vein and alteration types from different depths were collected for laboratory analyses. A total of 14 samples collected from the altered and least altered igneous rocks in the Senj deposit were analyzed for their major oxide concentrations by X-ray fluorescence in the SGS Mineral Services (Toronto, Canada. The detection limit for major oxide analysis is 0.01%. Trace and rare earth elements (REE were analyzed using inductively coupled plasma-mass spectrometery (ICP-MS, in the commercial laboratory of SGS Mineral Services. The analytical error for most elements is less than 2%. The detection limit for trace elements and REEs analysis is 0.01 to 0.1 ppm. Fluid inclusion microthermometry was conducted using a Linkam THMS600 heating–freezing stage (-190 °C to +600 °C mounted on a ZEISS Axioplan2 microscope in the fluid inclusion laboratory of the Iranian Mineral Processing Research Center (Karaj, Iran. Results

  19. Identification and activity of acetate-assimilating bacteria in diffuse fluids venting from two deep-sea hydrothermal systems.

    Science.gov (United States)

    Winkel, Matthias; Pjevac, Petra; Kleiner, Manuel; Littmann, Sten; Meyerdierks, Anke; Amann, Rudolf; Mußmann, Marc

    2014-12-01

    Diffuse hydrothermal fluids often contain organic compounds such as hydrocarbons, lipids, and organic acids. Microorganisms consuming these compounds at hydrothermal sites are so far only known from cultivation-dependent studies. To identify potential heterotrophs without prior cultivation, we combined microbial community analysis with short-term incubations using (13)C-labeled acetate at two distinct hydrothermal systems. We followed cell growth and assimilation of (13)C into single cells by nanoSIMS combined with fluorescence in situ hybridization (FISH). In 55 °C-fluids from the Menez Gwen hydrothermal system/Mid-Atlantic Ridge, a novel epsilonproteobacterial group accounted for nearly all assimilation of acetate, representing the first aerobic acetate-consuming member of the Nautiliales. In contrast, Gammaproteobacteria dominated the (13) C-acetate assimilation in incubations of 37 °C-fluids from the back-arc hydrothermal system in the Manus Basin/Papua New Guinea. Here, 16S rRNA gene sequences were mostly related to mesophilic Marinobacter, reflecting the high content of seawater in these fluids. The rapid growth of microorganisms upon acetate addition suggests that acetate consumers in diffuse fluids are copiotrophic opportunists, which quickly exploit their energy sources, whenever available under the spatially and temporally highly fluctuating conditions. Our data provide first insights into the heterotrophic microbial community, catalyzing an under-investigated part of microbial carbon cycling at hydrothermal vents. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    Directory of Open Access Journals (Sweden)

    Yao Zhang

    Full Text Available To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4 concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4 was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4 concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  1. Sulfur metabolizing microbes dominate microbial communities in Andesite-hosted shallow-sea hydrothermal systems.

    Science.gov (United States)

    Zhang, Yao; Zhao, Zihao; Chen, Chen-Tung Arthur; Tang, Kai; Su, Jianqiang; Jiao, Nianzhi

    2012-01-01

    To determine microbial community composition, community spatial structure and possible key microbial processes in the shallow-sea hydrothermal vent systems off NE Taiwan's coast, we examined the bacterial and archaeal communities of four samples collected from the water column extending over a redoxocline gradient of a yellow and four from a white hydrothermal vent. Ribosomal tag pyrosequencing based on DNA and RNA showed statistically significant differences between the bacterial and archaeal communities of the different hydrothermal plumes. The bacterial and archaeal communities from the white hydrothermal plume were dominated by sulfur-reducing Nautilia and Thermococcus, whereas the yellow hydrothermal plume and the surface water were dominated by sulfide-oxidizing Thiomicrospira and Euryarchaeota Marine Group II, respectively. Canonical correspondence analyses indicate that methane (CH(4)) concentration was the only statistically significant variable that explains all community cluster patterns. However, the results of pyrosequencing showed an essential absence of methanogens and methanotrophs at the two vent fields, suggesting that CH(4) was less tied to microbial processes in this shallow-sea hydrothermal system. We speculated that mixing between hydrothermal fluids and the sea or meteoric water leads to distinctly different CH(4) concentrations and redox niches between the yellow and white vents, consequently influencing the distribution patterns of the free-living Bacteria and Archaea. We concluded that sulfur-reducing and sulfide-oxidizing chemolithoautotrophs accounted for most of the primary biomass synthesis and that microbial sulfur metabolism fueled microbial energy flow and element cycling in the shallow hydrothermal systems off the coast of NE Taiwan.

  2. Accumulated phenocrysts and origin of feldspar porphyry in the Chanho area, western Yunnan, China

    Science.gov (United States)

    Xu, Xing-Wang; Jiang, Neng; Yang, Kai; Zhang, Bao-Lin; Liang, Guang-He; Mao, Qian; Li, Jin-Xiang; Du, Shi-Jun; Ma, Yu-Guang; Zhang, Yong; Qin, Ke-Zhang

    2009-12-01

    The No. 1 feldspar porphyry in the Chanho area, western Yunnan, China is characterized by the development of deformed glomeroporphyritic aggregates (GA) that contain diagnostic gravity settling textures. These textures include interlocking curved grain boundaries caused by compaction, bent twins, and arch-like structures. The GAs are accumulated phenocrysts (AP) and antecrysts. The unstable textural configurations such as extensive penetrative microfractures that are restricted within the AP and fractured cores of zircon grains, all suggest that the GAs are transported fragments of fractured cumulates that formed in a pre-emplacement magma chamber rather than form in situ at the current intrusion site. Compositions of minerals and melt as represented by different mineral aggregates formed at various stages of the magmatic process and their relations to the composition of porphyry bodies in the Chanho area indicate that the porphyritic melt for the No. 1 feldspar porphyry experienced two stages of melt mixing. Pulses of potassic melt flowed into a pre-emplacement magma chamber and mixed with crystallizing dioritic magma containing phenocrysts resulted in the first hybrid alkaline granitic melt. The mixing caused denser phenocrysts to settle and aggregate to form cumulates. Secondly, new dioritic melt was injected into the magma chamber and was mixed with the previously formed hybrid alkaline granitic melt to produce syenitic melt. Geochron data, including U-Pb age of zircon and 39Ar/ 40Ar age of hornblende and oligoclase phenocrysts, indicate that hornblende and oligoclase phenocrysts, as well as the core of zircon grains, were antecrysts that formed in a number of crystallization events between 36.3 and 32.78 Ma. Gravity settling of phenocrysts took place at about 33.1 to 32.78 Ma and melts with deformed GAs were transported upwards and emplaced into the current site at 32 Ma. Results of this research indicate that the No. 1 feldspar porphyry was a shallow

  3. The role of metasomatism in the balance of halogens in ore-forming process at porphyry Cu-Mo deposits

    Science.gov (United States)

    Berzina, A. N.

    2009-04-01

    Volatile components play an important role in the evolution of ore-magmatic systems and their ore potential. Of special interest are fluorine and chlorine compounds that principally control the transportation of ore elements by the fluid in a magmatic process and under high-temperature hydrothermal conditions. Study of the evolution of fluorine-chlorine activity in the ore-forming process and their source is usually based on analysis of their magmatic history, whereas the additional source of fluorine and chlorine released during metasomatic alteration of rocks hosting mineralization is poorly discussed in the existing literature. Based on microprobe data on Cl and F abundances in halogen-containing minerals (biotite, amphibole, apatite, titanite) in intrusive rocks and their hydrothermally altered varieties, the role of metasomatic processes in the balance of volatiles in the ore-forming system is discussed by the example of porphyry Cu-Mo deposits of Siberia (Russia) and Mongolia. Two groups of the deposits are considered: copper-molybdenum (Erdenetiin Ovoo, Mongolia and Aksug, Russia) with prevailing propylitic and phyllic alteration and molybdenum-copper (Sora, Russia), with predominant potassic alteration. All types of hydrothermal alterations have led to drastic decrease in Cl contents in metasomatic minerals as compared with halogen-containing magmatic minerals. All studied deposits (particularly those where propylitic and phyllic alteration were developed) show a nearly complete chlorine removal from altered halogen-containing rock-forming minerals (biotite and amphibole). The Cl content in amphibole decreases several times at the stage of replacement with actinolite in the process of propylitization. In the later chlorites (ripidolite and brunsvigite) that replace amphibole, actinolite, and biotite, chlorine is not detected by microprobe (detection limit 0.01-0.02% Cl). Chlorine was also not detected in white micas (muscovite-phengite series) in quartz

  4. Entropy production in a box: Analysis of instabilities in confined hydrothermal systems

    Science.gov (United States)

    Börsing, N.; Wellmann, J. F.; Niederau, J.; Regenauer-Lieb, K.

    2017-09-01

    We evaluate if the concept of thermal entropy production can be used as a measure to characterize hydrothermal convection in a confined porous medium as a valuable, thermodynamically motivated addition to the standard Rayleigh number analysis. Entropy production has been used widely in the field of mechanical and chemical engineering as a way to characterize the thermodynamic state and irreversibility of an investigated system. Pioneering studies have since adapted these concepts to natural systems, and we apply this measure here to investigate the specific case of hydrothermal convection in a "box-shaped" confined porous medium, as a simplified analog for, e.g., hydrothermal convection in deep geothermal aquifers. We perform various detailed numerical experiments to assess the response of the convective system to changing boundary conditions or domain aspect ratios, and then determine the resulting entropy production for each experiment. In systems close to the critical Rayleigh number, we derive results that are in accordance to the analytically derived predictions. At higher Rayleigh numbers, however, we observe multiple possible convection modes, and the analysis of the integrated entropy production reveals distinct curves of entropy production that provide an insight into the hydrothermal behavior in the system, both for cases of homogeneous materials, as well as for heterogeneous spatial material distributions. We conclude that the average thermal entropy production characterizes the internal behavior of hydrothermal systems with a meaningful thermodynamic measure, and we expect that it can be useful for the investigation of convection systems in many similar hydrogeological and geophysical settings.

  5. The transport of oxygen isotopes in hydrothermal systems

    International Nuclear Information System (INIS)

    McKibbin, R.; Absar, A.; Blattner, P.

    1986-01-01

    As groundwater passes through porous rocks, exchange of oxygen between the fluid and the solid matrix causes a change in the oxygen isotope concentrations in both water and rock. If the rate at which the exchange takes place can be estimated (as a function of the isotope concentrations and temperature) then the time taken for a rock/water system to come to equilibrium with respect to isotope concentration might be calculated. In this paper, the equation for isotope transport is derived using conservation laws, and a simple equation to describe the rate of isotope exchange is proposed. These are combined with the equations for fluid flow in a porous medium, to produce a general set of equations describing isotope transport in a hydrothermal system. These equations are solved numerically, using typical parameters, for the one-dimensional case. Oxygen isotope data from the basement rocks underlying Kawerau geothermal field are modelled. The results indicate that the time taken for exchange of 18 O to present-day values is less than the postulated age of hydrothermal alteration in that field. This suggests that, although controlled by similar parameters, oxygen isotope exchange, in felsic rocks at least, is much faster than hydrothermal alteration. This conclusion is consistent with the petrographic observations from the Kawerau system as well as other geothermal fields

  6. LA-ICP-MS U-Th-Pb Dating and Trace Element Geochemistry of Allanite: Implications on the Different Skarn Metallogenesis between the Giant Beiya Au and Machangqing Cu-Mo-(Au Deposits in Yunnan, SW China

    Directory of Open Access Journals (Sweden)

    Yu Fu

    2017-12-01

    Full Text Available The giant Beiya Au skarn deposit and Machangqing porphyry Cu-Mo-(Au deposit are located in the middle part of the Jinshajiang–Ailaoshan alkaline porphyry metallogenic belt. The Beiya deposit is the largest Au skarn deposit in China, whilst the Machangqing deposit comprises a well-developed porphyry-skarn-epithermal Cu-Mo-(Au mineral system. In this paper, we present new allanite U-Th-Pb ages and trace element geochemical data from the two deposits and discuss their respective skarn metallogenesis. Based on the mineral assemblage, texture and Th/U ratio, the allanite from the Beiya and Machangqing deposits are likely hydrothermal rather than magmatic. Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS allanite U-Th-Pb dating has yielded Th-Pb isochron ages of 33.4 ± 4.6 Ma (MSWD = 0.22 (Beiya and 35.4 ± 9.8 Ma (MSWD = 0.26 (Machangqing, representing the retrograde alteration and magnetite skarn mineralization age of the two deposits. The Beiya and Machangqing alkali porphyry-related mineralization are synchronous and genetically linked to the magmatic hydrothermal activities of the Himalayan orogenic event. Major and trace element compositions reveal that the Beiya allanite has higher Fe3+/(Fe3+ + Fe2+ ratios, U content and Th content than the Machangqing allanite, which indicate a higher oxygen fugacity and F content for the ore-forming fluids at Beiya. Such differences in the ore-forming fluids may have contributed to the different metallogenic scales and metal types in the Beiya and Machangqing deposit.

  7. Porphyry copper deposits distribution along the western Tethyan and Andean subductions: insights from a paleogeographic approach

    Science.gov (United States)

    Bertrand, G.

    2012-12-01

    The genesis of many types of mineral deposits is closely linked to tectonic and petrographic conditions resulting from specific geodynamic contexts. Porphyry deposits, for instance, are associated to calc-alkaline magmatism of subduction zones. In order to better understand the relationships between ore deposit distribution and their tectonic context, and help identifying geodynamic-related criteria of favorability that would, in turn, help mineral exploration, we propose a paleogeographic approach. Paleogeographic reconstructions, based on global or regional plate tectonic models, are crucial tools to assess tectonic and kinematic contexts of the past. We use this approach to study the distribution of porphyry copper deposits along the western Tethyan and Andean subductions since Lower Cretaceous and Paleocene, respectively. For both convergent contexts, databases of porphyry copper deposits, including, among other data, their age and location, were compiled. Spatial and temporal distribution of the deposits is not random and show that they were emplaced in distinct clusters. Five clusters are identified along the western Tethyan suture, from Lower Cretaceous to Pleistocene, and at least three along the Andes, from Paleocene to Miocene. Two clusters in the Aegean-Balkan-Carpathian area, that were emplaced in Upper Cretaceous and Oligo-Miocene, and two others in the Andes, that were emplaced in late Eocene and Miocene, are studied in details and correlated with the past kinematics of the Africa-Eurasia and Nazca-South America plate convergences, respectively. All these clusters are associated with a similar polyphased kinematic context that is closely related to the dynamics of the subductions. This context is characterized by 1) a relatively fast convergence rate, shortly followed by 2) a drastic decrease of this rate. To explain these results, we propose a polyphased genetic model for porphyry copper deposits with 1) a first stage of rapid subduction rate

  8. Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian, Northwest Yunnan, China

    Science.gov (United States)

    Leng, Cheng-Biao; Zhang, Xing-Chun; Hu, Rui-Zhong; Wang, Shou-Xu; Zhong, Hong; Wang, Wai-Quan; Bi, Xian-Wu

    2012-10-01

    The Xuejiping porphyry copper deposit is located in northwestern Yunnan Province, China. Tectonically, it lies in the southern part of the Triassic Yidun island arc. The copper mineralization is mainly hosted in quartz-dioritic and quartz-monzonitic porphyries which intruded into clastic-volcanic rocks of the Late Triassic Tumugou Formation. There are several alteration zones including potassic, strong silicific and phyllic, argillic, and propylitic alteration zones from inner to outer of the mineralized porphyry bodies. The ages of ore-bearing quartz-monzonitic porphyry and its host andesite are obtained by using the zircon SIMS U-Pb dating method, with results of 218.3 ± 1.6 Ma (MSWD = 0.31, N = 15) and 218.5 ± 1.6 Ma (MSWD = 0.91, N = 16), respectively. Meanwhile, the molybdenite Re-Os dating yields a Re-Os isochronal age of 221.4 ± 2.3 Ma (MSWD = 0.54, N = 5) and a weighted mean age of 219.9 ± 0.7 Ma (MSWD = 0.88). They are quite in accordance with the zircon U-Pb ages within errors. Furthermore, all of them are contemporary with the timing of the Garzê-Litang oceanic crust subduction in the Yidun arc. Therefore, the Xuejiping deposit could be formed in a continental margin setting. There are negative ɛNd(t) values ranging from -3.8 to -2.1 and relatively high initial 87Sr/86Sr ratios from 0.7051 to 0.7059 for the Xuejiping porphyries and host andesites. The (206Pb/204Pb)t, (207Pb/204Pb)t and (208Pb/204Pb)t values of the Xuejiping porphyries and host andesites vary from 17.899 to 18.654, from 15.529 to 15.626, and from 37.864 to 38.52, respectively, indicative of high radiogenic Pb isotopic features. In situ Hf isotopic analyses on zircons by using LA-MC-ICP-MS exhibit that there are quite uniform and slightly positive ɛHf(t) values ranging from -0.2 to +3.2 (mostly between 0 and +2), corresponding to relatively young single-stage Hf model ages from 735 Ma to 871 Ma. These isotopic features suggest that the primary magmas of the Xuejiping porphyries and

  9. Geochronological and thermochronological constraints on porphyry copper mineralization in the Domeyko alteration zone, northern Chile Determinaciones geocronológicas y termocronológicas para la mineralización de cobre porfídico en la zona de alteración de Domeyko, norte de Chile

    Directory of Open Access Journals (Sweden)

    Víctor Maksaev

    2010-01-01

    Full Text Available At Domeyko, 40 km south of Vallenar in northern Chile (28°57'S-70°53'W, the Dos Amigos and Tricolor porphyry copper centers are located within a north-south-elongated hydrothermal alteration zone 6x1.5 km of surface dimensions. The centers are related to tonalite to granodiorite porphyry stocks displaying potassic alteration, which are surrounded by Lower Cretaceous andesitic volcanic rocks with sericitic, kaolinite-illite and propylitic alteration zones. The western boundary of the alteration zone is marked by the post-mineralization Cachiyuyo Batholith of granodioritic to dioritic composition. U-Pb zircon ages for the Dos Amigos porphyry are of 106.Ü3.5 and 104.0±3.5 Ma; and 108.5±3.4 for the nearby Tricolor porphyry. The Cachiyuyo Batholith yielded U-Pb zircon ages of 99.6±1.8 and 99.1±1.9 Ma; and 40Ar/39Ar ages for biotite of 96.9±3.9 and 94.8±0.9 Ma. These dates indicate that batholith emplacement postdated the Dos Amigos and Tricolor porphyries, in agreement with geological relationships. Although copper mineralization is spatially and genetically related to the Lower Cretaceous (Albian porphyry stocks, most of the dated hydrothermal micas from the Dos Amigos and Tricolor porphyries yielded 40Ar/39Ar ages between 97.1±2.5 and 96.0±1.4 Ma, which overlap within error with the cooling ages obtained for the neighboring batholith. 40Ar/39Ar dating of micas revealed significant disturbance of their K-Ar isotopic systematics that complicates accurate determination of the timing of hydrothermal activity at Domeyko. Nevertheless, the 40Ar/39Ar data establish a minimum Late Cretaceous age for this activity. A fission track age of 59.8±9.8 Ma of apatite from the Dos Amigos porphyry indicates cooling through the temperature range of the apatite partial annealing zone (~125-60°C during the Paleocene; and an (U-Th/He age of 44.7±3.7 Ma of apatite from the same porphyry sample shows cooling through the temperature range of the apatite He

  10. The Mesozoic-Cenozoic igneous intrusions and related sediment-dominated hydrothermal activities in the South Yellow Sea Basin, the Western Pacific continental margin

    Science.gov (United States)

    Yumao, Pang; Xunhua, Zhang; Guolin, Xiao; Luning, Shang; Xingwei, Guo; Zhenhe, Wen

    2018-04-01

    Various igneous complexes were identified in multi-channel seismic reflection profiles from the South Yellow Sea Basin. It is not rare that magmatic intrusions in sedimentary basins cause strong thermal perturbations and hydrothermal activities. Some intrusion-related hydrothermal vent complexes have been identified and they are considered to originate from the deep sedimentary contact aureole around igneous intrusions and terminate in upper vents structures, and are linked by a vertical conduit system. The upper vent complexes are usually eye-shaped, dome-shaped, fault-related, crater-shaped or pock-shaped in seismic profiles. A schematic model was proposed to illustrate the structures of different types of hydrothermal vent complexes. A conceptual conduit model composed of an upper pipe-like part and a lower branching part was also derived. Hydrothermal vent complexes mainly developed during the Middle-Late Cretaceous, which is coeval with, or shortly after the intrusion. The back-arc basin evolution of the area which is related to the subduction of the Paleo-Pacific plate during the Mesozoic-Cenozoic may be the principal factor for voluminous igneous complexes and vent complexes in this area. It is significant to study the characteristics of igneous complexes and related hydrothermal vent complexes, which will have implications for the future study of this area.

  11. Chemistry of a serpentinization-controlled hydrothermal system at the Lost City hydrothermal vent field

    Science.gov (United States)

    Ludwig, K. A.; Kelley, D. S.; Butterfield, D. A.; Nelson, B. K.; Karson, J. A.

    2003-12-01

    The Lost City Hydrothermal Field (LCHF), at 30° N near the Mid-Atlantic Ridge, is an off-axis, low temperature, high-pH, ultramafic-hosted vent system. Within the field, carbonate chimneys tower up to 60 m above the seafloor, making them the tallest vent structures known. The chemistry of the vent structures and fluids at the LCHF is controlled by reactions between seawater and ultramafic rocks beneath the Atlantis massif. Mixing of warm alkaline vent fluids with seawater causes precipitation of calcium carbonate and growth of the edifaces, which range from tall, graceful pinnacles to fragile flanges and colloform deposits. Geochemical and petrological analyses of the carbonate rocks reveal distinct differences between the active and extinct structures. Actively venting chimneys and flanges are extremely porous, friable formations composed predominantly of aragonite and brucite. These structures provide important niches for well-developed microbial communities that thrive on and within the chimney walls. Some of the active chimneys may also contain the mineral ikaite, an unstable, hydrated form of calcium carbonate. TIMS and ICP-MS analyses of the carbonate chimneys show that the most active chimneys have low Sr isotope values and that they are low in trace metals (e.g., Mn, Ti, Pb). Active structures emit high-pH, low-Mg fluids at 40-90° C. The fluids also have low Sr values, indicating circulation of hydrothermal solutions through the serpentinite bedrock beneath the field. In contrast to the active structures, extinct chimneys are less porous, are well lithified, and they are composed predominantly of calcite that yields Sr isotopes near seawater values. Prolonged lower temperature seawater-hydrothermal fluid interaction within the chimneys results in the conversion of aragonite to calcite and in the enrichment of some trace metals (e.g., Mn, Ti, Co, Zn). It also promotes the incorporation of foraminifera within the outer, cemented walls of the carbonate

  12. thermal power stations' reliability evaluation in a hydrothermal system

    African Journals Online (AJOL)

    Dr Obe

    A quantitative tool for the evaluation of thermal power stations reliability in a hydrothermal system is presented. ... (solar power); wind (wind power) and the rest, thermal power and ... probability of a system performing its function adequately for ...

  13. Hydrothermal activity at slow-spreading ridges: variability and importance of magmatic controls

    Science.gov (United States)

    Escartin, Javier

    2016-04-01

    Hydrothermal activity along mid-ocean ridge axes is ubiquitous, associated with mass, chemical, and heat exchanges between the deep lithosphere and the overlying envelopes, and sustaining chemiosynthetic ecosystems at the seafloor. Compared with hydrothermal fields at fast-spreading ridges, those at slow spreading ones show a large variability as their location and nature is controlled or influenced by several parameters that are inter-related: a) tectonic setting, ranging from 'volcanic systems' (along the rift valley floor, volcanic ridges, seamounts), to 'tectonic' ones (rift-bounding faults, oceanic detachment faults); b) the nature of the host rock, owing to compositional heterogeneity of slow-spreading lithosphere (basalt, gabbro, peridotite); c) the type of heat source (magmatic bodies at depth, hot lithosphere, serpentinization reactions); d) and the associated temperature of outflow fluids (high- vs.- low temperature venting and their relative proportion). A systematic review of the distribution and characteristics of hydrothermal fields along the slow-spreading Mid-Atlantic Ridge suggests that long-lived hydrothermal activity is concentrated either at oceanic detachment faults, or along volcanic segments with evidence of robust magma supply to the axis. A detailed study of the magmatically robust Lucky Strike segment suggests that all present and past hydrothermal activity is found at the center of the segment. The association of these fields to central volcanos, and the absence of indicators of hydrothermal activity along the remaining of the ridge segment, suggests that long-lived hydrothermal activity in these volcanic systems is maintained by the enhanced melt supply and the associated magma chamber(s) required to build these volcanic edifices. In this setting, hydrothermal outflow zones at the seafloor are systematically controlled by faults, indicating that hydrothermal fluids in the shallow crust exploit permeable fault zones to circulate. While

  14. Water-rock interactions in discharge areas of Xiangshan Fossil hydrothermal system

    International Nuclear Information System (INIS)

    Zhou, Wenbin

    1992-01-01

    Xiangshan Fossil hydrothermal system is located within a volcanic basin of south-eastern China. The fact that most metal mineralizations were found in the discharge areas of the fossil hydrothermal system shows that the discharge areas were special geochemical fields. This paper discusses some important water-rock interactions in the discharge areas of Xiangshan fossil hydrothermal system. When the fluids circulating in the deep section of the hydrothermal system went upward to the discharge area, the physico-chemical conditions under which the fluids were saturated changed so considerably that the original physico-chemical equilibria were broken. Consequently, the fluids tended to move to new equilibrium by means of regulating their chemical compositions. Temperature and pressures of the fluids could be declined greatly in discharge area; the difference of temperature and pressure are determined to be 100--150 C and 1--2 x 10 7 Pa. As a result, a large amount of CO 2 in solution escaped from the fluids in the discharge area, and UO 2 (CO 3 ) n 2(1-n) , stable in CO 2 -rich solutions, could be decomposed into UUO 2 2+ , which could be easily reduced into pitchblende associated by calcite and hematite. The pH values for the fluids tended to increase with the CO 2 escaping, however, the interactions between the hydrothermal fluids and the wall rocks (dominantly aluminosilicate) served as the buffers for the pH, and regulated the pH value around neutral point. The buffer effect was of great importance to uranium mineralization. In addition, isotope exchangements between the fluids and rocks took place extensively

  15. Hydrothermal alteration in oceanic ridge volcanics: A detailed study at the Galapagos Fossil Hydrothermal Field

    Science.gov (United States)

    Ridley, W.I.; Perfit, M.R.; Josnasson, I.R.; Smith, M.F.

    1994-01-01

    The Galapagos Fossil Hydrothermal Field is composed of altered oceanic crust and extinct hydrothermal vents within the eastern Galapagos Rift between 85??49???W and 85??55???W. The discharge zone of the hydrothermal system is revealed along scarps, thus providing an opportunity to examine the uppermost mineralized, and highly altered interior parts of the crust. Altered rocks collected in situ by the submersible ALVIN show complex concentric alteration zones. Microsamples of individual zones have been analysed for major/minor, trace elements, and strontium isotopes in order to describe the complex compositional details of the hydrothermal alteration. Interlayered chlorite-smectite and chlorite with disequilibrium compositions dominate the secondary mineralogy as replacement phases of primary glass and acicular pyroxene. Phenocrysts and matrix grains of plagioclase are unaffected during alteration. Using a modification of the Gresens' equation we demonstrate that the trivalent rare earth elements (REEs) are relatively immobile, and calculate degrees of enrichment and depletion in other elements. Strontium isotopic ratios increase as Sr concentrations decrease from least-altered cores to most-altered rims and cross-cutting veins in individual samples, and can be modeled by open system behaviour under low fluid-rock ratio (< 10) conditions following a period of lower-temperature weathering of volcanics within the rift zone. The complex patterns of element enrichment and depletion and strontium isotope variations indicate mixing between pristine seawater and ascending hot fluids to produce a compositional spectrum of fluids. The precipitation of base-metal sulfides beneath the seafloor is probably a result of fluid mixing and cooling. If, as suggested here, the discharge zone alteration occurred under relatively low fluid-rock ratios, then this shallow region must play an important role in determining the exit composition of vent fluids in marine hydrothermal systems

  16. Mineral types of hydrothermal alteration zones in the Dukat ore field and their relationships to leucogranite and epithermal gold-silver ore, northeastern Russia

    Science.gov (United States)

    Filimonova, L. G.; Trubkin, N. V.; Chugaev, A. V.

    2014-05-01

    The paper considers the localization of potassic and propylitic hydrothermal alteration zones in the domal volcanic-plutonic structure controlling the position of the Dukat ore field with the eponymous unique epithermal Au-Ag deposit. Comprehensive mineralogical and geochemical data on rocks and minerals in hydrothermal alteration zones and associated intrusions have shown that quartz-jarosite-sericite, quartz-pyrite-sericite, and quartz-adularia-chlorite alterations were formed with the participation of fluid flows related to a fingerlike projection of a high-K leucogranite porphyry intrusion with large phenocrysts. These hydrothermal alterations developed in the rifted graben under conditions of divergent plate boundaries, whereas quartz-clinozoisite-calcite, epidote-chlorite, and garnet-calcite-chlorite alterations were linked to K-Na leucogranite intrusive bodies and developed under conditions of convergent plate boundaries reactivated as a result of formation of the marginal Okhotsk-Chukotka volcanic belt. Phase separation and coagulation of specific portions of ascending fluids resulted in the formation and stabilization of small-sized particles of native silver and other ore components, which enabled involvement in flows of secondary geothermal solutions and ore-forming fluids. The Sr, Nd, and Pb isotopic compositions of rocks and minerals from the hydrothermal alteration zones, associated intrusions, and economic orebodies at the Dukat deposit indicate that their components have been derived from the juvenile continental crust, which was altered in pre-Cretaceous periods of endogenic activity. The components of gangue minerals of potassic and propylitic hydrothertmal alterations and associated intrusions have been taken from deep sources differing in 87Sr/86Sr and 143Nd/144Nd at similar U/Pb and Th/Pb ratios. Chalcophile lead in products of hydrothermal activity and melanocratic inclusions in leucogranite has been taken from regions with elevated U/Pb and

  17. Geochemical Constraints on Archaeal Diversity in the Vulcano Hydrothermal System

    Science.gov (United States)

    Rogers, K. L.; Amend, J. P.

    2006-12-01

    The shallow marine hydrothermal system of Vulcano, Italy hosts a wide diversity of cultured thermophilic Archaea, including Palaeococcus helgesonii, Archaeoglobus fulgidus, and Pyrococcus furiosus, to name a few. However, recent studies have revealed a plethora of uncultured archaeal lineages in the Vulcano system. For example, a 16S rRNA gene survey of an onshore geothermal well identified a diverse archaeal community including deeply-branching uncultured Crenarchaeota, Korarchaeota, and Euryarchaeota. Additionally, culture-independent hybridization techniques suggested that Archaea account for nearly half of the microbial community in the Vulcano system. Furthermore, geochemical characterization of fluids revealed numerous lithotrophic and heterotrophic exergonic reactions that could support as yet uncultured organisms. Archaeal diversity throughout the Vulcano hydrothermal system was investigated using 16S rRNA gene surveys at five submarine vents and an onshore sediment seep. Overall, archaeal diversity was higher (10 groups) at submarine vents with moderate temperatures (59°C) compared with higher temperature (94°C) vents (4 groups). Archaeal communities at the moderately thermal vents were dominated by Thermococcales and also contained Archaeoglobales, Thermoproteales, and uncultured archaea among the Korarchaeota, Marine Group I, and the Deep-sea Hydrothermal Vent Euryarchaeota (DHVE). Fluid composition also affects the microbial community structure. At two high-temperature sites variations in archaeal diversity can be attributed to differences in iron and hydrogen concentrations, and pH. Comparing sites with similar temperature and pH conditions suggests that the presence of Desulfurococcales is limited to sites at which metabolic energy yields exceed 10 kJ per mole of electrons transferred. The Vulcano hydrothermal system hosts diverse archaeal communities, containing both cultured and uncultured species, whose distribution appears to be constrained by

  18. The interplay of evolved seawater and magmatic-hydrothermal fluids in the 3.24 Ga panorama volcanic-hosted massive sulfide hydrothermal system, North Pilbara Craton, Western Australia

    Science.gov (United States)

    Drieberg, Susan L.; Hagemann, Steffen G.; Huston, David L.; Landis, Gary; Ryan, Chris G.; Van Achterbergh, Esmé; Vennemann, Torsten

    2013-01-01

    and volcanic pile fluids (T = 240°–315°C; δ18O = 4.3 ± 1.5‰) and are interpreted to indicate mixing between the two end-member fluids. Evidence of mixing between evolved seawater and magmatic-hydrothermal fluid within the granite complex, together with the lack of evidence for a magmatic component in fluids from the volcanic pile, suggest partitioning of magmatic-hydrothermal from evolved seawater hydrothermal systems in the Panorama VHMS system. This separation is interpreted to result from either the swamping of a relatively small magmatic-hydro-thermal system by evolved seawater or density contrasts precluding movement of magmatic-hydrothermal fluids into the volcanic pile. Variability in the salinity of fluids in the volcanic pile, combined with evidence for mixing of low- and high-salinity fluids in the massive sulfide lens, is interpreted to indicate that phase separation occurred within the Panorama hydrothermal system. Although we consider this phase separation to have most likely occurred at depth within the system, as has been documented in modern VHMS systems, the data do not allow the location of the inferred phase separation to be determined.

  19. SI-Hydro: an information system for the Brazilian hydrothermal system; SI-Hidro: um sistema de informacao para o sistema hidrotermico brasileiro

    Energy Technology Data Exchange (ETDEWEB)

    Fontanini, Walcir

    1995-03-01

    An information system for the Brazilian hydrothermal system denominated SI-Hydro is presented. This information system supplies data on the hydroelectric and thermoelectric park and can be used in the main elements recognition and in the planning and management of the whole system. The information system uses the product INGRES in the platform UNIX/X-Windows, which supplies resources so much for access to the database as for the interface man machine through the fourth generation language denominated Windows4GL. The next main topics are presented: information systems concepts and its relation with the direction levels to an organization and implications for the hydrothermal system operation planning in the scenarios of short, medium and long terms; thermal and hydroelectric plants operation routine details; the most used technical terms definition; and mathematical physical typical plants processes modeling presentation.

  20. Mineralization and hydrothermal alteration of the Tajroud vein system, south of Neyshabour

    Directory of Open Access Journals (Sweden)

    Mohsen Alikhani Banghani

    2013-10-01

    Full Text Available The Tajroud vein system is located 190 km southwest of Mashhad, and in the southern part of the Sabzevar zone. The vein host rocks consist of Eocene intermediate to silicic volcanic rocks. The mineralization occurs as open space filling, taking place as veins, veinlets and hydrothermal breccias. Based on field geology and textural evidence, three main stages of mineralization were identified. Stage I mainly contains quartz, pyrite, chalcopyrite and magnetite. Stage II, which has the same mineral assemblage as stage I, is the most important stage in terms of volume. Finally, stage III is characterized by repetitive quartz and calcite banding with negligible amounts of sulfide minerals. Hydrothermal alteration is developed around the veins and tends to be more intense in the vicinity of the veins. The plot of the Ishikawa alteration index (AI versus chlorite-carbonate-pyrite index (CCPI, known as alteration box plot, displays three main alteration trends. The hydrothermal alteration assemblage of quartz, adularia, chlorite, illite, calcite, and epidote that envelops the Tajroud vein system formed from the upwelling of near-neutral to weakly alkaline hydrothermal solutions. The mineralogic, alteration and geochemical characteristics of the studied area and comparison with epithermal ore deposits indicate that the Tajroud vein system represents an epithermal system of low-sulfidation type.

  1. ALTERATION RELATED TO HYDROTHERMAL ACTIVITY OF THE NEVADO DEL RUIZ VOLCANO (NRV), COLOMBIA

    OpenAIRE

    Forero, Jhon; Zuluaga, Carlos; Mojica, Jaime

    2011-01-01

    The hydrothermal activity in the NRV generates alteration characterized by mineral associations depending on a number of physic-chemical factors of the hydrothermal system. Petrography of unaltered rocks was used to establish the mineral assemblage prior to rock-fluid interaction. XRD was used in altered rocks, where it was not possible to recognize the alteration products. The observed mineral assemblages indicate advanced and intermediate argillic alterations, this and the observation of ve...

  2. On the theory system of hydrothermal uranium metallization in China

    International Nuclear Information System (INIS)

    Du Letian

    2011-01-01

    Based on summarizing the mass of research outcome of the predecessors, the author attempts to make a brief generalization on the theory system of hydrothermal uranium mineralization in China. The system of uranium metallization is founded in the basic way of uranium source-migration-transportation-richment-reservation. The system mainly consists of the following frames: (1) mineralization type of silification zone; (2) age gap of mineralization to host rock; (3) alkli metasomatism; (4) metallogenic layer of crust; (5)integratation of 4 types mineralization (granite, volcanics, carbonaceous-siliceous-argilaceous rock and sandstone) in tectonic-hydrothermal process; (6) pre-enrichment process of metallization; (7) decouplement of granite magma evolution; (8) types of rich ore by high tempreture sericitization; (9)basalt event;(10) rock and ore formation by HARCON. (authors)

  3. Investigating Volcanic-Hydrothermal Systems in Dominica, Lesser Antilles: Temporal Changes in the Chemical Composition of Hydrothermal Fluids for Volcanic Monitoring Using Geothermometers

    Science.gov (United States)

    Onyeali, M. M. C.; Joseph, E. P.; Frey, H. M.

    2017-12-01

    Dominica has an abundance of volcanic activity, with nine potentially active volcanoes, many of which have highly active volcanic-hydrothermal systems. The waters are predominantly acid-sulphate in character (SO4=100-4200 mg/L, pH≤4), and likely formed because of dilution of acidic gases in near surface oxygenated groundwater. The waters are of primarily meteoric origin, but are likely affected by evaporation effects at/near the surface, with δ18O ranging from -1.75 to 10.67‰, and δD from -6.1 to 14.5‰. With updated water chemistry and isotopic data from five hydrothermal areas (Boiling Lake, Valley of Desolation, Sulphur Springs, Wotten Waven, Cold Soufriere) for the period 2014 to 2017, we will re-evaluate the characteristics of these systems, which were last reported in 2011. We will present updated reservoir temperatures using a variety of geothermometers and provide insight into water-rock interactions taking place in the reservoirs. Recent changes in chemistry of the waters have indicated that while the origin of the hydrothermal systems are still dominantly meteoric (δ18O = -3 to 8‰ and δD = -5 to 18‰), surface evaporation effects and variable amounts of mixing with shallow ground waters play an important role. Fumaroles appear to reflect a deeper source contribution as compared to thermal waters with differences in acidity, temperature, TDS, δ18O, and δD observed. The general composition of the waters for most of the hydrothermal systems studied indicate no significant changes, with the exception of the Boiling Lake, which experienced a draining event in November 2016 which lasted for 6 weeks. Decreases in temperature, pH, Na, K, and Cl were seen post draining, while SO4 remained relatively low (66 ppm), but showed a small increase. The chemistry of the Boiling Lake appears to show significant changes in response to changes in the groundwater system. Changes in the groundwater system at the lake observed during the 2004/2005 draining, which

  4. Global mineral resource assessment: porphyry copper assessment of Mexico: Chapter A in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Robinson, Gilpin R.; Ludington, Steve; Gray, Floyd; Drenth, Benjamin J.; Cendejas-Cruz, Francisco; Espinosa, Enrique; Pérez-Segura, Efrén; Valencia-Moreno, Martín; Rodríguez-Castañeda, José Luis; Vásquez-Mendoza, Rigobert; Zürcher, Lukas

    2010-01-01

    Mineral resource assessments provide a synthesis of available information about distributions of mineral deposits in the Earth’s crust. A probabilistic mineral resource assessment of undiscovered resources in porphyry copper deposits in Mexico was done as part of a global mineral resource assessment. The purpose of the study was to (1) delineate permissive areas (tracts) for undiscovered porphyry copper deposits within 1 km of the surface at a scale of 1:1,000,000; (2) provide a database of known porphyry copper deposits and significant prospects; (3) estimate numbers of undiscovered deposits within those permissive tracts; and (4) provide probabilistic estimates of amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) that could be contained in undiscovered deposits for each permissive tract. The assessment was conducted using a three-part form of mineral resource assessment based on mineral deposit models (Singer, 1993). Delineation of permissive tracts primarily was based on distributions of mapped igneous rocks related to magmatic arcs that formed in tectonic settings associated with subduction boundary zones. Using a GIS, map units were selected from digital geologic maps based on lithology and age to delineate twelve permissive tracts associated with Jurassic, Laramide (~90 to 34 Ma), and younger Tertiary magmatic arcs. Stream-sediment geochemistry, mapped alteration, regional aeromagnetic data, and exploration history were considered in conjunction with descriptive deposit models and grade and tonnage models to guide estimates.

  5. The 2006 Eruption of Raoul Volcano (Kermadecs): A Phreato-magmatic Event From a Hydrothermally-Sealed Volcanic Conduit System.

    Science.gov (United States)

    Christenson, B. W.; Reyes, A. G.; Werner, C. A.

    2006-12-01

    The March 17, 2006 eruption from Raoul volcano (Kermadec Islands, NZ), which tragically claimed the life of NZ Department of Conservation staff member Mark Kearney, is being interpreted as a magmatic-hydrothermal event triggered by shaking associated with regional earthquake swarm activity. Although the eruption released ca. 200 T of SO2, thus confirming its magmatic nature, it occurred without significant precursory volcanic seismicity, and without any of the precursory responses of the volcanic hydrothermal system which were observed prior to the last eruption in 1964. Raoul Island has a long and varied eruption history dating back > 1.4 ma, and has been hydrothermally active throughout historic time. Present day fumarolic and hotspring discharges within Raoul caldera point to the existence of a small but well established, mixed meteoric - seawater hydrothermal system within the volcano. Magmatic signatures are apparent in fumarolic gas discharges, but are heavily masked by their interaction with hydrothermal system fluids (eg. near complete scrubbing of sulphur and halogen gases from the boiling point fumarolic discharges). A diffuse degassing study conducted in 2004 revealed that ca. 80 T/d CO2 is passively discharged from the volcano, suggesting that ongoing (albeit low level) convective degassing of magma occurs at depth. Interestingly, vent locations from the 2006 eruption correspond to areas of relatively low CO2 discharge on the crater floor in 2004. This, in conjunction with the preliminary findings of abundant hydrothermal mineralisation (calcite, anhydrite, quartz) in eruption ejecta, suggests that the main volcanic conduits had become effectively sealed during the interval since the last eruption. Calcite-hosted fluid inclusions are CO2 clathrate-bearing, and have relatively low homogenisation temperatures (165-180 °C), suggesting that the seal environment was both gas-charged and shallowly seated (< 200 m). Shaking associated with the regional

  6. Microbial Geochemistry in Shallow-Sea Hydrothermal Systems

    Science.gov (United States)

    Amend, J. P.; Pichler, T.

    2006-12-01

    Shallow-sea hydrothermal systems are far more ubiquitous than generally recognized. Approximately 50-60 systems are currently known, occurring world-wide in areas of high heat flow, such as, volcanic island arcs, near-surface mid-ocean ridges, and intraplate oceanic volcanoes. In contrast to deep-sea systems, shallow- sea vent fluids generally include a meteoric component, they experience phase separation near the sediment- water interface, and they discharge into the photic zone (thermophilic bacteria and archaea. Perhaps because deep-sea smokers and continental hot springs are visually more stunning, shallow-sea systems are often overlooked study sites. We will discuss their particular features that afford unique opportunities in microbial geochemistry. Two of the better studied examples are at Vulcano Island (Italy) and Ambitle Island (Papua New Guinea). The vents and sediment seeps at Vulcano are the "type locality" for numerous cultured hyperthermophiles, including the bacteria Aquifex and Thermotoga, the crenarchaeon Pyrodictium, and the Euryarchaeota Archaeoglobus and Pyrococcus. Isotope-labeled incubation experiments of heated sediments and an array of culturing studies have shown that simple organic compounds are predominantly fermented or anaerobically respired with sulfate. 16S rRNA gene surveys, together with fluorescent in situ hybridization studies, demonstrated the dominance of key thermophilic bacteria and archaea (e.g., Aquificales, Thermotogales, Thermococcales, Archaeoglobales) in the sediments and the presence of a broad spectrum of mostly uncultured crenarchaeota in several vent waters, sediment samples, and geothermal wells. Thermodynamic modeling quantified potential energy yields from aerobic and anaerobic respiration reactions and fermentation reactions. In contrast to their deep-sea counterparts, shallow-sea hydrothermal systems are often characterized by high arsenic concentrations of more than 500-times seawater levels. The arsenic

  7. Isotopic study of some fossil and actual hydrothermal systems

    International Nuclear Information System (INIS)

    Demont, J.M.

    1981-07-01

    Oxygen and hydrogen isotopic compositions of rocks from the INAG no 1 drillhole provide evidence of a fossil hydrothermal system in the Ceyssat region of the Massif Central. Oxygen isotope temperatures for the mineral paragenesis are about 275 0 C and the water is of marine origin. Measurements have also been made of delta 13 C values of dissolved carbon and gaseous CO 2 from several hot springs in the Pyrenees and Massif Central. The carbon isotopic composition of the total systems have been calculated from the gas-liquid ratios at the emergence sites and these results are discussed in terms of the origin of the carbon. Most of the hydrothermal carbon is of deep origin. The observed variations in isotopic compositions may be explained by the behavior of the fluids during their ascent to the surface [fr

  8. Multiple Mesozoic mineralization events in South China—an introduction to the thematic issue

    Science.gov (United States)

    Hu, Rui-Zhong; Zhou, Mei-Fu

    2012-08-01

    Mesozoic mineral deposits in South China include world-class deposits of W, Sn and Sb and those that provide the major sources of Ta, Cu, Hg, As, Tl, Pb, Zn, Au and Ag for the entire country. These deposits can be classified into polymetallic hydrothermal systems closely related to felsic intrusive rocks (Sn-W -Mo granites, Cu porphyries, polymetallic and Fe skarns, and polymetallic vein deposits) and low-temperature hydrothermal systems with no direct connection to igneous activities (MVT deposits, epithermal Au and Sb deposits). Recent studies have shown that they formed in the Triassic (Indosinian), Jurassic-Cretaceous (Early Yanshanian), and Cretaceous (Late Yanshanian) stages. Indosinian deposits include major MVT (Pb-Zn-Ag) deposits and granite-related W-Sn deposits. Early Yanshanian deposits are low-temperature Sb-Au and high-temperature W-Sn and Cu porphyry types. Many Late Yanshanian deposits are low-temperature Au-As-Sb-Hg and U deposits, and also include high-temperature W-Sn polymetallic deposits. The formation of these deposits is linked with a specific tectonothermal evolution and igneous activities. This special issue brings together some of the latest information in eight papers that deal with the origins and tectonic environments of mineral deposits formed in these stages. We anticipate that this issue will stimulate more interests in these ore deposits in South China.

  9. Vein networks in hydrothermal systems provide constraints for the monitoring of active volcanoes.

    Science.gov (United States)

    Cucci, Luigi; Di Luccio, Francesca; Esposito, Alessandra; Ventura, Guido

    2017-03-10

    Vein networks affect the hydrothermal systems of many volcanoes, and variations in their arrangement may precede hydrothermal and volcanic eruptions. However, the long-term evolution of vein networks is often unknown because data are lacking. We analyze two gypsum-filled vein networks affecting the hydrothermal field of the active Lipari volcanic Island (Italy) to reconstruct the dynamics of the hydrothermal processes. The older network (E1) consists of sub-vertical, N-S striking veins; the younger network (E2) consists of veins without a preferred strike and dip. E2 veins have larger aperture/length, fracture density, dilatancy, and finite extension than E1. The fluid overpressure of E2 is larger than that of E1 veins, whereas the hydraulic conductance is lower. The larger number of fracture intersections in E2 slows down the fluid movement, and favors fluid interference effects and pressurization. Depths of the E1 and E2 hydrothermal sources are 0.8 km and 4.6 km, respectively. The decrease in the fluid flux, depth of the hydrothermal source, and the pressurization increase in E2 are likely associated to a magma reservoir. The decrease of fluid discharge in hydrothermal fields may reflect pressurization at depth potentially preceding hydrothermal explosions. This has significant implications for the long-term monitoring strategy of volcanoes.

  10. Porphyry copper assessment of the Mesozoic of East Asia: China, Vietnam, North Korea, Mongolia, and Russia: Chapter G in Global mineral resource assessment

    Science.gov (United States)

    Ludington, Steve; Mihalasky, Mark J.; Hammarstrom, Jane M.; Robinson, Giplin R.; Frost, Thomas P.; Gans, Kathleen D.; Light, Thomas D.; Miller, Robert J.; Alexeiev, Dmitriy V.

    2012-01-01

    The U.S. Geological Survey (USGS) collaborated with the China Geological Survey (CGS) to conduct a mineral resource assessment of Mesozoic porphyry copper deposits in East Asia. This area hosts several very large porphyry deposits, exemplified by the Dexing deposit in eastern China that contains more than 8,000,000 metric tons of copper. In addition, large parts of the area are undergoing active exploration and are likely to contain undiscovered porphyry copper deposits.

  11. Fault-Related Controls on Upward Hydrothermal Flow: An Integrated Geological Study of the Têt Fault System, Eastern Pyrénées (France

    Directory of Open Access Journals (Sweden)

    Audrey Taillefer

    2017-01-01

    Full Text Available The way faults control upward fluid flow in nonmagmatic hydrothermal systems in extensional context is still unclear. In the Eastern Pyrénées, an alignment of twenty-nine hot springs (29°C to 73°C, along the normal Têt fault, offers the opportunity to study this process. Using an integrated multiscale geological approach including mapping, remote sensing, and macro- and microscopic analyses of fault zones, we show that emergence is always located in crystalline rocks at gneiss-metasediments contacts, mostly in the Têt fault footwall. The hot springs distribution is related to high topographic reliefs, which are associated with fault throw and segmentation. In more detail, emergence localizes either (1 in brittle fault damage zones at the intersection between the Têt fault and subsidiary faults or (2 in ductile faults where dissolution cavities are observed along foliations, allowing juxtaposition of metasediments. Using these observations and 2D simple numerical simulation, we propose a hydrogeological model of upward hydrothermal flow. Meteoric fluids, infiltrated at high elevation in the fault footwall relief, get warmer at depth because of the geothermal gradient. Topography-related hydraulic gradient and buoyancy forces cause hot fluid rise along permeability anisotropies associated with lithological juxtapositions, fracture, and fault zone compositions.

  12. Al-doped SnO2 nanocrystals from hydrothermal systems

    International Nuclear Information System (INIS)

    Jin Haiying; Xu Yaohua; Pang Guangsheng; Dong Wenjun; Wan Qiang; Sun Yan; Feng Shouhua

    2004-01-01

    Nanoparticles of Al-doped SnO 2 have been hydrothermally synthesized. The influences of the hydrothermal reaction time, the molar ratio of Sn/Al as well as the pH value of the solution have been studied. During the hydrothermal synthesis, the particle's core is rich in Sn and the surface is rich in Al. The Al-rich surface prevents the particles from further growing up either in the hydrothermal condition or during the calcination at 600 deg. C for a short period of time. The optimal hydrothermal synthesis condition of the nanoparticles is pH 5, Sn/Al=4:1 and 12 h at 160 deg. C. The products have been studied by XRD, TEM and 27 Al solid-state NMR

  13. Caldera unrest driven by CO2-induced drying of the deep hydrothermal system.

    Science.gov (United States)

    Moretti, R; Troise, C; Sarno, F; De Natale, G

    2018-05-29

    Interpreting volcanic unrest is a highly challenging and non-unique problem at calderas, since large hydrothermal systems may either hide or amplify the dynamics of buried magma(s). Here we use the exceptional ground displacement and geochemical datasets from the actively degassing Campi Flegrei caldera (Southern Italy) to show that ambiguities disappear when the thermal evolution of the deep hydrothermal system is accurately tracked. By using temperatures from the CO 2 -CH 4 exchange of 13 C and thermodynamic analysis of gas ascending in the crust, we demonstrate that after the last 1982-84 crisis the deep hydrothermal system evolved through supercritical conditions under the continuous isenthalpic inflow of hot CO 2 -rich gases released from the deep (~8 km) magma reservoir of regional size. This resulted in the drying of the base of the hot hydrothermal system, no more buffered along the liquid-vapour equilibrium, and excludes any shallow arrival of new magma, whose abundant steam degassing due to decompression would have restored liquid-vapour equilibrium. The consequent CO 2 -infiltration and progressive heating of the surrounding deforming rock volume cause the build-up of pore pressure in aquifers, and generate the striking temporal symmetry that characterizes the ongoing uplift and the post-1984 subsidence, both originated by the same but reversed deformation mechanism.

  14. Experience of development of porphyry copper type deposits in the Urals

    Directory of Open Access Journals (Sweden)

    И. А. Алтушкин

    2017-12-01

    Full Text Available Russian copper company was the first in Russia to start developing porphyry copper deposits. In 2013 the Mikheevsky mining and processing plant with the annual production capacity of 18 mln t of ore was put into exploitation. The use of innovative approaches regarding choice of the technology, high-performance equipment and organization of construction allowed to bring the enterprise to a full capacity and to achieve expected results within three years. On the basis of the experience obtained during design, construction and exploitation of the Mikheevsky mining and processing plant in 2017 the company has started the construction of a new mining and processing plant in the Tominskoye deposit. The first stage anticipates the enterprise production capacity to be equal to 28 mln t with the possibility of its increase up to 56 mln t. The development of porphyry copper deposits in the Urals will allow to provide copper plants with the raw materials over the next 80-100 years.

  15. Mineralization and geophysical exploration by IP/RS and ground magnetic survey in MA-I and surrounding area, Maherabad porphyry Cu-Au prospect area, east of Iran

    Directory of Open Access Journals (Sweden)

    Azadeh Malekzadeh Shafaroudi

    2009-10-01

    Full Text Available Maherabad prospect area, which is studied in detail, is the first porphyry Cu-Au mineralization in the east of Iran. Based on relation of mineralization with subvolcanic intrusive bodies mostly monzonitic with porphyry texture, extent and types of alteration including potassic, sericitic- potassic, quartz- sericite- carbonate- pyrite, quartz- carbonate- pyrite, silicification- propylitic, propylitic, stockwork mineralization, assemblages hypogene mineralization including pyrite, chalcopyrite, bornite and magnetite and high anomalies of Cu and Au, Mineralization is porphyry Cu-Au-type. MA-I area, which is covered by regolith from its surrounding is the most important section of mineralization in the region because of intensive of quartz-sericite-carbonate-pyrite alteration and very high dense quartz-sulfide veinlets. IP/RS and ground magnetic surveys were conducted in the MA-I prospect area and its surrounding plain. Drilling on the IP suede section anomaly resulted to the recognition of sulfide mineralization in on extensive area under the regolith. Surface and underground detailed studies of geology, alteration, mineralization and geochemistry confirm the extension of covered mineralization to the south and west of the area. Based on the ground magnetic anomaly, the center of mineralization system, potassic zone, to the southwest of the area was recognized. Quartz0sericite-carbonate-pyrite alteration zone, which is located around the potassic zone, has very low magnetic response. IP/RS and ground magnetic surveys in a broader area than before are strongly recommended.

  16. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge

    OpenAIRE

    Dahle, H?kon; ?kland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-01-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent f...

  17. Solubility limits in Mn–Mg ferrites system under hydrothermal conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hemeda, O.M., E-mail: omhemeda@yahoo.co.uk [Physics Department, Faculty of Science, Tanta University, Tanta (Egypt); Mostafa, N.Y. [Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522 (Egypt); Faculty of Science, Taif University, PO Box 888, Al-Haweiah, Taif (Saudi Arabia); Abd Elkader, O.H. [Electron Microscope and Thin Films Department, National Research Center, Dokki 12622, Cairo (Egypt); Electron Microscope Unit, Zoology Department, King Saud University, Riyadh 11451 (Saudi Arabia); Ahmed, M.A. [Physics Department, Faculty of Science, Al Azhar University, Nasr City, Cairo (Egypt)

    2014-09-01

    In the present investigation, we successfully synthesized a pure MnFe{sub 2}O{sub 4} ferrite by the hydrothermal method. Moreover, the effect of Mg ion content on the formation of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} particles (with x varying from 0.1 to 1.0) was also investigated using XRD, SEM, TEM and Mossbauer Spectroscopy. Phases formed in the system Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4}; 0.0≤x≤1.0 were investigated under hydrothermal conditions at 453 K.The produced phases were characterized by X-ray diffraction, Scanning, transmission microscopy and Mossbauer spectroscopy. The information of composition, cation distribution in the spinel structure and the particle size of the products were obtained. The spinel ferrites; Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} were formed in the range 0.0≤x≤0.3. However, sample with x>0.3 showed semi-crystalline magnesium hydroxide (Mg(OH){sub 2}) and hematite (Fe{sub 2}O{sub 3}) beside the ferrite phase. For x=1.0, only magnesium hydroxide and hematite are formed without any ferrites. Particles of uniform size around 10–20 nm were obtained in the spinel structure of Mn{sub 1−x}Mg{sub x}Fe{sub 2}O{sub 4} with x=0.0 and 0.1. The corresponding average crystallite size for each sample was 40.3 nm and 39.2 nm respectively. In addition, the Mossbauer spectra were analyzed into two subspectra, one for the tetrahedral A-site and the other for the octahedral B-site. The Mossbauer parameters were determined and discussed for the studied system. The cation distribution was estimated from the analysis of the Mossbauer spectra as well as the X-ray diffraction patterns. The results showed that Mg ions occupy mainly B-site while both Mn and Fe ions are distributed between A- and B-sites. - Highlights: • Mossbauer characterization of Mg–Mn ferrite prepared by hydrothermal route. • X-ray powder diffraction analysis of Mg–Mn ferrite prepared by hydrothermal route. • Solubility limit of MgMn ferrite under

  18. Volcano-hydrothermal system and activity of Sirung volcano (Pantar Island, Indonesia)

    Science.gov (United States)

    Caudron, Corentin; Bernard, Alain; Murphy, Sam; Inguaggiato, Salvatore; Gunawan, Hendra

    2018-05-01

    Sirung is a frequently active volcano located in the remote parts of Western Timor (Indonesia). Sirung has a crater with several hydrothermal features including a crater lake. We present a timeseries of satellite images of the lake and chemical and isotope data from the hyperacid hydrothermal system. The fluids sampled in the crater present the typical features of hyperacidic systems with high TDS, low pH and δ34SHSO4-δ34SS0 among the highest for such lakes. The cations concentrations are predominantly controlled by the precipitation of alunite, jarosite, silica phases, native sulfur and pyrite which dominate the shallow portions of the hydrothermal system. These minerals may control shallow sealing processes thought to trigger phreatic eruptions elsewhere. Sparse Mg/Cl and SO4/Cl ratios and lake parameters derived from satellite images suggest gradual increase in heat and gas flux, most likely SO2-rich, prior to the 2012 phreatic eruption. An acidic river was sampled 8 km far from the crater and is genetically linked with the fluids rising toward the active crater. This river would therefore be a relevant target for future remote monitoring purposes. Finally, several wells and springs largely exceeded the World Health Organization toxicity limits in total arsenic and fluoride.

  19. Water-rock interaction in the magmatic-hydrothermal system of Nisyros Island (Greece)

    Science.gov (United States)

    Ambrosio, Michele; Doveri, Marco; Fagioli, Maria Teresa; Marini, Luigi; Principe, Claudia; Raco, Brunella

    2010-04-01

    In this work, we investigated the water-rock interaction processes taking place in the hydrothermal reservoir of Nisyros through both: (1) a review of the hydrothermal mineralogy encountered in the deep geothermal borehole Nisyros-2; and (2) a comparison of the analytically-derived redox potentials and acidities of fumarolic-related liquids, with those controlled by redox buffers and pH buffers, involving hydrothermal mineral phases. The propylitic zone met in the deep geothermal borehole Nisyros-2, from 950 to 1547 m (total depth), is characterised by abundant, well crystallised epidote, adularia, albite, quartz, pyrite, chlorite, and sericite-muscovite, accompanied by less abundant anhydrite, stilpnomelane, wairakite, garnet, tremolite and pyroxene. These hydrothermal minerals were produced in a comparatively wide temperature range, from 230 to 300 °C, approximately. Hydrothermal assemblages are well developed from 950 to 1360 m, whereas they are less developed below this depth, probably due to low permeability. Based on the RH values calculated for fumarolic gases and for the deep geothermal fluids of Nisyros-1 and Nisyros-2 wells, redox equilibrium with the (FeO)/(FeO 1.5) rock buffer appears to be closely attained throughout the hydrothermal reservoir of Nisyros. This conclusion may be easily reconciled with the nearly ubiquitous occurrence of anhydrite and pyrite, since RH values controlled by coexistence of anhydrite and pyrite can be achieved by gas separation. The pH of the liquids feeding the fumarolic vents of Stephanos and Polybote Micros craters was computed, by means of the EQ3 code, based on the Cl- δD relationship which is constrained by the seawater-magmatic water mixing occurring at depth in the hydrothermal-magmatic system of Nisyros. The temperature dependence of analytically-derived pH values for the reservoir liquids feeding the fumarolic vents of Stephanos and Polybote Micros craters suggests that some unspecified pH buffer fixes the

  20. Fluid Inclusion Analysis of other Host Minerals besides Quartz: Application to Granite-Related Quartz-Topaz Veins and Garnet Skarns in Porphyry Copper-Gold Ore Systems

    OpenAIRE

    Schlöglova, Katerina

    2018-01-01

    Fluid inclusions are the only available samples of paleo-fluids responsible for crystallization of hydrothermal minerals including ore phases. Analysis of fluid inclusions implicitly assumes that the inclusions have preserved their chemical composition since the time of their entrapment. There is, however, an increasing evidence from experimental work and analytical studies of natural samples showing that inclusions hosted in quartz – a ubiquitous host in many ore-forming systems – can experi...

  1. Metabasalts from the Mid-Atlantic Ridge: new insights into hydrothermal systems in slow-spreading crust

    Science.gov (United States)

    Gillis, Kathryn M.; Thompson, Geoffrey

    1993-12-01

    An extensive suite of hydrothermally altered rocks were recovered by Alvin and dredging along the MARK [Mid-Atlantic Ridge, south of the Kane Fracture Zone (23 24°N)] where detachment faulting has provided a window into the crustal component of hydrothermal systems. Rocks of basaltic composition are altered to two assemblages with these characteristics: (i) type I: albitic plagioclase (An02 10)+mixed-layer smectite/chlorite or chlorite±actinolite±quartz±sphene, 20% of the clinopyroxene is altered, and Cu and Zn are leached. The geochemical signature of these alteration types reflects the relative proportion and composition of secondary minerals, and the degree of alteration of primary phases, and does not show simple predictive relationships. Element mobilities indicate that both alteration types formed at low water/rock ratios. The MARK assemblages are typical of the greenschist and transition to the amphibolite facies, and represent two distinct, albeit overlapping, temperature regimes: type I-180 to 300°C and type II-250 to 450°C. By analogy with DSDP/ODP Hole 504B and many ophiolites, the MARK metabasalts were altered within the downwelling limb of a hydrothermal cell and type I and II samples formed in the upper and lower portions of the sheeted like complex, respectively. Episodic magmatic and hydrothermal events at slow-spreading ridges suggest that these observed mineral assemblages represent the cumulative effects of more than one hydrothermal event. Groundmass and vein assemblages in the MARK metabasalts indicate either that alteration conditions did not change during successive hydrothermal events or that these assemblages record only the highest temperature event. Lack of retrograde reactions or overprinting of lower temperature assemblages (e.g., zeolites) suggests that there is a continuum in alteration conditions while crustal segments remain in the ridge axis environment. The type II samples may be representative of the reaction zone where

  2. Integration of hydrothermal-energy economics: related quantitative studies

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    A comparison of ten models for computing the cost of hydrothermal energy is presented. This comparison involved a detailed examination of a number of technical and economic parameters of the various quantitative models with the objective of identifying the most important parameters in the context of accurate estimates of cost of hydrothermal energy. Important features of various models, such as focus of study, applications, marked sectors covered, methodology, input data requirements, and output are compared in the document. A detailed sensitivity analysis of all the important engineering and economic parameters is carried out to determine the effect of non-consideration of individual parameters.

  3. A simulation of the hydrothermal response to the Chesapeake Bay bolide impact

    Science.gov (United States)

    Sanford, W.E.

    2005-01-01

    Groundwater more saline than seawater has been discovered in the tsunami breccia of the Chesapeake Bay impact Crater. One hypothesis for the origin of this brine is that it may be a liquid residual following steam separation in a hydrothermal system that evolved following the impact. Initial scoping calculations have demonstrated that it is feasible such a residual brine could have remained in the crater for the 35 million years since impact. Numerical simulations have been conducted using the code HYDROTHERM to test whether or not conditions were suitable in the millennia following the impact for the development of a steam phase in the hydrothermal system. Hydraulic and thermal parameters were estimated for the bedrock underlying the crater and the tsunami breccia that fills the crater. Simulations at three different breccia permeabilities suggest that the type of hydrothermal system that might have developed would have been very sensitive to the permeability. A relatively low breccia permeability (1 ?? 10-16 m2) results in a system partitioned into a shallow water phase and a deeper superheated steam phase. A moderate breccia permeability (1 ?? 10-15 m2 ) results in a system with regionally extensive multiphase conditions. A relatively high breccia permeability (1 ?? 10-14 m2 ) results in a system dominated by warm-water convection cells. The permeability of the crater breccia could have had any of these values at given depths and times during the hydrothermal system evolution as the sediments compacted. The simulations were not able to take into account transient permeability conditions, or equations of state that account for the salt content of seawater. Results suggest, however, that it is likely that steam conditions existed at some time in the system following impact, providing additional evidence that is consistent with a hydrothermal origin for the crater brine. ?? Blackwell Publishing Ltd.

  4. Oxygen isotope mapping and evaluation of paleo-hydrothermal systems associated with synvolcanic intrusion and VMS deposits

    International Nuclear Information System (INIS)

    Taylor, B.E

    2001-01-01

    Whole-rock oxygen isotope mapping provides a useful method for the delineation and quantitative evaluation of paleo-hydrothermal systems associated with syn-volcanic intrusions and volcanic-associated massive sulfide (VMS) deposits. During the course of a four-year study of regional alteration systems associated with VMS Deposits, four syn-volcanic intrusive complexes in Canada were mapped using stable isotope techniques. The complexes included Noranda, Quebec; Clifford-Ben Nevis, Ontario; Snow Lake, Manitoba, and Sturgeon Lake, Ontario. This study was regional in extent, involving large areas and large numbers of whole-rock samples: Noranda (625 km 2 ;≥600 samples, plus others (total = 1198); Sturgeon Lake (525 km 2 ; 452 samples); Clifford-Ben Nevis (160 km 2 ; 251 samples); and Snow Lake (84 km 2 ; 575 samples). Isotopic data on whole-rock carbonates and hydrous minerals were also collected. The regional isotopic studies were carried out in concert with other studies on mineral assemblages and mineral composition, and on associated intrusive and extrusive rocks. The Clifford-Ben Nevis area was selected as a control area, in as much as it contains no known VMS deposits; all other areas are well-known, productive VMS districts. Oxygen isotope maps are, in a sense, thermal maps, illustrating the paleo-distribution of heat and fluids, and offering a potential aid to exploration. The isotopic data may be contoured to reveal zones of 18 O depletion and enrichment, relative to unaltered rocks. Zones of δ 18 O≤60% comprise rocks that have reacted with seawater at high (e.g., 300+ o C) temperatures. The volume of foot-wall rocks isotopically-depleted by water/rock interaction during the life of one or more episodes of submarine hydrothermal activity is proportional to the amount of heat available from the syn-volcanic intrusive center. These altered rocks comprise the reaction zone often inferred to have supplied metals and other constituents for the VMS deposits

  5. Hydrothermal influence on nearshore sediments of Kos Island, Aegean Sea

    Science.gov (United States)

    Megalovasilis, Pavlos; Godelitsas, Athanasios

    2015-04-01

    The Kos-Nisyros volcanic centre is a long-active, Plio-Pleistocene magmatic system in the subduction zone along the easternmost edge of the active Hellenic volcanic arc in the Aegean Sea. Although today there are signs of relative quiescence in volcanic activity, active onshore fumaroles and shallow-sea hydrothermal vents persist on, amongst others, the island of Kos. The present study explores the large-scale imprint of hydrothermally sourced heavy metals and nutrients on the island's coastal marine environment, based on geochemical data collected in September 2007 from hydrothermal waters and surficial nearshore sediments (Kos is severely influenced by ongoing submarine hydrothermal activity, and confirm that shallow-water sediment Fe, Mn, Zn and Pb levels are substantially higher than those of other islands along the Hellenic volcanic arc, and even exceed those of some deep-water hydrothermal vents in other world regions. Evidently, there may be significant metallic sulphide deposits of hydrothermal origin at depth beneath Kos.

  6. Plumbing the depths of Yellowstone's hydrothermal system from helicopter magnetic and electromagnetic data

    Science.gov (United States)

    Finn, C.; Bedrosian, P.; Holbrook, W. S.; Auken, E.; Lowenstern, J. B.; Hurwitz, S.; Sims, K. W. W.; Carr, B.; Dickey, K.

    2017-12-01

    Although Yellowstone's iconic hydrothermal systems and lava flows are well mapped at the surface, their groundwater flow systems and thickness are almost completely unknown. In order to track the geophysical signatures of geysers, hot springs, mud pots, steam vents, hydrothermal explosion craters and lava flows at depths to hundreds of meters, we collected helicopter electromagnetic and magnetic (HEM) data. The data cover significant portions of the caldera including a majority of the known thermal areas. HEM data constrain electrical resistivity which is sensitive to groundwater salinity and temperature, phase distribution (liquid-vapor), and clay formed during chemical alteration of rocks. The magnetic data are sensitive to variations in the magnetization of lava flows, faults and hydrothermal alteration. The combination of electromagnetic and magnetic data is ideal for mapping zones of cold fresh water, hot saline water, steam, clay, and altered and unaltered rock. Preliminary inversion of the HEM data indicates very low resistivity directly beneath the northern part of Yellowstone Lake, intersecting with the lake bottom in close correspondence with mapped vents, fractures and hydrothermal explosion craters and are also associated with magnetic lows. Coincident resistivity and magnetic lows unassociated with mapped alteration occur, for example, along the southeast edge of the Mallard Lake dome and along the northeastern edge of Sour Creek Dome, suggesting the presence of buried alteration. Low resistivities unassociated with magnetic lows may relate to hot and/or saline groundwater or thin (<50 m) layers of early lake sediments to which the magnetic data are insensitive. Resistivity and magnetic lows follow interpreted caldera boundaries in places, yet deviate in others. In the Norris-Mammoth Corridor, NNE-SSW trending linear resistivity and magnetic lows align with mapped faults. This pattern of coincident resistivity and magnetic lows may reflect fractures

  7. Identifying bubble collapse in a hydrothermal system using hidden Markov models

    Science.gov (United States)

    Dawson, P.B.; Benitez, M.C.; Lowenstern, J. B.; Chouet, B.A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ???100 m of the station, and produced ???3500-5500 events per hour with mean durations of ???0.35-0.45s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates. copyright 2012 by the American Geophysical Union.

  8. Identifying bubble collapse in a hydrothermal system using hiddden Markov models

    Science.gov (United States)

    Dawson, Phillip B.; Benitez, M.C.; Lowenstern, Jacob B.; Chouet, Bernard A.

    2012-01-01

    Beginning in July 2003 and lasting through September 2003, the Norris Geyser Basin in Yellowstone National Park exhibited an unusual increase in ground temperature and hydrothermal activity. Using hidden Markov model theory, we identify over five million high-frequency (>15 Hz) seismic events observed at a temporary seismic station deployed in the basin in response to the increase in hydrothermal activity. The source of these seismic events is constrained to within ~100 m of the station, and produced ~3500–5500 events per hour with mean durations of ~0.35–0.45 s. The seismic event rate, air temperature, hydrologic temperatures, and surficial water flow of the geyser basin exhibited a marked diurnal pattern that was closely associated with solar thermal radiance. We interpret the source of the seismicity to be due to the collapse of small steam bubbles in the hydrothermal system, with the rate of collapse being controlled by surficial temperatures and daytime evaporation rates.

  9. Distribution of hydrothermal fluid around the ore body in the subseafloor of the Izena hydrothermal field

    Science.gov (United States)

    Toki, T.; Otake, T.; Ishibashi, J. I.; Matsui, Y.; Kawagucci, S.; Kato, H.; Fuchida, S.; Miyahara, R.; Tsutsumi, A.; Kawakita, R.; Uza, H.; Uehara, R.; Shinjo, R.; Nozaki, T.; Kumagai, H.; Maeda, L.

    2017-12-01

    From 16th November to 15th December 2016, D/V Chikyu drilled the sea bottom around hydrothermal fields at HAKUREI site in the Izena Hole, Okinawa Trough. Site C9025, C9026, C9027, C9028, and C9032 are located along the transect line from the top of the northern mound of HAKUREI site to the eastward, and Site C9030 for the control site is located about 500 m northwest of the mound. Mg concentrations have generally been used to estimate mixing ratios between hydrothermal end-member and seawater in samples from hydrothermal vents. Higher Mg concentrations, however, were detected in the interstitial water than that of seawater, which could be due to artificially dissolution of Mg-bearing minerals that had formed in in-situ environments, when the cored sediments had become cool after their recovery on ship. Similar features were observed with regard to sulfate concentrations, and it suggests that these chemical species are not suitable to estimate quantitatively the contribution of hydrothermally-derived components. In some layers, chloride concentrations were different from that of seawater, indicating that hydrothermal fluids that had been suffered from phase separation flowed into the layers. The deviation, however, was positive or negative relative to that of seawater for an influence of brine or vapor phase, respectively. Therefore chloride concentrations are also not suitable to evaluate a quantitative contribution of hydrothermal end-member. On the other hand, K and B showed only enrichments relative to the seawater, and their highest concentrations are consistent with the reported hydrothermal end-members of each species at HAKUREI site. Using the concentrations of K and B can be evaluated for an influence of hydrothermal components. Furthermore, the headspace gas data are useful in the layers of sulfide minerals and silicified rocks, even though the interstitial waters could not be obtained because of their hardness. Based on these indices, hydrothermal fluids

  10. Field-based tests of geochemical modeling codes: New Zealand hydrothermal systems

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1993-12-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions

  11. Post-collisional magmatism and ore-forming systems in the Menderes massif: new constraints from the Miocene porphyry Mo-Cu Pınarbaşı system, Gediz-Kütahya, western Turkey

    Science.gov (United States)

    Delibaş, Okan; Moritz, Robert; Chiaradia, Massimo; Selby, David; Ulianov, Alexey; Revan, Mustafa Kemal

    2017-12-01

    The Pınarbaşı Mo-Cu prospect is hosted within the Pınarbaşı intrusion, which is exposed together with the NW-SE-trending Koyunoba, Eğrigöz, and Baklan plutons along the northeastern border of the Menderes massif. The Pınarbaşı intrusion predominantly comprises monzonite, porphyritic granite, and monzodiorite. All units of the Pınarbaşı intrusion have sharp intrusive contacts with each other. The principal mineralization style at the Pınarbaşı prospect is a porphyry-type Mo-Cu mineralization hosted predominantly by monzonite and porphyritic granite. The porphyry type Mo-Cu mineralization consists mostly of stockwork and NE- and EW-striking sub-vertical quartz veins. Stockwork-type quartz veins hosted by the upper parts of the porphyritic granite within the monzonite, are typically enriched in chalcopyrite, molybdenite, pyrite, and limonite. The late NE- and EW-striking normal faults cut the stockwork vein system and control the quartz-molybdenite-chalcopyrite-sphalerite-fahlore-galena veins, as well as molybdenite-hematite-bearing silicified zones. Lithogeochemical and whole-rock radiogenic isotope data (Sr, Nd and Pb) of the host rocks, together with Re-Os molybdenite ages (18.3 ± 0.1 Ma - 18.2 ± 0.1 Ma) reveal that the monzonitic and granitic rocks of the Pınarbaşı intrusion were derived from an enriched lithospheric mantle-lower crust during Oligo-Miocene post-collisional magmatism. The lithospheric mantle was metasomatised by fluids and subducted sediments, and the mantle-derived melts interacted with lower crust at 35-40 km depth. This mechanism explains the Mo and Cu enrichments of the Pınarbaşı intrusion during back-arc magmatism. We conclude that the melt of the Pınarbaşı intrusion could have rapidly ascended to mid-crustal levels, with only limited crustal assimilation along major trans-lithospheric faults as a result of thinning of the middle to upper crust during regional extension, and resulted in the development of porphyry

  12. Carbon dioxide in magmas and implications for hydrothermal systems

    Science.gov (United States)

    Lowenstern, J. B.

    2001-01-01

    This review focuses on the solubility, origin, abundance, and degassing of carbon dioxide (CO2) in magma-hydrothermal systems, with applications for those workers interested in intrusion-related deposits of gold and other metals. The solubility of CO2 increases with pressure and magma alkalinity. Its solubility is low relative to that of H2O, so that fluids exsolved deep in the crust tend to have high CO2/H2O compared with fluids evolved closer to the surface. Similarly, CO2/H2O will typically decrease during progressive decompression- or crystallization-induced degassing. The temperature dependence of solubility is a function of the speciation of CO2, which dissolves in molecular form in rhyolites (retrograde temperature solubility), but exists as dissolved carbonate groups in basalts (prograde). Magnesite and dolomite are stable under a relatively wide range of mantle conditions, but melt just above the solidus, thereby contributing CO2 to mantle magmas. Graphite, diamond, and a free CO2-bearing fluid may be the primary carbon-bearing phases in other mantle source regions. Growing evidence suggests that most CO2 is contributed to arc magmas via recycling of subducted oceanic crust and its overlying sediment blanket. Additional carbon can be added to magmas during magma-wallrock interactions in the crust. Studies of fluid and melt inclusions from intrusive and extrusive igneous rocks yield ample evidence that many magmas are vapor saturated as deep as the mid crust (10-15 km) and that CO2 is an appreciable part of the exsolved vapor. Such is the case in both basaltic and some silicic magmas. Under most conditions, the presence of a CO2-bearing vapor does not hinder, and in fact may promote, the ascent and eruption of the host magma. Carbonic fluids are poorly miscible with aqueous fluids, particularly at high temperature and low pressure, so that the presence of CO2 can induce immiscibility both within the magmatic volatile phase and in hydrothermal systems

  13. Extraction of hydrothermal alterations from ASTER SWIR data from east Zanjan, northern Iran

    Science.gov (United States)

    Azizi, H.; Tarverdi, M. A.; Akbarpour, A.

    2010-07-01

    The use of satellite images for mineral exploration has been very successful in pointing out the presence of minerals such as smectite and kaolinite which are important in the identification of hydrothermal alterations. Shortwave infrared (SWIR) bands from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) with the wavelength of ASTER SWIR bands between 1.65 and 2.43 μm has a good potential for mapping a hydrothermal alteration minerals such as alunite, pyrophyllite, kaolinite, illite-muscovite-sericite, and carbonate. In this range, hydroxide minerals which have been produced by hydrothermal alteration exhibit good absorption compared to shorter or longer wavelengths. In this research which aims to remove atmospheric and topographic effects from ASTER SWIR data, the authors used the log-residual method (LRM) with the minimum noise fraction (MNF) transformation to create a pixel purity index (PPI) which was used to extract the most spectrally pure pixels from multispectral images. Spectral analyses of the clay mineralogy of the study area (east Zanjan, in northern Iran) were obtained by matching the unknown spectra of the purest pixels to the U.S. Geological Survey (USGS) mineral library. Three methods, spectral feature fitting (SFF), spectral angle mapping (SAM), and binary encoding (BE) were used to generate a score between 0 and 1, where a value of 1 indicates a perfect match showing the exact mineral type. In this way, it was possible to identify certain mineral classes, including chlorite, carbonate, calcite-dolomite-magnesite, kaolinite-smectite, alunite, and illite. In this research, two main propylitic and phyllic-argillic zones could be separated using their compositions of these minerals. These two alteration zones are important for porphyry copper deposits and gold mineralization in this part of Iran.

  14. Carbon dioxide diffuse emission and thermal energy release from hydrothermal systems at Copahue-Caviahue Volcanic Complex (Argentina)

    Science.gov (United States)

    Chiodini, Giovanni; Cardellini, Carlo; Lamberti, María Clara; Agusto, Mariano; Caselli, Alberto; Liccioli, Caterina; Tamburello, Giancarlo; Tassi, Franco; Vaselli, Orlando; Caliro, Stefano

    2015-10-01

    The north-western sector of Caviahue caldera (Argentina), close to the active volcanic system of Copahue, is characterized by the presence of several hydrothermal sites that host numerous fumarolic emissions, anomalous soil diffuse degassing of CO2 and hot soils. In March 2014, measurements of soil CO2 fluxes in 5 of these sites (namely, Las Máquinas, Las Maquinitas I, Las Maquinitas II, Anfiteatro, and Termas de Copahue) allowed an estimation that 165 t of deeply derived CO2 is daily released. The gas source is likely related to a relatively shallow geothermal reservoir containing a single vapor phase as also suggested by both the geochemical data from the 3 deep wells drilled in the 1980s and gas geoindicators applied to the fumarolic discharges. Gas equilibria within the H-C-O gas system indicate the presence of a large, probably unique, single phase vapor zone at 200-210 °C feeding the hydrothermal manifestations of Las Máquinas, Las Maquinitas I and II and Termas de Copahue. A natural thermal release of 107 MW was computed by using CO2 as a tracer of the original vapor phase. The magmatic signature of the incondensable fumarolic gases, the wide expanse of the hydrothermal areas and the remarkable high amount of gas and heat released by fluid expulsion seem to be compatible with an active magmatic intrusion beneath this portion of the Caviahue caldera.

  15. Magmatism in the Shapinggou district of the Dabie orogen, China: Implications for the formation of porphyry Mo deposits in a collisional orogenic belt

    Science.gov (United States)

    Ren, Zhi; Zhou, Taofa; Hollings, Pete; White, Noel C.

    2018-05-01

    isotopic variations of the intrusions at Shapinggou were controlled by both source characteristics and fractional crystallization. Although the Shapinggou deposit is located in a continental collision orogen, the magmas formed in an intraplate extension setting, with an increase in the amount of extension from the early to late stages. As well, both stages intrusions at Shapinggou were generated by the addition of heat, due to lithospheric delamination, mantle upwelling and rapid mantle convection, related to the far-field effects of the westward subduction of the paleo-Pacific Plate beneath the Asian continent. The geochemistry and setting suggest that the formation of a giant Mo deposit does not require a Mo-rich magma source, but rather an efficient convection mechanism for the transport of volatiles and Mo in a granitic magma system. The fluids derived from the granite porphyry at Shapinggou were more oxidised than that from the barren intrusions.

  16. Effects of chemical alteration on fracture mechanical properties in hydrothermal systems

    Science.gov (United States)

    Callahan, O. A.; Eichhubl, P.; Olson, J. E.

    2015-12-01

    Fault and fracture networks often control the distribution of fluids and heat in hydrothermal and epithermal systems, and in related geothermal and mineral resources. Additional chemical influences on conduit evolution are well documented, with dissolution and precipitation of mineral species potentially changing the permeability of fault-facture networks. Less well understood are the impacts of chemical alteration on the mechanical properties governing fracture growth and fracture network geometry. We use double-torsion (DT) load relaxation tests under ambient air conditions to measure the mode-I fracture toughness (KIC) and subcritical fracture growth index (SCI) of variably altered rock samples obtained from outcrop in Dixie Valley, NV. Samples from southern Dixie Valley include 1) weakly altered granite, characterized by minor sericite in plagioclase, albitization and vacuolization of feldspars, and incomplete replacement of biotite with chlorite, and 2) granite from an area of locally intense propylitic alteration with chlorite-calcite-hematite-epidote assemblages. We also evaluated samples of completely silicified gabbro obtained from the Dixie Comstock epithermal gold deposit. In the weakly altered granite KIC and SCI are 1.3 ±0.2 MPam1/2 (n=8) and 59 ±25 (n=29), respectively. In the propylitic assemblage KIC is reduced to 0.6 ±0.1 MPam1/2 (n=11), and the SCI increased to 75 ±36 (n = 33). In both cases, the altered materials have lower fracture toughness and higher SCI than is reported for common geomechanical standards such as Westerly Granite (KIC ~1.7 MPam1/2; SCI ~48). Preliminary analysis of the silicified gabbro shows a significant increase in fracture toughness, 3.6 ±0.4 MPam1/2 (n=2), and SCI, 102 ±45 (n=19), compared to published values for gabbro (2.9 MPam1/2 and SCI = 32). These results suggest that mineralogical and textural changes associated with different alteration assemblages may result in spatially variable rates of fracture

  17. Porphyry copper assessment of the Central Asian Orogenic Belt and eastern Tethysides: China, Mongolia, Russia, Pakistan, Kazakhstan, Tajikistan, and India: Chapter X in Global mineral resource assessment

    Science.gov (United States)

    Mihalasky, Mark J.; Ludington, Stephen; Hammarstrom, Jane M.; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Robinson, Gilpin R.; Briggs, Deborah A.; Wallis, John C.; Miller, Robert J.; Bookstrom, Arthur A.; Panteleyev, Andre; Chitalin, Andre; Seltmann, Reimar; Guangsheng, Yan; Changyun, Lian; Jingwen, Mao; Jinyi, Li; Keyan, Xiao; Ruizhao, Qiu; Jianbao, Shao; Gangyi, Shai; Yuliang, Du

    2015-01-01

    The U.S. Geological Survey collaborated with international colleagues to assess undiscovered resources in porphyry copper deposits in the Central Asian Orogenic Belt and eastern Tethysides. These areas host 20 known porphyry copper deposits, including the world class Oyu Tolgoi deposit in Mongolia that was discovered in the late 1990s. The study area covers major parts of the world’s largest orogenic systems. The Central Asian Orogenic Belt is a collage of amalgamated Precambrian through Mesozoic terranes that extends from the Ural Mountains in the west nearly to the Pacific Coast of Asia in the east and records the evolution and final closure of the Paleo-Asian Ocean in Permian time. The eastern Tethysides, the orogenic belt to the south of the Central Asian Orogenic Belt, records the evolution of another ancient ocean system, the Tethys Ocean. The evolution of these orogenic belts involved magmatism associated with a variety of geologic settings appropriate for formation of porphyry copper deposits, including subduction-related island arcs, continental arcs, and collisional and postconvergent settings. The original settings are difficult to trace because the arcs have been complexly deformed and dismembered by younger tectonic events. Twelve mineral resource assessment tracts were delineated to be permissive for the occurrence of porphyry copper deposits based on mapped and inferred subsurface distributions of igneous rocks of specific age ranges and compositions. These include (1) nine Paleozoic tracts in the Central Asian Orogenic Belt, which range in area from about 60,000 to 800,000 square kilometers (km2); (2) a complex area of about 400,000 km2 on the northern margin of the Tethysides, the Qinling-Dabie tract, which spans central China and areas to the west, encompassing Paleozoic through Triassic igneous rocks that formed in diverse settings; and (3) assemblages of late Paleozoic and Mesozoic rocks that define two other tracts in the Tethysides, the 100

  18. Detection of Abiotic Methane in Terrestrial Continental Hydrothermal Systems: Implications for Methane on Mars

    Science.gov (United States)

    Socki, Richard A.; Niles, Paul B.; Gibson, Everett K., Jr.; Romanek, Christopher S.; Zhang, Chuanlun L.; Bissada, Kadry K.

    2008-01-01

    The recent detection of methane in the Martian atmosphere and the possibility that its origin could be attributed to biological activity, have highlighted the importance of understanding the mechanisms of methane formation and its usefulness as a biomarker. Much debate has centered on the source of the methane in hydrothermal fluids, whether it is formed biologically by microorganisms, diagenetically through the decomposition of sedimentary organic matter, or inorganically via reduction of CO2 at high temperatures. Ongoing research has now shown that much of the methane present in sea-floor hydrothermal systems is probably formed through inorganic CO2 reduction processes at very high temperatures (greater than 400 C). Experimental results have indicated that methane might form inorganically at temperatures lower still, however these results remain controversial. Currently, methane in continental hydrothermal systems is thought to be formed mainly through the breakdown of sedimentary organic matter and carbon isotope equilibrium between CO2 and CH4 is thought to be rarely present if at all. Based on isotopic measurements of CO2 and CH4 in two continental hydrothermal systems, we suggest that carbon isotope equilibration exists at temperatures as low as 155 C. This would indicate that methane is forming through abiotic CO2 reduction at lower temperatures than previously thought and could bolster arguments for an abiotic origin of the methane detected in the martian atmosphere.

  19. Thermodynamic and physico-chemical fluctuations in hydrothermal systems suitable for the geological cradle of life

    Science.gov (United States)

    Kompanichenko, Vladimir

    Thermodynamic and physico-chemical fluctuations in the medium seem are the necessary factor for the origin of life. Fluctuations are usual phenomena in hydrothermal systems including their outcrops in ocean or terrestrial groundwater aquifers. Investigation of the fluctuations regimes in natural hydrothermal systems can be used in advanced laboratory experiments on prebiotic organic synthesis under changeable conditions. To characterize a scale of the thermodynamic and physic-chemical fluctuations four hydrothermal systems were explored: several terrestrial hydrothermal systems, primarily on the Russian Far East. Temperature of water and water-steam mixture (from boreholes) in Mutnovsky and Pauzhetsky hydrothermal fields (Kamchatka peninsula) ranges from less than 100 o C up to 240 o C. Water from Kuldur thermal basin (in-tracontinental part of the Russian Far East) is characterized with the lower temperature: 60-70 o C. Data of monitoring of pressure, temperature and some chemical parameters in the boreholes of these fields were mathematically processed. Periods of long-range macrofluctuations of pres-sure and temperature in Mutnovsky and Kuldur fields are 2-4.5 months, maximum amplitudes of temperature in the wells' orifices are 53o C and 9 o C correspondingly, maximum amplitude of pressure in Mutnovsky field 34 bars. Periods of minioscillations are from 10 to 70 minutes in Mutnovsky and Pauzhetsky fields, average amplitudes of pressure are 0.2-0.7 bars. These data are comparable with similar data from Mura basin in Slovenia: amplitudes of temperature and pH minioscillations are about 1-2o C and 0.2 correspondingly; there exists strict positive correlation of temperature with pH, K+, Na+, Ca2+, HCO3-, SO42-, Cl-, F-, but concentra-tions of Mg2+, NH4+, CO2 change independently (Kralj, 2000).. The general conclusion is that minifluctuations of thermodynamic and physic-chemical parameters in hydrothermal sys-tems are usual phenomenon. From time to time the

  20. Investigating Crustal Scale Fault Systems Controlling Volcanic and Hydrothermal Fluid Processes in the South-Central Andes, First Results from a Magnetotelluric Survey

    Science.gov (United States)

    Pearce, R.; Mitchell, T. M.; Moorkamp, M.; Araya, J.; Cembrano, J. M.; Yanez, G. A.; Hammond, J. O. S.

    2017-12-01

    At convergent plate boundaries, volcanic orogeny is largely controlled by major thrust fault systems that act as magmatic and hydrothermal fluid conduits through the crust. In the south-central Andes, the volcanically and seismically active Tinguiririca and Planchon-Peteroa volcanoes are considered to be tectonically related to the major El Fierro thrust fault system. These large scale reverse faults are characterized by 500 - 1000m wide hydrothermally altered fault cores, which possess a distinct conductive signature relative to surrounding lithology. In order to establish the subsurface architecture of these fault systems, such conductivity contrasts can be detected using the magnetotelluric method. In this study, LEMI fluxgate-magnetometer long-period and Metronix broadband MT data were collected at 21 sites in a 40km2 survey grid that surrounds this fault system and associated volcanic complexes. Multi-remote referencing techniques is used together with robust processing to obtain reliable impedance estimates between 100 Hz and 1,000s. Our preliminary inversion results provide evidence of structures within the 10 - 20 km depth range that are attributed to this fault system. Further inversions will be conducted to determine the approximate depth extent of these features, and ultimately provide constraints for future geophysical studies aimed to deduce the role of these faults in volcanic orogeny and hydrothermal fluid migration processes in this region of the Andes.

  1. Hydrothermal Processes

    Science.gov (United States)

    German, C. R.; von Damm, K. L.

    2003-12-01

    along the Juan de Fuca Ridge (JdFR) in the NE Pacific Ocean (Rona and Trivett, 1992; Schultz et al., 1992; Ginster et al., 1994) have suggested that, instead, axial hydrothermal circulation may be dominated by much lower-temperature diffuse flow exiting the seafloor at temperatures comparable to those first observed at the Galapagos vent sites in 1977. The relative importance of high- and low-temperature hydrothermal circulation to overall ocean chemistry remains a topic of active debate. (141K)Figure 4. (a) Photograph of a "black smoker" hydrothermal vent emitting hot (>400 °C) fluid at a depth of 2,834 m into the base of the oceanic water column at the Brandon vent site, southern EPR. The vent is instrumented with a recording temperature probe. (b) Diffuse flow hydrothermal fluids have temperatures that are generally smoker" systems. Only here do many species escape from the seafloor in high abundance. When they do, the buoyancy of the high-temperature fluids carries them hundreds of meters up into the overlying water column as they mix and eventually form nonbuoyant plumes containing a wide variety of both dissolved chemicals and freshly precipitated mineral phases. The processes active within these dispersing hydrothermal plumes play a major role in determining the net impact of hydrothermal circulation upon the oceans and marine geochemistry.

  2. Development of Mitsui/Juelich Incineration System and hydro-thermal ash solidification

    International Nuclear Information System (INIS)

    Suzuki, S.; Kamada, S.; Nakamori, Y.; Katakura, M.; Yamazaki, N.

    1988-01-01

    This paper summarizes the developing program for Mitsui/Juelich Incinerated System combined with Hydrothermal ash solidification. The system is an integrated one and capable for volume reduction of various kind of radioactive waste and safe disposal of residual incinerator ash. The system also has an advantage of reducing construction and operation cost. An outline of the incineration plant is also presented in this paper

  3. Hydrothermal synthetic strategies of inorganic semiconducting nanostructures.

    Science.gov (United States)

    Shi, Weidong; Song, Shuyan; Zhang, Hongjie

    2013-07-07

    Because of their unique chemical and physical properties, inorganic semiconducting nanostructures have gradually played a pivotal role in a variety of research fields, including electronics, chemical reactivity, energy conversion, and optics. A major feature of these nanostructures is the quantum confinement effect, which strongly depends on their size, shape, crystal structure and polydispersity. Among all developed synthetic methods, the hydrothermal method based on a water system has attracted more and more attention because of its outstanding advantages, such as high yield, simple manipulation, easy control, uniform products, lower air pollution, low energy consumption and so on. Precise control over the hydrothermal synthetic conditions is a key to the success of the preparation of high-quality inorganic semiconducting nanostructures. In this review, only the representative hydrothermal synthetic strategies of inorganic semiconducting nanostructures are selected and discussed. We will introduce the four types of strategies based on exterior reaction system adjustment, namely organic additive- and template-free hydrothermal synthesis, organic additive-assisted hydrothermal synthesis, template-assisted hydrothermal synthesis and substrate-assisted hydrothermal synthesis. In addition, the two strategies based on exterior reaction environment adjustment, including microwave-assisted and magnetic field-assisted hydrothermal synthesis, will be also described. Finally, we conclude and give the future prospects of this research area.

  4. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    Science.gov (United States)

    John, D.A.; Sisson, T.W.; Breit, G.N.; Rye, R.O.; Vallance, J.W.

    2008-01-01

    the west and east flanks of the edifice, spatially associated with dikes that are localized in those sectors; other edifice flanks lack dikes and associated alteration. The Osceola collapse removed most of the altered core and upper east flank of the volcano, but intensely altered rocks remain on the uppermost west flank. Major conclusions of this study are that: (1) Hydrothermal-mineral assemblages and distributions at Mount Rainier can be understood in the framework of hydrothermal processes and environments developed from studies of ore deposits formed in analogous settings. (2) Frequent eruptions supplied sufficient hot magmatic fluid to alter the upper interior of the volcano hydrothermally, despite the consistently deep (??? 8??km) magma reservoir which may have precluded formation of economic mineral deposits within or at shallow depths beneath Mount Rainier. The absence of indicator equilibrium alteration-mineral assemblages in the debris flows that effectively expose the volcano to a depth of 1-1.5??km also suggests a low potential for significant high-sulfidation epithermal or porphyry-type mineral deposits at depth. (3) Despite the long and complex history of the volcano, intensely altered collapse-prone rocks were spatially restricted to near the volcano's conduit system and summit, and short distances onto the upper east and west flanks, due to the necessary supply of reactive components carried by ascending magmatic fluids. (4) Intensely altered rocks were removed from the summit, east flank, and edifice interior by the Osceola collapse, but remain on the upper west flank in the Sunset Amphitheater area and present a continuing collapse hazard. (5) Visually conspicuous rocks on the lower east and mid-to-lower

  5. Origin of ore-forming fluids of the Haigou gold deposit in the eastern Central Asian Orogenic belt, NE China: Constraints from H-O-He-Ar isotopes

    Science.gov (United States)

    Zeng, Qingdong; He, Huaiyu; Zhu, Rixiang; Zhang, Song; Wang, Yongbin; Su, Fei

    2017-08-01

    The Haigou lode deposit contains 40 t of gold at an average grade of 3.5 g/t, and is one of the largest deposits in the Jiapigou gold belt located along the eastern segment of the northern margin of the North China Craton. The deposit comprises 15 gold-bearing quartz veins hosted in a Carboniferous monzonite-monzogranite stock. Cretaceous dikes consisting of diorite, diabase, and granodiorite porphyries are well developed in the deposit. The diorite porphyry dikes (130.4 ± 6.3 Ma) occur together with gold-bearing quartz veins in NNE- and NE-striking faults. Gold-bearing quartz veins crosscut the diorite porphyry dikes, and the veins are in turn crosscut by E-W-striking 124.6 ± 2.2 Ma granodiorite porphyry dikes. The mineralization mainly occurs as auriferous quartz veins with minor amounts of sulfide minerals, including pyrite, galena, chalcopyrite, and molybdenite. Gold occurs as either native gold or calaverite. Common gangue minerals in the deposit include quartz, sericite, and calcite. The deposit is characterized by various types of hydrothermal alteration, including silicification, sericitization, chloritization, potassic alteration, and carbonatization. Three stages of hydrothermal activity have been recognized in the deposit: (1) a barren quartz stage; (2) a polymetallic sulfide (gold) stage; (3) a calcite stage. Fluid inclusions in hydrothermal pyrites have 3He/4He ratios of 0.3 to 3.3 Ra and 40Ar/36Ar ratios of 351 to 1353, indicating mixing of fluids of mantle and crustal origin. Hydrothermal quartz yielded δ18O values of -1.3‰ to +7.2‰ and δD values of fluid inclusions in the quartz vary between -80‰ and -104‰. These stable isotope data also suggest mixing of magmatic and meteoric fluids. Noble gas and stable isotopic data suggest that the ore fluids have a predominant mantle source with a significant crustal component. Based on the spatial association of gold-bearing quartz veins with early Cretaceous intrusions, and the H-O-He-Ar isotopic

  6. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge.

    Science.gov (United States)

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-07-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition.

  7. A hydrogeological conceptual model of the Suio hydrothermal area (central Italy)

    Science.gov (United States)

    Saroli, Michele; Lancia, Michele; Albano, Matteo; Casale, Anna; Giovinco, Gaspare; Petitta, Marco; Zarlenga, Francesco; dell'Isola, Marco

    2017-09-01

    A hydrogeological conceptual model has been developed that describes the hydrothermal system of Suio Terme (central Italy). The studied area is located along the peri-Tyrrhenian zone of the central Apennines, between the Mesozoic and Cenozoic carbonate platform sequences of the Aurunci Mountains and the volcanic sequences of the Roccamonfina. A multi-disciplinary approach was followed, using new hydrogeological surveys, the interpretation of stratigraphic logs of boreholes and water wells, and geophysical data—seismic sections, shear-wave velocity (Vs) crustal model and gravimetric model. The collected information allowed for construction of a conceptual hydrogeological model and characterization of the hydrothermal system. The Suio hydrothermal system is strongly influenced by the Eastern Aurunci hydrostructure. Along the southeastern side, the top of the hydrostructure sinks to -1,000 m relative to sea level via a series of normal faults which give origin to the Garigliano graben. Geological and hydrogeological data strongly suggest the propagation and mixing of hot fluids, with cold waters coming from the shallow karst circuit. The aquitard distribution, the normal tectonic displacements and the fracturing of the karst hydrostructure strongly influence the hydrothermal basin. Carbon dioxide and other gasses play a key role in the whole circuit, facilitating the development of the hydrothermal system. The current level of knowledge suggests that the origin of the Suio hydrothermalism is the result of interaction between the carbonate reservoir of the Eastern Aurunci Mountains and the hot and deep crust of this peri-Tyrrhenian sector, where the Roccamonfina volcano represents the shallowest expression.

  8. Rare earth mobility in hydrothermal ore-forming systems

    International Nuclear Information System (INIS)

    Cornell, D.H.; Schade, J.; Scheepers, R.; Watkeys, M.K.

    1988-01-01

    Rocks and ores which form by magmatic processes display a range of chondrite-normalised rare earth profiles. One REE (rare earth elements) profile feature which seems unrelated to magmatic processes is the birdwing profile, in which both heavy and light rare earths are enriched relative to the middle rare earths. Birdwing rare earth profiles are an easily identified geochemical anomaly. It is proposed that rare earth geochemistry could be applied in geochemical prospecting for ore formed by hydrothermal processes. 5 figs

  9. Hydrothermal Phase Relations Among Uranyl Minerals at the Nopal I Analog Site

    International Nuclear Information System (INIS)

    Murphy, William M.

    2007-01-01

    Uranyl mineral paragenesis at Nopal I is an analog of spent fuel alteration at Yucca Mountain. Petrographic studies suggest a variety of possible hydrothermal conditions for uranium mineralization at Nopal I. Calculated equilibrium phase relations among uranyl minerals show uranophane stability over a broad range of realistic conditions and indicate that uranyl mineral variety reflects persistent chemical potential heterogeneity. (author)

  10. Hydrothermal synthesis of layered iron-chalcogenide superconductors and related compounds

    International Nuclear Information System (INIS)

    Pachmayr, Ursula Elisabeth

    2017-01-01

    This thesis provides a new preparative approach to iron-chalcogenide based superconductors. The hydrothermal synthesis of anti-PbO type FeSe, which can be seen as basis structure of the compounds of interest was successfully developed. Along with this, some insights regarding the influence of synthesis parameters were gained featuring a basis for further hydrothermal syntheses of new iron-chalcogenide compounds. The potential of this method, primarily the extension of the so far limited accessibility of iron-chalcogenide based superconductors by solid-state sythesis, was revealed within the present work. The solid-solution FeSe_1_-_xS_x was prepared for the whole substitution range, whereas solid-state synthesis exhibits a solubility limit at x = 0.3. Furthermore, the new compounds [(Li_0_._8Fe_0_._2)OH]FeX (X = Se, S) were synthesized which are exclusively accessible via hydrothermal method. The compounds, where layers of (Li_0_._8Fe_0_._2)OH alternate with FeX layers, feature exceptional physical properties, notably a coexistence of superconductivity and ferromagnetism. They were intensively studied within this work. By combination of solid-state and hydrothermal ion-exchange synthesis even large crystals necessary for subsequent physical measurements are accessible. Apart from these layered iron-chalcogenide superconductors, further compounds which likewise exhibit building blocks of edge-sharing FeSe_4 tetrahedra were found via this synthesis method. The iron selenides A_2Fe_4Se_6 (A = K, Rb, Cs) consist of double chains of [Fe_2Se_3]"1"-, whereas a new compound Na_6(H_2O)_1_8Fe_4Se_8 exhibits [Fe_4Se_8]"6"- 'stella quadrangula' clusters. This structural diversity as well as the associated physical properties of the compounds demonstrates the numerous capabilities of hydrothermal synthesis in the field of iron-chalcogenide compounds. In particular with regard to iron-chalcogenide based superconductors this synthesis strategy is encouraging. It seems probable

  11. Hydrothermal synthesis of layered iron-chalcogenide superconductors and related compounds

    Energy Technology Data Exchange (ETDEWEB)

    Pachmayr, Ursula Elisabeth

    2017-04-06

    This thesis provides a new preparative approach to iron-chalcogenide based superconductors. The hydrothermal synthesis of anti-PbO type FeSe, which can be seen as basis structure of the compounds of interest was successfully developed. Along with this, some insights regarding the influence of synthesis parameters were gained featuring a basis for further hydrothermal syntheses of new iron-chalcogenide compounds. The potential of this method, primarily the extension of the so far limited accessibility of iron-chalcogenide based superconductors by solid-state sythesis, was revealed within the present work. The solid-solution FeSe{sub 1-x}S{sub x} was prepared for the whole substitution range, whereas solid-state synthesis exhibits a solubility limit at x = 0.3. Furthermore, the new compounds [(Li{sub 0.8}Fe{sub 0.2})OH]FeX (X = Se, S) were synthesized which are exclusively accessible via hydrothermal method. The compounds, where layers of (Li{sub 0.8}Fe{sub 0.2})OH alternate with FeX layers, feature exceptional physical properties, notably a coexistence of superconductivity and ferromagnetism. They were intensively studied within this work. By combination of solid-state and hydrothermal ion-exchange synthesis even large crystals necessary for subsequent physical measurements are accessible. Apart from these layered iron-chalcogenide superconductors, further compounds which likewise exhibit building blocks of edge-sharing FeSe{sub 4} tetrahedra were found via this synthesis method. The iron selenides A{sub 2}Fe{sub 4}Se{sub 6} (A = K, Rb, Cs) consist of double chains of [Fe{sub 2}Se{sub 3}]{sup 1-}, whereas a new compound Na{sub 6}(H{sub 2}O){sub 18}Fe{sub 4}Se{sub 8} exhibits [Fe{sub 4}Se{sub 8}]{sup 6-} 'stella quadrangula' clusters. This structural diversity as well as the associated physical properties of the compounds demonstrates the numerous capabilities of hydrothermal synthesis in the field of iron-chalcogenide compounds. In particular with regard

  12. Numerical Simulation of a Non-volcanic Hydrothermal System Caused by Formation of a High Permeability Fracture Zone

    Science.gov (United States)

    Oka, Daisuke; Ehara, Sachio; Fujimitsu, Yasuhiro

    2010-05-01

    Because in the Japanese islands the earth crust activity is very active, a disposal stratum for high-level radioactive waste produced by reprocessing the spent nuclear fuel from nuclear power plants will be selected in the tectonically stable areas in which the waste can be disposed underground safely for a long term and there is no influence of earthquakes, seismic activities, volcanic activities, upheaval, sedimentation, erosion, climate and global sea level change and so on, which causes the risk of the inflow of the groundwater to destroy the disposal site or the outflow to the ground surface. However, even if the disposal stratum in such condition will be chosen, in case that a new high permeability fracture zone is formed by the earthquake, and a new hydrothermal system may be formed for a long term (thousands or millions years) and the system may affect the disposal site. Therefore, we have to understand the feature of the non-volcanic hydrothermal system through the high permeability fracture zone. We estimated such influence by using HYDROTHERM Ver2.2 (Hayba & Ingebritsen, 1994), which is a three-dimensional numerical reservoir simulator. The model field is the northwestern part of Kego Fault, which was formed by a series of earthquakes called "the 2005 Fukuoka Prefecture Western Offshore Earthquakes" (the main shock of Mjma 7.0 on 20 March 2005) in Kyushu, Japan. The results of the numerical simulations show the development of a low temperature hydrothermal system as a new fracture zone is formed, in case that there is no volcanic heat source. The results of the simulations up to 100,000 years after formation of the fracture zone show that the higher heat flow and the wider and more permeable fracture zone accelerate the development of the hydrothermal system in the fracture zone. As a result of calculation of up to10 million years, we clarified the evolutional process of the non-volcanic hydrothermal system through the high permeability fracture zone. At

  13. The Role of Siliceous Hydrothermal Breccias in the Genesis of Volcanic Massive Sulphide Deposits - Ancient and Recent Systems

    Science.gov (United States)

    Costa, I. A.; Barriga, F. J.; Fouquet, Y.

    2014-12-01

    Siliceous hydrothermal breccias were sampled in two Mid-Atlantic Ridge active sites: Lucky Strike and Menez Gwen. These hydrothermal fields are located in the border of the Azorean plateau, southwest of the Azores islands where the alteration processes affecting basaltic rocks are prominent (Costa et al., 2003). The hydrothermal breccias are genetically related with the circulation of low temperature hydrothermal fluids in diffuse vents. The groundmass of these breccias precipitates from the fluid and consolidates the clastic fragments mostly composed of basalt. The main sources are the surrounding volcanic hills. Breccias are found near hydrothermal vents and may play an important role in the protection of subseafloor hydrothermal deposits forming an impermeable cap due to the high content in siliceous material. The amorphous silica tends to precipitate when the fluid is conductively cooled as proposed by Fouquet et al. (1998) after Fournier (1983). The process evolves gradually from an initial stage where we have just the fragments and circulating seawater. The ascending hydrothermal fluid mixes with seawater, which favours the precipitation of the sulphide components. Sealing of the initially loose fragments begins, the temperature rises below this crust, and the processes of mixing fluid circulation and conductive cooling are simultaneous. At this stage the fluid becomes oversaturated with respect to amorphous silica. This form of silica can precipitate in the open spaces of the porous sulphides and seal the system. Normally this can happen at low temperatures. At this stage the hydrothermal breccia is formed creating a progressively less permeable, eventually impermeable cap rock at the surface. Once the fluid is trapped under this impermeable layer, conductive cooling is enhanced and mixing with seawater is restricted, making the precipitation of amorphous silica more efficient. Since the first discovery and description of recent mineralized submarine

  14. Nature, diversity of deposit types and metallogenic relations of South China

    Science.gov (United States)

    Zaw, K.; Peters, S.G.; Cromie, P.; Burrett, C.; Hou, Z.

    2007-01-01

    the 'Northern Golden Triangle' of China. These deposits are mostly epigenetic hydrothermal micron-disseminated gold deposits with associated As, Hg, Sb + Tl mineralisation similar to Carlin-type deposits in USA. The important deposits in the Southern Golden Triangle are Jinfeng (Lannigou), Zimudang, Getang, Yata and Banqi in Guizhou Province, and the Jinya and Gaolong deposits in Guangxi District. The most important deposits in the Northern Golden Triangle are the Dongbeizhai and Qiaoqiaoshang deposits. Many porphyry-related polymetallic copper-lead-zinc and gold skarn deposits occur in South China. These deposits are related to Indosinian (Triassic) and Yanshanian (Jurassic to Cretaceous) magmatism associated with collision of the South China and North China Cratons and westward subduction of the Palaeo-Pacific Plate. Most of these deposits are distributed along the Lower to Middle Yangtze River metallogenic belt. The most significant deposits are Tonglushan, Jilongshan, Fengshandong, Shitouzui and Jiguanzui. Au-(Ag-Mo)-rich porphyry-related Cu-Fe skarn deposits are also present (Chengmenshan and Wushan in Jiangxi Province and Xinqiao, Mashan-Tianmashan, Shizishan and Huangshilaoshan in Anhui Province). The South China fold belt extending from Fujian to Zhejiang Provinces is characterised by well-developed Yanshanian intrusive to subvolcanic rocks associated with porphyry to epithermal type mineralisation and mesothermal vein deposits. The largest porphyry copper deposit in China, Dexing, occurs in Jiangxi Province and is hosted by Yanshanian granodiorite. The high-sulphidation epithermal system occurs at the Zijinshan district in Fujian Province and epithermal to mesothermal vein-type deposits are also found in the Zhejiang Province (e.g., Zhilingtou). Part of Shandong Province is located at the northern margin of the South China Craton and the province has unique world class granite-hosted orogenic gold deposits. Occurrences of Pt-Pd-Ni-Cu-Co are found in Permian

  15. Field-based tests of geochemical modeling codes usign New Zealand hydrothermal systems

    International Nuclear Information System (INIS)

    Bruton, C.J.; Glassley, W.E.; Bourcier, W.L.

    1994-06-01

    Hydrothermal systems in the Taupo Volcanic Zone, North Island, New Zealand are being used as field-based modeling exercises for the EQ3/6 geochemical modeling code package. Comparisons of the observed state and evolution of the hydrothermal systems with predictions of fluid-solid equilibria made using geochemical modeling codes will determine how the codes can be used to predict the chemical and mineralogical response of the environment to nuclear waste emplacement. Field-based exercises allow us to test the models on time scales unattainable in the laboratory. Preliminary predictions of mineral assemblages in equilibrium with fluids sampled from wells in the Wairakei and Kawerau geothermal field suggest that affinity-temperature diagrams must be used in conjunction with EQ6 to minimize the effect of uncertainties in thermodynamic and kinetic data on code predictions

  16. Structural and numerical modeling of fluid flow and evolving stress fields at a transtensional stepover: A Miocene Andean porphyry copper system as a case study.

    Science.gov (United States)

    Nuñez, R. C.; Griffith, W. A.; Mitchell, T. M.; Marquardt, C.; Iturrieta, P. C.; Cembrano, J. M.

    2017-12-01

    Obliquely convergent subduction orogens show both margin-parallel and margin-oblique fault systems that are spatially and temporally associated with ore deposits and geothermal systems within the volcanic arc. Fault orientation and mechanical interaction among different fault systems influence the stress field in these arrangements, thus playing a first order control on the regional to local-scale fluid migration paths as documented by the spatial distribution of fault-vein arrays. Our selected case study is a Miocene porphyry copper-type system that crops out in the precordillera of the Maule region along the Teno river Valley (ca. 35°S). Several regional to local faults were recognized in the field: (1) Two first-order, N-striking subvertical dextral faults overlapping at a right stepover; (2) Second-order, N60°E-striking steeply-dipping, dextral-normal faults located at the stepover, and (3) N40°-60°W striking subvertical, sinistral faults crossing the stepover zone. The regional and local scale geology is characterized by volcano-sedimentary rocks (Upper Eocene- Lower Miocene), intruded by Miocene granodioritic plutons (U-Pb zircon age of 18.2 ± 0.11 Ma) and coeval dikes. We implement a 2D boundary element displacement discontinuity method (BEM) model to test the mechanical feasibility of kinematic model of the structural development of the porphyry copper-type system in the stepover between N-striking faults. The model yields the stress field within the stepover region and shows slip and potential opening distribution along the N-striking master faults under a regionally imposed stress field. The model shows that σ1 rotates clockwise where the main faults approach each other, becoming EW when they overlap. This, in turn leads to the generation of both NE- and NW-striking faults within the stepover area. Model results are consistent with the structural and kinematic data collected in the field attesting for enhanced permeability and fluid flow transport

  17. The origin of methanethiol in midocean ridge hydrothermal fluids.

    Science.gov (United States)

    Reeves, Eoghan P; McDermott, Jill M; Seewald, Jeffrey S

    2014-04-15

    Simple alkyl thiols such as methanethiol (CH3SH) are widely speculated to form in seafloor hot spring fluids. Putative CH3SH synthesis by abiotic (nonbiological) reduction of inorganic carbon (CO2 or CO) has been invoked as an initiation reaction for the emergence of protometabolism and microbial life in primordial hydrothermal settings. Thiols are also presumptive ligands for hydrothermal trace metals and potential fuels for associated microbial communities. In an effort to constrain sources and sinks of CH3SH in seafloor hydrothermal systems, we determined for the first time its abundance in diverse hydrothermal fluids emanating from ultramafic, mafic, and sediment-covered midocean ridge settings. Our data demonstrate that the distribution of CH3SH is inconsistent with metastable equilibrium with inorganic carbon, indicating that production by abiotic carbon reduction is more limited than previously proposed. CH3SH concentrations are uniformly low (∼10(-8) M) in high-temperature fluids (>200 °C) from all unsedimented systems and, in many cases, suggestive of metastable equilibrium with CH4 instead. Associated low-temperature fluids (<200 °C) formed by admixing of seawater, however, are invariably enriched in CH3SH (up to ∼10(-6) M) along with NH4(+) and low-molecular-weight hydrocarbons relative to high-temperature source fluids, resembling our observations from a sediment-hosted system. This strongly implicates thermogenic interactions between upwelling fluids and microbial biomass or associated dissolved organic matter during subsurface mixing in crustal aquifers. Widespread thermal degradation of subsurface organic matter may be an important source of organic production in unsedimented hydrothermal systems and may influence microbial metabolic strategies in cooler near-seafloor and plume habitats.

  18. Ca isotope fractionation and Sr/Ca partitioning associated with anhydrite formation at mid-ocean ridge hydrothermal systems: An experimental approach

    Science.gov (United States)

    Syverson, D. D.; Scheuermann, P.; Pester, N. J.; Higgins, J. A.; Seyfried, W. E., Jr.

    2016-12-01

    The elemental and isotopic mass balance of Ca and Sr between seawater and basalt at mid-ocean ridge (MOR) hydrothermal systems is an integrated reflection of the various physiochemical processes, which induce chemical exchange, in the subseafloor. Specifically, the processes of anhydrite precipitation and recrystallization are recognized to be important controls on governing the Ca and Sr elemental and isotope compositions of high temperature vent fluids, however, few experimental data exist to constrain these geochemical effects. Thus, to better understand the associated Sr/Ca partitioning and Ca isotope fractionation and rate of exchange between anhydrite and dissolved constituents, anhydrite precipitation and recrystallization experiments were performed at 175, 250, and 350°C and 500 bar at chemical conditions indicative of active MOR hydrothermal systems. The experimental data suggest that upon entrainment of seawater into MOR hydrothermal systems, anhydrite will precipitate rapidly and discriminate against the heavy isotopes of Ca (Δ44/40Ca(Anh-Fluid) = -0.68 - -0.25 ‰), whereas Sr/Ca partitioning depends on the saturation state of the evolving hydrothermal fluid with respect to anhydrite at each PTX (KD(Anh-Fluid) = 1.24 - 0.55). Coupling experimental constraints with the temperature gradient inferred for high temperature MOR hydrothermal systems in the oceanic crust, data suggest that the Ca isotope and Sr elemental composition of anhydrite formed near the seafloor will be influenced by disequilibrium effects, while, at higher temperatures further into the oceanic crust, anhydrite will be representative of equilibrium Sr/Ca partitioning and Ca isotope fractionation conditions. These experimental observations are consistent with analyzed Sr/Ca and Ca isotope compositions of anhydrites and vent fluids sampled from modern MOR hydrothermal systems1,2 and can be used to further constrain the geochemical effects of hydrothermal circulation in the oceanic crust

  19. Comparative analyses of the bacterial community of hydrothermal deposits and seafloor sediments across Okinawa Trough

    Science.gov (United States)

    Wang, Long; Yu, Min; Liu, Yan; Liu, Jiwen; Wu, Yonghua; Li, Li; Liu, Jihua; Wang, Min; Zhang, Xiao-Hua

    2018-04-01

    As an ideal place to study back-arc basins and hydrothermal eco-system, Okinawa Trough has attracted the interests of scientists for decades. However, there are still no in-depth studies targeting the bacterial community of the seafloor sediments and hydrothermal deposits in Okinawa Trough. In the present study, we reported the bacterial community of the surface deposits of a newly found hydrothermal field in the southern Okinawa Trough, and the horizontal and vertical variation of bacterial communities in the sediments of the northern Okinawa Trough. The hydrothermal deposits had a relatively high 16S rRNA gene abundance but low bacterial richness and diversity. Epsilonproteobacteria and Bacteroidetes were predominant in hydrothermal deposits whereas Deltaproteobacteria, Gammaproteobacteria and Chloroflexi were abundant across all samples. The bacterial distribution in the seafloor of Okinawa Trough was significantly correlated to the content of total nitrogen, and had consistent relationship with total carbon. Gradual changes of sulfur-oxidizing bacteria were found with the distance away from hydrothermal fields, while the hydrothermal activity did not influence the distribution of the major clades of sulfate-reducing bacteria. Higher abundance of the sulfur cycle related genes (aprA and dsrB), and lower abundance of the bacterial ammonia-oxidizing related gene (amoA) were quantified in hydrothermal deposits. In addition, the present study also compared the inter-field variation of Epsilonproteobacteria among multi-types of hydrothermal vents, revealing that the proportion and diversity of this clade were quite various.

  20. Controllable synthesis of α- and β-MnO2: cationic effect on hydrothermal crystallization

    International Nuclear Information System (INIS)

    Huang Xingkang; Lv Dongping; Yue Hongjun; Attia, Adel; Yang Yong

    2008-01-01

    α- and β-MnO 2 were controllably synthesized by hydrothermally treating amorphous MnO 2 obtained via a reaction between Mn 2+ and MnO 4 - , and cationic effects on the hydrothermal crystallization of MnO 2 were investigated systematically. The crystallization is believed to proceed by a dissolution-recrystallization mechanism; i.e. amorphous MnO 2 dissolves first under hydrothermal conditions, then condenses to recrystallize, and the polymorphs formed are significantly affected by added cations such as K + , NH 4 + and H + in the hydrothermal systems. The experimental results showed that K + /NH 4 + were in competition with H + to form polymorphs of α- and β-MnO 2 , i.e., higher relative K + /NH 4 + concentration favoured α-MnO 2 , while higher relative H + concentration favoured β-MnO 2

  1. Alteration related to hydrothermal activity of the Nevado del Ruiz volcano (NRV), Colombia

    International Nuclear Information System (INIS)

    Forero, Jhon; Zuluaga, Carlos; Mojica, Jaime

    2011-01-01

    The hydrothermal activity in the NRV generates alteration characterized by mineral associations depending one number of physic-chemical factors of the hydrothermal system. Petrography of unaltered rocks was used to establish the mineral assemblage prior to rock-fluid interaction. XRD was used in altered rocks, where it was not possible to recognize the alteration products. the observed mineral assemblages indicate advanced and intermediate argillic alterations, this and the observation of very low modal proportion of sulphates, sulphides and native sulphur in some areas could point to a low sulphidation zone. However, the proximity to the volcano and the presence of acid thermal waters and steam pose an apparent contradiction with an expected high sulphidation zone which is explained by climatic conditions, where excess water has dissolved and leached sulfides, sulphur and sulphates close to the volcano. fault zones serve as conducts for fluid transport and have acid-sulphate mineral associations produced by atmospheric oxidation at the water table in a steam-heated environment of H 2 S released by deeper, boiling fluids or by the disproportionation of magmatic SO 2 to H 2 S and H 2 SO 4 during condensation of magmatic vapor plume at intermedia depths in magmatic hydrothermal environment in andesitic volcanic terrain characteristic of high sulphidation zones.

  2. An unit commitment model for hydrothermal systems; Um modelo de unit commitment para sistemas hidrotermicos

    Energy Technology Data Exchange (ETDEWEB)

    Franca, Thiago de Paula; Luciano, Edson Jose Rezende; Nepomuceno, Leonardo [Universidade Estadual Paulista (UNESP), Bauru, SP (Brazil). Dept. de Engenharia Eletrica], Emails: ra611191@feb.unesp.br, edson.joserl@uol.com.br, leo@feb.unesp.br

    2009-07-01

    A model of Unit Commitment to hydrothermal systems that includes the costs of start/stop of generators is proposed. These costs has been neglected in a good part of the programming models for operation of hydrothermal systems (pre-dispatch). The impact of the representation of costs in total production costs is evaluated. The proposed model is solved by a hybrid methodology, which involves the use of genetic algorithms (to solve the entire part of the problem) and sequential quadratic programming methods. This methodology is applied to the solution of an IEEE test system. The results emphasize the importance of representation of the start/stop in the generation schedule.

  3. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics.

    Directory of Open Access Journals (Sweden)

    Rika E Anderson

    Full Text Available The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities.

  4. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics.

    Science.gov (United States)

    Anderson, Rika E; Sogin, Mitchell L; Baross, John A

    2014-01-01

    The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts' functional capabilities.

  5. Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits

    OpenAIRE

    Neal, LC; Wilkinson, JJ; Mason, PJ; Chang, Z

    2018-01-01

    publisher: Elsevier articletitle: Spectral characteristics of propylitic alteration minerals as a vectoring tool for porphyry copper deposits journaltitle: Journal of Geochemical Exploration articlelink: http://dx.doi.org/10.1016/j.gexplo.2017.10.019 content_type: article copyright: © 2017 Elsevier B.V. All rights reserved.

  6. Multiobjective CVaR Optimization Model and Solving Method for Hydrothermal System Considering Uncertain Load Demand

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2015-01-01

    Full Text Available In order to solve the influence of load uncertainty on hydrothermal power system operation and achieve the optimal objectives of system power generation consumption, pollutant emissions, and first-stage hydropower station storage capacity, this paper introduced CVaR method and built a multiobjective optimization model and its solving method. In the optimization model, load demand’s actual values and deviation values are regarded as random variables, scheduling objective is redefined to meet confidence level requirement and system operation constraints and loss function constraints are taken into consideration. To solve the proposed model, this paper linearized nonlinear constraints, applied fuzzy satisfaction, fuzzy entropy, and weighted multiobjective function theories to build a fuzzy entropy multiobjective CVaR model. The model is a mixed integer linear programming problem. Then, six thermal power plants and three cascade hydropower stations are taken as the hydrothermal system for numerical simulation. The results verified that multiobjective CVaR method is applicable to solve hydrothermal scheduling problems. It can better reflect risk level of the scheduling result. The fuzzy entropy satisfaction degree solving algorithm can simplify solving difficulty and get the optimum operation scheduling scheme.

  7. Porphyry copper assessment of East and Southeast Asia: Philippines, Taiwan (Republic of China), Republic of Korea (South Korea), and Japan: Chapter P in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Bookstrom, Arthur A.; Demarr, Michael W.; Dicken, Connie L.; Ludington, Stephen; Robinson, Gilpin R.; Zientek, Michael L.

    2014-01-01

    The U.S. Geological Survey collaborated with member countries of the Coordinating Committee for Geoscience Programmes in East and Southeast Asia (CCOP) on an assessment of the porphyry copper resources of East and Southeast Asia as part of a global mineral resource assessment. The assessment covers the Philippines in Southeast Asia, and the Republic of Korea (South Korea), Taiwan (Province of China), and Japan in East Asia. The Philippines host world class porphyry copper deposits, such as the Tampakan and Atlas deposits. No porphyry copper deposits have been discovered in the Republic of Korea (South Korea), Taiwan (Province of China), or Japan.

  8. Geochronological studies in the Chuquicamata district, Chile: a review

    International Nuclear Information System (INIS)

    Zentilli, M; Tassinari, C.C.G; Rojas, J; Reynolds, P.H.; Pemberton, G.B; Munizaga, F; Mathur, R; Maksaev, V; Lindsay, D.D; Heaman, L; Graves, M.C.; Arnott, A.M

    2001-01-01

    The dating and discrimination of significant events in the complex Chuquicamata porphyry copper system have been challenging. The work by others and us indicates that the first mineralizing (Chuqui) porphyries were emplaced at ca.35 Ma, followed by potassic alteration and various hydrothermal pulses to ca. 33 Ma. This system evolved within a dynamic ductile to brittle shear system. After 1- 2 km of exhumation, a discrete mineralizing (quartz-sericitic) event was superimposed at ca. 31 Ma. Relatively slower exhumation followed, allowing for the development and preservation of important supergene blankets (19 to 15 Ma) and exotic copper deposits. The unmineralized Fortuna igneous complex, juxtaposed across the NS (Falla Oeste) fault system, is relatively older than the Chuqui porphyries. Historically, in the 1960s, Pb-alpha on zircon approximately dated the Paleozoic and Mesozoic hosts to the Chuqui porphyries, and the Eocene Fortuna. In the 1970s and 1980s, conventional K/Ar dated the main potassic alteration at 35 to 33 Ma, and the quartz-sericite alteration at 31-28 Ma. In the 1990s, Rb-Sr accurately dated the major homogenization of the Chuqui system at 35 ±2 Ma and confirmed that Fortuna is older. 40 Ar/ 39 Ar defined two thermal pulses and documented thermal overprint by the younger event. U-Pb dating is hindered by the presence of xenocrystic zircon with Paleozoic ages. Recently, ELA-ICP-MS dating of zircon distinguish 3 intrusive phases at 34.8, 33.4 and 33.3 Ma, compatible with a 34.9 Ma age by Re-Os in molybdenite. Re-Os in Cu-Fe sulfides confirms the ca. 31 Ma age of the quartz-sericitic stage. Fission-track data on zircon and apatite, and (U-Th)/He dating, point to extremely fast cooling to o C after the quartz-sericitic event, and improve exhumation histories. Fission-track data on apatite and ESR of quartz in fault gouge suggest that the Falla Oeste was active into the Pliocene and Pleistocene, respectively (au)

  9. Quantitative Mineral Resource Assessment of Copper, Molybdenum, Gold, and Silver in Undiscovered Porphyry Copper Deposits in the Andes Mountains of South America

    Science.gov (United States)

    Cunningham, Charles G.; Zappettini, Eduardo O.; Vivallo S., Waldo; Celada, Carlos Mario; Quispe, Jorge; Singer, Donald A.; Briskey, Joseph A.; Sutphin, David M.; Gajardo M., Mariano; Diaz, Alejandro; Portigliati, Carlos; Berger, Vladimir I.; Carrasco, Rodrigo; Schulz, Klaus J.

    2008-01-01

    Quantitative information on the general locations and amounts of undiscovered porphyry copper resources of the world is important to exploration managers, land-use and environmental planners, economists, and policy makers. This publication contains the results of probabilistic estimates of the amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) in undiscovered porphyry copper deposits in the Andes Mountains of South America. The methodology used to make these estimates is called the 'Three-Part Form'. It was developed to explicitly express estimates of undiscovered resources and associated uncertainty in a form that allows economic analysis and is useful to decisionmakers. The three-part form of assessment includes: (1) delineation of tracts of land where the geology is permissive for porphyry copper deposits to form; (2) selection of grade and tonnage models appropriate for estimating grades and tonnages of the undiscovered porphyry copper deposits in each tract; and (3) estimation of the number of undiscovered porphyry copper deposits in each tract consistent with the grade and tonnage model. A Monte Carlo simulation computer program (EMINERS) was used to combine the probability distributions of the estimated number of undiscovered deposits, the grades, and the tonnages of the selected model to obtain the probability distributions for undiscovered metals in each tract. These distributions of grades and tonnages then can be used to conduct economic evaluations of undiscovered resources in a format usable by decisionmakers. Economic evaluations are not part of this report. The results of this assessment are presented in two principal parts. The first part identifies 26 regional tracts of land where the geology is permissive for the occurrence of undiscovered porphyry copper deposits of Phanerozoic age to a depth of 1 km below the Earth's surface. These tracts are believed to contain most of South America's undiscovered resources of copper. The

  10. Chemical reaction path modeling of hydrothermal processes on Mars: Preliminary results

    Science.gov (United States)

    Plumlee, Geoffrey S.; Ridley, W. Ian

    1992-01-01

    Hydrothermal processes are thought to have had significant roles in the development of surficial mineralogies and morphological features on Mars. For example, a significant proportion of the Martian soil could consist of the erosional products of hydrothermally altered impact melt sheets. In this model, impact-driven, vapor-dominated hydrothermal systems hydrothermally altered the surrounding rocks and transported volatiles such as S and Cl to the surface. Further support for impact-driven hydrothermal alteration on Mars was provided by studies of the Ries crater, Germany, where suevite deposits were extensively altered to montmorillonite clays by inferred low-temperature (100-130 C) hydrothermal fluids. It was also suggested that surface outflow from both impact-driven and volcano-driven hydrothermal systems could generate the valley networks, thereby eliminating the need for an early warm wet climate. We use computer-driven chemical reaction path calculation to model chemical processes which were likely associated with postulated Martian hydrothermal systems.

  11. Hydrothermal alteration of Hercynian granites, its significance to the evolution of geothermal systems in granitic rocks

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Jose M.; Matias, Maria J.; Basto, Maria J.; Aires-Barros, Luis A. [Instituto Superior Tecnico, Centro de Petrologia e Geoquimica, Universidade Tecnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Carreira, Paula M. [Instituto Tecnologico e Nuclear, Estrada Nacional n 10, 2686 - 953 Sacavem (Portugal); Goff, Fraser E. [Earth and Planetary Sciences Department, Univ. of New Mexico, Albuquerque, NM 87131 (United States)

    2010-06-15

    We discuss geochemical and isotopic ({sup 18}O/{sup 16}O, {sup 2}H/{sup 1}H and {sup 87}Sr/{sup 86}Sr) data recording the hydrothermal alteration of northern Portuguese Hercynian granites by Na-HCO{sub 3}-CO{sub 2}-rich mineral waters. Whole-rock samples from drill cores of Vilarelho da Raia granite have {delta}{sup 18}O values in the +11.47 to +10.10 permille range. The lower values correspond to highly fractured granite samples displaying vein and pervasive alteration. In the pervasive alteration stage, which probably results from a convective hydrothermal system set up by the intrusion of the granites, the metamorphic waters are in equilibrium with hydrous minerals. In contrast, the vein alteration of these granitic rocks was caused by water of meteoric origin. The oxygen ratios between water (W) and rock (R), the so-called W/R ratios, obtained for the open system (where the heated water is lost from the system by escape to the surface) range between 0.05 and 0.11, suggesting that the recrystallization of the veins was influenced by a small flux of meteoric water. Stable isotope analyses performed on the cores show that the vein alteration stage relates to post-emplacement tectonic stresses acting on the granite, probably of late Hercynian age. Our results are consistent with the existence of two separate alteration events (pervasive and vein) caused by hydrothermal waters of different isotopic characteristics. The studies presented in this paper should be viewed as a natural analogue that uses the alteration features observed in a fossil geothermal system at Vilarelho da Raia to assess possible water-rock reactions presently occurring at depth in granitic rocks of the nearby Chaves area. (author)

  12. Utility of high-altitude infrared spectral data in mineral exploration: Application to Northern Patagonia Mountains, Arizona

    Science.gov (United States)

    Berger, B.R.; King, T.V.V.; Morath, L.C.; Phillips, J.D.

    2003-01-01

    Synoptic views of hydrothermal alteration assemblages are of considerable utility in regional-scale minerals exploration. Recent advances in data acquisition and analysis technologies have greatly enhanced the usefulness of remotely sensed imaging spectroscopy for reliable alteration mineral assemblages mapping. Using NASA's Airborne Visible Infrared Imaging Spectrometer (AVIRIS) sensor, this study mapped large areas of advanced argillic and phyllic-argillic alteration assemblages in the southeastern Santa Rita and northern Patagonia mountains, Arizona. Two concealed porphyry copper deposits have been identified during past exploration, the Red Mountain and Sunnyside deposits, and related published hydrothermal alteration zoning studies allow the comparison of the results obtained from AVIRIS data to the more traditional field mapping approaches. The AVIRIS mapping compares favorably with field-based studies. An analysis of iron-bearing oxide minerals above a concealed supergene chalcocite deposit at Red Mountain also indicates that remotely sensed data can be of value in the interpretation of leached caps above porphyry copper deposits. In conjunction with other types of geophysical data, AVIRIS mineral maps can be used to discriminate different exploration targets within a region.

  13. Self-Ordering and Complexity in Epizonal Mineral Deposits

    Science.gov (United States)

    Henley, Richard W.; Berger, Byron R.

    -from-equilibrium depositional processes. Since these coupled processes lead to localized transient changes in fluid characteristics, paragenetic, isotope, and fluid inclusion data relate to conditions at the site of deposition and only indirectly to the characteristics of the larger-scale hydrothermal system and its longer-term behavior. The metal concentrations (i.e. grade) of deposits and their internal variation is directly related to the geometry of the fracture array at the deposit scale, whereas finer-scale oscillatory fabrics in ores may be a result of molecular scale processes. Giant deposits are relatively rare and develop where efficient metal deposition is spatially focused by repetitive brittle failure in active fault arrays. Some brief case histories are provided for epithermal, replacement, and porphyry mineralization. These highlight how rock competency contrasts and feedback between processes, rather than any single component of a hydrothermal system, govern the size of individual deposits. In turn, the recognition of the probabilistic nature of mineralization provides a firmer foundation through which exploration investment and risk management decisions can be made.

  14. Concentration and distribution of dissolved amino acids in a shallow hydrothermal system, Vulcano Island (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Svensson, E.; Skoog, A. [University of Connecticut, Groton, CT (United States). Dept. of Marine Sciences; Amend, J.P. [Washington University, St. Louis, MO (United States). Dept. of Earth and Planetary Sciences

    2004-09-01

    Hydrothermal systems are known to harbour a large number of microorganisms, but the organic chemical composition of the solution that comprises their potential substrate is largely unknown. Concentrations and distributions of dissolved free amino acids (DFAA) and dissolved combined amino acids (DCAA) were determined in fluids from the moderate-temperature (42-89{sup o}C), shallow hydrothermal system on the volcanically active island of Vulcano, Italy. The seven samples represent three different geological settings on the island; shallow ({approx} 1 m) submarine vents, geothermal wells, and seeps in heated beach sediments, in addition to ambient local seawater from the bay, Baia di Levante. All hydrothermal sites, with one exception, had TDAA concentrations that were 3-114 times higher than local seawater in Baia di Levante. There were large similarities in amino acid concentration and composition among samples from the same geological setting. The highest amino acid concentrations were found at sites with acidic and reducing conditions, which also had the largest freshwater component. An unusually high fraction of the TDAA pool was represented by DFAA (33-87%), possibly due to in situ acid hydrolysis of DCAA to DFAA. Both DFAA and DCAA concentrations were correlated to DOC, indicating similar source and sink functions for these pools. The yield of TDAA (TDAA-carbon as fraction of organic carbon) ranged from 2% to 25%, which is high compared with non-hydrothermal settings, and indicates high biological lability. The mole fraction of {beta}-alanine plus {gamma}-aminobutyric acid (% BALA + GABA) was 2-2.7% of TDAA, also indicating high biological lability. Owing to the high over-all amino acid concentrations, the high fraction of DFAAs, and the high biological lability of the organic matter, organic matter in general and amino acids specifically could represent significant carbon and energy sources for archaea and bacteria in this hydrothermal system. The clear

  15. Using the concentration-volume (C-V) fractal model in the delineation of gold mineralized zones within the Tepeoba porphyry Cu-Mo-Au, Balikesir, NW Turkey

    Science.gov (United States)

    Kumral, Mustafa; Abdelnasser, Amr; Karaman, Muhittin; Budakoglu, Murat

    2016-04-01

    The Tepeoba porphyry Cu-Mo-Au mineralization that located at the Biga peninsula (W Turkey) developed around the Eybek pluton concentrated at its southern contact. This mineralization that hosted in the hornfels rocks of Karakaya Complex is associated with three main alteration zones; potassic, phyllic and propylitic alterations along the fault controlled margins of the Eybek pluton and quartz stockwork veining as well as brecciation zones. As well as two mineralized zones were occurred in the mine area; hypogene and oxidation/supergene zone. The hypogene zone has differentiated alteration types; high potassic and low phyllic alteration, while the oxidation/supergene zone has high phyllic and propylitic alterations. This work deals with the delineation of gold mineralized zone within this porphyry deposit using the concentration-volume (C-V) fractal model. Five zones of gold were calculated using its power-law C-V relationship that revealed that the main phase of gold mineralization stated at 5.3083 ppm Au concentration. In addition, the C-V log-log plot shows that the highly and moderately Au mineralization zone developed in western part of deposit correlated with oxidation zone related to propylitic alteration. On the other hand, its weakly mineralization zone has a widespread in the hypogene zone related to potassic alteration. This refers to the enrichment of gold and depletion of copper at the oxidation/supergene zone is due to the oxidation/supergene alteration processes that enrich the deposits by the meteoric water. Keywords: Concentration-volume (C-V) fractal model; gold mineralized zone; Tepeoba porphyry Cu-Mo-Au; Balikesir; NW Turkey.

  16. Mineralogical and Geochemical Study of Titanite Associated With Copper Mineralization in the Hopper Property, Yukon Territory, Canada

    Science.gov (United States)

    Blumenthal, V. H.; Linnen, R. L.

    2009-05-01

    Copper mineralization in central Yukon is well known, but the metallogeny of the Ruby Range batholith, west of the copper belt, is poorly understood. The Hopper property, situated in the south western part of the Yukon in the Yukon-Tanana terrane, contains copper mineralization hosted by granodiorite and quartz feldspar porphyry of cal-alkaline affinity. These rock units, interpreted to be part of the Ruby Range batholith, intruded metasediments of the Ashihik Metamorphic Suite rocks. Mafic dykes cross cut the intrusion followed by aplite dykes. Small occurrences of skarn also occur in the area and some of these contain copper mineralization. The copper mineralization at the Hopper property appears to have a porphyry-type affinity. However, it is associated with a shear zone and propylitic alteration unlike other typical copper porphyry-type deposits. This raises the question whether or not the mineralization is orthomagmatic in origin, i.e., whether or not this is a true porphyry system. The main zone of mineralization is 1 kilometer long and 0.5 kilometer wide. It is characterized by disseminated chalcopyrite and pyrite, which also occur along fractures. Molybdenite mineralization was found to be associated with slickensides. Alteration minerals associated with the copper mineralization are chlorite, epidote-clinozoisite, carbonate and titanite. Chlorite and epidote-clinozoisite are concentrated in the mineralized zone, whereas an earlier potassic alteration shows a weaker spatial correlation with the mineralization. The association of the mineralization with propylitic alteration leads us to believe the mineralization is shear related, although a deeper porphyritic system may be present at depth. Two populations of titanite at the Hopper property are recognized based on their shape, size and association with other minerals. The first population, defined by a length of 100 micrometers to 1 centimeter, euhedral boundaries, and planar contacts with other magmatic

  17. Evolution of the Bucium Rodu and Frasin magmatic-hydrothermal system, Metaliferi Mountains, Romania

    Science.gov (United States)

    Iatan, Elena Luisa; Berbeleac, Ion; Visan, Madalina; Minut, Adrian; Nadasan, Laurentiu

    2013-04-01

    The Miocene Bucium Rodu and Frasin maar-diatreme structures and related Au-Ag epithermal low sulfidation with passing to mesothermal mineralizations are located in the Bucium-Rosia Montana-Baia de Aries metallogenetic district, within so called the "Golden Quatrilaterum", in the northeastern part of the Metaliferi Mountains. These structures are situated at about 5 km southeast from Rosia Montana, the largest European Au-Ag deposit. The total reserves for Bucium Rodu-Frasin are estimated at 43.3 Mt with average contents of 1.3 g/t Au and 3 g/t Ag. The Miocene geological evolution of Bucium Rodu and Frasin magmatic-hydrothermal system took place in closely relationships with tectonic, magmatic and metallogenetic activity from Bucium-Rosia Montana-Baia de Aries district in general, and adjacent areas, in special. The hydrothermal alteration is pervasive; adularia followed by phyllic, carbonatization and silicification alterations, usually show a close relationship with the mineralizations. Propylitic alteration occurs dominantly towards the depth; argillic alteration shows a local character. The mineralization occurs in veins, breccias, stockworks and disseminations and is hosted within two volcanic structures emplaced into a sequence of Cretaceous sediments in closely genetically relations with the Miocene phreatomagmatic fracturing and brecciation events. Within Rodu maar-diatreme structure the mineralizations follow especially the contact between the diatreme and Cretaceous flysch. The vein sets with low, moderately and near vertical dippings, cover 400x400m with N-S trend. The most important mineralization style is represented by veins, accompanied by hydrothermal breccias and disseminations. The veins spatial distribution relives as "en echelon" tension veins. They carry gold, minor base metal sulphides (pyrite, chalcopyrite, sphalerite, galena, tetrahedrite, arsenopyrite). Gangue is represented by carbonates (calcite, dolomite, ankerite, siderite, rhodochrosite

  18. Hydrothermal Liquefaction of Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.

    2010-12-10

    Hydrothermal liquefaction technology is describes in its relationship to fast pyrolysis of biomass. The scope of work at PNNL is discussed and some intial results are presented. HydroThermal Liquefaction (HTL), called high-pressure liquefaction in earlier years, is an alternative process for conversion of biomass into liquid products. Some experts consider it to be pyrolysis in solvent phase. It is typically performed at about 350 C and 200 atm pressure such that the water carrier for biomass slurry is maintained in a liquid phase, i.e. below super-critical conditions. In some applications catalysts and/or reducing gases have been added to the system with the expectation of producing higher yields of higher quality products. Slurry agents ('carriers') evaluated have included water, various hydrocarbon oils and recycled bio-oil. High-pressure pumping of biomass slurry has been a major limitation in the process development. Process research in this field faded away in the 1990s except for the HydroThermal Upgrading (HTU) effort in the Netherlands, but has new resurgence with other renewable fuels in light of the increased oil prices and climate change concerns. Research restarted at Pacific Northwest National Laboratory (PNNL) in 2007 with a project, 'HydroThermal Liquefaction of Agricultural and Biorefinery Residues' with partners Archer-Daniels-Midland Company and ConocoPhillips. Through bench-scale experimentation in a continuous-flow system this project investigated the bio-oil yield and quality that could be achieved from a range of biomass feedstocks and derivatives. The project was completed earlier this year with the issuance of the final report. HydroThermal Liquefaction research continues within the National Advanced Biofuels Consortium with the effort focused at PNNL. The bench-scale reactor is being used for conversion of lignocellulosic biomass including pine forest residue and corn stover. A complementary project is an international

  19. Argentine hydrothermal panorama

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-01

    An attempt is made to give a realistic review of Argentine thermal waters. The topics discussed are the characteristics of the hydrothermal resources, classification according to their mineral content, hydrothermal flora and fauna, uses of hydrothermal resources, hydrothermal regions of Argentina, and meteorology and climate. A tabulation is presented of the principal thermal waters. (JSR)

  20. Submarine Hydrothermal Activity and Gold-Rich Mineralization at Brothers Volcano, Southern Kermadec Arc, New Zealand

    Science.gov (United States)

    de Ronde, C. E.; Massoth, G. J.; Christenson, B. W.; Butterfield, D. A.; Ishibashi, J.; Hannington, M. D.; Ditchburn, B. G.; Embley, R. W.; Lupton, J. E.; Kamenetsky, D.; Reyes, A. G.; Lahr, J.; Takai, K.

    2006-12-01

    Brothers volcano is one of several hydrothermally active volcanoes that occur along the Kermadec active arc front, NE of New Zealand. It forms an elongate edifice 13 km long by 8 km across that strikes NW-SE. The volcano has a caldera with a basal diameter of ~3 km and a floor at 1,850 m below sea level, surrounded by 290 to 530 m high walls. A volcanic cone of dacite rises 350 m from the caldera floor and partially coalesces with the southern caldera wall. Three hydrothermal sites have been located; on the NW caldera wall, on the SE caldera wall, and on the dacite cone. The NW caldera vent site is a long-term hydrothermal system that is today dominated by evolved seawater but has had episodic injections of magmatic fluid. The SE caldera site represents the main upflow of a relatively well-established magmatic-hydrothermal system on the seafloor where sulfide-rich chimneys are extant. The cone site is a nascent magmatic-hydrothermal system where crack zones localize upwelling acidic waters. Each of these different vent sites represent diverse parts of an evolving hydrothermal system, any one of which may be typical of submarine volcanic arcs. Hydrothermal venting is today occurring at the NW caldera and cone sites. The former is characterized by high-temperature (up to 302°C) venting with pH down to 2.8, low Mg and SO4 values, Cl between 510 and 760 mM, elevated Si and increasing Fe and Mn values with increasing Cl concentrations, consistent with a mostly Cl-enriched endmember. By contrast, vent fluids from the cone site are gas-rich (up to 220 mM total gas), have temperatures 30 ppm) zones in some chimneys formed over a short period of time, coincident with pulses of magmatic fluid into the hydrothermal system.

  1. Zircon U-Pb and molybdenite Re-Os geochronology and geological significance of the Baoshan porphyry Cu polymetallic deposit in Jiangxi province

    Science.gov (United States)

    Jia, Liqiong; Wang, Liang

    2017-10-01

    Baoshan porphyry Cu polymetallic deposit belongs to Jiujiang-Ruichang Cu-Au ore field, which is a component part of the Middle-Lower Yangtze River Cu-Au metallogenic belt. The U-Pb LA-MC-TCP MS dating of the zircons from Baoshan granodiorite porphyry yields an age of 147.81±0.48Ma (MSWD=1.07). Six molybdenite samples separated from Baoshan deposit are used for Re-Os dating and obtained the weighted average age of 147.42±0.84Ma and an isochron age of 147.7±1.2Ma. These ages suggest that the mineralization in the Baoshan deposit is genetically associated to the granodiorite porphyry, and the process of rock-and ore-forming is continuous. These data indicate that ages of intrusion and ore-body from Baoshan deposit are almost identical to other typical magmatic intrusion and deposits in Jiujiang-Ruichang metallogenic district. Tt is inferred that the Baoshan deposit was formed in the transition from EW-striking Tndosinian tectonic domain to NE-striking Paleo-Pacific tectonic domain.

  2. Three-dimensional electrical resistivity model of the hydrothermal system in Long Valley Caldera, California, from magnetotellurics

    Science.gov (United States)

    Peacock, Jared R.; Mangan, Margaret T.; McPhee, Darcy K.; Wannamaker, Phil E.

    2016-01-01

    Though shallow flow of hydrothermal fluids in Long Valley Caldera, California, has been well studied, neither the hydrothermal source reservoir nor heat source has been well characterized. Here a grid of magnetotelluric data were collected around the Long Valley volcanic system and modeled in 3-D. The preferred electrical resistivity model suggests that the source reservoir is a narrow east-west elongated body 4 km below the west moat. The heat source could be a zone of 2–5% partial melt 8 km below Deer Mountain. Additionally, a collection of hypersaline fluids, not connected to the shallow hydrothermal system, is found 3 km below the medial graben, which could originate from a zone of 5–10% partial melt 8 km below the south moat. Below Mammoth Mountain is a 3 km thick isolated body containing fluids and gases originating from an 8 km deep zone of 5–10% basaltic partial melt.

  3. Impact-generated Hydrothermal Activity at the Chicxulub Crater

    Science.gov (United States)

    Kring, D. A.; Zurcher, L.; Abramov, O.

    2007-05-01

    Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated hydrothermal alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of hydrothermal alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the hydrothermal system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the hydrothermal system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of hydrothermal alteration.

  4. Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities.

    Science.gov (United States)

    Campbell, Barbara J; Polson, Shawn W; Zeigler Allen, Lisa; Williamson, Shannon J; Lee, Charles K; Wommack, K Eric; Cary, S Craig

    2013-01-01

    Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments.

  5. Insight from Genomics on Biogeochemical Cycles in a Shallow-Sea Hydrothermal System

    Science.gov (United States)

    Lu, G. S.; Amend, J.

    2015-12-01

    Shallow-sea hydrothermal ecosystems are dynamic, high-energy systems influenced by sunlight and geothermal activity. They provide accessible opportunities for investigating thermophilic microbial biogeochemical cycles. In this study, we report biogeochemical data from a shallow-sea hydrothermal system offshore Paleochori Bay, Milos, Greece, which is characterized by a central vent covered by white microbial mats with hydrothermally influenced sediments extending into nearby sea grass area. Geochemical analysis and deep sequencing provide high-resolution information on the geochemical patterns, microbial diversity and metabolic potential in a two-meter transect. The venting fluid is elevated in temperature (~70oC), low in pH (~4), and enriched in reduced species. The geochemical pattern shows that the profile is affected by not only seawater dilution but also microbial regulation. The microbial community in the deepest section of vent core (10-12 cm) is largely dominated by thermophilic archaea, including a methanogen and a recently described Crenarcheon. Mid-core (6-8 cm), the microbial community in the venting area switches to the hydrogen utilizer Aquificae. Near the sediment-water interface, anaerobic Firmicutes and Actinobacteria dominate, both of which are commonly associated with subsurface and hydrothermal sites. All other samples are dominated by diverse Proteobacteria. The sulfate profile is strongly correlated with the population size of delta- and episilon-proteobactia. The dramatic decrease in concentrations of As and Mn in pore fluids as a function of distance from the vent suggests that in addition to seawater dilution, microorganisms are likely transforming these and other ions through a combination of detoxification and catabolism. In addition, high concentrations of dissolved Fe are only measurable in the shallow sea grass area, suggesting that iron-transforming microorganisms are controlling Fe mobility, and promoting biomineralization. Taken

  6. An improved hydrothermal diamond anvil cell

    Science.gov (United States)

    Li, Jiankang; Bassett, W. A.; Chou, I.-Ming; Ding, Xin; Li, Shenghu; Wang, Xinyan

    2016-05-01

    A new type of HDAC-V hydrothermal diamond anvil cell (HDAC-VT) has been designed to meet the demands of X-ray research including X-Ray Fluorescence, X-ray Absorption Spectroscopy, and small angle X-ray scattering. The earlier version of HDAC-V that offered a large rectangular solid angle used two posts and two driver screws on both sides of a rectangular body. The new version HDAC-VT in a triangular shape has two alternative guide systems, either three posts inserted into bushings suitable for small anvil faces or linear ball bearings suitable for large anvil faces. The HDAC-VT having three driver screws offers the advantage of greater control and stability even though it sacrifices some of the size of solid angle. The greater control allows better sealing of samples, while greater stability results in longer survival for anvils and ceramic parts. This improved design retains several beneficial features of the original HDAC-V as well. These include the small collar that surrounds the heater and sample chamber forming an Ar + H2 gas chamber to protect diamonds and their heating parts from being oxidized. Three linear ball bearings, when used, fit to the three posts prevent seizing that can result from deterioration of lubricant at high temperatures. Positioning the posts and bearings outside of the gas chamber as in HDAC-V also prevents seizing and possible deformation due to overheating. In order to control the heating rate precisely with computer software, we use Linkam T95 and have replaced the Linkam 1400XY heating stage with the HDAC-VT allowing the HDAC to be heated to 950 °C at a rate from 0.01 °C/min to 50 °C/min. We have used the HDAC-VT and Linkam T95 to observe in situ nucleation and growth of zabuyelite in aqueous fluid and to homogenize melt inclusions in quartz from three porphyry deposits in Shanxi, China.

  7. Fluid transfer and vein thickness distribution in high and low temperature hydrothermal systems at shallow crustal level in southern Tuscany (Italy

    Directory of Open Access Journals (Sweden)

    Francesco Mazzarini

    2014-06-01

    Full Text Available Geometric analysis of vein systems hosted in upper crustal rocks and developed in high and low temperature hydrothermal systems is presented. The high temperature hydrothermal system consists of tourmaline-rich veins hosted within the contact aureole of the upper Miocene Porto Azzurro pluton in the eastern Elba Island. The low temperature hydrothermal system consists of calcite-rich veins hosted within the Oligocene sandstones of the Tuscan Nappe, exposed along the coast in southern Tuscany. Vein thickness distribution is here used as proxy for inferring some hydraulic properties (transmissivity of the fluid circulation at the time of veins’ formation. We derive estimations of average thickness of veins by using the observed distributions. In the case of power law thickness distributions, the lower the scaling exponent of the distribution the higher the overall transmissivity. Indeed, power law distributions characterised by high scaling exponents have transmissivity three order of magnitude lower than negative exponential thickness distribution. Simple observations of vein thickness may thus provides some clues on the transmissivity in hydrothermal systems.

  8. Comparative assessment of five potential sites for hydrothermal magma systems: geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    White, A.F.

    1980-08-01

    A brief discussion is given of the geochemical objectives and questions that must be addressed in such an evaluation. A summary of the currently published literature that is pertinent in answering these questions is presented for each of the five areas: The Geysers-Clear Lake region, Long Valley, Rio Grand Rift, Roosevelt Hot Springs, and the Salton Trough. The major geochemical processes associated with proposed hydrothermal sites are categorized into three groups for presentation: geochemistry of magma and associated volcanic rocks, geochemistry of hydrothermal solutions, and geochemistry of hydrothermal alteration. (MHR)

  9. Hydrothermal alteration and permeability changes in granitic intrusions related to Sn-W deposits : case study of Panasqueira (Portugal)

    Science.gov (United States)

    Launay, Gaetan; Sizaret, Stanislas; Guillou-Frottier, Laurent; Gloaguen, Eric; Melleton, Jérémie; Pichavant, Michel; Champallier, Rémi; Pinto, Filipe

    2017-04-01

    The Panasqueira Sn-W deposit occurs as a dense network of flat wolframite and cassiterite-bearing quartz veins concentrated in the vicinity of a hidden greisen cupola, and to a lesser extent as disseminated cassiterites in the greisen. Previous studies (Thadeu 1951; 1979) have suggested that the Panasqueira deposit is genetically related to magmatic activity for which the most part is unexposed, and being only represented by the greisen cupola. Hydrothermal fluid circulation during the final stages of granite crystallisation has probably led to the greisenisation of the cupola followed by the deposition of the mineralization in the veins system. Mineral replacement reactions that occurred during the greisenisation could affect rock properties (porosity, density and permeability) which control fluid circulation in the granite. This study aims to investigate effects of greisenisation reactions on the dynamic (time varying) permeability that ultimately leads to fluid circulation in the greisen cupola. To do so, petrological study and experimental determinations of hydrodynamic features (porosity and permeability) for different granite alteration levels and petrographic types (unaltered granite to greisen) are combined and then integrated in coupled numerical models of fluid circulation around the granitic intrusion. Greisen occurs in the apical part of the granitic body and results in the pervasive alteration of the granite along the granite-schist contact. This greisen consists mainly of quartz and muscovite formed by the replacement of feldspars and bleaching of biotites of the initial granite. Otherwise, greisen is generally vuggy which suggests a porosity increase of the granite during hydrothermal alteration processes. This porosity increase has a positive effect on the permeability of the granitic system. Indeed, experimental measurements of permeability with the Paterson press indicate that the initial granite is impermeable (10-20 m2) whereas the greisen is

  10. Fault-controlled development of shallow hydrothermal systems: Structural and mineralogical insights from the Southern Andes

    Science.gov (United States)

    Roquer, T.; Arancibia, G.; Rowland, J. V.; Iturrieta, P. C.; Morata, D.; Cembrano, J. M.

    2017-12-01

    Paleofluid-transporting systems can be recognized as meshes of fracture-filled veins in eroded zones of extinct hydrothermal systems. Here we conducted meso-microstructural analysis and mechanical modeling from two exhumed exposures of the faults governing regional tectonics of the Southern Andes: the Liquiñe-Ofqui Fault System (LOFS) and the Andean Transverse Faults (ATF). A total of 107 fractures in both exposures were analyzed. The ATF specific segment shows two tectonic solutions that can be modeled as Andersonian and non-Andersonian tectonic regimes: (1) shear (mode II/III) failure occurs at differential stresses > 28 MPa and fluid pressures 85-98% lithostatic in the non-Andersonian regime. Additionally, the LOFS exposure cyclically fails in extension (mode I) or extension + shear (modes I + II/III) in the Andersonian regime, at differential stresses 40-80% lithostatic. In areas of spatial interaction between ATF and LOFS, these conditions might favor: (1) the storage of overpressured fluids in hydrothermal systems associated with the ATF faults, and (2) continuous fluid flow through vertical conduits in the LOFS faults. These observations suggest that such intersections are highly probable locations for concentrated hydrothermal activity, which must be taken into consideration for further geothermal exploration. ACKNOWLEDGEMENTS. PhD CONICYT grants, Centro de Excelencia en Geotermia de los Andes (CEGA-FONDAP/CONICYT Project #15090013), FONDECYT Project #1130030 and Project CONICYT REDES #140036.

  11. Short term economic emission power scheduling of hydrothermal energy systems using improved water cycle algorithm

    International Nuclear Information System (INIS)

    Haroon, S.S.; Malik, T.N.

    2017-01-01

    Due to the increasing environmental concerns, the demand of clean and green energy and concern of atmospheric pollution is increasing. Hence, the power utilities are forced to limit their emissions within the prescribed limits. Therefore, the minimization of fuel cost as well as exhaust gas emissions is becoming an important and challenging task in the short-term scheduling of hydro-thermal energy systems. This paper proposes a novel algorithm known as WCA-ER (Water Cycle Algorithm with Evaporation Rate) to inspect the short term EEPSHES (Economic Emission Power Scheduling of Hydrothermal Energy Systems). WCA has its ancestries from the natural hydrologic cycle i.e. the raining process forms streams and these streams start flowing towards the rivers which finally flow towards the sea. The worth of WCA-ER has been tested on the standard economic emission power scheduling of hydrothermal energy test system consisting of four hydropower and three thermal plants. The problem has been investigated for the three case studies (i) ECS (Economic Cost Scheduling), (ii) ES (Economic Emission Scheduling) and (iii) ECES (Economic Cost and Emission Scheduling). The results obtained show that WCA-ER is superior to many other methods in the literature in bringing lower fuel cost and emissions. (author)

  12. Skarn-mineralized porphyry adakites in the Harlik arc at Kalatage, E. Tianshan (NW China): Slab melting in the Devonian-early Carboniferous in the southern Central Asian Orogenic Belt

    Science.gov (United States)

    Mao, Qigui; Yu, Mingjie; Xiao, Wenjiao; Windley, Brian F.; Li, Yuechen; Wei, Xiaofeng; Zhu, Jiangjian; Lü, Xiaoqiang

    2018-03-01

    The geodynamic control of mineralization in the accretionary evolution of the Central Asian Orogenic Belt (CAOB) has long been controversial. Here we report new field, geochemical and geochronological data on recently defined porphyry and skarn-type ore deposits (Devonian-Early Carboniferous) in the Kalatage area in the middle of the Harlik-Dananhu arc, Eastern Tianshan, NW China in the southern CAOB, with the aim of better understanding the accretionary tectonics and genesis of porphyry and skarn-type mineralization. The Yudai porphyry Cu-(Au) deposits and the Xierqu skarn Cu-Fe-(Au) deposits are closely associated with Middle Devonian adakitic diorite porphyries (382-390 Ma), which are calc-alkaline and characterized by high Na2O/K2O ratios and Sr contents (310-1020 ppm), strong depletion of HREE (e.g., Yb = 0.80-1.44 ppm) and Y (7.68-14.50 ppm), and all enriched in Rb, Sr, Ba, K and depleted in Nb and Ti. They are characterized by distinctive Eu positive anomalies, high Na2O contents and MORB-like Sr and Nd isotope signatures (high εNd(t) = +6.1 to +7.0 and low (87Sr/86Sr)i = 0.70412-0.70462). These adakites most likely formed by melting of a young/hot subducted oceanic slab, and adakites in general are important carriers of porphyry Cu ± (Au) deposits. Early Carboniferous adakites in the Tuwu area south of Kalatage are known to have similar features. Therefore, skarn-mineralized porphyry adakites get younger from north to south, suggesting southward migration of the Harlik-Dananhu arc from 390 Ma to 322 Ma. These data indicate that partial melting of hot (and/or young) oceanic crustal slabs were an important mechanism of accretionary crustal growth and mineralization in the southern CAOB.

  13. Vapour discharges on Nevado del Ruiz during the recent activity: Clues on the composition of the deep hydrothermal system and its effects on thermal springs

    Science.gov (United States)

    Federico, Cinzia; Inguaggiato, Salvatore; Chacón, Zoraida; Londoño, John Makario; Gil, Edwing; Alzate, Diego

    2017-10-01

    The Nevado del Ruiz volcano is considered one of the most active volcanoes in Colombia, which can potentially threaten approximately 600,000 inhabitants. The existence of a glacier and several streams channelling in some main rivers, flowing downslope, increases the risk for the population living on the flank of the volcano in case of unrest, because of the generation of lahars and mudflows. Indeed, during the November 1985 subplinian eruption, a lahar generated by the sudden melting of the glacier killed twenty thousand people in the town of Armero. Moreover, the involvement of the local hydrothermal system has produced in the past phreatic and phreatomagmatic activity, as occurred in 1989. Therefore, the physico-chemical conditions of the hydrothermal system as well as its contribution to the shallow thermal groundwater and freshwater in terms of enthalpy and chemicals require a close monitoring. The phase of unrest occurred since 2010 and culminated with an eruption in 2012, after several years of relative stability, still maintains a moderate alert, as required by the high seismicity and SO2 degassing. In October 2013, a sampling campaign has been performed on thermal springs and stream water, located at 2600-5000 m of elevation on the slope of Nevado del Ruiz, analyzed for water chemistry and stable isotopes. Some of these waters are typically steam-heated (low pH and high sulfate content) by the vapour probably separating from a zoned hydrothermal system. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated the mass rate of hydrothermal steam discharging in the different springs. The composition of the hottest thermal spring (Botero Londono) is probably representative of a marginal part of the hydrothermal system, having a temperature of 250 °C and low salinity (Cl 1500 mg/l), which suggest, along with the retrieved isotope composition, a chiefly meteoric origin. The vapour discharged at the steam vent "Nereidas" (3600

  14. Assessment of operation reserves in hydrothermal electric systems with high wind generation

    NARCIS (Netherlands)

    Ramos, Andres; Rivier, Michel; García-González, Javier; Latorre, Jesus M.; Morales Espana, G.

    2016-01-01

    In this paper, we propose a method to analyze the amount of operation reserves procured in a system based on two stages. The first stage is a detailed hourly unit commitment and the second stage is a simulation model with a shorter time period. The method is applied to the Spanish hydrothermal

  15. U-Pb, Re-Os and Ar-Ar dating of the Linghou polymetallic deposit, Southeastern China: Implications for metallogenesis of the Qingzhou-Hangzhou metallogenic belt

    Science.gov (United States)

    Tang, Yanwen; Xie, Yuling; Liu, Liang; Lan, Tingguan; Yang, Jianling; Sebastien, Meffre; Yin, Rongchao; Liang, Songsong; Zhou, Limin

    2017-04-01

    The Qingzhou-Hangzhou metallogenic belt (QHMB) in Southeastern China has gained increasingly attention in recent years. However, due to the lack of reliable ages on intrusions and associated deposits in this belt, the tectonic setting and metallogenesis of the QHMB have not been well understood. The Linghou polymetallic deposit in northwestern Zhejiang Province is one of the typical deposits of the QHMB. According to the field relationships, this deposit consists of the early Cu-Au-Ag and the late Pb-Zn-Cu mineralization stages. Molybdenite samples with a mineral assemblage of molybdenite-chalcopyrite-pyrite ± quartz are collected from the copper mining tunnel near the Cu-Au-Ag ore bodies. Six molybdenite samples give the Re-Os model ages varying from 160.3 to 164.1 Ma and yield a mean age of 162.2 ± 1.4 Ma for the Cu-Au-Ag mineralization. Hydrothermal muscovite gives a well-defined Ar-Ar isochron age of 160.2 ± 1.1 Ma for the Pb-Zn-Cu mineralization. Three phases of granodioritic porphyry have been distinguished in this deposit, and LA-ICP-MS zircon U-Pb dating shows that they have formed at 158.8 ± 2.4 Ma, 158.3 ± 1.9 Ma and 160.6 ± 2.1 Ma, comparable to the obtained ages of the Cu-Au-Ag and Pb-Zn-Cu mineralization. Therefore, these intrusive rocks have a close temporal and spatial relationship with the Cu-Au-Ag and Pb-Zn-Cu ore bodies. The presences of skarn minerals (e.g., garnet) and vein-type ores, together with the previous fluid inclusion and H-O-C-S-Pb isotopic data, clearly indicate that the Cu-Au-Ag and Pb-Zn-Cu mineralization are genetically related to these granodiorite porphyries. This conclusion excludes the possibility that this deposit is of ;SEDEX; type and formed in a sag basin of continental rifts setting as previously proposed. Instead, it is proposed that the Linghou polymetallic and other similar deposits in the QHMB, such as the 150-160 Ma Yongping porphyry-skarn Cu-Mo, Dongxiang porphyry? Cu, Shuikoushan/Kangjiawang skarn Pb

  16. Seawater bicarbonate removal during hydrothermal circulation

    Science.gov (United States)

    Proskurowski, G. K.; Seewald, J.; Sylva, S. P.; Reeves, E.; Lilley, M. D.

    2013-12-01

    High temperature fluids sampled at hydrothermal vents represent a complex alteration product of water-rock reactions on a multi-component mixture of source fluids. Sources to high-temperature hydrothermal samples include the 'original' seawater present in the recharge limb of circulation, magmatically influenced fluids added at depth as well as any seawater entrained during sampling. High-temperature hydrothermal fluids are typically enriched in magmatic volatiles, with CO2 the dominant species, characterized by concentrations of 10's-100's of mmol/kg (1, 2). Typically, the high concentration of CO2 relative to background seawater bicarbonate concentrations (~2.3 mmol/kg) obscures a full analysis of the fate of seawater bicarbonate during high-temperature hydrothermal circulation. Here we present data from a suite of samples collected over the past 15 years from high-temperature hydrothermal vents at 9N, Endeavour, Lau Basin, and the MAR that have endmember CO2 concentrations less than 10 mmol/kg. Using stable and radiocarbon isotope measurements these samples provide a unique opportunity to examine the balance between 'original' seawater bicarbonate and CO2 added from magmatic sources. Multiple lines of evidence from multiple hydrothermal settings consistently points to the removal of ~80% of the 'original' 2.3 mmol/kg seawater bicarbonate. Assuming that this removal occurs in the low-temperature, 'recharge' limb of hydrothermal circulation, this removal process is widely occurring and has important contributions to the global carbon cycle over geologic time. 1. Lilley MD, Butterfield DA, Lupton JE, & Olson EJ (2003) Magmatic events can produce rapid changes in hydrothermal vent chemistry. Nature 422(6934):878-881. 2. Seewald J, Cruse A, & Saccocia P (2003) Aqueous volatiles in hydrothermal fluids from the Main Endeavour Field, northern Juan de Fuca Ridge: temporal variability following earthquake activity. Earth and Planetary Science Letters 216(4):575-590.

  17. Multiple objective optimization of hydro-thermal systems using Ritz's method

    Directory of Open Access Journals (Sweden)

    L. Bayón Arnáu

    2000-01-01

    Full Text Available This paper examines the applicability of the Ritz method to multi-objective optimization of hydro-thermal systems. The algorithm proposed is aimed to minimize an objective functional that incorporates the cost of energy losses, the conventional fuel cost and the production of atmospheric emissions such as NOx and SO2 caused by the operation of fossil-fueled thermal generation. The formulation includes a general layout of hydro-plants that may form multi-chains of reservoir network.

  18. Contribution to the operating energy planning of hydrothermal power systems; Contribuicao ao planejamento da operacao energetica de sistemas hidrotermicos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, Adriano Alber de Franca Mendes

    1991-08-01

    This work treats of the problem of the planning of the energy operation of hydrothermal power systems, gone back to those with predominance of hydraulic generation, as it is the case of the Brazilian system. The work makes an analysis of the problem of the planning of the energy operation of systems hydrothermal leaving of the concepts and nature of this problem. Their inherent difficulties are shown and they come the main approaches in operation in countries with predominance of hydroelectric generation. It still introduces the methodology in energy planning in Brazil being pointed their main limitations. Finally an alternative model for the planning of the energy operation of the system brazilian hydrothermal, based on the made studies is also presented.

  19. Porphyry, To Gaurus, On how embryos are ensouled afonasin@gmail.com An introduction, translation from the Greek into Russian and notes

    Directory of Open Access Journals (Sweden)

    Eugene Afonasin

    2013-01-01

    Full Text Available In this small treatise the Neoplatonic philosopher Porphyry (c. 234–305 addresses the question, problematic to every Platonic philosopher, this of agency of the preexistent human soul. Are the embryos already in possession of the self-moving descended souls and thus already living beings? In order to answer the question Porphyry first tries to show that embryos are not actually animals and thus can more properly be compared with plants. The second set of arguments is aimed to show that they are not animals even potentially. Finally Porphyry argues that, regardless the time of its entry, the self-moving soul comes from outside, not from the parents. The final chapter of the treatise is unfortunately not preserved, but the answer given by the philosopher is clear: a particular soul enters an appropriate body immediately after its birth and harmonically attuned to it for the rest of the bodily life. The translation is prepared on the basis of a new commented edition by T. Dorandi (Brisson et al. 2012. An extensive commentary that accompanies the translation helps to situate the treatise in the context of ancient medical and philosophical literature.

  20. Paleoproterozoic volcanic centers of the São Félix do Xingu region, Amazonian craton, Brazil: Hydrothermal alteration and metallogenetic potential

    Science.gov (United States)

    da Cruz, Raquel Souza; Fernandes, Carlos Marcello Dias; Villas, Raimundo Netuno Nobre; Juliani, Caetano; Monteiro, Lena Virgínia Soares; Lagler, Bruno; Misas, Carlos Mario Echeverri

    2016-06-01

    Geological, petrographic, scanning electron microscopy, and X-ray diffraction studies revealed hydrothermalized lithotypes evidenced by overprinted zones of potassic, propylitic, sericitic, and intermediate argillic alterations types, with pervasive and fracture-controlled styles, in Paleoproterozoic volcano-plutonic units of the São Félix do Xingu region, Amazonian craton, northern Brazil. The Sobreiro Formation presents propylitic (epidote + chlorite + carbonate + clinozoisite + sericite + quartz ± albite ± hematite ± pyrite), sericitic (sericite + quartz + carbonate), and potassic (potassic feldspar + hematite) alterations. The prehnite-pumpellyite pair that is common in geothermal fields also occurs in this unit. The Santa Rosa Formation shows mainly potassic (biotite + microcline ± magnetite), sericitic (sericite + quartz + carbonate ± chlorite ± gold), and intermediate argillic (montmorillonite + kaolinite/halloysite + illite) alterations. These findings strongly suggest the involvement of magma-sourced and meteoric fluids and draw attention to the metallogenetic potential of these volcanic units for Paleoproterozoic epithermal and rare and base metal porphyry-type mineralizations, similar to those already identified in other portions of the Amazonian craton.

  1. Mineralogy of metasomatic rocks and geochronology of the Olhovka porphyry-copper deposit, Chukotka, Russia

    Science.gov (United States)

    Rogacheva, Lyuba; Baksheev, Ivan

    2010-05-01

    The Olkhovka porphyry-copper deposit located on the border of foreland of the Okhotsk-Chukotka volcanic belt (OCVB) and a ledge composed of the Late Jurassic-Early Cretaceous Uda-Murgal arc (J3-K1) rocks is hosted by monzonite stock attributed to the Upper Cretaceous Kavralyan complex - K2) We estimated age of the Olkhovka monzonite by Rb-Sr and U-Pb methods. Rb-Sr age was determine om the basis of isotopic analysis of 8 monomineralic samples (potassium feldspar, plagioclase, amphibole, and dark mica). Isochron constructed on the basis of Rb-Sr data corresponds to the age of 78 + 2.6 Ma (MSWD=0.23). The Rb-Sr age is supported by U-Pb data derived from zircon of the same rock. One hundred and three single crystals of zircon were analyzed. Uranium content ranges from 52.66 ppm to 579.64 ppm; U/Th isotopic ratio varies from 0.567 to 1.746; age is 78.02+0.65 Ma (MSWD = 2.8). Monzonite is propylitized in variable degree. Propylite is composed of actinolite, chlorite, albite, quartz, and calcite. Propylite are cut by quartz-tourmaline veins. In addition, quartz-tourmaline metasomatic rock was identified in rhyolite ignimbrite out of the stock. Microscopically, tourmaline crystals of both types are oscilatory zoned that is caused by variable Fe content. Tourmalines of both assemblages can be classified as intermediate member of the schorl ("oxy-schorl")-dravite ("oxy-dravite") series. The Fetot/ (Fetot+Mg) varies from 0.31 to 0.95 in propylitic tourmaline and from 0.11 to 0.49, in quartz-tourmaline altered rocks from ignimbrite. Despite similar composition of both tourmalines, the major isomorphic substitutions in them are different. In propylite tourmaline, it is Fe → Al, whereas in the second case, it is Fe → Mg with certain effect of the Fe → Al type. Fe → Al isomorphic substitution is typical of porphyry style deposits (Baksheev et al., 2009 [1]). Therefore, we can conclude that quartz-tourmaline alteration in ignimbrite does not related to the formation of

  2. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    Science.gov (United States)

    Hein, James R.; Schulz, Marjorie S.; Dunham, Rachel E.; Stern, Robert J.; Bloomer, Sherman H.

    2008-08-01

    Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 Å and 7 Å manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean 8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of

  3. Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system, western Pacific

    Science.gov (United States)

    Hein, J.R.; Schulz, M.S.; Dunham, R.E.; Stern, R.J.; Bloomer, S.H.

    2008-01-01

    Abundant ferromanganese oxides were collected along 1200 km of the active Izu-Bonin-Mariana arc system. Chemical compositions and mineralogy show that samples were collected from two deposit types: Fe-Mn crusts of mixed hydrogenetic/hydrothermal origin and hydrothermal Mn oxide deposits; this paper addresses only the second type. Mn oxides cement volcaniclastic and biogenic sandstone and breccia layers (Mn sandstone) and form discrete dense stratabound layers along bedding planes and within beds (stratabound Mn). The Mn oxide was deposited within coarse-grained sediments from diffuse flow systems where precipitation occurred below the seafloor. Deposits were exposed at the seabed by faulting, mass wasting, and erosion. Scanning electron microscopy and microprobe analyses indicate the presence of both amorphous and crystalline 10 ?? and 7 ?? manganate minerals, the fundamental chemical difference being high water contents in the amorphous Mn oxides. Alternation of amorphous and crystalline laminae occurs in many samples, which likely resulted from initial rapid precipitation of amorphous Mn oxides from waxing pulses of hydrothermal fluids followed by precipitation of slow forming crystallites during waning stages. The chemical composition is characteristic of a hydrothermal origin including strong fractionation between Fe (mean 0.9 wt %) and Mn (mean 48 wt %) for the stratabound Mn, generally low trace metal contents, and very low rare earth element and platinum group element contents. However, Mo, Cd, Zn, Cu, Ni, and Co occur in high concentrations in some samples and may be good indicator elements for proximity to the heat source or to massive sulfide deposits. For the Mn sandstones, Fe (mean-8.4%) and Mn (12.4%) are not significantly fractionated because of high Fe contents in the volcaniclastic material. However, the proportion of hydrothermal Fe (nondetrital Fe) to total Fe is remarkably constant (49-58%) for all the sample groups, regardless of the degree of

  4. Unveiling the transformation and bioavailability of dissolved organic matter in contrasting hydrothermal vents using fluorescence EEM-PARAFAC.

    Science.gov (United States)

    Yang, Liyang; Zhuang, Wan-E; Chen, Chen-Tung Arthur; Wang, Bing-Jye; Kuo, Fu-Wen

    2017-03-15

    The submarine hydrothermal systems are extreme environments where active cycling of dissolved organic matter (DOM) may occur. However, little is known about the optical properties and bioavailability of hydrothermal DOM, which could provide valuable insights into its transformation processes and biogeochemical reactivity. The quantity, quality, and bioavailability of DOM were investigated for four very different hydrothermal vents east of Taiwan, using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). The DOC and absorption coefficient a 280 were both lower in the two hydrothermal vents off the Orchid Island and on the Green Island than in the surrounding seawater and the two vents off the Kueishantao Island, indicating effective removals of DOM in the former two hydrothermal systems owing to possible adsorption/co-precipitation and thermal degradation respectively. The four hydrothermal DOM showed notable differences in the absorption spectral slope S 275-295 , humification index HIX, biological index BIX, EEM spectra, and the relative distributions of seven PARAFAC components. The results demonstrated a high diversity of chemical composition and transformation history of DOM under contrasting hydrothermal conditions. The little change in the hydrothermal DOC after 28-day microbial incubations indicated a low bioavailability of the bulk DOM, and different PARAFAC components showed contrasting bioavailability. The results have profound implications for understanding the biogeochemical cycling and environmental effects of hydrothermal DOM in the marine environments. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Hydrothermal Processes in the Archean - New Insights from Imaging Spectroscopy

    NARCIS (Netherlands)

    Ruitenbeek, F.J.A. van

    2007-01-01

    The aim of this research was to gain new insights in fossil hydrothermal systems using airborne imaging spectroscopy. Fossil submarine hydrothermal systems in Archean greenstone belts and other geologic terranes are important because of their relationship with volcanic massive sulfide (VMS) mineral

  6. Surface-discharging hydrothermal systems at Yucca Mountain: Examining the evidence

    International Nuclear Information System (INIS)

    Levy, S.S.

    1992-01-01

    This paper discusses exposures of altered rock that have been thought to form by recent discharge of water from depth. They were examined to address a concern that hydrothermal processes could compromise the isolation capability of a potential high-level nuclear waste repository at Yucca Mountain. Suspected hot-spring and hydrothermal-vent deposits are more likely the products of infiltration of meteoric water into newly deposited and still-hot pyroclastic flows >12 Myr ago

  7. Impact of hydrothermalism on the ocean iron cycle.

    Science.gov (United States)

    Tagliabue, Alessandro; Resing, Joseph

    2016-11-28

    As the iron supplied from hydrothermalism is ultimately ventilated in the iron-limited Southern Ocean, it plays an important role in the ocean biological carbon pump. We deploy a set of focused sensitivity experiments with a state of the art global model of the ocean to examine the processes that regulate the lifetime of hydrothermal iron and the role of different ridge systems in governing the hydrothermal impact on the Southern Ocean biological carbon pump. Using GEOTRACES section data, we find that stabilization of hydrothermal iron is important in some, but not all regions. The impact on the Southern Ocean biological carbon pump is dominated by poorly explored southern ridge systems, highlighting the need for future exploration in this region. We find inter-basin differences in the isopycnal layer onto which hydrothermal Fe is supplied between the Atlantic and Pacific basins, which when combined with the inter-basin contrasts in oxidation kinetics suggests a muted influence of Atlantic ridges on the Southern Ocean biological carbon pump. Ultimately, we present a range of processes, operating at distinct scales, that must be better constrained to improve our understanding of how hydrothermalism affects the ocean cycling of iron and carbon.This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'. © 2016 The Author(s).

  8. CO2-rich and CO2-poor ore-forming fluids of porphyry molybdenum systems in two contrasting geologic setting: evidence from Shapinggou and Zhilingtou Mo deposits, South China

    Science.gov (United States)

    Ni, P.

    2017-12-01

    Porphyry deposits are the world most important source of Mo, accounting for more than 95% of world Mo production. Porphyry Mo deposits have been classified into Climax type and Endako type. The Climax type was generally formed in an intra-continental setting, and contain high contents of Mo (0.15-0.45 wt.%) and F (0.5-5 wt.%). In contrast, the Endako type was generated in a continental arc setting and featured by low concentrations of Mo (0.05-0.15 wt.%) and F (0.05-0.15 wt.%). The systematic comparison of ore fluids in two contrasting tectonic environments is still poorly constrained. In this study, the Shapinggou and Zhilingtou Mo deposits in South China were selected to present the contrasting ore-forming fluid features. The fluid inclusion study of Shapinggou Mo deposit suggest: Early barren quartz veins contain fluid inclusions with salinities of 7.9-16.9 wt% NaCl equiv . CO2 contents are high enough to be detected by Raman. Later molybdenite-quartz veins contain vapor-type fluid inclusions with lower salinities (0.1-7.4 wt% NaCl equiv) but higher CO2-contents, coexisting with brine inclusions with 32.9-50.9 wt% NaCl equiv. The fluid inclusion study on Zhilintou Mo deposit suggest : Early barren quartz veins contain mostly intermediate density fluid inclusions with salinities of 5.3-14.1 wt% NaCl equiv, whereas main-stage quartz-molybdenite veins contain vapor-rich fluid inclusions of 0.5-6.2 wt% NaClequiv coexisting with brine inclusions of 38.6-44.8 wt% NaCl equiv. In contrast to the Shapinggou Mo deposit, the fluid inclusions at Shizitou contain only minor amounts of CO2. This study suggests the two porphyry molybdenum deposits experienced a similar fluid evolution trend, from single-phase fluids at the premineralization stage to two-phase fluids at the mineralization stage. Fluid boiling occurred during the ore stage and probably promoted a rapid precipitation of molybdenite. Intensive phyllic alteration, CO2-poor ore-forming fluids, and continental arc

  9. An exploration hydrogeochemical study at the giant Pebble porphyry Cu-Au-Mo deposit, Alaska, USA, using high-resolution ICP-MS

    Science.gov (United States)

    Eppinger, Robert G.; Fey, David L.; Giles, Stuart A.; Kelley, Karen D.; Smith, Steven M.

    2012-01-01

    A hydrogeochemical study using high resolution ICP-MS was undertaken at the giant Pebble porphyry Cu-Au-Mo deposit and surrounding mineral occurrences. Surface water and groundwater samples from regional background and the deposit area were collected at 168 sites. Rigorous quality control reveals impressive results at low nanogram per litre (ng/l) levels. Sites with pH values below 5.1 are from ponds in the Pebble West area, where sulphide-bearing rubble crop is thinly covered. Relative to other study area waters, anomalous concentrations of Cu, Cd, K, Ni, Re, the REE, Tl, SO42− and F− are present in water samples from Pebble West. Samples from circum-neutral waters at Pebble East and parts of Pebble West, where cover is much thicker, have anomalous concentrations of Ag, As, In, Mn, Mo, Sb, Th, U, V, and W. Low-level anomalous concentrations for most of these elements were also found in waters surrounding nearby porphyry and skarn mineral occurrences. Many of these elements are present in low ng/l concentration ranges and would not have been detected using traditional quadrupole ICP-MS. Hydrogeochemical exploration paired with high resolution ICP-MS is a powerful new tool in the search for concealed deposits.

  10. A thermoelectric cap for seafloor hydrothermal vents

    International Nuclear Information System (INIS)

    Xie, Yu; Wu, Shi-jun; Yang, Can-jun

    2016-01-01

    Highlights: • We developed a thermoelectric cap (TC) to harvest hydrothermal energy. • The TC was deployed at a hydrothermal vent site near Kueishantao islet, Taiwan. • The TC monitored the temperature of the hydrothermal fluids during the field test. • The TC could make the thermal energy of hydrothermal fluids a viable power source. - Abstract: Long-term in situ monitoring is crucial to seafloor scientific investigations. One of the challenges of operating sensors in seabed is the lifespan of the sensors. Such sensors are commonly powered by batteries when other alternatives, such as tidal or solar energy, are unavailable. However, the batteries have a limited lifespan and must be recharged or replaced periodically, which is costly and impractical. A thermoelectric cap, which harvests the thermal energy of hydrothermal fluids through a conduction pipe and converts the heat to electrical energy by using thermoelectric generators, was developed to avoid these inconveniences. The thermoelectric cap was combined with a power and temperature measurement system that enables the thermoelectric cap to power a light-emitting diode lamp, an electronic load (60 Ω), and 16 thermocouples continuously. The thermoelectric cap was field tested at a shallow hydrothermal vent site near Kueishantao islet, which is located offshore of northeastern Taiwan. By using the thermal gradient between hydrothermal fluids and seawater, the thermoelectric cap obtained a sustained power of 0.2–0.5 W during the field test. The thermoelectric cap successfully powered the 16 thermocouples and recorded the temperature of the hydrothermal fluids during the entire field test. Our results show that the thermal energy of hydrothermal fluids can be an alternative renewable power source for oceanographic research.

  11. The eastern Tibetan Plateau geothermal belt, western China: Geology, geophysics, genesis, and hydrothermal system

    Science.gov (United States)

    Tang, Xianchun; Zhang, Jian; Pang, Zhonghe; Hu, Shengbiao; Tian, Jiao; Bao, Shujing

    2017-10-01

    The eastern Tibetan Plateau geothermal belt (ETGB), which is located in 98-102°E, 28-32°N, belongs to the eastern part of the Mediterranean-Himalayan geothermal belt. Recently, about 248 natural hot springs have been found in the ETGB. > 60% of these springs have temperatures of > 40 °C, and 11 springs have temperature above the local water boiling point. Using the helium isotopic data, gravity, magnetic and seismic data, we analyzed the thermal structure and the relationship between hydrothermal activity and geothermal dynamics of the ETGB. Results show that: (1) the 248 springs can be divided into three geothermal fields: Kangding-Luhuo geothermal field (KGF), Litang-Ganzi geothermal field (LGF) and Batang-Xiangcheng geothermal field (BGF). The BGF and LGF have hot crust and warm mantle, and are characterized by the higher heat flux (66.26 mW/m2), and higher ratios of crust-derived heat flux to total flux (47.46-60.62%). The KGF has cool crust and hot mantle, and is characterized by the higher heat flux and lower Qc/Qm; (2) there is a relatively 4-6 m higher gravimetric geoid anomaly dome which is corresponding with the ETGB. And in hydrothermal activity areas of the BGF and LGF, there is a northwest - southeast-trending tensile stress area and the upper-middle crust uplift area; (3) an abnormal layer exists in the middle-lower crust at a depth of 13-30 km beneath the ETGB, and this layer is 8-10 km thick and is characterized by lower velocity (Vp 2.5), high conductivity ( 10 Ω·m) and high temperature (850-1000 °C). Finally, based on the heat source and geological and geophysical background, we propose Kangding-type and Batang-type hydrothermal system models in the ETGB.

  12. The submarine hydrothermal system of Panarea (Southern Italy: biogeochemical processes at the thermal fluids - sea bottom interface

    Directory of Open Access Journals (Sweden)

    T. Maugeri

    2006-06-01

    Full Text Available Among the submarine hydrothermal systems located offshore the volcanic archipelago of the Aeolian Islands (Southern Italy, the most active is located off the coasts of Panarea island. Thermal waters, gases and sulfur deposits coexist at the sea bottom where hydrothermal fluids are released from both shallow and deep vents. The chemical and isotopic composition of the fluid phase shows the presence of a significant magmatic component and the physico-chemical conditions of the geothermal reservoir allow the release of reduced chemical species that are microbially mediated towards the production of organic carbon as a form of biochemical energy. Microorganisms inhabiting this environment possess nutritional requirements and overall metabolic pathways ideally suited to such ecosystem that represents a clear example of the close connection between geosphere and biosphere. Microscopic examination of the white mat attached to rock surfaces showed the presence of Thiothrix-like filamentous bacteria. Moderately thermophilic heterotrophic isolates were identified as strains of the genus Bacillus. Although the hydrothermal system of Panarea has to be considered a “shallow” system, it shows many characteristics that make it similar to the “deep” oceanic systems, giving a unique opportunity for improving our knowledge on such an unexplored world by working at this easily accessible site.

  13. Simulating Electrochemistry of Hydrothermal Vents on Enceladus and Other Ocean Worlds

    Science.gov (United States)

    Barge, L. M.; Krause, F. C.; Jones, J. P.; Billings, K.; Sobron, P.

    2017-12-01

    Gradients generated in hydrothermal systems provide a significant source of free energy for chemosynthetic life, and may play a role in present-day habitability on ocean worlds such as Enceladus that are thought to host hydrothermal activity. Hydrothermal vents are similar in some ways to typical fuel cell devices: redox/pH gradients between seawater and hydrothermal fluid are analogous to the oxidant and fuel reservoirs; conductive natural mineral deposits are analogous to electrodes; and, in hydrothermal chimneys, the porous chimney wall can function as a separator or ion-exchange membrane. Electrochemistry, founded on quantitative study of redox and other chemical disequilibria as well as the chemistry of interfaces, is uniquely suited to studying these systems. We have performed electrochemical studies to better understand the catalytic potential of seafloor minerals and vent chimneys, using samples from a black smoker vent chimney as an initial demonstration. Fuel cell experiments with electrodes made from black smoker chimney material accurately simulated the redox reactions that occur in a geological setting with this particular catalyst. Similar methods with other geo-catalysts (natural or synthetic) could be utilized to test which redox reactions or metabolisms could be driven in other hydrothermal systems, including putative vent systems on other worlds.

  14. Hydrothermal contamination of public supply wells in Napa and Sonoma Valleys, California

    International Nuclear Information System (INIS)

    Forrest, M.J.; Kulongoski, J.T.; Edwards, M.S.; Farrar, C.D.; Belitz, K.; Norris, R.D.

    2013-01-01

    Highlights: ► We analyzed the geochemistry of 44 public supply wells in Napa and Sonoma Valleys. ► We investigated mixing of groundwater with hydrothermal fluids. ► We used multivariate statistical analyses and modeling to characterize wells. ► We found that nine public supply wells contained 14–30% hydrothermal fluids. ► Some contaminated wells contain potentially harmful concentrations of As, F and B. - Abstract: Groundwater chemistry and isotope data from 44 public supply wells in the Napa and Sonoma Valleys, California were determined to investigate mixing of relatively shallow groundwater with deeper hydrothermal fluids. Multivariate analyses including Cluster Analyses, Multidimensional Scaling (MDS), Principal Components Analyses (PCA), Analysis of Similarities (ANOSIM), and Similarity Percentage Analyses (SIMPER) were used to elucidate constituent distribution patterns, determine which constituents are significantly associated with these hydrothermal systems, and investigate hydrothermal contamination of local groundwater used for drinking water. Multivariate statistical analyses were essential to this study because traditional methods, such as mixing tests involving single species (e.g. Cl or SiO 2 ) were incapable of quantifying component proportions due to mixing of multiple water types. Based on these analyses, water samples collected from the wells were broadly classified as fresh groundwater, saline waters, hydrothermal fluids, or mixed hydrothermal fluids/meteoric water wells. The Multivariate Mixing and Mass-balance (M3) model was applied in order to determine the proportion of hydrothermal fluids, saline water, and fresh groundwater in each sample. Major ions, isotopes, and physical parameters of the waters were used to characterize the hydrothermal fluids as Na–Cl type, with significant enrichment in the trace elements As, B, F and Li. Five of the wells from this study were classified as hydrothermal, 28 as fresh groundwater, two as

  15. Metamorphic Rock-Hosted Orogenic Gold Deposit Type as a Source of Langkowala Placer Gold, Bombana, Southeast Sulawesi

    OpenAIRE

    Idrus, Arifudin; Nur, I; Warmada, I. W; Fadlin, Fadlin

    2011-01-01

    DOI: 10.17014/ijog.v6i1.114In 2008, placer gold was discovered in Langkowala area (Bombana Regency), Southeast Sulawesi, Indonesia, and more than 60,000 traditional gold miners in the early 2009 have been operating by digging vertical pits and panning active stream sediments. The grade of placer gold ranges from 50 to 140 g/t. Local geological framework indicates that the placer gold is not related to volcanic rock-related hydrothermal gold deposit, e.g. epithermal, skarn or porphyry. This pa...

  16. Cultivation-Independent and Cultivation-Dependent Analysis of Microbes in the Shallow-Sea Hydrothermal System Off Kueishantao Island, Taiwan: Unmasking Heterotrophic Bacterial Diversity and Functional Capacity.

    Science.gov (United States)

    Tang, Kai; Zhang, Yao; Lin, Dan; Han, Yu; Chen, Chen-Tung A; Wang, Deli; Lin, Yu-Shih; Sun, Jia; Zheng, Qiang; Jiao, Nianzhi

    2018-01-01

    Shallow-sea hydrothermal systems experience continuous fluctuations of physicochemical conditions due to seawater influx which generates variable habitats, affecting the phylogenetic composition and metabolic potential of microbial communities. Until recently, studies of submarine hydrothermal communities have focused primarily on chemolithoautotrophic organisms, however, there have been limited studies on heterotrophic bacteria. Here, fluorescence in situ hybridization, high throughput 16S rRNA gene amplicon sequencing, and functional metagenomes were used to assess microbial communities from the shallow-sea hydrothermal system off Kueishantao Island, Taiwan. The results showed that the shallow-sea hydrothermal system harbored not only autotrophic bacteria but abundant heterotrophic bacteria. The potential for marker genes sulfur oxidation and carbon fixation were detected in the metagenome datasets, suggesting a role for sulfur and carbon cycling in the shallow-sea hydrothermal system. Furthermore, the presence of diverse genes that encode transporters, glycoside hydrolases, and peptidase indicates the genetic potential for heterotrophic utilization of organic substrates. A total of 408 cultivable heterotrophic bacteria were isolated, in which the taxonomic families typically associated with oligotrophy, copiotrophy, and phototrophy were frequently found. The cultivation-independent and -dependent analyses performed herein show that Alphaproteobacteria and Gammaproteobacteria represent the dominant heterotrophs in the investigated shallow-sea hydrothermal system. Genomic and physiological characterization of a novel strain P5 obtained in this study, belonging to the genus Rhodovulum within Alphaproteobacteria, provides an example of heterotrophic bacteria with major functional capacity presented in the metagenome datasets. Collectively, in addition to autotrophic bacteria, the shallow-sea hydrothermal system also harbors many heterotrophic bacteria with versatile

  17. Development of Vertical Cable Seismic System for Hydrothermal Deposit Survey (2) - Feasibility Study

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Mikada, H.; Takekawa, J.; Shimura, T.

    2010-12-01

    In 2009, Ministry of Education, Culture, Sports, Science and Technology(MEXT) started the survey system development for Hydrothermal deposit. We proposed the Vertical Cable Seismic (VCS), the reflection seismic survey with vertical cable above seabottom. VCS has the following advantages for hydrothermal deposit survey. . (1) VCS is an effective high-resolution 3D seismic survey within limited area. (2) It achieves high-resolution image because the sensors are closely located to the target. (3) It avoids the coupling problems between sensor and seabottom that cause serious damage of seismic data quality. (4) Various types of marine source are applicable with VCS such as sea-surface source (air gun, water gun etc.) , deep-towed or ocean bottom sources. (5) Autonomous recording system. Our first experiment of 2D/3D VCS surveys has been carried out in Lake Biwa, JAPAN. in November 2009. The 2D VCS data processing follows the walk-away VSP, including wave field separation and depth migration. The result gives clearer image than the conventional surface seismic. Prestack depth migration is applied to 3D data to obtain good quality 3D depth volume. Uncertainty of the source/receiver poisons in water causes the serious problem of the imaging. We used several transducer/transponder to estimate these positions. The VCS seismic records themselves can also provide sensor position using the first break of each trace and we calibrate the positions. We are currently developing the autonomous recording VCS system and planning the trial experiment in actual ocean to establish the way of deployment/recovery and the examine the position through the current flow in November, 2010. The second VCS survey will planned over the actual hydrothermal deposit with deep-towed source in February, 2011.

  18. The BGU/CERN solar hydrothermal reactor

    CERN Document Server

    Bertolucci, Sergio; Caspers, Fritz; Garb, Yaakov; Gross, Amit; Pauletta, Stefano

    2014-01-01

    We describe a novel solar hydrothermal reactor (SHR) under development by Ben Gurion University (BGU) and the European Organization for Nuclear Research CERN. We describe in broad terms the several novel aspects of the device and, by extension, of the niche it occupies: in particular, enabling direct off-grid conversion of a range of organic feedstocks to sterile useable (solid, liquid) fuels, nutrients, products using only solar energy and water. We then provide a brief description of the high temperature high efficiency panels that provide process heat to the hydrothermal reactor, and review the basics of hydrothermal processes and conversion taking place in this. We conclude with a description of a simulation of the pilot system that will begin operation later this year.

  19. Vapor Discharges On Nevado Del Ruiz During The Recent Activity: Clues On The Composition Of The Deep Hydrothermal System And Its Effects On Thermal Springs

    Science.gov (United States)

    Inguaggiato, S.; Federico, C.; Chacon, Z.; Londono, J. M.; Alzate, D. M.; Gil, E.

    2015-12-01

    The Nevado del ruiz volcano (NdR, 5321m asl), one of the most active in Colombia, threatens about 600,000 people. The existence of an ice cap and several streams channeling in some main rivers increase the risk of lahars and mudflows in case of unrest, as occurred during the November 1985 eruption, which caused 20,000 casualties. The involvement of the local hydrothermal system has also produced in the past phreatic and phreatomagmatic activity, as in 1985 and 1989. After more than 7 years of relative stability, since 2010, the still ongoing phase of unrest has produced two small eruption in 2012, and still maintains in high levels of seismicity and SO2 degassing. In October 2013, a sampling campaign has been performed on thermal springs and streamwater, located at 2600-5000 m asl, analyzed for water chemistry and stable isotopes. By applying a model of steam-heating, based on mass and enthalpy balances, we have estimated the mass rate of steam discharging in the different steam-heated springs. The composition of the hottest thermal spring (Botero Londoño) is probably representative of a marginal part of the hydrothermal system, having a temperature of 250°C and low salinity (Cl ~1500 mg/l), which suggest a chiefly meteoric origin, as also confirmed by the isotope composition retrieved for the hydrothermal water. The vapour discharged at the steam vent "Nereidas" (3600 m asl) is hypothesised to be separated from a high-temperature hyrothermal system. Based on its composition and on literature data on fluid inclusions, we have retrieved the P-T-X conditions of the deep hydrothermal system, as well as its pH and fO2. The vapour feeding Nereidas would separate from a byphasic hydrothermal system characterised by the follow parameters: t= 315°C, P=19 MPa, NaCl= 15 %, CO2 = 9%, and similar proportion between liquid and vapour. Considering also the equilibria involving S-bearing gases and HCl, we obtain pH=2, fO2 fixed by FeO-Fe2O3 buffer, and [Cl]=12000 mg/l. Changes

  20. Interaction between daily load demand curve and management of hydro-thermal generation system

    International Nuclear Information System (INIS)

    Granelli, G.; Montagna, M.; Pasini, G.; Innorta, M.; Marannino, P.

    1993-01-01

    The influence that the behaviour of the daily load demand curve has on the management of a hydro-thermal generation system is considered. The aim of this paper is to show the improvements that can be achieved by suitable load management techniques capable of flattening the load demand curve. The analysis is carried out by using a hydro-thermal scheduling program and a thermal unit dynamic dispatch procedure. The possibility of properly re-committing the available thermal units is also taken into account. The economical and technical convenience of shutting down less economical thermal units operating near the lower generations limits is verified. Finally, some considerations are made about the possible use of the thermal generation incremental costs as a tool for planning the end users' kWh prices, even in the short term. The results refer to a system with characteristics similar to those of the Italian one. In determining the daily load demand curves, the characteristics of load demand in Italy as well as in other European countries are taken into account

  1. Characteristics, extent and origin of hydrothermal alteration at Mount Rainier Volcano, Cascades Arc, USA: Implications for debris-flow hazards and mineral deposits

    Science.gov (United States)

    John, David A.; Sisson, Thomas W.; Breit, George N.; Rye, Robert O.; Vallance, James W.

    2008-08-01

    . The edifice was capped by a steam-heated alteration zone, most of which resulted from condensation of fumarolic vapor and oxidation of H 2S in the unsaturated zone above the water table. Weakly developed smectite-pyrite alteration extended into the west and east flanks of the edifice, spatially associated with dikes that are localized in those sectors; other edifice flanks lack dikes and associated alteration. The Osceola collapse removed most of the altered core and upper east flank of the volcano, but intensely altered rocks remain on the uppermost west flank. Major conclusions of this study are that: (1) Hydrothermal-mineral assemblages and distributions at Mount Rainier can be understood in the framework of hydrothermal processes and environments developed from studies of ore deposits formed in analogous settings. (2) Frequent eruptions supplied sufficient hot magmatic fluid to alter the upper interior of the volcano hydrothermally, despite the consistently deep (≥ 8 km) magma reservoir which may have precluded formation of economic mineral deposits within or at shallow depths beneath Mount Rainier. The absence of indicator equilibrium alteration-mineral assemblages in the debris flows that effectively expose the volcano to a depth of 1-1.5 km also suggests a low potential for significant high-sulfidation epithermal or porphyry-type mineral deposits at depth. (3) Despite the long and complex history of the volcano, intensely altered collapse-prone rocks were spatially restricted to near the volcano's conduit system and summit, and short distances onto the upper east and west flanks, due to the necessary supply of reactive components carried by ascending magmatic fluids. (4) Intensely altered rocks were removed from the summit, east flank, and edifice interior by the Osceola collapse, but remain on the upper west flank in the Sunset Amphitheater area and present a continuing collapse hazard. (5) Visually conspicuous rocks on the lower east and mid-to-lower west

  2. Geochemical characterisation of Taal volcano-hydrothermal system and temporal evolution during continued phases of unrest (1991-2017)

    Science.gov (United States)

    Maussen, Katharine; Villacorte, Edgardo; Rebadulla, Ryan R.; Maximo, Raymond Patrick; Debaille, Vinciane; Bornas, Ma. Antonia; Bernard, Alain

    2018-02-01

    Taal volcano (Luzon Island, Philippines) has last erupted in 1977 but has known some periods of increased activity, characterised by seismic swarms, ground deformation, increased carbon dioxide flux and in some cases temperature anomalies and the opening of fissures. We studied major, trace element and sulphur and strontium isotopic composition of Taal lake waters and hot springs over a period of 25 years to investigate the geochemical evolution of Taal volcano's hydrothermal system and its response to volcanic unrest. Long-term evolution of Main Crater Lake (MCL) composition shows a slow but consistent decrease of acidity, SO4, Mg, Fe and Al concentrations and a trend from light to heavy sulphate, consistent with a general decrease of volcanic gases dissolving in the hydrothermal system. Na, K and Cl concentrations remain constant indicating a non-volcanic origin for these elements. Sulphate and strontium isotopic data suggest this neutral chloride-rich component represents input of geothermal water into Taal hydrothermal system. A significant deviation from the long-term baseline can be seen in two samples from 1995. That year, pH dropped from 2.6 to 2.2, F, Si and Fe concentrations increased and Na, K and Cl concentrations decreased. Sulphate was depleted in 34S and temperature was 4 °C above baseline level at the time of sampling. We attribute these changes to the shallow intrusion of a degassing magma body during the unrest in 1991-1994. More recent unrest periods have not caused significant changes in the geochemistry of Taal hydrothermal waters and are therefore unlikely to have been triggered by shallow magma intrusion. A more likely cause for these events is thus pressurisation of the hydrothermal reservoir by increasing degassing from a stagnant magma reservoir. Our study indicates that new magmatic intrusions that might lead to the next eruption of Taal volcano are expected to change the geochemistry of MCL in the same way as in 1994-1995, with the most

  3. Origin of Abiotic Methane in Submarine Hydrothermal Systems

    Science.gov (United States)

    Seewald, J. S.; German, C. R.; Grozeva, N. G.; Klein, F.; McDermott, J. M.; Ono, S.; Reeves, E. P.; Wang, D. T.

    2018-05-01

    Results of recent investigations into the chemical and isotopic composition of actively venting submarine hydrothermal fluids and volatile species trapped in fluid inclusions will be discussed in the context of processes responsible for abiotic CH4 formation.

  4. Volcano-Hydrothermal Systems of the Kuril Island Arc (Russia): Geochemistry of the Thermal Waters and Gases.

    Science.gov (United States)

    Kalacheva, E.; Taran, Y.; Voloshina, E.; Kotenko, T.; Tarasov, K.

    2017-12-01

    More than 30 active volcanoes with historical eruptions are known on 20 main islands composing the Kuril Arc. Eight islands - Paramushir, Shiashkotan, Rasshua, Ushishir, Ketoy, Urup, Iturup and Kunashir - are characterized by hydrothermal activity, complementary to the fumarole activity in the craters and volcano slopes. At Paramushir, Shiashkotan, Iturup and Kunashir most of thermal manifestations are acidic to ultra-acidic hot springs associated with hydrothermal aquifers inside volcano edifices. The most powerful of them is the ultra-acid hydrothermal system of Ebeko volcano (Paramushir island) with more than 80 t/day of the chloride output and pH of springs of 1.5. At the summit part of the Ebeko volcano there are 12 thermal fields with the total thermal area exceeding 1 km2. The measured temperatures of fumaroles are from 98º C to 500ºC. Another type of hydrothermal activity are the wide spread coastal hot and neutral springs situated as a rule within the tide zone. Four groups of this type of thermal manifestation were found on the western shore of Shiashkotan island. It have Na-Ca-Cl-SO4 composition with temperatures 50-80°C and TDS 7-8 g/L. Coastal neutral springs were found also on Russhua, Uturup and Kunashir islands. Ushishir volcano-hydrothermal system in the middle of the arc is formed by the absorption of magmatic gases by seawater. In the crater of the Pallas cone (Ketoy island) there is a small Glazok lake with acid SO4 water and pH=2.4, TDS=2g/L, T=12oC. Ketoy volcano on the same island hosts a high temperature hydrothermal system with unusual boiling Ca-Na-SO4 neutral springs and steam vents. Mendeleev and Golovnin volcanoes on Kunashir Island are the southernmost of the Kuril arc. Mendeleev edifice is a centre of a large thermal area with many manifestations of different types including steam vents, acid springs and neutral coastal springs. In a 4.2x4 km wide caldera of Golovnin volcano there are two lakes with acid Cl-SO4 water and numerous

  5. Asymmetrical structure, hydrothermal system and edifice stability: The case of Ubinas volcano, Peru, revealed by geophysical surveys

    Science.gov (United States)

    Gonzales, Katherine; Finizola, Anthony; Lénat, Jean-François; Macedo, Orlando; Ramos, Domingo; Thouret, Jean-Claude; Fournier, Nicolas; Cruz, Vicentina; Pistre, Karine

    2014-04-01

    Ubinas volcano, the historically most active volcano in Peru straddles a low-relief high plateau and the flank of a steep valley. A multidisciplinary geophysical study has been performed to investigate the internal structure and the fluids flow within the edifice. We conducted 10 self-potential (SP) radial (from summit to base) profiles, 15 audio magnetotelluric (AMT) soundings on the west flank and a detailed survey of SP and soil temperature measurements on the summit caldera floor. The typical “V” shape of the SP radial profiles has been interpreted as the result of a hydrothermal zone superimposed on a hydrogeological zone in the upper parts of the edifice, and depicts a sub-circular SP positive anomaly, about 6 km in diameter. The latter is centred on the summit, and is characterised by a larger extension on the western flank located on the low-relief high plateau. The AMT resistivity model shows the presence of a conductive body beneath the summit at a depth comparable to that of the bottom of the inner south crater in the present-day caldera, where intense hydrothermal manifestations occur. The lack of SP and temperature anomalies on the present caldera floor suggests a self-sealed hydrothermal system, where the inner south crater acts as a pressure release valve. Although no resistivity data exists on the eastern flank, we presume, based on the asymmetry of the basement topography, and the amplitude of SP anomalies on the east flank, which are approximately five fold that on the west flank, that gravitational flow of hydrothermal fluids may occur towards the deep valley of Ubinas. This hypothesis, supported by the presence of hot springs and faults on the eastern foot of the edifice, reinforces the idea that a large part of the southeast flank of the Ubinas volcano may be altered by hydrothermal activity and will tend to be less stable. One of the major findings that stems from this study is that the slope of the basement on which a volcano has grown

  6. A review on application of neural networks and fuzzy logic to solve hydrothermal scheduling problem

    International Nuclear Information System (INIS)

    Haroon, S.; Malik, T.N.; Zafar, S.

    2014-01-01

    Electrical power system is highly complicated having hydro and thermal mix with large number of machines. To reduce power production cost, hydro and thermal resources are mixed. Hydrothermal scheduling is the optimal coordination of hydro and thermal plants to meet the system load demand at minimum possible operational cost while satisfying the system constraints. Hydrothermal scheduling is dynamic, large scale, non-linear and non-convex optimization problem. The classical techniques have failed in solving such problem. Artificial Intelligence Tools based techniques are used now a day to solve this complex optimization problem because of their no requirements on the nature of the problem. The aim of this research paper is to provide a comprehensive survey of literature related to both Artificial Neural Network (ANN) and Fuzzy Logic (FL) as effective optimization algorithms for the hydrothermal scheduling problem. The outcomes along with the merits and demerits of individual techniques are also discussed. (author)

  7. Reaction chemistry of nitrogen species in hydrothermal systems: Simple reactions, waste simulants, and actual wastes

    International Nuclear Information System (INIS)

    Dell'Orco, P.; Luan, L.; Proesmans, P.; Wilmanns, E.

    1995-01-01

    Results are presented from hydrothermal reaction systems containing organic components, nitrogen components, and an oxidant. Reaction chemistry observed in simple systems and in simple waste simulants is used to develop a model which presents global nitrogen chemistry in these reactive systems. The global reaction path suggested is then compared with results obtained for the treatment of an actual waste stream containing only C-N-0-H species

  8. Characterizing the dynamics of hydrothermal systems with muon tomography: the case of La Soufrière de Guadeloupe

    Science.gov (United States)

    Rosas-Carbajal, M.; Marteau, J.; Tramontini, M.; de Bremond d Ars, J.; Le Gonidec, Y.; Carlus, B.; Ianigro, J. C.; Deroussi, S.; Komorowski, J. C.; Gibert, D.

    2017-12-01

    Muon imaging has recently emerged as a powerful method to complement standard geophysical tools in the study of the Earth's subsurface. Muon measurements yield a radiography of the average density along the muon path, allowing to image large volumes of a geological body from a single observation point. Long-term measurements allow to infer density changes by tracking the associated variations in the muon flux. In the context of volcanic hydrothermal systems, this approach helps to characterize zones of steam formation, condensation, water infiltration and storage. We present results of imaging the La Soufrière de Guadeloupe dome and shallow active hydrothermal system with a network of muon telescopes viewing the dome from different positions around its base. First, we jointly invert the muon radiographies of the different telescopes with gravity data to obtain a three-dimensional density model of the lava dome. The model reveals an extended low density region where the hydrothermal system is most active. We then analyze the dynamics of the hydrothermal system from long-term measurements (more than 2 years of almost non-interrupted acquisition) with 5 simultaneous muon telescopes. We identify a periodicity of 1-2 months in the density increase/decrease in the most active zones below fumaroles and acid boiling ponds. Our simultaneous-muon telescope strategy provides constraints on the three-dimensional location of the density changes and an improved quantification of the associated mass flux changes. We compare the temporal trends acquired by the different muon telescopes to time-series of rainfall on the summit recharge area as well as to ground temperature profiles in the vicinity of thermal anomalies and high-discharge summit fumaroles.

  9. Methane- and Hydrogen-Influenced Microbial Communities in Hydrothermal Plumes above the Atlantis Massif, Mid Atlantic Ridge

    Science.gov (United States)

    Stewart, C. L.; Schrenk, M.

    2017-12-01

    Ultramafic-hosted hydrothermal systems associated with slow-spreading mid ocean ridges emit copious amounts of hydrogen and methane into the deep-sea, generated through a process known as serpentinization. Hydrothermal plumes carrying the reduced products of water-rock interaction dissipate and mix with deep seawater, and potentially harbor microbial communities adapted to these conditions. Methane and hydrogen enriched hydrothermal plumes were sampled from 3 sites near the Atlantis Massif (30°N, Mid Atlantic Ridge) during IODP Expedition 357 and used to initiate cultivation experiments targeting methanotrophic and hydrogenotrophic microorganisms. One set of experiments incubated the cultures at in situ hydrostatic pressures and gas concentrations resulting in the enrichment of gammaproteobacterial assemblages, including Marinobacter spp. That may be involved in hydrocarbon degradation. A second set of experiments pursued the anaerobic enrichment of microbial communities on solid media, resulting in the enrichment of alphaproteobacteria related to Ruegeria. The most prodigious growth in both case occurred in methane-enriched media, which may play a role as both an energy and carbon source. Ongoing work is evaluating the physiological characteristics of these isolates, including their metabolic outputs under different physical-chemical conditions. In addition to providing novel isolates from hydrothermal habitats near the Lost City Hydrothermal Field, these experiments will provide insight into the ecology of microbial communities from serpentinization influenced hydrothermal systems that may aid in future exploration of these sites.

  10. Diversity and phylogenetic analyses of bacteria from a shallow-water hydrothermal vent in Milos island (Greece).

    Science.gov (United States)

    Giovannelli, Donato; d'Errico, Giuseppe; Manini, Elena; Yakimov, Michail; Vetriani, Costantino

    2013-01-01

    Studies of shallow-water hydrothermal vents have been lagging behind their deep-sea counterparts. Hence, the importance of these systems and their contribution to the local and regional diversity and biogeochemistry is unclear. This study analyzes the bacterial community along a transect at the shallow-water hydrothermal vent system of Milos island, Greece. The abundance and biomass of the prokaryotic community is comparable to areas not affected by hydrothermal activity and was, on average, 1.34 × 10(8) cells g(-1). The abundance, biomass and diversity of the prokaryotic community increased with the distance from the center of the vent and appeared to be controlled by the temperature gradient rather than the trophic conditions. The retrieved 16S rRNA gene fragments matched sequences from a variety of geothermal environments, although the average similarity was low (94%), revealing previously undiscovered taxa. Epsilonproteobacteria constituted the majority of the population along the transect, with an average contribution to the total diversity of 60%. The larger cluster of 16S rRNA gene sequences was related to chemolithoautotrophic Sulfurovum spp., an Epsilonproteobacterium so far detected only at deep-sea hydrothermal vents. The presence of previously unknown lineages of Epsilonproteobacteria could be related to the abundance of organic matter in these systems, which may support alternative metabolic strategies to chemolithoautotrophy. The relative contribution of Gammaproteobacteria to the Milos microbial community increased along the transect as the distance from the center of the vent increased. Further attempts to isolate key species from these ecosystems will be critical to shed light on their evolution and ecology.

  11. Laboratory simulated hydrothermal alteration of sedimentary organic matter from Guaymas Basin, Gulf of California. Ph.D. Thesis

    Science.gov (United States)

    Leif, Roald N.

    1993-01-01

    High temperature alteration of sedimentary organic matter associated with marine hydrothermal systems involves complex physical and chemical processes that are not easily measured in most natural systems. Many of these processes can be evaluated indirectly by examining the geochemistry of the hydrothermal system in the laboratory. In this investigation, an experimental organic geochemical approach to studying pyrolysis of sedimentary organic matter is applied to the hydrothermal system in the Guaymas Basin, Gulf of California. A general survey of hydrothermal oils and extractable organic matter (bitumen) in hydrothermally altered sediments identified several homologous series of alkanones associated with a high temperature hydrothermal origin. The alkanones range in carbon number from C11 to C30 with no carbon number preference. Alkan-2-ones are in highest concentrations, with lower amounts of 3-, 4-, 5- (and higher) homologs. The alkanones appear to be pyrolysis products synthesized under extreme hydrothermal conditions. Hydrous pyrolysis and confinement pyrolysis experiments were performed to simulate thermally enhanced diagenetic and catagenetic changes in the immature sedimentary organic matter. The extent of alteration was measured by monitoring the n-alkanes, acyclic isoprenoids, steroid and triterpenoid biomarkers, polycyclic aromatic hydrocarbons and alkanones. The results were compared to bitumen extracts from sediments which have been naturally altered by a sill intrusion and accompanied hydrothermal fluid flow. These pyrolysis experiments duplicated many of the organic matter transformations observed in the natural system. Full hopane and sterane maturation occurred after 48 hr in experiments at 330 deg C with low water/rock mass ratios (0.29). A variety of radical and ionic reactions are responsible for the organic compound conversions which occur under extreme hydrothermal conditions. Short duration pyrolysis experiments revealed that a portion of the

  12. Remote sensing and Aeromagnetic investigations in porphyry copper deposits for identification of areas with high concentration of gold: a case study from the central part of Dehaj-Sarduiyeh belt, Kerman, Iran

    Directory of Open Access Journals (Sweden)

    Mahdieh Hosseinjani Zadeh

    2018-04-01

    Full Text Available Introduction Remote sensing has shown tremendous potential in the identification of alteration zones. The importance of this science for mineral exploration and recognition of alteration zones with lower cost, time, and manpower is confirmed in many studies (Amer et al., 2012; Hosseinjani Zadeh et al., 2014; Tayebi and Tangestani, 2015; Shahriari et al., 2015. Gold is one of the byproducts in most of the porphyry copper deposits (PCDs. Although the gold assay is partly low and reaches between 0.012- 0.38 g/t in these deposits, the high tonnage of copper deposits provides a considerable source of gold which has an important economic value (Kerrich et al., 2000. Extension, intensity of alteration, assays and the type of mineralization vary in different deposits. For instance, many Au-poor porphyry copper deposits in southwest USA, Central Asia, and west of South America are associated with widespread phyllic alteration (Kesler et al., 2002. In addition, there is a positive correlation between gold and magnetite in PCDs (Kesler et al., 2002; Shafiei and Shahabpour, 2008; Sillitoe, 1979. Therefore, aeromagnetic investigation could be useful in identification of these deposits. The aim of this research is discrimination of alteration zones and investigation areas with high concentration of gold through processing of remote sensing and aeromagnetic data. Materials and methods A number of prone areas with different concentrations of gold in Dehaj-Sarduiyeh copper belt including Sar Kuh, Abdar, Meiduk, Sarcheshmeh, Darrehzar, Sara, Iju and Seridune were investigated using the processing of Advanced space borne thermal emission and reflection radiometer (ASTER, and aeromagnetic data. Pre-processing acts such as crosstalk correction and Internal Average Relative Reflection (IARR calibration were implemented on the ASTER data in order to remove noise and acquire surface reflectance. The alteration minerals were discriminated by implementation of

  13. Hydrothermal processing of Hanford tank wastes: Process modeling and control

    International Nuclear Information System (INIS)

    Currier, R.P.

    1994-01-01

    In the Los Alamos National Laboratory (LANL) hydrothermal process, waste streams are first pressurized and heated as they pass through a continuous flow tubular reactor vessel. The waste is maintained at reaction temperature of 300--550 C where organic destruction and sludge reformation occur. This report documents LANL activities in process modeling and control undertaken in FY94 to support hydrothermal process development. Key issues discussed include non-ideal flow patterns (e.g. axial dispersion) and their effect on reactor performance, the use and interpretation of inert tracer experiments, and the use of computational fluid mechanics to evaluate novel hydrothermal reactor designs. In addition, the effects of axial dispersion (and simplifications to rate expressions) on the estimated kinetic parameters are explored by non-linear regression to experimental data. Safety-related calculations are reported which estimate the explosion limits of effluent gases and the fate of hydrogen as it passes through the reactor. Development and numerical solution of a generalized one-dimensional mathematical model is also summarized. The difficulties encountered in using commercially available software to correlate the behavior of high temperature, high pressure aqueous electrolyte mixtures are summarized. Finally, details of the control system and experiments conducted to empirically determine the system response are reported

  14. Chaotic thermohaline convection in low-porosity hydrothermal systems

    NARCIS (Netherlands)

    Schoofs, Stan; Spera, Frank J.; Hansen, Ulrich

    1999-01-01

    Fluids circulate through the Earth's crust perhaps down to depths as great as 5^15 km, based on oxygen isotope systematics of exhumed metamorphic terrains, geothermal fields, mesozonal batholithic rocks and analysis of obducted ophiolites. Hydrothermal flows are driven by both thermal and chemical

  15. Mass transfer processes in a post eruption hydrothermal system: Parameterisation of microgravity changes at Te Maari craters, New Zealand

    Science.gov (United States)

    Miller, Craig A.; Currenti, Gilda; Hamling, Ian; Williams-Jones, Glyn

    2018-05-01

    Fluid transfer and ground deformation at hydrothermal systems occur both as a precursor to, or as a result of, an eruption. Typically studies focus on pre-eruption changes to understand the likelihood of unrest leading to eruption; however, monitoring post-eruption changes is important for tracking the return of the system towards background activity. Here we describe processes occurring in a hydrothermal system following the 2012 eruption of Upper Te Maari crater on Mt Tongariro, New Zealand, from observations of microgravity change and deformation. Our aim is to assess the post-eruption recovery of the system, to provide a baseline for long-term monitoring. Residual microgravity anomalies of up to 92 ± 11 μGal per year are accompanied by up to 0.037 ± 0.01 m subsidence. We model microgravity changes using analytic solutions to determine the most likely geometry and source location. A multiobjective inversion tests whether the gravity change models are consistent with the observed deformation. We conclude that the source of subsidence is separate from the location of mass addition. From this unusual combination of observations, we develop a conceptual model of fluid transfer within a condensate layer, occurring in response to eruption-driven pressure changes. We find that depressurisation drives the evacuation of pore fluid, either exiting the system completely as vapour through newly created vents and fumaroles, or migrating to shallower levels where it accumulates in empty pore space, resulting in positive gravity changes. Evacuated pores then collapse, causing subsidence. In addition we find that significant mass addition occurs from influx of meteoric fluids through the fractured hydrothermal seal. Long-term combined microgravity and deformation monitoring will allow us to track the resealing and re-pressurisation of the hydrothermal system and assess what hazard it presents to thousands of hikers who annually traverse the volcano, within 2 km of the

  16. Exploring the structural controls on helium, nitrogen and carbon isotope signatures in hydrothermal fluids along an intra-arc fault system

    Science.gov (United States)

    Tardani, Daniele; Reich, Martin; Roulleau, Emilie; Takahata, Naoto; Sano, Yuji; Pérez-Flores, Pamela; Sánchez-Alfaro, Pablo; Cembrano, José; Arancibia, Gloria

    2016-07-01

    passage of the fluids through the upper crust. The degree of 4He contamination is strictly related with the faults controlling the occurrence of volcanic and geothermal systems, with the most contaminated values associated with NW-striking structures. This is confirmed by δ15N values that show increased mixing with crustal sediments and meteoric waters along NW faults (AFLS), while δ13C-CO2 data are indicative of cooling and mixing driving calcite precipitation due to increased residence times along such structures. Our results show that the structural setting of the region exerts a fist-order control on hydrothermal fluid composition by conditioning residence times of magmas and thus promoting cooling/mixing of magmatic vapor, and therefore, must be taken into consideration for further geochemical interpretations.

  17. ESR dating of submarine hydrothermal activities using barite in sulfide deposition

    Science.gov (United States)

    Toyoda, S.; Fujiwara, T.; Ishibashi, J.; Isono, Y.; Uchida, A.; Takamasa, A.; Nakai, S.

    2012-12-01

    The temporal change of submarine hydrothermal activities has been an important issue in the aspect of the evolution of hydrothermal systems which is related with ore formation (Urabe, 1995) and biological systems sustained by the chemical species arising from hydrothermal activities (Macdonald et al., 1980). Determining the ages of the hydrothermal deposit will provide essential information on such studies. Dating methods using disequilibrium between radioisotopes such as U-Th method (e.g. You and Bickle, 1998), 226}Ra-{210Pb and 228}Ra-{228Th method (e.g. Noguchi et al., 2011) have been applied to date submarine hydrothermal deposits. ESR (electron spin resonance) dating method is commonly applied to fossil teeth, shells, and quartz of Quaternay period where the natural accumulated dose is obtained from the intensities of the ESR signals which are created by natural radiation. The natural dose is divided by the dose rate to the mineral/sample to deduce the age. Okumura et al., (2010) made the first practical application of ESR (electron spin resonance) dating technique to a sample of submarine hydrothermal barite (BaSO4) to obtain preliminary ages, where Kasuya et al. (1991) first pointed out that barite can be used for ESR dating. Knowing that ESR dating of barite is promising, in this paper, we will present how we have investigated each factor that contributes ESR dating of barite in submarine hydrothermal sulfide deposition. (1) The best ESR condition for measuring the SO3- signal in barite is with the microwave power of 1mW and modulation amplitude of 0.1mT. (2) As results of heating experiments, the signal was found to be stable for the dating age range of several thousands. (3) 226Ra replacing Ba in barite is the source of the radiation. The amount of radioactive elements in sulfide mineral surrounding barite is negligible. (4) The external radiation from the sea water is negligible even in the submarine hydrothermal area where the radiation level is much

  18. Hydrothermal processing of radioactive combustible waste

    International Nuclear Information System (INIS)

    Worl, L.A.; Buelow, S.J.; Harradine, D.; Le, L.; Padilla, D.D.; Roberts, J.H.

    1998-01-01

    Hydrothermal processing has been demonstrated for the treatment of radioactive combustible materials for the US Department of Energy. A hydrothermal processing system was designed, built and tested for operation in a plutonium glovebox. Presented here are results from the study of the hydrothermal oxidation of plutonium and americium contaminated organic wastes. Experiments show the destruction of the organic component to CO 2 and H 2 O, with 30 wt.% H 2 O 2 as an oxidant, at 540 C and 46.2 MPa. The majority of the actinide component forms insoluble products that are easily separated by filtration. A titanium liner in the reactor and heat exchanger provide corrosion resistance for the oxidation of chlorinated organics. The treatment of solid material is accomplished by particle size reduction and the addition of a viscosity enhancing agent to generate a homogeneous pumpable mixture

  19. Water column imaging on hydrothermal vent in Central Indian Ridge

    Science.gov (United States)

    Koh, J.; Park, Y.

    2017-12-01

    Water column imaging with Multibeam echosounder systems (MBES) is recently becoming of increasing interest for oceanographic studies. Especially gas bubbles and hot water exposed from hydrothermal vents make acoustic impedance anomalies in cold seawater, water column imaging is very useful for the researchers who want to detect some kinds of hydrothermal activity. We conducted a hydrothermal exploration program, called "INVENT17", using the MBES system, KONGBERG EM122 (12kHz, 1°×1°), mounted on R/V ISABU and we deployed other equipments including video guided hydraulic grab, tow-yo CTD and general CTD with MAPR (Miniature Autonomous Plume Recorder) in 2017. First, to evaluate its capabilities of detection of hydrothermal vent, the surveys using the MBES were conducted at the Solitaire Field, previously identified hydrothermal area of the Central Indian Ridge. The bathymetric data obtained from MBES provided information about detailed morphology of seafloor, but we were not able to achieve the information from the water column imaging data. But the clue of existence of active hydrothermal vent was detected through the values of ΔNTU, dEh/dt, and OPR gained from MAPR, the data means that the hydrothermal activity affects 100m from the seafloor. It could be the reason that we can't find the hydrothermal activity because the range resolution of water column imaging is pretty rough so that the size of 100m-scaled activity has low possibility to distinguish from seafloor. The other reason is there are no sufficient objects to cause strong scattering like as CO2 bubbles or droplets unlike in the mid-Okinawa Trough. And this suggests that can be a important standard to identify properties of hydrothermal vent sites depending on the presence of scattering objects in water mass. To justify this, we should perform more chemical analysis of hot water emanating from hydrothermal vent and collected several bottles of water sample to do that.

  20. Products of an Artificially Induced Hydrothermal System at Yucca Mountain

    International Nuclear Information System (INIS)

    Levy, S.

    2000-01-01

    Studies of mineral deposition in the recent geologic past at Yucca Mountain, Nevada, address competing hypotheses of hydrothermal alteration and deposition from percolating groundwater. The secondary minerals being studied are calcite-opal deposits in fractures and lithophysal cavities of ash-flow tuffs exposed in the Exploratory Studies Facility (ESF), a 7.7-km tunnel excavated by the Yucca Mountain Site Characterization Project within Yucca Mountain. An underground field test in the ESF provided information about the minerals deposited by a short-lived artificial hydrothermal system and an opportunity for comparison of test products with the natural secondary minerals. The heating phase lasted nine months, followed by a nine-month cooling period. Natural pore fluids were the only source of water during the thermal test. Condensation and reflux of water driven away from the heater produced fluid flow in certain fractures and intersecting boreholes. The mineralogic products of the thermal test are calcite-gypsum aggregates of less than 4-micrometer crystals and amorphous silica as glassy scale less than 0.2 mm thick and as mounds of tubules with diameters less than 0.7 micrometers. The minute crystal sizes of calcite and gypsum from the field test are very different from the predominantly coarser calcite crystals (up to cm scale) in natural secondary-mineral deposits at the site. The complex micrometer-scale textures of the amorphous silica differ from the simple forms of opal spherules and coatings in the natural deposits, even though some natural spherules are as small as 1 micrometer. These differences suggest that the natural minerals, especially if they were of hydrothermal origin, may have developed coarser or simpler forms during subsequent episodes of dissolution and redeposition. The presence of gypsum among the test products and its absence from the natural secondary-mineral assemblage may indicate a higher degree of evaporation during the test than

  1. Radon surveys and monitoring at active volcanoes: an open window on deep hydrothermal systems and their dynamics

    Science.gov (United States)

    Cigolini, Corrado; Laiolo, Marco; Coppola, Diego

    2017-04-01

    The behavior of fluids in hydrothermal systems is critical in volcano monitoring and geothermal prospecting. Analyzing the time series of radon emissions on active volcanoes is strategic for detecting and interpreting precursory signals of changes in volcanic activity, eventually leading to eruptions. Radon is a radioactive gas generated from the decay of U bearing rocks, soils and magmas. Although radon has been regarded as a potential precursor of earthquakes, radon anomalies appear to be better suited to forecast volcanic eruptions since we know where paroxysms may occur and we can follow the evolution of volcanic activity. Radon mapping at active volcanoes is also a reliable tool to assess diffuse and concentrated degassing as well as efficiently detecting earthquake-volcano interactions. Systematic radon monitoring has been shown to be a key factor for evaluating the rise of volcanic and hydrothermal fluids. In fact, the decay properties of radon, the duration of radon anomalies together with sampling rates may be cross-checked with the chemistry of hydrothermal fluids (and their transport properties) to constrain fluids ascent rates and to infer the permeability and porosity of rocks in sectors surrounding the active conduits. We hereby further discuss the data of radon surveys and monitoring at Somma-Vesuvius, Stromboli and La Soufrière (Guadeloupe, Lesser Antilles). The integrated analysis of seismic and geochemical data, including radon emissions, may be successfully used in testing temperature distributions and variations of porosity and permeability in volcanic hydrothermal systems and can be used as a proxy to analyze geothermal reservoirs.

  2. Targeting Hydrothermal Alterations Utilizing LANDSAT-8 Andaster Data in Shahr-E Iran

    Science.gov (United States)

    Safari, M.; Pour, A. B.; Maghsoudi, A.; Hashim, M.

    2017-10-01

    Shahr-e-Babak tract of the Kerman metalogenic belt is one of the most potential segments of Urumieh-Dokhtar (Sahand-Bazman) magmatic arc. This area encompasses several porphyry copper deposits in exploration, development and exploitation hierarchy. The aim of this study is to map hydrothermal alterations caused by early Cenozoic magmatic intrusions in Shahr-e-Babak area. To this purpose, mineral mapping methods including band combinations, ratios and multiplications as well as PCA and MNF data space transforms in SWIR and VNIR for both ASTER and OLI sensors. Alteration zones according to spectral signatures of each type of alteration mineral assemblages such as argillic, phyllic and propylitic are successfully mapped. For enhancing the target areas false color composites and HSI-RGB color space transform are performed on developed band combinations. Previous studies have proven the robust application of ASTER in geology and mineral exploration; nonetheless, the results of this investigation prove applicability of OLI sensor from landsat-8 for alteration mapping. According to the results, evidently OLI sensor data can accurately map alteration zones. Additionally, the 12-bit quantization of OLI data is its privilege over 8-bit data of ASTER in VNIR and SWIR, thus OLI high quality results, which makes it easy to distinguish targets with enhanced color contrast between the altered and unaltered rocks.

  3. Isotope hydrology of some hydrothermal systems of the Kurilo-Kamchatskay volcanic region

    International Nuclear Information System (INIS)

    Esikov, A.D.

    1990-01-01

    The hydrogen and oxygen isotope composition of underground and surface (thermal and cold) waters, as well as local precipitation waters from the geothermal fields of the Uzon caldera, the Mutnovsky volcano (Kamchatka), and the Baransky volcano (island of Iturup) have been analysed. As has been demonstrated, hydrothermal solutions were formed due to hypogene circulation of water originating from local precipitation. Observed variations in the isotope composition of the water are easily explained by underground boiling of hydrothermal solutions and their exchange with bedrock, and also by the processes of non-steady evaporation of water under differing surface conditions and the widely-spread mutual intermixing of waters of different origin. Data on the isotope composition of 50 samples from the region studied are to be found in the paper. The method of constructing diagrams in coordinates of δD vs δ 18 O is discussed in detail, reflecting a single-step separation of the thermal fluid. Data obtained during the analysis of the thermal fields estimates the processes forming the isotope composition of the world's geothermal sub-aerial systems as being unique. (author)

  4. Volcano-hydrothermal energy research at white Island, New Zealand

    International Nuclear Information System (INIS)

    Allis, R.G.

    1994-01-01

    This paper presents the White Island (New Zealand) volcano-hydrothermal research project by the N.Z. DSIR and the Geological Survey of Japan, which is investigating the coupling between magmatic and geothermal systems. The first phase of this investigation is a geophysical survey of the crater floor of the andesite volcano, White Island during 1991/1992, to be followed by drilling from the crater floor into the hydrothermal system. (TEC). 4 figs., 8 refs

  5. Spontaneous and Widespread Electricity Generation in Natural Deep-Sea Hydrothermal Fields.

    Science.gov (United States)

    Yamamoto, Masahiro; Nakamura, Ryuhei; Kasaya, Takafumi; Kumagai, Hidenori; Suzuki, Katsuhiko; Takai, Ken

    2017-05-15

    Deep-sea hydrothermal vents discharge abundant reductive energy into oxidative seawater. Herein, we demonstrated that in situ measurements of redox potentials on the surfaces of active hydrothermal mineral deposits were more negative than the surrounding seawater potential, driving electrical current generation. We also demonstrated that negative potentials in the surface of minerals were widespread in the hydrothermal fields, regardless of the proximity to hydrothermal fluid discharges. Lab experiments verified that the negative potential of the mineral surface was induced by a distant electron transfer from the hydrothermal fluid through the metallic and catalytic properties of minerals. These results indicate that electric current is spontaneously and widely generated in natural mineral deposits in deep-sea hydrothermal fields. Our discovery provides important insights into the microbial communities that are supported by extracellular electron transfer and the prebiotic chemical and metabolic evolution of the ocean hydrothermal systems. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. System and process for efficient separation of biocrudes and water in a hydrothermal liquefaction system

    Science.gov (United States)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Oyler, James R.; Rotness, Jr, Leslie J.; Schmidt, Andrew J.; Zacher, Alan H.

    2016-08-02

    A system and process are described for clean separation of biocrudes and water by-products from hydrothermal liquefaction (HTL) product mixtures of organic and biomass-containing feedstocks at elevated temperatures and pressures. Inorganic compound solids are removed prior to separation of biocrude and water by-product fractions to minimize formation of emulsions that impede separation. Separation may be performed at higher temperatures that reduce heat loss and need to cool product mixtures to ambient. The present invention thus achieves separation efficiencies not achieved in conventional HTL processing.

  7. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production: Bench-scale research and pilot-scale verification.

    Science.gov (United States)

    Li, Chunxing; Wang, Xingdong; Zhang, Guangyi; Yu, Guangwei; Lin, Jingjiang; Wang, Yin

    2017-06-15

    To test the feasibility and practicability of the process combing hydrothermal pretreatment for dewatering with biogas production for full utilization of sewage sludge, hydrothermal/alkaline hydrothermal pretreatments and in turn anaerobic digestion of the filtrates obtained after dewatering the pretreated sludge were performed at bench- and pilot-scales. The hydrothermal temperature fell within the range of 140 °C-220 °C and the pretreatment time varied from 30 min to 120 min. For the alkaline hydrothermal pretreatment the pH value of the sludge was adjusted to 9.0-11.0 by adding Ca(OH) 2 . The results showed that the dewaterability of the sewage sludge was improved with increasing pretreatment temperature but the impact of the pretreatment time was not significant. The addition of Ca(OH) 2 gave better performance on the subsequent mechanical dewatering of the pretreated sludge compared to pure hydrothermal pretreatment, and the higher the pH value was, the better the dewaterability of the pretreated sludge was. The conditions of 180 °C/30 min and 160 °C/60 min/pH = 10.0 (for hydrothermal and alkaline hydrothermal pretreatments, respectively) resulted in relatively good results in the theoretical energy balance, which were verified in the pilot-scale tests. Based on the data from the pilot tests, the alkaline hydrothermal process realized self-sufficiency in energy at the cost of a proper amount of CaO. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Borehole plugging by hydrothermal transport. A feasibility report

    International Nuclear Information System (INIS)

    Roy, D.M.; White, W.B.

    1975-01-01

    The possibility of forming borehole plugs by hydrothermal transport was examined with respect to five systems, utilizing available literature data. In general, it would appear possible to create plugs with hydrothermal cements, with hydrothermally transported quartz, and with carbonates precipitated in-situ using carbon dioxide or carbon dioxide and water as reacting fluids. Hydrothermal cements appear to be most feasible from an engineering and economic point of view using a slurry with a lime-alumina-silica composition carried into the hole in a single pipe at temperatures in the range of 200 0 C and requiring only enough pressure to drive the mixture into the hole. Quartz or chalcedony plugs would be the most impervious, have the lowest chemical reactivity with groundwater, the lowest thermal expansion, and be most compatible with the wall rock. Deposition is likely to be slow, and there are severe engineering problems associated with a single pipe system carrying silica-rich solutions at temperatures in excess of 500 0 C at pressure of 2000 bars (30,000 psi). Calcite plugs could be formed as compatible plug materials in contact with a limestone or dolomite wall rock. It is not known whether non-porous plugs can be readily formed and there is also a problem of chemical reaction with percolating groundwater. The clay-water and sulfur-water systems do not appear to be viable plug systems. In-situ reconstitution of the wall rock does not appear to be an economically feasible possibility

  9. Recent massive sulfide deposits of the Semenov ore district, Mid-Atlantic Ridge, 13°31' N: Associated rocks of the oceanic core complex and their hydrothermal alteration

    Science.gov (United States)

    Pertsev, A. N.; Bortnikov, N. S.; Vlasov, E. A.; Beltenev, V. E.; Dobretsova, I. G.; Ageeva, O. A.

    2012-09-01

    The oceanic core complexes and large-offset detachment faults characteristic of the slow-spreading Mid-Atlantic Ridge are crucial for the structural control of large hydrothermal systems, including those forming sub-seafloor polymetallic sulfide mineralization. The structural-geological, petrographic, and mineralogical data are considered for the oceanic core complex enclosing the Semenov-1, -2, -3, -4, and -5 inactive hydrothermal sulfide fields recently discovered on the Mid-Oceanic Ridge at 13°31' N. The oceanic core complex is composed of serpentinized and talc-replaced peridotites and sporadic gabbroic rocks, however, all hydrothermal fields reveal compositional indications of basaltic substrate. The volcanic structures superposed on the oceanic core complex are marked by outcrops of pillow lavas with fresh quenched glass. Dolerites regarded as volcanic conduits seem to represent separate dike swarms. The superposed volcanic structures develop largely along the near-latitudinal high-angle tectonic zone controlling the Semenov-1, -2, -5, and -3 hydrothermal sulfide fields. The manifestations of hydrothermal metasomatic alteration are diverse. The widespread talcose rocks with pyrrhotite-pyrite mineralization after serpentinite, as well as finding of talc-chlorite metabasalt are interpreted as products of hydrothermal activity in the permeable zone of detachment fault. Chloritization and brecciation of basalts with superposed quartz or opal, barite, and pyrite or chalcopyrite mineralization directly related to the sub-seafloor sulfide deposition. The native copper mineralization in almost unaltered basalts at the Semenov-4 field is suggested to precipitate from ore-forming fluids before they reach the level of sub-seafloor sulfide deposition. Amphibolites with plagiogranite veinlets are interpreted as tectonic fragments of the highest-temperature portions of hydrothermal systems, where partial melting of basic rocks in the presence of aqueous fluid with

  10. Metal mobilisation in hydrothermal sediments at the TAG Hydrothermal Field (MAR, 26°N)

    Science.gov (United States)

    Dutrieux, A. M.; Lichtschlag, A.; Martins, S.; Barriga, F. J.; Petersen, S.; Murton, B. J.

    2017-12-01

    Metalliferous sediments in the vicinity of hydrothermal systems are enriched in base metals, but few studies have addressed their potential as mineral resources. These metalliferous sediments have been accumulated by different processes and reflect modifications of the primary mineral deposits by: oxidation of the chimney materials, in situ precipitation of low-temperature minerals and mass wasting. To understand the post-formation processes in metalliferous sediments, we investigated sub-seafloor metal mobilisation in different geological environments. This presentation focuses on the TAG Hydrothermal Field (Mid-Atlantic Ridge, 26°N) and explores sediment and pore water compositions using ICP-MS and ICP-OES. We use reactive transport modelling to interpret the degree of metal remobilisation and to identify the most important geochemical reactions in the different sediments. The pore water concentrations measured in sediments above inactive sulphide mounds present constant major elements composition that indicates this environment is dominated by complete exchange with seawater. The sediments, that are mainly composed of hematite and goethite formed during the oxidation of sulphides, have low Cu concentrations (sediments and capped by more recent sediment slumping. In the depositionary channels, pore waters show metal concentrations affected by diagenesis and redox-sensitive metals are released at depth (e.g. Mn2+ and Cu2+). The leaching of the primary sulphides (e.g. deprecated grains of chalcopyrite), and metal mobilisation lead to an enrichment of Cu and Zn at shallower depth. Here, some stratigraphic horizons scavenge metallic cations back into solid phases and form Mn-oxide crusts between 30 and 60 cm, in which Cu concentrations also increase. Our results demonstrate that metal mobilisation differs depending on the geological environment and their related accumulation processes, causing the absence of Cu on the top of inactive hydrothermal mounds but enriched

  11. Geology and mineralogy of the Auki Crater, Tyrrhena Terra, Mars: A possible post impact-induced hydrothermal system

    Science.gov (United States)

    Carrozzo, F. G.; Di Achille, G.; Salese, F.; Altieri, F.; Bellucci, G.

    2017-01-01

    A variety of hydrothermal environments have been documented in terrestrial impact structures. Due to both past water interactions and meteoritic bombardment on the surface of Mars, several authors have predicted various scenarios that include the formation of hydrothermal systems. Geological and mineralogical evidence of past hydrothermal activity have only recently been found on Mars. Here, we present a geological and mineralogical study of the Auki Crater using the spectral and visible imagery data acquired by the CRISM (Compact Reconnaissance Imaging Spectrometer for Mars), CTX (Context Camera) and HiRISE (High Resolution Imaging Science Experiment) instruments on board the NASA MRO mission. The Auki Crater is a complex crater that is ∼38 km in diameter located in Tyrrhena Terra (96.8°E and 15.7°S) and shows a correlation between its mineralogy and morphology. The presence of minerals, such as smectite, silica, zeolite, serpentine, carbonate and chlorite, associated with morphological structures, such as mounds, polygonal terrains, fractures and veins, suggests that the Auki Crater may have hosted a post impact-induced hydrothermal system. Although the distribution of hydrated minerals in and around the central uplift and the stratigraphic relationships of some morphological units could also be explained by the excavation and exhumation of carbonate-rich bedrock units as a consequence of crater formation, we favor the hypothesis of impact-induced hydrothermal circulation within fractures and subsequent mineral deposition. The hydrothermal system could have been active for a relatively long period of time after the impact, thus producing a potential transient habitable environment. It must be a spectrally neutral component to emphasize the spectral features; It is an average of spectra taken in the same column of the numerator spectra to correct the residual instrument artifacts and reduce detector noise that changes from column to column; It must be taken in

  12. Temporal changes in fluid chemistry and energy profiles in the vulcano island hydrothermal system.

    Science.gov (United States)

    Rogers, Karyn L; Amend, Jan P; Gurrieri, Sergio

    2007-12-01

    In June 2003, the geochemical composition of geothermal fluids was determined at 9 sites in the Vulcano hydrothermal system, including sediment seeps, geothermal wells, and submarine vents. Compositional data were combined with standard state reaction properties to determine the overall Gibbs free energy (DeltaG(r) ) for 120 potential lithotrophic and heterotrophic reactions. Lithotrophic reactions in the H-O-N-S-C-Fe system were considered, and exergonic reactions yielded up to 120 kJ per mole of electrons transferred. The potential for heterotrophy was characterized by energy yields from the complete oxidation of 6 carboxylic acids- formic, acetic, propanoic, lactic, pyruvic, and succinic-with the following redox pairs: O(2)/H(2)O, SO(4) (2)/H(2)S, NO(3) ()/NH(4) (+), S(0)/H(2)S, and Fe(3)O(4)/Fe(2+). Heterotrophic reactions yielded 6-111 kJ/mol e(). Energy yields from both lithotrophic and heterotrophic reactions were highly dependent on the terminal electron acceptor (TEA); reactions with O(2) yielded the most energy, followed by those with NO(3) (), Fe(III), SO(4) (2), and S(0). When only reactions with complete TEA reduction were included, the exergonic lithotrophic reactions followed a similar electron tower. Spatial variability in DeltaG(r) was significant for iron redox reactions, owing largely to the wide range in Fe(2+) and H(+) concentrations. Energy yields were compared to those obtained for samples collected in June 2001. The temporal variations in geochemical composition and energy yields observed in the Vulcano hydrothermal system between 2001 and 2003 were moderate. The largest differences in DeltaG(r) over the 2 years were from iron redox reactions, due to temporal changes in the Fe(2+) and H(+) concentrations. The observed variations in fluid composition across the Vulcano hydrothermal system have the potential to influence not only microbial diversity but also the metabolic strategies of the resident microbial communities.

  13. Hydrothermal conversion of FAU zeolite into RUT zeolite in TMAOH system

    OpenAIRE

    Jon, Hery; Takahashi, Shoutarou; Sasaki, Hitoshi; Oumi, Yasunori; Sano, Tsuneji

    2008-01-01

    The highly crystalline and pure RUT (RUB-10) zeolite could be obtained from the hydrothermal conversion of FAU zeolite used as a crystalline Si/Al source in tetramethylammonium hydroxide (TMAOH) media. As compared to amorphous silica/Al(OH)3 and amorphous silica/γ-Al2O3 sources, the crystallization rate for the formation of RUT zeolite was clearly faster when FAU zeolite was employed as the Si/Al source. Moreover, it was found that the hydrothermal conversion of FAU zeolite into RUT zeolite d...

  14. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Hoffmann, Jessica

    2014-01-01

    Biomass is one of the most abundant sources of renewable energy, and will be an important part of a more sustainable future energy system. In addition to direct combustion, there is growing attention on conversion of biomass into liquid en-ergy carriers. These conversion methods are divided...... into biochemical/biotechnical methods and thermochemical methods; such as direct combustion, pyrolysis, gasification, liquefaction etc. This chapter will focus on hydrothermal liquefaction, where high pressures and intermediate temperatures together with the presence of water are used to convert biomass...... into liquid biofuels, with the aim of describing the current status and development challenges of the technology. During the hydrothermal liquefaction process, the biomass macromolecules are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive...

  15. Mineralogical and structural transformations related to alterations in hydrothermal and climatological conditions of basic vulcanic rocks from northern Parana (Ribeirao Preto region, SP, Brazil)

    International Nuclear Information System (INIS)

    Goncalves, N.M.M.

    1987-01-01

    Detailed studies of the basic vulcanic rocks of northern Parana basin (Region of Ribeirao Preto, SP) reveled that these rocks were affected by pre-meteoric activity (hydrothermal alteration) before being exposed to the supergene system of alteration linked to the lithosphere/atmosphere interface. Mineralogical and structural transformation are studied. The appearance of sequential crystalline-chemical paragenesis in zones suggest that the hydrothermal activity occurred during two successives processes of alteration: the expulsion of the water from the rock during the later stages of magma cooling and the continous process of dissolution of the rock wall and the ionic diffusion involving the rock sistem of structural voids. The hydro-thermal action was followed by weathering action developing a thin 'front' of superficial alteration. This alteration system, can lead to the formation of three major levels of alteration horizons and superficial accumulations: alterites, glebular and suil surface materials. (C.D.G.) [pt

  16. The physical hydrogeology of ore deposits

    Science.gov (United States)

    Ingebritsen, Steven E.; Appold, M.S.

    2012-01-01

    Hydrothermal ore deposits represent a convergence of fluid flow, thermal energy, and solute flux that is hydrogeologically unusual. From the hydrogeologic perspective, hydrothermal ore deposition represents a complex coupled-flow problem—sufficiently complex that physically rigorous description of the coupled thermal (T), hydraulic (H), mechanical (M), and chemical (C) processes (THMC modeling) continues to challenge our computational ability. Though research into these coupled behaviors has found only a limited subset to be quantitatively tractable, it has yielded valuable insights into the workings of hydrothermal systems in a wide range of geologic environments including sedimentary, metamorphic, and magmatic. Examples of these insights include the quantification of likely driving mechanisms, rates and paths of fluid flow, ore-mineral precipitation mechanisms, longevity of hydrothermal systems, mechanisms by which hydrothermal fluids acquire their temperature and composition, and the controlling influence of permeability and other rock properties on hydrothermal fluid behavior. In this communication we review some of the fundamental theory needed to characterize the physical hydrogeology of hydrothermal systems and discuss how this theory has been applied in studies of Mississippi Valley-type, tabular uranium, porphyry, epithermal, and mid-ocean ridge ore-forming systems. A key limitation in the computational state-of-the-art is the inability to describe fluid flow and transport fully in the many ore systems that show evidence of repeated shear or tensional failure with associated dynamic variations in permeability. However, we discuss global-scale compilations that suggest some numerical constraints on both mean and dynamically enhanced crustal permeability. Principles of physical hydrogeology can be powerful tools for investigating hydrothermal ore formation and are becoming increasingly accessible with ongoing advances in modeling software.

  17. Hydrothermal system of the Papandayan Volcano from temperature, self-potential (SP) and geochemical measurements

    Science.gov (United States)

    Byrdina, Svetlana; Revil, André; Gunawan, Hendra; Saing, Ugan B.; Grandis, Hendra

    2017-07-01

    Papandayan volcano in West Java, Indonesia, is characterized by intense hydrothermal activities manifested by numerous fumaroles at three craters or kawah, i.e. Mas, Manuk and Baru. The latter was created after November 2002 phreatic eruption. Since 2011, numerous volcano-tectonic B events are encountered and the volcano was set on alert status on several occasions. The purpose of the present study is to delineate the structure of the summital hydrothermal system from Self-Potential (SP), soil temperature and gas concentrations in the soil (CO2, SO2 and H2S) data. This combination of geophysical and geochemical methods allows identification of the weak permeable zones serving as preferential pathways for hydrothermal circulation and potential candidates to future landslides or flank collapses. This study is an on-going collaborative research project and we plan to conduct electrical resistivity tomography (ERT) and also Induced-Polarization (IP) surveys. Additional data would allow the 3D imaging of the studied area. The IP parameters will be used to characterise and to quantify the degree of alteration of the volcanic rocks as has been shown very recently in the laboratory studies. There are also rocks and soil samples that will undergo laboratory analyses at ISTerre for IP and complex resistivity parameters at the sample scale that will help to interpret the survey results.

  18. Some genetic aspects of hydrothermal uranium deposits in the Bakulja granitoide (Serbia)

    International Nuclear Information System (INIS)

    Jelenkovic, Rade

    1998-01-01

    This paper discusses the influence of temperature and the way of hydrothermal fluids flow in function of both the degree of tectonized granitoid and the origin of solutions, and partly the processes accompanying mineralization expressed through physico-chemical, mineralogical and mechanical alterations of the mother rock. It has been concluded that heat energy exchange is in function of: 1) petrochemical characteristic of a rock the hydrothermal fluids flow through; 2) degree of tectonization of the surrounding mineralized rocks; 3) volume and morphology of the fissured-porous space; 4) form of uranium bonding in mineral carriers; 5) degree of uranium leaching in hydrothermal solutions; 6) the way of hydrothermal fluids flow, and 7) coefficient of heat exchange expressed by distribution of heat energy within a fluid-rock system. It has also been established that contraction of granite volume results from physico-chemical processes that take place within a granitoid-hydrothermal fluid system and its quantification has been carried out. (Author)

  19. Complexing and hydrothermal ore deposition

    CERN Document Server

    Helgeson, Harold C

    1964-01-01

    Complexing and Hydrothermal Ore Deposition provides a synthesis of fact, theory, and interpretative speculation on hydrothermal ore-forming solutions. This book summarizes information and theory of the internal chemistry of aqueous electrolyte solutions accumulated in previous years. The scope of the discussion is limited to those aspects of particular interest to the geologist working on the problem of hydrothermal ore genesis. Wherever feasible, fundamental principles are reviewed. Portions of this text are devoted to calculations of specific hydrothermal equilibriums in multicompone

  20. TARGETING HYDROTHERMAL ALTERATIONS UTILIZING LANDSAT-8 ANDASTER DATA IN SHAHR-E-BABAK, IRAN

    Directory of Open Access Journals (Sweden)

    M. Safari

    2017-10-01

    Full Text Available Shahr-e-Babak tract of the Kerman metalogenic belt is one of the most potential segments of Urumieh–Dokhtar (Sahand-Bazman magmatic arc. This area encompasses several porphyry copper deposits in exploration, development and exploitation hierarchy. The aim of this study is to map hydrothermal alterations caused by early Cenozoic magmatic intrusions in Shahr-e-Babak area. To this purpose, mineral mapping methods including band combinations, ratios and multiplications as well as PCA and MNF data space transforms in SWIR and VNIR for both ASTER and OLI sensors. Alteration zones according to spectral signatures of each type of alteration mineral assemblages such as argillic, phyllic and propylitic are successfully mapped. For enhancing the target areas false color composites and HSI-RGB color space transform are performed on developed band combinations. Previous studies have proven the robust application of ASTER in geology and mineral exploration; nonetheless, the results of this investigation prove applicability of OLI sensor from landsat-8 for alteration mapping. According to the results, evidently OLI sensor data can accurately map alteration zones. Additionally, the 12-bit quantization of OLI data is its privilege over 8-bit data of ASTER in VNIR and SWIR, thus OLI high quality results, which makes it easy to distinguish targets with enhanced color contrast between the altered and unaltered rocks.

  1. Lipid synthesis under hydrothermal conditions by Fischer-Tropsch-type reactions.

    Science.gov (United States)

    McCollom, T M; Ritter, G; Simoneit, B R

    1999-03-01

    Ever since their discovery in the late 1970's, mid-ocean-ridge hydrothermal systems have received a great deal of attention as a possible site for the origin of life on Earth (and environments analogous to mid-ocean-ridge hydrothermal systems are postulated to have been sites where life could have originated or Mars and elsewhere as well). Because no modern-day terrestrial hydrothermal systems are free from the influence of organic compounds derived from biologic processes, laboratory experiments provide the best opportunity for confirmation of the potential for organic synthesis in hydrothermal systems. Here we report on the formation of lipid compounds during Fischer-Tropsch-type synthesis from aqueous solutions of formic acid or oxalic acid. Optimum synthesis occurs in stainless steel vessels by heating at 175 degrees C for 2-3 days and produces lipid compounds ranging from C2 to > C35 which consist of n-alkanols, n-alkanoic acids, n-alkenes, n-alkanes and alkanones. The precursor carbon sources used are either formic acid or oxalic acid, which disproportionate to H2, CO2 and probably CO. Both carbon sources yield the same lipid classes with essentially the same ranges of compounds. The synthesis reactions were confirmed by using 13C labeled precursor acids.

  2. Hydrothermal activity, functional diversity and chemoautotrophy are major drivers of seafloor carbon cycling.

    Science.gov (United States)

    Bell, James B; Woulds, Clare; Oevelen, Dick van

    2017-09-20

    Hydrothermal vents are highly dynamic ecosystems and are unusually energy rich in the deep-sea. In situ hydrothermal-based productivity combined with sinking photosynthetic organic matter in a soft-sediment setting creates geochemically diverse environments, which remain poorly studied. Here, we use comprehensive set of new and existing field observations to develop a quantitative ecosystem model of a deep-sea chemosynthetic ecosystem from the most southerly hydrothermal vent system known. We find evidence of chemosynthetic production supplementing the metazoan food web both at vent sites and elsewhere in the Bransfield Strait. Endosymbiont-bearing fauna were very important in supporting the transfer of chemosynthetic carbon into the food web, particularly to higher trophic levels. Chemosynthetic production occurred at all sites to varying degrees but was generally only a small component of the total organic matter inputs to the food web, even in the most hydrothermally active areas, owing in part to a low and patchy density of vent-endemic fauna. Differences between relative abundance of faunal functional groups, resulting from environmental variability, were clear drivers of differences in biogeochemical cycling and resulted in substantially different carbon processing patterns between habitats.

  3. Organic sulfur metabolisms in hydrothermal environments.

    Science.gov (United States)

    Rogers, Karyn L; Schulte, Mitchell D

    2012-07-01

    Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. While biotic and abiotic cycling of organic sulfur compounds has been well documented in low-temperature anaerobic environments, cycling of organic sulfur in hydrothermal environments has received less attention. Recently published thermodynamic data have been used to estimate aqueous alkyl thiol and sulfide activities in deep-sea hydrothermal systems. Here we use geochemical mixing models to predict fluid compositions that result from mixing end-member hydrothermal fluid from the East Pacific Rise with bottom seawater. These fluid compositions are combined with estimates of methanethiol and dimethylsulfide activities to evaluate energy yields for potential organic sulfur-based metabolisms under hydrothermal conditions. Aerobic respiration has the highest energy yields (over -240 kJ/mol e⁻) at lower temperature; however, oxygen is unlikely to persist at high temperatures, restricting aerobic respiration to mesophilic communities. Nitrite reduction to N₂ has the highest energy yields at higher temperatures (greater than ∼40 °C). Nitrate and nitrite reduction to ammonium also yield significant energy (up to -70 kJ/mol e⁻). Much lower, but still feasible energy yields are calculated for sulfate reduction, disproportionation, and reduction with H₂. Organic compound family and the activity of methanethiol and dimethylsulfide were less important than metabolic strategy in determining overall energy yields. All metabolic strategies considered were exergonic within some portion of the mixing regime suggesting that organic sulfur-based metabolisms may be prevalent within deep-sea hydrothermal vent microbial communities. © 2012 Blackwell Publishing Ltd.

  4. Hydrothermal plume anomalies over the southwest Indian ridge: magmatic control

    Science.gov (United States)

    Yue, X.; Li, H.; Tao, C.; Ren, J.; Zhou, J.; Chen, J.; Chen, S.; Wang, Y.

    2017-12-01

    Here we firstly reported the extensive survey results of the hydrothermal activity along the ultra-slow spreading southwest Indian ridge (SWIR). The study area is located at segment 27, between the Indomed and Gallieni transform faults, SWIR. The seismic crustal thickness reaches 9.5km in this segment (Li et al., 2015), which is much thicker than normal crustal. The anomaly thickened crust could be affected by the Crozet hotspot or highly focused melt delivery from the mantle. The Duanqiao hydrothermal field was reported at the ridge valley of the segment by Tao et al (2009). The Deep-towed Hydrothermal Detection System (DHDS) was used to collect information related with hydrothermal activity, like temperature, turbidity, oxidation-reduction potential (ORP) and seabed types. There are 15 survey lines at the interval of 2 to 3 km which are occupied about 1300 km2 in segment 27. After processing the raw data, including wiping out random noise points, 5-points moving average processing and subtracting the ambient, we got anomalous Nephelometric Turbidity Units values (ΔNTU). And dE/dt was used to identify the ORP anomalous as the raw data is easily influenced by electrode potentials drifting (Baker et al., 2016). According to the results of water column turbidity and ORP distributions, we confirmed three hydrothermal anomaly fields named A1, A2 and A3. The three fields are all located in the western part of the segment. The A1 field lies on the ridge valley, west side of Duanqiao field. The A2 and A3 field lie on the northern and southern of the ridge valley, respectively. We propose that recent magmatic activity probably focus on the western part of segment 27.And the extensive distribution of hydrothermal plume in the segment is the result of the discrete magma intrusion. References Baker E T, et al. How many vent fields? New estimates of vent field populations on ocean ridges from precise mapping of hydrothermal discharge locations. EPSL, 2016, 449:186-196. Li J

  5. Paleomagnetic and stable isotope study of the pluton at Rio Hondo near Questa, New Mexico: Implications for CRM related to hydrothermal alteration

    Energy Technology Data Exchange (ETDEWEB)

    Hagstrum, J T; Johnson, C M

    1986-06-01

    Paleomagnetic and rock magnetic data combined with stable isotope data from the middle Tertiary pluton along the Rio Hondo in northern New Mexico suggest that its magnetic remanence has both thermal (TRM) and high-temperature chemical (CRM) components. Oxygen isotope temperatures indicate that magnetite associated with the more rapidly cooled higher levels of the pluton, and with mafic inclusions and cogenetic rhyolitic dikes sampled at lower levels of exposure, ceased subsolidus recrystallization and isotopic exchange above its Curie temperature (580/sup 0/C) in the presence of a magmatic fluid. Continued cooling imparted a TRM to these portions of the pluton. The more slowly cooled granodiorite at lower levels has quartz-magnetite isotopic temperatures that are below the Curie temperature of magnetite implying that its magnetization is high-temperature CRM. Sub-Curie isotopic temperatures for other granitic plutons in the western U.S.A. suggest that CRM may be commonly derived from subsolidus interactions between magnetite and magmatic fluids in plutonic rocks. A meteoric-hydrothermal system generated by the cooling Rio Hondo pluton, and not by younger adjacent intrusions, resulted in limited alteration along zones of high permeability near the southern margin of the Rio Hondo pluton, and in more prevasive alteration of the pluton to the north. The meteoric-hydrothermal alteration occurred at relatively high temperatures (>350/sup 0/C) and, with the exception of local chloritization, caused little visible alteration of the rocks. The isotopic ratios indicate that little of the magnetite could have grown from or exchanged with a meteoric-hydrothermal fluid.

  6. Hydrothermal liquefaction of biomass

    DEFF Research Database (Denmark)

    Toor, Saqib; Rosendahl, Lasse; Rudolf, Andreas

    2011-01-01

    This article reviews the hydrothermal liquefaction of biomass with the aim of describing the current status of the technology. Hydrothermal liquefaction is a medium-temperature, high-pressure thermochemical process, which produces a liquid product, often called bio-oil or bi-crude. During...... the hydrothermal liquefaction process, the macromolecules of the biomass are first hydrolyzed and/or degraded into smaller molecules. Many of the produced molecules are unstable and reactive and can recombine into larger ones. During this process, a substantial part of the oxygen in the biomass is removed...... by dehydration or decarboxylation. The chemical properties of bio-oil are highly dependent of the biomass substrate composition. Biomass constitutes of various components such as protein; carbohydrates, lignin and fat, and each of them produce distinct spectra of compounds during hydrothermal liquefaction...

  7. Development and evaluation of a tracer-injection hydrothermal technique for studies of waste package interactions

    International Nuclear Information System (INIS)

    Jones, T.E.; Coles, D.G.; Britton, R.C.; Burnell, J.R.

    1986-11-01

    A tracer-injection system has been developed for use in characterizing reactions of waste package materials under hydrothermal conditions. High-pressure liquid chromatographic instrumentation has been coupled with Dickson-type rocking autoclaves to allow injection of selected components into the hydrothermal fluid while maintaining run temperature and pressure. Hydrothermal experiments conducted using this system included the interactions of depleted uranium oxide and Zircaloy-4 metal alloy discs with trace levels of 99 Tc and non-radioactive Cs and I in a simulated groundwater matrix. After waste-package components and simulated waste forms were pre-conditioned in the autoclave systems (usually 4 to 6 weeks), known quantities of tracer-doped fluids were injected into the autoclaves' gold reaction bag at run conditions. Time-sequenced sampling of the hydrothermal fluid providing kinetic data on the reactions of tracers with waste package materials. The injection system facilitates the design of experiments that will better define ''steady-state'' fluid compositions in hydrothermal reactions. The injection system will also allow for the formation of tracer-bearing solid phases in detectable quantities

  8. Age and geochemistry of host rocks of the Cobre Panama porphyry Cu-Au deposit, central Panama: Implications for the Paleogene evolution of the Panamanian magmatic arc

    Science.gov (United States)

    Baker, Michael J.; Hollings, Peter; Thompson, Jennifer A.; Thompson, Jay M.; Burge, Colin

    2016-04-01

    The Cobre Panama porphyry Cu-Au deposit, located in the Petaquilla district of central Panama, is hosted by a sequence of medium- to high-K calc-alkaline volcanic and sub-volcanic rocks. New crystallisation ages obtained from a granodiorite Petaquilla batholith and associated mineralised diorite to granodiorite porphyry stocks and dikes at Cobre Panama indicate that the batholith was emplaced as a multi-phase intrusion, over a period of 4 million years from 32.20 ± 0.76 Ma to 28.26 ± 0.61 Ma, while the porphyritic rocks were emplaced over a 2 million year period from 28.96 ± 0.62 Ma to 27.48 ± 0.68 Ma. Both the volcanic to sub-volcanic host rocks and intrusive rocks of the Cobre Panama deposit evolved via fractional crystallisation processes, as demonstrated by the major elements (e.g. Al2O3, Fe2O3, TiO2 and MgO) displaying negative trends with increasing SiO2. The Petaquilla intrusive rocks, including the diorite-granodiorite porphyries and granodiorite batholith, are geochemically evolved and appear to have formed from more hydrous magmas than the preceding host volcanic rocks, as evidenced by the presence of hornblende phenocrysts, higher degrees of large-ion lithophile element (LILE) and light rare earth element (LREE) enrichment and heavy rare earth element (HREE) depletion, and higher Sr/Y and La/Yb values. However, the degree of LREE enrichment, HREE depletion and La/Yb values are insufficient for the intrusive rocks to be considered as adakites. Collectively, the volcanic and intrusive rocks have LILE, REE and mobile trace element concentrations similar to enriched Miocene-age Cordilleran arc magmatism found throughout central and western Panama. Both the Petaquilla and Cordilleran arc magmatic suites are geochemically more evolved than the late Cretaceous to Eocene Chagres-Bayano arc magmas from northeastern Panama, as they display higher degrees of LILE and LREE enrichment. The geochemical similarities between the Petaquilla and Cordilleran arc magmas

  9. Long term planning in the hydro-thermal system - A new generation of tools. Final report; Langtidsplanlegging i hydrotermiske system - En ny generasjon verktoey. Sluttrapport

    Energy Technology Data Exchange (ETDEWEB)

    Gjelsvik, Anders; Haugstad, Arne; Honve, Ingrid; Mo, Birger

    2010-01-15

    The project 'Long term planning in the hydro-thermal system - A new generation of tools' has during the project period 2006 - 2009 led to an upgrade of stochastic models for production planning in hydro-thermal power system. The development has primarily been concentrated on ProdRisk, a model for seasonal and long-term planning in hydropower system based on the Stochastic Dual Dynamic Programming (SDDP). The project has lifted the model a long way towards operational use of seasonal planning of hydropower producers. In addition, the quality of the results from the model, makes it considered a good model also for the analysis of development projects in waterways. The report describes this and other activity within the project. Implementation of the project has contributed both to raise the level of tools used for production planning in the Nordic countries and to increase the competence of participants. (AG)

  10. A comparative study of stream water and stream sediment as geochemical exploration media in the Rio Tanama porphyry copper district, Puerto Rico

    Science.gov (United States)

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    To test the relative effectiveness of stream water and sediment as geochemical exploration media in the Rio Tanama porphyry copper district of Puerto Rico, we collected and subsequently analyzed samples of water and sediment from 29 sites in the rivers and tributaries of the district. Copper, Mo, Pb, Zn, SO42-, and pH were determined in the waters; Cu, Mo, Pb, and Zn were determined in the sediments. In addition, copper in five partial extractions from the sediments was determined. Geochemical contrast (anomaly-to-background quotient) was the principal criterion by which the effectiveness of the two media and the five extractions were judged. Among the distribution patterns of metals in stream water, that of copper most clearly delineates the known porphyry copper deposits and yields the longest discernable dispersion train. The distribution patterns of Mo, Pb, and Zn in water show little relationship to the known mineralization. The distribution of SO42- in water delineates the copper deposits and also the more extensive pyrite alteration in the district; its recognizable downstream dispersion train is substantially longer than those of the metals, either in water or sediment. Low pH values in small tributaries delineate areas of known sulfide mineralization. The distribution patterns of copper in sediments clearly delineate the known deposits, and the dispersion trains are longer than those of copper in water. The partial determinations of copper related to secondary iron and manganese oxides yield the strongest geochemical contrasts and longest recognizable dispersion trains. Significantly high concentrations of molybdenum in sediments were found at only three sites, all within one-half km downstream of the known copper deposits. The distribution patterns of lead and zinc in sediments are clearly related to the known primary lead-zinc haloes around the copper deposits. The recognizable downstream dispersion trains of lead and zinc are shorter than those of

  11. Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin.

    Science.gov (United States)

    Klein, Frieder; Humphris, Susan E; Guo, Weifu; Schubotz, Florence; Schwarzenbach, Esther M; Orsi, William D

    2015-09-29

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite-calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in (13)C (δ(13)C(TOC) = -19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments.

  12. S/Se ratio of pyrite from eastern Australian VHMS deposits: implication of magmatic input into volcanogenic hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Huston, D L [Geological Survey of Canada, Ottawa, ON (Canada); Sie, S H; Suter, G F [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Cooke, D R [Tasmania Univ., Sandy Bay, TAS (Australia)

    1994-12-31

    The proton microprobe was used to determine the concentrations of over twenty trace elements in pyrite grains from four volcanic-hosted massive sulphide (VHMS) deposits in eastern Australia. Of the elements determined, Se has the most potential in resolving important problems in the genesis of this class of ore deposits. This paper summarises analytical conditions, describes the distribution of Se in pyrite in VHMS deposits as determined in this and other studies, discusses the speciation of Se in hydrothermal fluids, and presents a genetic model on the relative contribution of magmatic versus sea water Se (and S) in VHMS systems. 2 refs., 1 fig.

  13. S/Se ratio of pyrite from eastern Australian VHMS deposits: implication of magmatic input into volcanogenic hydrothermal systems

    Energy Technology Data Exchange (ETDEWEB)

    Huston, D.L. [Geological Survey of Canada, Ottawa, ON (Canada); Sie, S.H.; Suter, G.F. [Commonwealth Scientific and Industrial Research Organisation (CSIRO), North Ryde, NSW (Australia). Div. of Exploration Geoscience; Cooke, D.R. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1993-12-31

    The proton microprobe was used to determine the concentrations of over twenty trace elements in pyrite grains from four volcanic-hosted massive sulphide (VHMS) deposits in eastern Australia. Of the elements determined, Se has the most potential in resolving important problems in the genesis of this class of ore deposits. This paper summarises analytical conditions, describes the distribution of Se in pyrite in VHMS deposits as determined in this and other studies, discusses the speciation of Se in hydrothermal fluids, and presents a genetic model on the relative contribution of magmatic versus sea water Se (and S) in VHMS systems. 2 refs., 1 fig.

  14. Large Marks-decahedral Pd nanoparticles synthesized by a modified hydrothermal method using a homogeneous reactor

    International Nuclear Information System (INIS)

    Zhao, Haiqiang; Qi, Weihong; Ji, Wenhai; Wang, Tianran; Peng, Hongcheng; Wang, Qi; Jia, Yanlin; He, Jieting

    2017-01-01

    Fivefold symmetry appears only in small particles and quasicrystals because internal stress in the particles increases with the particle size. However, a typical Marks decahedron with five re-entrant grooves located at the ends of the twin boundaries can further reduce the strain energy. During hydrothermal synthesis, it is difficult to stir the reaction solution contained in a digestion high-pressure tank because of the relatively small size and high-temperature and high-pressure sealed environment. In this work, we optimized a hydrothermal reaction system by replacing the conventional drying oven with a homogeneous reactor to shift the original static reaction solution into a full mixing state. Large Marks-decahedral Pd nanoparticles (~90 nm) have been successfully synthesized in the optimized hydrothermal synthesis system. Additionally, in the products, round Marks-decahedral Pd particles were also found for the first time. While it remains a challenge to understand the growth mechanism of the fivefold twinned structure, we proposed a plausible growth-mediated mechanism for Marks-decahedral Pd nanoparticles based on observations of the synthesis process.

  15. Large Marks-decahedral Pd nanoparticles synthesized by a modified hydrothermal method using a homogeneous reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Haiqiang; Qi, Weihong, E-mail: qiwh216@csu.edu.cn; Ji, Wenhai; Wang, Tianran; Peng, Hongcheng; Wang, Qi; Jia, Yanlin; He, Jieting [Central South University, School of Materials Science and Engineering (China)

    2017-05-15

    Fivefold symmetry appears only in small particles and quasicrystals because internal stress in the particles increases with the particle size. However, a typical Marks decahedron with five re-entrant grooves located at the ends of the twin boundaries can further reduce the strain energy. During hydrothermal synthesis, it is difficult to stir the reaction solution contained in a digestion high-pressure tank because of the relatively small size and high-temperature and high-pressure sealed environment. In this work, we optimized a hydrothermal reaction system by replacing the conventional drying oven with a homogeneous reactor to shift the original static reaction solution into a full mixing state. Large Marks-decahedral Pd nanoparticles (~90 nm) have been successfully synthesized in the optimized hydrothermal synthesis system. Additionally, in the products, round Marks-decahedral Pd particles were also found for the first time. While it remains a challenge to understand the growth mechanism of the fivefold twinned structure, we proposed a plausible growth-mediated mechanism for Marks-decahedral Pd nanoparticles based on observations of the synthesis process.

  16. Chemical composition of hydrothermal ores from Mid-Okinawa trough and Suiyo Seamount determined by neutron activation analysis

    International Nuclear Information System (INIS)

    Noguchi, Takuroh; Taira, Naoto; Oomori, Tamotsu; Taira, Hatsuo; Tanahara, Akira; Takada, Jitsuya

    2007-01-01

    Neutron activation analysis of 13 hydrothermal ore samples (70 subsamples) collected from the Mid-Okinawa Trough and Suiyo Seamount revealed higher contents of precious metal such as Au and Ag, and those of As, Sb, Ga, and Hg than those from mid-ocean ridge hydrothermal systems. In addition, the Mid-Okinawa Trough samples were richer in Ag and Sb than those from the Suiyo Seamount. The geochemical differences among these hydrothermal ore deposits are regarded as reflecting both differences in the chemical composition of the hosted magma of hydrothermal system and the abundance of sediments that is reacted with hydrothermal fluids. (author)

  17. Geology, alteration, mineralization, petrogenesis, geochronology, geochemistry and airborne geophysics of Kuh Shah prospecting area, SW Birjand

    Directory of Open Access Journals (Sweden)

    Maryam Abdi

    2012-04-01

    Full Text Available The Kuh Shah prospecting area is located in Tertiary volcano-plutonic belt of the Lut Block. More than seventeen subvolcanic intermediate to acidic intrusive rocks, diorite to syenite in composition, were identified in the study area. The intrusions are related to hydrothermal alteration zones and contain argillic, propylitic, advanced argillic, silicified, quartz-sericite-pyrite, gossan and hydrothermal breccia which overprinted to each other and are accompanied by weathering which made it complicated to distinguish zoning. Mineralization is observed as sulfide (pyrite and rare chalcopyrite, disseminated Fe-oxides and quartz-Fe-oxide stockwork veinlets. Intrusive rocks are metaluminous, calc-alkaline with shoshonitic affinity with high values of magnetic susceptibility. The Kuh Shah intrusive rocks are classified as magnetite-series of oxidant I-type granitoids. Based on zircon U–Pb age dating, the age of these granitoid rocks is 39.7± 0.7 Ma (Middle Eocene. The radioisotope data (initial 87Sr/86Sr and 143Nd/144Nd ratios as well as εNd and geochemical data suggest that the Kuh Shah granitoid rocks formed from depleted mantle in a subduction-related magmatic arc setting. Geochemical anomalies of elements such as Cu, Au, Fe, Pb, Zn, As, Sb, Mo, Bi, Hg and also Mn, Ba, Te and Se, correlated with quartz-sericite-pyrite, gossan-stockwork-hydrothermal breccias, irregular silicified bodies and advanced argillic hydrothermal alteration zones. Geophysical anomalies correlated with hydrothermal alteration and mineralization zones. The interpretation of the results represents complex patterns of sub-circular to ellipsoid shape with north-east to south-west direction. These evidences are similar to the other for known Cu-Au porphyry and Au-epithermal systems in Iran and worldwide.

  18. The 2012-2014 eruptive cycle of Copahue Volcano, Southern Andes. Magmatic-Hydrothermal system interaction and manifestations.

    Science.gov (United States)

    Morales, Sergio; Alarcón, Alex; Basualto, Daniel; Bengoa, Cintia; Bertín, Daniel; Cardona, Carlos; Córdova, Maria; Franco, Luis; Gil, Fernando; Hernandez, Erasmo; Lara, Luis; Lazo, Jonathan; Mardones, Cristian; Medina, Roxana; Peña, Paola; Quijada, Jonathan; San Martín, Juan; Valderrama, Oscar

    2015-04-01

    Copahue Volcano (COPV), in Southern Andes of Chile, is an andesitic-basaltic stratovolcano, which is located on the western margin of Caviahue Caldera. The COPV have a NE-trending fissure with 9 aligned vents, being El Agrio the main currently active vent, with ca. 400 m in diameter. The COPV is placed into an extensive hydrothermal system which has modulated its recent 2012-2014 eruptive activity, with small phreatic to phreatomagmatic eruptions and isolated weak strombolian episodes and formation of crater lakes inside the main crater. Since 2012, the Southern Andes Volcano Observatory (OVDAS) carried out the real-time monitoring with seismic broadband stations, GPS, infrasound sensors and webcams. In this work, we report pre, sin, and post-eruptive seismic activity of the last two main eruptions (Dec, 2012 and Oct, 2014) both with different seismic precursors and superficial activity, showing the second one a particularly appearance of seismic quiescence episodes preceding explosive activity, as an indicator of interaction between magmatic-hydrothermal systems. The first episode, in late 2012, was characterized by a low frequency (0.3-0.4 Hz and 1.0-1.5 Hz) continuous tremor which increased gradually from background noise level amplitude to values of reduced displacement (DR), close to 50 cm2 at the peak of the eruption, reaching an eruptive column of ~1.5 km height. After few months of recording low energy seismicity, a sequence of low frequency, repetitive and low energy seismic events arose, with a frequency of occurrence up to 300 events/hour. Also, the VLP earthquakes were added to the record probably associated with magma intrusion into a deep magmatic chamber during all stages of eruptive process, joined to the record of VT seismicity during the same period, which is located throughout the Caviahue Caldera area. Both kind of seismic patterns were again recorded in October 2014, being the precursor of the new eruptive cycle at this time as well as the

  19. Hydrothermal fault zone mapping using seismic and electrical measurements

    Science.gov (United States)

    Onacha, Stephen Alumasa

    This dissertation presents a new method of using earthquakes and resistivity data to characterize permeable hydrothermal reservoirs. The method is applied to field examples from Casa Diablo in the Long Valley Caldera, California; Mt. Longonot, Kenya; and Krafla, Iceland. The new method has significant practical value in the exploration and production of geothermal energy. The method uses P- and S-wave velocity, S-wave polarization and splitting magnitude, resistivity and magnetotelluric (MT) strike directions to determine fracture-porosity and orientation. The conceptual model used to characterize the buried, fluid-circulating fault zones in hydrothermal systems is based on geological and fracture models. The method has been tested with field earthquake and resistivity data; core samples; temperature measurements; and, for the case of Krafla, with a drilled well. The use of resistivity and microearthquake measurements is based on theoretical formulation of shared porosity, anisotropy and polarization. The relation of resistivity and a double porosity-operator is solved using a basis function. The porosity-operator is used to generate a correlation function between P-wave velocity and resistivity. This correlation is then used to generate P-wave velocity from 2-D resistivity models. The resistivity models are generated from magnetotelluric (MT) by using the Non-Linear Conjugate Gradient (NLCG) inversion method. The seismic and electrical measurements used come from portable, multi station microearthquake (MEQ) monitoring networks and multi-profile, MT and transient electromagnetic (TEM) observation campaigns. The main conclusions in this dissertation are listed below: (1) Strong evidence exists for correlation between MT strike direction and anisotropy and MEQ S-wave splitting at sites close to fluid-filled fracture zones. (2) A porosity operator generated from a double porosity model has been used to generate valid P-wave velocity models from resistivity data. This

  20. Hydrothermal Growth of Polyscale Crystals

    Science.gov (United States)

    Byrappa, Kullaiah

    In this chapter, the importance of the hydrothermal technique for growth of polyscale crystals is discussed with reference to its efficiency in synthesizing high-quality crystals of various sizes for modern technological applications. The historical development of the hydrothermal technique is briefly discussed, to show its evolution over time. Also some of the important types of apparatus used in routine hydrothermal research, including the continuous production of nanosize crystals, are discussed. The latest trends in the hydrothermal growth of crystals, such as thermodynamic modeling and understanding of the solution chemistry, are elucidated with appropriate examples. The growth of some selected bulk, fine, and nanosized crystals of current technological significance, such as quartz, aluminum and gallium berlinites, calcite, gemstones, rare-earth vanadates, electroceramic titanates, and carbon polymorphs, is discussed in detail. Future trends in the hydrothermal technique, required to meet the challenges of fast-growing demand for materials in various technological fields, are described. At the end of this chapter, an Appendix 18.A containing a more or less complete list of the characteristic families of crystals synthesized by the hydrothermal technique is given with the solvent and pressure-temperature (PT) conditions used in their synthesis.

  1. Hydrothermal Processing of Macroalgal Feedstocks in Continuous-Flow Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Hart, Todd R.; Neuenschwander, Gary G.; Rotness, Leslie J.; Roesijadi, Guri; Zacher, Alan H.; Magnuson, Jon K.

    2014-02-03

    Wet macroalgal slurries have been converted into a biocrude by hydrothermal liquefaction (HTL) in a bench-scale continuous-flow reactor system. Carbon conversion to a gravity-separable oil product of 58.8% was accomplished at relatively low temperature (350 °C) in a pressurized (subcritical liquid water) environment (20 MPa) when using feedstock slurries with a 21.7% concentration of dry solids. As opposed to earlier work in batch reactors reported by others, direct oil recovery was achieved without the use of a solvent, and biomass trace mineral components were removed by processing steps so that they did not cause processing difficulties. In addition, catalytic hydrothermal gasification (CHG) was effectively applied for HTL byproduct water cleanup and fuel gas production from water-soluble organics. Conversion of 99.2% of the carbon left in the aqueous phase was demonstrated. Finally, as a result, high conversion of macroalgae to liquid and gas fuel products was found with low levels of residual organic contamination in byproduct water. Both process steps were accomplished in continuous-flow reactor systems such that design data for process scale-up was generated.

  2. Inversion approach for thermal data from a convecting hydrothermal system

    Energy Technology Data Exchange (ETDEWEB)

    Kasameyer, P.; Younker, L.; Hanson, J.

    1983-08-01

    Efforts to invert thermal data from 13 deep geothermal wells, and from additional shallow heat-flow holes, in order to determine the age and total flow rate of the Salton Sea hydrothermal system are described. The data were inverted for a very restrictive model: single-phase, horizontal flow along prescribed flowlines in a single aquifer bounded by an impermeable cap and base. With simplifying assumptions, the results are shown to depend on only two parameters, the system age, and the aquifer/cap thickness ratio. The surface gradient and temperature distribution within the cap are calculated analytically for all possible parameter values. Those parameters producing temperatures that agree with observations are identified, and the range of acceptable parameters is reduced by conclusions drawn from other geophysical data. The cap thickness is inferred to be 500m from thermal and lithologic data from the wells. The aquifer thickness is limited to less than 2500m by seismic, resistivity and magnetic data. It is concluded that if this model is valid, the system age is constrained between 3000 and 20,000 years.

  3. REE controls in ultramafic hosted MOR hydrothermal systems: An experimental study at elevated temperature and pressure

    Science.gov (United States)

    Allen, Douglas E.; Seyfried, W. E.

    2005-02-01

    A hydrothermal experiment involving peridotite and a coexisting aqueous fluid was conducted to assess the role of dissolved Cl - and redox on REE mobility at 400°C, 500 bars. Data show that the onset of reducing conditions enhances the stability of soluble Eu +2 species. Moreover, Eu +2 forms strong aqueous complexes with dissolved Cl - at virtually all redox conditions. Thus, high Cl - concentrations and reducing conditions can combine to reinforce Eu mobility. Except for La, trivalent REE are not greatly affected by fluid speciation under the chemical and physical condition considered, suggesting control by secondary mineral-fluid partitioning. LREE enrichment and positive Eu anomalies observed in fluids from the experiment are remarkably similar to patterns of REE mobility in vent fluids issuing from basalt- and peridotite-hosted hydrothermal systems. This suggests that the chondrite normalized REE patterns are influenced greatly by fluid speciation effects and secondary mineral formation processes. Accordingly, caution must be exercised when using REE in hydrothermal vent fluids to infer REE sources in subseafloor reaction zones from which the fluids are derived. Although vent fluid patterns having LREE enrichment and positive Eu anomalies are typically interpreted to suggest plagioclase recrystallization reactions, this need not always be the case.

  4. Economic filters for evaluating porphyry copper deposit resource assessments using grade-tonnage deposit models, with examples from the U.S. Geological Survey global mineral resource assessment: Chapter H in Global mineral resource assessment

    Science.gov (United States)

    Robinson, Gilpin R.; Menzie, W. David

    2012-01-01

    An analysis of the amount and location of undiscovered mineral resources that are likely to be economically recoverable is important for assessing the long-term adequacy and availability of mineral supplies. This requires an economic evaluation of estimates of undiscovered resources generated by traditional resource assessments (Singer and Menzie, 2010). In this study, simplified engineering cost models were used to estimate the economic fraction of resources contained in undiscovered porphyry copper deposits, predicted in a global assessment of copper resources. The cost models of Camm (1991) were updated with a cost index to reflect increases in mining and milling costs since 1989. The updated cost models were used to perform an economic analysis of undiscovered resources estimated in porphyry copper deposits in six tracts located in North America. The assessment estimated undiscovered porphyry copper deposits within 1 kilometer of the land surface in three depth intervals.

  5. Radiogeochemical features of hydrothermal metasomatic formations

    International Nuclear Information System (INIS)

    Plyushchev, E.V.; Ryabova, L.A.; Shatov, V.V.

    1978-01-01

    Considered are the most general peculiarities of uranium and thorium distributions in hydrothermal-metasomatic formations of three levels of substance formation: 1) in hydrothermal minerals; 2) in natural associations of these minerals (in the altered rocks, metasomatites, ores, etc.); 3) ordened series of zonally and in stage conjugated hydrothermal-metasomatic formations. Statistically stable recurrence of natural combinations of hydrothermal-metasomatic formations points out conjugation of their formation in the directed evolution in the general hydrothermal process. Series of metasomatic formations, the initial members of which are potassium metasomatites, mostly result in accumulation up to industrial concentrations of radioactive elements in final members of these formations. Development of midlow-temperature propylitic alterations in highly radiative rocks causes the same accumulation

  6. Intrusion-Related Gold Deposits: New insights from gravity and hydrothermal integrated 3D modeling applied to the Tighza gold mineralization (Central Morocco)

    Science.gov (United States)

    Eldursi, Khalifa; Branquet, Yannick; Guillou-Frottier, Laurent; Martelet, Guillaume; Calcagno, Philippe

    2018-04-01

    The Tighza (or Jebel Aouam) district is one of the most important polymetallic districts in Morocco. It belongs to the Variscan Belt of Central Meseta, and includes W-Au, Pb-Zn-Ag, and Sb-Ba mineralization types that are spatially related to late-Carboniferous granitic stocks. One of the proposed hypotheses suggests that these granitic stocks are connected to a large intrusive body lying beneath them and that W-Au mineralization is directly related to this magmatism during a 287-285 Ma time span. A more recent model argues for a disconnection between the older barren outcropping magmatic stocks and a younger hidden magmatic complex responsible for the W-Au mineralization. Independently of the magmatic scenario, the W-Au mineralization is consensually recognized as of intrusion-related gold deposit (IRGD) type, W-rich. In addition to discrepancies between magmatic sceneries, the IRGD model does not account for published older age corresponding to a high-temperature hydrothermal event at ca. 291 Ma. Our study is based on gravity data inversion and hydro-thermal modeling, and aims to test this model of IRGD and its related magmatic geometries, with respect to subsurface geometries, favorable physical conditions for deposition and time record of hydrothermal processes. Combined inversion of geology and gravity data suggests that an intrusive body is rooted mainly at the Tighza fault in the north and that it spreads horizontally toward the south during a trans-tensional event (D2). Based on the numerical results, two types of mineralization can be distinguished: 1) the "Pre-Main" type appears during the emplacement of the magmatic body, and 2) the "Main" type appears during magma crystallization and the cooling phase. The time-lag between the two mineralization types depends on the cooling rate of magma. Although our numerical model of thermally-driven fluid flow around the Tighza pluton is simplified, as it does not take into account the chemical and deformation

  7. A paleomagnetic and stable isotope study of the pluton at Rio Hondo near Questa, New Mexico: Implications for CRM related to hydrothermal alteration

    International Nuclear Information System (INIS)

    Hagstrum, J.T.; Johnson, C.M.

    1986-01-01

    Paleomagnetic and rock magnetic data combined with stable isotope data from the middle Tertiary pluton along the Rio Hondo in northern New Mexico suggest that its magnetic remanence has both thermal (TRM) and high-temperature chemical (CRM) components. Oxygen isotope temperatures indicate that magnetite associated with the more rapidly cooled higher levels of the pluton, and with mafic inclusions and cogenetic rhyolitic dikes sampled at lower levels of exposure, ceased subsolidus recrystallization and isotopic exchange above its Curie temperature (580 0 C) in the presence of a magmatic fluid. Continued cooling imparted a TRM to these portions of the pluton. The more slowly cooled granodiorite at lower levels has quartz-magnetite isotopic temperatures that are below the Curie temperature of magnetite implying that its magnetization is high-temperature CRM. Sub-Curie isotopic temperatures for other granitic plutons in the western U.S.A. suggest that CRM may be commonly derived from subsolidus interactions between magnetite and magmatic fluids in plutonic rocks. A meteoric-hydrothermal system generated by the cooling Rio Hondo pluton, and not by younger adjacent intrusions, resulted in limited alteration along zones of high permeability near the southern margin of the Rio Hondo pluton, and in more prevasive alteration of the pluton to the north. The meteoric-hydrothermal alteration occurred at relatively high temperatures (>350 0 C) and, with the exception of local chloritization, caused little visible alteration of the rocks. The isotopic ratios indicate that little of the magnetite could have grown from or exchanged with a meteoric-hydrothermal fluid. (orig.)

  8. Hydrothermal oxidation in the Biwabik Iron Formation, MN, USA

    Science.gov (United States)

    Losh, Steven; Rague, Ryan

    2018-02-01

    Precambrian iron formations throughout the world, notably in Australia, Brazil, and South Africa, show evidence of hypogene (≥ 110 °C, mostly > 250 °C) oxidation, alteration, and silica dissolution as a result of tectonic or magmatic activity. Although hydrothermal oxidation has been proposed for the prototype Lake Superior-type iron formation, the Biwabik Iron Formation in Minnesota (USA), it has not been documented there. By examining oxidized and unoxidized Biwabik Iron Formation in three mines, including material from high-angle faults that are associated with oxidation, we document an early hypogene oxidation event ( 175 °C) involving medium-salinity aqueous fluids (8.4 ± 4.9 wt% NaCl equiv) that infiltrated iron formation along high-angle faults. At the Hibbing Taconite Mine, hydrothermal fluids oxidized iron carbonates and silicates near faults, producing goethite ± quartz. In contrast with much of the oxidized iron ores on the Mesabi Range, silica was not removed but rather recrystallized during this event, perhaps lying in a rock-dominated system at low cumulative fluid flux. During the hydrothermal oxidation event in the Hibbing Taconite deposit, quartz-filled microfractures and irregular inclusions commonly formed in coarse variably oxidized magnetite, currently the ore mineral: these inclusions degrade the ore by introducing excess silica in magnetic concentrate. Hydrothermal oxidation at Hibbing Taconite Mine is overprinted by later, relatively minor supergene oxidation both along faults and near the surface, which locally dissolved quartz. At the Fayal Reserve Mine, widespread silicate and carbonate gangue dissolution and iron oxidation was followed by precipitation of pyrite, Mn-siderite, apatite, and other minerals in void spaces, which prevented post-oxidation compaction and significant volume loss in the sampled rocks. Although definitive temperature data for this assemblage are needed, the weight of evidence indicates that this

  9. Production of fuel range oxygenates by supercritical hydrothermal liquefaction of lignocellulosic model systems

    DEFF Research Database (Denmark)

    Pedersen, Thomas Helmer; Rosendahl, Lasse Aistrup

    2015-01-01

    Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics, and it ......Lignocellulosic model compounds and aspen wood are processed at supercritical hydrothermal conditions to study and understand feedstock impact on biocrude formation and characteristics. Glucose and xylose demonstrate similar yield of biocrude and biochar, similar biocrude characteristics...

  10. Short run hydrothermal coordination with network constraints using an interior point method

    International Nuclear Information System (INIS)

    Lopez Lezama, Jesus Maria; Gallego Pareja, Luis Alfonso; Mejia Giraldo, Diego

    2008-01-01

    This paper presents a lineal optimization model to solve the hydrothermal coordination problem. The main contribution of this work is the inclusion of the network constraints to the hydrothermal coordination problem and its solution using an interior point method. The proposed model allows working with a system that can be completely hydraulic, thermal or mixed. Results are presented on the IEEE 14 bus test system

  11. Chemolithoautotrophy in a shallow-sea hydrothermal system, Milos Island, Greece

    Science.gov (United States)

    Lu, G. S.; LaRowe, D.; Gilhooly, W., III; Druschel, G. K.; Fike, D. A.; Amend, J.

    2017-12-01

    In recent decades, numerous (hyper)thermophilic microorganisms have been isolated from hydrothermal venting systems. Although they have been shown to have the capabilities to catalyze a wide variety of reactions to gain energy, few pure cultures have been isolated from these environments. In order to more fully understand the catabolic potential of organisms living in and near hydrothermal vents, we have calculated the Gibbs energies (ΔGr) of 730 redox reactions that could be supplying energy to organisms in the shallow-sea hydrothermal sediments of Paleochori Bay, Milos Island, Greece. This analysis required in-depth geochemical data on the pore fluids and minerals in these sediments near the vent site at several depths. The geochemical profiles of Saganaki vent show steep gradients in temperature, pH, and redox-sensitive compounds resulting from the mixing of hot ( 75oC), acidic ( pH 4), chemically reduced venting fluid with colder, slightly basic and oxidized seawater. We determined values of ΔGr for 47 sediment porewater samples along a 20cm x 2m transect for metabolic reactions involving 23 inorganic H-, O-, C-, N-, S-, Fe-, Mn-, and As- bearing compounds. 379 of the reactions considered were exergonic at one or more sampling locations. The most exergonic reactions were anaerobic CO oxidation with NO2- (136 - 162 kJ/mol e-), followed by the O2/CO, NO3-/CO, and NO2-/ H2S redox pairs. ΔGr values exhibit significant variation among sites as temperature, pH and chemical concentration vary, especially concentrations of Fe2+, Mn2+, and H2S. A great diversity of energy sources are available for microbial populations to exploit: in hotter sediments, sulfide oxidation coupled to nitrite reduction yields large amounts of energy per kg of sediment, whereas aerobic S0 oxidation is more energy-yielding in cooler areas. Our results show that at Saganaki there is a substantial amount of energy available from to microorganisms from sulfur-redox reactions. 16S rRNA pyrotag

  12. Hydrothermal alterations as natural analogues of radionuclide migration in granitic rocks

    International Nuclear Information System (INIS)

    Piantone, P.

    1989-01-01

    The document is the final report of the project Hydrothermal alteration systems as analogues of nuclear waste repositories in granitic rocks which was the subject of contract n 0 F1 1 W/0072-F (CD) performed at shared cost between the Bureau de Recherches Geologiques et Minieres (BRGM), the Commissariat a l'Energie Atomique and the Commission of the European Communities as part of the MIRAGE programme. This study is the continuation of a preliminary study made by BRGM in 1986 and which concerned the same programme. The data given in this report were obtained from the study of the infilling and hydrothermalized walls of a mineralized vein located at Fombillou, Lot Department, in the French Massif Central. A satisfactory model of the processes generated by hydrothermal alteration then by climatic weathering such as formation of new minerals, flow of elements and variations in volume, was thus built. The mobility of elements displaying physical and chemical properties similar to those of radionuclides present in high-level radioactive waste was studied. A preliminary thermodynamic simulation of mineral transformations and transfers of matter during hydrothermal alteration was performed using the calculation code CEQCSY (Chemical EQuilibrium in Complex SYstem). This simulation is based on the values of the main physical and chemical parameters deduced from the analysis of the natural system. On the basis of the results obtained from Fombillou, an appraisal was made of the response of the granitic environment which has been disturbed by a hydrothermal system produced by heat emitted by the storage of high-level radio-active waste as well as its potential capacities of retention in case of possible leakage

  13. Heavy metals from Kueishantao shallow-sea hydrothermal vents, offshore northeast Taiwan

    Science.gov (United States)

    Chen, Xue-Gang; Lyu, Shuang-Shuang; Garbe-Schönberg, Dieter; Lebrato, Mario; Li, Xiaohu; Zhang, Hai-Yan; Zhang, Ping-Ping; Chen, Chen-Tung Arthur; Ye, Ying

    2018-04-01

    Shallow water hydrothermal vents are a source of heavy metals leading to their accumulation in marine organisms that manage to live under extreme environmental conditions. This is the case at Kueishantao (KST) shallow-sea vents system offshore northeast Taiwan, where the heavy metal distribution in vent fluids and ambient seawater is poorly understood. This shallow vent is an excellent natural laboratory to understand how heavy and volatile metals behave in the nearby water column and ecosystem. Here, we investigated the submarine venting of heavy metals from KST field and its impact on ambient surface seawater. The total heavy metal concentrations in the vent fluids and vertical plumes were 1-3 orders of magnitude higher than the overlying seawater values. When compared with deep-sea hydrothermal systems, the estimated KST end-member fluids exhibited much lower concentrations of transition metals (e.g., Fe and Mn) but comparable concentrations of toxic metals such as Pb and As. This may be attributed to the lower temperature of the KST reaction zone and transporting fluids. Most of the heavy metals (Fe, Mn, As, Y, and Ba) in the plumes and seawater mainly originated from hydrothermal venting, while Cd and Pb were largely contributed by external sources such as contaminated waters (anthropogenic origin). The spatial distribution of heavy metals in the surface seawater indicated that seafloor venting impacts ambient seawater. The measurable influence of KST hydrothermal activity, however, was quite localized and limited to an area of heavy metals emanating from the yellow KST hydrothermal vent were: 430-2600 kg Fe, 24-145 kg Mn, 5-32 kg Ba, 10-60 kg As, 0.3-1.9 kg Cd, and 2-10 kg Pb. This study provides important data on heavy metals from a shallow-sea hydrothermal field, and it helps to better understand the environmental impact of submarine shallow hydrothermal venting.

  14. Cu-As Decoupling in Hydrothermal Systems: A Link Between Pyrite Chemistry and Fluid Composition

    Science.gov (United States)

    Reich, M.; Tardani, D.; Deditius, A.; Chryssoulis, S.; Wrage, J.; Sanchez-Alfaro, P.; Andrea, H.; Cinthia, J.

    2016-12-01

    Chemical zonations in pyrite have been recognized in most hydrothermal ore deposit types, showing in some cases marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As-(Au)-depleted zones and As-(Au)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in hydrothermal fluid composition with metal partitioning into pyrite growth zones is still lacking. Here we report a comprehensive trace element database of pyrite from an active hydrothermal system, the Tolhuaca Geothermal System (TGS) in southern Chile. We combined high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capabilities of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a 1 km drill hole that crosses the argillic and propylitic alteration zones of the geothermal system. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, arsenic, Cu and Co are the most abundant with concentrations that vary from sub-ppm levels to a few wt. %. Pyrites from the deeper propylitic zone do not show significant zonation and high Cu-(Co)-As concentrations correlate with each other. In contrast, well-developed zonations were detected in pyrite from the shallow argillic alteration zone, where Cu(Co)-rich, As-depleted cores alternate with Cu(Co)-depleted, As-rich rims. These microanalytical data were contrasted with chemical data of fluid inclusion in quartz veins (high Cu/Na and low As/Na) and borehole fluids (low Cu/Na and high As/Na) reported at the TGS, showing a clear correspondence between Cu and As concentrations in pyrite-forming fluids and chemical

  15. Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Wilder, D.G.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analyses indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests to be applicable to actual repository conditions, a minimum heater test duration of 6-7 yr (including 4 yr of full-power heating) is required

  16. Learning about hydrothermal volcanic activity by modeling induced geophysical changes

    Science.gov (United States)

    Currenti, Gilda M.; Napoli, Rosalba

    2017-05-01

    Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical), which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e. deformation, gravity and magnetic field) to hydrothermal activity on the basis of a sound geological framework (e.g. distribution and pathways of the flows, the presence of fractured zones, caprock). A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i) the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii) the elastostatic equation for the deformation field and (iii) the Poisson’s equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that are, however, above the accuracies of the modern

  17. Learning about Hydrothermal Volcanic Activity by Modeling Induced Geophysical Changes

    Directory of Open Access Journals (Sweden)

    Gilda M. Currenti

    2017-05-01

    Full Text Available Motivated by ongoing efforts to understand the nature and the energy potential of geothermal resources, we devise a coupled numerical model (hydrological, thermal, mechanical, which may help in the characterization and monitoring of hydrothermal systems through computational experiments. Hydrothermal areas in volcanic regions arise from a unique combination of geological and hydrological features which regulate the movement of fluids in the vicinity of magmatic sources capable of generating large quantities of steam and hot water. Numerical simulations help in understanding and characterizing rock-fluid interaction processes and the geophysical observations associated with them. Our aim is the quantification of the response of different geophysical observables (i.e., deformation, gravity, and magnetic fields to hydrothermal activity on the basis of a sound geological framework (e.g., distribution and pathways of the flows, the presence of fractured zones, caprock. A detailed comprehension and quantification of the evolution and dynamics of the geothermal systems and the definition of their internal state through a geophysical modeling approach are essential to identify the key parameters for which the geothermal system may fulfill the requirements to be exploited as a source of energy. For the sake of illustration only, the numerical computations are focused on a conceptual model of the hydrothermal system of Vulcano Island by simulating a generic 1-year unrest and estimating different geophysical changes. We solved (i the mass and energy balance equations of flow in porous media for temperature, pressure and density changes, (ii the elastostatic equation for the deformation field and (iii the Poisson's equations for gravity and magnetic potential fields. Under the model assumptions, a generic unrest of 1-year engenders on the ground surface low amplitude changes in the investigated geophysical observables, that, being above the accuracies of

  18. Magnetic fabrics and fluid flow directions in hydrothermal systems. A case study in the Chaillac Ba-F-Fe deposits (France)

    Science.gov (United States)

    Sizaret, Stanislas; Chen, Yan; Chauvet, Alain; Marcoux, Eric; Touray, Jean Claude

    2003-02-01

    This study presents a possible use of anisotropy of magnetic susceptibility (AMS) to describe the mineralizing process in hydrothermal systems. Ba-F-Fe-rich deposits within the Chaillac Basin are on the southern border of the Paris Basin. In these deposits hydrothermal textures and tectonic structures have been described in veins, sinters, and sandstone cemented by hydrothermal goethite. 278 oriented cores from 24 sites have been collected in these formations. In addition, a lateritic duricrust superimposed on the hydrothermal formation has been sampled. Rock magnetic investigations show that the principal magnetic carrier is goethite for the hydrothermal mineralization and for the laterite level. The AMS measurements show distinguishable behaviors in the different mineralogical and geological contexts. The K1 magnetic lineation (maximum axis) is strongly inclined for the vertical veins. For the horizontally mineralized sinters, the magnetic lineation is almost horizontal with an azimuth similar to the sedimentary flow direction. The AMS of goethite-rich sandstone close to the veins shows strongly inclined K1 as they are probably influenced by the vertical veins; however, when the distance from the vein is larger than 1 m, the AMS presents rather horizontal K1 directions, parallel to the sedimentary flow. The laterite has a foliation dominance of AMS with vertically well-grouped K3 axes and scattered K1 and K2 axes. Field structural observations suggest that the ore deposit is mainly controlled by EW extension tectonics associated with NS trending normal faults. Combining the AMS results on the deposit with vein textures and field data a model is proposed in which AMS results are interpreted in terms of hydrothermal fluid flow. This work opens a new investigation field to constrain hydrodynamic models using the AMS method. Textural study combined with efficient AMS fabric measurements should be used for systematic investigation to trace flow direction in fissures

  19. Electron microscopy study of microbial mat in the North Fiji basin hydrothermal vent

    Science.gov (United States)

    Park, H.; Kim, J. W.; Lee, J. W.

    2017-12-01

    Hydrothermal vent systems consisting of hydrothermal vent, hydrothermal sediment and microbial mat are widely spread around the ocean, particularly spreading axis, continental margin and back-arc basin. Scientists have perceived that the hydrothermal systems, which reflect the primeval earth environment, are one of the best places to reveal the origin of life and extensive biogeochemical process of microbe-mineral interaction. In the present study multiline of analytical methods (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM)) were utilized to investigate the mineralogy/chemistry of microbe-mineral interaction in hydrothermal microbial mat. Microbial mat samples were recovered by Canadian scientific submersible ROPOS on South Pacific North Fiji basin KIOST hydrothermal vent expedition 1602. XRD analysis showed that red-colored microbial mat contains Fe-oxides and Fe-oxyhydroxides. Various morphologies of minerals in the red-colored microbial mat observed by SEM are mainly showed sheath shaped, resembled with Leptothrix microbial structure, stalks shaped, similar with Marioprofundus microbial structure and globule shaped microbial structures. They are also detected with DNA analysis. The cross sectional observation of microbial structures encrusted with Fe-oxide and Fe-oxyhydroxide at a nano scale by Transmission Electron Microscopy (TEM) and Focused Ion Beam (FIB) technique was developed to verify the structural/biogeochemical properties in the microbe-mineral interaction. Systematic nano-scale measurements on the biomineralization in the microbial mat leads the understandings of biogeochemical environments around the hydrothermal vent.

  20. Catalytic Hydrothermal Conversion of Wet Biomass Feedstocks and Upgrading – Process Design and Optimization

    DEFF Research Database (Denmark)

    Hoffmann, Jessica; Toor, Saqib; Rosendahl, Lasse

    Liquid biofuels will play a major role for a more sustainable energy system of the future. The CatLiq® process is a 2nd generation biomass conversion process that is based on hydrothermal liquefaction. Hydrothermal liquefaction offers a very efficient and feedstock flexible way of converting...... biomass to bio-oil. Bio-oils from hydrothermal liquefaction are characterised by their high feedstock flexibility. Upgrading of complete bio-oils derived from hydrothermal conversion has not yet been extensively studied. Purpose of this work is to reduce the oxygen content of the bio-oil to improve...

  1. Thermophilic hydrogen-producing bacteria inhabiting deep-sea hydrothermal environments represented by Caloranaerobacter.

    Science.gov (United States)

    Jiang, Lijing; Xu, Hongxiu; Zeng, Xiang; Wu, Xiaobing; Long, Minnan; Shao, Zongze

    2015-11-01

    Hydrogen is an important energy source for deep-sea hydrothermal vent ecosystems. However, little is known about microbes and their role in hydrogen turnover in the environment. In this study, the diversity and physiological characteristics of fermentative hydrogen-producing microbes from deep-sea hydrothermal vent fields were described for the first time. Seven enrichments were obtained from hydrothermal vent sulfides collected from the Southwest Indian Ocean, East Pacific and South Atlantic. 16S rRNA gene analysis revealed that members of the Caloranaerobacter genus were the dominant component in these enrichments. Subsequently, three thermophilic hydrogen producers, strains H363, H53214 and DY22619, were isolated. They were phylogenetically related to species of the genus Caloranaerobacter. The H2 yields of strains H363, H53214, DY22619 and MV107, which was the type species of genus Caloranaerobacter, were 0.11, 1.21, 3.13 and 2.85 mol H2/mol glucose, respectively. Determination of the main soluble metabolites revealed that strains H363, H53214 and MV107 performed heterolactic fermentations, while strain DY22619 performed butyric acid fermentation, indicating distinct fermentation patterns among members of the genus. Finally, a diversity of forms of [FeFe]-hydrogenase with different modular structures was revealed based on draft genomic data of Caloranaerobacter strains. This highlights the complexity of hydrogen metabolism in Caloranaerobacter, reflecting adaptations to environmental conditions in hydrothermal vent systems. Collectively, results suggested that Caloranaerobacter species might be ubiquitous and play a role in biological hydrogen generation in deep-sea hydrothermal vent fields. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  2. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  3. The role of magmas in the formation of hydrothermal ore deposits

    Science.gov (United States)

    Hedenquist, Jeffrey W.; Lowenstern, Jacob B.

    1994-01-01

    Magmatic fluids, both vapour and hypersaline liquid, are a primary source of many components in hydrothermal ore deposits formed in volcanic arcs. These components, including metals and their ligands, become concentrated in magmas in various ways from various sources, including subducted oceanic crust. Leaching of rocks also contributes components to the hydrothermal fluid—a process enhanced where acid magmatic vapours are absorbed by deeply circulating meteoric waters. Advances in understanding the hydrothermal systems that formed these ore deposits have come from the study of their active equivalents, represented at the surface by hot springs and volcanic fumaroles.

  4. Sediment Microbial Communities Influenced by Cool Hydrothermal Fluid Migration

    Directory of Open Access Journals (Sweden)

    Laura A. Zinke

    2018-06-01

    Full Text Available Cool hydrothermal systems (CHSs are prevalent across the seafloor and discharge fluid volumes that rival oceanic input from rivers, yet the microbial ecology of these systems are poorly constrained. The Dorado Outcrop on the ridge flank of the Cocos Plate in the northeastern tropical Pacific Ocean is the first confirmed CHS, discharging minimally altered <15°C fluid from the shallow lithosphere through diffuse venting and seepage. In this paper, we characterize the resident sediment microbial communities influenced by cool hydrothermal advection, which is evident from nitrate and oxygen concentrations. 16S rRNA gene sequencing revealed that Thaumarchaea, Proteobacteria, and Planctomycetes were the most abundant phyla in all sediments across the system regardless of influence from seepage. Members of the Thaumarchaeota (Marine Group I, Alphaproteobacteria (Rhodospirillales, Nitrospirae, Nitrospina, Acidobacteria, and Gemmatimonadetes were enriched in the sediments influenced by CHS advection. Of the various geochemical parameters investigated, nitrate concentrations correlated best with microbial community structure, indicating structuring based on seepage of nitrate-rich fluids. A comparison of microbial communities from hydrothermal sediments, seafloor basalts, and local seawater at Dorado Outcrop showed differences that highlight the distinct niche space in CHS. Sediment microbial communities from Dorado Outcrop differ from those at previously characterized, warmer CHS sediment, but are similar to deep-sea sediment habitats with surficial ferromanganese nodules, such as the Clarion Clipperton Zone. We conclude that cool hydrothermal venting at seafloor outcrops can alter the local sedimentary oxidation–reduction pathways, which in turn influences the microbial communities within the fluid discharge affected sediment.

  5. VALORAGUA: A model for the optimal operating strategy of mixed hydrothermal generating systems

    International Nuclear Information System (INIS)

    1992-01-01

    To provide assistance to its developing Member States in carrying out integrated power system expansion analysis, the International Atomic Energy Agency (IAEA) has developed the computer model called WASP (Wien Automatic System Planning Package). The WASP model has proven to be very useful for this purpose and is accepted worldwide as a sound tool for electricity planning. Notwithstanding its many advantages, certain shortcomings of the methodology have been noticed, in particular with regard to representation of hydroelectric power plants. In order to overcome these shortcomings, the IAEA decided to acquire the computer model called VALORAGUA, developed by the Electricidade de Portugal (EDP), for optimizing the operating strategy of a mixed hydro-thermal power system. This program, when used together with WASP, would allow economic optimization of hydro-thermal power systems with a large hydro component. The objective of the present document is to assist in the use of the VALORAGUA model and its auxiliary codes, as well as to clarify the interconnection between VALORAGUA and the WASP-III model. This report is organized into five main chapters. The first chapter serves as an introduction to all remaining chapters. Chapter 2 defines the input data needed for every component of the electric power system. Chapter 3 presents the output variables of the model within the standard output tables that can be produced by VALORAGUA. Chapter 4 describes in detail all the input data needed by each program. It also includes the list of computer input data corresponding to the example described in Chapter 5, which is used to illustrate the execution of the VALORAGUA modules. Description of how to prepare the hydro data for the WASP-III model from the results obtained with the VALORAGUA model is given in Appendix A. Some auxiliary programs of the VALORAGUA model system, developed by EDP to help the user with the input data preparation, are described in Appendix B. Refs, figs and

  6. Contention between supply of hydrothermal fluid and conduit obstruction: inferences from numerical simulations

    Science.gov (United States)

    Tanaka, Ryo; Hashimoto, Takeshi; Matsushima, Nobuo; Ishido, Tsuneo

    2018-05-01

    We investigate a volcanic hydrothermal system using numerical simulations, focusing on change in crater temperature. Both increases and decreases in crater temperature have been observed before phreatic eruptions. We follow the system's response for up to a decade after hydrothermal fluid flux from the deep part of the system is increased and permeability is reduced at a certain depth in a conduit. Our numerical simulations demonstrate that: (1) changes in crater temperature are controlled by the magnitude of the increase in hydrothermal fluid flux and the degree of permeability reduction; (2) significant increases in hydrothermal flux with decreases in permeability induce substantial pressure changes in shallow depths in the edifice and decreases in crater temperature; (3) the location of maximum pressure change differs between the mechanisms. The results of this study imply that it is difficult to predict eruptions by crater temperature change alone. One should be as wary of large eruptions when crater temperature decreases as when crater temperature increases. It is possible to clarify the implications of changes in crater temperature with simultaneous observation of ground deformation.

  7. Effects of iron-containing minerals on hydrothermal reactions of ketones

    Science.gov (United States)

    Yang, Ziming; Gould, Ian R.; Williams, Lynda B.; Hartnett, Hilairy E.; Shock, Everett L.

    2018-02-01

    Hydrothermal organic transformations occurring in geochemical processes are influenced by the surrounding environments including rocks and minerals. This work is focused on the effects of five common minerals on reactions of a model ketone substrate, dibenzylketone (DBK), in an experimental hydrothermal system. Ketones play a central role in many hydrothermal organic functional group transformations, such as those converting hydrocarbons to oxygenated compounds; however, how these minerals control the hydrothermal chemistry of ketones is poorly understood. Under the hydrothermal conditions of 300 °C and 70 MPa for up to 168 h, we observed that, while quartz (SiO2) and corundum (Al2O3) had no detectable effect on the hydrothermal reactions of DBK, iron-containing minerals, such as hematite (Fe2O3), magnetite (Fe3O4), and troilite (synthetic FeS), accelerated the reaction of DBK by up to an order of magnitude. We observed that fragmentation products, such as toluene and bibenzyl, dominated in the presence of hematite or magnetite, while use of troilite gave primarily the reduction products, e.g., 1, 3-diphenyl-propane and 1, 3-diphenyl-2-propanol. The roles of the three iron minerals in these transformations were further explored by (1) control experiments with various mineral surface areas, (2) measuring H2 in hydrothermal solutions, and (3) determining hydrogen balance among the organic products. These results suggest the reactions catalyzed by iron oxides (hematite and magnetite) are promoted mainly by the mineral surfaces, whereas the sulfide mineral (troilite) facilitated the reduction of ketone in the reaction solution. Therefore, this work not only provides a useful chemical approach to study and uncover complicated hydrothermal organic-mineral interactions, but also fosters a mechanistic understanding of ketone reactions in the deep carbon cycle.

  8. Coastal submarine hydrothermal activity off northern Baja California

    International Nuclear Information System (INIS)

    Vidal, V.M.V.; Vidal, F.V.; Isaacs, J.D.; Young, D.R.

    1978-01-01

    In situ observations of submarine hydrothermal activity have been conducted in Punta Banda. Baja Califronia, Mexico, approximately 400 m from the coast and at a seawater depth of 30 m. The hydrothermal activity occurs within the Agua Blanca Fault, a major transverse structure of Northern Baja California. Hot springwater samples have been collected and analyzed. Marked differences exist between the submarine hot springwater, local land hot springwaters, groundwater, and local seawater. SiO 2 , HCO 3 , Ca, K, Li, B, Ba, Rb, Fe, Mn, As, and Zn are enriched in the submarine hot springwater, while Cl, Na, So 4 2 , Mg, Cu, Ni, Cd, Cr, and perhaps Pb are depleted in relation to average and local seawater values. Very high temperatures, at the hydrothermal vents, have been recorded (102 0 C at 4-atm pressure). Visible gaseous emanations rich in CH 4 and N 2 coexist with the hydrothermal solutions. Metalliferous deposits, pyrite, have been encountered with high concentrations of Fe, S, Si, Al, Mn, Ca, and the volatile elements As, Hg, Sb, and Tl, X ray dispersive spectrometry (1500-ppm detection limit). X ray diffraction, and scanning electron microscopy of the isolated metalliferous precipitates indicate that the principal products of precipitation are pyrite and gypsum accompanied by minor amounts of amorphous material containing Si and Al. Chemical analyses and XRD of the reference control rocks of the locality (volcanics) versus the hydrothermally altered rocks indicate that high-temperature and high-pressure water-rock interactions can in part explain the water chemistry characteristics of the submarine hydrothermal waters. Their long residence time, the occurrence of an extensive marine sedimentary formation, their association with CH 4 and their similarities with connate waters of oil and gas fields suggest that another component of their genesis could be in cation exchange reactions within deeply buried sediments of marine origin

  9. A discussion for the evolution model of Pb isotope of the upper mantle in western Yunnan and its interpretation to the lead isotopic compositions of the regional alkali-rich porphyries and their related rocks

    International Nuclear Information System (INIS)

    Wu Kaixing; Hu Ruizhong; Bi Xianwu; Zhang Qian; Peng Jiantang

    2003-01-01

    Thirty Pb isotope data of the upper mantle in the area of western Yunnan have the similar trends with the Stacey-Kramers' two stage model growth curves but apparently deviate from it on the lead isotope composition programs, which may suggest Pb isotope of the upper mantle in the area of western Yunnan might have two stage evolution history though not fit very well to the Stacey-Kramers' two stage model growth curves. In this paper, a two-stage growth curves which can better fit the Pb isotope data was constructed based on the lead isotope data of the upper mantle in western Yunnan and the principle that Stacey and Kramers constructed the two-stage model and a reasonable interpretation was given to the lead isotopic compositions of the regional alkali-rich porphyries and their related rocks using the model. (authors)

  10. Exploratory benefit-cost analysis of environmental controls on hydrothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Scott, M.J.; Wells, K.D.; Currie, J.W.; King, M.J.

    1981-02-01

    A study of the value of environmental benefits generated by environmental regulation of hydrothermal sites was initiated to compare these benefits with the estimated costs of regulation. Primary objectives were to 1) evaluate the environmental damages caused by unregulated hydrothermal resource development, 2) use existing environmental and economic data to estimate the dollar value of preventing expected environmental damages at two sites, and 3) compare the benefits and costs of preventing the damages. The sites chosen for analyses were in the Imperial Valley at Heber and Niland, California. Reasons for this choice were 1) there is a high level of commercial interest in developing the Heber known geothermal resource area (KGRA) and the Salton Sea KGRA; 2) the potential for environmental damage is high; 3) existing data bases for these two sites are more comprehensive than at other sites. The primary impacts analyzed were those related to hydrogen sulfide (H/sub 2/S) emissions and those related to disposal of spent hydrothermal brine. (MHR)

  11. Hydrothermal circulation, serpentinization, and degassing at a rift valley-fracture zone intersection: Mid-Atlantic Ridge near 15[degree]N, 45[degree]W

    Energy Technology Data Exchange (ETDEWEB)

    Rona, P.A.; Nelson, T.A. (National Oceanic and Atmospheric Administration, Miami, FL (United States)); Bougault, H.; Charlou, J.L.; Needham, H.D. (Inst. Francais de Recherche pour I' Exploitation de la Mer, Centre de Brest (France)); Appriou, P. (Univ. of Western Brittany, Brest (France)); Trefry, J.H. (Florida Inst. of Technology, Melbourne (United States)); Eberhart, G.L.; Barone, A. (Lamont-Doherty Geological Observatory, Palisades, NY (United States))

    1992-09-01

    A hydrothermal system characterized by high ratios of methane to both manganese and suspended particulate matter was detected in seawater sampled at the eastern intersection of the rift valley of the Mid-Atlantic Ridge with the Fifteen-Twenty Fracture Zone. This finding contrasts with low ratios in black smoker-type hydrothermal systems that occur within spreading segments. Near-bottom water sampling coordinated with SeaBeam bathymetry and camera-temperature tows detected the highest concentrations of methane at fault zones in rocks with the appearance of altered ultramafic units in a large dome that forms part of the inside corner high at the intersection. The distinct chemical signatures of the two types of hydrothermal systems are inferred to be controlled by different circulation pathways related to reaction of seawater primarily with ultramafic rocks at intersections of spreading segments with fracture zones but with mafic rocks within spreading segments.

  12. Subseafloor fluid mixing and fossilized microbial life in a Cretaceous 'Lost City'-type hydrothermal system at the Iberian Margin

    Science.gov (United States)

    Klein, F.; Humphris, S. E.; Guo, W.; Schubotz, F.; Schwarzenbach, E. M.; Orsi, W.

    2015-12-01

    Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support autotrophic microorganisms in the hydrated oceanic mantle (serpentinite). Despite the potentially significant implications for the distribution of microbial life on Earth and other water-bearing planetary bodies, our understanding of such environments remains elusive. In the present study we examined fossilized microbial communities and fluid mixing processes in the subseafloor of a Cretaceous 'Lost City'-type hydrothermal system at the passive Iberia Margin (ODP Leg 149, Hole 897D). Brucite and calcite co-precipitated from mixed fluids ca. 65m below the Cretaceous palaeo-seafloor at temperatures of 32±4°C within steep chemical gradients (fO2, pH, CH4, SO4, ΣCO2, etc) between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity within the oceanic basement. Dense microbial colonies are fossilized in brucite-calcite veins that are strongly enriched in organic carbon but depleted in 13C. We detected a combination of bacterial diether lipid biomarkers, archaeol and archaeal tetraethers analogous to those found in brucite-carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin during the Cretaceous, possibly before the onset of seafloor spreading in the Atlantic. 'Lost City'-type serpentinization systems have been discovered at mid-ocean ridges, in forearc settings of subduction zones and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments as demonstrated in the present study. Because equivalent systems have likely existed throughout most of Earth

  13. The hydrothermal alteration in the context of geologic evolution from Pocos de Caldas Alkaline Massif, MG-SP

    International Nuclear Information System (INIS)

    Garda, G.M.

    1990-01-01

    The Pocos de Caldas Alkaline Massif covers 800 km 2 , a quarter of which is hydrothermally altered. Such proportion is uncommon, when compared to the know alkaline massifs of the world. The hydrothermal alteration is associated with Zr, U and Mo mineralizations which are predominantly located in the central-southern portion of the massif, in the central-eastern circular structure. The colour of the altered rock (and its soil) in that area is typically whitish beige to yellowish white and is regionally called potassic rock. The Osamu Utsumi Mine, also referred to as the uranium ore of Campo do Cercado, is located 25 Km to the south of Pocos de Caldas City and was explored, from 1977 to 1989, through the open pit method. A sequence of alteration minerals adapted to lowering temperatures should be expected; however, only illite and alkaline feldspar are observed in the hydrothermally altered portions of the massif, and their formation must have been controlled mainly by kinetic, other than thermal factors. The irrestrict circulation of relatively hotter hydrothermal fluids must have happened at the beginning of the process, diminishing immediately after the cooling of the brecciated areas (and the subjacent magmatic body), leading the system to kinetics levels that made subsequent hydrothermal alteration impossible. (author)

  14. Thallium isotope variations in seawater and hydrogenetic, diagenetic, and hydrothermal ferromanganese deposits

    Science.gov (United States)

    Rehkamper, M.; Frank, M.; Hein, J.R.; Porcelli, D.; Halliday, A.; Ingri, J.; Liebetrau, V.

    2002-01-01

    Results are presented for the first in-depth investigation of TI isotope variations in marine materials. The TI isotopic measurements were conducted by multiple collector-inductively coupled plasma mass spectrometry for a comprehensive suite of hydrogenetic ferromanganese crusts, diagenetic Fe-Mn nodules, hydrothermal manganese deposits and seawater samples. The natural variability of TI isotope compositions in these samples exceeds the analytical reproducibility (?? 0.05???) by more than a factor of 40. Hydrogenetic Fe-Mn crusts have ??205TI of + 10 to + 14, whereas seawater is characterized by values as low as -8 (??205TI represents the deviation of the 205TI/203TI ratio of a sample from the NIST SRM 997 TI isotope standard in parts per 104). This ~ 2??? difference in isotope composition is thought to result from the isotope fractionation that accompanies the adsorption of TI onto ferromanganese particles. An equilibrium fractionation factor of ?? ~ 1.0021 is calculated for this process. Ferromanganese nodules and hydrothermal manganese deposits have variable TI isotope compositions that range between the values obtained for seawater and hydrogenetic Fe-Mn crusts. The variability in ??205TI in diagenetic nodules appears to be caused by the adsorption of TI from pore fluids, which act as a closed-system reservoir with a TI isotope composition that is inferred to be similar to seawater. Nodules with ??205TI values similar to seawater are found if the scavenging of TI is nearly quantitative. Hydrothermal manganese deposits display a positive correlation between ??205TI and Mn/Fe. This trend is thought to be due to the derivation of TI from distinct hydrothermal sources. Deposits with low Mn/Fe ratios and low ??205TI are produced by the adsorption of TI from fluids that are sampled close to hydrothermal sources. Such fluids have low Mn/Fe ratios and relatively high temperatures, such that only minor isotope fractionation occurs during adsorption. Hydrothermal

  15. Discovery of Fracture Networks in the Basal Part of Modern Hydrothermal System in Okinawa Tough, SW Japan

    Science.gov (United States)

    Saito, S.; Yamada, Y.; Sanada, Y.; Kido, Y. N.; Hamada, Y.; Shiraishi, K.; Hsiung, K. H.; Tsuji, T.; Eng, C.; Maeda, L.; Kumagai, H.; Nozaki, T.; Ishibashi, J. I.

    2017-12-01

    A scientific drilling expedition, CK16-01 was conducted by D/V Chikyu in an active hydrothermal field on the Iheya-North Knoll in Okinawa Trough in February-March, 2016 as a part of "Next-generation Technology for Ocean Resources Survey" of the Cross-ministerial Strategic Innovation Promotion Program (SIP). During the expedition logging while drilling (LWD) was deployed to uncover the architecture of modern hydrothermal deposits near the seafloor. A downhole sequence of fracture network (stock-work) was discovered by high resolution resistivity images at Site C9023 in the southern part of the knoll. More than 500 structural features were extracted from the borehole images down to 188 meter below the seafloor. Quantitative image analyses were performed and three types of conductive fractures were identified and classified as Generation 1 (G1), Generation 2 (G2), and Generation 3 (G3) based on the crossing or cutting relationship. The average thickness of fractures decrease with generation from G1 (78 mm), G2 (57 mm), to G3 (45 mm). G1 is developed in the entire interval, whereas G2 and G3 are commonly observed in the intervals of lower gamma ray and high resistivity ( 10 ohm-m) at 77-125 m and 167-186 m where sulfide minerals hosted in silicified rocks were observed in recovered core samples. Low angle fractures (<30°) are typically developed in the interval at 120 -125 m, suggesting possible lateral hydrothermal conduits. The quantitative analysis of fracture network based on borehole images shows the detailed formation process of stock-work in the basal part of modern hydrothermal system.

  16. Hydrothermal diamond-anvil cell: Application to studies of geologic fluids

    Science.gov (United States)

    Chou, I.-Ming

    2003-01-01

    The hydrothermal diamond-anvil cell (HDAC) was designed to simulate the geologic conditions of crustal processes in the presence of water or other fluids. The HDAC has been used to apply external pressure to both synthetic and natural fluid inclusions in quartz to minimize problems caused by stretching or decrepitation of inclusions during microthermometric analysis. When the HDAC is loaded with a fluid sample, it can be considered as a large synthetic fluid inclusion and therefore, can be used to study the PVTX properties as well as phase relations of the sample fluid. Because the HDAC has a wide measurement pressure-temperature range and also allows in-situ optical observations, it has been used to study critical phenomena of various chemical systems, such as the geologically important hydrous silicate melts. It is possible, when the HDAC is combined with synchrotron X-ray sources, to obtain basic information on speciation and structure of metal including rare-earth elements (REE) complexes in hydrothermal solutions as revealed by X-ray absorption fine structure (XAFS) spectra. Recent modifications of the HDAC minimize the loss of intensity of X-rays due to scattering and absorption by the diamonds. These modifications are especially important for studying elements with absorption edges below 10 keV and therefore particularly valuable for our understanding of transport and deposition of first-row transition elements and REE in hydrothermal environments.

  17. Geochemical, microtextural and petrological studies of the Samba prospect in the Zambian Copperbelt basement: a metamorphosed Palaeoproterozoic porphyry Cu deposit.

    Science.gov (United States)

    Master, Sharad; Mirrander Ndhlovu, N.

    2015-04-01

    Ever since Wakefield (1978, IMM Trans., B87, 43-52) described a porphyry-type meta-morphosed Cu prospect, the ca 50 Mt, 0.5% Cu Samba deposit (12.717°S, 27.833°E), hosted by porphyry-associated quartz-sericite-biotite schists in northern Zambia, there has been controversy about its origin and significance. This is because it is situated in the basement to the world's largest stratabound sediment-hosted copper province, the Central African Copperbelt, which is hosted by rocks of the Neoproterozoic Katanga Supergroup. Mineralization in the pre-Katangan basement has long played a prominent role in ore genetic models, with some authors suggesting that basement Cu mineralization may have been recycled into the Katangan basin through erosion and redeposition, while others have suggested that the circulation of fluids through Cu-rich basement may have leached out the metals which are found concentrated in the Katangan orebodies. On the basis of ca 490-460 Ma Ar-Ar ages, Hitzman et al. (2012, Sillitoe Vol., SEG Spec. Publ., 16, 487-514) suggested that Samba represents late-stage impregnation of copper mineralization into the basement, and that it was one of the youngest copper deposits known in the Central African Copperbelt. If the Samba deposit really is that young, then it would have post-dated regional deformation and metamorphism (560-510 Ma), and it ought to be undeformed and unmetamorphosed. The Samba mineralization consists of chalcopyrite and bornite, occurring as disseminations, stringers and veinlets, found in a zone >1 km along strike, in steeply-dipping lenses up to 10m thick and >150m deep. Our new major and trace element XRF geochemical data (14 samples) show that the host rocks are mainly calc-alkaline metadacites. Cu is correlated with Ag (Cu/Ag ~10,000:1) with no Au or Mo. Our study focused on the microtextures and petrology of the Samba ores. We confirm that there is alteration of similar style to that accompanying classical porphyry Cu mineralization

  18. Pyrophosphate synthesis in iron mineral films and membranes simulating prebiotic submarine hydrothermal precipitates

    Science.gov (United States)

    Barge, Laura M.; Doloboff, Ivria J.; Russell, Michael J.; VanderVelde, David; White, Lauren M.; Stucky, Galen D.; Baum, Marc M.; Zeytounian, John; Kidd, Richard; Kanik, Isik

    2014-03-01

    Cells use three main ways of generating energy currency to drive metabolism: (i) conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) by the proton motive force through the rotor-stator ATP synthase; (ii) the synthesis of inorganic phosphate˜phosphate bonds via proton (or sodium) pyrophosphate synthase; or (iii) substrate-level phosphorylation through the direct donation from an active phosphoryl donor. A mechanism to produce a pyrophosphate bond as “energy currency” in prebiotic systems is one of the most important considerations for origin of life research. Baltscheffsky (1996) suggests that inorganic pyrophosphate (PO74-; PPi) may have preceded ATP/ADP as an energy storage molecule in earliest life, produced by an H+ pyrophosphatase. Here we test the hypothesis that PPi could be synthesized in inorganic precipitates simulating hydrothermal chimney structures transected by thermal and/or ionic gradients. Appreciable yields of PPi were obtained via substrate phosphorylation by acetyl phosphate within the iron sulfide/silicate precipitates at temperatures expected for an alkaline hydrothermal system. The formation of PPi only occurred in the solid phase, i.e. when both Pi and the phosphoryl donor were precipitated with Fe-sulfides or Fe-silicates. The amount of Ac-Pi incorporated into the precipitate was a significant factor in the amount of PPi that could form, and phosphate species were more effectively incorporated into the precipitate at higher temperatures (⩾50 to >85 °C). Thus, we expect that the hydrothermal precipitate would be more enriched in phosphate (and especially, Ac-Pi) near the inner margins of a hydrothermal mound where PPi formation would be at a maximum. Iron sulfide and iron silicate precipitates effectively stabilized Ac-Pi and PPi against hydrolysis (relative to hydrolysis in aqueous solution). Thus it is plausible that PPi could accumulate as an energy currency up to useful concentrations for early life in a

  19. A Holistic Model That Physicochemically Links Iron Oxide - Apatite and Iron Oxide - Copper - Gold Deposits to Magmas

    Science.gov (United States)

    Simon, A. C.; Reich, M.; Knipping, J.; Bilenker, L.; Barra, F.; Deditius, A.; Lundstrom, C.; Bindeman, I. N.

    2015-12-01

    Iron oxide-apatite (IOA) and iron oxide-copper-gold deposits (IOCG) are important sources of their namesake metals and increasingly for rare earth metals in apatite. Studies of natural systems document that IOA and IOCG deposits are often spatially and temporally related with one another and coeval magmatism. However, a genetic model that accounts for observations of natural systems remains elusive, with few observational data able to distinguish among working hypotheses that invoke meteoric fluid, magmatic-hydrothermal fluid, and immiscible melts. Here, we use Fe and O isotope data and high-resolution trace element (e.g., Ti, V, Mn, Al) data of individual magnetite grains from the world-class Los Colorados (LC) IOA deposit in the Chilean Iron Belt to elucidate the origin of IOA and IOCG deposits. Values of d56Fe range from 0.08‰ to 0.26‰, which are within the global range of ~0.06‰ to 0.5‰ for magnetite formed at magmatic conditions. Values of δ18O for magnetite and actinolite are 2.04‰ and 6.08‰, respectively, consistent with magmatic values. Ti, V, Al, and Mn are enriched in magnetite cores and decrease systematically from core to rim. Plotting [Al + Mn] vs. [Ti + V] indicates that magnetite cores are consistent with magmatic and/or magmatic-hydrothermal (i.e., porphyry) magnetites. Decreasing Al, Mn, Ti, V is consistent with a cooling trend from porphyry to Kiruna to IOCG systems. The data from LC are consistent with the following new genetic model for IOA and IOCG systems: 1) magnetite cores crystallize from silicate melt; 2) these magnetite crystals are nucleation sites for aqueous fluid that exsolves and scavenges inter alia Fe, P, S, Cu, Au from silicate melt; 3) the magnetite-fluid suspension is less dense that the surrounding magma, allowing ascent; 4) as the suspension ascends, magnetite grows in equilibrium with the fluid and takes on a magmatic-hydrothermal character (i.e., lower Al, Mn, Ti, V); 5) during ascent, magnetite, apatite and

  20. Multiple objective optimization of hydro-thermal systems using Ritz's method

    Directory of Open Access Journals (Sweden)

    Arnáu L. Bayón

    1999-01-01

    Full Text Available This paper examines the applicability of the Ritz method to multi-objective optimization of hydro-thermal systems. The algorithm proposed is aimed to minimize an objective functional that incorporates the cost of energy losses, the conventional fuel cost and the production of atmospheric emissions such as NO x and SO 2 caused by the operation of fossil-fueled thermal generation. The formulation includes a general layout of hydro-plants that may form multi-chains of reservoir network. Time-delays are included and the electric network is considered by using the active power balance equation. The volume of water discharge for each hydro-plant is a given constant amount from the optimization interval. The generic minimization algorithm, which is not difficult to construct on the basis of the Ritz method, has certain advantages in comparison with the conventional methods.

  1. Single-hole in situ thermal probe for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Danko, G.

    1993-01-01

    The REKA thermal probe method, which uses a single borehole to measure in situ rock thermophysical properties and provides for efficient and low-cost site characterization, is analyzed for its application to hydrothermal system characterization. It is demonstrated throughout the evaluation of several temperature fields obtained for different thermal zones that the REKA method can be applied to simultaneously determine (1) two independent thermophysical properties, i.e., heat conductivity and thermal diffusivity and (2) a set of heat transport parameters, which can be used to characterize the behavior of a hydrothermal system. Based on the direct physical meaning of these transport parameters, the components of the heat transport mechanism in a given time and location of the hydrothermal system can be described. This evaluation can be applied to characterizing and quantifying in situ rock dry-out and condensate shedding at the proposed repository site

  2. Organic Acids as Hetrotrophic Energy Sources in Hydrothermal Systems

    Science.gov (United States)

    Windman, T. O.; Zolotova, N.; Shock, E.

    2004-12-01

    Many thermophilic microbes are heterotrophs, but little is known about the organic compounds present in hydrothermal ecosystems. More is known about what these organisms will metabolize in lab experiments than what they do metabolize in nature. In an effort to bridge this gap, we have begun to incorporate organic analyses into ongoing research on Yellowstone hydrothermal ecosystems. After filtering at least a liter of hot spring water to minimize contamination, samples were collected into sixty-milliliter serum vials containing ultra-pure phosphoric acid, sodium hydroxide, or benzalkonium chloride. Approximately 80 sites were sampled spanning temperatures from 60 to 90°C and pH values from 2 to 9. Analytical data for organic acid anions (including formate, acetate, lactate, and succinate) were obtained by ion chromatography. Preliminary results indicate that concentrations of organic acids anions range from 5 to 300 ppb. These results can be used with other field and lab data (sulfate, sulfide, nitrate, ammonia, bicarbonate, pH, hydrogen) in thermodynamic calculations to evaluate the amounts of energy available in heterotrophic reactions. Preliminary results of such calculations show that sulfate reduction to sulfide coupled to succinate oxidation to bicarbonate yields about 6 kcal per mole of electrons transferred. When formate oxidation to bicarbonate or hydrogen oxidation to water is coupled to sulfate reduction there is less energy available by approximately a factor of two. A comparison with nitrate reduction to ammonia involving succinate and/or formate oxidation reveals several similarities. Using formate to reduce nitrate can yield about as much energy as nitrate reduction with hydrogen (typically 12 to 14 kcal per mole of electrons transferred), but using succinate can yield more than twice as much energy. In fact, reduction of nitrate with succinate can provide more energy than any of the inorganic nitrate reduction reactions involving sulfur, iron

  3. Geologic evolution of the Lost City Hydrothermal Field

    Science.gov (United States)

    Denny, Alden R.; Kelley, Deborah S.; Früh-Green, Gretchen L.

    2016-02-01

    The Lost City Hydrothermal Field (LCHF) is a novel serpentinite-hosted vent field located on the Atlantis Massif southern wall. Results of 2 m resolution bathymetry, side scan, and video and still imagery, integrated with direct submersible observations provide the first high-resolution geologic map of the LCHF. These data form the foundation for an evolutionary model for the vent system over the past >120,000 years. The field is located on a down-dropped bench 70 m below the summit of the massif. The bench is capped by breccia and pelagic carbonate deposits underlain by variably deformed and altered serpentinite and gabbroic rocks. Hydrothermal activity is focused at the 60 m tall, 100 m across, massive carbonate edifice "Poseidon," which is venting 91°C fluid. Hydrothermal activity declines south and west of the Poseidon complex and dies off completely at distances greater than 200 m. East of Poseidon, the most recent stage of hydrothermal flow is characterized by egress of diffuse fluids from narrow fissures within a low-angle, anastomosing mylonite zone. South of the area of current hydrothermal activity, there is evidence of two discrete previously unrecognized relict fields. Active venting sites defined by carbonate-filled fissures that cut the carbonate cap rock at the summit of the massif mark the present-day northernmost extent of venting. These spatial relationships reflect multiple stages of field development, the northward migration of venting over time, and the likely development of a nascent field at the massif summit.

  4. Geochronology and magnetic fabrics of the Altenberg-Teplice granite porphyry: implications for emplacement style of a caldera ring dike

    Czech Academy of Sciences Publication Activity Database

    Tomek, Filip; Žák, J.; Svojtka, Martin

    2016-01-01

    Roč. 46 (2016), s. 39-40 E-ISSN 1434-7512. [Late Paleozoic magmatism in the Erzgebirge / Krušné hory: Magma genesis, tectonics, geophysics, and mineral deposits : abstracts. 11.11.2016-12.11.2016, Freiberg] Institutional support: RVO:67985831 Keywords : porphyry * magnetic fabrics * geochronology * Altenberg-Teplice Subject RIV: DB - Geology ; Mineralogy http://tu-freiberg.de/sites/default/files/media/institut-fuer-geologie-718/pdf/fog_volume_46.pdf

  5. Colorado's hydrothermal resource base: an assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pearl, R.H.

    1981-01-01

    As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.

  6. Elemental geochemical records of seafloor hydrothermal activities in the sediments from the Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    ZHAI Shikui; YU Zenghui; DU Tongjun

    2007-01-01

    The major and minor element contents in the sediment core H9 from the hydrothermal fields of the Okinawa Trough show a sharp change at the depth of 80 cm. The elements enriched in the upper 80 cm core are those enriched in the hydrothermal deposits and in the surface sediments recovered from the hydrothermal fields in the trough, which indicates the input of hydrothermal materials. Comparing with other hydrothermal sediments from Mid-ocean Ridges or the Lau Basin, the degree of the enrichment of elements iron, copper, cobalt, and nickel is relatively low. However, the enrichment of elements manganese, lead, arsenic, antimony and mercury is remarkable. The average contents of these elements in the upper 80 cm core sediments are three to six times those in the lower section, and 3 ~ 12 times those in the surface sediments which are not influenced by hydrothermal activities. Hydrothermal activities have contributed significant manganese, lead, arsenic, antimony and mercury to the sediments, and these elements are distinct indicators for the hydrothermal activity in the Okinawa Trough. The significant enrichment of these elements in Core H9 upward from the depth 80 cm indicates the start or the significant enhancing of the hydrothermal activity in this area at about 5 740 aB. P. The average accumulation rate of manganese during this period is about 40 461 μg/( cm2 · ka), which is similar to the hydrothermal sediments in the Lau Basin or the East Pacific Rise.

  7. Deposition of talc - kerolite-smectite - smectite at seafloor hydrothermal vent fields: Evidence from mineralogical, geochemical and oxygen isotope studies

    Science.gov (United States)

    Dekov, V.M.; Cuadros, J.; Shanks, Wayne C.; Koski, R.A.

    2008-01-01

    controls on the precipitation of this sequence are the silica activity and Mg/Al ratio (i.e. the degree of mixing of seawater with hydrothermal fluid). Higher silica activity favors the formation of talc relative to tri-octahedral smectite. Vent structures and sedimentary cover preclude complete mixing of hydrothermal fluid and ambient seawater, resulting in lower Mg/Al ratios in the interior parts of the chimneys and deeper in the sediment which leads to the precipitation of phyllosilicates with lower Mg contents. Talc and kerolite-smectite have very low trace- and rare earth element contents. Some exhibit a negative or flat Eu anomaly, which suggests Eu depletion in the original hydrothermal fluid. Such Eu depletion could be caused by precipitation of anhydrite or barite (sinks for Eu2+) deeper in the system. REE abundances and distribution patterns indicate that chlorite and chlorite-smectite are hydrothermal alteration products of the background turbiditic sediment. ?? 2007 Elsevier B.V. All rights reserved.

  8. Transfer and partitioning of energy and mass through seafloor hydrothermal systems: comparative studies at the Ridge2000 Integrated Study Sites (ISS) (Invited)

    Science.gov (United States)

    Tivey, M. K.

    2010-12-01

    Seafloor hydrothermal systems are major players in the transfer of mass and energy from the mantle and crust to the ocean and biosphere. Over the past thirty years, much has been learned about this transfer to the ocean, but considerably less is known about the transfer to the biosphere. Study of hydrothermal systems in a diverse range of geologic settings has shown relationships between spreading rate and hydrothermal heat flux, substrate composition (including rock geochemistry, presence/absence of sediment) and hydrothermal fluid composition, and magmatic/tectonic events and temporal variability of fluid composition (e.g., German and Von Damm, Treatise On Geochemistry, 2004; Baker et al. AGU Monograph Series 91, 1995). Studies in arc and back-arc settings are documenting the effects of magmatic acid volatiles on fluid-rock reaction and fluid and vent deposit compositions (e.g., Ishibashi and Urabe, Backarc Basins: Tectonics and Magmatism, 1995). These comparative studies in a wide range of geologic settings, including at the three Ridge2000 ISS, have provided a fairly good understanding of the flux of heat and many elements to the ocean associated with high temperature seafloor hydrothermal systems. Considerably less is known, however, about the partitioning of heat and mass (particularly metals and sulfur) in hydrothermal systems. The deposits that form at vent sites are intimately linked within paths of energy and mass transport from the mantle and crust to the oceans. Transport differs greatly through different types of deposits (e.g., black smokers, white smokers/diffusers, flanges). Estimates of heat flux from measured temperatures of flow (unless integrated over and around an entire vent field) require an understanding of the partitioning of flow between focused black smokers and more diffuse flow from diffusers, flanges, and surfaces of deposits, and from the igneous substrate. Estimates of mass flux into the ocean require an understanding of the

  9. Vertical Cable Seismic Survey for Hydrothermal Deposit

    Science.gov (United States)

    Asakawa, E.; Murakami, F.; Sekino, Y.; Okamoto, T.; Ishikawa, K.; Tsukahara, H.; Shimura, T.

    2012-04-01

    The vertical cable seismic is one of the reflection seismic methods. It uses hydrophone arrays vertically moored from the seafloor to record acoustic waves generated by surface, deep-towed or ocean bottom sources. Analyzing the reflections from the sub-seabed, we could look into the subsurface structure. This type of survey is generally called VCS (Vertical Cable Seismic). Because VCS is an efficient high-resolution 3D seismic survey method for a spatially-bounded area, we proposed the method for the hydrothermal deposit survey tool development program that the Ministry of Education, Culture, Sports, Science and Technology (MEXT) started in 2009. We are now developing a VCS system, including not only data acquisition hardware but data processing and analysis technique. Our first experiment of VCS surveys has been carried out in Lake Biwa, JAPAN in November 2009 for a feasibility study. Prestack depth migration is applied to the 3D VCS data to obtain a high quality 3D depth volume. Based on the results from the feasibility study, we have developed two autonomous recording VCS systems. After we carried out a trial experiment in the actual ocean at a water depth of about 400m and we carried out the second VCS survey at Iheya Knoll with a deep-towed source. In this survey, we could establish the procedures for the deployment/recovery of the system and could examine the locations and the fluctuations of the vertical cables at a water depth of around 1000m. The acquired VCS data clearly shows the reflections from the sub-seafloor. Through the experiment, we could confirm that our VCS system works well even in the severe circumstances around the locations of seafloor hydrothermal deposits. We have, however, also confirmed that the uncertainty in the locations of the source and of the hydrophones could lower the quality of subsurface image. It is, therefore, strongly necessary to develop a total survey system that assures a accurate positioning and a deployment techniques

  10. Geologic field-trip guide to the volcanic and hydrothermal landscape of the Yellowstone Plateau

    Science.gov (United States)

    Morgan Morzel, Lisa Ann; Shanks, W. C. Pat; Lowenstern, Jacob B.; Farrell, Jamie M.; Robinson, Joel E.

    2017-11-20

    Yellowstone National Park, a nearly 9,000 km2 (~3,468 mi2) area, was preserved in 1872 as the world’s first national park for its unique, extraordinary, and magnificent natural features. Rimmed by a crescent of older mountainous terrain, Yellowstone National Park has at its core the Quaternary Yellowstone Plateau, an undulating landscape shaped by forces of late Cenozoic explosive and effusive volcanism, on-going tectonism, glaciation, and hydrothermal activity. The Yellowstone Caldera is the centerpiece of the Yellowstone Plateau. The Yellowstone Plateau lies at the most northeastern front of the 17-Ma Yellowstone hot spot track, one of the few places on Earth where time-transgressive processes on continental crust can be observed in the volcanic and tectonic (faulting and uplift) record at the rate and direction predicted by plate motion. Over six days, this field trip presents an intensive overview into volcanism, tectonism, and hydrothermal activity on the Yellowstone Plateau (fig. 1). Field stops are linked directly to conceptual models related to monitoring of the various volcanic, geochemical, hydrothermal, and tectonic aspects of the greater Yellowstone system. Recent interest in young and possible future volcanism at Yellowstone as well as new discoveries and synthesis of previous studies, (for example, tomographic, deformation, gas, aeromagnetic, bathymetric, and seismic surveys), provide a framework in which to discuss volcanic, hydrothermal, and seismic activity in this dynamic region.

  11. The Cocos Ridge hydrothermal system revealed by microthermometry of fluid and melt inclusions

    Science.gov (United States)

    Brandstätter, J.; Kurz, W.; Krenn, K.

    2017-12-01

    Microthermometric analyses of fluid and melt inclusions in hydrothermal veins and in the Cocos Ridge (CCR) basalt were used to reveal the CCR thermal history at IODP Site 344-U1414 and to constrain fluid source and flow. Hydrothermal veins are hosted by lithified sediments and CCR basalt . Site 344-U1414, located 1 km seaward of the Middle American Trench offshore Costa Rica, serves to evaluate fluid/rock interaction, the hydrologic system and geochemical processes linked with the tectonic evolution of the incoming Cocos Plate from the Early Miocene up to recent times. The veins in the sedimentary rocks are mainly filled by blocky calcite, containing numerous fluid inclusions, and sometimes crosscut fibrous quartz/chalcedony veins. The veins in the basalt can be differentiated into three types: antitaxial fibrous calcite veins, composite veins with fibrous calcite and clay minerals at the vein margins and spherulitic quartz in the center, and syntaxial blocky aragonite veins surrounded by a clay selvage in the uppermost CCR basalt sections. Secondary minerals, clay minerals, fibrous calcite, quartz/chalcedony and pyrite also filled vesicles in the basalt. Fluid inclusions were mainly found in the aragonite veins and rarely in quartz in the composite veins and vesicles. Blocky veins with embedded wall rock fragments appear in the sediments and in the basalt indicate hydraulic fracturing. The occurrence of decrepitated fluid inclusions show high homogenization temperatures up to 400 °C. Decrepitated fluid inclusions are formed by increased internal overpressure, related to isobaric heating. Elongated fluid inclusion planes, arc-like fluid inclusions and low homogenization temperatures indicate subsequent isobaric cooling. The results obtained so far from Raman spectroscopy and microthermometry indicate CO2 inclusions and petrographic observations suggest the presence of silicate melt inclusions in phenocrysts in the basalt (mainly in clinopyroxene and plagioclase

  12. The Guaymas Basin hiking guide to hydrothermal mounds, chimneys and microbial mats: complex seafloor expressions of subsurface hydrothermal circulation

    Directory of Open Access Journals (Sweden)

    Andreas eTeske

    2016-02-01

    Full Text Available The hydrothermal mats, mounds and chimneys of the southern Guaymas Basin are the surface expression of complex subsurface hydrothermal circulation patterns. In this overview we document the most frequently visited features of this hydrothermal area with photographs, temperature measurements, and selected geochemical data; many of these distinct habitats await characterization of their microbial communities and activities. Microprofiler deployments on microbial mats and hydrothermal sediments show their steep geochemical and thermal gradients at millimeter-scale vertical resolution. Mapping these hydrothermal features and sampling locations within the southern Guaymas Basin suggest linkages to underlying shallow sills and heatflow gradients. Recognizing the inherent spatial limitations of much current Guaymas Basin sampling calls for a wider survey of the entire spreading region.

  13. Parallel Multi-Objective Genetic Algorithm for Short-Term Economic Environmental Hydrothermal Scheduling

    Directory of Open Access Journals (Sweden)

    Zhong-Kai Feng

    2017-01-01

    Full Text Available With the increasingly serious energy crisis and environmental pollution, the short-term economic environmental hydrothermal scheduling (SEEHTS problem is becoming more and more important in modern electrical power systems. In order to handle the SEEHTS problem efficiently, the parallel multi-objective genetic algorithm (PMOGA is proposed in the paper. Based on the Fork/Join parallel framework, PMOGA divides the whole population of individuals into several subpopulations which will evolve in different cores simultaneously. In this way, PMOGA can avoid the wastage of computational resources and increase the population diversity. Moreover, the constraint handling technique is used to handle the complex constraints in SEEHTS, and a selection strategy based on constraint violation is also employed to ensure the convergence speed and solution feasibility. The results from a hydrothermal system in different cases indicate that PMOGA can make the utmost of system resources to significantly improve the computing efficiency and solution quality. Moreover, PMOGA has competitive performance in SEEHTS when compared with several other methods reported in the previous literature, providing a new approach for the operation of hydrothermal systems.

  14. Hydrothermal oxidation of ammonia/organic waste mixtures

    International Nuclear Information System (INIS)

    Luan, Li; Proesmans, P.I.; Buelow, S.J.

    1997-01-01

    Hydrothermal oxidation is a promising new technology for the treatment of radioactive contaminated hazardous organic wastes. Los Alamos National Laboratory is currently evaluating this technology for the U. S. Department of Energy. In this paper, we present experimental results from the study of the hydrothermal oxidation of an ammonia/alcohol/uranium waste mixture. The use of a co-oxidant system consisting of hydrogen peroxide combined with nitrate is discussed. Experiments demonstrate near complete destruction of ammonia and organic compounds at 500 degrees C, 38 MPa, and 50 seconds reaction time. The ammonia and total organic carbon (TOC) concentrations in a waste simulant is reduced from 8,500 mg/L of ammonia and 12,500 mg/L TOC to 30 mg/L ammonia and less than 10 mg/L TOC. The major reaction products are CO 2 , N 2 , and a small amount of N 2 O. Comparison experiments with nitrate and hydrogen peroxide used individually show the advantage of the co-oxidant system

  15. A Serpentinite-Hosted Ecosystem: The Lost City Hydrothermal Field

    Science.gov (United States)

    Kelley, Deborah S.; Karson, Jeffrey A.; Früh-Green, Gretchen L.; Yoerger, Dana R.; Shank, Timothy M.; Butterfield, David A.; Hayes, John M.; Schrenk, Matthew O.; Olson, Eric J.; Proskurowski, Giora; Jakuba, Mike; Bradley, Al; Larson, Ben; Ludwig, Kristin; Glickson, Deborah; Buckman, Kate; Bradley, Alexander S.; Brazelton, William J.; Roe, Kevin; Elend, Mitch J.; Delacour, Adélie; Bernasconi, Stefano M.; Lilley, Marvin D.; Baross, John A.; Summons, Roger E.; Sylva, Sean P.

    2005-03-01

    The serpentinite-hosted Lost City hydrothermal field is a remarkable submarine ecosystem in which geological, chemical, and biological processes are intimately interlinked. Reactions between seawater and upper mantle peridotite produce methane- and hydrogen-rich fluids, with temperatures ranging from A low diversity of microorganisms related to methane-cycling Archaea thrive in the warm porous interiors of the edifices. Macrofaunal communities show a degree of species diversity at least as high as that of black smoker vent sites along the Mid-Atlantic Ridge, but they lack the high biomasses of chemosynthetic organisms that are typical of volcanically driven systems.

  16. Rapid hydrothermal route to synthesize cubic-phase gadolinium ...

    Indian Academy of Sciences (India)

    Administrator

    The elongated nanoscale systems, as produced via a hydrothermal process .... by adding several drops of 5 M NaOH solution under vigorous ... at an accelerating voltage of 200 kV. ..... remarkable distribution of nanoscale rods, with aspect ...

  17. Abiotic synthesis of organic compounds from carbon disulfide under hydrothermal conditions.

    Science.gov (United States)

    Rushdi, Ahmed I; Simoneit, Bernd R T

    2005-12-01

    Abiotic formation of organic compounds under hydrothermal conditions is of interest to bio, geo-, and cosmochemists. Oceanic sulfur-rich hydrothermal systems have been proposed as settings for the abiotic synthesis of organic compounds. Carbon disulfide is a common component of magmatic and hot spring gases, and is present in marine and terrestrial hydrothermal systems. Thus, its reactivity should be considered as another carbon source in addition to carbon dioxide in reductive aqueous thermosynthesis. We have examined the formation of organic compounds in aqueous solutions of carbon disulfide and oxalic acid at 175 degrees C for 5 and 72 h. The synthesis products from carbon disulfide in acidic aqueous solutions yielded a series of organic sulfur compounds. The major compounds after 5 h of reaction included dimethyl polysulfides (54.5%), methyl perthioacetate (27.6%), dimethyl trithiocarbonate (6.8%), trithianes (2.7%), hexathiepane (1.4%), trithiolanes (0.8%), and trithiacycloheptanes (0.3%). The main compounds after 72 h of reaction consisted of trithiacycloheptanes (39.4%), pentathiepane (11.6%), tetrathiocyclooctanes (11.5%), trithiolanes (10.6%), tetrathianes (4.4%), trithianes (1.2%), dimethyl trisulfide (1.1%), and numerous minor compounds. It is concluded that the abiotic formation of aliphatic straight-chain and cyclic polysulfides is possible under hydrothermal conditions and warrants further studies.

  18. 600 kyr of Hydrothermal Activity on the Cleft Segment of the Juan de Fuca Ridge

    Science.gov (United States)

    Middleton, J. L.; Mukhopadhyay, S.; Langmuir, C. H.; Costa, K.; McManus, J. F.; Katz, R. F.; Huybers, P. J.; Winckler, G.; Li, Y.

    2017-12-01

    Pressure fluctuations caused by glacially driven variations in sea level may modulate magmatic and hydrothermal output at submarine volcanic centers, with falling sea level driving increased volcanic activity. In turn, glacially paced changes in submarine volcanism could induce globally synchronous variations in the delivery of bioavailable iron and CO2 from mid-ocean ridges and thus provide solid-Earth feedbacks into the climate system. While evaluation of submarine volcanic output on orbital-timescales is technically challenging, near-ridge sediment cores hosting hydrothermal plume precipitates provide continuous, spatially integrated, and datable records to investigate the long-term behavior of hydrothermal systems. We will present new sedimentary records of hydrothermal variability spanning the past 600 kyr on the Cleft Segment of the Juan de Fuca Ridge in the Northeast Pacific. As an intermediate spreading-rate ridge, the Juan de Fuca Ridge is hypothesized to be particularly sensitive to sea level forcing at the Milankovitch frequencies of Pleistocene glacial cycles. Thus, the new records can be used to examine the connection between sea level and hydrothermal activity over multiple glacial cycles. Hydrothermal input is determined from iron and copper, with a titanium-based correction for lithogenic contributions. Sedimentary fluxes are then constrained using excess thorium-230 and extraterrestrial helium-3 as constant flux proxies. Preliminary results indicate 10-fold changes in hydrothermal iron and copper fluxes over the past 600 kyr and suggest a quasiperiodic variability in hydrothermal deposition on 100 to 120 kyr cycles. Comparison of the Juan de Fuca record with model predictions for an intermediate spreading ridge forced by Pleistocene glacial cycles finds frequent coincidence between predicted positive anomalies in magmatic output and observed peaks in hydrothermal deposition. This work encourages the continued exploration of the relationship between

  19. Revisiting the Euganean Geothermal System (NE Italy) - insights from large scale hydrothermal modelling

    Science.gov (United States)

    Pola, Marco; Cacace, Mauro; Fabbri, Paolo; Piccinini, Leonardo; Zampieri, Dario; Dalla Libera, Nico

    2017-04-01

    As one of the largest and most extensive utilized geothermal system in northern Italy, the Euganean Geothermal System (EGS, Veneto region, NE Italy) has long been the subject of still ongoing studies. Hydrothermal waters feeding the system are of meteoric origin and infiltrate in the Veneto Prealps, to the north of the main geothermal area. The waters circulate for approximately 100 km in the subsurface of the central Veneto, outflowing with temperatures from 65°C to 86°C to the southwest near the cities of Abano Terme and Montegrotto Terme. The naturally emerging waters are mainly used for balneotherapeutic purposes, forming the famous Euganean spa district. This preferential outflow is thought to have a relevant structural component producing a high secondary permeability localized within an area of limited extent (approx. 25 km2). This peculiar structure is associated with a local network of fractures resulting from transtentional tectonics of the regional Schio-Vicenza fault system (SVFS) bounding the Euganean Geothermal Field (EGF). In the present study, a revised conceptual hydrothermal model for the EGS based on the regional hydrogeology and structural geology is proposed. Particularly, this work aims to quantify: (1) the role of the regional SVFS, and (2) the impact of the high density local fractures mesh beneath the EGF on the regional-to-local groundwater flow circulation at depths and its thermal configuration. 3D coupled flow and heat transport numerical simulations inspired by the newly developed conceptual model are carried out to properly quantify the results from these interactions. Consistently with the observations, the obtained results provide indication for temperatures in the EGF reservoir being higher than in the surrounding areas, despite a uniform basal regional crustal heat inflow. In addition, they point to the presence of a structural causative process for the localized outflow, in which deep-seated groundwater is preferentially

  20. Moessbauer spectroscopy study on the hydrothermal transformation α-FeOOH → α-Fe2O3

    International Nuclear Information System (INIS)

    Barb, D.; Diamandescu, L.; Mihaila-Tarabsanu, D.; Rusi, A.; Moraria, M.

    1990-01-01

    The reaction kinetics of the hydrothermal transformation α-FeOOH→α-Fe 2 O 3 was studied by means of Moessbauer spectroscopy. From the reaction isotherms, a monomolecular, first order reaction was found to characterise the hydrothermal transformation of alpha oxihydroxide to the alpha iron oxide. The rate constant as well as the activation energy of this process were determined. No intermediate phases were identified in the hydrothermal samples. The thermodynamic properties of the hydrothermal system α-FeOOH→α-Fe 2 O 3 in correlation with Moessbauer spectroscopy data are discussed. (orig.)

  1. Age of hydrothermal processes in the central iberian zone (Spain according TO U-Pb dating of cassiterite and apatite

    Directory of Open Access Journals (Sweden)

    Н. Г. Ризванова

    2017-06-01

    Full Text Available Results of isotope-geochemical studies by PbLS step-leaching method of cassiterite from greisens located in Logrosán granite massif (Central Iberian Zone, Spain and apatite from hydrothermal quartz-apatite vein on its exocontact indicate that in both cases a hydrothermal event is recorded in the interval of 114-126 Ma, which has been accompanied by lead supply. Within the limits of estimation error, the same age around 120 Ma corresponds to crystallization of hydrothermal apatite, formation of sticks and micro-inclusions in cassiterite from greisens and is suggested for Au-As-Sb-Pb ore mineralization, which calls for further confirmation. Xenogenous zircon from quartz-apatite vein does not react to this relatively low-temperature hydrothermal event either with building up new generations (sticks, areas of recrystallization or with rebalancing of U-Pb isotope system. The age of greisen formation has been confirmed to be around 305 Ma by PbLS method on final phases of cassiterite leaching. Earlier it was estimated with 40Ar/39Ar method on muscovite.

  2. Modelling of hydrothermal characteristics of centrifugal nozzles

    International Nuclear Information System (INIS)

    Yarkho, A.A.; Omelchenko, M.P.; Borshchev, V.A.

    1990-01-01

    Presented for the first time is a method of recalculating the hydrothermal characteristics of centrifugal nozzles obtained in laboratory conditions for full-scale nozzles. From the experimental hydrothermal characteristics of nozzles observed in the laboratory it is allowed to calculate the hydrothermal characteristics of any other centrifugal nozzle whose diameter and dimensionless geometric characteristic are known

  3. U-Pb ages for two tonalitic gneisses, pegmatitic granites, and K-feldspar porphyries, Olkiluoto study site, Eurajoki, SW Finland

    International Nuclear Information System (INIS)

    Maenttaeri, I.; Lindberg, A.; Aaltonen, I.

    2007-08-01

    Secondary ion microprobe zircon U-Pb ages have been determined for two tonalitic gneisses, two pegmatitic granites, and two potassium feldspar porphyry samples from the Olkiluoto study site, Eurajoki, S-W Finland. Moreover, monazites from the Kfeldspar porphyries were dated using TIMS U-Pb method. The tonalitic gneiss A1879 TTG 1 reveals bimodal zircon population and for A1880 TTG it is homogeneous. The samples yield similar overlapping concordia ages of 1851 ± 5 Ma and 1856 ± 5 Ma, respectively. The pegmatitic granite samples A1881 PGR 1 and A1883 PGR 2 have mostly zircons resembling those of the TTG's. The supposed pegmatitic zircons with high U and low Th are strongly altered. The zircon U-Pb data of A1881 PGR 1 plot roughly in two separate lines on a concordia diagram. The apparently younger ∼1.79 Ga data are all from the high U and low Th/U zircons and therefore certainly set the minimum age for the A1881 PGR 1. It is suggested, that the ∼1.85 Ga data comprise analyses from inherited zircons as it include both lower and higher Th/U zircons and 1.85 Ga coevals with age of the tonalitic gneisses. Thus, the apparent age for the A1881 PGR 1 is ∼1.79 Ga. The U-Pb data of sample A1883 PGR 2 also divide into two groups. The higher Th/U, inherited zircons determine an age of 1852 ± 9 Ma which is the same as that of the TTG's. The low Th/U zircon data scatter and the age of 1.83 Ga for A1883 PGR 2 is only poorly determined. The both potassium feldspar porphyry samples A1882 KFP 1 and A1884 KFP 2 reveal heterogeneous zircon populations. The A1882 KFP 1 zircons showing magmatic zoning in BSE images conceivably determine a concordia age of 1842± 6 Ma for the rock. In addition to that a few ∼1.9 Ga inherited zircon and metamorphic low Th/U rims with ages between 1.88 Ga and 1.83 Ga were detected. The age for the youngest metamorphic zircon rims overlaps with that of the magmatic zircons. The zircons in the other KFP sample A1884 show a wide range of ages

  4. Production and analysis of hydroxyapatite from Australian corals via hydrothermal process

    International Nuclear Information System (INIS)

    Hu, J.; Russell, J.; Ben-Nissan, B.

    1999-01-01

    Since the 1970s it is well known that if a biocompatible ceramic prosthesis with appropriate interconnected pores is used, growth of hard and soft tissue into the surface pores will be observed. A very strong attachment and hence the resultant mechanical and chemical bond to the existing surrounding tissue will be produced. Current artificial eyes although widely used encounter various problems due to the their motility and fail to deliver natural movement. They also cause sagging of the lids due to unsupported weight of the prosthesis. It is expected that application of a porous bioceramic such as the hydroxyapatite can generate good bonding to the tissue and hence a life-like eye movement. Hydroxyapatite (HAp) and related calcium phosphates have been studied for many years as implant materials, due to their similarity with the mineral phase of bone. From the point of view of biocompatibility, HAp seems to be the most suitable ceramic material for tissue replacement implants. Hydroxyapatite ceramics do not exhibit any cytoxic effects. It shows excellent biocompatibility with hard and soft tissues. Moreover, HAp can directly bond to the bone. Various preparation methods for HAp including the hydrothermal method have been used. The hydrothermal method was first used for hydroxyapatite formation directly from corals in 1974 by Roy and Linnehan. Complete replacement of aragonite by phosphatic material was achieved under 270degC and 103MPa using the hydrothermal process. This process has the disadvantage that the hydrothermal treatment must be carried out at a relatively high temperature under very high pressure. In 1996, HAp derived from Indian coral using hydrothermal process was developed by Sivakumar et al. However, the resultant material was in the form of a powder. Australia has rich variety of corals. Their application for implants have been studied very little. In this study, Australian corals selected were used for hydroxyapatite conversion. A new hydrothermal

  5. Hydro-Thermal Fatigue Resistance Measurements on Polymer Interfaces

    Science.gov (United States)

    Gurumurthy, Charan K.; Kramer, Edward J.; Hui, Chung-Yuen

    1998-03-01

    We have developed a new technique based on a fiber optic displacement sensor for rapid determination of hydro-thermal fatigue crack growth rate per cycle (da/dN) of an epoxy/polyimide interface used in flip chip attach microelectronic assembly. The sample is prepared as a trilayered cantilever beam by capillary flow of the epoxy underfill over a polyimide coated metallic beam. During hydro-thermal cycling the crack growth along the interface (from the free end) changes the displacement of this end of the beam and we measure the free end displacement at the lowest temperature in each hydro-thermal cycle. The change in beam displacement is then converted into crack growth rate (da/dN). da/dN depends on the maximum change in the strain energy release rate of the crack and the phase angle in each cycle. The relation between da/dN and maximum strain energy release rate characterizes the fatigue crack growth resistance of the interface. We have developed and used a simple model anhydride cured and a commercially available PMDA/ODA passivation for this study.

  6. Study on the hydrothermal treatment of Shenhua coal

    Energy Technology Data Exchange (ETDEWEB)

    Zhicai Wang; Hengfu Shui; Zhanning Pei; Jinsheng Gao [Anhui University of Technology, Ma' anshan (China). School of Chemistry and Chemical Engineering

    2008-04-15

    In this paper, the hydrothermal treatment of Shenhua coal was carried out under 0.1 MPa (initial pressure) nitrogen and different temperature. Effects of hydrothermal treatment on the structure and the hydro-liquefaction activity of Shenhua coal were investigated by the ultimate and proximate analyses, the FTIR measurements and TG analyses of hydrothermally treated coals, and the characterizations of extraction and swelling properties, and the batch hydro-liquefaction of treated coal were also carried out. The results indicate that hydrothermal treatment above 200{sup o}C can increase the hydrogen content of treated coal and decrease the yield of volatiles and the content of ash, especially a large amount of CO and CH{sub 4} are found in gas products obtained by the hydrothermal treatment above 250{sup o}C. Hydrothermal treatment disrupts the weak covalent bond such as ether, ester and side-chain substituent by hydrolysis and pyrolysis, and changes the distribution of H-bond in coal. The swelling ratio and the Soxhlet extraction yield of treated coal decrease with the increase of hydrothermal treatment temperature. The conversion of liquefaction and the yield of CS{sub 2}/NMP mixed solvent extraction at ambient temperature are enhanced by hydrothermal treatment at 300{sup o}C. Therefore hydrogen donation reactions and the rupture of non-covalent bond and weak covalent bonds present in the process of hydrothermal treatment resulting in the changes of structure and reactivity of Shenhua coal. The results show that the hydro-liquefaction activity of Shenhua coal can be improved by hydrothermal pretreatment between 250{sup o}C and 300{sup o}C. 15 refs., 5 figs., 4 tabs.

  7. Free-living nematode species (Nematoda) dwelling in hydrothermal sites of the North Mid-Atlantic Ridge

    Science.gov (United States)

    Tchesunov, Alexei V.

    2015-12-01

    Morphological descriptions of seven free-living nematode species from hydrothermal sites of the Mid-Atlantic Ridge are presented. Four of them are new for science: Paracanthonchus olgae sp. n. (Chromadorida, Cyatholaimidae), Prochromadora helenae sp. n. (Chromadorida, Chromadoridae), Prochaetosoma ventriverruca sp. n. (Desmodorida, Draconematidae) and Leptolaimus hydrothermalis sp. n. (Plectida, Leptolaimidae). Two species have been previously recorded in hydrothermal habitats, and one species is recorded for the first time in such an environment. Oncholaimus scanicus (Enoplida, Oncholaimidae) was formerly known from only the type locality in non-hydrothermal shallow milieu of the Norway Sea. O. scanicus is a very abundant species in Menez Gwen, Lucky Strike and Lost City hydrothermal sites, and population of the last locality differs from other two in some morphometric characteristics. Desmodora marci (Desmodorida, Desmodoridae) was previously known from other remote deep-sea hydrothermal localities in south-western and north-eastern Pacific. Halomonhystera vandoverae (Monhysterida, Monhysteridae) was described and repeatedly found in mass in Snake Pit hydrothermal site. The whole hydrothermal nematode assemblages are featured by low diversity in comparison with either shelf or deep-sea non-hydrothermal communities. The nematode species list of the Atlantic hydrothermal vents consists of representatives of common shallow-water genera; the new species are also related to some shelf species. On the average, the hydrothermal species differ from those of slope and abyssal plains of comparable depths by larger sizes, diversity of buccal structures, presence of food content in the gut and ripe eggs in uteri.

  8. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    Energy Technology Data Exchange (ETDEWEB)

    Jackson, Jr., Mac Roy [Univ. of Nevada, Reno, NV (United States)

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  9. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    International Nuclear Information System (INIS)

    Jackson, M.R. Jr.

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system

  10. Structural archetypes in nickel(II) hybrid vanadates. Towards a directed hydrothermal synthesis

    International Nuclear Information System (INIS)

    Luis, R. Fernandez de; Urtiaga, M.K.; Mesa, J.L.; Rojo, T.; Arriortua, M.I.

    2009-01-01

    In the present work, we relate the modifications of the initial synthesis parameters (pH value, stoichiometry and concentration) with the different structural archetypes obtained in the {Ni/Bpy/VO} and {Ni/Bpe/VO} systems (4,4'-bipyridine (Bpy), 1,2-di(4-pyridyl) ethylene (Bpe)). The vanadium coordination is partially controlled by the hydrothermal synthesis conditions, and the final crystal structures depend on the synergetic interaction between the metal-organic subnets and the vanadium oxide subunits.

  11. Polymer-Assisted Hydrothermal Synthesis of Hierarchically Arranged Hydroxyapatite Nanoceramic

    Directory of Open Access Journals (Sweden)

    A. Joseph Nathanael

    2013-01-01

    Full Text Available Flower-like hydroxyapatite (HA nanostructures were synthesized by a polymer-assisted hydrothermal method. The thickness of the petals/plates decreased from 200 nm to 40 nm as the polymer concentration increased. The thickness also decreased as the hydrothermal treatment time increased from 6 to 12 hr. The HRTEM and SAED patterns suggest that the floral-like HA nanostructures are single crystalline in nature. Structural analysis based on XRD and Raman experiments implied that the produced nanostructure is a pure form of HA without any other impurities. The possible formation mechanism was discussed for the formation of flower-like HA nanostructures during polymer-assisted hydrothermal synthesis. Finally, in vitro cellular analysis revealed that the hierarchically arranged HA nanoceramic had improved cell viability relative to other structures. The cells were actively proliferated over these nanostructures due to lower cytotoxicity. Overall, the size and the crystallinity of the nanostructures played a role in improving the cell proliferation.

  12. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes.

    Science.gov (United States)

    Zhou, Yan; Schideman, Lance; Zheng, Mingxia; Martin-Ryals, Ana; Li, Peng; Tommaso, Giovana; Zhang, Yuanhui

    2015-01-01

    Hydrothermal liquefaction (HTL) is a promising process for converting wet biomass and organic wastes into bio-crude oil. It also produces an aqueous product referred to as post-hydrothermal liquefaction wastewater (PHWW) containing up to 40% of the original feedstock carbon, which reduces the overall energy efficiency of the HTL process. This study investigated the feasibility of using anaerobic digestion (AD) to treat PHWW, with the aid of activated carbon. Results showed that successful AD occurred at relatively low concentrations of PHWW (≤ 6.7%), producing a biogas yield of 0.5 ml/mg CODremoved, and ∼53% energy recovery efficiency. Higher concentrations of PHWW (≥13.3%) had an inhibitory effect on the AD process, as indicated by delayed, slower, or no biogas production. Activated carbon was shown to effectively mitigate this inhibitory effect by enhancing biogas production and allowing digestion to proceed at higher PHWW concentrations (up to 33.3%), likely due to sequestering toxic organic compounds. The addition of activated carbon also increased the net energy recovery efficiency of AD with a relatively high concentration of PHWW (33.3%), taking into account the energy for producing activated carbon. These results suggest that AD is a feasible approach to treat PHWW, and to improve the energy efficiency of the HTL processes.

  13. Chicxulub: testing for post-impact hydrothermal inputs into the Tertiary ocean

    Science.gov (United States)

    Rowe, A.; Wilkinson, J.; Morgan, J.

    2003-04-01

    wider significance of such hydrothermal circulation, if identified, include the potential formation of hydrothermal mineralization and vent-related ecosystems in the Chicxulub crater. The results will also have implications for the exploration of impact-related hydrothermal ecosystems on other planets.

  14. Planning of the power hydrothermal system operation - alternatives for the modelling and uncertainties treatment; Planejamento da operacao de sistemas hidrotermicos de potencia - alternativas de modelagem e o tratamento das incertezas

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Andre Flavio Soares; Bajay, Sergio Valdir [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica]|[Universidade Estadual de Campinas, SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE)]. E-mails: apereira@fem.unicamp.br; bajay@fem.unicamp.br; Barbosa, Paulo Sergio Franco [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Civil]|[Universidade Estadual de Campinas, SP (Brazil). Nucleo Interdisciplinar de Planejamento Energetico (NIPE)]. E-mail: franco@fec.unicamp.br

    2006-07-01

    The complexity of the operation scheduling of hydrothermal power systems lies, among other factors, in the interconnection between the operation decision in a certain stage and the future consequences of such decision. The operation of a hydrothermal power system comprises from the supervision and real time control of the generation and transport of electricity, to aspects as the modelling of the uncertainties concerning the future stream flows and the optimised management of the hydro power plant reservoirs. This work addresses a general formulation of the operation scheduling problem of hydrothermal power systems; a brief presentation of the various optimization techniques which can be used in its solution; and a discussion about the main alternatives that has been adopted to model the problem and to deal with its main uncertainties. (author)

  15. Strata-bound Fe-Co-Cu-Au-Bi-Y-REE deposits of the Idaho Cobalt Belt: Multistage hydrothermal mineralization in a magmatic-related iron oxide copper-gold system

    Science.gov (United States)

    Slack, John F.

    2012-01-01

    Mineralogical and geochemical studies of strata-bound Fe-Co-Cu-Au-Bi-Y-rare-earth element (REE) deposits of the Idaho cobalt belt in east-central Idaho provide evidence of multistage epigenetic mineralization by magmatic-hydrothermal processes in an iron oxide copper-gold (IOCG) system. Deposits of the Idaho cobalt belt comprise three types: (1) strata-bound sulfide lenses in the Blackbird district, which are cobaltite and, less commonly, chalcopyrite rich with locally abundant gold, native bismuth, bismuthinite, xenotime, allanite, monazite, and the Be-rich silicate gadolinite-(Y), with sparse uraninite, stannite, and Bi tellurides, in a gangue of quartz, chlorite, biotite, muscovite, garnet, tourmaline, chloritoid, and/or siderite, with locally abundant fluorapatite or magnetite; (2) discordant tourmalinized breccias in the Blackbird district that in places have concentrations of cobaltite, chalcopyrite, gold, and xenotime; and (3) strata-bound magnetite-rich lenses in the Iron Creek area, which contain cobaltiferous pyrite and locally sparse chalcopyrite or xenotime. Most sulfide-rich deposits in the Blackbird district are enclosed by strata-bound lenses composed mainly of Cl-rich Fe biotite; some deposits have quartz-rich envelopes.Whole-rock analyses of 48 Co- and/or Cu-rich samples show high concentrations of Au (up to 26.8 ppm), Bi (up to 9.16 wt %), Y (up to 0.83 wt %), ∑REEs (up to 2.56 wt %), Ni (up to 6,780 ppm), and Be (up to 1,180 ppm), with locally elevated U (up to 124 ppm) and Sn (up to 133 ppm); Zn and Pb contents are uniformly low (≤821 and ≤61 ppm, respectively). Varimax factor analysis of bulk compositions of these samples reveals geochemically distinct element groupings that reflect statistical associations of monazite, allanite, and xenotime; biotite and gold; detrital minerals; chalcopyrite and sparse stannite; quartz; and cobaltite with sparse selenides and tellurides. Significantly, Cu is statistically separate from Co and As

  16. Acoustics advances study of sea floor hydrothermal flow

    Science.gov (United States)

    Rona, Peter A.; Jackson, Darrell R.; Bemis, Karen G.; Jones, Christopher D.; Mitsuzawa, Kyohiko; Palmer, David R.; Silver, Deborah

    Sub-sea floor hydrothermal convection systems discharge as plumes from point sources and as seepage from the ocean bottom. The plumes originate as clear, 150-400°C solutions that vent from mineralized chimneys; precipitate dissolved metals as particles to form black or white smokers as they turbulently mix with ambient seawater; and buoyantly rise hundreds of meters to a level of neutral density where they spread laterally. The seepage discharges from networks of fractures at the rock-water interface as clear, diffuse flow, with lower temperatures, metal contents, and buoyancy than the smokers. The diffuse flow may be entrained upward into plumes, or laterally by prevailing currents in discrete layers within tens of meters of the sea floor. The role of these flow regimes in dispersing heat, chemicals, and biological material into the ocean from sub-sea floor hydrothermal convection systems is being studied on a global scale.

  17. Coupling geophysical investigation with hydrothermal modeling to constrain the enthalpy classification of a potential geothermal resource.

    Science.gov (United States)

    White, Jeremy T.; Karakhanian, Arkadi; Connor, Chuck; Connor, Laura; Hughes, Joseph D.; Malservisi, Rocco; Wetmore, Paul

    2015-01-01

    An appreciable challenge in volcanology and geothermal resource development is to understand the relationships between volcanic systems and low-enthalpy geothermal resources. The enthalpy of an undeveloped geothermal resource in the Karckar region of Armenia is investigated by coupling geophysical and hydrothermal modeling. The results of 3-dimensional inversion of gravity data provide key inputs into a hydrothermal circulation model of the system and associated hot springs, which is used to evaluate possible geothermal system configurations. Hydraulic and thermal properties are specified using maximum a priori estimates. Limited constraints provided by temperature data collected from an existing down-gradient borehole indicate that the geothermal system can most likely be classified as low-enthalpy and liquid dominated. We find the heat source for the system is likely cooling quartz monzonite intrusions in the shallow subsurface and that meteoric recharge in the pull-apart basin circulates to depth, rises along basin-bounding faults and discharges at the hot springs. While other combinations of subsurface properties and geothermal system configurations may fit the temperature distribution equally well, we demonstrate that the low-enthalpy system is reasonably explained based largely on interpretation of surface geophysical data and relatively simple models.

  18. Modeling of hydrothermal circulation applied to active volcanic areas. The case of Vulcano (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Todesco, M. [Dip. Scienze della Terra, Posa (Italy)

    1995-03-01

    Modeling of fluid and heat flows through porous media has been diffusely applied up to date to the study of geothermal reservoirs. Much less has been done to apply the same methodology to the study of active volcanoes and of the associated volcanic hazard. Hydrothermal systems provide direct information on dormant eruptive centers and significant insights on their state of activity and current evolution. For this reason, the evaluation of volcanic hazard is also based on monitoring of hydrothermal activity. Such monitoring, however, provides measurements of surface parameters, such as fluid temperature or composition, that often are only representative of the shallower portion of the system. The interpretation of these data in terms of global functioning of the hydrothermal circulation can therefore be highly misleading. Numerical modeling of hydrothermal activity provides a physical approach to the description of fluid circulation and can contribute to its understanding and to the interpretation of monitoring data. In this work, the TOUGH2 simulator has been applied to study the hydrothermal activity at Vulcano (Italy). Simulations involved an axisymmetric domain heated from below, and focused on the effects of permeability distribution and carbon dioxide. Results are consistent with the present knowledge of the volcanic system and suggest that permeability distribution plays a major role in the evolution of fluid circulation. This parameter should be considered in the interpretation of monitoring data and in the evaluation of volcanic hazard at Vulcano.

  19. Microbial Diversity of Carbonate Chimneys at the Lost City Hydrothermal Field: Implications for Life-Sustaining Systems in Peridotite Seafloor Environments

    Science.gov (United States)

    Schrenk, M. O.; Cimino, P.; Kelley, D. S.; Baross, J. A.

    2002-12-01

    The Lost City Hydrothermal Field (LCHF) is a novel peridotite-hosted vent environment discovered in Dec. 2000 at 30 N near the Mid-Atlantic Ridge. This field contains multiple large (up to 60 m), carbonate chimneys venting high pH (9-10), moderate temperature (45-75 C) fluids. The LCHF is unusual in that it is located on 1.5 my-old oceanic crust, 15 km from the nearest spreading axis. Hydrothermal flow in this system is believed to be driven by exothermic serpentinization reactions involving iron-bearing minerals in the underlying seafloor. The conditions created by such reactions, which include significant quantities of dissolved methane and hydrogen, create habitats for microbial communities specifically adapted to this unusual vent environment. Ultramafic, reducing hydrothermal environments like the LCHF may be analogous to geologic settings present on the early Earth, which have been suggested to be important for the emergence of life. Additionally, the existence of hydrothermal environments far away from an active spreading center expands the range of potential life-supporting environments elsewhere in the solar system. To study the abundance and diversity of microbial communities inhabiting the environments that characterize the LCHF, carbonate chimney samples were analyzed by microscopic and molecular methods. Cell densities of between 105 and 107 cells/g were observed within various samples collected from the chimneys. Interestingly, 4-11% of the microbial population in direct contact with vent fluids fluoresced with Flavin-420, a key coenzyme involved in methanogenesis. Enrichment culturing from chimney material under aerobic and anaerobic conditions yielded microorganisms in the thermophilic and mesophilic temperature regimes in media designed for methanogenesis, methane-oxidation, and heterotrophy. PCR analysis of chimney material indicated the presence of both Archaea and Eubacteria in the carbonate samples. SSU rDNA clone libraries constructed from the

  20. Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass - the "hydrothermal pump hypothesis"

    Science.gov (United States)

    Duda, Jan-Peter; Thiel, Volker; Bauersachs, Thorsten; Mißbach, Helge; Reinhardt, Manuel; Schäfer, Nadine; Van Kranendonk, Martin J.; Reitner, Joachim

    2018-03-01

    Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic). In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia). Catalytic hydropyrolysis (HyPy) of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤ n-C18) is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer-Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface) environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (hydrothermal pump hypothesis).

  1. Hydrothermal signature in the axial-sediments from the Carlsberg Ridge in the northwest Indian Ocean

    Science.gov (United States)

    Yu, Zenghui; Li, Huaiming; Li, Mengxing; Zhai, Shikui

    2018-04-01

    30 sediments grabbed from 24 sites between the equator and 10°N along the Carlsberg Ridge (CR) in the northwest Indian Ocean has been analyzed for bulk chemical compositions. Hydrothermal components in the sediments are identified and characterized. They mainly occur at 6.3°N as sulfide debris and at 3.6°N as both sulfide and high temperature water-rock interaction products. The enrichment of chalcophile elements such as Zn, Cu, Pb and the depletion of alkalis metals such as K and Rb are the typical features of hydrothermal components. High U/Fe, low (Nd/Yb)N and negative Ce anomaly infer the uptake of seawater in the hydrothermal deposits by oxidizing after deposition. However, the general enrichment of Mn in hydrothermal plumed-derived materials is not found in the sediments, which may indicate the limited diffusion of fluids or plumes, at least in the direction along the Carlsberg spreading center. The hydrothermal components show their similarity to the hydrothermal deposits from the Indian Ocean Ridge. At 3.6°N ultramafic rocks or gabbroic intrusions, may be involved in the hydrothermal system.

  2. Porphyry-Copper Ore Shells Form at Stable Pressure-Temperature Fronts Within Dynamic Fluid Plumes

    Science.gov (United States)

    Weis, P.; Driesner, T.; Heinrich, C. A.

    2012-12-01

    Porphyry-type ore deposits are major resources of copper and gold, precipitated from fluids expelled by crustal magma chambers. The metals are typically concentrated in confined ore shells within vertically extensive vein networks, formed through hydraulic fracturing of rock by ascending fluids. Numerical modeling shows that dynamic permeability responses to magmatic fluid expulsion can stabilize a front of metal precipitation at the boundary between lithostatically pressured up-flow of hot magmatic fluids and hydrostatically pressured convection of cooler meteoric fluids. The balance between focused heat advection and lateral cooling controls the most important economic characteristics, including size, shape, and ore grade. This self-sustaining process may extend to epithermal gold deposits, venting at active volcanoes, and regions with the potential for geothermal energy production.

  3. Mobility of rare earth element in hydrothermal process and weathering product: a review

    Science.gov (United States)

    Lintjewas, L.; Setiawan, I.

    2018-02-01

    The Rare Earth Element (REE), consists of La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Lu, Ho, Er, Tm, Yb, are important elements to be used as raw materials of advanced technology such as semiconductors, magnets, and lasers. The research of REE in Indonesia has not been done. Several researches were conducted on granitic rocks and weathering product such as Bangka, Sibolga, West Kalimantan, West Sulawesi and Papua. REE can be formed by hydrothermal processes such as Bayan Obo, South China. The REE study on active hydrothermal system (geothermal) in this case also has the potential to produce mineral deposits. The purpose of this review paper is to know the mobility of REE on hydrothermal process and weathering products. Mobility of REE in the hydrothermal process can change the distribution patterns and REE content such as Ce, Eu, La, Lu, Nd, Sm, and Y. Another process besides the hydrothermal is weathering process. REE mobility is influenced by weathering products, where the REE will experience residual and secondary enrichment processes in heavier minerals.

  4. Hydrothermal activity and subsoil complexity: implication for degassing processes at Solfatara crater, Campi Flegrei caldera

    Science.gov (United States)

    Montanaro, Cristian; Mayer, Klaus; Isaia, Roberto; Gresse, Marceau; Scheu, Bettina; Yilmaz, Tim I.; Vandemeulebrouck, Jean; Ricci, Tullio; Dingwell, Donald B.

    2017-12-01

    The Solfatara area and its fumaroles are the main surface expression of the vigorous hydrothermal activity within the active Campi Flegrei caldera system. At depth, a range of volcanic and structural processes dictate the actual state of the hydrothermal system below the crater. The presence of a large variety of volcanic products at shallow depth (including pyroclastic fallout ash beds, pyroclastic density current deposits, breccias, and lavas), and the existence of a maar-related fault system appears to exert major controls on the degassing and alteration behavior. Adding further to the complexity of this environment, variations in permeability and porosity, due to subsoil lithology and alteration effects, may further influence fluid flow towards the surface. Here, we report results from a field campaign conducted in July 2015 that was designed to characterize the in situ physical (temperature, humidity) and mechanical (permeability, strength, stiffness) properties of the Solfatara crater subsoil. The survey also included a mapping of the surficial hydrothermal features and their distributions. Finally, laboratory measurements (porosity, granulometry) of selected samples were performed. Our results enable the discrimination of four main subsoils around the crater: (1) the Fangaia domain located in a topographic low in the southwestern sector, (2) the silica flat domain on the western altered side, (3) the new crust domain in the central area, and (4) the crusted hummocks domain that dominates the north, east, and south parts. These domains are surrounded by encrusted areas, reworked material, and vegetated soil. The distribution of these heterogeneous subsoils suggests that their formation is mostly related to (i) the presence of the Fangaia domain within the crater and (ii) a system of ring faults bordering it. The subsoils show an alternation between very high and very low permeabilities, a fact which seems to affect both the temperature distribution and

  5. Inactivation of Escherichia coli Endotoxin by Soft Hydrothermal Processing▿

    Science.gov (United States)

    Miyamoto, Toru; Okano, Shinya; Kasai, Noriyuki

    2009-01-01

    Bacterial endotoxins, also known as lipopolysaccharides, are a fever-producing by-product of gram-negative bacteria commonly known as pyrogens. It is essential to remove endotoxins from parenteral preparations since they have multiple injurious biological activities. Because of their strong heat resistance (e.g., requiring dry-heat sterilization at 250°C for 30 min) and the formation of various supramolecular aggregates, depyrogenation is more difficult than sterilization. We report here that soft hydrothermal processing, which has many advantages in safety and cost efficiency, is sufficient to assure complete depyrogenation by the inactivation of endotoxins. The endotoxin concentration in a sample was measured by using a chromogenic limulus method with an endotoxin-specific limulus reagent. The endotoxin concentration was calculated from a standard curve obtained using a serial dilution of a standard solution. We show that endotoxins were completely inactivated by soft hydrothermal processing at 130°C for 60 min or at 140°C for 30 min in the presence of a high steam saturation ratio or with a flow system. Moreover, it is easy to remove endotoxins from water by soft hydrothermal processing similarly at 130°C for 60 min or at 140°C for 30 min, without any requirement for ultrafiltration, nonselective adsorption with a hydrophobic adsorbent, or an anion exchanger. These findings indicate that soft hydrothermal processing, applied in the presence of a high steam saturation ratio or with a flow system, can inactivate endotoxins and may be useful for the depyrogenation of parenterals, including end products and medical devices that cannot be exposed to the high temperatures of dry heat treatments. PMID:19502435

  6. Rock deformation in hydrothermal systems: the nature of fractures in plutons and their host rocks. Technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Norton, D.

    1981-11-01

    The purpose of this program is to accumulate the types of field data which are important for the analysis of magma-hydrothermal systems. The structural effects of thermal processes were identified in order to distinguish the thermally induced deformations from the deformations that occurred subsequent to complete cooling of the system. Mapping techniques were developed to record the structural data on the ground from local domains characteristic of larger areas in the magma chamber, and in the air from low-angle oblique aerial photography of the entire region. The ground system is complete and preliminary testing is currently being carried out to verify the method. The results indicate that granitic crystalline rocks have no structural resistance to thermal perturbations. If nuclear wastes are to be stored in granite, precautionary buffers would have to be incorporated into the system. A total of 30 fossil magma chambers have been studied over the past 2 years. An extensive set of fracture imagery has been collected, together with information related to the geological history of the plutons. Fossil magma chambers in Arizona, Utah, California, Washington, Montana, and British Columbia have been studied.

  7. Field Trip Guide to Serpentinite, Silica-Carbonate Alteration, and Related Hydrothermal Activity in the Clear Lake Region, California

    Energy Technology Data Exchange (ETDEWEB)

    Fraser Goff; George Guthrie

    1999-06-01

    This guide is designed to familiarize scientists with the geology, structure, alteration, and fluids typical of California serpentinites for purposes of carbon dioxide sequestration (Lackner et al., 1995). Goff et al. (1997) and Goff and Lackner (1998) describe the geology and geochemistry of some of the serpentinites from this area. Mechanisms of silica-carbonate alteration were outlined by Barnes et al. (1973). Donnelly-Nolan et al. (1993) most recently reviewed relations between regional hydrothermal alteration and Quarternary volcanic activity. Stanley et al. (1998) summarized geophysical characteristics of the region.

  8. The study of hydrothermal alteration zones in Kahang exploration area (north eastern of Isfahan, central of Iran) using microscopy studies and TM and Aster satellite data

    Science.gov (United States)

    Zahra Afshooni, Seyedeh; Esmaeily, Dariush

    2010-05-01

    Kahang ore deposit located in 73 km to the northeast of Isfahan city and 10 km to the east of Zefreh town, covering an area about 18.6 km2. This ore deposit is a part of Uromieh-Dokhtar volcanopolotonic belt. The rocks of the area included Andesite, Porphyritic Andesite, Dacite, Porphyritic, Rhyodacite, Diorite, Quartz Monzonite and Porphyry Micro Granite. In plutons, there is a trend from basic to acid features along with decreasing of age from margin to center of massive. Kahang region is an alteration and breccia zone. The occurrence of alteration zones and iron oxides were confirmed by satellite images processing. Generally, more than 90% of rocks of this region have been affected by hydrothermal fluids. Remote sensing refers to detection and measurement from a distance. For the first time, this exploration area was studied using satellite images processing (TM) and primary results showed that is suitable place for resources of Copper (Cu) and Molybdenum (Mo). Hydrothermal alteration commonly occurs in geothermal areas in association with ore deposits producing alteration assemblages typically dominated by silicates, sulfides, sulfates and carbonates. In the alteration zones studies the subject discussed is the study of existing minerals in such zones and study of chemical specifications of altering fluids. Four alteration zones Based on observations derived from the study of thin sections, XRD analysis and deep remote sensing using TM and Aster satellite images studies could be identified in this area: propylitic alteration zone with chlorite, epidot, calcite; argillic alteration zone with clay minerals; phyllic (qartz-sericite) alteration zone with quartz, sericite and pyrite and silicic alteration zone with abundant quartz.

  9. Stable Isotope Geochemistry of Extremely Well-Preserved 2.45-Billion-Year-Old Hydrothermal Systems in the Vetreny Belt, Baltic Shield: Insights into Paleohydrosphere

    Science.gov (United States)

    Zakharov, D. O.; Bindeman, I. N.

    2015-12-01

    The early Paleoproterozoic was an eventful period in the Earth's history. The first portions of free oxygen emerged in the atmosphere, Snowball Earth glaciations happened several times and the first supercontinent broke up due to extensive rifting. These events should have affected the stable isotopic composition of the hydrosphere. In this study, we use rocks that were altered in underwater hydrothermal systems to investigate the stable isotopic composition of the hydrosphere 2.39-2.45 billion years ago (hereinafter, Ga). Extremely low-δ18O (down to -27.5‰ SMOW) rocks from 2.39 Ga metamorphosed subglacial hydrothermal systems of the Belomorian belt, Baltic Shield formed at near-equatorial latitudes suggesting a Snowball (or Slushball) Earth glaciation. These results motivated us to look at temporally and geographically close hydrothermal systems from the unmetamorhposed 2.45 Ga Vetreny Belt rift. The length of the rift is 250 km and it is composed of high-Mg basalts, mafic-ultramafic intrusions and sedimentary successions. We examined several localities of high-Mg basalt flows that include astonishingly fresh pillow lavas, often with preserved volcanic glass, eruptive breccias, and hydrothermal alteration zones. Collected samples serve a great textural evidence of water-rock interaction that occurred in situ while basalts were cooling. The preliminary results from coexisting quartz and epidote (T, D18O=311°C), and from coexisting calcite and quartz (T, D18O=190°C) yield values of δ18O of involved water between -1.6 and -0.9 ‰. The values of δ13C in calcites vary between -4.0 and -2.3 ‰. It is likely that hydrothermal fluids operated in the Vetreny Belt rift were derived from seawater that is no different from modern oceanic water in terms of δ18O. Apparently, the rift was a Paleoproterozoic analog of the modern Red Sea, filled with oceanic water. The result is important because the Vetreny Belt rift predates the onset of Snowball Earth glaciation at 2

  10. Pathways for abiotic organic synthesis at submarine hydrothermal fields.

    Science.gov (United States)

    McDermott, Jill M; Seewald, Jeffrey S; German, Christopher R; Sylva, Sean P

    2015-06-23

    Arguments for an abiotic origin of low-molecular weight organic compounds in deep-sea hot springs are compelling owing to implications for the sustenance of deep biosphere microbial communities and their potential role in the origin of life. Theory predicts that warm H2-rich fluids, like those emanating from serpentinizing hydrothermal systems, create a favorable thermodynamic drive for the abiotic generation of organic compounds from inorganic precursors. Here, we constrain two distinct reaction pathways for abiotic organic synthesis in the natural environment at the Von Damm hydrothermal field and delineate spatially where inorganic carbon is converted into bioavailable reduced carbon. We reveal that carbon transformation reactions in a single system can progress over hours, days, and up to thousands of years. Previous studies have suggested that CH4 and higher hydrocarbons in ultramafic hydrothermal systems were dependent on H2 generation during active serpentinization. Rather, our results indicate that CH4 found in vent fluids is formed in H2-rich fluid inclusions, and higher n-alkanes may likely be derived from the same source. This finding implies that, in contrast with current paradigms, these compounds may form independently of actively circulating serpentinizing fluids in ultramafic-influenced systems. Conversely, widespread production of formate by ΣCO2 reduction at Von Damm occurs rapidly during shallow subsurface mixing of the same fluids, which may support anaerobic methanogenesis. Our finding of abiogenic formate in deep-sea hot springs has significant implications for microbial life strategies in the present-day deep biosphere as well as early life on Earth and beyond.

  11. Experimentally Testing Hydrothermal Vent Origin of Life on Enceladus and Other Icy/Ocean Worlds.

    Science.gov (United States)

    Barge, Laura M; White, Lauren M

    2017-09-01

    We review various laboratory strategies and methods that can be utilized to simulate prebiotic processes and origin of life in hydrothermal vent systems on icy/ocean worlds. Crucial steps that could be simulated in the laboratory include simulations of water-rock chemistry (e.g., serpentinization) to produce hydrothermal fluids, the types of mineral catalysts and energy gradients produced in vent interfaces where hydrothermal fluids interface with the surrounding seawater, and simulations of biologically relevant chemistry in flow-through gradient systems (i.e., far-from-equilibrium experiments). We describe some examples of experimental designs in detail, which are adaptable and could be used to test particular hypotheses about ocean world energetics or mineral/organic chemistry. Enceladus among the ocean worlds provides an ideal test case, since the pressure at the ocean floor is more easily simulated in the lab. Results for Enceladus could be extrapolated with further experiments and modeling to understand other ocean worlds. Key Words: Enceladus-Ocean worlds-Icy worlds-Hydrothermal vent-Iron sulfide-Gradient. Astrobiology 17, 820-833.

  12. Short-term hydro-thermal scheduling using particle swarm optimization method

    International Nuclear Information System (INIS)

    Yu, Binghui; Yuan, Xiaohui; Wang, Jinwen

    2007-01-01

    The approaches based on different particle swarm optimization (PSO) techniques are applied to solve the short-term hydro-thermal scheduling problem. In the proposed methods, many constraints of the hydro-thermal system, such as power balance, water balance, reservoir volume limits and the operation limits of hydro and thermal plants, are considered. The feasibility of the proposed algorithm is demonstrated through an example system, and the results are compared with the results of a genetic algorithm and evolutionary programming approaches. The experimental results show that all the PSO algorithms have the ability to achieve nearly global solutions, but a local version of PSO with inertia weight appears to be the best amongst all the PSOs in terms of high quality solution

  13. Hydrothermal treatment followed by enzymatic hydrolysis and hydrothermal carbonization as means to valorise agro- and forest-based biomass residues.

    Science.gov (United States)

    Wikberg, Hanne; Grönqvist, Stina; Niemi, Piritta; Mikkelson, Atte; Siika-Aho, Matti; Kanerva, Heimo; Käsper, Andres; Tamminen, Tarja

    2017-07-01

    The suitability of several abundant but underutilized agro and forest based biomass residues for hydrothermal treatment followed by enzymatic hydrolysis as well as for hydrothermal carbonization was studied. The selected approaches represent simple biotechnical and thermochemical treatment routes suitable for wet biomass. Based on the results, the hydrothermal pre-treatment followed by enzymatic hydrolysis seemed to be most suitable for processing of carbohydrate rich corn leaves, corn stover, wheat straw and willow. High content of thermally stable components (i.e. lignin) and low content of ash in the biomass were advantageous for hydrothermal carbonization of grape pomace, coffee cake, Scots pine bark and willow. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. An efficient chaos embedded hybrid approach for hydro-thermal unit commitment problem

    International Nuclear Information System (INIS)

    Yuan, Xiaohui; Ji, Bin; Yuan, Yanbin; Ikram, Rana M.; Zhang, Xiaopan; Huang, Yuehua

    2015-01-01

    Highlights: • Thermal unit commitment is considered in hydrothermal generation scheduling (SHTGS). • Two newly proposed promising optimization algorithms are combined to solving SHTGS. • The proposed method is enhanced by integrating a chaotic local search strategy. • Heuristic search strategies are applied to handle the constraints of the SHTGS. • The results verify the proposed method is feasible and efficient for handling SHTGS. - Abstract: This paper establishes a model to deal with the short-term hydrothermal generation scheduling (SHTGS) problem. The problem is composed of three interconnected parts: short-term hydrothermal coordination, thermal unit commitment and economic load dispatch. An efficient hybrid method composed of chaotic backtracking search optimization algorithm and binary charged system search algorithm (CBSA–BCSS) is proposed to solve this problem. In order to analyze the effect of the chaotic map on the performance of the method, three different chaotic maps are adopted to integrate into the proposed method and the corresponding consequences are achieved. Furthermore, efficient heuristic search strategies are adopted to handle with the complicated constraints of the SHTGS system. Finally, a hydrothermal unit commitment system is utilized to verify the feasibility and effectiveness of the proposed method. The results demonstrate the efficiency of the hybrid optimization method and the appropriation of the constraint handling strategies. The comparison of the solutions achieved by different methods shows that the proposed method has higher efficiency in terms of solving SHTGS problem

  15. First Survey For Submarine Hydrothermal Vents In NE Sulawesi, Indonesia

    Science.gov (United States)

    McConachy, T.; Binns, R.; Permana, H.

    2001-12-01

    The IASSHA-2001 cruise (Indonesia-Australia Survey for Submarine Hydrothermal Activity) was successfully conducted from June 1 to June 29 on board Baruna Jaya VIII. Preliminary results are reported of the first expedition to locate and study submarine hydrothermal activity in north east Sulawesi. Leg A focussed on Tomini Bay, a virtually unexplored Neogene sedimentary basin. Its objective was to test whether modern sediment-hosted hydrothermal activity occurred on the sea floor. The results of new bathymetric mapping, sediment coring and CTD/transmissometer hydrocasts negate the likely presence in central Tomini Bay of large-scale modern analogues of hydrothermal massive sulfide environments involving hydrothermal venting of basinal or magma-derived fluids into reduced sediments. It is possible that the "heat engine" required to drive circulation of basinal and hydrothermal fluids is today too weak. Surveys around Colo volcano indicate that it may be in its final stage of evolution. Leg B studied the arc and behind-arc sectors of the Sangihe volcanic island chain extending northwards from Quaternary volcanoes on the northeastern tip of Sulawesi's North Arm, near Manado. West of the main active chain and extending northwards from Manado there is a subparallel ridge surmounted by a number of high (>2000 m) seamounts of uncertain age. Fifteen relatively high-standing submarine edifices were crossed during this leg, of which nine were tested for hydrothermal activity by hydrocast and dredging. Eight sites were known from previous bathymetric surveys, and seven are new discoveries made by narrow-beam or multibeam echo sounding. Two submarine edifices at least 1000 m high were discovered in the strait immediately north of Awu volcano on Sangihe Island. One, with crest at 206 m, is surrounded by a circular platform 300m deep which we infer to be a foundered fringing reef to a formerly emergent island. The other, lacking such a platform, appears relatively young and may be

  16. Application of concentration-volume fractal method in induced polarization and resistivity data interpretation for Cu-Mo porphyry deposits exploration, case study: Nowchun Cu-Mo deposit, SE Iran

    Directory of Open Access Journals (Sweden)

    L. Daneshvar Saein

    2012-08-01

    Full Text Available The aim of this study is the utilization of the concentration-volume (C-V fractal method based on geoelectrical data including induced polarization (IP and resistivity (RS in targeting areas hosting different sulfidic mineralization zones in Nowchun Cu-Mo porphyry deposit, SE Iran. The C-V fractal model employed in this research in order to separate high and moderate sulfidic zones from low sulfidic zone and barren wall rocks in the deposit is corresponding to chargeability and resistivity. Results obtained from the C-V method indicate that there is a positive correlation between subsurface mineralization and sulfide mineralized zones; additionally, use of the C-V method based on geophysical data is recognized as an accurate approach for delineation of various mineralization zones in the depth for optimization of mineral exploration operation, particularly in porphyry deposits.

  17. Effect of hydrothermal modification on the structure of REY zeolite studied by PAS

    International Nuclear Information System (INIS)

    Zhu Jun; Wang Shaojie

    2003-01-01

    The effect of temperature of the hydrothermal modification on the structure of Rare-earth Y zeolite (REY) was studied by positron annihilation spectroscopy. We measured the positron lifetime spectrum as a function of the temperature (300-800 degree C) of one hour hydrothermal modification for the REY zeolite after through pre-heated dehydration at 150 degree C. All lifetime spectra could be resolved into five components. The fifth lifetime component and its intensity were found to be related to the size and number of the secondary pores. The experimental results showed that the secondary pore in REY zeolite was produced by hydrothermal modification in some temperature range, and the largest size and the greatest quantity of the secondary pores were observed in the sample treated at 500 degree C for 1 hour. The effect of hydrothermal modification on REY zeolite without pre-heated dehydration was also discussed

  18. Hydrothermally grown zeolite crystals

    International Nuclear Information System (INIS)

    Durrani, S.K.; Qureshi, A.H.; Hussain, M.A.; Qazi, N.K.

    2009-01-01

    The aluminium-deficient and ferrosilicate zeolite-type materials were synthesized by hydrothermal process at 150-170 degree C for various periods of time from the mixtures containing colloidal reactive silica, sodium aluminate, sodium hydroxide, iron nitrate and organic templates. Organic polycation templates were used as zeolite crystal shape modifiers to enhance relative growth rates. The template was almost completely removed from the zeolite specimens by calcination at 550 degree C for 8h in air. Simultaneous thermogravimetric (TG) and differential thermal analysis (DTA) was performed to study the removal of water molecules and the amount of organic template cations occluded inside the crystal pore of zeolite framework. The 12-13% weight loss in the range of (140-560 degree C) was associated with removal of the (C/sub 3/H/sub 7/)/sub 4/ N+ cation and water molecules. X-ray diffraction (XRD) analysis and scanning electron microscope (SEM) techniques were employed to study the structure, morphology and surface features of hydrothermally grown aluminium-deficient and ferrosilicate zeolite-type crystals. In order to elucidate the mode of zeolite crystallization the crystallinity and unit cell parameters of the materials were determined by XRD, which are the function of Al and Fe contents of zeolites. (author)

  19. Exploration Method Development for hydrothermal plume hunting by XCTD

    Science.gov (United States)

    Kitagawa, Y.; Ikeda, M.; Kadoshima, K.; Koizumi, Y.; Nakano, J.; Asakawa, E.; Sumi, T.

    2017-12-01

    J-MARES (Research and Development Partnership for Next Generation Technology of Marine Resources Survey, JAPAN) has been designing a low-cost and high-efficiency exploration system for seafloor hydrothermal massive sulfide deposits in "Cross-ministerial Strategic Innovation Promotion Program (SIP)" granted by the Cabinet Office, Government of Japan since 2014. We proposed hydrothermal plume hunting by XCTD (eXpendables Conductivity, Temperature and Depth). We applied this method to an area of interest more than 100km x 100km over Okinawa Trough, including some known seafloor massive sulfide deposits. Generally, hydrothermal plume exploration has been by ship mounted with MBES (Multi Beam Echo Sounder) or AUV with sound anomaly observation. However, these methods have to charter the sophisticated ship costly. On the other hand, throw-in type water quality meters (eg. XCTD and XBT) can be low-cost and easily operable. Moreover, that can make a quick look at seawater temperature and conductivity even in rough waters.Firstly, we confirmed XCTD probes position on the seafloor by ROV mounted deep-sea high vision camera. As a result of the test, probes swept downstream about 40 m in horizontal distance from throwing positions with about 1,600m in water depth. Following the previous test results, we had performed to the next test that confirmed detection range of hydrothermal plume at the chimney of North Mound in Izena Cauldron, so we had caught anomaly of seawater temperature and conductivity successfully which could be possibly derived from hydrothermal activities. Although averaged seawater temperature at a depth of 1500 m or more was about 3.95 degrees C, near the chimney was about 4.93 degrees C. The temperature anomalies originated from the hydrothermal plumes could be distributed at most 30m in horizontal distance and became smaller away from the chimney. Moreover, temperature anomaly mass of sea water tended to move upward in depth with distance away from the

  20. Volcanic and Hydrothermal Activity of the North Su Volcano: New Insights from Repeated Bathymetric Surveys and ROV Observations

    Science.gov (United States)

    Thal, J.; Bach, W.; Tivey, M.; Yoerger, D.

    2013-12-01

    Bathymetric data from cruises in 2002, 2006, and 2011 were combined and compared to determine the evolution of volcanic activity, seafloor structures, erosional features and to identify and document the distribution of hydrothermal vents on North Su volcano, SuSu Knolls, eastern Manus Basin (Papua New Guinea). Geologic mapping based on ROV observations from 2006 (WHOI Jason-2) and 2011 (MARUM Quest-4000) combined with repeated bathymetric surveys from 2002 and 2011 are used to identify morphologic features on the slopes of North Su and to track temporal changes. ROV MARUM Quest-4000 bathymetry was used to develop a 10 m grid of the top of North Su to precisely depict recent changes. In 2006, the south slope of North Su was steeply sloped and featured numerous white smoker vents discharging acid sulfate waters. These vents were covered by several tens of meters of sand- to gravel-sized volcanic material in 2011. The growth of this new cone changed the bathymetry of the south flank of North Su up to ~50 m and emplaced ~0.014 km3 of clastic volcanic material. This material is primarily comprised of fractured altered dacite and massive fresh dacite as well as crystals of opx, cpx, olivine and plagioclase. There is no evidence for pyroclastic fragmentation, so we hypothesize that the fragmentation is likely related to hydrothermal explosions. Hydrothermal activity varies over a short (~50 m) lateral distance from 'flashing' black smokers to acidic white smoker vents. Within 2 weeks of observation time in 2011, the white smoker vents varied markedly in activity suggesting a highly episodic hydrothermal system. Based on ROV video recordings, we identified steeply sloping (up to 30°) slopes exposing pillars and walls of hydrothermal cemented volcaniclastic material representing former fluid upflow zones. These features show that hydrothermal activity has increased slope stability as hydrothermal cementation has prevented slope collapse. Additionally, in some places

  1. Load frequency control of three area interconnected hydro-thermal ...

    African Journals Online (AJOL)

    user

    hydrothermal reheat power system by the use of Artificial Intelligent and PI Controller. ... form of Kinetic Energy stored in generator prime mover set, which results the ... A control strategy is needed that not only maintains constancy of frequency ...

  2. Hydrothermal synthesis, characterization and up/down-conversion luminescence of barium rare earth fluoride nanocrystals

    International Nuclear Information System (INIS)

    Jia, Li-Ping; Zhang, Qiang; Yan, Bing

    2014-01-01

    Graphical abstract: Lanthanide ions doped bare earth rare earth fluoride nanocrystals are synthesized by hydrothermal technology and characterized. The down/up-conversion luminescence of them are discussed. - Highlights: • Mixed hydrothermal system H 2 O–OA (EDA)–O-A(LO-A) is used for synthesis. • Barium rare earth fluoride nanocrystals are synthesized comprehensively. • Luminescence for down-conversion and up-conversion are obtained for these systems. - Abstract: Mixed hydrothermal system H 2 O–OA (EDA)–O-A(LO-A) is developed to synthesize barium rare earth fluorides nanocrystals (OA = oleylamine, EDA = ethylenediamine, O-A = oleic acid and LO-A = linoleic acid). They are presented as BaREF 5 (RE = Ce, Pr, Nd, Eu, Gd, Tb, Dy, Y, Tm, Lu) and Ba 2 REF 7 (RE = La, Sm, Ho, Er, Yb). The influence of reaction parameters (rare earth species, hydrothermal system and temperature) is checked on the phase and shape evolution of the fluoride nanocrystals. It is found that reaction time and temperature of these nanocrystals using EDA (180 °C, 6 h) is lower than those of them using OA (220 °C, 10 h). The photoluminescence properties of these fluorides activated by some rare earth ions (Nd 3+ , Eu 3+ , Tb 3+ ) are studied, and especially up-conversion luminescence of the four fluoride nanocrystal systems (Ba 2 LaF 7 :Yb, Tm(Er), Ba 2 REF 7 :Yb, Tm(Er) (RE = Gd, Y, Lu)) is observed

  3. A seismic network to investigate the sedimentary hosted hydrothermal Lusi system

    Science.gov (United States)

    Javad Fallahi, Mohammad; Mazzini, Adriano; Lupi, Matteo; Obermann, Anne; Karyono, Karyono

    2016-04-01

    The 29th of May 2006 marked the beginning of the sedimentary hosted hydrothermal Lusi system. During the last 10 years we witnessed numerous alterations of the Lusi system behavior that coincide with the frequent seismic and volcanic activity occurring in the region. In order to monitor the effect that the seismicity and the activity of the volcanic arc have on Lusi, we deployed a ad hoc seismic network. This temporary network consist of 10 broadband and 21 short period stations and is currently operating around the Arjuno-Welirang volcanic complex, along the Watukosek fault system and around Lusi, in the East Java basin since January 2015. We exploit this dataset to investigate surface wave and shear wave velocity structure of the upper-crust beneath the Arjuno-Welirang-Lusi complex in the framework of the Lusi Lab project (ERC grant n° 308126). Rayleigh and Love waves travelling between each station-pair are extracted by cross-correlating long time series of ambient noise data recorded at the stations. Group and phase velocity dispersion curves are obtained by time-frequency analysis of cross-correlation functions, and are tomographically inverted to provide 2D velocity maps corresponding to different sampling depths. 3D shear wave velocity structure is then acquired by inverting the group velocity maps.

  4. Microbial Diversity in Hydrothermal Surface to Sub-surface Environment of Suiyo Seamount

    Science.gov (United States)

    Higashi, Y.; Sunamura, M.; Kitamura, K.; Kurusu, Y.; Nakamura, K.; Maruyama, A.

    2002-12-01

    After excavation trials to a hydrothermal subsurface biosphere of the Suiyo Seamount, Izu-Bonin Arc, microbial diversity was examined using samples collected from drilled boreholes and natural vents with an catheter-type in situ microbial entrapment/incubator. This instrument consisted of a heat-tolerant cylindrical pipe with entrapment of a titanium-mesh capsule, containing sterilized inorganic porous grains, on the tip. After 3-10 day deployment in venting fluids with the maximum temperatures from 156 to 305degC, Microbial DNA was extracted from the grains and a 16S rDNA region was amplified and sequenced. Through the phylogenetic analysis of total 72 Bacteria and 30 Archaea clones, we found three novel phylogenetic groups in this hydrothermal surface to subsurface biosphere. Some new clades within the epsilon-Proteobacteria, which seemed to be microaerophilic, moderate thermophilic, and/or sulfur oxidizing, were detected. Clones related to moderate thermophilic and photosynthetic microbes were found in grain-attached samples at collapsed borehole and natural vent sites. We also detected a new clade closely related to a hyperthermophilic Archaea, Methanococcus jannashii, which has the capability of growing autotrophically on hydrogen and producing methane. However, the later two phylogroups were estimated as below a detection limit in microscopic cell counting, i.e., fluorescence in situ hybridization and direct counting. Most of microbes in venting fluids were assigned to be Bacteria, but difficult in specifying them using any known probes. The environment must be notable in microbial and genetic resources, while the ecosystem seems to be mainly supported by chemosynthetic products through the microbial sulfur oxidation, as in most deep-sea hydrothermal systems.

  5. Linking geology, fluid chemistry, and microbial activity of basalt- and ultramafic-hosted deep-sea hydrothermal vent environments.

    Science.gov (United States)

    Perner, M; Hansen, M; Seifert, R; Strauss, H; Koschinsky, A; Petersen, S

    2013-07-01

    Hydrothermal fluids passing through basaltic rocks along mid-ocean ridges are known to be enriched in sulfide, while those circulating through ultramafic mantle rocks are typically elevated in hydrogen. Therefore, it has been estimated that the maximum energy in basalt-hosted systems is available through sulfide oxidation and in ultramafic-hosted systems through hydrogen oxidation. Furthermore, thermodynamic models suggest that the greatest biomass potential arises from sulfide oxidation in basalt-hosted and from hydrogen oxidation in ultramafic-hosted systems. We tested these predictions by measuring biological sulfide and hydrogen removal and subsequent autotrophic CO2 fixation in chemically distinct hydrothermal fluids from basalt-hosted and ultramafic-hosted vents. We found a large potential of microbial hydrogen oxidation in naturally hydrogen-rich (ultramafic-hosted) but also in naturally hydrogen-poor (basalt-hosted) hydrothermal fluids. Moreover, hydrogen oxidation-based primary production proved to be highly attractive under our incubation conditions regardless whether hydrothermal fluids from ultramafic-hosted or basalt-hosted sites were used. Site-specific hydrogen and sulfide availability alone did not appear to determine whether hydrogen or sulfide oxidation provides the energy for primary production by the free-living microbes in the tested hydrothermal fluids. This suggests that more complex features (e.g., a combination of oxygen, temperature, biological interactions) may play a role for determining which energy source is preferably used in chemically distinct hydrothermal vent biotopes. © 2013 John Wiley & Sons Ltd.

  6. Structural archetypes in nickel(II) hybrid vanadates. Towards a directed hydrothermal synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Luis, R. Fernandez de; Urtiaga, M.K. [Dpto. Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Mesa, J.L.; Rojo, T. [Dpto. Quimica Inorganica, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco UPV/EHU, Apdo. 644, 48080 Bilbao (Spain); Arriortua, M.I. [Dpto. Mineralogia y Petrologia, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco/UPV/EHU, Apdo. 644, 48080 Bilbao (Spain)], E-mail: maribel.arriortua@ehu.es

    2009-07-01

    In the present work, we relate the modifications of the initial synthesis parameters (pH value, stoichiometry and concentration) with the different structural archetypes obtained in the {l_brace}Ni/Bpy/VO{r_brace} and {l_brace}Ni/Bpe/VO{r_brace} systems (4,4'-bipyridine (Bpy), 1,2-di(4-pyridyl) ethylene (Bpe)). The vanadium coordination is partially controlled by the hydrothermal synthesis conditions, and the final crystal structures depend on the synergetic interaction between the metal-organic subnets and the vanadium oxide subunits.

  7. Large-scale in situ heater tests for hydrothermal characterization at Yucca Mountain

    International Nuclear Information System (INIS)

    Buscheck, T.A.; Wilder, D.G.; Nitao, J.J.

    1993-01-01

    To safely and permanently store high-level nuclear-waste, the potential Yucca Mountain repository site must mitigate the release and transport of radionuclides for tens of thousands of years. In the failure scenario of greatest concern, water would contact a waste package, accelerate its failure rate, and eventually transport radionuclides to the water table. Our analysis indicate that the ambient hydrological system will be dominated by repository-heat-driven hydrothermal flow for tens of thousands of years. In situ heater tests are required to provide an understanding of coupled geomechanical-hydrothermal-geochemical behavior in the engineered and natural barriers under repository thermal loading conditions. In situ heater tests have been included in the Site Characterization Plan in response to regulatory requirements for site characterization and to support the validation of process models required to assess the total systems performance at the site. The success of the License Application (LA) hinges largely on how effectively we validate the process models that provide the basis for performance assessment. Because of limited time, some of the in situ tests will have to be accelerated relative to actual thermal loading conditions. We examine the trade-offs between the limited test duration and generating hydrothermal conditions applicable to repository performance during the entire thermal loading cycle, including heating (boiling and dry-out) and cooldown (re-wetting). For in situ heater tests duration of 6-7 yr (including 4 yr of full-power heating) is required. The parallel use of highly accelerated, shorter-duration tests may provide timely information for the LA, provided that the applicability of the test results can be validated against ongoing nominal-rate heater tests

  8. Variations in magnetic anisotropy and opaque mineralogy along a kilometer deep profile within a vertical dyke of the syenogranite porphyry at Cínovec (Czech Republic)

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Chlupáčová, M.; Novák, Jiří Karel

    2002-01-01

    Roč. 113, 1/2 (2002), s. 37-47 ISSN 0377-0273 R&D Projects: GA ČR GA205/95/0149; GA ČR GA205/96/0272; GA AV ČR IAA3013903 Keywords : magnetic anisotropy * syenogranite porphyry * Bohemian Massif Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.974, year: 2002

  9. Whole Algae Hydrothermal Liquefaction Technology Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, M.; Davis, R.; Jones, S.

    2013-03-01

    This technology pathway case investigates the feasibility of using whole wet microalgae as a feedstock for conversion via hydrothermal liquefaction. Technical barriers and key research needs have been assessed in order for the hydrothermal liquefaction of microalgae to be competitive with petroleum-derived gasoline-, diesel-, and jet-range hydrocarbon blendstocks.

  10. Waste treatment process by solidifying cementitious materials using hydrothermal hot-pressing

    International Nuclear Information System (INIS)

    Matsumoto, Y.; Kamakura, T.; Yamasaki, N.; Hashida, T.

    2001-01-01

    Solidification of low-level radioactive wastes containing Na 2 SO 4 with cement by hydrothermal hot-pressing (HHP) technique was examined. Relatively high mechanical strength, reduced leaching ratio of SO 3 , and higher resistance to the carbonation of the HHP product were attained in comparison with conventional concrete. The solidification by the HHP treatment may be proceeded by the rearrangement of particles and the bonding material formation among the particles by dissolution-deposition process. The possibility of developing the accelerated testing method for duration of cemented materials by hydrothermal method was discussed. (author)

  11. Hydrothermal synthesis of porous triphasic hydroxyapatite/(alpha and beta) tricalcium phosphate.

    Science.gov (United States)

    Vani, R; Girija, E K; Elayaraja, K; Prakash Parthiban, S; Kesavamoorthy, R; Narayana Kalkura, S

    2009-12-01

    A novel, porous triphasic calcium phosphate composed of nonresorbable hydroxyapatite (HAp) and resorbable tricalcium phosphate (alpha- and beta-TCP) has been synthesized hydrothermally at a relatively low temperature. The calcium phosphate precursor for hydrothermal treatment was prepared by gel method in the presence of ascorbic acid. XRD, FT-IR, Raman analyses confirmed the presence of HAp/TCP. The surface area and average pore size of the samples were found to be 28 m2/g and 20 nm, respectively. The samples were found to be bioactive in simulated body fluid (SBF).

  12. The giant Carlin gold province: A protracted interplay of orogenic, basinal, and hydrothermal processes above a lithospheric boundary

    Science.gov (United States)

    Emsbo, P.; Groves, D.I.; Hofstra, A.H.; Bierlein, F.P.

    2006-01-01

    Northern Nevada hosts the only province that contains multiple world-class Carlin-type gold deposits. The first-order control on the uniqueness of this province is its anomalous far back-arc tectonic setting over the rifted North American paleocontinental margin that separates Precambrian from Phanerozoic subcontinental lithospheric mantle. Globally, most other significant gold provinces form in volcanic arcs and accreted terranes proximal to convergent margins. In northern Nevada, periodic reactivation of basement faults along this margin focused and amplified subsequent geological events. Early basement faults localized Devonian synsedimentary extension and normal faulting. These controlled the geometry of the Devonian sedimentary basin architecture and focused the discharge of basinal brines that deposited syngenetic gold along the basin margins. Inversion of these basins and faults during subsequent contraction produced the complex elongate structural culminations that characterize the anomalous mineral deposit "trends." Subsequently, these features localized repeated episodes of shallow magmatic and hydrothermal activity that also deposited some gold. During a pulse of Eocene extension, these faults focused advection of Carlin-type fluids, which had the opportunity to leach gold from gold-enriched sequences and deposit it in reactive miogeoclinal host rocks below the hydrologic seal at the Roberts Mountain thrust contact. Hence, the vast endowment of the Carlin province resulted from the conjunction of spatially superposed events localized by long-lived basement structures in a highly anomalous tectonic setting, rather than by the sole operation of special magmatic or fluid-related processes. An important indicator of the longevity of this basement control is the superposition of different gold deposit types (e.g., Sedex, porphyry, Carlin-type, epithermal, and hot spring deposits) that formed repeatedly between the Devonian and Miocene time along the trends

  13. Constraints on the Lost City Hydrothermal System from borehole thermal data; 3-D models of heat flow and hydrothermal circulation in an oceanic core complex.

    Science.gov (United States)

    Titarenko, S.; McCaig, A. M.

    2014-12-01

    A perennial problem in near-ridge hydrothermal circulation is that the only directly measurable data to test models is often vent fluid temperature. Surface heat flow measurements may be available but without the underlying thermal structure it is not known if they are transient and affected by local hydrothermal flow, or conductive. The Atlantis Massif oceanic core complex at 30 °N on the mid-Atlantic Ridge, offers a unique opportunity to better constrain hydrothermal circulation models. The temperature profile in gabbroic rocks of IODP Hole 1309D was measured in IODPExpedition 340T, and found to be near-conductive, but with a slight inflexion at ~750 mbsf indicating downward advection of fluid above that level. The lack of deep convection is especially remarkable given that the long-lived Lost City Hydrothermal Field (LCHF) is located only 5km to the south. We have modelled hydrothermal circulation in the Massif using Comsol Multiphysics, comparing 2-D and 3-D topographic models and using temperature-dependent conductivity to give the best estimate of heatflow into the Massif. We can constrain maximum permeability in gabbro below 750 mbsf to 5e-17 m2. The thermal gradient in the upper part of the borehole can be matched with a permeability of 3e-14 m2 in a 750 m thick layer parallel to the surface of the massif, with upflow occurring in areas of high topography and downflow at the location of the borehole. However in 3-D the precise flow pattern is quite model dependent, and the thermal structure can be matched either by downflow centred on the borehole at lower permeability or centred a few hundred metres from the borehole at higher permeability. The borehole gradient is compatible with the longevity (>120 kyr) and outflow temperature (40-90 °C) of the LCHF either with a deep more permeable (1e-14 m2 to 1e-15 m2) domain beneath the vent site in 2-D or a permeable fault slot 500 to 1000m wide and parallel to the transform fault in 3-D. In both cases topography

  14. Hydrothermal simulation experiments as a tool for studies of the origin of life on Earth and other terrestrial planets: a review.

    Science.gov (United States)

    Holm, Nils G; Andersson, Eva

    2005-08-01

    The potential of life's origin in submarine hydrothermal systems has been evaluated by a number of investigators by conducting high temperature-high pressure experiments involving organic compounds. In the majority of these experiments little attention has been paid to the importance of constraining important parameters, such as the pH and the redox state of the system. This is particularly revealed in the apparent difficulties in interpreting experimental data from hydrothermal organic synthesis and stability studies. However, in those cases where common mineral assemblages have been used in an attempt to buffer the pH and redox conditions to geologically and geochemically realistic values, theoretical and experimental data seem to converge. The use of mineral buffer assemblages provides a convenient way by which to constrain the experimental conditions. Studies at high temperatures and pressure in the laboratory have revealed a number of reactions that proceed rapidly in hydrothermal fluids, including the Strecker synthesis of amino acids. In other cases, the verification of postulated abiotic reaction mechanisms has not been possible, at least for large molecules such as large fatty acids and hydrocarbons. This includes the Fischer-Tropsch synthesis reaction. High temperature-high pressure experimental methods have been developed and used successfully for a long time in, for example, mineral solubility studies under hydrothermal conditions. By taking advantage of this experimental experience new and, at times, unexpected directions can be taken in bioorganic geochemistry, one being, for instance, primitive two-dimensional information coding. This article critically reviews some of the organic synthesis and stability experiments that have been conducted under simulated submarine hydrothermal conditions. We also discuss some of the theoretical and practical considerations that apply to hydrothermal laboratory studies of organic molecules related to the origin of

  15. Study of Hydrothermal Particulate Matter from a Shallow Venting System, offshore Nayarit, Mexico

    Science.gov (United States)

    Ortega-Osorio, A.; Prol-Ledesma, R. M.; Reyes, A. G.; Rubio-Ramos, M. A.; Torres-Vera, M. A.

    2001-12-01

    A shallow (30 ft) hydrothermal site named ``Cora'' (after the indigenous people thereby) was surveyed and sampled throughout direct observation with SCUBA diving during November 25 to December 4, 2000. A total of 10 dives were conducted in order to obtain representative samples from an 85oC fluid source of approximately 10 cm in diameter. Inherent difficulties to the sampling, such as poor visibility and strong bottom currents were overcome and samples of hydrothermal fluid, gas, rocks, and particulate matter were collected directly from the vent. Water samples and hydrothermal fluid were taken with a homemade 1 l cylindrical bottles of two lines by flushing in from the bottom for about ten minutes until total displacement of the seawater; similar procedure was carried out for gas samples. Particulate matter was collected with 0.4mm polycarbonate membrane filters and preserved in a desiccators at a fridge temperature until analysis onshore. Preliminary description of the rock samples suggest that pyritization is the main mineralisation process. Filters containing hydrothermal particulate matter were surveyed under the scanning electron microscope in order to identify the nature (inorganic and organic), as well as the chemistry of the particles. SEM examination revealed the presence of particles of different kind that suggests high degree of mixing and re-suspension: Planctonic organisms and organic matter appeared to be abundant; 25 micron particles of different carbonate faces and inorganic particles of silicates were also recognized. Distinctive euhedral colloidal grains were identified as the resulting process of precipitation from the solution. Microanalysis of iron and sulfur content of 10 micron particles indicate a very likely sulphide mineral face (greigite); 8 micron cinnabar particles are consistent with the mineralization conditions, observed as well in the inner walls of the vent. Analyses of dissolved and particulate trace metals are still ongoing at

  16. Hydrothermal alteration in Dumoga Barat, Bolaang Mongondow area North Sulawesi

    International Nuclear Information System (INIS)

    Agus Harjanto' Sutanto; Sutarto; Achmad Subandrio; I Made Suasta; Juanito Salamat; Giri Hartono; Putu Suputra; I Gde Basten; Muhammad Fauzi; Rosdiana

    2016-01-01

    Bolaang Mongondow is located in central north Sulawesi arm, which is composed of Neogen magmatic arc and potentially contain economic minerals. This condition is behind the research purpose to study the mineral resources potencies. Research aim is to study alteration caused by hydrothermal process and its relation with gold (Au) deposit based on field study and laboratory analysis. Methodologies used for the research are literature study, geological survey, rocks sampling, laboratory analysis, and data processing. Research area is a multiply diorite intrusion complex. Andesite, volcaniclastic rocks, and dacite, the older rocks, were intruded by this complex. Later, dacitic tuff, volcanic sandstone, and alluvium deposited above them. There are three measured and mapped major faults heading NE-SW crossed by E-W fault and NW-SE fault lately crossed all the older faults. Early stage hydrothermal alteration related to the existence of young quartz diorite, showing alteration stage from the potassic center to distal prophylatic. Final stage hydrothermal alteration consist of argilic, advanced argilic, and silica-clay mineral±magnetite±chlorite alteration overlapping the earlier alteration. Mineralization of Cu-Au±Ag in central part of research area or Tayap-Kinomaligan area is mostly associated with potassic altered young quartz diorite and crossed by parallel and stock worked quartz-magnetite-chalcopyrite±bornite vein. (author)

  17. Hydrothermal growth and characterization of vertically well-aligned and dense ZnO nanorods on glass and silicon using a simple optimizer system

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad, Sabah M., E-mail: Sabahaskari14@gmail.com; Ahmed, Naser M.; Abd-Alghafour, Nabeel M. [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Hassan, Z., E-mail: zai@usm.my [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); CRI Natural Sciences, Universiti Sains Malaysia, Penang 11800 (Malaysia); Talib, Rawnaq A. [Institute of Nano-Optoelectronics Research and Technology Laboratory (INOR), School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia); Polymer Research Center, University of Basra (Iraq); Omar, A. F. [School of Physics, Universiti Sains Malaysia, Penang 11800 (Malaysia)

    2016-07-06

    Vertically, well-aligned and high density ZnO nanorods were successfully hydrothermally grown on glass and silicon substrates using a simple and low cost system. The mechanism of synthesis of ZnO nanorods, generated with our system under hydrothermal conditions, is investigated in this report. Field-emission scanning electron microscopy indicated that the fabricated ZnO nanorods on both substrates have hexagonal shape with diameters ranging from 20 nm to 70 nm which grew vertically from the substrate. XRD analysis confirms the formation of wurtzite ZnO phase with a preferred orientation along (002) direction perpendicular on the substrate and enhanced crystallinity. The low value of the tensile strain (0.126 %) revealed that ZnO nanorods preferred to grow along the c-axis for both substrates. Photoluminescence spectra exhibited a strong, sharp UV near band edge emission peak with narrow FWHM values for both samples.

  18. Hydrothermal growth and characterization of vertically well-aligned and dense ZnO nanorods on glass and silicon using a simple optimizer system

    International Nuclear Information System (INIS)

    Mohammad, Sabah M.; Ahmed, Naser M.; Abd-Alghafour, Nabeel M.; Hassan, Z.; Talib, Rawnaq A.; Omar, A. F.

    2016-01-01

    Vertically, well-aligned and high density ZnO nanorods were successfully hydrothermally grown on glass and silicon substrates using a simple and low cost system. The mechanism of synthesis of ZnO nanorods, generated with our system under hydrothermal conditions, is investigated in this report. Field-emission scanning electron microscopy indicated that the fabricated ZnO nanorods on both substrates have hexagonal shape with diameters ranging from 20 nm to 70 nm which grew vertically from the substrate. XRD analysis confirms the formation of wurtzite ZnO phase with a preferred orientation along (002) direction perpendicular on the substrate and enhanced crystallinity. The low value of the tensile strain (0.126 %) revealed that ZnO nanorods preferred to grow along the c-axis for both substrates. Photoluminescence spectra exhibited a strong, sharp UV near band edge emission peak with narrow FWHM values for both samples.

  19. Magma-Hydrothermal Transition: Basalt Alteration at Supercritical Conditions in Drill Core from Reykjanes, Iceland, Iceland Deep Drilling Project.

    Science.gov (United States)

    Zierenberg, R. A.; Fowler, A. P.; Schiffman, P.; Fridleifsson, G. Ó.; Elders, W. A.

    2017-12-01

    The Iceland Deep Drilling Project well IDDP-2, drilled to 4,659 m in the Reykjanes geothermal system, the on-land extension of the Mid Atlantic Ridge, SW Iceland. Drill core was recovered, for the first time, from a seawater-recharged, basalt-hosted hydrothermal system at supercritical conditions. The well has not yet been allowed to heat to in situ conditions, but temperature and pressure of 426º C and 340 bar was measured at 4500 m depth prior to the final coring runs. Spot drill cores were recovered between drilling depths of 3648.00 m and 4657.58 m. Analysis of the core is on-going, but we present the following initial observations. The cored material comes from a basaltic sheeted dike complex in the brittle-ductile transition zone. Felsic (plagiogranite) segregation veins are present in minor amounts in dikes recovered below 4300 m. Most core is pervasively altered to hornblende + plagioclase, but shows only minor changes in major and minor element composition. The deepest samples record the transition from the magmatic regime to the presently active hydrothermal system. Diabase near dike margins has been locally recrystallized to granoblastic-textured orthopyroxene-clinopyroxe-plagioclase hornfels. High temperature hydrothermal alteration includes calcic plagioclase (up to An100) and aluminous hornblende (up to 11 Wt. % Al2O3) locally intergrown with hydrothermal biotite, clinopyroxene, orthopyroxene and/or olivine. Hydrothermal olivine is iron-rich (Mg # 59-64) compared to expected values for igneous olivine. Biotite phenocrysts in felsic segregation veins have higher Cl and Fe compared to hydrothermal biotites. Orthopyroxene-clinopyroxene pairs in partially altered quench dike margins give temperature of 955° to 1067° C. Orthopyroxene-clinopyroxene pairs from hornfels and hydrothermal veins and replacements give temperature ranging from 774° to 888° C. Downhole fluid sampling is planned following thermal equilibration of the drill hole. Previous work

  20. Fine-scale heat flow, shallow heat sources, and decoupled circulation systems at two sea-floor hydrothermal sites, Middle Valley, northern Juan de Fuca Ridge

    Science.gov (United States)

    Stein, J. S.; Fisher, A. T.; Langseth, M.; Jin, W.; Iturrino, G.; Davis, E.

    1998-12-01

    Fine-scale heat-flow patterns at two areas of active venting in Middle Valley, a sedimented rift on the northern Juan de Fuca Ridge, provide thermal evidence of shallow hydrothermal reservoirs beneath the vent fields. The extreme variability of heat flow is explained by conductive heating immediately adjacent to vents and shallow circulation within sediments above the reservoir. This secondary circulation is hydrologically separated from the deeper system feeding the vents by a shallow conductive lid within the sediments. A similar separation of shallow and deep circulation may also occur at sediment-free ridge-crest hydrothermal environments.

  1. Modeling free energy availability from Hadean hydrothermal systems to the first metabolism.

    Science.gov (United States)

    Simoncini, E; Russell, M J; Kleidon, A

    2011-12-01

    Off-axis Hydrothermal Systems (HSs) are seen as the possible setting for the emergence of life. As the availability of free energy is a general requirement to drive any form of metabolism, we ask here under which conditions free energy generation by geologic processes is greatest and relate these to the conditions found at off-axis HSs. To do so, we present a conceptual model in which we explicitly capture the energetics of fluid motion and its interaction with exothermic reactions to maintain a state of chemical disequilibrium. Central to the interaction is the temperature at which the exothermic reactions take place. This temperature not only sets the equilibrium constant of the chemical reactions and thereby the distance of the actual state to chemical equilibrium, but these reactions also shape the temperature gradient that drives convection and thereby the advection of reactants to the reaction sites and the removal of the products that relate to geochemical free energy generation. What this conceptual model shows is that the positive feedback between convection and the chemical kinetics that is found at HSs favors a greater rate of free energy generation than in the absence of convection. Because of the lower temperatures and because the temperature of reactions is determined more strongly by these dynamics rather than an external heat flux, the conditions found at off-axis HSs should result in the greatest rates of geochemical free energy generation. Hence, we hypothesize from these thermodynamic considerations that off-axis HSs seem most conducive for the emergence of protometabolic pathways as these provide the greatest, abiotic generation rates of chemical free energy.

  2. Active hydrothermal and non-active massive sulfide mound investigation using a new multiparameter chemical sensor

    Science.gov (United States)

    Han, C.; Wu, G.; Qin, H.; Wang, Z.

    2012-12-01

    Investigation of active hydrothermal mound as well as non-active massive sulfide mound are studied recently. However, there is still lack of in-situ detection method for the non-active massive sulfide mound. Even though Transient ElectroMagnetic (TEM) and Electric Self-potential (SP) methods are good, they both are labour, time and money cost work. We proposed a new multiparameter chemical sensor method to study the seafloor active hydrothermal mound as well as non-active massive sulfide mound. This sensor integrates Eh, S2- ions concentration and pH electrochemical electrodes together, and could found chemical change caused by the active hydrothermal vent, even weak chemical abnormalities by non-active massive sulfide hydrothermal mound which MARP and CTD sometimes cannot detect. In 2012, the 1st Leg of the Chinese 26th cruise, the multiparameter chemical sensor was carried out with the deepsea camera system over the Carlsberg Ridge in Indian Ocean by R/V DAYANGYIHAO. It was shown small Eh and S2- ions concentration abnormal around a site at Northwest Indian ridge. This site was also evidenced by the TV grab. In the 2nd Leg of the same cruise in June, this chemical sensor was carried out with TEM and SP survey system. The chemical abnormalities are matched very well with both TEM and SP survey results. The results show that the multiparameter chemical sensor method not only can detect active hydrothermal mound, but also can find the non-active massive sulfide hydrothermal mound.

  3. Acid-Base Behavior in Hydrothermal Processing of Wastes - Final Report

    International Nuclear Information System (INIS)

    Johnston, K.; Rossky, P.

    2000-01-01

    A major obstacle to development of hydrothermal oxidation technology has been a lack of scientific knowledge of chemistry in hydrothermal solution above 350 C, particularly acid-base behavior, and transport phenomena, which is needed to understand corrosion, metal-ion complexation, and salt precipitation and recovery. Our objective has been to provide this knowledge with in situ UV-visible spectroscopic measurements and fully molecular computer simulation. Our recent development of relatively stable organic UV-visible pH indicators for supercritical water oxidation offers the opportunity to characterize buffers and to monitor acid-base titrations. These results have important implications for understanding reaction pathways and yields for decomposition of wastes in supercritical water

  4. Load frequency control of three area interconnected hydro-thermal ...

    African Journals Online (AJOL)

    This paper present analysis on dynamic performance of Load Frequency Control (LFC) of three area interconnected hydrothermal reheat power system by the use of Artificial Intelligent and PI Controller. In the proposed scheme, control methodology developed using conventional PI controller, Artificial Neural Network ...

  5. Automatic generation control of an interconnected hydrothermal power system considering superconducting magnetic energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Rajesh Joseph; Das, D.; Patra, Amit [Department of Electrical Engineering, Indian Institute of Technology, Kharagpur 721 302 (India)

    2007-10-15

    This paper presents the analysis of automatic generation control (AGC) of an interconnected hydrothermal power system in the presence of generation rate constraints (GRCs). The improvement of AGC with the addition of a small capacity superconducting magnetic energy storage (SMES) unit in either, as well as in both the areas are studied. Time domain simulations are used to study the performance of the power system and control logic. The optimal values of the integral gain settings are obtained using integral squared error (ISE) technique by minimising a quadratic performance index. Suitable method for controlling the SMES unit is described. Analysis reveals that SMES unit fitted in either of the areas is as effective as SMES units fitted in both the areas and improves the dynamic performances to a considerable extent following a load disturbance in either of the areas. (author)

  6. Molybdenum isotopes in modern marine hydrothermal Fe/Mn deposits: Implications for Archean and Paleoproterozoic Mo cycles

    Science.gov (United States)

    Goto, K. T.; Hein, J. R.; Shimoda, G.; Aoki, S.; Ishikawa, A.; Suzuki, K.; Gordon, G. W.; Anbar, A. D.

    2016-12-01

    Molybdenum isotope (δ98/95Mo) variations recorded in Archean and Paleoproterozoic Fe/Mn-rich sediments have been used to constrain ocean redox conditions at the time of deposition (Canfield et al., 2013 PNAS; Planavsky et al., 2014 Nat. Geo.; Kurzweil et al., 2015 GCA). However, except for hydrogenous Fe-Mn crusts (Siebert et al., 2003), δ98/95Mo variation of modern Fe and Mn oxide deposits has been poorly investigated. Marine hydrothermal systems are thought to be the major source of Fe and Mn in Archean and Paleoproterozoic Fe- and Mn-rich sediments. Hence, to accurately interpret Mo isotope data of those ancient sedimentary rocks, it is important to evaluate the possible influence of hydrothermally derived Mo on δ98/95Mo of modern Fe- and Mn-rich sediments. In this study, we analyzed Mo isotopic compositions of one hydrothermal Fe oxide and 15 Mn oxides from five different hydrothermal systems in the modern ocean. The Fe oxide is composed mainly of goethite, and has a δ98/95Mo of 0.7‰, which is 1.4‰ lighter than that of present-day seawater. The observed offset is similar to isotope fractionation observed during adsorption experiments of Mo on goethite (Δ98/95Mogoethite-solution = -1.4 ± 0.5%; Goldberg et al., 2009 GCA). The 15 hydrothermal Mn oxides show large variations in δ98/95Mo ranging from -1.7 to 0.5‰. However, most of the values are similar to those of modern hydrogenous Fe-Mn crusts (Siebert et al., 2003 EPSL), and fall within the range of estimated δ98/95Mo of Mn oxides precipitated from present-day seawater using the isotope offset reported from adsorption experiments (Δ98/95Mo = -2.7 ± 0.3‰; Wasylenki et al., 2008 GCA). These findings indicate that seawater is the dominant source of Mo for modern hydrothermal Fe and Mn deposits. However, the observed large variation indicates that the contribution Mo from local hydrothermal systems is not negligible. The oceanic Mo inventory during the Archean and Paleoproterozoic is thought to be

  7. High-resolution insights into episodes of crystallization, hydrothermal alteration and remelting in the Skaergaard intrusive complex

    DEFF Research Database (Denmark)

    Wotzlaw, Joern-Frederik; Bindeman, Ilya N.; Schaltegger, Urs

    2012-01-01

    of the most incompatible trace element rich horizon, similar to 100 m above SH. As the Skaergaard intrusion is also the most classic example of a shallow meteoric hydrothermal system, this work documents the alternating processes in a life of an intrusion with periods of hydrothermal cooling, heating by new...

  8. V isotope composition in modern marine hydrothermal sediments

    Science.gov (United States)

    Wu, F.; Owens, J. D.; Nielsen, S.; German, C. R.; Rachel, M.

    2017-12-01

    Vanadium is multivalence transition metal with two isotopes (51V and 50V). Recent work has shown that large V isotope variations occur with oxygen variations in modern sediments (Wu et al., 2016 and 2017 Goldschmidt Abstracts), providing its potential as a promising proxy for determining low oxygen conditions. However, the development of V isotopes as a proxy to probe past redox conditions requires a comprehensive understanding of the modern oceanic isotopic mass balance. Therein, the scavenging of V from the hydrous iron oxides in hydrothermal fluid has been shown to be an important removal process from seawater (Rudnicki and Elderfield, 1993 GCA) but remains unquantified. In this study, we analyzed V isotopic compositions of metalliferous sediments around the active TAG hydrothermal mound from the mid-Atlantic Ridge (26° degrees North) and the Eastern Pacific Zonal Transect (GEOTRACES EPZT cruise GP16). The TAG sediments deposited as Fe oxyhydroxides from plume fall-out, and have δ51V values between -0.3 to 0‰. The good correlation between Fe and V for these metalliferous sediments indicate that the accumulation of V in these samples is directly related to the deposition of Fe oxyhydroxides, which also control their V isotope signature. The EPZT samples cover 8,000 km in the South Pacific Ocean with sedimentary areas that underlie the Peru upwelling region and the well-oxygenated deep South Pacific Ocean influenced by hydtorthermal plume material from southern East Pacific Rise (EPR). The sediments collected at the east of the EPR have δ51V values between -1.2 to -0.7‰, similar to previous δ51V of oxic sediments. In contrast, the sediments from the west of the EPR have δ51V values (-0.4 to 0‰) similar to hydrothermal sediments from the mid-Atlantic Ridge, indicating the long transportation (more than 4,000 km, Fitzsimmons et al., 2017 NG) of Fe and Mn from hydrothermal plume and their incorporation into sediments have a major impact on the cycle of V

  9. Ideas and perspectives: hydrothermally driven redistribution and sequestration of early Archaean biomass – the “hydrothermal pump hypothesis”

    Directory of Open Access Journals (Sweden)

    J.-P. Duda

    2018-03-01

    Full Text Available Archaean hydrothermal chert veins commonly contain abundant organic carbon of uncertain origin (abiotic vs. biotic. In this study, we analysed kerogen contained in a hydrothermal chert vein from the ca. 3.5 Ga Dresser Formation (Pilbara Craton, Western Australia. Catalytic hydropyrolysis (HyPy of this kerogen yielded n-alkanes up to n-C22, with a sharp decrease in abundance beyond n-C18. This distribution ( ≤  n-C18 is very similar to that observed in HyPy products of recent bacterial biomass, which was used as reference material, whereas it differs markedly from the unimodal distribution of abiotic compounds experimentally formed via Fischer–Tropsch-type synthesis. We therefore propose that the organic matter in the Archaean chert veins has a primarily microbial origin. The microbially derived organic matter accumulated in anoxic aquatic (surface and/or subsurface environments and was then assimilated, redistributed and sequestered by the hydrothermal fluids (hydrothermal pump hypothesis.

  10. Multi-parametric investigation of the volcano-hydrothermal system at Tatun Volcano Group, Northern Taiwan

    Science.gov (United States)

    Rontogianni, S.; Konstantinou, K. I.; Lin, C.-H.

    2012-07-01

    The Tatun Volcano Group (TVG) is located in northern Taiwan near the capital Taipei. In this study we selected and analyzed almost four years (2004-2007) of its seismic activity. The seismic network established around TVG initially consisted of eight three-component seismic stations with this number increasing to twelve by 2007. Local seismicity mainly involved high frequency (HF) earthquakes occurring as isolated events or as part of spasmodic bursts. Mixed and low frequency (LF) events were observed during the same period but more rarely. During the analysis we estimated duration magnitudes for the HF earthquakes and used a probabilistic non-linear method to accurately locate all these events. The complex frequencies of LF events were also analyzed with the Sompi method indicating fluid compositions consistent with a misty or dusty gas. We juxtaposed these results with geochemical/temperature anomalies extracted from fumarole gas and rainfall levels covering a similar period. This comparison is interpreted in the context of a model proposed earlier for the volcano-hydrothermal system of TVG where fluids and magmatic gases ascend from a magma body that lies at around 7-8 km depth. Most HF earthquakes occur as a response to stresses induced by fluid circulation within a dense network of cracks pervading the upper crust at TVG. The largest (ML ~ 3.1) HF event that occurred on 24 April 2006 at a depth of 5-6 km had source characteristics compatible with that of a tensile crack. It was followed by an enrichment in magmatic components of the fumarole gases as well as a fumarole temperature increase, and provides evidence for ascending fluids from a magma body into the shallow hydrothermal system. This detailed analysis and previous physical volcanology observations at TVG suggest that the region is volcanically active and that measures to mitigate potential hazards have to be considered by the local authorities.

  11. Characterising hydrothermal fluid pathways beneath Aluto volcano, Main Ethiopian Rift, using shear wave splitting

    Science.gov (United States)

    Nowacki, Andy; Wilks, Matthew; Kendall, J.-Michael; Biggs, Juliet; Ayele, Atalay

    2018-05-01

    Geothermal resources are frequently associated with silicic calderas which show evidence of geologically-recent activity. Hence development of geothermal sites requires both an understanding of the hydrothermal system of these volcanoes, as well as the deeper magmatic processes which drive them. Here we use shear wave splitting to investigate the hydrothermal system at the silicic peralkaline volcano Aluto in the Main Ethiopian Rift, which has experienced repeated uplift and subsidence since at least 2004. We make over 370 robust observations of splitting, showing that anisotropy is confined mainly to the top ∼3 km of the volcanic edifice. We find up to 10% shear wave anisotropy (SWA) is present with a maximum centred at the geothermal reservoir. Fast shear wave orientations away from the reservoir align NNE-SSW, parallel to the present-day minimum compressive stress. Orientations on the edifice, however, are rotated NE-SW in a manner we predict from field observations of faults at the surface, providing fluid pressures are sufficient to hold two fracture sets open. These fracture sets may be due to the repeated deformation experienced at Aluto and initiated in caldera formation. We therefore attribute the observed anisotropy to aligned cracks held open by over-pressurised gas-rich fluids within and above the reservoir. This study demonstrates that shear wave splitting can be used to map the extent and style of fracturing in volcanic hydrothermal systems. It also lends support to the hypothesis that deformation at Aluto arises from variations of fluid pressures in the hydrothermal system. These constraints will be crucial for future characterisation of other volcanic and geothermal systems, in rift systems and elsewhere.

  12. Application of oxygen and hydrogen isotopes of waters in Tengchong hydrothermal systems of China

    International Nuclear Information System (INIS)

    Shen Minzi; Hou Fagao; Lin Ruifen; Ni Baoling

    1988-01-01

    This paper summarizes the results obtained for hydrothermal systems in Tengchong by using deuterium, oxygen-18 and tritium as natural tracers. On the basis of deuterium and oxygen-18 analyses of 69 thermal springs and some other meteoric, surface and underground water samples it has been confirmed that all geothermal waters are originally meteoric, but the δD of hot spring waters is often lighter than that of local surface and underground waters. It seems that the recharging water is from higher elevations and far from the thermal areas. The differences in oxygen-18 and deuterium contents between thermal springs and deep thermal waters have been calculated for single-stage steam separation from 276 deg. C to 96 deg. C. The oxygen isotope shift of deep thermal water produced by water-rock reactions is of 1.57 per mille and part of the observed oxygen isotope shift of thermal springs seems to have occurred due to subsurface boiling. The tritium content ( 18 O three subsurface processes would have been distinguished, they are subsurface boiling, mixing-subsurface boiling and subsurface boiling-mixing. The springs formed by subsurface boiling have tritium content of less than 5 TU. The tritium content of 5-10 TU is for springs formed by mixing-subsurface boiling and 10-20 TU is for subsurface boiling-mixing. The tritium content of geothermal water in Hot Sea, geothermal field seems higher than that of the Geysers U.S.A. and Wairakei N.Z. It would show that the circulation time of the thermal water in Hot Sea geothermal system is not so long, the reservoir is quite good with percolation and the recharging water is sufficiently enough. The most important applications of oxygen and hydrogen isotopes of water in geothermal study are in two ways, as tracers of water origins and as tracers of reservoir processes. This paper discussed these two aspects of Tengchong hydrothermal systems. 6 refs, 6 figs, 5 tabs

  13. Chemical variation in hydrothermal minerals of the Los Humeros geothermal system, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Serrano, R.G. [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico). Insituto de Geofisica

    2002-10-01

    The Los Humeros geothermal system is composed of more than 2200 m of Quaternary altered volcanic rocks and an underlying Cretaceous sedimentary sequence. The low salinity of the fluids discharged at present (Na{sup +} and Cl{sup -} concentrations <500 ppm), and the excess steam, indicate that the reservoir contains a mixture of steam and dilute groundwater. Water-rock equilibrium is not attained. Hydrothermal minerals are present in veinlets, vugs, and replacing primary minerals. Three mineral zones are recognized: 1) a shallow argillic zone (<400 m depth), 2) a propylitic zone (ranging between 500 and 1800 m) and 3) a skarn zone (>1800 m). Petrographic examination of cuttings from five wells and temperature data indicate at least two stages of hydrothermal activity. Temperature is the main factor that affects the chemical composition of chlorite, epidote and biotite. Fe{sup 2+} and Al{sup IV} increase in chlorite with temperature [from 1.4 formula position unit (fpu) to 2.8, and from 0.7 to 2.4 fpu, respectively]. The pistacite content of epidote varies from 18 to 33 mol% in high-temperature regions (>270 {sup o}C) and from 13 to 26 mol% in low-temperature regions (<250 {sup 0}C). Biotite displays a slight increase in Al{sup IV} contents (1.55-2.8) and octahedral occupancy (5.93-6.0 fpu) with temperature. Whole rock composition and variations in oxygen fugacity condition are factors that also affect the concentrations of Fe, Al and Mg in the octahedral sites of chlorite, epidote, biotite and amphiboles. Chemical variations observed in alteration minerals at different depths in the Colapso Central-Xalapazco region could be used as indicator of relict physico-chemical conditions in the reservoir, before the present economic exploitation. (author)

  14. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    Science.gov (United States)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  15. Hydrothermal Alteration Mineral Mapping Using Sentinel-2A MSI and ASTER Data in the Duolong Ore Concentrating Area,Tibetau Plateau,China

    Science.gov (United States)

    Hu, B.; Wan, B.

    2017-12-01

    The porphyry copper deposits are characterized by alteration zones. Hydrothermal alteration minerals have diagnostic spectral absorption properties in the visible and near-infrared (VNIR) through the shortwave infrared (SWIR) regions. In order to identify the alteration zones in the study area, the Sentinel-2A Multi-Spectral Instrument(MSI) * Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) data and field inspection were combined. The Sentinel-2A MSI has ten bands in the visible and near-infrared (VNIR) regions, which has advantages of detecting ferric iron alteration minerals. Six ASTER bands in the shortwave infrared(SWIR) regions have been demonstrated to be effective in the mapping of Al-OH * Mg-OH group minerals. Integrating ASTER and Sentinel-2A MSI (AM) for mineral mapping can compensate each other's defect. The methods of minimum noise fraction(MNF) * band combination * matched filtering were applied to get Al-OH and Mg-OH group minerals information from AM data. The anomaly-overlaying selection method was used to process three temporal Sentinel-2A MSI data for extracting iron oxides minerals. The ground inspection has confirmed the validity of AM and Sentinel-2A MSI data in mineral mapping. The methodology proved effective in an arid area of Duolong ore concentrating area,Tibet and hereby suggested for application in similar geological settings.

  16. Hydrothermal optimal power flow using continuation method

    International Nuclear Information System (INIS)

    Raoofat, M.; Seifi, H.

    2001-01-01

    The problem of optimal economic operation of hydrothermal electric power systems is solved using powerful continuation method. While in conventional approach, fixed generation voltages are used to avoid convergence problems, in the algorithm, they are treated as variables so that better solutions can be obtained. The algorithm is tested for a typical 5-bus and 17-bus New Zealand networks. Its capabilities and promising results are assessed

  17. Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah

    Science.gov (United States)

    Cunningham, C.G.; Rasmussen, J.D.; Steven, T.A.; Rye, R.O.; Rowley, P.D.; Romberger, S.B.; Selverstone, J.

    1998-01-01

    Uranium deposits containing molybdenum and fluorite occur in the Central Mining Area, near Marysvale, Utah, and formed in an epithermal vein system that is part of a volcanic/hypabyssal complex. They represent a known, but uncommon, type of deposit; relative to other commonly described volcanic-related uranium deposits, they are young, well-exposed and well-documented. Hydrothermal uranium-bearing quartz and fluorite veins are exposed over a 300 m vertical range in the mines. Molybdenum, as jordisite (amorphous MoS2, together with fluorite and pyrite, increase with depth, and uranium decreases with depth. The veins cut 23-Ma quartz monzonite, 20-Ma granite, and 19-Ma rhyolite ash-flow tuff. The veins formed at 19-18 Ma in a 1 km2 area, above a cupola of a composite, recurrent, magma chamber at least 24 ?? 5 km across that fed a sequence of 21- to 14-Ma hypabyssal granitic stocks, rhyolite lava flows, ash-flow tuffs, and volcanic domes. Formation of the Central Mining Area began when the intrusion of a rhyolite stock, and related molybdenite-bearing, uranium-rich, glassy rhyolite dikes, lifted the fractured roof above the stock. A breccia pipe formed and relieved magmatic pressures, and as blocks of the fractured roof began to settle back in place, flat-lying, concave-downward, 'pull-apart' fractures were formed. Uranium-bearing, quartz and fluorite veins were deposited by a shallow hydrothermal system in the disarticulated carapace. The veins, which filled open spaces along the high-angle fault zones and flat-lying fractures, were deposited within 115 m of the ground surface above the concealed rhyolite stock. Hydrothermal fluids with temperatures near 200??C, ??18OH2O ~ -1.5, ?? -1.5, ??DH2O ~ -130, log fO2 about -47 to -50, and pH about 6 to 7, permeated the fractured rocks; these fluids were rich in fluorine, molybdenum, potassium, and hydrogen sulfide, and contained uranium as fluoride complexes. The hydrothermal fluids reacted with the wallrock resulting in

  18. Medusa-Isosampler: A modular, network-based observatory system for combined physical, chemical and microbiological monitoring, sampling and incubation of hydrothermal and cold seep fluids

    Science.gov (United States)

    Schultz, A.; Flynn, M.; Taylor, P.

    2004-12-01

    The study of life in extreme environments provides an important context from which we can undertake the search for extraterrestrial life, and through which we can better understand biogeochemical feedback in terrestrial hydrothermal and cold seep systems. The Medusa-Isosampler project is aimed at fundamental research into understanding the potential for, and limits to, chemolithoautotrophic life, i.e. primary production without photosynthesis. One environment that might foster such life is associated with the high thermal and chemical gradient environment of hydrothermal vent structures. Another is associated with the lower thermal and chemical gradient environment of continental margin cold seeps. Under NERC, NASA and industrial support, we have designed a flexible instrumentation system, operating as networked, autonomous modules on a local area network, that will make possible simultaneous physical and chemical sampling and monitoring of hydrothermal and cold seep fluids, and the in situ and laboratory incubation of chemosynthetic microbes under high pressure, isobaric conditions. The system has been designed with long-term observatory operations in mind, and may be reconfigured dynamically as the requirements of the observatory installation change. The modular design will also accommodate new in situ chemical and biosensor technologies, provided by third parties. The system may be configured for seafloor use, and can be adapted to use in IODP boreholes. Our overall project goals are provide an instrumentation system capable of probing both high and low-gradient water-rock systems for chemolithoautotrophic biospheres, to identify the physical and chemical conditions that define these microhabitats and explore the details of the biogeochemical feedback loops that mediate these microhabitats, and to attempt to culture and identify chemolithoautotrophic microbial communities that might exist there. The Medusa-Isosampler system has been produced and is now

  19. Borehole plugging by hydrothermal transport: an interim report on experimental studies

    International Nuclear Information System (INIS)

    Roy, D.M.; White, W.B.

    1975-01-01

    Five possible systems that might lead to borehole plugs were considered with respect to replacement of the original rock with a material of essentially the same chemical composition and mineralogical makeup or with the introduction of other materials that might be chemically compatible with the surrounding wall rock. The five systems were: Quartz or chalcedony plugs from the SiO 2 -water system, replacement of shale rock by transport in the ''clay''-water system, hydrothermal cement systems, carbonate plugs in limestone and dolomite, and sulfur plugs by transport in the system sulfur-water. Hydrothermal cements appear to be most feasible from an engineering and economic point of view. Pressures and temperatures for reactions in the systems CaO-Al 2 O 3 -SiO 2 -H 2 O are modest and there is evidence that the plug formed would have a lower porosity and permeability than those derived from more conventional cement systems. Further, the mineral phases, principally tobermorite, are likely to be compatible with expected shale, sandstone, and limestone wall rock materials. Calcite (but not dolomite) plugs could be formed in limestone or dolomite rock. Less is known about carbonate plugs and the porosity, permeability, and possible reactions with circulating groundwater. Quartz or chalcedony plugs would be the most impervious, have the lowest chemical reactivity with groundwater, the lowest thermal expansion, and be the most compatible with the wall rock but would be extremely difficult to form in place. It was concluded that replacement of shales by clay, mica, or other layer silicate transport in hydrothermal solution was limited by the extremely sluggish kinetics of these reactions and that a practical plug of such materials is not feasible. Likewise, the sulfur-water system was found to be unlikely to yield a plug material

  20. Base hydrolysis and hydrothermal processing of PBX-9404

    International Nuclear Information System (INIS)

    Flesner, R.L.; Spontarelli, T.; Dell'Orco, P.C.; Sanchez, J.A.

    1994-01-01

    Base hydrolysis in combination with hydrothermal processing has been proposed as an environmentally acceptable alternative to open burning/open detonation for degradation and destruction of high explosives. In this report, the authors examine gaseous and aqueous products of base hydrolysis of the HMX-based plastic bonded explosive, PBX-9404. They also examined products from the subsequent hydrothermal treatment of the base hydrolysate. The gases produced from hydrolysis of PBX-9404 are ammonia, nitrous oxide, and nitrogen. Major aqueous products are sodium formate, acetate, nitrate, and nitrite, but not all carbon products have been identified. Hydrothermal processing of base hydrolysate destroyed up to 98% of the organic carbon in solution, and higher destruction efficiencies are possible. Major gas products detected from hydrothermal processing were nitrogen and nitrous oxide