WorldWideScience

Sample records for porcine plasmacytoid dendritic

  1. Endothelial cell-derived microparticles induce plasmacytoid dendritic cell maturation: potential implications in inflammatory diseases.

    Science.gov (United States)

    Angelot, Fanny; Seillès, Estelle; Biichlé, Sabeha; Berda, Yael; Gaugler, Béatrice; Plumas, Joel; Chaperot, Laurence; Dignat-George, Françoise; Tiberghien, Pierre; Saas, Philippe; Garnache-Ottou, Francine

    2009-11-01

    Increased circulating endothelial microparticles, resulting from vascular endothelium dysfunction, and plasmacytoid dendritic cell activation are both encountered in common inflammatory disorders. The aim of our study was to determine whether interactions between endothelial microparticles and plasmacytoid dendritic cells could contribute to such pathologies. Microparticles generated from endothelial cell lines, platelets or activated T cells were incubated with human plasmacytoid dendritic cells sorted from healthy donor blood or with monocyte-derived dendritic cells. Dendritic cell maturation was evaluated by flow cytometry, cytokine secretion as well as naive T-cell activation and polarization. Labeled microparticles were also used to study cellular interactions. Endothelial microparticles induced plasmacytoid dendritic cell maturation. In contrast, conventional dendritic cells were resistant to endothelial microparticle-induced maturation. In addition to upregulation of co-stimulatory molecules, endothelial microparticle-matured plasmacytoid dendritic cells secreted inflammatory cytokines (interleukins 6 and 8, but no interferon-alpha) and also induced allogeneic naive CD4(+) T cells to proliferate and to produce type 1 cytokines such as interferon-gamma and tumor necrosis factor-alpha. Endothelial microparticle endocytosis by plasmacytoid dendritic cells appeared to be required for plasmacytoid dendritic cell maturation. Importantly, the ability of endothelial microparticles to induce plasmacytoid dendritic cells to mature was specific as microparticles derived from activated T cells or platelets (the major source of circulating microparticules in healthy subjects) did not induce such plasmacytoid dendritic cell maturation. Our data show that endothelial microparticles specifically induce plasmacytoid dendritic cell maturation and production of inflammatory cytokines. This novel activation pathway may be implicated in various inflammatory disorders and

  2. Bortezomib as a new therapeutic approach for blastic plasmacytoid dendritic cell neoplasm.

    Science.gov (United States)

    Philippe, Laure; Ceroi, Adam; Bôle-Richard, Elodie; Jenvrin, Alizée; Biichle, Sabeha; Perrin, Sophie; Limat, Samuel; Bonnefoy, Francis; Deconinck, Eric; Saas, Philippe; Garnache-Ottou, Francine; Angelot-Delettre, Fanny

    2017-11-01

    Blastic plasmacytoid dendritic cell neoplasm is an aggressive hematologic malignancy with a poor prognosis. No consensus regarding optimal treatment modalities is currently available. Targeting the nuclear factor-kappa B pathway is considered a promising approach since blastic plasmacytoid dendritic cell neoplasm has been reported to exhibit constitutive activation of this pathway. Moreover, nuclear factor-kappa B inhibition in blastic plasmacytoid dendritic cell neoplasm cell lines, achieved using either an experimental specific inhibitor JSH23 or the clinical drug bortezomib, interferes in vitro with leukemic cell proliferation and survival. Here we extended these data by showing that primary blastic plasmacytoid dendritic cell neoplasm cells from seven patients were sensitive to bortezomib-induced cell death. We confirmed that bortezomib efficiently inhibits the phosphorylation of the RelA nuclear factor-kappa B subunit in blastic plasmacytoid dendritic cell neoplasm cell lines and primary cells from patients in vitro and in vivo in a mouse model. We then demonstrated that bortezomib can be associated with other drugs used in different chemotherapy regimens to improve its impact on leukemic cell death. Indeed, when primary blastic plasmacytoid dendritic cell neoplasm cells from a patient were grafted into mice, bortezomib treatment significantly increased the animals' survival, and was associated with a significant decrease of circulating leukemic cells and RelA nuclear factor-kappa B subunit expression. Overall, our results provide a rationale for the use of bortezomib in combination with other chemotherapy for the treatment of patients with blastic plasmacytoid dendritic cell neoplasm. Based on our data, a prospective clinical trial combining proteasome inhibitor with classical drugs could be envisaged. Copyright© Ferrata Storti Foundation.

  3. Blastic plasmacytoid dendritic cell neoplasm with absolute monocytosis at presentation

    Directory of Open Access Journals (Sweden)

    Jaworski JM

    2015-02-01

    Full Text Available Joseph M Jaworski,1,2 Vanlila K Swami,1 Rebecca C Heintzelman,1 Carrie A Cusack,3 Christina L Chung,3 Jeremy Peck,3 Matthew Fanelli,3 Micheal Styler,4 Sanaa Rizk,4 J Steve Hou1 1Department of Pathology and Laboratory Medicine, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA; 2Department of Pathology, Mercy Fitzgerald Hospital, Darby, PA, USA; 3Department of Dermatology, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA; 4Department of Hematology/Oncology, Hahnemann University Hospital/Drexel University College of Medicine, Philadelphia, PA, USA Abstract: Blastic plasmacytoid dendritic cell neoplasm is an uncommon malignancy derived from precursors of plasmacytoid dendritic cells. Nearly all patients present initially with cutaneous manifestations, with many having extracutaneous disease additionally. While response to chemotherapy initially is effective, relapse occurs in most, with a leukemic phase ultimately developing. The prognosis is dismal. While most of the clinical and pathologic features are well described, the association and possible prognostic significance between peripheral blood absolute monocytosis (>1.0 K/µL and blastic plasmacytoid dendritic cell neoplasm have not been reported. We report a case of a 68-year-old man who presented with a rash for 4–5 months. On physical examination, there were multiple, dull-pink, indurated plaques on the trunk and extremities. Complete blood count revealed thrombocytopenia, absolute monocytosis of 1.7 K/µL, and a negative flow cytometry study. Biopsy of an abdominal lesion revealed typical features of blastic plasmacytoid dendritic cell neoplasm. Patients having both hematologic and nonhematologic malignancies have an increased incidence of absolute monocytosis. Recent studies examining Hodgkin and non-Hodgkin lymphoma patients have suggested that this is a negative prognostic factor. The association between

  4. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.

    Directory of Open Access Journals (Sweden)

    Alexandra Wittmann

    Full Text Available In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.

  5. Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection.

    Science.gov (United States)

    Wittmann, Alexandra; Autenrieth, Ingo B; Frick, Julia-Stefanie

    2013-01-01

    In industrialized countries bacterial intestinal infections are commonly caused by enteropathogenic Enterobacteriaceae. The interaction of the microbiota with the host immune system determines the adequacy of an appropriate response against pathogens. In this study we addressed whether the probiotic Bifidobacterium adolescentis is protective during intestinal Yersinia enterocolitica infection. Female C57BL/6 mice were fed with B. adolescentis, infected with Yersinia enterocolitica, or B. adolescentis fed and subsequently infected with Yersinia enterocolitica. B. adolescentis fed and Yersinia infected mice were protected from Yersinia infection as indicated by a significantly reduced weight loss and splenic Yersinia load when compared to Yersinia infected mice. Moreover, protection from infection was associated with increased intestinal plasmacytoid dendritic cell and regulatory T-cell frequencies. Plasmacytoid dendritic cell function was investigated using depletion experiments by injecting B. adolescentis fed, Yersinia infected C57BL/6 mice with anti-mouse PDCA-1 antibody, to deplete plasmacytoid dendritic cells, or respective isotype control. The B. adolescentis-mediated protection from Yersinia dissemination to the spleen was abrogated after plasmacytoid dendritic cell depletion indicating a crucial function for pDC in control of intestinal Yersinia infection. We suggest that feeding of B. adolescentis modulates the intestinal immune system in terms of increased plasmacytoid dendritic cell and regulatory T-cell frequencies, which might account for the B. adolescentis-mediated protection from Yersinia enterocolitica infection.

  6. DMPD: Plasmacytoid dendritic cells: sensing nucleic acids in viral infection andautoimmune diseases. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18641647 Plasmacytoid dendritic cells: sensing nucleic acids in viral infection andautoimmune dise... (.csml) Show Plasmacytoid dendritic cells: sensing nucleic acids in viral infection andautoimmune diseases....iral infection andautoimmune diseases. Authors Gilliet M, Cao W, Liu YJ. Publication Nat Rev Immunol. 2008 A

  7. Immunodetection of myeloid and plasmacytoid dendritic cells in mammary carcinomas of female dogs

    Directory of Open Access Journals (Sweden)

    Mayara C. Rosolem

    2015-11-01

    Full Text Available ABSTRACT: Dendritic cells have attracted great interest from researchers as they may be used as targets of tumor immune evasion mechanisms. The main objective of this study was to evaluate the relationship between the dendritic cells (DCs subpopulation in simple type mammary carcinomas in female dogs. Two groups of samples were used: the control group consisted of 18 samples of mammary tissue without changes and the tumor group with 26 simple type mammary carcinomas. In these groups, we evaluated the immunodetection of immature and mature myeloid DCs, plasmacytoid DCs and MHC-II. In mammary tumor, mature myeloid DCs predominated in the peritumoral region, while immature myeloid DCs and plasmacytoid DCs were evident in the intratumoral region. Immunostaining of MHC-II was visualized in mammary acini (control group, in tumor cells and inflammatory infiltration associated with tumors. The comparison between the control and tumor groups showed a statistically significant difference between immature myeloid DCs, mature myeloid DCs and plasmacytoid DCs. The immunodetection of MHC-II was not significant when comparing the groups. The predominance of immature DCs in the tumor group is possibly related to an inefficient immune response, promoting the development and survival of tumor cells. The presence of plasmacytoid DCs in the same group suggests a worse prognosis for female dogs with mammary tumors. Therefore, the ability of differentiation of canine dendritic cells could be influenced by neoplastic cells and by the tumor microenvironment.

  8. Blastic plasmacytoid dendritic cell neoplasm: report of two pediatric cases.

    Science.gov (United States)

    Dharmani, Preeti Ashok; Mittal, Neha Manish; Subramanian, P G; Galani, Komal; Badrinath, Yajamanam; Amare, Pratibha; Gujral, Sumeet

    2015-01-01

    Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare subtype of acute leukemia that typically follows a highly aggressive clinical course in adults, whereas experience in children with this disease is very limited. We report cases of two children in whom bone marrow showed infiltration by large atypical monocytoid 'blast-like' cells which on immunophenotyping expressed CD4, CD56, HLA-DR and CD33 while were negative for CD34 other T-cell, B-cell and myeloid markers. The differential diagnoses considered were AML, T/NK-cell leukemia and acute undifferentiated leukemia. Additional markers CD303/BDCA-2 and CD123 which are recently validated plasmacytoid dendritic cell markers were done which helped us clinch the diagnosis of this rare neoplasm. An accurate diagnosis of BPDCN is essential in order to provide prompt treatment. Due to its rarity and only recent recognition as a distinct clinicopathological entity, no standardized therapeutic approach has been established for BPDCN.

  9. IRF8 Transcription Factor Controls Survival and Function of Terminally Differentiated Conventional and Plasmacytoid Dendritic Cells, Respectively

    DEFF Research Database (Denmark)

    Sichien, Dorine; Scott, Charlotte L; Martens, Liesbet

    2016-01-01

    Interferon regulatory factor-8 (IRF8) has been proposed to be essential for development of monocytes, plasmacytoid dendritic cells (pDCs) and type 1 conventional dendritic cells (cDC1s) and remains highly expressed in differentiated DCs. Transcription factors that are required to maintain the ide...

  10. Blastic plasmacytoid dendritic cell neoplasm (BPDCN): the cutaneous sanctuary.

    Science.gov (United States)

    Pileri, A; Delfino, C; Grandi, V; Agostinelli, C; Pileri, S A; Pimpinelli, N

    2012-12-01

    Blastic plasmacytoid dendritic cell neoplasm (BPDNC) is a rare tumour, which stems from plasmacytoid dendritic cells. Although the aetiology is still unclear, in the last few years various reports suggested a potential role of chromosomal aberrations in the oncogenesis. The disease is currently enclosed among "acute myeloid leukemia (AML) and related precursor neoplasms" in the last WHO classification. BPDCN has an aggressive course, however, it has been suggested that an exclusive cutaneous involvement at presentation is related to a better clinical outcome. We review the literature about BPDCN, and we present a series of 11 cases, all characterised by disease limited to the skin at presentation. Furthermore, we examined all cases of the last 10 years stored in the database of the multidisciplinary study group on cutaneous lymphomas of the University of Florence. Basing on the clinical features, patient were classified into two groups: with a single-lesion or multiple eruptive-lesions presentation. The former were treated with radiotherapy (limited field, electron beam therapy). The latter were treated with different therapeutic options, depending on age and co-morbidities. All patients with a single lesion achieved complete response. Five of 6 patients with eruptive lesions achieved a clinical response (2 complete and 3 partial response). Notably, the progression free survival was higher in the single-lesion than in the eruptive-lesion group (23 vs. 9 months). However all patients relapsed and 8 of 11 died. Although the small number of selected patients, we could speculate that the concept of "cutaneous sanctuary" is particularly true in patients with a single lesion-presentation. In these patients, especially if >70 year-old aged, radiotherapy should be encouraged as the treatment of choice.

  11. Protein Tyrosine Phosphatase PTPRS Is an Inhibitory Receptor on Human and Murine Plasmacytoid Dendritic Cells

    NARCIS (Netherlands)

    Bunin, A.; Sisirak, V.; Ghosh, H.S.; Grajkowska, L.T.; Hou, Z.E.; Miron, M.; Yang, C.; Ceribelli, M.; Uetani, N.; Chaperot, L.; Plumas, J.; Hendriks, W.J.; Tremblay, M.L.; Hacker, H.; Staudt, L.M.; Green, P.H.; Bhagat, G.; Reizis, B.

    2015-01-01

    Plasmacytoid dendritic cells (pDCs) are primary producers of type I interferon (IFN) in response to viruses. The IFN-producing capacity of pDCs is regulated by specific inhibitory receptors, yet none of the known receptors are conserved in evolution. We report that within the human immune system,

  12. BAD-LAMP controls TLR9 trafficking and signalling in human plasmacytoid dendritic cells.

    Science.gov (United States)

    Combes, Alexis; Camosseto, Voahirana; N'Guessan, Prudence; Argüello, Rafael J; Mussard, Julie; Caux, Christophe; Bendriss-Vermare, Nathalie; Pierre, Philippe; Gatti, Evelina

    2017-10-13

    Toll-like receptors (TLR) are essential components of the innate immune system. Several accessory proteins, such as UNC93B1, are required for transport and activation of nucleic acid sensing Toll-like receptors in endosomes. Here, we show that BAD-LAMP (LAMP5) controls TLR9 trafficking to LAMP1 + late endosomes in human plasmacytoid dendritic cells (pDC), leading to NF-κB activation and TNF production upon DNA detection. An inducible VAMP3 +/ LAMP2 +/ LAMP1 - endolysosome compartment exists in pDCs from which TLR9 activation triggers type I interferon expression. BAD-LAMP-silencing enhances TLR9 retention in this compartment and consequent downstream signalling events. Conversely, sustained BAD-LAMP expression in pDCs contributes to their lack of type I interferon production after exposure to a TGF-β-positive microenvironment or isolation from human breast tumours. Hence, BAD-LAMP limits interferon expression in pDCs indirectly, by promoting TLR9 sorting to late endosome compartments at steady state and in response to immunomodulatory cues.TLR9 is highly expressed by plasmacytoid dendritic cells and detects nucleic acids, but to discriminate between host and microbial nucleic acids TLR9 is sorted into different endosomal compartments. Here the authors show that BAD-LAMP limits type 1 interferon responses by sorting TLR9 to late endosomal compartments.

  13. The chemokine receptor CCR2 maintains plasmacytoid dendritic cell homeostasis

    DEFF Research Database (Denmark)

    Cédile, Oriane; Østerby Jørgensen, Line; Frank, Ida

    2017-01-01

    Thymic dendritic cells (DC) play a role in central tolerance. Three thymic DC subtypes have been described: plasmacytoid DC (pDC) and two conventional DC (cDC), CD8α+ Sirpα- DC and Sirpα+ CD8α- cDC. Both pDC and Sirpα+ cDC can take up antigen in periphery and migrate into the thymus in response t...... by CCL2 or CCR2 deficiency. Although some thymic progenitors expressed CCR2, this did not include those that give rise to pDC. Based on these results, we propose that CCR2 is involved in pDC homeostasis but its ligand CCL2 does not play a major role....

  14. Natural mannosylation of HIV-1 gp120 imposes no immunoregulatory effects in primary human plasmacytoid dendritic cells

    NARCIS (Netherlands)

    Sondergaard, J.N.; Vinner, L.; Brix, S.

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) play a vital role in activation of anti-HIV-1 immunity, and suppression of pDCs might mitigate immune responses against HIV-1. HIV-1 gp120 high-mannose has been attributed immunosuppressive roles in human myeloid DCs, but no receptors for high-mannose have so far

  15. Plasmacytoid dendritic cells: Development, functions, and role in atherosclerotic inflammation

    Directory of Open Access Journals (Sweden)

    Dimitry A Chistiakov

    2014-07-01

    Full Text Available Plasmacytoid dendritic cells (pDCs are a specialized subset of DCs that links innate and adaptive immunity. They sense viral and bacterial pathogens and release high levels of Type I interferons (IFN-I in response to infection. pDCs were shown to contribute to inflammatory responses in the steady state and in pathology. In atherosclerosis, pDCs are involved in priming vascular inflammation and atherogenesis through production of IFN-I and chemokines that attract inflammatory cells to inflamed sites. pDCs also contribute to the proinflammatory activation of effector T cells, cytotoxic T cells, and conventional DCs. However, tolerogenic populations of pDCs are found that suppress atherosclerosis-associated inflammation through down-regulation of function and proliferation of proinflammatory T cell subsets and induction of regulatory T cells with potent immunomodulatory properties. Notably, atheroprotective tolerogenic DCs could be induced by certain self-antigens or bacterial antigens that suggests for great therapeutic potential of these DCs for development of DC-based anti-atherogenic vaccines.

  16. Porcine neonatal blood dendritic cells, but not monocytes, are more responsive to TLRs stimulation than their adult counterparts.

    Directory of Open Access Journals (Sweden)

    Gael Auray

    Full Text Available The neonatal immune system is often considered as immature or impaired compared to the adult immune system. This higher susceptibility to infections is partly due to the skewing of the neonatal immune response towards a Th2 response. Activation and maturation of dendritic cells (DCs play an important role in shaping the immune response, therefore, DCs are a target of choice for the development of efficient and protective vaccine formulations able to redirect the neonatal immune response to a protective Th1 response. As pigs are becoming more important for vaccine development studies due to their similarity to the human immune system, we decided to compare the activation and maturation of a subpopulation of porcine DCs in adult and neonatal pigs following stimulation with different TLR ligands, which are promising candidates for adjuvants in vaccine formulations. Porcine blood derived DCs (BDCs were directly isolated from blood and consisted of a mix of conventional and plasmacytoid DCs. Following CpG ODN (TLR9 ligand and imiquimod (TLR7 ligand stimulation, neonatal BDCs showed higher levels of expression of costimulatory molecules and similar (CpG ODN or higher (imiquimod levels of IL-12 compared to adult BDCs. Another interesting feature was that only neonatal BDCs produced IFN-α after TLR7 or TLR9 ligand stimulation. Stimulation with CpG ODN and imiquimod also induced enhanced expression of several chemokines. Moreover, in a mixed leukocyte reaction assay, neonatal BDCs displayed a greater ability to induce lymphoproliferation. These findings suggest that when stimulated via TLR7 or TLR9 porcine DCs display similar if not better response than adult porcine DCs.

  17. Rotavirus activates lymphocytes from non-obese diabetic mice by triggering toll-like receptor 7 signaling and interferon production in plasmacytoid dendritic cells.

    Directory of Open Access Journals (Sweden)

    Jessica A Pane

    2014-03-01

    Full Text Available It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I

  18. Rotavirus Activates Lymphocytes from Non-Obese Diabetic Mice by Triggering Toll-Like Receptor 7 Signaling and Interferon Production in Plasmacytoid Dendritic Cells

    Science.gov (United States)

    Pane, Jessica A.; Webster, Nicole L.; Coulson, Barbara S.

    2014-01-01

    It has been proposed that rotavirus infection promotes the progression of genetically-predisposed children to type 1 diabetes, a chronic autoimmune disease marked by infiltration of activated lymphocytes into pancreatic islets. Non-obese diabetic (NOD) mice provide a model for the human disease. Infection of adult NOD mice with rhesus monkey rotavirus (RRV) accelerates diabetes onset, without evidence of pancreatic infection. Rather, RRV spreads to the pancreatic and mesenteric lymph nodes where its association with antigen-presenting cells, including dendritic cells, induces cellular maturation. RRV infection increases levels of the class I major histocompatibility complex on B cells and proinflammatory cytokine expression by T cells at these sites. In autoimmunity-resistant mice and human mononuclear cells from blood, rotavirus-exposed plasmacytoid dendritic cells contribute to bystander polyclonal B cell activation through type I interferon expression. Here we tested the hypothesis that rotavirus induces bystander activation of lymphocytes from NOD mice by provoking dendritic cell activation and proinflammatory cytokine secretion. NOD mouse splenocytes were stimulated with rotavirus and assessed for activation by flow cytometry. This stimulation activated antigen-presenting cells and B cells independently of virus strain and replicative ability. Instead, activation depended on virus dose and was prevented by blockade of virus decapsidation, inhibition of endosomal acidification and interference with signaling through Toll-like receptor 7 and the type I interferon receptor. Plasmacytoid dendritic cells were more efficiently activated than conventional dendritic cells by RRV, and contributed to the activation of B and T cells, including islet-autoreactive CD8+ T cells. Thus, a double-stranded RNA virus can induce Toll-like receptor 7 signaling, resulting in lymphocyte activation. Our findings suggest that bystander activation mediated by type I interferon

  19. E2-2 Dependent Plasmacytoid Dendritic Cells Control Autoimmune Diabetes.

    Directory of Open Access Journals (Sweden)

    Lisbeth Hansen

    Full Text Available Autoimmune diabetes is a consequence of immune-cell infiltration and destruction of pancreatic β-cells in the islets of Langerhans. We analyzed the cellular composition of the insulitic lesions in the autoimmune-prone non-obese diabetic (NOD mouse and observed a peak in recruitment of plasmacytoid dendritic cells (pDCs to NOD islets around 8-9 weeks of age. This peak coincides with increased spontaneous expression of type-1-IFN response genes and CpG1585 induced production of IFN-α from NOD islets. The transcription factor E2-2 is specifically required for the maturation of pDCs, and we show that knocking out E2-2 conditionally in CD11c+ cells leads to a reduced recruitment of pDCs to pancreatic islets and reduced CpG1585 induced production of IFN-α during insulitis. As a consequence, insulitis has a less aggressive expression profile of the Th1 cytokine IFN-γ and a markedly reduced diabetes incidence. Collectively, these observations demonstrate a disease-promoting role of E2-2 dependent pDCs in the pancreas during autoimmune diabetes in the NOD mouse.

  20. Plasmacytoid dendritic cell interferon-α production to R-848 stimulation is decreased in male infants.

    Science.gov (United States)

    Wang, Jennifer P; Zhang, Lei; Madera, Rachel F; Woda, Marcia; Libraty, Daniel H

    2012-07-06

    Sex differences in response to microbial infections, especially viral ones, may be associated with Toll-like receptor (TLR)-mediated responses by plasmacytoid dendritic cells (pDCs). In this study, we identified sex differences in human infant pDC interferon-α production following challenge with the TLR7/8 agonist R-848. Male pDC responses were significantly lower than those of females during early infancy. This difference may be attributed to the androgen surge experienced by males during the early infancy period. Pretreatment of human pDCs with dihydrotestosterone produced a significant reduction in interferon-α production following R-848 challenge. Androgen-mediated regulation of pDC TLR7-driven innate immune responses may contribute to the observed sex differences in response to infections during early infancy.

  1. Natural mannosylation of HIV-1 gp120 imposes no immunoregulatory effects in primary human plasmacytoid dendritic cells

    DEFF Research Database (Denmark)

    Søndergaard, Jonas Nørskov; Vinner, Lasse; Pedersen, Susanne Brix

    2014-01-01

    Plasmacytoid dendritic cells (pDCs) play a vital role in activation of anti-HIV-1 immunity, and suppression of pDCs might mitigate immune responses against HIV-1. HIV-1 gp120 high-mannose has been attributed immunosuppressive roles in human myeloid DCs, but no receptors for high-mannose have so far...... or viable HIV-1 particles with various degrees of mannosylation were cultured with pDCs. Activation of pDCs was determined by assaying secretion of IFN-alpha, viability, and upregulation of several pDC-activation markers: CD40, CD86, HLA-DR, CCR7, and PD-L1. The level of activation negatively correlated...

  2. CD4- and dynamin-dependent endocytosis of HIV-1 into plasmacytoid dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Pritschet, Kathrin; Donhauser, Norbert; Schuster, Philipp; Ries, Moritz; Haupt, Sabrina; Kittan, Nicolai A.; Korn, Klaus [Institute of Clinical and Molecular Virology, National Reference Centre for Retroviruses, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, 91054 Erlangen (Germany); Poehlmann, Stefan [Institute of Virology, Hannover Medical School, 30625 Hannover (Germany); Holland, Gudrun; Bannert, Norbert [Robert Koch-Institute, Center for Biological Security 4, 13353 Berlin (Germany); Bogner, Elke [Institute of Virology, Charite University Hospital, 10117 Berlin (Germany); Schmidt, Barbara, E-mail: baschmid@viro.med.uni-erlangen.de [Institute of Clinical and Molecular Virology, National Reference Centre for Retroviruses, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, 91054 Erlangen (Germany)

    2012-02-20

    Chronic immune activation, triggered by plasmacytoid dendritic cell (PDC) interferon (IFN)-alpha production, plays an important role in HIV-1 pathogenesis. As the entry of HIV-1 seems to be important for the activation of PDC, we directly characterized the viral entry into these cells using immuno-electron microscopy, cellular fractionation, confocal imaging, and functional experiments. After attachment to PDC, viruses were taken up in an energy-dependent manner. The virions were located in compartments positive for caveolin; early endosomal antigen 1; Rab GTPases 5, 7 and 9; lysosomal-associated membrane protein 1. PDC harbored more virus in endocytic vesicles than CD4+ T cells (p < 0.05). Blocking CD4 inhibited the uptake of virions into cytosolic and endosomal compartments. Dynasore, an inhibitor of dynamin-dependent endocytosis, not the fusion inhibitor T-20, reduced the HIV-1 induced IFN-alpha production. Altogether, our morphological and functional data support the role of endocytosis for the entry and IFN-alpha induction of HIV-1 in PDC.

  3. Plasmacytoid dendritic cell interferon-α production to R-848 stimulation is decreased in male infants

    Directory of Open Access Journals (Sweden)

    Wang Jennifer P

    2012-07-01

    Full Text Available Abstract Background Sex differences in response to microbial infections, especially viral ones, may be associated with Toll-like receptor (TLR-mediated responses by plasmacytoid dendritic cells (pDCs. Results In this study, we identified sex differences in human infant pDC interferon-α production following challenge with the TLR7/8 agonist R-848. Male pDC responses were significantly lower than those of females during early infancy. This difference may be attributed to the androgen surge experienced by males during the early infancy period. Pretreatment of human pDCs with dihydrotestosterone produced a significant reduction in interferon-α production following R-848 challenge. Conclusions Androgen-mediated regulation of pDC TLR7-driven innate immune responses may contribute to the observed sex differences in response to infections during early infancy.

  4. RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity

    Directory of Open Access Journals (Sweden)

    Michaël Chopin

    2016-04-01

    Full Text Available Plasmacytoid dendritic cells (pDCs represent a unique immune cell type that responds to viral nucleic acids through the rapid production of type I interferons. Within the hematopoietic system, the transcription factor RUNX2 is exclusively expressed in pDCs and is required for their peripheral homeostasis. Here, we show that RUNX2 plays an essential role in promoting pDC localization and function. RUNX2 is required for the appropriate expression of the integrin-mediated adhesion machinery, as well as for the down-modulation of the chemokine receptor CXCR4, which allows pDC egress into the circulation. RUNX2 also facilitates the robust response to viral infection through the control of IRF7, the major regulator of type I interferon production. Mice lacking one copy of Runx2 have reduced numbers of peripheral pDCs and IFN-α expression, which might contribute to the reported difficulties of individuals with cleidocranial dysplasia, who are haploinsufficient for RUNX2, to clear viral infections.

  5. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells.

    Science.gov (United States)

    Bandoła, Joanna; Richter, Cornelia; Ryser, Martin; Jamal, Arshad; Ashton, Michelle P; von Bonin, Malte; Kuhn, Matthias; Dorschner, Benjamin; Alexopoulou, Dimitra; Navratiel, Katrin; Roeder, Ingo; Dahl, Andreas; Hedrich, Christian M; Bonifacio, Ezio; Brenner, Sebastian; Thieme, Sebastian

    2017-01-01

    Plasmacytoid dendritic cells (pDCs) regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR) by the antigen-presenting pDCs, mediated by toll-like receptor (TLR) 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.

  6. Neurotrophin Receptor p75NTR Regulates Immune Function of Plasmacytoid Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Joanna Bandoła

    2017-08-01

    Full Text Available Plasmacytoid dendritic cells (pDCs regulate innate and adaptive immunity. Neurotrophins and their receptors control the function of neuronal tissue. In addition, they have been demonstrated to be part of the immune response but little is known about the effector immune cells involved. We report, for the first time, the expression and immune-regulatory function of the low affinity neurotrophin receptor p75 neurotrophin receptor (p75NTR by the antigen-presenting pDCs, mediated by toll-like receptor (TLR 9 activation and differential phosphorylation of interferon regulatory factor 3 and 7. The modulation of p75NTR on pDCs significantly influences disease progression of asthma in an ovalbumin-induced mouse model mediated by the TLR9 signaling pathway. p75NTR activation of pDCs from patients with asthma increased allergen-specific T cell proliferation and cytokine secretion in nerve growth factor concentration-dependent manner. Further, p75NTR activation of pDCs delayed the onset of autoimmune diabetes in RIP-CD80GP mice and aggravated graft-versus-host disease in a xenotransplantation model. Thus, p75NTR signaling on pDCs constitutes a new and critical mechanism connecting neurotrophin signaling and immune response regulation with great therapeutic potential for a variety of immune disorders.

  7. Plasmacytoid dendritic cells and type I interferon in the immunological response against warts.

    Science.gov (United States)

    Saadeh, D; Kurban, M; Abbas, O

    2017-12-01

    Plasmacytoid dendritic cells (pDCs) are the most potent producers of type I interferons (IFNs), and are involved in the pathogenesis of several cutaneous infectious (especially viral), inflammatory/autoimmune and neoplastic entities. Their role in the pathogenesis and regression of human papilloma virus (HPV)-induced skin lesions has not been well studied. To investigate pDC occurrence and activity in HPV-induced skin lesions, including inflamed and uninflamed warts as well as epidermodysplasia verruciformis (EDV)-associated lesions. In total 20 inflamed and 20 uninflamed HPV-induced skin lesions (including 7 EDV lesions) were retrieved from our database, and the tissue was immunohistochemically tested for pDC occurrence and activity using anti-BDCA-2 and anti-MxA antibodies, respectively. pDCs were present in all 20 inflamed warts and absent from all 20 uninflamed cases. MxA expression was also diffuse and strong in 75% (15/20) inflamed warts, but not in any of the uninflamed warts. pDCs constitute a central component of the inflammatory host response in inflamed warts, possibly contributing to their regression through production of type I interferons. © 2017 British Association of Dermatologists.

  8. Comparative analysis of signature genes in porcine reproductive and respiratory syndrome virus (PRRSV)-infected porcine monocyte-derived dendritic cells at differential activation statuses

    Science.gov (United States)

    Activation statuses of monocytic cells, e.g. monocytes, macrophages and dendritic cells (DCs), are critically important for antiviral immunity. In particular, some devastating viruses, including porcine reproductive and respiratory syndrome virus (PRRSV), are capable of directly infecting these cell...

  9. Interaction of rotavirus with human peripheral blood mononuclear cells: plasmacytoid dendritic cells play a role in stimulating memory rotavirus specific T cells in vitro.

    Science.gov (United States)

    Mesa, Martha C; Rodríguez, Luz-Stella; Franco, Manuel A; Angel, Juana

    2007-09-15

    We studied the interaction of RV with human peripheral blood mononuclear cells (PBMC) from adult volunteers. After exposure of PBMC to rhesus RV (RRV), T and B lymphocytes, NK cells, monocytes, and myeloid and plasmacytoid dendritic cells expressed RV non-structural proteins, at variable levels. Expression of these RV proteins was abolished if infection was done in the presence of anti-VP7 neutralizing antibodies or 10% autologous serum. Supernatants of RRV exposed PBMC contained TNF-alpha, IL-6, IFN-alpha, IFN-gamma, IL-2 and IL-10. Plasmacytoid DC were found to be the main source of IFN-alpha production, and in their absence the production of IFN-gamma and the frequency of RV specific T cells that secrete IFN-gamma diminished. Finally, we could not detect RV-antigen associated with the PBMC or expression of RV non-structural proteins in PBMC of acutely RV-infected children. Thus, although PBMC are susceptible to the initial steps of RV infection, most PBMC of children with RV-gastroenteritis are not infected.

  10. HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.

    OpenAIRE

    Héla Saïdi; Marlène Bras; Pauline Formaglio; Marie-Thérèse Melki; Bruno Charbit; Jean-Philippe Herbeuval; Marie-Lise Gougeon

    2016-01-01

    Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-?. Moreover, Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-? as well as cell?cell contact is requ...

  11. Eosinophils Regulate Interferon Alpha Production in Plasmacytoid Dendritic Cells Stimulated with Components of Neutrophil Extracellular Traps.

    Science.gov (United States)

    Skrzeczynska-Moncznik, Joanna; Zabieglo, Katarzyna; Bossowski, Jozef P; Osiecka, Oktawia; Wlodarczyk, Agnieszka; Kapinska-Mrowiecka, Monika; Kwitniewski, Mateusz; Majewski, Pawel; Dubin, Adam; Cichy, Joanna

    2017-03-01

    Eosinophils constitute an important component of helminth immunity and are not only associated with various allergies but are also linked to autoinflammatory disorders, including the skin disease psoriasis. Here we demonstrate the functional relationship between eosinophils and plasmacytoid dendritic cells (pDCs) as related to skin diseases. We previously showed that pDCs colocalize with neutrophil extracellular traps (NETs) in psoriatic skin. Here we demonstrate that eosinophils are found in psoriatic skin near neutrophils and NETs, suggesting that pDC responses can be regulated by eosinophils. Eosinophils inhibited pDC function in vitro through a mechanism that did not involve cell contact but depended on soluble factors. In pDCs stimulated by specific NET components, eosinophil-conditioned media attenuated the production of interferon α (IFNα) but did not affect the maturation of pDCs as evidenced by the unaltered expression of the costimulatory molecules CD80 and CD86. As pDCs and IFNα play a key role in autoimmune skin inflammation, these data suggest that eosinophils may influence autoinflammatory responses through their impact on the production of IFNα by pDCs.

  12. Establishing porcine monocyte-derived macrophage and dendritic cell systems for studying the interaction with PRRSV-1

    Directory of Open Access Journals (Sweden)

    Helen eSingleton

    2016-06-01

    Full Text Available Monocyte-derived macrophages (MoMØ and monocyte-derived dendritic cells (MoDC are two model systems well established in human and rodent systems that can be used to study the interaction of pathogens with host cells. Porcine reproductive and respiratory syndrome virus (PRRSV is known to infect myeloid cells, such as macrophages (MØ and dendritic cells (DC. Therefore, this study aimed to establish systems for the differentiation and characterization of MoMØ and MoDC for subsequent infection with PRRSV-1. M-CSF differentiated monocyte-derived macrophages (MoMØ were stimulated with activators for classical (M1 or alternative (M2 activation. GM-CSF and IL-4 generated monocyte-derived dendritic cells (MoDC were activated with the well established maturation cocktail containing PAMPs and cytokines. In addition, MoMØ and MoDC were treated with dexamethasone and IL-10, which are known immuno-suppressive reagents. Cells were characterized by morphology, phenotype and function and porcine MØ subsets highlighted some divergence from described human counterparts, while MoDC, appeared more similar to mouse and human DCs. The infection with PRRSV-1 strain Lena demonstrated different replication kinetics between MoMØ and MoDC and within subsets of each cell type. While MoMØ susceptibility was significantly increased by dexamethasone and IL-10 with an accompanying increase in CD163/CD169 expression, MoDC supported only a minimal replication of PRRSV These findings underline the high variability in the susceptibility of porcine myeloid cells towards PRRSV-1 infection.

  13. Acute aerobic exercise induces a preferential mobilisation of plasmacytoid dendritic cells into the peripheral blood in man.

    Science.gov (United States)

    Brown, Frankie F; Campbell, John P; Wadley, Alex J; Fisher, James P; Aldred, Sarah; Turner, James E

    2018-05-31

    Dendritic cells (DCs) are important sentinel cells of the immune system responsible for presenting antigen to T cells. Exercise is known to cause an acute and transient increase in the frequency of DCs in the bloodstream in humans, yet there are contradictory findings in the literature regarding the phenotypic composition of DCs mobilised during exercise, which may have implications for immune regulation and health. Accordingly, we sought to investigate the composition of DC sub-populations mobilised in response to acute aerobic exercise. Nine healthy males (age, 21.9 ± 3.6 years; height, 177.8 ± 5.4 cm; body mass, 78.9 ± 10.8 kg; body mass index, 24.9 ± 3.3 kg·m 2 ; V̇O 2 MAX , 41.5 ± 5.1 mL·kg·min -1 ) cycled for 20 min at 80% V̇O 2 MAX . Blood was sampled at baseline, during the final minute of exercise and 30 min later. Using flow cytometry, total DCs were defined as Lineage- (CD3, CD19, CD20, CD14, CD56) HLA-DR+ and subsequently identified as plasmacytoid DCs (CD303+) and myeloid DCs (CD303-). Myeloid DCs were analysed for expression of CD1c and CD141 to yield four sub-populations; CD1c-CD141+; CD1c+CD141+; CD1c+CD141- and CD1c-CD141-. Expression of CD205 was also analysed on all DC sub-populations to identify DCs capable of recognising apoptotic and necrotic cells. Total DCs increased by 150% during exercise (F (1,10)  = 60; p < 0.05, η 2  = 0.9). Plasmacytoid DCs mobilised to a greater magnitude than myeloid DCs (195 ± 131% vs. 131 ± 100%; p < 0.05). Among myeloid DCs, CD1c-CD141- cells showed the largest exercise-induced mobilisation (167 ± 122%), with a stepwise pattern observed among the remaining sub-populations: CD1c+CD141- (79 ± 50%), followed by CD1c+CD141+ (44 ± 41%), with the smallest response shown by CD1c-CD141+ cells (23 ± 54%) (p < 0.05). Among myeloid DCs, CD205- cells were the most exercise responsive. All DC subsets returned to resting levels within

  14. A systems immunology approach to plasmacytoid dendritic cell function in cytopathic virus infections.

    Directory of Open Access Journals (Sweden)

    Gennady Bocharov

    Full Text Available Plasmacytoid dendritic cell (pDC-mediated protection against cytopathic virus infection involves various molecular, cellular, tissue-scale, and organism-scale events. In order to better understand such multiscale interactions, we have implemented a systems immunology approach focusing on the analysis of the structure, dynamics and operating principles of virus-host interactions which constrain the initial spread of the pathogen. Using high-resolution experimental data sets coming from the well-described mouse hepatitis virus (MHV model, we first calibrated basic modules including MHV infection of its primary target cells, i.e. pDCs and macrophages (Mphis. These basic building blocks were used to generate and validate an integrative mathematical model for in vivo infection dynamics. Parameter estimation for the system indicated that on a per capita basis, one infected pDC secretes sufficient type I IFN to protect 10(3 to 10(4 Mphis from cytopathic viral infection. This extremely high protective capacity of pDCs secures the spleen's capability to function as a 'sink' for the virus produced in peripheral organs such as the liver. Furthermore, our results suggest that the pDC population in spleen ensures a robust protection against virus variants which substantially down-modulate IFN secretion. However, the ability of pDCs to protect against severe disease caused by virus variants exhibiting an enhanced liver tropism and higher replication rates appears to be rather limited. Taken together, this systems immunology analysis suggests that antiviral therapy against cytopathic viruses should primarily limit viral replication within peripheral target organs.

  15. Positive regulation of plasmacytoid dendritic cell function via Ly49Q recognition of class I MHC

    Science.gov (United States)

    Tai, Lee-Hwa; Goulet, Marie-Line; Belanger, Simon; Toyama-Sorimachi, Noriko; Fodil-Cornu, Nassima; Vidal, Silvia M.; Troke, Angela D.; McVicar, Daniel W.; Makrigiannis, Andrew P.

    2008-01-01

    Plasmacytoid dendritic cells (pDCs) are an important source of type I interferon (IFN) during initial immune responses to viral infections. In mice, pDCs are uniquely characterized by high-level expression of Ly49Q, a C-type lectin-like receptor specific for class I major histocompatibility complex (MHC) molecules. Despite having a cytoplasmic immunoreceptor tyrosine-based inhibitory motif, Ly49Q was found to enhance pDC function in vitro, as pDC cytokine production in response to the Toll-like receptor (TLR) 9 agonist CpG-oligonucleotide (ODN) could be blocked using soluble monoclonal antibody (mAb) to Ly49Q or H-2Kb. Conversely, CpG-ODN–dependent IFN-α production by pDCs was greatly augmented upon receptor cross-linking using immobilized anti-Ly49Q mAb or recombinant H-2Kb ligand. Accordingly, Ly49Q-deficient pDCs displayed a severely reduced capacity to produce cytokines in response to TLR7 and TLR9 stimulation both in vitro and in vivo. Finally, TLR9-dependent antiviral responses were compromised in Ly49Q-null mice infected with mouse cytomegalovirus. Thus, class I MHC recognition by Ly49Q on pDCs is necessary for optimal activation of innate immune responses in vivo. PMID:19075287

  16. Plasmacytoid dendritic cells accumulate and secrete interferon alpha in lymph nodes of HIV-1 patients.

    Directory of Open Access Journals (Sweden)

    Clara Lehmann

    2010-06-01

    Full Text Available Circulating plasmacytoid dendritic cells (pDC decline during HIV-1 infection, but at the same time they express markedly higher levels of interferon alpha (IFNalpha, which is associated with HIV-1 disease progression. Here we show an accumulation of pDC in lymph nodes (LN of treatment-naïve HIV-1 patients. This phenomenon was associated with elevated expression of the LN homing marker, CCR7, on pDC in peripheral blood of HIV-1 patients, which conferred increased migratory capacity in response to CCR7 ligands in ex vivo functional assays. LN-homed pDC of HIV-1 patients presented higher CD40 and lower BDCA2 levels, but unchanged CD83 and CD86 expression. In addition, these cells expressed markedly higher amounts of IFNalpha compared to uninfected individuals, and were undergoing faster rates of cell death. These results demonstrate for the first time that in asymptomatic, untreated HIV-1 patients circulating pDC up-regulate CCR7 expression, accumulate in lymph nodes, and express high amounts of IFNalpha before undergoing cell death. Since IFNalpha inhibits cell proliferation and modulates immune responses, chronically high levels of this cytokine in LN of HIV-1 patients may impair differentiation and immune function of bystander CD4(+ T cells, thus playing into the mechanisms of AIDS immunopathogenesis.

  17. CD56 marks human dendritic cell subsets with cytotoxic potential

    NARCIS (Netherlands)

    Roothans, D.; Smits, E.; Lion, E.; Tel, J.; Anguille, S.

    2013-01-01

    Human plasmacytoid and myeloid dendritic cells (DCs), when appropriately stimulated, can express the archetypal natural killer (NK)-cell surface marker CD56. In addition to classical DC functions, CD56(+) DCs are endowed with an unconventional cytotoxic capacity.

  18. Highly efficient transduction of human plasmacytoid dendritic cells without phenotypic and functional maturation

    Directory of Open Access Journals (Sweden)

    Plumas Joel

    2009-01-01

    Full Text Available Abstract Background Gene modified dendritic cells (DC are able to modulate DC functions and induce therapeutic immunity or tolerance in an antigen-specific manner. Among the different DC subsets, plasmacytoid DC (pDC are well known for their ability to recognize and respond to a variety of viruses by secreting high levels of type I interferon. Methods We analyzed here, the transduction efficiency of a pDC cell line, GEN2.2, and of pDC derived from CD34+ progenitors, using lentiviral vectors (LV pseudotyped with different envelope glycoproteins such as the vesicular stomatitis virus envelope (VSVG, the gibbon ape leukaemia virus envelope (GaLV or the feline endogenous virus envelope (RD114. At the same time, we evaluated transgene expression (E-GFP reporter gene under the control of different promoters. Results We found that efficient gene transfer into pDC can be achieved with VSVG-pseudotyped lentiviral vectors (LV under the control of phoshoglycerate kinase (PGK and elongation factor-1 (EF1α promoters (28% to 90% of E-GFP+ cells, respectively in the absence of phenotypic and functional maturation. Surprisingly, promoters (desmin or synthetic C5–12 described as muscle-specific and which drive gene expression in single strand AAV vectors in gene therapy protocols were very highly active in pDC using VSVG-LV. Conclusion Taken together, our results indicate that LV vectors can serve to design pDC-based vaccines in humans, and they are also useful in vitro to evaluate the immunogenicity of the vector preparations, and the specificity and safety of given promoters used in gene therapy protocols.

  19. A novel cancer vaccine strategy based on HLA-A*0201 matched allogeneic plasmacytoid dendritic cells.

    Directory of Open Access Journals (Sweden)

    Caroline Aspord

    Full Text Available BACKGROUND: The development of effective cancer vaccines still remains a challenge. Despite the crucial role of plasmacytoid dendritic cells (pDCs in anti-tumor responses, their therapeutic potential has not yet been worked out. We explored the relevance of HLA-A*0201 matched allogeneic pDCs as vectors for immunotherapy. METHODS AND FINDINGS: Stimulation of PBMC from HLA-A*0201(+ donors by HLA-A*0201 matched allogeneic pDCs pulsed with tumor-derived peptides triggered high levels of antigen-specific and functional cytotoxic T cell responses (up to 98% tetramer(+ CD8 T cells. The pDC vaccine demonstrated strong anti-tumor therapeutic in vivo efficacy as shown by the inhibition of tumor growth in a humanized mouse model. It also elicited highly functional tumor-specific T cells ex-vivo from PBMC and TIL of stage I-IV melanoma patients. Responses against MelA, GP100, tyrosinase and MAGE-3 antigens reached tetramer levels up to 62%, 24%, 85% and 4.3% respectively. pDC vaccine-primed T cells specifically killed patients' own autologous melanoma tumor cells. This semi-allogeneic pDC vaccine was more effective than conventional myeloid DC-based vaccines. Furthermore, the pDC vaccine design endows it with a strong potential for clinical application in cancer treatment. CONCLUSIONS: These findings highlight HLA-A*0201 matched allogeneic pDCs as potent inducers of tumor immunity and provide a promising immunotherapeutic strategy to fight cancer.

  20. The effects of renal transplantation on circulating dendritic cells

    NARCIS (Netherlands)

    D.A. Hesselink (Dennis); L.M.B. Vaessen (Leonard); W.C.J. Hop (Wim); W. Schoordijk-Verschoor (Wenda); J.N.M. IJzermans (Jan); C.C. Baan (Carla); W. Weimar (Willem)

    2005-01-01

    textabstractThe effects of immunosuppressive agents on T cell function have been well characterized but virtually nothing is known about the effects of renal transplantation on human dendritic cells (DCs). With the use of flow cytometry, we studied the kinetics of myeloid and plasmacytoid DCs in

  1. HIV-1 Env and Nef Cooperatively Contribute to Plasmacytoid Dendritic Cell Activation via CD4-Dependent Mechanisms.

    Science.gov (United States)

    Reszka-Blanco, Natalia J; Sivaraman, Vijay; Zhang, Liguo; Su, Lishan

    2015-08-01

    Plasmacytoid dendritic cells (pDCs) are the major source of type I IFN (IFN-I) in response to human immunodeficiency virus type 1 (HIV-1) infection. pDCs are rapidly activated during HIV-1 infection and are implicated in reducing the early viral load, as well as contributing to HIV-1-induced pathogenesis. However, most cell-free HIV-1 isolates are inefficient in activating human pDCs, and the mechanisms of HIV-1 recognition by pDCs and pDC activation are not clearly defined. In this study, we report that two genetically similar HIV-1 variants (R3A and R3B) isolated from a rapid progressor differentially activated pDCs to produce alpha interferon (IFN-α). The highly pathogenic R3A efficiently activated pDCs to induce robust IFN-α production, while the less pathogenic R3B did not. The viral determinant for efficient pDC activation was mapped to the V1V2 region of R3A Env, which also correlated with enhanced CD4 binding activity. Furthermore, we showed that the Nef protein was also required for the activation of pDCs by R3A. Analysis of a panel of R3A Nef functional mutants demonstrated that Nef domains involved in CD4 downregulation were necessary for R3A to activate pDCs. Our data indicate that R3A-induced pDC activation depends on (i) the high affinity of R3A Env for binding the CD4 receptor and (ii) Nef activity, which is involved in CD4 downregulation. Our findings provide new insights into the mechanism by which HIV-1 induces IFN-α in pDCs, which contributes to pathogenesis. Plasmacytoid dendritic cells (pDCs) are the major type I interferon (IFN-I)-producing cells, and IFN-I actually contributes to pathogenesis during chronic viral infections. How HIV-1 activates pDCs and the roles of pDCs/IFN-I in HIV-1 pathogenesis remain unclear. We report here that the highly pathogenic HIV R3A efficiently activated pDCs to induce IFN-α production, while most HIV-1 isolates are inefficient in activating pDCs. We have discovered that R3A-induced pDC activation depends on

  2. A plasmacytoid dendritic cell (CD123+/CD11c-) based assay system to predict contact allergenicity of chemicals

    Science.gov (United States)

    Ayehunie, Seyoum; Snell, Maureen; Child, Matthew; Klausner, Mitchell

    2009-01-01

    A predictive allergenicity test system for assessing the contact allergenicity of chemicals is needed by the cosmetic and pharmaceutical industry to monitor product safety in the marketplace. Development of such non-animal alternative assay systems for skin sensitization and hazard identification has been pursued by policy makers and regulatory agencies. We investigated whether phenotypic and functional changes to a subset of dendritic cells (DC), plasmacytoid DC (pDC), could be used to identify contact allergens. To achieve this goal, normal human DC were generated from CD34+ progenitor cells and cryopreserved. Frozen DC were thawed and the pDC fraction (CD123+/CD11c-) was harvested using FACS sorting. The pDC were cultured, expanded, and exposed to chemical allergens (N=26) or non-allergens (N=22). Concentrations of each chemical that resulted in >50% viability was determined using FACS analysis of propidium iodide stained cells using pDC from 2-5 donors. Expression of the surface marker, CD86, which has been implicated in dendritic cell maturation, was used as a marker of allergenicity. CD86 expression increased (≥ 1.5 fold) for 25 of 26 allergens (sensitivity = 96%) but did not increase for 19 of 22 non-allergens (specificity = 86%). In a direct comparison to historical data for the regulatory approved, mouse local lymph node assay (LLNA) for 23 allergens and 22 non-allergens, the pDC method had sensitivity and specificity of 96% and 86%, respectively, while the sensitivity and specificity of the LLNA assay was 83% and 82%, respectively. In conclusion, CD86 expression in pDC appears to be a sensitive and specific indicator to identify contact allergenicity. Such an assay method utilizing normal human cells will be useful for high throughput screening of chemicals for allergenicity. PMID:19665512

  3. A plasmacytoid dendritic cell (CD123+/CD11c-) based assay system to predict contact allergenicity of chemicals

    International Nuclear Information System (INIS)

    Ayehunie, Seyoum; Snell, Maureen; Child, Matthew; Klausner, Mitchell

    2009-01-01

    A predictive allergenicity test system for assessing the contact allergenicity of chemicals is needed by the cosmetic and pharmaceutical industry to monitor product safety in the marketplace. Development of such non-animal alternative assay systems for skin sensitization and hazard identification has been pursued by policy makers and regulatory agencies. We investigated whether phenotypic and functional changes to a subset of dendritic cells (DC), plasmacytoid DC (pDC), could be used to identify contact allergens. To achieve this goal, normal human DC were generated from CD34+ progenitor cells and cryopreserved. Frozen DC were thawed and the pDC fraction (CD123+/CD11c-) was harvested using FACS sorting. The pDC were cultured, expanded, and exposed to chemical allergens (N = 26) or non-allergens (N = 22). Concentrations of each chemical that resulted in >50% viability was determined using FACS analysis of propidium iodide stained cells using pDC from 2 to 5 donors. Expression of the surface marker, CD86, which has been implicated in dendritic cell maturation, was used as a marker of allergenicity. CD86 expression increased (≥1.5-fold) for 25 of 26 allergens (sensitivity = 96%) but did not increase for 19 of 22 non-allergens (specificity = 86%). In a direct comparison to historical data for the regulatory approved, mouse local lymph node assay (LLNA) for 23 allergens and 22 non-allergens, the pDC method had sensitivity and specificity of 96% and 86%, respectively, while the sensitivity and specificity of the LLNA assay was 83% and 82%, respectively. In conclusion, CD86 expression in pDC appears to be a sensitive and specific indicator to identify contact allergenicity. Such an assay method utilizing normal human cells will be useful for high throughput screening of chemicals for allergenicity.

  4. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    International Nuclear Information System (INIS)

    Ocaña-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert; Stech, Jürgen; Stech, Olga; Summerfield, Artur

    2012-01-01

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-κB translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  5. Avian influenza A virus PB2 promotes interferon type I inducing properties of a swine strain in porcine dendritic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ocana-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie; Monika, Gsell-Albert [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland); Stech, Juergen; Stech, Olga [Friedrich-Loeffler Institut, Greifswald-Insel Riems (Germany); Summerfield, Artur, E-mail: artur.summerfield@ivi.admin.ch [Institute of Virology and Immunoprophylaxis, Mittelhaeusern (Switzerland)

    2012-05-25

    The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, but porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-{kappa}B translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.

  6. The involvement of plasmacytoid cells in HIV infection and pathogenesis.

    Science.gov (United States)

    Aiello, Alessandra; Giannessi, Flavia; Percario, Zulema A; Affabris, Elisabetta

    2018-04-01

    Plasmacytoid dendritic cells (pDCs) are a unique dendritic cell subset that are specialized in type I interferon (IFN) production. pDCs are key players in the antiviral immune response and serve as bridge between innate and adaptive immunity. Although pDCs do not represent the main reservoir of the Human Immunodeficiency Virus (HIV), they are a crucial subset in HIV infection as they influence viral transmission, target cell infection and antigen presentation. pDCs act as inflammatory and immunosuppressive cells, thus contributing to HIV disease progression. This review provides a state of art analysis of the interactions between HIV and pDCs and their potential roles in HIV transmission, chronic immune activation and immunosuppression. A thorough understanding of the roles of pDCs in HIV infection will help to improve therapeutic strategies to fight HIV infection, and will further increase our knowledge on this important immune cell subset. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren's syndrome.

    Science.gov (United States)

    Gottenberg, Jacques-Eric; Cagnard, Nicolas; Lucchesi, Carlo; Letourneur, Franck; Mistou, Sylvie; Lazure, Thierry; Jacques, Sebastien; Ba, Nathalie; Ittah, Marc; Lepajolec, Christine; Labetoulle, Marc; Ardizzone, Marc; Sibilia, Jean; Fournier, Catherine; Chiocchia, Gilles; Mariette, Xavier

    2006-02-21

    Gene expression analysis of target organs might help provide new insights into the pathogenesis of autoimmune diseases. We used global gene expression profiling of minor salivary glands to identify patterns of gene expression in patients with primary Sjögren's syndrome (pSS), a common and prototypic systemic autoimmune disease. Gene expression analysis allowed for differentiating most patients with pSS from controls. The expression of 23 genes in the IFN pathways, including two Toll-like receptors (TLR8 and TLR9), was significantly different between patients and controls. Furthermore, the increased expression of IFN-inducible genes, BAFF and IFN-induced transmembrane protein 1, was also demonstrated in ocular epithelial cells by quantitative RT-PCR. In vitro activation showed that these genes were effectively modulated by IFNs in salivary gland epithelial cells, the target cells of autoimmunity in pSS. The activation of IFN pathways led us to investigate whether plasmacytoid dendritic cells were recruited in salivary glands. These IFN-producing cells were detected by immunohistochemistry in all patients with pSS, whereas none was observed in controls. In conclusion, our results support the pathogenic interaction between the innate and adaptive immune system in pSS. The persistence of the IFN signature might be related to a vicious circle, in which the environment interacts with genetic factors to drive the stimulation of salivary TLRs.

  8. IL-21 May Promote Granzyme B-Dependent NK/Plasmacytoid Dendritic Cell Functional Interaction in Cutaneous Lupus Erythematosus.

    Science.gov (United States)

    Salvi, Valentina; Vermi, William; Cavani, Andrea; Lonardi, Silvia; Carbone, Teresa; Facchetti, Fabio; Bosisio, Daniela; Sozzani, Silvano

    2017-07-01

    Autoimmune skin lesions are characterized by a complex cytokine milieu and by the accumulation of plasmacytoid dendritic cells (pDCs). Granzyme B (GrB) transcript is abundant in activated pDCs, though its mechanisms of regulation and biological role are largely unknown. Here we report that IL-21 was the only T helper 1/T helper 17 cytokine able to induce the expression and secretion of GrB by pDCs and that this action was counteracted by the autocrine production of type I IFNs. In lupus erythematosus skin lesions, the percentage of GrB + pDCs directly correlated with the IL-21/MxA ratio, indicating that the interplay between these two cytokines finely tunes the levels of pDC-dependent GrB also in vivo. In lupus erythematosus, pDCs colocalized with professional cytotoxic cells at sites of epithelial damage, suggesting a role in keratinocyte killing. Accordingly, we demonstrate that supernatants of IL-21-activated pDCs promoted autologous keratinocyte killing by natural killer cells and this action was dependent on GrB. These results propose a GrB-dependent functional interaction between pDCs and natural killer cells and highlight a negative feedback regulation by type I IFNs in vitro and in vivo that may function to limit excessive tissue damage. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Donor lung derived myeloid and plasmacytoid dendritic cells differentially regulate T cell proliferation and cytokine production

    Directory of Open Access Journals (Sweden)

    Benson Heather L

    2012-03-01

    Full Text Available Abstract Background Direct allorecognition, i.e., donor lung-derived dendritic cells (DCs stimulating recipient-derived T lymphocytes, is believed to be the key mechanism of lung allograft rejection. Myeloid (cDCs and plasmacytoid (pDCs are believed to have differential effects on T cell activation. However, the roles of each DC type on T cell activation and rejection pathology post lung transplantation are unknown. Methods Using transgenic mice and antibody depletion techniques, either or both cell types were depleted in lungs of donor BALB/c mice (H-2d prior to transplanting into C57BL/6 mice (H-2b, followed by an assessment of rejection pathology, and pDC or cDC-induced proliferation and cytokine production in C57BL/6-derived mediastinal lymph node T cells (CD3+. Results Depleting either DC type had modest effect on rejection pathology and T cell proliferation. In contrast, T cells from mice that received grafts depleted of both DCs did not proliferate and this was associated with significantly reduced acute rejection scores compared to all other groups. cDCs were potent inducers of IFNγ, whereas both cDCs and pDCs induced IL-10. Both cell types had variable effects on IL-17A production. Conclusion Collectively, the data show that direct allorecognition by donor lung pDCs and cDCs have differential effects on T cell proliferation and cytokine production. Depletion of both donor lung cDC and pDC could prevent the severity of acute rejection episodes.

  10. The MEK1/2-ERK Pathway Inhibits Type I IFN Production in Plasmacytoid Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Vaclav Janovec

    2018-02-01

    Full Text Available Recent studies have reported that the crosslinking of regulatory receptors (RRs, such as blood dendritic cell antigen 2 (BDCA-2 (CD303 or ILT7 (CD85g, of plasmacytoid dendritic cells (pDCs efficiently suppresses the production of type I interferons (IFN-I, α/β/ω and other cytokines in response to toll-like receptor 7 and 9 (TLR7/9 ligands. The exact mechanism of how this B cell receptor (BCR-like signaling blocks TLR7/9-mediated IFN-I production is unknown. Here, we stimulated BCR-like signaling by ligation of RRs with BDCA-2 and ILT7 mAbs, hepatitis C virus particles, or BST2 expressing cells. We compared BCR-like signaling in proliferating pDC cell line GEN2.2 and in primary pDCs from healthy donors, and addressed the question of whether pharmacological targeting of BCR-like signaling can antagonize RR-induced pDC inhibition. To this end, we tested the TLR9-mediated production of IFN-I and proinflammatory cytokines in pDCs exposed to a panel of inhibitors of signaling molecules involved in BCR-like, MAPK, NF-ĸB, and calcium signaling pathways. We found that MEK1/2 inhibitors, PD0325901 and U0126 potentiated TLR9-mediated production of IFN-I in GEN2.2 cells. More importantly, MEK1/2 inhibitors significantly increased the TLR9-mediated IFN-I production blocked in both GEN2.2 cells and primary pDCs upon stimulation of BCR-like or phorbol 12-myristate 13-acetate-induced protein kinase C (PKC signaling. Triggering of BCR-like and PKC signaling in pDCs resulted in an upregulation of the expression and phoshorylation of c-FOS, a downstream gene product of the MEK1/2-ERK pathway. We found that the total level of c-FOS was higher in proliferating GEN2.2 cells than in the resting primary pDCs. The PD0325901-facilitated restoration of the TLR9-mediated IFN-I production correlated with the abrogation of MEK1/2-ERK-c-FOS signaling. These results indicate that the MEK1/2-ERK pathway inhibits TLR9-mediated type I IFN production in pDCs and that

  11. Effects of Mycoplasma hyopneumoniae on porcine nasal cavity dendritic cells.

    Science.gov (United States)

    Shen, Yumeng; Hu, Weiwei; Wei, Yanna; Feng, Zhixin; Yang, Qian

    2017-01-01

    Mycoplasma hyopneumoniae (Mhp) is the primary etiological agent responsible for swine enzootic pneumonia (EP), a disease that cause tremendous economic losses all over the swine industry. Dendritic cells (DCs), the most effective antigen-presenting cells, are widely distributed beneath respiratory epithelium. DCs uptake and present antigens to T cells, to initiate protective immune responses or generate immune-mediated pathology in different infections. In this study, we investigated the changes in the different DCs subpopulations, T cells and SIgA positive cells counts in porcine nasal cavity after long time Mhp infection. We further evaluated the role of porcine DCs in Mhp exposure. Our results showed that the number of SLA-II-DR + SWC3a + DCs, SLA-II-DR + CD11b + DCs, T cells, SIgA positive cells in nasal cavity were decreased after Mhp 28 days infection in vivo experiment. The antigen presenting ability of DCs were inhibited by Mhp exposure. DCs couldn't activate T-cell proliferation by down-regulating the antigen presenting molecule CD1a expression and promoting high level of IL-10 production. Further more, the expression levels of IL-12 and IFN-γ in DCs were decreased, suggesting that DCs favour for Th2 immune response development after Mhp exposure in vitro. Taken together, Mhp infection impairs the immune function which allows the persistence of Mhp and cause predispose pigs to secondary infections. The decline of DCs presentation ability is the reason why dysfunction and persistence in Mhp infection. These findings are benefit for exploring the pathogenic mechanisms of Mhp in pigs. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Cross Talk between inhibitory immunoreceptor Tyrosine-Based Activation Motif-Signaling and Toll-Like Receptor Pathways in Macrophages and Dendritic Cells

    Czech Academy of Sciences Publication Activity Database

    Hirsch, Ivan; Janovec, Václav; Stranska, R.; Bendriss-Vermare, N.

    2017-01-01

    Roč. 8, Apr 7 (2017), č. článku 394. ISSN 1664-3224 Institutional support: RVO:61388963 Keywords : plasmacytoid dendritic cell * conventional dendritic cells * macrophage * toll-like receptors * regulatory receptors Subject RIV: EC - Immunology OBOR OECD: Immunology Impact factor: 6.429, year: 2016 http://journal.frontiersin.org/article/10.3389/fimmu.2017.00394/full

  13. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren’s syndrome

    Science.gov (United States)

    Gottenberg, Jacques-Eric; Cagnard, Nicolas; Lucchesi, Carlo; Letourneur, Franck; Mistou, Sylvie; Lazure, Thierry; Jacques, Sebastien; Ba, Nathalie; Ittah, Marc; Lepajolec, Christine; Labetoulle, Marc; Ardizzone, Marc; Sibilia, Jean; Fournier, Catherine; Chiocchia, Gilles; Mariette, Xavier

    2006-01-01

    Gene expression analysis of target organs might help provide new insights into the pathogenesis of autoimmune diseases. We used global gene expression profiling of minor salivary glands to identify patterns of gene expression in patients with primary Sjögren’s syndrome (pSS), a common and prototypic systemic autoimmune disease. Gene expression analysis allowed for differentiating most patients with pSS from controls. The expression of 23 genes in the IFN pathways, including two Toll-like receptors (TLR8 and TLR9), was significantly different between patients and controls. Furthermore, the increased expression of IFN-inducible genes, BAFF and IFN-induced transmembrane protein 1, was also demonstrated in ocular epithelial cells by quantitative RT-PCR. In vitro activation showed that these genes were effectively modulated by IFNs in salivary gland epithelial cells, the target cells of autoimmunity in pSS. The activation of IFN pathways led us to investigate whether plasmacytoid dendritic cells were recruited in salivary glands. These IFN-producing cells were detected by immunohistochemistry in all patients with pSS, whereas none was observed in controls. In conclusion, our results support the pathogenic interaction between the innate and adaptive immune system in pSS. The persistence of the IFN signature might be related to a vicious circle, in which the environment interacts with genetic factors to drive the stimulation of salivary TLRs. PMID:16477017

  14. Blastic Plasmacytoid Dendritic Cell Leukemia in a Black Malian

    African Journals Online (AJOL)

    2017-06-28

    Jun 28, 2017 ... BPDCN in Mali. KEYWORDS: Acute Leukemia, black african, dendritic cell, Mali ... myeloid neoplasm by the 2008 world health organization classification of .... There are many standardized treatment regimens, and many protocols with ... leukemia chemotherapy regimen[7,11] or chronic leukemia treatment ...

  15. Effect of natalizumab treatment on circulating plasmacytoid dendritic cells: a cross-sectional observational study in patients with multiple sclerosis.

    Directory of Open Access Journals (Sweden)

    Pia Kivisäkk

    Full Text Available Dendritic cells (DCs serve a critical role both in promoting and inhibiting adaptive immunity. The goal of this study was to investigate the effect of natalizumab (NTZ treatment on DC numbers, phenotype, and function in patients with multiple sclerosis (MS.Frequency and phenotype of myeloid and plasmacytoid DCs (MDCs and PDCs, respectively were analyzed in blood from two separate cohorts of untreated, interferon-treated, or NTZ-treated MS patients. In addition, PDCs were stimulated with CpG-containing oligonucleotides or co-cultured with homologous T cells in the presence or absence of NTZ in vitro to determine functional effects of NTZ treatment.We observed that NTZ treatment was associated with a 25-50% reduction in PDC frequency in peripheral blood as compared to untreated MS patients, while the frequency of MDCs was unchanged. PDCs in NTZ-treated patients displayed a mature, activated phenotype with increased expression of HLA-DR, TLR9, CCR7, IL-6 and IL-12. In contrast, in vitro treatment with NTZ did not increase markers of PDC activation or their ability to induce T cell differentiation.Our study shows that NTZ treatment is associated with a reduced frequency of PDCs in the peripheral circulation, but that PDCs in NTZ-treated individuals display an activated phenotype. Taken together the data suggests that transmigration of activated PDCs is preferentially affected by blockade of integrin α4 leading to an increased frequency of activated PDCs in blood.

  16. Cutaneous infiltration of plasmacytoid dendritic cells and T regulatory cells in skin lesions of polymorphic light eruption.

    Science.gov (United States)

    Rossi, M T; Arisi, M; Lonardi, S; Lorenzi, L; Ungari, M; Serana, F; Fusano, M; Moggio, E; Calzavara-Pinton, P G; Venturini, M

    2018-02-11

    Polymorphic light eruption (PLE) is the most common autoimmune photodermatosis. Plasmacytoid dendritic cells (PDCs) are important mediators of innate antimicrobial immunity involved in the pathogenesis of many inflammatory skin diseases. In addition to PDCs, regulatory T cells (Tregs) are involved in controlling inflammation and adaptive immunity in skin by their immunosuppressive capacity. The aim of this study was to investigate the presence of PDCs and Tregs in photoexposed skin from PLE compared to healthy skin. Patients with PLE diagnosis and healthy controls were recruited and underwent a photoprovocative test. A 4-mm punch biopsy was taken from the site of positive photoprovocation test reaction, and immunohistochemistry for BDCA2 as marker for PDCs, CD4 and FOXP3 as markers for Tregs was performed. Double immunostain for FOXP3 and CD4 was performed as well. Absolute counts for CD4, BDCA2 and FOXP3 were performed in at least 5 High Power Fields (HPF). Percentage of CD4-, BDCA2- and CD4FOXP3-positive cells over the total inflammatory infiltrate was assessed for each case. We enrolled 23 patients and controls. BDCA2+ cells were present in 91.3% of PLE skin samples and 100% of healthy volunteer. Both in PLE patients and healthy controls, PDCs distribution was mainly dermic (P PLE patients (P PLE patients and healthy controls, Tregs distribution was mainly dermic (P PLE patients compared to controls (P PLE, and dermal distribution of PDCs in PLE skin biopsies seems to confirm a possible overlap with cutaneous lupus erythematosus (CLE). © 2018 European Academy of Dermatology and Venereology.

  17. Dual Role of the Tyrosine Kinase Syk in Regulation of Toll-Like Receptor Signaling in Plasmacytoid Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Besma Aouar

    Full Text Available Crosslinking of regulatory immunoreceptors (RR, such as BDCA-2 (CD303 or ILT7 (CD85g, of plasmacytoid dendritic cells (pDCs efficiently suppresses production of type-I interferon (IFN-α/β and other cytokines in response to Toll-like receptor (TLR 7/9 ligands. This cytokine-inhibitory pathway is mediated by spleen tyrosine kinase (Syk associated with the ITAM-containing adapter of RR. Here we demonstrate by pharmacological targeting of Syk that in addition to the negative regulation of TLR7/9 signaling via RR, Syk also positively regulates the TLR7/9 pathway in human pDCs. Novel highly specific Syk inhibitor AB8779 suppressed IFN-α, TNF-α and IL-6 production induced by TLR7/9 agonists in primary pDCs and in the pDC cell line GEN2.2. Triggering of TLR9 or RR signaling induced a differential kinetics of phosphorylation at Y352 and Y525/526 of Syk and a differential sensitivity to AB8779. Consistent with the different roles of Syk in TLR7/9 and RR signaling, a concentration of AB8779 insufficient to block TLR7/9 signaling still released the block of IFN-α production triggered via the RR pathway, including that induced by hepatitis B and C viruses. Thus, pharmacological targeting of Syk partially restored the main pDC function-IFN-α production. Opposing roles of Syk in TLR7/9 and RR pathways may regulate the innate immune response to weaken inflammation reaction.

  18. Interplay of foot-and-mouth disease virus, antibodies and plasmacytoid dendritic cells: virus opsonization under non-neutralizing conditions results in enhanced interferon-alpha responses

    Directory of Open Access Journals (Sweden)

    Lannes Nils

    2012-08-01

    Full Text Available Abstract Foot-and-mouth disease virus (FMDV is a highly infectious member of the Picornaviridae inducing an acute disease of cloven-hoofed species. Vaccine-induced immune protection correlates with the presence of high levels of neutralizing antibodies but also opsonising antibodies have been proposed as an important mechanism of the immune response contributing to virus clearance by macrophages and leading to the production of type-I interferon (IFN by plasmacytoid dendritic cells (pDC. The present study demonstrates that the opsonising antibody titres mediating enhanced IFN-α responses in pDC were similar to neutralizing titres, when antigenically related viruses from the same serotype were employed. However, sera cross-reacted also with non-neutralized isolates of multiple serotypes, when tested in this assay. Both uncomplexed virus and immune complexed virus stimulated pDC via Toll-like receptor 7. An additional finding of potential importance for strain-specific differences in virulence and/or immunogenicity was that pDC activation by FMDV strongly differed between viral isolates. Altogether, our results indicate that opsonising antibodies can have a broader reactivity than neutralizing antibodies and may contribute to antiviral responses induced against antigenically distant viruses.

  19. Induction of T helper 3 regulatory cells by dendritic cells infected with porcine reproductive and respiratory syndrome virus

    International Nuclear Information System (INIS)

    Silva-Campa, Erika; Flores-Mendoza, Lilian; Resendiz, Monica; Pinelli-Saavedra, Araceli; Mata-Haro, Veronica; Mwangi, Waithaka; Hernandez, Jesus

    2009-01-01

    Delayed development of virus-specific immune response has been observed in pigs infected with the porcine reproductive and respiratory syndrome virus (PRRSV). Several studies support the hypothesis that the PRRSV is capable of modulating porcine immune system, but the mechanisms involved are yet to be defined. In this study, we evaluated the induction of T regulatory cells by PRRSV-infected dendritic cells (DCs). Our results showed that PRRSV-infected DCs significantly increased Foxp3 + CD25 + T cells, an effect that was reversible by IFN-α treatment, and this outcome was reproducible using two distinct PRRSV strains. Analysis of the expressed cytokines suggested that the induction of Foxp3 + CD25 + T cells is dependent on TGF-β but not IL-10. In addition, a significant up-regulation of Foxp3 mRNA, but not TBX21 or GATA3, was detected. Importantly, our results showed that the induced Foxp3 + CD25 + T cells were able to suppress the proliferation of PHA-stimulated PBMCs. The T cells induced by the PRRSV-infected DCs fit the Foxp3 + CD25 + T helper 3 (Th3) regulatory cell phenotype described in the literature. The induction of this cell phenotype depended, at least in part, on PRRSV viability because IFN-α treatment or virus inactivation reversed these effects. In conclusion, this data supports the hypothesis that the PRRSV succeeds to establish and replicate in porcine cells early post-infection, in part, by inducing Th3 regulatory cells as a mechanism of modulating the porcine immune system.

  20. Toll-like receptor 7/8 agonists stimulate plasmacytoid dendritic cells to initiate TH17-deviated acute contact dermatitis in human subjects.

    Science.gov (United States)

    Garzorz-Stark, Natalie; Lauffer, Felix; Krause, Linda; Thomas, Jenny; Atenhan, Anne; Franz, Regina; Roenneberg, Sophie; Boehner, Alexander; Jargosch, Manja; Batra, Richa; Mueller, Nikola S; Haak, Stefan; Groß, Christina; Groß, Olaf; Traidl-Hoffmann, Claudia; Theis, Fabian J; Schmidt-Weber, Carsten B; Biedermann, Tilo; Eyerich, Stefanie; Eyerich, Kilian

    2018-04-01

    A standardized human model to study early pathogenic events in patients with psoriasis is missing. Activation of Toll-like receptor 7/8 by means of topical application of imiquimod is the most commonly used mouse model of psoriasis. We sought to investigate the potential of a human imiquimod patch test model to resemble human psoriasis. Imiquimod (Aldara 5% cream; 3M Pharmaceuticals, St Paul, Minn) was applied twice a week to the backs of volunteers (n = 18), and development of skin lesions was monitored over a period of 4 weeks. Consecutive biopsy specimens were taken for whole-genome expression analysis, histology, and T-cell isolation. Plasmacytoid dendritic cells (pDCs) were isolated from whole blood, stimulated with Toll-like receptor 7 agonist, and analyzed by means of extracellular flux analysis and real-time PCR. We demonstrate that imiquimod induces a monomorphic and self-limited inflammatory response in healthy subjects, as well as patients with psoriasis or eczema. The clinical and histologic phenotype, as well as the transcriptome, of imiquimod-induced inflammation in human skin resembles acute contact dermatitis rather than psoriasis. Nevertheless, the imiquimod model mimics the hallmarks of psoriasis. In contrast to classical contact dermatitis, in which myeloid dendritic cells sense haptens, pDCs are primary sensors of imiquimod. They respond with production of proinflammatory and T H 17-skewing cytokines, resulting in a T H 17 immune response with IL-23 as a key driver. In a proof-of-concept setting systemic treatment with ustekinumab diminished imiquimod-induced inflammation. In human subjects imiquimod induces contact dermatitis with the distinctive feature that pDCs are the primary sensors, leading to an IL-23/T H 17 deviation. Despite these shortcomings, the human imiquimod model might be useful to investigate early pathogenic events and prove molecular concepts in patients with psoriasis. Copyright © 2017 The Authors. Published by Elsevier

  1. Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps.

    Science.gov (United States)

    Loures, Flávio V; Röhm, Marc; Lee, Chrono K; Santos, Evelyn; Wang, Jennifer P; Specht, Charles A; Calich, Vera L G; Urban, Constantin F; Levitz, Stuart M

    2015-02-01

    Plasmacytoid dendritic cells (pDCs) were initially considered as critical for innate immunity to viruses. However, our group has shown that pDCs bind to and inhibit the growth of Aspergillus fumigatus hyphae and that depletion of pDCs renders mice hypersusceptible to experimental aspergillosis. In this study, we examined pDC receptors contributing to hyphal recognition and downstream events in pDCs stimulated by A. fumigatus hyphae. Our data show that Dectin-2, but not Dectin-1, participates in A. fumigatus hyphal recognition, TNF-α and IFN-α release, and antifungal activity. Moreover, Dectin-2 acts in cooperation with the FcRγ chain to trigger signaling responses. In addition, using confocal and electron microscopy we demonstrated that the interaction between pDCs and A. fumigatus induced the formation of pDC extracellular traps (pETs) containing DNA and citrullinated histone H3. These structures closely resembled those of neutrophil extracellular traps (NETs). The microarray analysis of the pDC transcriptome upon A. fumigatus infection also demonstrated up-regulated expression of genes associated with apoptosis as well as type I interferon-induced genes. Thus, human pDCs directly recognize A. fumigatus hyphae via Dectin-2; this interaction results in cytokine release and antifungal activity. Moreover, hyphal stimulation of pDCs triggers a distinct pattern of pDC gene expression and leads to pET formation.

  2. Recognition of Aspergillus fumigatus hyphae by human plasmacytoid dendritic cells is mediated by dectin-2 and results in formation of extracellular traps.

    Directory of Open Access Journals (Sweden)

    Flávio V Loures

    2015-02-01

    Full Text Available Plasmacytoid dendritic cells (pDCs were initially considered as critical for innate immunity to viruses. However, our group has shown that pDCs bind to and inhibit the growth of Aspergillus fumigatus hyphae and that depletion of pDCs renders mice hypersusceptible to experimental aspergillosis. In this study, we examined pDC receptors contributing to hyphal recognition and downstream events in pDCs stimulated by A. fumigatus hyphae. Our data show that Dectin-2, but not Dectin-1, participates in A. fumigatus hyphal recognition, TNF-α and IFN-α release, and antifungal activity. Moreover, Dectin-2 acts in cooperation with the FcRγ chain to trigger signaling responses. In addition, using confocal and electron microscopy we demonstrated that the interaction between pDCs and A. fumigatus induced the formation of pDC extracellular traps (pETs containing DNA and citrullinated histone H3. These structures closely resembled those of neutrophil extracellular traps (NETs. The microarray analysis of the pDC transcriptome upon A. fumigatus infection also demonstrated up-regulated expression of genes associated with apoptosis as well as type I interferon-induced genes. Thus, human pDCs directly recognize A. fumigatus hyphae via Dectin-2; this interaction results in cytokine release and antifungal activity. Moreover, hyphal stimulation of pDCs triggers a distinct pattern of pDC gene expression and leads to pET formation.

  3. Lichen planus remission is associated with a decrease of human herpes virus type 7 protein expression in plasmacytoid dendritic cells

    NARCIS (Netherlands)

    de Vries, Henry J. C.; Teunissen, Marcel B. M.; Zorgdrager, Fokla; Picavet, Daisy; Cornelissen, Marion

    2007-01-01

    The cause of lichen planus is still unknown. Previously we showed human herpes virus 7 (HHV-7) DNA and proteins in lesional lichen planus skin, and significantly less in non-lesional lichen planus, psoriasis or healthy skin. Remarkably, lesional lichen planus skin was infiltrated with plasmacytoid

  4. In vitro culture and characterization of human umbilical cord blood-derived plasmacytoid dendritic cell subsets

    Directory of Open Access Journals (Sweden)

    PENG Jianping

    2015-11-01

    Full Text Available ObjectiveTo establish a method for in vitro culture of plasmacytoid dendritic cell (pDC. MethodsUmbilical cord blood (40 ml was collected from healthy parturients in the First Affiliated Hospital of Hunan University of Chinese Medicine, and cord blood mononuclear cell (CBMC were isolated. The CBMC were cultured for 7 days with RPMI 1640 complete medium containing rh Flt3-ligand (Flt3-L (100 ng/ml and rh interleukin (IL-3 (10 ng/ml, and the medium was half changed every 2 days. On the eighth day, CpG ODN (2 μg/ml was added to the cells, and the attached cells and supernatant were collected 24 h later for flow cytometry and interferon (IFNα measurement, respectively. On days 1, 3, 5, 7, and 8 of cell culture, the morphological changes of pDC were observed. Results After 2 h of culture, the CBMC showed circular, flat morphology. Twenty-four hours later, the cells began to adhere to the wall, with extended cytoplasm and increased volumes, and they became round and translucent, with scattered small colonies. On days 3-4 of culture, the cell volume continued increasing; most cells were round, and some had small protrusions; few cells were spindle-, tadpole-, star- or irregularly shaped; the number and volumes of colonies increased substantially. On days 5-8 of culture, the number of colonies and the number of cells in colonies gradually decreased, and suspended cells that were round or had small protrusions gradually increased in the medium. The cells expressing CD123, BDCA-2, and BDCA-4, which were considered pDC, were detected by flow cytometry. Flow cytometry revealed that the proportion of pDC in CBMC increased during the culture: increasing from 1.08% at the beginning of culture to 5.32% on day 4, and finally reaching a peak of 19.8% on day 8. On day 8, the level of IFNα in pDC culture supernatant was(11 302.61±1745.31 pg/ml. ConclusionpDC can be successfully induced in vitro by rh Flt3-L combined with IL-3 from human umbilical CBMC.

  5. Deficiency in plasmacytoid dendritic cells and type I interferon signalling prevents diet-induced obesity and insulin resistance in mice.

    Science.gov (United States)

    Hannibal, Tine D; Schmidt-Christensen, Anja; Nilsson, Julia; Fransén-Pettersson, Nina; Hansen, Lisbeth; Holmberg, Dan

    2017-10-01

    Obesity is associated with glucose intolerance and insulin resistance and is closely linked to the increasing prevalence of type 2 diabetes. In mouse models of diet-induced obesity (DIO) and type 2 diabetes, an increased fat intake results in adipose tissue expansion and the secretion of proinflammatory cytokines. The innate immune system not only plays a crucial role in obesity-associated chronic low-grade inflammation but it is also proposed to play a role in modulating energy metabolism. However, little is known about how the modulation of metabolism by the immune system may promote increased adiposity in the early stages of increased dietary intake. Here we aimed to define the role of type I IFNs in DIO and insulin resistance. Mice lacking the receptor for IFN-α (IFNAR -/- ) and deficient in plasmacytoid dendritic cells (pDCs) (B6.E2-2 fl/fl .Itgax-cre) were fed a diet with a high fat content or normal chow. The mice were analysed in vivo and in vitro using cellular, biochemical and molecular approaches. We found that the development of obesity was inhibited by an inability to respond to type I IFNs. Furthermore, the development of obesity and insulin resistance in this model was associated with pDC recruitment to the fatty tissues and liver of obese mice (a 4.3-fold and 2.7-fold increase, respectively). Finally, we demonstrated that the depletion of pDCs protects mice from DIO and from developing obesity-associated metabolic complications. Our results provide genetic evidence that pDCs, via type I IFNs, regulate energy metabolism and promote the development of obesity.

  6. Amelanotic melanoma presenting with plasmacytoid morphology and BRAF V600 mutation

    Directory of Open Access Journals (Sweden)

    Linda Kocovski

    2015-06-01

    Full Text Available Plasmacytoid melanoma is an unusual variant of malignant melanoma. The plasmacytoid morphology can be found in a variety of other malignancies including carcinomas, plasma cell neoplasms, lymphoproliferative disorders, and sarcomas. The authors report a rare case of plasmacytoid amelanotic malignant melanoma in a 78-year-old man presenting with an enlarging palpable, erythematous mass on his left posterior shoulder. A fine needle aspirate showed atypical findings with single amelanotic cells with high nuclear to cytoplasmic ratio, mono- and multi-nucleation with prominent nucleoli and intranuclear inclusions. Review of the excision and immunohistochemical analysis revealed the malignant plasmacytoid cells stained with vimentin, S-100, HMB-45, and other staining patterns consistent with melanoma. Initial evaluation was negative for other sites of disease. However, 4 months later, the patient was noted to have metastatic disease to his lungs and liver. Given that the tumor was noted to be BRAF V600R mutated, the patient was started on single agent dabrafenib. The plasmacytoid morphology can be found in a variety of malignancies. Melanoma should be considered in the differential diagnosis of any malignancy presenting with plasmacytoid features.

  7. Targeting of Escherichia coli F4 fimbriae to Fcgamma receptors enhances the maturation of porcine dendritic cells.

    Science.gov (United States)

    Devriendt, Bert; Verdonck, Frank; Summerfield, Artur; Goddeeris, Bruno M; Cox, Eric

    2010-06-15

    F4(+) enterotoxigenic Escherichia coli (ETEC) infections are an important cause of postweaning diarrhoea in piglets and an oral immunization of piglets with purified F4 fimbriae protects them from a subsequent F4(+) ETEC infection. However, oral immunization of suckling piglets is hampered due to the immature status of their immune system. Targeting of antigens to Fcgamma receptors (FcgammaR) on human and murine dendritic cells (DC) has been shown to enhance DC maturation and both humoral and cellular immune responses. To investigate the effect of F4 fimbriae incorporated in immune complexes (F4-IC) on porcine DC, we used porcine monocytic-derived DC (MoDC) as a model system. The results in this study demonstrate that FcgammaRI, II and III mRNA is expressed by porcine MoDC. Furthermore, we show that FcgammaRII and III are expressed on the cell surface and that F4-IC are internalized by MoDC via FcgammaR. This FcgammaR ligation induced a significantly enhanced expression of Major Histocompatibility complex (MHCII) class II and the costimulatory molecules CD80/86 and CD40 by MoDC compared with immature MoDC. Furthermore, the phagocytic capacity of F4-IC stimulated MoDC was reduced as evidenced by a reduced uptake of DQ-ovalbumin and FITC-dextran. In an allogenic and autologous mixed lymphocyte reaction, these F4-IC-activated MoDC showed an improved T cell stimulatory capacity in comparison with immature MoDC. The F4-IC induced DC maturation correlated with significant higher expression levels of several pro-inflammatory cytokines such as interleukine (IL) 1beta, IL-6 and Tumor necrosis factor alpha, the chemokine IL-8 and IL-12p40 in comparison with immature MoDC. Altogether, these results clearly demonstrate that FcgammaR engagement enhances the maturation of porcine MoDC, which may suggest that antigen targeting to FcgammaR on DC could improve vaccine design against infections. Copyright 2009 Elsevier B.V. All rights reserved.

  8. JAK-inhibitor tofacitinib suppresses interferon alfa production by plasmacytoid dendritic cells and inhibits arthrogenic and antiviral effects of interferon alfa.

    Science.gov (United States)

    Boor, Patrick P C; de Ruiter, Petra E; Asmawidjaja, Patrick S; Lubberts, Erik; van der Laan, Luc J W; Kwekkeboom, Jaap

    2017-10-01

    Tofacitinib is an oral Janus kinase inhibitor that is effective for the treatment of rheumatoid arthritis and shows encouraging therapeutic effects in several other autoimmune diseases. A prominent adverse effect of tofacitinib therapy is the increased risk of viral infections. Despite its advanced stage of clinical development, the modes of action that mediate the beneficial and adverse effects of tofacitinib in autoimmune diseases remain unclear. Interferon alfa (IFNα) produced by plasmacytoid dendritic cells (PDCs) is critically involved in the pathogenesis of many systemic autoimmune diseases and in immunity to viral infections. Using in vitro culture models with human cells, we studied the effects of tofacitinib on PDC survival and IFNα production, and on arthrogenic and antiviral effects of IFNα. Tofacitinib inhibited the expression of antiapoptotic BCL-A1 and BCL-XL in human PDC and induced PDC apoptosis. TLR7 stimulation upregulated the levels of antiapoptotic Bcl-2 family members and prevented the induction of PDC apoptosis by tofacitinib. However, tofacitinib robustly inhibited the production of IFNα by toll like receptor-stimulated PDC. In addition, tofacitinib profoundly suppressed IFNα-induced upregulation of TLR3 on synovial fibroblasts, thereby inhibiting their cytokine and protease production in response to TLR3 ligation. Finally, tofacitinib counteracted the suppressive effects of IFNα on viral replication. Tofacitinib inhibits PDC survival and IFNα production and suppresses arthrogenic and antiviral effects of IFNα signaling. Inhibition of the IFNα pathway at 2 levels may contribute to the beneficial effects of tofacitinib in autoimmune diseases and explain the increased viral infection rates observed during tofacitinib treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Constitutive expression of TNF-related activation-induced cytokine (TRANCE/receptor activating NF-κB ligand (RANK-L by rat plasmacytoid dendritic cells.

    Directory of Open Access Journals (Sweden)

    Thomas Anjubault

    Full Text Available Plasmacytoid dendritic cells (pDCs are a subset of DCs whose major function relies on their capacity to produce large amount of type I IFN upon stimulation via TLR 7 and 9. This function is evolutionary conserved and place pDC in critical position in the innate immune response to virus. Here we show that rat pDC constitutively express TNF-related activation-induced cytokine (TRANCE also known as Receptor-activating NF-κB ligand (RANKL. TRANCE/RANKL is a member of the TNF superfamily which plays a central role in osteoclastogenesis through its interaction with its receptor RANK. TRANCE/RANK interaction are also involved in lymphoid organogenesis as well as T cell/DC cross talk. Unlike conventional DC, rat CD4(high pDC were shown to constitutively express TRANCE/RANKL both at the mRNA and the surface protein level. TRANCE/RANKL was also induced on the CD4(low subsets of pDC following activation by CpG. The secreted form of TRANCE/RANKL was also produced by rat pDC. Of note, levels of mRNA, surface and secreted TRANCE/RANKL expression were similar to that observed for activated T cells. TRANCE/RANKL expression was found on pDC in all lymphoid organs as well blood and BM with a maximum expression in mesenteric lymph nodes. Despite this TRANCE/RANKL expression, we were unable to demonstrate in vitro osteoclastogenesis activity for rat pDC. Taken together, these data identifies pDC as novel source of TRANCE/RANKL in the immune system.

  10. Analysis of First-Year Twitter Metrics of a Rare Disease Community for Blastic Plasmacytoid Dendritic Cell Neoplasm (BPDCN) on Social Media: #BPDCN.

    Science.gov (United States)

    Pemmaraju, Naveen; Utengen, Audun; Gupta, Vikas; Thompson, Michael A; Lane, Andrew A

    2017-12-01

    The use of Twitter, one of the most commonly engaged social media platforms in the world, is increasing among the general public. Notably, this trend has also been observed among those involved in the healthcare field. With its ability to readily connect diverse groups of stakeholders in a given area of interest, Twitter has become a focal point for those involved in increasing awareness and information exchange in orphan disease fields. Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare, aggressive hematologic malignancy with generally poor long-term outcomes for adult patients and no standard therapeutic guidelines. Coupled with its low incidence rate, the disease has experienced a number of name changes over the past three decades (e.g., blastic NK cell lymphoma, CD4+CD56+ hematodermic tumor), thereby historically resulting in difficulties in its clinico-pathologic diagnosis and treatment approaches. All of these factors have led to a striking gap in terms of accurate information available to patients and the general public. Therefore, there is an urgent need for the development of more venues for the dissemination of information, particularly online, for this rare cancer. In this context, we began the Twitter medical community, #BPDCN, over a year ago, to help fill this information void. Now, completing its first year of existence, we aimed to analyze the metrics of Twitter use in order to better understand and to describe the characteristics and reach in of #BPDCN, and to determine the feasibility of starting and maintaining a disease-specific hashtag community in a particularly rare cancer.

  11. Oral chronic graft-versus-host disease: analysis of dendritic cells subpopulations*

    Science.gov (United States)

    Botari, Clara Marino Espricigo; Nunes, Adauto José Ferreira; de Souza, Mair Pedro; Orti-Raduan, Érica Sinara Lenharo; Salvio, Ana Gabriela

    2014-01-01

    The graft-versus-host disease is the major cause of morbidity and mortality in patients who have undergone hematopoietic stem cell transplantation. Aiming at contributing to the understanding of the role of myeloid and plasmacytoid dendritic cells, and natural killer cells in chronic graft-versus-host disease, we examined biopsies of jugal mucosa of 26 patients with acute myeloid leukemia who had undergone allogenic hematopoietic stem cell transplantation. Half of these patients developed oral chronic graft-versus-host disease. Microscopic sections were immunohistochemically stained for anti-CD1a, anti-CD123 and anti-CD56. We calculated the number of immunostained cells in the corium per square millimeter and applied the Mann-Whitney test. Results showed a statistically significant increase of myeloid dendritic cells (CD1a+; p=0,02) and natural killer cells (CD56; p=0,04) in patients with oral chronic graft-versus-host disease. CD123 immunostaining showed no statistical difference between groups. It was concluded that myeloid dendritic cells and natural killer cells participate in the development of oral chronic graft-versus-host disease. PMID:25054751

  12. Oral chronic graft-versus-host disease: analysis of dendritic cells subpopulations.

    Science.gov (United States)

    Botari, Clara Marino Espricigo; Nunes, Adauto José Ferreira; Souza, Mair Pedro de; Orti-Raduan, Erica Sinara Lenharo; Salvio, Ana Gabriela

    2014-01-01

    The graft-versus-host disease is the major cause of morbidity and mortality in patients who have undergone hematopoietic stem cell transplantation. Aiming at contributing to the understanding of the role of myeloid and plasmacytoid dendritic cells, and natural killer cells in chronic graft-versus-host disease, we examined biopsies of jugal mucosa of 26 patients with acute myeloid leukemia who had undergone allogenic hematopoietic stem cell transplantation. Half of these patients developed oral chronic graft-versus-host disease. Microscopic sections were immunohistochemically stained for anti-CD1a, anti-CD123 and anti-CD56. We calculated the number of immunostained cells in the corium per square millimeter and applied the Mann-Whitney test. Results showed a statistically significant increase of myeloid dendritic cells (CD1a+; p=0,02) and natural killer cells (CD56; p=0,04) in patients with oral chronic graft-versus-host disease. CD123 immunostaining showed no statistical difference between groups. It was concluded that myeloid dendritic cells and natural killer cells participate in the development of oral chronic graft-versus-host disease.

  13. Cytokine-Mediated Loss of Blood Dendritic Cells During Epstein-Barr Virus-Associated Acute Infectious Mononucleosis: Implication for Immune Dysregulation.

    Science.gov (United States)

    Panikkar, Archana; Smith, Corey; Hislop, Andrew; Tellam, Nick; Dasari, Vijayendra; Hogquist, Kristin A; Wykes, Michelle; Moss, Denis J; Rickinson, Alan; Balfour, Henry H; Khanna, Rajiv

    2015-12-15

    Acute infectious mononucleosis (IM) is associated with altered expression of inflammatory cytokines and disturbed T-cell homeostasis, however, the precise mechanism of this immune dysregulation remains unresolved. In the current study we demonstrated a significant loss of circulating myeloid and plasmacytoid dendritic cells (DCs) during acute IM, a loss correlated with the severity of clinical symptoms. In vitro exposure of blood DCs to acute IM plasma resulted in loss of plasmacytoid DCs, and further studies with individual cytokines showed that exposure to interleukin 10 could replicate this effect. Our data provide important mechanistic insight into dysregulated immune homeostasis during acute IM. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  14. Oral Delivery of Probiotics Expressing Dendritic Cell-Targeting Peptide Fused with Porcine Epidemic Diarrhea Virus COE Antigen: A Promising Vaccine Strategy against PEDV.

    Science.gov (United States)

    Wang, Xiaona; Wang, Li; Huang, Xuewei; Ma, Sunting; Yu, Meiling; Shi, Wen; Qiao, Xinyuan; Tang, Lijie; Xu, Yigang; Li, Yijing

    2017-10-25

    Porcine epidemic diarrhea virus (PEDV), an enteric coronavirus, is the causative agent of porcine epidemic diarrhea (PED) that damages intestinal epithelial cells and results in severe diarrhea and dehydration in neonatal suckling pigs with up to 100% mortality. The oral vaccine route is reported as a promising approach for inducing protective immunity against PEDV invasion. Furthermore, dendritic cells (DCs), professional antigen-presenting cells, link humoral and cellular immune responses for homeostasis of the intestinal immune environment. In this study, in order to explore an efficient oral vaccine against PEDV infection, a mucosal DC-targeting oral vaccine was developed using Lactobacillus casei to deliver the DC-targeting peptide (DCpep) fused with the PEDV core neutralizing epitope (COE) antigen. This probiotic vaccine could efficiently elicit secretory immunoglobulin A (SIgA)-based mucosal and immunoglobulin G (IgG)-based humoral immune responses via oral vaccination in vivo. Significant differences ( p targeting peptide fused with PEDV COE antigen. This mucosal DC-targeting oral vaccine delivery effectively enhances vaccine antigen delivery efficiency, providing a useful strategy to induce efficient immune responses against PEDV infection.

  15. TLR7/TLR8 Activation Restores Defective Cytokine Secretion by Myeloid Dendritic Cells but Not by Plasmacytoid Dendritic Cells in HIV-Infected Pregnant Women and Newborns.

    Science.gov (United States)

    Cardoso, Elaine Cristina; Pereira, Nátalli Zanete; Mitsunari, Gabrielle Eimi; Oliveira, Luanda Mara da Silva; Ruocco, Rosa Maria S A; Francisco, Rossana Pulcineli Vieira; Zugaib, Marcelo; da Silva Duarte, Alberto José; Sato, Maria Notomi

    2013-01-01

    Mother-to-child transmission (MTCT) of HIV-1 has been significantly reduced with the use of antiretroviral therapies, resulting in an increased number of HIV-exposed uninfected infants. The consequences of HIV infection on the innate immune system of both mother-newborn are not well understood. In this study, we analyzed peripheral blood and umbilical cord blood (CB) collected from HIV-1-infected and uninfected pregnant women. We measured TNF-α, IL-10 and IFN-α secretion after the stimulation of the cells with agonists of both extracellular Toll-like receptors (TLRs) (TLR2, TLR4 and TLR5) and intracellular TLRs (TLR7, TLR7/8 and TLR9). Moreover, as an indicator of the innate immune response, we evaluated the responsiveness of myeloid dendritic cells (mDCs) and plasmacytoid DCs (pDCs) to TLRs that are associated with the antiviral response. Our results showed that peripheral blood mononuclear cells (PBMCs) from HIV-1-infected mothers and CB were defective in TNF-α production after activation by TLR2, TLR5, TLR3 and TLR7. However, the TNF-α response was preserved after TLR7/8 (CL097) stimulation, mainly in the neonatal cells. Furthermore, only CL097 activation was able to induce IL-10 and IFN-α secretion in both maternal and CB cells in the infected group. An increase in IFN-α secretion was observed in CL097-treated CB from HIV-infected mothers compared with control mothers. The effectiveness of CL097 stimulation was confirmed by observation of similar mRNA levels of interferon regulatory factor-7 (IRF-7), IFN-α and TNF-α in PBMCs of both groups. The function of both mDCs and pDCs was markedly compromised in the HIV-infected group, and although TLR7/TLR8 activation overcame the impairment in TNF-α secretion by mDCs, such stimulation was unable to reverse the dysfunctional type I IFN response by pDCs in the HIV-infected samples. Our findings highlight the dysfunction of innate immunity in HIV-infected mother-newborn pairs. The activation of the TLR7/8 pathway

  16. TLR7/TLR8 Activation Restores Defective Cytokine Secretion by Myeloid Dendritic Cells but Not by Plasmacytoid Dendritic Cells in HIV-Infected Pregnant Women and Newborns.

    Directory of Open Access Journals (Sweden)

    Elaine Cristina Cardoso

    Full Text Available Mother-to-child transmission (MTCT of HIV-1 has been significantly reduced with the use of antiretroviral therapies, resulting in an increased number of HIV-exposed uninfected infants. The consequences of HIV infection on the innate immune system of both mother-newborn are not well understood. In this study, we analyzed peripheral blood and umbilical cord blood (CB collected from HIV-1-infected and uninfected pregnant women. We measured TNF-α, IL-10 and IFN-α secretion after the stimulation of the cells with agonists of both extracellular Toll-like receptors (TLRs (TLR2, TLR4 and TLR5 and intracellular TLRs (TLR7, TLR7/8 and TLR9. Moreover, as an indicator of the innate immune response, we evaluated the responsiveness of myeloid dendritic cells (mDCs and plasmacytoid DCs (pDCs to TLRs that are associated with the antiviral response. Our results showed that peripheral blood mononuclear cells (PBMCs from HIV-1-infected mothers and CB were defective in TNF-α production after activation by TLR2, TLR5, TLR3 and TLR7. However, the TNF-α response was preserved after TLR7/8 (CL097 stimulation, mainly in the neonatal cells. Furthermore, only CL097 activation was able to induce IL-10 and IFN-α secretion in both maternal and CB cells in the infected group. An increase in IFN-α secretion was observed in CL097-treated CB from HIV-infected mothers compared with control mothers. The effectiveness of CL097 stimulation was confirmed by observation of similar mRNA levels of interferon regulatory factor-7 (IRF-7, IFN-α and TNF-α in PBMCs of both groups. The function of both mDCs and pDCs was markedly compromised in the HIV-infected group, and although TLR7/TLR8 activation overcame the impairment in TNF-α secretion by mDCs, such stimulation was unable to reverse the dysfunctional type I IFN response by pDCs in the HIV-infected samples. Our findings highlight the dysfunction of innate immunity in HIV-infected mother-newborn pairs. The activation of the TLR7

  17. β-Galactomannan and Saccharomyces cerevisiae var. boulardii modulate the immune response against Salmonella enterica serovar Typhimurium in porcine intestinal epithelial and dendritic cells.

    Science.gov (United States)

    Badia, Roger; Brufau, M Teresa; Guerrero-Zamora, Ana Maria; Lizardo, Rosil; Dobrescu, Irina; Martin-Venegas, Raquel; Ferrer, Ruth; Salmon, Henri; Martínez, Paz; Brufau, Joaquim

    2012-03-01

    Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that causes inflammation, necrosis, and diarrhea in pigs, as well as being an important source of food-borne diseases in humans. Probiotics and prebiotics are promising alternatives to antibiotics to control and prevent intestinal infections. The present work investigated a recently developed β-galactomannan (βGM) prebiotic compared to the proven probiotic Saccharomyces cerevisiae var. boulardii on porcine ileum intestinal epithelial cells (IECs) of the IPI-2I line and monocyte-derived dendritic cells (DCs) cocultured in vitro with Salmonella. We observed that both S. cerevisiae var. boulardii and βGM inhibited the association of Salmonella with IECs in vitro. Our data indicated that βGM has a higher ability than S. cerevisiae var. boulardii to inhibit Salmonella-induced proinflammatory mRNA (cytokines tumor necrosis factor alpha [TNF-α], interleukin-1α [IL-1α], IL-6, and granulocyte-macrophage colony-stimulating factor [GM-CSF] and chemokines CCL2, CCL20, and CXCL8) and at protein levels (IL-6 and CXCL8). Additionally, βGM and S. cerevisiae var. boulardii induced some effects on DCs that were not observed on IECs: βGM and S. cerevisiae var. boulardii showed slight upregulation of mRNA for TNF-α, GM-CSF, and CCR7 receptor on porcine monocyte-derived dendritic cells (DCs). Indeed, the addition of βGM or S. cerevisiae var. boulardii on DCs cocultured with Salmonella showed higher gene expression (mRNA) for TNF-α, GM-CSF, and CXCL8 compared to that of the control with Salmonella. In conclusion, the addition of βGM inhibits Salmonella-induced proinflammatory profiles in IECs but may promote DC activation, although associated molecular mechanisms remain to be elucidated.

  18. Recent insights into the implications of metabolism in plasmacytoid dendritic cell innate functions: Potential ways to control these functions [version 1; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Philippe Saas

    2017-04-01

    Full Text Available There are more and more data concerning the role of cellular metabolism in innate immune cells, such as macrophages or conventional dendritic cells. However, few data are available currently concerning plasmacytoid dendritic cells (PDC, another type of innate immune cells. These cells are the main type I interferon (IFN producing cells, but they also secrete other pro-inflammatory cytokines (e.g., tumor necrosis factor or interleukin [IL]-6 or immunomodulatory factors (e.g., IL-10 or transforming growth factor-β. Through these functions, PDC participate in antimicrobial responses or maintenance of immune tolerance, and have been implicated in the pathophysiology of several autoimmune diseases. Recent data support the idea that the glycolytic pathway (or glycolysis, as well as lipid metabolism (including both cholesterol and fatty acid metabolism may impact some innate immune functions of PDC or may be involved in these functions after Toll-like receptor (TLR 7/9 triggering. Some differences may be related to the origin of PDC (human versus mouse PDC or blood-sorted versus FLT3 ligand stimulated-bone marrow-sorted PDC. The kinetics of glycolysis may differ between human and murine PDC. In mouse PDC, metabolism changes promoted by TLR7/9 activation may depend on an autocrine/paracrine loop, implicating type I IFN and its receptor IFNAR, explaining a delayed glycolysis. Moreover, PDC functions can be modulated by the metabolism of cholesterol and fatty acids. This may occur via the production of lipid ligands that activate nuclear receptors (e.g., liver X receptor [LXR] in PDC or through limiting intracellular cholesterol pool size (by statins or LXR agonists in these cells. Finally, lipid-activated nuclear receptors (i.e., LXR or peroxisome proliferator activated receptor may also directly interact with pro-inflammatory transcription factors, such as NF-κB. Here, we discuss how glycolysis and lipid metabolism may modulate PDC functions and how

  19. Recent insights into the implications of metabolism in plasmacytoid dendritic cell innate functions: Potential ways to control these functions [version 2; referees: 1 approved, 2 approved with reservations

    Directory of Open Access Journals (Sweden)

    Philippe Saas

    2017-06-01

    Full Text Available There are more and more data concerning the role of cellular metabolism in innate immune cells, such as macrophages or conventional dendritic cells. However, few data are available currently concerning plasmacytoid dendritic cells (PDC, another type of innate immune cells. These cells are the main type I interferon (IFN producing cells, but they also secrete other pro-inflammatory cytokines (e.g., tumor necrosis factor or interleukin [IL]-6 or immunomodulatory factors (e.g., IL-10 or transforming growth factor-β. Through these functions, PDC participate in antimicrobial responses or maintenance of immune tolerance, and have been implicated in the pathophysiology of several autoimmune diseases, as well as in tumor immune escape mechanisms. Recent data support the idea that the glycolytic pathway (or glycolysis, as well as lipid metabolism (including both cholesterol and fatty acid metabolism may impact some innate immune functions of PDC or may be involved in these functions after Toll-like receptor (TLR 7/9 triggering. The kinetics of glycolysis after TLR7/9 triggering may differ between human and murine PDC. In mouse PDC, metabolism changes promoted by TLR7/9 activation may depend on an autocrine/paracrine loop, implicating type I IFN and its receptor IFNAR. This could explain a delayed glycolysis in mouse PDC. Moreover, PDC functions can be modulated by the metabolism of cholesterol and fatty acids. This may occur via the production of lipid ligands that activate nuclear receptors (e.g., liver X receptor [LXR] in PDC or through limiting intracellular cholesterol pool size (by statin or LXR agonist treatment in these cells. Finally, lipid-activated nuclear receptors (i.e., LXR or peroxisome proliferator activated receptor may also directly interact with pro-inflammatory transcription factors, such as NF-κB. Here, we discuss how glycolysis and lipid metabolism may modulate PDC functions and how this may be harnessed in pathological situations

  20. Dendritic cell fate is determined by BCL11A

    Science.gov (United States)

    Ippolito, Gregory C.; Dekker, Joseph D.; Wang, Yui-Hsi; Lee, Bum-Kyu; Shaffer, Arthur L.; Lin, Jian; Wall, Jason K.; Lee, Baeck-Seung; Staudt, Louis M.; Liu, Yong-Jun; Iyer, Vishwanath R.; Tucker, Haley O.

    2014-01-01

    The plasmacytoid dendritic cell (pDC) is vital to the coordinated action of innate and adaptive immunity. pDC development has not been unequivocally traced, nor has its transcriptional regulatory network been fully clarified. Here we confirm an essential requirement for the BCL11A transcription factor in fetal pDC development, and demonstrate this lineage-specific requirement in the adult organism. Furthermore, we identify BCL11A gene targets and provide a molecular mechanism for its action in pDC commitment. Embryonic germ-line deletion of Bcl11a revealed an absolute cellular, molecular, and functional absence of pDCs in fetal mice. In adults, deletion of Bcl11a in hematopoietic stem cells resulted in perturbed yet continued generation of progenitors, loss of downstream pDC and B-cell lineages, and persisting myeloid, conventional dendritic, and T-cell lineages. Challenge with virus resulted in a marked reduction of antiviral response in conditionally deleted adults. Genome-wide analyses of BCL11A DNA binding and expression revealed that BCL11A regulates transcription of E2-2 and other pDC differentiation modulators, including ID2 and MTG16. Our results identify BCL11A as an essential, lineage-specific factor that regulates pDC development, supporting a model wherein differentiation into pDCs represents a primed “default” pathway for common dendritic cell progenitors. PMID:24591644

  1. Impact of cladribine therapy on changes in circulating dendritic cell subsets, T cells and B cells in patients with multiple sclerosis.

    Science.gov (United States)

    Mitosek-Szewczyk, Krystyna; Tabarkiewicz, Jacek; Wilczynska, Barbara; Lobejko, Katarzyna; Berbecki, Jerzy; Nastaj, Marcin; Dworzanska, Ewa; Kolodziejczyk, Beata; Stelmasiak, Zbigniew; Rolinski, Jacek

    2013-09-15

    Cladribine causes sustained reduction in peripheral T and B cell populations while sparing other immune cells. We determined two populations of dendritic cells (DCs): namely CD1c(+)/CD19(-) (myeloid DCs) and CD303(+)/CD123(+) (plasmacytoid DCs), CD19(+) B lymphocytes, CD3(+) T lymphocytes and CD4(+) or CD8(+) subpopulations in patients with multiple sclerosis after cladribine therapy. We examined 50 patients with secondary progressive multiple sclerosis (SP MS) according to McDonalds et al.'s criteria, 2001 [15]. Blood samples were collected before the initiation of cladribine therapy and after 1st, 2nd, 3th, 4th and 5th courses of treatment. DC subsets, T and B cells were analyzed by flow cytometry. During cladribine treatment the myeloid DCs CD1c(+)/CD19(-) did not change (p=0.73175), and the plasmacytoid DCs CD303(+)/CD123(+) significantly increased (p=0.00034) which resulted in significant changes in the ratio of myeloid DCs to plasmacytoid DCs (p=0.00273). During therapy, B lymphocyte CD19(+) significantly decreased (p=0.00005) and significant changes in CD4(+) cells (p=0.00191), changes in CD8(+) cells (p=0.05760) and significant changes in CD3(+) (p=0.01822) were found. We noticed significant trend to increase the CD303(+) circulating the dendritic cells. This population produces large amounts of IFN-alfa. We found significant and rapid decrease in B cells and CD4(+) Th cells. Our results suggest two possible ways of beneficial cladribine influence on immune system in MS. Induction of IFN-alfa producing cells and their predominance over BDCA-1(+) DCs, which are associated with cytotoxic response. Additionally, cladribine could influence two populations of lymphocytes: B cells and Th lymphocytes responsible for induction of immune response against myelin antigens. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Breakdown of Immune Tolerance in Systemic Lupus Erythematosus by Dendritic Cells

    Science.gov (United States)

    Reihl, Alec M.

    2016-01-01

    Dendritic cells (DC) play an important role in the pathogenesis of systemic lupus erythematosus (SLE), an autoimmune disease with multiple tissue manifestations. In this review, we summarize recent studies on the roles of conventional DC and plasmacytoid DC in the development of both murine lupus and human SLE. In the past decade, studies using selective DC depletions have demonstrated critical roles of DC in lupus progression. Comprehensive in vitro and in vivo studies suggest activation of DC by self-antigens in lupus pathogenesis, followed by breakdown of immune tolerance to self. Potential treatment strategies targeting DC have been developed. However, many questions remain regarding the mechanisms by which DC modulate lupus pathogenesis that require further investigations. PMID:27034965

  3. Peripheral Blood CD4 T-Cell and Plasmacytoid Dendritic Cell (pDC) Reactivity to Herpes Simplex Virus 2 and pDC Number Do Not Correlate with the Clinical or Virologic Severity of Recurrent Genital Herpes

    Science.gov (United States)

    Moss, Nicholas J.; Magaret, Amalia; Laing, Kerry J.; Kask, Angela Shaulov; Wang, Minna; Mark, Karen E.; Schiffer, Joshua T.; Wald, Anna

    2012-01-01

    Leukocytes participate in the immune control of herpes simplex virus (HSV). Data from HIV coinfections, germ line mutations, and case reports suggest involvement of CD4 T cells and plasmacytoid dendritic cells (pDC). We investigated the relationships between these cells and recurrent genital herpes disease severity in the general population. Circulating CD4 T-cell responses to HSV-2 were measured in specimens from 67 immunocompetent individuals with measured genital lesion and HSV shedding rates. Similarly, pDC number and functional responses to HSV-2 were analyzed in 40 persons. CD4 responses and pDC concentrations and responses ranged as much as 100-fold between persons while displaying moderate within-person consistency over time. No correlations were observed between these immune response parameters and genital HSV-2 severity. Cytomegalovirus (CMV) coinfection was not correlated with differences in HSV-2-specific CD4 T-cell responses. The CD4 T-cell response to HSV-2 was much more polyfunctional than was the response to CMV. These data suggest that other immune cell subsets with alternate phenotypes or anatomical locations may be responsible for genital herpes control in chronically infected individuals. PMID:22761381

  4. A crucial role for plasmacytoid dendritic cells in antiviral protection by CpG ODN–based vaginal microbicide

    Science.gov (United States)

    Shen, Hong; Iwasaki, Akiko

    2006-01-01

    Topical microbicides represent a promising new approach to preventing HIV and other sexually transmitted infections. TLR agonists are ideal candidates for microbicides, as they trigger a multitude of antiviral genes effective against a broad range of viruses. Although vaginal application of CpG oligodeoxynucleotides (ODNs) and poly I:C has been shown to protect mice from genital herpes infection, the mechanism by which these agents provide protection remains unclear. Here, we show that plasmacytoid DCs (pDCs) are required for CpG ODN–mediated protection against lethal vaginal challenge with herpes simplex virus type 2 (HSV-2). Moreover, we demonstrate that cells of both the hematopoietic and stromal compartments must respond to CpG ODN via TLR9 and to type I IFNs through IFN-αβ receptor (IFN-αβR) for protection. Thus, crosstalk between pDCs and vaginal stromal cells provides for optimal microbicide efficacy. Our results imply that temporally and spatially controlled targeting of CpG ODN to pDCs and epithelial cells can potentially maximize their effectiveness as microbicides while minimizing the associated inflammatory responses. PMID:16878177

  5. Primary Human Blood Dendritic Cells for Cancer Immunotherapy—Tailoring the Immune Response by Dendritic Cell Maturation

    Directory of Open Access Journals (Sweden)

    Simone P. Sittig

    2015-12-01

    Full Text Available Dendritic cell (DC-based cancer vaccines hold the great promise of tipping the balance from tolerance of the tumor to rejection. In the last two decades, we have gained tremendous knowledge about DC-based cancer vaccines. The maturation of DCs has proven indispensable to induce immunogenic T cell responses. We review the insights gained from the development of maturation cocktails in monocyte derived DC-based trials. More recently, we have also gained insights into the functional specialization of primary human blood DC subsets. In peripheral human blood, we can distinguish at least three primary DC subsets, namely CD1c+ and CD141+ myeloid DCs and plasmacytoid DCs. We reflect the current knowledge on maturation and T helper polarization by these blood DC subsets in the context of DC-based cancer vaccines. The maturation stimulus in combination with the DC subset will determine the type of T cell response that is induced. First trials with these natural DCs underline their excellent in vivo functioning and mark them as promising tools for future vaccination strategies.

  6. Improved survival after transplantation of more donor plasmacytoid dendritic or naïve T cells from unrelated-donor marrow grafts: results from BMTCTN 0201.

    Science.gov (United States)

    Waller, Edmund K; Logan, Brent R; Harris, Wayne A C; Devine, Steven M; Porter, David L; Mineishi, Shin; McCarty, John M; Gonzalez, Corina E; Spitzer, Thomas R; Krijanovski, Oleg I; Linenberger, Michael L; Woolfrey, Ann; Howard, Alan; Wu, Juan; Confer, Dennis L; Anasetti, Claudio

    2014-08-01

    To characterize relationships between specific immune cell subsets in bone marrow (BM) or granulocyte colony-stimulating factor-mobilized peripheral blood (PB) stem cells collected from unrelated donors and clinical outcomes of patients undergoing transplantation in BMTCTN 0201. Fresh aliquots of 161 BM and 147 PB stem-cell allografts from North American donors randomly assigned to donate BM or PB stem cells and numbers of transplanted cells were correlated with overall survival (OS), relapse, and graft-versus-host disease (GvHD). Patients with evaluable grafts were similar to all BMTCTN 0201 patients. The numbers of plasmacytoid dendritic cells (pDCs) and naïve T cells (Tns) in BM allografts were independently associated with OS in multivariable analyses including recipient and donor characteristics, such as human leukocyte antigen mismatch, age, and use of antithymocyte globulin. BM recipients of > median number of pDCs, naïve CD8(+) T cells (CD8Tns), or naïve CD4(+) T cells (CD4Tns) had better 3-year OS (pDCs, 56% v 35%; P = .025; CD8Tns, 56% v 37%; P = .012; CD4Tns, 55% v 37%; P = .009). Transplantation of more BM Tns was associated with less grade 3 to 4 acute GvHD but similar rates of relapse. Transplantation of more BM pDCs was associated with fewer deaths resulting from GvHD or from graft rejection. Analysis of PB grafts did not identify a donor cell subset significantly associated with OS, relapse, or GvHD. Donor immune cells in BM but not PB stem-cell grafts were associated with survival after unrelated-donor allogeneic hematopoietic stem-cell transplantation. The biologic activity of donor immune cells in allogeneic transplantation varied between graft sources. Donor grafts with more BM-derived Tns and pDCs favorably regulated post-transplantation immunity in allogeneic hematopoietic stem-cell transplantation. © 2014 by American Society of Clinical Oncology.

  7. Innate immune response of human plasmacytoid dendritic cells to poxvirus infection is subverted by vaccinia E3 via its Z-DNA/RNA binding domain.

    Directory of Open Access Journals (Sweden)

    Hua Cao

    Full Text Available Plasmacytoid dendritic cells (pDCs play important roles in antiviral innate immunity by producing type I interferon (IFN. In this study, we assess the immune responses of primary human pDCs to two poxviruses, vaccinia and myxoma virus. Vaccinia, an orthopoxvirus, was used for immunization against smallpox, a contagious human disease with high mortality. Myxoma virus, a Leporipoxvirus, causes lethal disease in rabbits, but is non-pathogenic in humans. We report that myxoma virus infection of human pDCs induces IFN-α and TNF production, whereas vaccinia infection does not. Co-infection of pDCs with myxoma virus plus vaccinia blocks myxoma induction effects. We find that heat-inactivated vaccinia (Heat-VAC; by incubating the virus at 55°C for 1 h gains the ability to induce IFN-α and TNF in primary human pDCs. Induction of IFN-α in pDCs by myxoma virus or Heat-VAC is blocked by chloroquine, which inhibits endosomal acidification required for TLR7/9 signaling, and by inhibitors of cellular kinases PI3K and Akt. Using purified pDCs from genetic knockout mice, we demonstrate that Heat-VAC-induced type I IFN production in pDCs requires the endosomal RNA sensor TLR7 and its adaptor MyD88, transcription factor IRF7 and the type I IFN feedback loop mediated by IFNAR1. These results indicate that (i vaccinia virus, but not myxoma virus, expresses inhibitor(s of the poxvirus sensing pathway(s in pDCs; and (ii Heat-VAC infection fails to produce inhibitor(s but rather produces novel activator(s, likely viral RNA transcripts that are sensed by the TLR7/MyD88 pathway. Using vaccinia gene deletion mutants, we show that the Z-DNA/RNA binding domain at the N-terminus of the vaccinia immunomodulatory E3 protein is an antagonist of the innate immune response of human pDCs to poxvirus infection and TLR agonists. The myxoma virus ortholog of vaccinia E3 (M029 lacks the N-terminal Z-DNA/RNA binding domain, which might contribute to the immunostimulating

  8. Innate Immune Response of Human Plasmacytoid Dendritic Cells to Poxvirus Infection Is Subverted by Vaccinia E3 via Its Z-DNA/RNA Binding Domain

    Science.gov (United States)

    Dai, Peihong; Wang, Weiyi; Li, Hao; Yuan, Jianda; Wang, Fangjin; Fang, Chee-Mun; Pitha, Paula M; Liu, Jia; Condit, Richard C; McFadden, Grant; Merghoub, Taha; Houghton, Alan N; Young, James W; Shuman, Stewart; Deng, Liang

    2012-01-01

    Plasmacytoid dendritic cells (pDCs) play important roles in antiviral innate immunity by producing type I interferon (IFN). In this study, we assess the immune responses of primary human pDCs to two poxviruses, vaccinia and myxoma virus. Vaccinia, an orthopoxvirus, was used for immunization against smallpox, a contagious human disease with high mortality. Myxoma virus, a Leporipoxvirus, causes lethal disease in rabbits, but is non-pathogenic in humans. We report that myxoma virus infection of human pDCs induces IFN-α and TNF production, whereas vaccinia infection does not. Co-infection of pDCs with myxoma virus plus vaccinia blocks myxoma induction effects. We find that heat-inactivated vaccinia (Heat-VAC; by incubating the virus at 55°C for 1 h) gains the ability to induce IFN-α and TNF in primary human pDCs. Induction of IFN-α in pDCs by myxoma virus or Heat-VAC is blocked by chloroquine, which inhibits endosomal acidification required for TLR7/9 signaling, and by inhibitors of cellular kinases PI3K and Akt. Using purified pDCs from genetic knockout mice, we demonstrate that Heat-VAC-induced type I IFN production in pDCs requires the endosomal RNA sensor TLR7 and its adaptor MyD88, transcription factor IRF7 and the type I IFN feedback loop mediated by IFNAR1. These results indicate that (i) vaccinia virus, but not myxoma virus, expresses inhibitor(s) of the poxvirus sensing pathway(s) in pDCs; and (ii) Heat-VAC infection fails to produce inhibitor(s) but rather produces novel activator(s), likely viral RNA transcripts that are sensed by the TLR7/MyD88 pathway. Using vaccinia gene deletion mutants, we show that the Z-DNA/RNA binding domain at the N-terminus of the vaccinia immunomodulatory E3 protein is an antagonist of the innate immune response of human pDCs to poxvirus infection and TLR agonists. The myxoma virus ortholog of vaccinia E3 (M029) lacks the N-terminal Z-DNA/RNA binding domain, which might contribute to the immunostimulating properties of

  9. Functional changes of dendritic cells in hypersensivity reactions to amoxicillin

    Directory of Open Access Journals (Sweden)

    C.M.F. Lima

    2010-10-01

    Full Text Available A better understanding of dendritic cell (DC involvement in responses to haptenic drugs is needed, because it represents a possible approach to the development of an in vitro test, which could identify patients prone to drug allergies. There are two main DC subsets: plasmacytoid DC (pDC and myeloid DC (mDC. β-lactams form hapten-carrier conjugates and may provide a suitable model to study DC behavior in drug allergy reactions. It has been demonstrated that drugs interact differently with DC in drug allergic and non-allergic patients, but there are no studies regarding these subsets. Our aim was to assess the functional changes of mDC and pDC harvested from an amoxicillin-hypersensitive 32-year-old woman who experienced a severe maculopapular exanthema as reflected in interleukin-6 (IL-6 production after stimulation with this drug and penicillin. We also aim to demonstrate, for the first time, the feasibility of this method for dendritic cell isolation followed by in vitro stimulation for studies of drug allergy physiopathology. DC were harvested using a double Percoll density gradient, which generates a basophil-depleted cell (BDC suspension. Further, pDC were isolated by blood DC antigen 4-positive magnetic selection and gravity filtration through magnetized columns. After stimulation with amoxicillin, penicillin and positive and negative controls, IL-6 production was measured by ELISA. A positive dose-response curve for IL-6 after stimulation with amoxicillin and penicillin was observed for pDC, but not for mDC or BDC suspension. These preliminary results demonstrate the feasibility of this methodology to expand the knowledge of the effect of dendritic cell activation by drug allergens.

  10. Alpha-defensins 1-3 release by dendritic cells is reduced by estrogen

    Directory of Open Access Journals (Sweden)

    Sperling Rhoda

    2011-08-01

    Full Text Available Abstract Background During pregnancy the immune system of the mother must protect any activation that may negatively affect the fetus. Changes in susceptibility to infection as well as resolution of some autoimmune disorders represent empirical evidence for pregnancy related alterations in immunity. Sex hormones reach extremely high levels during pregnancy and have been shown to have direct effects on many immune functions including the antiviral response of dendritic cells. Among the immunologically active proteins secreted by monocyte derived DCs (MDDC are the alpha-defensins 1-3. This family of cationic antimicrobial peptides has a broad spectrum of microbicidal activity and has also been shown to link innate to adaptive immunity by attracting T cells and immature DCs, which are essential for initiating and polarizing the immune response. Methods We compare culture-generated monocyte derived DCs (MDDCs with directly isolated myeloid dendritic cells (mDCs and plasmacytoid dendritic cells (pDCs and measure their alpha-defensins 1-3 secretion by ELISA both, in basal situations and after hormone (E2 or PG treatments. Moreover, using a cohort of pregnant women we isolated mDCs from blood and also measure the levels of these anti-microbial peptides along pregnancy. Results We show that mDCs and pDCs constitutively produce alpha-defensins 1-3 and at much higher levels than MDDCs. Alpha-defensins 1-3 production from mDCs and MDDCs but not pDCs is inhibited by E2. PG does not affect alpha-defensins 1-3 in any of the populations. Moreover, alpha-defensins 1-3 production by mDCs was reduced in the later stages of pregnancy in 40% of the patients. Conclusions Here, we demonstrate that mDCs and pDCs secrete alpha-defensins 1-3 and present a novel effect of E2 on the secretion of alpha-defensins 1-3 by dendritic cells.

  11. Plastic downregulation of the transcriptional repressor BCL6 during maturation of human dendritic cells

    International Nuclear Information System (INIS)

    Pantano, Serafino; Jarrossay, David; Saccani, Simona; Bosisio, Daniela; Natoli, Gioacchino

    2006-01-01

    Dendritic cell (DC) maturation links peripheral events initiated by the encounter with pathogens to the activation and expansion of antigen-specific T lymphocytes in secondary lymphoid organs. Here, we describe an as yet unrecognized modulator of human DC maturation, the transcriptional repressor BCL6. We found that both myeloid and plasmacytoid DCs constitutively express BCL6, which is rapidly downregulated following maturation triggered by selected stimuli. Both in unstimulated and maturing DCs, control of BCL6 protein levels reflects the convergence of several mechanisms regulating BCL6 stability, mRNA transcription and nuclear export. By regulating the induction of several genes implicated in the immune response, including inflammatory cytokines, chemokines and survival genes, BCL6 may represent a pivotal modulator of the afferent branch of the immune response

  12. Modulation of Female Genital Tract-Derived Dendritic Cell Migration and Activation in Response to Inflammatory Cytokines and Toll-Like Receptor Agonists.

    Science.gov (United States)

    Shey, Muki S; Maharaj, Niren; Archary, Derseree; Ngcapu, Sinaye; Garrett, Nigel; Abdool Karim, Salim; Passmore, Jo-Ann S

    2016-01-01

    HIV transmission across the genital mucosa is a major mode of new HIV infections in women. The probability of infection may be influenced by several factors including recruitment and activation of HIV target cells, such as dendritic cells (DCs) and cytokine production, associated with genital inflammation. We evaluated the role of inflammatory cytokines and TLR signaling in migration and activation of genital tract DCs in the human cervical explant model. Hysterectomy tissues from 10 HIV-negative and 7 HIV-positive donor women were separated into ecto- and endocervical explants, and incubated with inflammatory cytokines (TNF-α, IL-1β, IL-8, MIP-1β) or agonists for TLR4 (LPS), TLR2/1 (PAM3) and TLR7/8 (R848). Migration (frequency) and activation (HLA-DR expression) of myeloid and plasmacytoid DCs and Langerhans cells were measured by flow cytometry. We observed that cytokines, LPS and PAM3 induced activation of migrating myeloid and plasmacytoid DCs. LPS induced a 3.6 fold lower levels of migration of plasmacytoid DCs from HIV-infected women compared with HIV-uninfected women (median activation indices of 2.932 vs 0.833). There was however a 4.5 fold increase in migration of Langerhans cells in HIV-infected compared with HIV-uninfected women in response to cytokines (median activation indices of 3.539 vs 0.77). Only TLR agonists induced migration and activation of DCs from endocervical explants. Hormonal contraception use was associated with an increase in activation of DC subsets in the endo and ectocervical explants. We conclude that inflammatory signals in the female genital tract induced DC migration and activation, with possible important implications for HIV susceptibility of cervical tissues.

  13. HIV-derived vectors for gene therapy targeting dendritic cells.

    Science.gov (United States)

    Rossetti, Maura; Cavarelli, Mariangela; Gregori, Silvia; Scarlatti, Gabriella

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.

  14. Distinct Functions of Specialized Dendritic Cell Subsets in Atherosclerosis and the Road Ahead

    Directory of Open Access Journals (Sweden)

    Alma Zernecke

    2014-01-01

    Full Text Available Atherosclerotic vascular disease is modulated by immune mechanisms. Dendritic cells (DCs and T cells are present within atherosclerotic lesions and function as central players in the initiation and modulation of adaptive immune responses. In previous years, we have studied the functional contribution of distinct DC subsets in disease development, namely, that of CCL17-expressing DCs as well as that of plasmacytoid DCs that play specialized roles in disease development. This review focuses on important findings gathered in these studies and dissects the multifaceted contribution of CCL17-expressing DCs and pDCs to the pathogenesis of atherosclerosis. Furthermore, an outlook on future challenges faced when studying DCs in this detrimental disease are provided, and hurdles that will need to be overcome in order to enable a better understanding of the contribution of DCs to atherogenesis are discussed, a prerequisite for their therapeutic targeting in atherosclerosis.

  15. Rapid activation of spleen dendritic cell subsets following lymphocytic choriomeningitis virus infection of mice: analysis of the involvement of type 1 IFN.

    Science.gov (United States)

    Montoya, Maria; Edwards, Matthew J; Reid, Delyth M; Borrow, Persephone

    2005-02-15

    In this study, we report the dynamic changes in activation and functions that occur in spleen dendritic cell (sDC) subsets following infection of mice with a natural murine pathogen, lymphocytic choriomeningitis virus (LCMV). Within 24 h postinfection (pi), sDCs acquired the ability to stimulate naive LCMV-specific CD8+ T cells ex vivo. Conventional (CD11chigh CD8+ and CD4+) sDC subsets rapidly up-regulated expression of costimulatory molecules and began to produce proinflammatory cytokines. Their tendency to undergo apoptosis ex vivo simultaneously increased, and in vivo the number of conventional DCs in the spleen decreased markedly, dropping approximately 2-fold by day 3 pi. Conversely, the number of plasmacytoid (CD11clowB220+) DCs in the spleen increased, so that they constituted almost 40% of sDCs by day 3 pi. Type 1 IFN production was up-regulated in plasmacytoid DCs by 24 h pi. Analysis of DC activation and maturation in mice unable to respond to type 1 IFNs implicated these cytokines in driving infection-associated phenotypic activation of conventional DCs and their enhanced tendency to undergo apoptosis, but also indicated the existence of type 1 IFN-independent pathways for the functional maturation of DCs during LCMV infection.

  16. Plasmacytoid Urothelial Carcinoma of the Urinary Bladder Metastatic to the Duodenum: A Case Report—Diagnostic Relevance of GATA3 Immunohistochemistry

    Directory of Open Access Journals (Sweden)

    Hermann Brustmann

    2017-01-01

    Full Text Available Plasmacytoid urothelial carcinoma (PUC of the urinary bladder is a rare and aggressive subtype of urothelial carcinoma. Its deceptive morphology is characterized by a discohesive growth of cells with plasmacytoid morphology. Since this tumor might be confused with plasmacytoma, lymphoma, or carcinoma variants, appropriate diagnosis in small biopsy samples could be challenging. This study reports the case of a 53-year-old man who presented with frequent nocturnal urgency, without hematuria. A transurethral bladder and a prostate resection specimen displayed infiltration of neoplastic cells in a spray-like discohesive pattern with occasional formation of small irregular nests and cord-like arrangements. The basic morphology of the tumor cells was plasmacytoid, with eccentric nuclei and eosinophilic cytoplasm. Tumor cells grew through the lamina muscularis mucosae, with splintering of the bladder wall musculature and infiltration of prostatic tissue. They displayed strong and diffuse nuclear reactivity for p53 and GATA3. Eight months after surgery, the patient experienced upper abdominal discomfort. A duodenal biopsy showed infiltration of plasmacytoid atypical cells strongly immunoreactive for GATA3, consistent with the previously diagnosed PUC. The patient died eleven months after the primary diagnosis of his PUC of tumor cachexia losing about 50% of his original body weight, furthermore, with ascites and intraperitoneal tumor spread.

  17. Effect of Saccharomyces cerevisiae var. Boulardii and β-galactomannan oligosaccharide on porcine intestinal epithelial and dendritic cells challenged in vitro with Escherichia coli F4 (K88

    Directory of Open Access Journals (Sweden)

    Badia Roger

    2012-01-01

    Full Text Available Abstract Probiotic and prebiotics, often called "immune-enhancing" feed additives, are believed to deal with pathogens, preventing the need of an immune response and reducing tissue damage. In this study, we investigated if a recently developed β-galactomannan (βGM had a similar protective role compared to Saccharomyces cerevisiae var. Boulardii (Scb, a proven probiotic, in the context of enterotoxigenic Escherichia coli (ETEC infection. ETEC causes inflammation, diarrhea and intestinal damage in piglets, resulting in large economic loses worldwide. We observed that Scb and βGM products inhibited in vitro adhesion of ETEC on cell surface of porcine intestinal IPI-2I cells. Our data showed that Scb and βGM decreased the mRNA ETEC-induced gene expression of pro-inflammatory cytokines TNF-α, IL-6, GM-CSF and chemokines CCL2, CCL20 and CXCL8 on intestinal IPI-2I. Furthermore, we investigated the putative immunomodulatory role of Scb and βGM on porcine monocyte-derived dendritic cells (DCs per se and under infection conditions. We observed a slight up-regulation of mRNA for TNF-α and CCR7 receptor after co-incubation of DC with Scb and βGM. However, no differences were found in DC activation upon ETEC infection and Scb or βGM co-culture. Therefore, our results indicate that, similar to probiotic Scb, prebiotic βGM may protect intestinal epithelial cells against intestinal pathogens. Finally, although these products may modulate DC activation, their effect under ETEC challenge conditions remains to be elucidated.

  18. Modulation of Female Genital Tract-Derived Dendritic Cell Migration and Activation in Response to Inflammatory Cytokines and Toll-Like Receptor Agonists.

    Directory of Open Access Journals (Sweden)

    Muki S Shey

    Full Text Available HIV transmission across the genital mucosa is a major mode of new HIV infections in women. The probability of infection may be influenced by several factors including recruitment and activation of HIV target cells, such as dendritic cells (DCs and cytokine production, associated with genital inflammation. We evaluated the role of inflammatory cytokines and TLR signaling in migration and activation of genital tract DCs in the human cervical explant model. Hysterectomy tissues from 10 HIV-negative and 7 HIV-positive donor women were separated into ecto- and endocervical explants, and incubated with inflammatory cytokines (TNF-α, IL-1β, IL-8, MIP-1β or agonists for TLR4 (LPS, TLR2/1 (PAM3 and TLR7/8 (R848. Migration (frequency and activation (HLA-DR expression of myeloid and plasmacytoid DCs and Langerhans cells were measured by flow cytometry. We observed that cytokines, LPS and PAM3 induced activation of migrating myeloid and plasmacytoid DCs. LPS induced a 3.6 fold lower levels of migration of plasmacytoid DCs from HIV-infected women compared with HIV-uninfected women (median activation indices of 2.932 vs 0.833. There was however a 4.5 fold increase in migration of Langerhans cells in HIV-infected compared with HIV-uninfected women in response to cytokines (median activation indices of 3.539 vs 0.77. Only TLR agonists induced migration and activation of DCs from endocervical explants. Hormonal contraception use was associated with an increase in activation of DC subsets in the endo and ectocervical explants. We conclude that inflammatory signals in the female genital tract induced DC migration and activation, with possible important implications for HIV susceptibility of cervical tissues.

  19. HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.

    Directory of Open Access Journals (Sweden)

    Héla Saïdi

    2016-02-01

    Full Text Available Plasmacytoid dendritic cells (pDCs are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7 and 9 (TLR9 ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN

  20. HMGB1 Is Involved in IFN-α Production and TRAIL Expression by HIV-1-Exposed Plasmacytoid Dendritic Cells: Impact of the Crosstalk with NK Cells.

    Science.gov (United States)

    Saïdi, Héla; Bras, Marlène; Formaglio, Pauline; Melki, Marie-Thérèse; Charbit, Bruno; Herbeuval, Jean-Philippe; Gougeon, Marie-Lise

    2016-02-01

    Plasmacytoid dendritic cells (pDCs) are innate sensors of viral infections and important mediators of antiviral innate immunity through their ability to produce large amounts of IFN-α. Moreover, Toll-like receptor 7 (TLR7) and 9 (TLR9) ligands, such as HIV and CpG respectively, turn pDCs into TRAIL-expressing killer pDCs able to lyse HIV-infected CD4+ T cells. NK cells can regulate antiviral immunity by modulating pDC functions, and pDC production of IFN-α as well as cell-cell contact is required to promote NK cell functions. Impaired pDC-NK cell crosstalk was reported in the setting of HIV-1 infection, but the impact of HIV-1 on TRAIL expression and innate antiviral immunity during this crosstalk is unknown. Here, we report that low concentrations of CCR5-tropic HIV-1Ba-L promote the release of pro-inflammatory cytokines such as IFN-α, TNF-α, IFN-γ and IL-12, and CCR5-interacting chemokines (MIP-1α and MIP-1β) in NK-pDCs co-cultures. At high HIV-1BaL concentrations, the addition of NK cells did not promote the release of these mediators, suggesting that once efficiently triggered by the virus, pDCs could not integrate new activating signals delivered by NK cells. However, high HIV-1BaL concentrations were required to trigger IFN-α-mediated TRAIL expression at the surface of both pDCs and NK cells during their crosstalk. Interestingly, we identified the alarmin HMGB1, released at pDC-NK cell synapse, as an essential trigger for the secretion of IFN-α and IFN-related soluble mediators during the interplay of HIV-1 exposed pDCs with NK cells. Moreover, HMGB1 was found crucial for mTRAIL translocation to the plasma membrane of both pDCs and NK cells during their crosstalk following pDC exposure to HIV-1. Data from serum analyses of circulating HMGB1, HMGB1-specific antibodies, sTRAIL and IP-10 in a cohort of 67 HIV-1+ patients argue for the in vivo relevance of these observations. Altogether, these findings identify HMGB1 as a trigger for IFN

  1. Pulmonary infections in swine induce altered porcine surfactant protein D expression and localization to dendritic cells in bronchial-associated lymphoid tissue

    DEFF Research Database (Denmark)

    Sørensen, C.M.; Holmskov, U.; Aalbæk, B.

    2005-01-01

    , the absence of macrophage marker immunoreactivity and the presence of dendritic cell marker immunoreactivity. Increased expression of pSP-D in the surfactant coincided with presence of pSP-D-positive dendritic cells in bronchus-associated lymphoid tissue (BALT), indicating a possible transport of p...... and with dendritic cells in microbial-induced BALT. The function of the interaction between pSP-D and dendritic cells in BALT remain unclear, but pSP-D could represent a link between the innate and adaptive immune system, facilitating the bacterial antigen presentation by dendritic cells in BALT.......Surfactant protein D (SP-D) is a pattern-recognition molecule of the innate immune system that recognizes various microbial surface-specific carbohydrate and lipid patterns. In vitro data has suggested that this binding may lead to increased microbial association with macrophages and dendritic...

  2. Sphingosine 1-Phosphate- and C-C Chemokine Receptor 2-Dependent Activation of CD4+ Plasmacytoid Dendritic Cells in the Bone Marrow Contributes to Signs of Sepsis-Induced Immunosuppression

    Science.gov (United States)

    Smirnov, Anna; Pohlmann, Stephanie; Nehring, Melanie; Ali, Shafaqat; Mann-Nüttel, Ritu; Scheu, Stefanie; Antoni, Anne-Charlotte; Hansen, Wiebke; Büettner, Manuela; Gardiasch, Miriam J.; Westendorf, Astrid M.; Wirsdörfer, Florian; Pastille, Eva; Dudda, Marcel; Flohé, Stefanie B.

    2017-01-01

    Sepsis is the dysregulated response of the host to systemic, mostly bacterial infection, and is associated with an enhanced susceptibility to life-threatening opportunistic infections. During polymicrobial sepsis, dendritic cells (DCs) secrete enhanced levels of interleukin (IL) 10 due to an altered differentiation in the bone marrow and contribute to the development of immunosuppression. We investigated the origin of the altered DC differentiation using murine cecal ligation and puncture (CLP), a model for human polymicrobial sepsis. Bone marrow cells (BMC) were isolated after sham or CLP operation, the cellular composition was analyzed, and bone marrow-derived DCs (BMDCs) were generated in vitro. From 24 h on after CLP, BMC gave rise to BMDC that released enhanced levels of IL-10. In parallel, a population of CD11chiMHCII+CD4+ DCs expanded in the bone marrow in a MyD88-dependent manner. Prior depletion of the CD11chiMHCII+CD4+ DCs from BMC in vitro reversed the increased IL-10 secretion of subsequently differentiating BMDC. The expansion of the CD11chiMHCII+CD4+ DC population in the bone marrow after CLP required the function of sphingosine 1-phosphate receptors and C-C chemokine receptor (CCR) 2, the receptor for C-C chemokine ligand (CCL) 2, but was not associated with monocyte mobilization. CD11chiMHCII+CD4+ DCs were identified as plasmacytoid DCs (pDCs) that had acquired an activated phenotype according to their increased expression of MHC class II and CD86. A redistribution of CD4+ pDCs from MHC class II− to MHC class II+ cells concomitant with enhanced expression of CD11c finally led to the rise in the number of CD11chiMHCII+CD4+ DCs. Enhanced levels of CCL2 were found in the bone marrow of septic mice and the inhibition of CCR2 dampened the expression of CD86 on CD4+ pDCs after CLP in vitro. Depletion of pDCs reversed the bias of splenic DCs toward increased IL-10 synthesis after CLP in vivo. Thus, during polymicrobial sepsis, CD4+ pDCs are activated

  3. Sphingosine 1-Phosphate- and C-C Chemokine Receptor 2-Dependent Activation of CD4+ Plasmacytoid Dendritic Cells in the Bone Marrow Contributes to Signs of Sepsis-Induced Immunosuppression

    Directory of Open Access Journals (Sweden)

    Anna Smirnov

    2017-11-01

    Full Text Available Sepsis is the dysregulated response of the host to systemic, mostly bacterial infection, and is associated with an enhanced susceptibility to life-threatening opportunistic infections. During polymicrobial sepsis, dendritic cells (DCs secrete enhanced levels of interleukin (IL 10 due to an altered differentiation in the bone marrow and contribute to the development of immunosuppression. We investigated the origin of the altered DC differentiation using murine cecal ligation and puncture (CLP, a model for human polymicrobial sepsis. Bone marrow cells (BMC were isolated after sham or CLP operation, the cellular composition was analyzed, and bone marrow-derived DCs (BMDCs were generated in vitro. From 24 h on after CLP, BMC gave rise to BMDC that released enhanced levels of IL-10. In parallel, a population of CD11chiMHCII+CD4+ DCs expanded in the bone marrow in a MyD88-dependent manner. Prior depletion of the CD11chiMHCII+CD4+ DCs from BMC in vitro reversed the increased IL-10 secretion of subsequently differentiating BMDC. The expansion of the CD11chiMHCII+CD4+ DC population in the bone marrow after CLP required the function of sphingosine 1-phosphate receptors and C-C chemokine receptor (CCR 2, the receptor for C-C chemokine ligand (CCL 2, but was not associated with monocyte mobilization. CD11chiMHCII+CD4+ DCs were identified as plasmacytoid DCs (pDCs that had acquired an activated phenotype according to their increased expression of MHC class II and CD86. A redistribution of CD4+ pDCs from MHC class II− to MHC class II+ cells concomitant with enhanced expression of CD11c finally led to the rise in the number of CD11chiMHCII+CD4+ DCs. Enhanced levels of CCL2 were found in the bone marrow of septic mice and the inhibition of CCR2 dampened the expression of CD86 on CD4+ pDCs after CLP in vitro. Depletion of pDCs reversed the bias of splenic DCs toward increased IL-10 synthesis after CLP in vivo. Thus, during polymicrobial sepsis, CD4+ pDCs are

  4. Dendritic cells in oral tolerance in the gut.

    Science.gov (United States)

    Rescigno, Maria

    2011-09-01

    Oral tolerance is a process that allows generation of systemic unresponsiveness to food antigens. Hence if the same antigen is introduced systemically even under immunogenic conditions it does not induce immune responsiveness. Dendritic cells (DCs) have been identified as essential players in this process. DCs in the gut are located in a strategic position as they can interact directly with luminal antigens or indirectly after their transcytosis across epithelial cells. DCs can then migrate to associated lymphoid tissues to induce tolerance. Antigen presenting cells in the gut are specialized in function and have divided their labour so that there are cells capable to migrate to the draining mesenteric lymph node for induction of T regulatory cells, while other subsets are resident and are required to enforce tolerance locally in the gut after food antigen exposure. In this review, I shall summarize the characteristics of antigen presenting cells in the gut and their involvement in oral tolerance induction. In addition, I will also emphasize that tolerance to food allergens may be contributed by plasmacytoid DCs in the liver that participate to the elimination or anergy of allergen-specific CD8 T cells. Hence specialized functions are associated to different subsets of antigen presenting cells and different organs. © 2011 Blackwell Publishing Ltd.

  5. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells.

    Science.gov (United States)

    Hartmann, Sofie Bruun; Mohanty, Soumyaranjan; Skovgaard, Kerstin; Brogaard, Louise; Flagstad, Frederikke Bjergvang; Emnéus, Jenny; Wolff, Anders; Summerfield, Artur; Jungersen, Gregers

    2016-01-01

    In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS) is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs) was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3). However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation with LPS resulted

  6. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Sofie Bruun Hartmann

    Full Text Available In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materials other than polystyrene and applying three-dimensional structures more similar to the in vivo environment. Polydimethylsiloxane (PDMS is an often used polymer for lab-on-a-chip devices but not much is known about the effect of changing the culture surface material from polystyrene to PDMS. In the present study the differentiation of porcine monocytes to monocyte-derived dendritic cells (moDCs was investigated using CD172apos pig blood monocytes stimulated with GM-CSF and IL-4. Monocytes were cultured on surfaces made of two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material and architecture. Distinct clustering of cells, based on similar expression patterns of 46 genes of interest, was seen for cells isolated from two- and three-dimensional polystyrene as well as two- and three-dimensional PDMS. Changing the material from polystyrene to PDMS resulted in cells with expression patterns usually associated with macrophage expression (upregulation of CD163 and downregulation of CD1a, FLT3, LAMP3 and BATF3. However, this was purely based on gene expression level, and no functional assays were included in this study which would be necessary in order to classify the cells as being macrophages. When changing to three-dimensional culture the cells became increasingly activated in terms of IL6, IL8, IL10 and CCR5 gene expression. Further stimulation

  7. Batf3 and Id2 have a synergistic effect on Irf8-directed classical CD8α+ dendritic cell development

    KAUST Repository

    Jaiswal, Hemant

    2013-11-13

    Dendritic cells (DCs) are heterogeneous cell populations represented by different subtypes, each varying in terms of gene expression patterns and specific functions. Recent studies identified transcription factors essential for the development of different DC subtypes, yet molecular mechanisms for the developmental program and functions remain poorly understood. In this study, we developed and characterized a mouse DC progenitor-like cell line, designated DC9, from Irf8-/- bone marrow cells as a model for DC development and function. Expression of Irf8 in DC9 cells led to plasmacytoid DCs and CD8α+ DC-like cells, with a concomitant increase in plasmacytoid DC- and CD8α+ DC-specific gene transcripts and induction of type I IFNs and IL12p40 following TLR ligand stimulation. Irf8 expression in DC9 cells led to an increase in Id2 and Batf3 transcript levels, transcription factors shown to be important for the development of CD8α+ DCs. We show that, without Irf8 , expression of Id2 and Batf3 was not sufficient for directing classical CD8α+ DC development. When coexpressed with Irf8, Batf3 and Id2 had a synergistic effect on classical CD8α+ DC development. We demonstrate that Irf8 is upstream of Batf3 and Id2 in the classical CD8α+ DC developmental program and define the hierarchical relationship of transcription factors important for classical CD8α+ DC development.

  8. Human plasmacytoid dentritic cells elicit a Type I Interferon response by sensing DNA via the cGAS-STING signaling pathway.

    Science.gov (United States)

    Bode, Christian; Fox, Mario; Tewary, Poonam; Steinhagen, Almut; Ellerkmann, Richard K; Klinman, Dennis; Baumgarten, Georg; Hornung, Veit; Steinhagen, Folkert

    2016-07-01

    Plasmacytoid dendritic cells (pDCs) are a major source of type I interferon (IFN) and are important for host defense by sensing microbial DNA via TLR9. pDCs also play a critical role in the pathogenesis of IFN-driven autoimmune diseases. Yet, this autoimmune reaction is caused by the recognition of self-DNA and has been linked to TLR9-independent pathways. Increasing evidence suggests that the cytosolic DNA receptor cyclic GMP-AMP (cGAMP) synthase (cGAS) is a critical component in the detection of pathogens and contributes to autoimmune diseases. It has been shown that binding of DNA to cGAS results in the synthesis of cGAMP and the subsequent activation of the stimulator of interferon genes (STING) adaptor to induce IFNs. Our results show that the cGAS-STING pathway is expressed and activated in human pDCs by cytosolic DNA leading to a robust type I IFN response. Direct activation of STING by cyclic dinucleotides including cGAMP also activated pDCs and knockdown of STING abolished this IFN response. These results suggest that pDCs sense cytosolic DNA and cyclic dinucleotides via the cGAS-STING pathway and that targeting this pathway could be of therapeutic interest. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Age-related patterns in human myeloid dendritic cell populations in people exposed to Schistosoma haematobium infection.

    Directory of Open Access Journals (Sweden)

    Norman Nausch

    Full Text Available Urogenital schistosomiasis is caused by the helminth parasite Schistosoma haematobium. In high transmission areas, children acquire schistosome infection early in life with infection levels peaking in early childhood and subsequently declining in late childhood. This age-related infection profile is thought to result from the gradual development of protective acquired immunity. Age-related differences in schistosome-specific humoral and cellular responses have been reported from several field studies. However there has not yet been a systematic study of the age-related changes in human dendritic cells, the drivers of T cell polarisation.Peripheral blood mononuclear cells were obtained from a cohort of 61 Zimbabwean aged 5-45 years with a S. haematobium prevalence of 47.5%. Two subsets of dendritic cells, myeloid and plasmacytoid dendritic cells (mDCs and pDCs, were analyzed by flow cytometry.In this population, schistosome infection levels peaked in the youngest age group (5-9 years, and declined in late childhood and adulthood (10+ years. The proportions of both mDCs and pDCs varied with age. However, for mDCs the age profile depended on host infection status. In the youngest age group infected people had enhanced proportions of mDCs as well as lower levels of HLA-DR on mDCs than un-infected people. In the older age groups (10-13 and 14-45 years infected people had lower proportions of mDCs compared to un-infected individuals, but no infection status-related differences were observed in their levels of HLA-DR. Moreover mDC proportions correlated with levels of schistosome-specific IgG, which can be associated with protective immunity. In contrast proportions of pDCs varied with host age, but not with infection status.Our results show that dendritic cell proportions and activation in a human population living in schistosome-endemic areas vary with host age reflecting differences in cumulative history of exposure to schistosome infection.

  10. Delivery of TLR7 agonist to monocytes and dendritic cells by DCIR targeted liposomes induces robust production of anti-cancer cytokines

    DEFF Research Database (Denmark)

    Klauber, Thomas Christopher Bogh; Laursen, Janne Marie; Zucker, Daniel

    2017-01-01

    Tumor immune escape is today recognized as an important cancer hallmark and is therefore a major focus area in cancer therapy. Monocytes and dendritic cells (DCs), which are central to creating a robust anti-tumor immune response and establishing an anti-tumorigenic microenvironment, are directly...... targeted by the tumor escape mechanisms to develop immunosuppressive phenotypes. Providing activated monocytes and DCs to the tumor tissue is therefore an attractive way to break the tumor-derived immune suppression and reinstate cancer immune surveillance. To activate monocytes and DCs with high...... as their immune activating potential in blood-derived monocytes, myeloid DCs (mDCs), and plasmacytoid DCs (pDCs). Monocytes and mDCs were targeted with high specificity over lymphocytes, and exhibited potent TLR7-specific secretion of the anti-cancer cytokines IL-12p70, IFN-α 2a, and IFN-γ. This delivery system...

  11. RAB-10 Regulates Dendritic Branching by Balancing Dendritic Transport

    Science.gov (United States)

    Taylor, Caitlin A.; Yan, Jing; Howell, Audrey S.; Dong, Xintong; Shen, Kang

    2015-01-01

    The construction of a large dendritic arbor requires robust growth and the precise delivery of membrane and protein cargoes to specific subcellular regions of the developing dendrite. How the microtubule-based vesicular trafficking and sorting systems are regulated to distribute these dendritic development factors throughout the dendrite is not well understood. Here we identify the small GTPase RAB-10 and the exocyst complex as critical regulators of dendrite morphogenesis and patterning in the C. elegans sensory neuron PVD. In rab-10 mutants, PVD dendritic branches are reduced in the posterior region of the cell but are excessive in the distal anterior region of the cell. We also demonstrate that the dendritic branch distribution within PVD depends on the balance between the molecular motors kinesin-1/UNC-116 and dynein, and we propose that RAB-10 regulates dendrite morphology by balancing the activity of these motors to appropriately distribute branching factors, including the transmembrane receptor DMA-1. PMID:26633194

  12. Oral dendritic cells mediate antigen-specific tolerance by stimulating TH1 and regulatory CD4+ T cells.

    Science.gov (United States)

    Mascarell, Laurent; Lombardi, Vincent; Louise, Anne; Saint-Lu, Nathalie; Chabre, Henri; Moussu, Hélène; Betbeder, Didier; Balazuc, Anne-Marie; Van Overtvelt, Laurence; Moingeon, Philippe

    2008-09-01

    A detailed characterization of oral antigen-presenting cells is critical to improve second-generation sublingual allergy vaccines. To characterize oral dendritic cells (DCs) within lingual and buccal tissues from BALB/c mice with respect to their surface phenotype, distribution, and capacity to polarize CD4(+) T-cell responses. In situ analysis of oral DCs was performed by immunohistology. Purified DCs were tested in vitro for their capacity to capture, process, and present the ovalbumin antigen to naive CD4(+) T cells. In vivo priming of ovalbumin-specific T cells adoptively transferred to BALB/c mice was analyzed by cytofluorometry in cervical lymph nodes after sublingual administration of mucoadhesive ovalbumin. Three subsets of oral DCs with a distinct tissue distribution were identified: (1) a minor subset of CD207(+) Langerhans cells located in the mucosa itself, (2) a major subpopulation of CD11b(+)CD11c(-) and CD11b(+)CD11c(+) myeloid DCs at the mucosal/submucosal interface, and (3) B220(+)120G8(+) plasmacytoid DCs found in submucosal tissues. Purified myeloid and plasmacytoid oral DCs capture and process the antigen efficiently and are programmed to elicit IFN-gamma and/or IL-10 production together with a suppressive function in naive CD4(+) T cells. Targeting the ovalbumin antigen to oral DCs in vivo by using mucoadhesive particles establishes tolerance in the absence of cell depletion through the stimulation of IFN-gamma and IL-10-producing CD4(+) regulatory T cells in cervical lymph nodes. The oral immune system is composed of various subsets of tolerogenic DCs organized in a compartmentalized manner and programmed to induce T(H)1/regulatory T-cell responses.

  13. Role for Dendritic Cells in Immunoregulation during Experimental Vaginal Candidiasis

    Science.gov (United States)

    LeBlanc, Dana M.; Barousse, Melissa M.; Fidel, Paul L.

    2006-01-01

    Vulvovaginal candidiasis (VVC) caused by the commensal organism Candida albicans remains a significant problem among women of childbearing age, with protection against and susceptibility to infection still poorly understood. While cell-mediated immunity by CD4+ Th1-type cells is protective against most forms of mucosal candidiasis, no protective role for adaptive immunity has been identified against VVC. This is postulated to be due to immunoregulation that prohibits a more profound Candida-specific CD4+ T-cell response against infection. The purpose of this study was to examine the role of dendritic cells (DCs) in the induction phase of the immune response as a means to understand the initiation of the immunoregulatory events. Immunostaining of DCs in sectioned murine lymph nodes draining the vagina revealed a profound cellular reorganization with DCs becoming concentrated in the T-cell zone throughout the course of experimental vaginal Candida infection consistent with cell-mediated immune responsiveness. However, analysis of draining lymph node DC subsets revealed a predominance of immunoregulation-associated CD11c+ B220+ plasmacytoid DCs (pDCs) under both uninfected and infected conditions. Staining of vaginal DCs showed the presence of both DEC-205+ and pDCs, with extension of dendrites into the vaginal lumen of infected mice in close contact with Candida. Flow cytometric analysis of draining lymph node DC costimulatory molecules and activation markers from infected mice indicated a lack of upregulation of major histocompatibility complex class II, CD80, CD86, and CD40 during infection, consistent with a tolerizing condition. Together, the results suggest that DCs are involved in the immunoregulatory events manifested during a vaginal Candida infection and potentially through the action of pDCs. PMID:16714548

  14. Transcriptome profile of lung dendritic cells after in vitro porcine reproductive and respiratory syndrome virus (PRRSV) infection

    DEFF Research Database (Denmark)

    Pröll, Maren Julia; Neuhoff, Christiane; Schellander, Karl

    2017-01-01

    The porcine reproductive and respiratory syndrome (PRRS) is an infectious disease that leads to high financial and production losses in the global swine industry. The pathogenesis of this disease is dependent on a multitude of factors, and its control remains problematic. The immune system genera...

  15. Blood dendritic cell frequency declines in idiopathic Parkinson's disease and is associated with motor symptom severity.

    Directory of Open Access Journals (Sweden)

    Antonio Ciaramella

    Full Text Available The role of inflammation in Parkinson's Disease (PD is well appreciated, but its underlying mechanisms are still unclear. Our objective was to determine whether dendritic cells (DC, a unique type of migratory immune cells that regulate immunological response and inflammation have an impact on PD. In a case-control study including 80 PD patients and 80 age- and gender-matched healthy control subjects, the two main blood subsets of plasmacytoid and myeloid DC were defined by flow cytometry analysis. Clinical evaluation of subjects consisting of cognition and depression assessment was performed using the Mini Mental State Examination and the Beck Depression Inventory. The severity of motor symptoms was measured using the Unified Parkinson's Disease Rating Scale-Part III. Comparison between patient and control DC measures and their relationships with clinical assessments were evaluated.The following main results were obtained: 1 the level of circulating DC (mainly the myeloid subset was significantly reduced in PD patients in comparison with healthy controls; 2 after controlling for depressive and cognitive characteristics, the frequency of myeloid DC was confirmed as one of the independent determinants of PD; 3 the number of both myeloid and plasmacytoid DC was negatively associated with motor symptom severity. Overall, the decline of blood DC, perhaps due to the recruitment of immune cells to the site of disease-specific lesions, can be considered a clue of the immune alteration that characterizes PD, suggesting innovative exploitations of DC monitoring as a clinically significant tool for PD treatment. Indeed, this study suggests that reduced peripheral blood DC are a pathologically-relevant factor of PD and also displays the urgency to better understand DC role in PD for unraveling the immune system contribution to disease progression and thus favoring the development of innovative therapies ideally based on immunomodulation.

  16. Blood dendritic cell frequency declines in idiopathic Parkinson's disease and is associated with motor symptom severity.

    Science.gov (United States)

    Ciaramella, Antonio; Salani, Francesca; Bizzoni, Federica; Pontieri, Francesco E; Stefani, Alessandro; Pierantozzi, Mariangela; Assogna, Francesca; Caltagirone, Carlo; Spalletta, Gianfranco; Bossù, Paola

    2013-01-01

    The role of inflammation in Parkinson's Disease (PD) is well appreciated, but its underlying mechanisms are still unclear. Our objective was to determine whether dendritic cells (DC), a unique type of migratory immune cells that regulate immunological response and inflammation have an impact on PD. In a case-control study including 80 PD patients and 80 age- and gender-matched healthy control subjects, the two main blood subsets of plasmacytoid and myeloid DC were defined by flow cytometry analysis. Clinical evaluation of subjects consisting of cognition and depression assessment was performed using the Mini Mental State Examination and the Beck Depression Inventory. The severity of motor symptoms was measured using the Unified Parkinson's Disease Rating Scale-Part III. Comparison between patient and control DC measures and their relationships with clinical assessments were evaluated.The following main results were obtained: 1) the level of circulating DC (mainly the myeloid subset) was significantly reduced in PD patients in comparison with healthy controls; 2) after controlling for depressive and cognitive characteristics, the frequency of myeloid DC was confirmed as one of the independent determinants of PD; 3) the number of both myeloid and plasmacytoid DC was negatively associated with motor symptom severity. Overall, the decline of blood DC, perhaps due to the recruitment of immune cells to the site of disease-specific lesions, can be considered a clue of the immune alteration that characterizes PD, suggesting innovative exploitations of DC monitoring as a clinically significant tool for PD treatment. Indeed, this study suggests that reduced peripheral blood DC are a pathologically-relevant factor of PD and also displays the urgency to better understand DC role in PD for unraveling the immune system contribution to disease progression and thus favoring the development of innovative therapies ideally based on immunomodulation.

  17. Tim-3 is a Marker of Plasmacytoid Dendritic Cell Dysfunction during HIV Infection and Is Associated with the Recruitment of IRF7 and p85 into Lysosomes and with the Submembrane Displacement of TLR9.

    Science.gov (United States)

    Schwartz, Jordan Ari; Clayton, Kiera L; Mujib, Shariq; Zhang, Hongliang; Rahman, A K M Nur-Ur; Liu, Jun; Yue, Feng Yun; Benko, Erika; Kovacs, Colin; Ostrowski, Mario A

    2017-04-15

    In chronic diseases, such as HIV infection, plasmacytoid dendritic cells (pDCs) are rendered dysfunctional, as measured by their decreased capacity to produce IFN-α. In this study, we identified elevated levels of T cell Ig and mucin-domain containing molecule-3 (Tim-3)-expressing pDCs in the blood of HIV-infected donors. The frequency of Tim-3-expressing pDCs correlated inversely with CD4 T cell counts and positively with HIV viral loads. A lower frequency of pDCs expressing Tim-3 produced IFN-α or TNF-α in response to the TLR7 agonists imiquimod and Sendai virus and to the TLR9 agonist CpG. Thus, Tim-3 may serve as a biomarker of pDC dysfunction in HIV infection. The source and function of Tim-3 was investigated on enriched pDC populations from donors not infected with HIV. Tim-3 induction was achieved in response to viral and artificial stimuli, as well as exogenous IFN-α, and was PI3K dependent. Potent pDC-activating stimuli, such as CpG, imiquimod, and Sendai virus, induced the most Tim-3 expression and subsequent dysfunction. Small interfering RNA knockdown of Tim-3 increased IFN-α secretion in response to activation. Intracellular Tim-3, as measured by confocal microscopy, was dispersed throughout the cytoplasm prior to activation. Postactivation, Tim-3 accumulated at the plasma membrane and associated with disrupted TLR9 at the submembrane. Tim-3-expressing pDCs had reduced IRF7 levels. Furthermore, intracellular Tim-3 colocalized with p85 and IRF7 within LAMP1 + lysosomes, suggestive of a role in degradation. We conclude that Tim-3 is a biomarker of dysfunctional pDCs and may negatively regulate IFN-α, possibly through interference with TLR signaling and recruitment of IRF7 and p85 into lysosomes, enhancing their degradation. Copyright © 2017 by The American Association of Immunologists, Inc.

  18. Modified vaccinia virus Ankara triggers type I IFN production in murine conventional dendritic cells via a cGAS/STING-mediated cytosolic DNA-sensing pathway.

    Directory of Open Access Journals (Sweden)

    Peihong Dai

    2014-04-01

    Full Text Available Modified vaccinia virus Ankara (MVA is an attenuated poxvirus that has been engineered as a vaccine against infectious agents and cancers. Our goal is to understand how MVA modulates innate immunity in dendritic cells (DCs, which can provide insights to vaccine design. In this study, using murine bone marrow-derived dendritic cells, we assessed type I interferon (IFN gene induction and protein secretion in response to MVA infection. We report that MVA infection elicits the production of type I IFN in murine conventional dendritic cells (cDCs, but not in plasmacytoid dendritic cells (pDCs. Transcription factors IRF3 (IFN regulatory factor 3 and IRF7, and the positive feedback loop mediated by IFNAR1 (IFN alpha/beta receptor 1, are required for the induction. MVA induction of type I IFN is fully dependent on STING (stimulator of IFN genes and the newly discovered cytosolic DNA sensor cGAS (cyclic guanosine monophosphate-adenosine monophosphate synthase. MVA infection of cDCs triggers phosphorylation of TBK1 (Tank-binding kinase 1 and IRF3, which is abolished in the absence of cGAS and STING. Furthermore, intravenous delivery of MVA induces type I IFN in wild-type mice, but not in mice lacking STING or IRF3. Treatment of cDCs with inhibitors of endosomal and lysosomal acidification or the lysosomal enzyme Cathepsin B attenuated MVA-induced type I IFN production, indicating that lysosomal enzymatic processing of virions is important for MVA sensing. Taken together, our results demonstrate a critical role of the cGAS/STING-mediated cytosolic DNA-sensing pathway for type I IFN induction in cDCs by MVA. We present evidence that vaccinia virulence factors E3 and N1 inhibit the activation of IRF3 and the induction of IFNB gene in MVA-infected cDCs.

  19. Phenotype and Function of CD209+ Bovine Blood Dendritic Cells, Monocyte-Derived-Dendritic Cells and Monocyte-Derived Macrophages.

    Directory of Open Access Journals (Sweden)

    Kun Taek Park

    Full Text Available Phylogenic comparisons of the mononuclear phagocyte system (MPS of humans and mice demonstrate phenotypic divergence of dendritic cell (DC subsets that play similar roles in innate and adaptive immunity. Although differing in phenotype, DC can be classified into four groups according to ontogeny and function: conventional DC (cDC1 and cDC2, plasmacytoid DC (pDC, and monocyte derived DC (MoDC. DC of Artiodactyla (pigs and ruminants can also be sub-classified using this system, allowing direct functional and phenotypic comparison of MoDC and other DC subsets trafficking in blood (bDC. Because of the high volume of blood collections required to study DC, cattle offer the best opportunity to further our understanding of bDC and MoDC function in an outbred large animal species. As reported here, phenotyping DC using a monoclonal antibody (mAb to CD209 revealed CD209 is expressed on the major myeloid population of DC present in blood and MoDC, providing a phenotypic link between these two subsets. Additionally, the present study demonstrates that CD209 is also expressed on monocyte derived macrophages (MoΦ. Functional analysis revealed each of these populations can take up and process antigens (Ags, present them to CD4 and CD8 T cells, and elicit a T-cell recall response. Thus, bDC, MoDC, and MoΦ pulsed with pathogens or candidate vaccine antigens can be used to study factors that modulate DC-driven T-cell priming and differentiation ex vivo.

  20. Dendritic cell vaccines.

    Science.gov (United States)

    Mosca, Paul J; Lyerly, H Kim; Clay, Timothy M; Morse, Michael A; Lyerly, H Kim

    2007-05-01

    Dendritic cells are antigen-presenting cells that have been shown to stimulate tumor antigen-specific T cell responses in preclinical studies. Consequently, there has been intense interest in developing dendritic cell based cancer vaccines. A variety of methods for generating dendritic cells, loading them with tumor antigens, and administering them to patients have been described. In recent years, a number of early phase clinical trials have been performed and have demonstrated the safety and feasibility of dendritic cell immunotherapies. A number of these trials have generated valuable preliminary data regarding the clinical and immunologic response to DC-based immunotherapy. The emphasis of dendritic cell immunotherapy research is increasingly shifting toward the development of strategies to increase the potency of dendritic cell vaccine preparations.

  1. Activity-dependent trafficking of lysosomes in dendrites and dendritic spines.

    Science.gov (United States)

    Goo, Marisa S; Sancho, Laura; Slepak, Natalia; Boassa, Daniela; Deerinck, Thomas J; Ellisman, Mark H; Bloodgood, Brenda L; Patrick, Gentry N

    2017-08-07

    In neurons, lysosomes, which degrade membrane and cytoplasmic components, are thought to primarily reside in somatic and axonal compartments, but there is little understanding of their distribution and function in dendrites. Here, we used conventional and two-photon imaging and electron microscopy to show that lysosomes traffic bidirectionally in dendrites and are present in dendritic spines. We find that lysosome inhibition alters their mobility and also decreases dendritic spine number. Furthermore, perturbing microtubule and actin cytoskeletal dynamics has an inverse relationship on the distribution and motility of lysosomes in dendrites. We also find trafficking of lysosomes is correlated with synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-type glutamate receptors. Strikingly, lysosomes traffic to dendritic spines in an activity-dependent manner and can be recruited to individual spines in response to local activation. These data indicate the position of lysosomes is regulated by synaptic activity and thus plays an instructive role in the turnover of synaptic membrane proteins. © 2017 Goo et al.

  2. A short-term increase of the postoperative naturally circulating dendritic cells subsets in flurbiprofen-treated patients with esophageal carcinoma undergoing thoracic surgery.

    Science.gov (United States)

    Wang, Di; Yang, Xin-lu; Chai, Xiao-qing; Shu, Shu-hua; Zhang, Xiao-lin; Xie, Yan-hu; Wei, Xin; Wu, Yu-jing; Wei, Wei

    2016-04-05

    The present study evaluated whether flurbiprofen increased the naturally circulating dendritic cells (DCs) subsets in patients with esophageal squamous cell carcinoma (ESCC) undergoing esophageal resection. Compared to healthy donors (n=20), the significantly depressed percentages of plasmacytoid DCs (pDCs), CD1c+ myeloid DCs (mDCs), and CD141+ mDCs among ESCC patients (n=60) were confirmed. Flurbiprofen was administered before skin incision and at the end of operation in group F (n=30), as well as placebo in group C (n=30). The postoperative suppressed percentages of pDCs, CD1c+ mDCs, and CD141+ mDCs increased significantly following the perioperative treatment with flurbiprofen. Flurbiprofen also significantly stimulated the postoperative IFN-f and IL-17 production, but inhibited the immunosuppressive IL-10 and TGF-β levels. Furthermore, flurbiprofen exerted a similar analgesic effect and brought a significantly less sufentanil consumption compared to group C. Taken together, flurbiprofen provided a short-term increase of postoperative naturally circulating DCs in ESCC patients.

  3. Phenotypic, ultra-structural, and functional characterization of bovine peripheral blood dendritic cell subsets.

    Directory of Open Access Journals (Sweden)

    Janet J Sei

    Full Text Available Dendritic cells (DC are multi-functional cells that bridge the gap between innate and adaptive immune systems. In bovine, significant information is lacking on the precise identity and role of peripheral blood DC subsets. In this study, we identify and characterize bovine peripheral blood DC subsets directly ex vivo, without further in vitro manipulation. Multi-color flow cytometric analysis revealed that three DC subsets could be identified. Bovine plasmacytoid DC were phenotypically identified by a unique pattern of cell surface protein expression including CD4, exhibited an extensive endoplasmic reticulum and Golgi apparatus, efficiently internalized and degraded exogenous antigen, and were the only peripheral blood cells specialized in the production of type I IFN following activation with Toll-like receptor (TLR agonists. Conventional DC were identified by expression of a different pattern of cell surface proteins including CD11c, MHC class II, and CD80, among others, the display of extensive dendritic protrusions on their plasma membrane, expression of very high levels of MHC class II and co-stimulatory molecules, efficient internalization and degradation of exogenous antigen, and ready production of detectable levels of TNF-alpha in response to TLR activation. Our investigations also revealed a third novel DC subset that may be a precursor of conventional DC that were MHC class II+ and CD11c-. These cells exhibited a smooth plasma membrane with a rounded nucleus, produced TNF-alpha in response to TLR-activation (albeit lower than CD11c+ DC, and were the least efficient in internalization/degradation of exogenous antigen. These studies define three bovine blood DC subsets with distinct phenotypic and functional characteristics which can be analyzed during immune responses to pathogens and vaccinations of cattle.

  4. Batf3 and Id2 have a synergistic effect on Irf8-directed classical CD8α+ dendritic cell development

    KAUST Repository

    Jaiswal, Hemant; Kaushik, Monika; Sougrat, Rachid; Gupta, Monica; Dey, Anup; Verma, Rohit; Ozato, Keiko; Tailor, Prafullakumar B.

    2013-01-01

    model for DC development and function. Expression of Irf8 in DC9 cells led to plasmacytoid DCs and CD8α+ DC-like cells, with a concomitant increase in plasmacytoid DC- and CD8α+ DC-specific gene transcripts and induction of type I IFNs and IL12p40

  5. Dendritic cell neoplasms: an overview.

    Science.gov (United States)

    Kairouz, Sebastien; Hashash, Jana; Kabbara, Wadih; McHayleh, Wassim; Tabbara, Imad A

    2007-10-01

    Dendritic cell neoplasms are rare tumors that are being recognized with increasing frequency. They were previously classified as lymphomas, sarcomas, or histiocytic neoplasms. The World Health Organization (WHO) classifies dendritic cell neoplasms into five groups: Langerhans' cell histiocytosis, Langerhans' cell sarcoma, Interdigitating dendritic cell sarcoma/tumor, Follicular dendritic cell sarcoma/tumor, and Dendritic cell sarcoma, not specified otherwise (Jaffe, World Health Organization classification of tumors 2001; 273-289). Recently, Pileri et al. provided a comprehensive immunohistochemical classification of histiocytic and dendritic cell tumors (Pileri et al., Histopathology 2002;59:161-167). In this article, a concise overview regarding the pathological, clinical, and therapeutic aspects of follicular dendritic, interdigitating dendritic, and Langerhans' cell tumors is presented.

  6. Porcine endogenous retroviral nucleic acid in peripheral tissues is associated with migration of porcine cells post islet transplant.

    Science.gov (United States)

    Binette, Tanya M; Seeberger, Karen L; Lyon, James G; Rajotte, Ray V; Korbutt, Gregory S

    2004-07-01

    Porcine islets represent an alternative source of insulin-producing tissue, however, porcine endogenous retrovirus (PERV) remains a concern. In this study, SCID mice were transplanted with nonencapsulated (non-EC), microencapsulated (EC) or macroencapsulated (in a TheraCyte trade mark device) neonatal porcine islets (NPIs), and peripheral tissues were screened for presence of viral DNA and mRNA. To understand the role of an intact immune system in PERV incidence, mice with established NPI grafts were reconstituted with splenocytes. Peripheral tissues were screened for PERV and porcine DNA using PCR. Tissues with positive DNA were analyzed for PERV mRNA using RT-PCR. No significant difference was observed between non-EC and EC transplants regarding presence of PERV or porcine-specific DNA or mRNA. In reconstituted animals, little PERV or porcine DNA, and no PERV mRNA was detected. No PERV or porcine-specific DNA was observed in animals implanted with a TheraCyte trade mark device. In conclusion, an intact immune system significantly lowered the presence of PERV. Microencapsulation of islets did not alter PERV presence, however, macroencapsulation in the TheraCyte device did. Lower PERV incidence coincided with lower porcine DNA in peripheral tissues, linking the presence of PERV to migration of porcine cells.

  7. Dendrite Injury Triggers DLK-Independent Regeneration

    Directory of Open Access Journals (Sweden)

    Michelle C. Stone

    2014-01-01

    Full Text Available Axon injury triggers regeneration through activation of a conserved kinase cascade, which includes the dual leucine zipper kinase (DLK. Although dendrites are damaged during stroke, traumatic brain injury, and seizure, it is not known whether mature neurons monitor dendrite injury and initiate regeneration. We probed the response to dendrite damage using model Drosophila neurons. Two larval neuron types regrew dendrites in distinct ways after all dendrites were removed. Dendrite regeneration was also triggered by injury in adults. Next, we tested whether dendrite injury was initiated with the same machinery as axon injury. Surprisingly, DLK, JNK, and fos were dispensable for dendrite regeneration. Moreover, this MAP kinase pathway was not activated by injury to dendrites. Thus, neurons respond to dendrite damage and initiate regeneration without using the conserved DLK cascade that triggers axon regeneration.

  8. Stress-driven lithium dendrite growth mechanism and dendrite mitigation by electroplating on soft substrates

    Science.gov (United States)

    Wang, Xu; Zeng, Wei; Hong, Liang; Xu, Wenwen; Yang, Haokai; Wang, Fan; Duan, Huigao; Tang, Ming; Jiang, Hanqing

    2018-03-01

    Problems related to dendrite growth on lithium-metal anodes such as capacity loss and short circuit present major barriers to next-generation high-energy-density batteries. The development of successful lithium dendrite mitigation strategies is impeded by an incomplete understanding of the Li dendrite growth mechanisms, and in particular, Li-plating-induced internal stress in Li metal and its effect on Li growth morphology are not well addressed. Here, we reveal the enabling role of plating residual stress in dendrite formation through depositing Li on soft substrates and a stress-driven dendrite growth model. We show that dendrite growth is mitigated on such soft substrates through surface-wrinkling-induced stress relaxation in the deposited Li film. We demonstrate that this dendrite mitigation mechanism can be utilized synergistically with other existing approaches in the form of three-dimensional soft scaffolds for Li plating, which achieves higher coulombic efficiency and better capacity retention than that for conventional copper substrates.

  9. Lipid Accumulation in Peripheral Blood Dendritic Cells and Anticancer Immunity in Patients with Lung Cancer

    Directory of Open Access Journals (Sweden)

    Ryo Arai

    2018-01-01

    Full Text Available We studied the subsets of peripheral blood dendritic cells (DCs and lipid accumulation in DCs to investigate the involvement of DCs in the decreased anticancer immunity of advanced lung cancer patients. We analyzed the population of DC subsets in peripheral blood using flow cytometry. We then determined lipid accumulation in the DCs using BODIPY 650/665, a fluorophore with an affinity for lipids. Compared with healthy controls, the number of DCs in the peripheral blood of treatment-naive cancer patients was significantly reduced. In patients with stage III + IV disease, the numbers of myeloid DCs (mDCs and plasmacytoid DCs were also significantly reduced. Lipid accumulation in DCs evaluated based on the fluorescence intensity of BODIPY 650/665 was significantly higher in stage III + IV lung cancer patients than in the controls. In the subset analysis, the fluorescence was highest for mDCs. The intracellularly accumulated lipids were identified as triglycerides. A decreased mixed leukocyte reaction was observed in the mDCs from lung cancer patients compared with those from controls. Taken together, the results show that lung cancer patients have a notably decreased number of peripheral blood DCs and their function as antigen-presenting cells is decreased due to their high intracellular lipid accumulation. Thereby, anticancer immunity is suppressed.

  10. Dendritic excitability modulates dendritic information processing in a purkinje cell model.

    Science.gov (United States)

    Coop, Allan D; Cornelis, Hugo; Santamaria, Fidel

    2010-01-01

    Using an electrophysiological compartmental model of a Purkinje cell we quantified the contribution of individual active dendritic currents to processing of synaptic activity from granule cells. We used mutual information as a measure to quantify the information from the total excitatory input current (I(Glu)) encoded in each dendritic current. In this context, each active current was considered an information channel. Our analyses showed that most of the information was encoded by the calcium (I(CaP)) and calcium activated potassium (I(Kc)) currents. Mutual information between I(Glu) and I(CaP) and I(Kc) was sensitive to different levels of excitatory and inhibitory synaptic activity that, at the same time, resulted in the same firing rate at the soma. Since dendritic excitability could be a mechanism to regulate information processing in neurons we quantified the changes in mutual information between I(Glu) and all Purkinje cell currents as a function of the density of dendritic Ca (g(CaP)) and Kca (g(Kc)) conductances. We extended our analysis to determine the window of temporal integration of I(Glu) by I(CaP) and I(Kc) as a function of channel density and synaptic activity. The window of information integration has a stronger dependence on increasing values of g(Kc) than on g(CaP), but at high levels of synaptic stimulation information integration is reduced to a few milliseconds. Overall, our results show that different dendritic conductances differentially encode synaptic activity and that dendritic excitability and the level of synaptic activity regulate the flow of information in dendrites.

  11. Impaired IFN-α-mediated signal in dendritic cells differentiates active from latent tuberculosis.

    Directory of Open Access Journals (Sweden)

    Stefania Parlato

    Full Text Available Individuals exposed to Mycobacterium tuberculosis (Mtb may be infected and remain for the entire life in this condition defined as latent tuberculosis infection (LTBI or develop active tuberculosis (TB. Among the multiple factors governing the outcome of the infection, dendritic cells (DCs play a major role in dictating antibacterial immunity. However, current knowledge on the role of the diverse components of human DCs in shaping specific T-cell response during Mtb infection is limited. In this study, we performed a comparative evaluation of peripheral blood circulating DC subsets as well as of monocyte-derived Interferon-α DCs (IFN-DCs from patients with active TB, subjects with LTBI and healthy donors (HD. The proportion of circulating myeloid BDCA3+ DCs (mDC2 and plasmacytoid CD123+ DCs (pDCs declined significantly in active TB patients compared to HD, whereas the same subsets displayed a remarkable activation in LTBI subjects. Simultaneously, the differentiation of IFN-DCs from active TB patients resulted profoundly impaired compared to those from LTBI and HD individuals. Importantly, the altered developmental trait of IFN-DCs from active TB patients was associated with down-modulation of IFN-linked genes, marked changes in molecular signaling conveying antigen (Ag presentation and full inability to induce Ag-specific T cell response. Thus, these data reveal an important role of IFN-α in determining the induction of Mtb-specific immunity.

  12. PU.1 is essential for CD11c expression in CD8(+/CD8(- lymphoid and monocyte-derived dendritic cells during GM-CSF or FLT3L-induced differentiation.

    Directory of Open Access Journals (Sweden)

    Xue-Jun Zhu

    Full Text Available Dendritic cells (DCs regulate innate and acquired immunity through their roles as antigen-presenting cells. Specific subsets of mature DCs, including monocyte-derived and lymphoid-derived DCs, can be distinguished based on distinct immunophenotypes and functional properties. The leukocyte integrin, CD11c, is considered a specific marker for DCs and it is expressed by all DC subsets. We created a strain of mice in which DCs and their progenitors could be lineage traced based on activity of the CD11c proximal promoter. Surprisingly, we observed levels of CD11c promoter activity that were similar in DCs and in other mature leukocytes, including monocytes, granulocytes, and lymphocytes. We sought to identify DNA elements and transcription factors that regulate DC-associated expression of CD11c. The ets transcription factor, PU.1, is a key regulator of DC development, and expression of PU.1 varies in different DC subsets. GM-CSF increased monocyte-derived DCs in mice and from mouse bone marrow cultured in vitro, but it did not increase CD8(+ lymphoid-derived DCs or B220(+ plasmacytoid DCs. FLT3L increased both monocyte-derived DCs and lymphoid-derived DCs from mouse bone marrow cultured in vitro. GM-CSF increased the 5.3 Kb CD11c proximal promoter activity in monocyte-derived DCs and CD8(+ lymphoid-derived DCs, but not in B220(+ plasmacytoid DCs. In contrast, FLT3L increased the CD11c proximal promoter activity in both monocyte-derived DCs and B220(+ plasmacytoid DCs. We used shRNA gene knockdown and chromatin immunoprecipitation to demonstrate that PU.1 is required for the effects of GM-CSF or FLT3L on monocyte-derived DCs. We conclude that both GM-CSF and FLT3L act through PU.1 to activate the 5.3 Kb CD11c proximal promoter in DCs and to induce differentiation of monocyte-derived DCs. We also confirm that the CD11c proximal promoter is not sufficient to direct lineage specificity of CD11c expression, and that additional DNA elements are required

  13. 7 CFR 1230.611 - Porcine animal.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Porcine animal. 1230.611 Section 1230.611 Agriculture... CONSUMER INFORMATION Procedures for the Conduct of Referendum Definitions § 1230.611 Porcine animal. The term Porcine animal means a swine, that is raised: (a) As a feeder pig, that is, a young pig sold to...

  14. Microtubule nucleation and organization in dendrites

    Science.gov (United States)

    Delandre, Caroline; Amikura, Reiko; Moore, Adrian W.

    2016-01-01

    ABSTRACT Dendrite branching is an essential process for building complex nervous systems. It determines the number, distribution and integration of inputs into a neuron, and is regulated to create the diverse dendrite arbor branching patterns characteristic of different neuron types. The microtubule cytoskeleton is critical to provide structure and exert force during dendrite branching. It also supports the functional requirements of dendrites, reflected by differential microtubule architectural organization between neuron types, illustrated here for sensory neurons. Both anterograde and retrograde microtubule polymerization occur within growing dendrites, and recent studies indicate that branching is enhanced by anterograde microtubule polymerization events in nascent branches. The polarities of microtubule polymerization events are regulated by the position and orientation of microtubule nucleation events in the dendrite arbor. Golgi outposts are a primary microtubule nucleation center in dendrites and share common nucleation machinery with the centrosome. In addition, pre-existing dendrite microtubules may act as nucleation sites. We discuss how balancing the activities of distinct nucleation machineries within the growing dendrite can alter microtubule polymerization polarity and dendrite branching, and how regulating this balance can generate neuron type-specific morphologies. PMID:27097122

  15. Deletion of Notch1 converts pro-T cells to dendritic cells and promotes thymic B cells by cell-extrinsic and cell-intrinsic mechanisms.

    Science.gov (United States)

    Feyerabend, Thorsten B; Terszowski, Grzegorz; Tietz, Annette; Blum, Carmen; Luche, Hervé; Gossler, Achim; Gale, Nicholas W; Radtke, Freddy; Fehling, Hans Jörg; Rodewald, Hans-Reimer

    2009-01-16

    Notch1 signaling is required for T cell development and has been implicated in fate decisions in the thymus. We showed that Notch1 deletion in progenitor T cells (pro-T cells) revealed their latent developmental potential toward becoming conventional and plasmacytoid dendritic cells. In addition, Notch1 deletion in pro-T cells resulted in large numbers of thymic B cells, previously explained by T-to-B cell fate conversion. Single-cell genotyping showed, however, that the majority of these thymic B cells arose from Notch1-sufficient cells by a cell-extrinsic pathway. Fate switching nevertheless exists for a subset of thymic B cells originating from Notch1-deleted pro-T cells. Chimeric mice lacking the Notch ligand delta-like 4 (Dll4) in thymus epithelium revealed an essential role for Dll4 in T cell development. Thus, Notch1-Dll4 signaling fortifies T cell commitment by suppressing non-T cell lineage potential in pro-T cells, and normal Notch1-driven T cell development repels excessive B cells in the thymus.

  16. Immunotherapeutical role of Flt3 ligand amplification of pulmonary dendritic cells in murine multiple organ dysfunction syndrome in vivo

    Directory of Open Access Journals (Sweden)

    Hong-wei WANG

    2012-08-01

    Full Text Available Objective To explore the therapeutic effect of Flt3 ligand (Flt3L on multiple organ dysfunction syndrome (MODS model via amplification of lung dendritic cells. Methods Animal model of MODS was replicated by injecting zymosan into the peritoneal cavity of BALB/c mice, and then the mice were randomly divided into Flt3L treatment group, MODS group, Flt3L group and control group. Mortality rate was observed. After 12 days, lung mononuclear cells were isolated by density gradient centrifugation and analyzed with flow cytometry. Blood AST, ALT, creatinine, lipase, amylase and glucose were determined by automatic biochemical analyzer. Pathological changes in lung tissue were observed under light microscope. Results Mortality in Flt3L treatment group decreased dramatically compared with MODS group. The proportions of myeloid, plasmacytoid and I-Ad+ DCs in Flt3L group were remarkably increased compared with control group, and the proportion of the three DC subsets in MODS group was much lower than that in control group. Howerver, Flt3L treatment dramatically increased the proportion of them in MODS group. In MODS group, the level of ALT, AST, lipase, amylase and creatinine remarkably increased and blood glucose decreased compared with that of Flt3L and control groups; but in Flt3L treatment group, the level of ALT, AST, lipase, amylase and creatinine decreased and blood glucose increased dramatically, and lung injury mitigated obviously compared with MODS group. Conclusion Flt3L could attenuate lung tissue injury in MODS model, improve organ function, and lower the mortality of experimental animals, thus exerting its immunotherapeutic effects by in vivo amplification of lung dendritic cells.

  17. Analyses of 123 Peripheral Human Immune Cell Subsets: Defining Differences with Age and between Healthy Donors and Cancer Patients not Detected in Analysis of Standard Immune Cell Types

    Directory of Open Access Journals (Sweden)

    Lauren M. Lepone

    2016-03-01

    suppressor cells, conventional dendritic cells (DCs, plasmacytoid DCs and B cells. The use of these panels identifying 123 immune cell subsets may aid in the identi‐ fication of patients who may benefit from immunotherapy, either prior to therapy or early in the immunotherapeutic regimen, for the treatment of cancer or other chronic or infectious diseases.

  18. Monoclonal antibodies specific to heat-treated porcine blood.

    Science.gov (United States)

    Raja Nhari, Raja Mohd Hafidz; Hamid, Muhajir; Rasli, Nurmunirah Mohamad; Omar, Abdul Rahman; El Sheikha, Aly Farag; Mustafa, Shuhaimi

    2016-05-01

    Porcine blood is potentially being utilized in food as a binder, gelling agent, emulsifier or colorant. However, for certain communities, the usage of animal blood in food is strictly prohibited owing to religious concerns and health reasons. This study reports the development of monoclonal antibodies (MAbs) against heat-treated soluble proteins (HSPs) of autoclaved porcine blood; characterization of MAbs against blood, non-blood and plasma from different animal species using qualitative indirect non-competitive enzyme-linked immunosorbent assay (ELISA); and immunoblotting of antigenic components in HSPs of porcine blood. Fifteen MAbs are specific to heat-treated and raw porcine blood and not cross-reacted with other animal blood and non-blood proteins (meat and non-meat). Twelve MAbs are specific to porcine plasma, while three MAbs specific to porcine plasma are cross-reacted with chicken plasma. Immunoblotting revealed antigenic protein bands (∼60, ∼85-100 and ∼250 kDa) in porcine blood and plasma recognized by the MAbs. Selection of MAbs that recognized 60 kDa HSPs of porcine blood and plasma as novel monoclonal antibodies would be useful for detection of porcine plasma in processed food using the immunoassay method. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  19. Porcine respiratory disease complex: Interaction of vaccination and porcine circovirus type 2, porcine reproductive and respiratory syndrome virus, and Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Chae, Chanhee

    2016-06-01

    Porcine respiratory disease is a multifactorial and complex disease caused by a combination of infectious pathogens, environmental stressors, differences in production systems, and various management practices; hence the name porcine respiratory disease complex (PRDC) is used. Porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), and Mycoplasma hyopneumoniae are considered to be the most important pathogens that cause PRDC. Although interactions among the three major respiratory pathogens are well documented, it is also necessary to understand the interaction between vaccines and the three major respiratory pathogens. PRRSV and M. hyopneumoniae are well known to potentiate PCV2-associated lesions; however, PRRSV and mycoplasmal vaccines can both enhance PCV2 viraemia regardless of the effects of the actual PRRSV or M. hyopneumoniae infection. On the other hand, M. hyopneumoniae potentiates the severity of pneumonia induced by PRRSV, and vaccination against M. hyopneumoniae alone is also able to decrease PRRSV viraemia and PRRSV-induced lung lesions in dually infected pigs. This review focuses on (1) interactions between PCV2, PRRSV, and M. hyopneumoniae; and (2) interactions between vaccines and the three major respiratory pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Role of dendritic cells infected with human herpesvirus 6 in virus transmission to CD4+ T cells

    International Nuclear Information System (INIS)

    Takemoto, Masaya; Imasawa, Takayoshi; Yamanishi, Koichi; Mori, Yasuko

    2009-01-01

    Human herpesvirus 6 (HHV-6) is a ubiquitous betaherpesvirus that predominantly infects and replicates in CD4 + T lymphocytes. However, the mechanism of HHV-6 transmission to T cells from the peripheral mucosa is unknown. Here we found that dendritic cells (DCs) can transmit HHV-6 to T cells, resulting in productive infection. In immature monocyte-derived DCs (MDDCs) infected with HHV-6, viral early and late antigens were expressed, and nucleocapsids containing a DNA core were observed, although few virions were detected in the cytoplasm by electron microscopy, indicating that the maturation of HHV-6 virions may be incomplete in MDDCs. However, HHV-6 transmission from MDDCs to stimulated CD4 + T cells occurred efficiently in coculture of these cells, but not from MDDCs culture supernatants. This transmission was partially inhibited by treating the DCs with a viral DNA synthesis blocker, indicating that viral replication in MDDCs is required for this transmission. Furthermore, myeloid DCs and plasmacytoid DCs infected with HHV-6 could also transmit the virus to stimulated T cells. Thus, DCs may be the first cell population targeted by HHV-6 and could play an important role in the virus' transmission to T cells for their further propagation

  1. An inverse approach for elucidating dendritic function

    Directory of Open Access Journals (Sweden)

    Benjamin Torben-Nielsen

    2010-09-01

    Full Text Available We outline an inverse approach for investigating dendritic function-structure relationships by optimizing dendritic trees for a-priori chosen computational functions. The inverse approach can be applied in two different ways. First, we can use it as a `hypothesis generator' in which we optimize dendrites for a function of general interest. The optimization yields an artificial dendrite that is subsequently compared to real neurons. This comparison potentially allows us to propose hypotheses about the function of real neurons. In this way, we investigated dendrites that optimally perform input-order detection. Second, we can use it as a `function confirmation' by optimizing dendrites for functions hypothesized to be performed by classes of neurons. If the optimized, artificial, dendrites resemble the dendrites of real neurons the artificial dendrites corroborate the hypothesized function of the real neuron. Moreover, properties of the artificial dendrites can lead to predictions about yet unmeasured properties. In this way, we investigated wide-field motion integration performed by the VS cells of the fly visual system. In outlining the inverse approach and two applications, we also elaborate on the nature of dendritic function. We furthermore discuss the role of optimality in assigning functions to dendrites and point out interesting future directions.

  2. Phase field modeling of dendritic coarsening during isothermal

    Directory of Open Access Journals (Sweden)

    Zhang Yutuo

    2011-08-01

    Full Text Available Dendritic coarsening in Al-2mol%Si alloy during isothermal solidification at 880K was investigated by phase field modeling. Three coarsening mechanisms operate in the alloy: (a melting of small dendrite arms; (b coalescence of dendrites near the tips leading to the entrapment of liquid droplets; (c smoothing of dendrites. Dendrite melting is found to be dominant in the stage of dendritic growth, whereas coalescence of dendrites and smoothing of dendrites are dominant during isothermal holding. The simulated results provide a better understanding of dendrite coarsening during isothermal solidification.

  3. Orientations of dendritic growth during solidification

    Science.gov (United States)

    Lee, Dong Nyung

    2017-03-01

    Dendrites are crystalline forms which grow far from the limit of stability of the plane front and adopt an orientation which is as close as possible to the heat flux direction. Dendritic growth orientations for cubic metals, bct Sn, and hcp Zn, can be controlled by thermal conductivity, Young's modulus, and surface energy. The control factors have been elaborated. Since the dendrite is a single crystal, its properties such as thermal conductivity that influences the heat flux direction, the minimum Young's modulus direction that influences the strain energy minimization, and the minimum surface energy plane that influences the crystal/liquid interface energy minimization have been proved to control the dendritic growth direction. The dendritic growth directions of cubic metals are determined by the minimum Young's modulus direction and/or axis direction of symmetry of the minimum crystal surface energy plane. The dendritic growth direction of bct Sn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction. The primary dendritic growth direction of hcp Zn is determined by its maximum thermal conductivity direction and the minimum surface energy plane normal direction and the secondary dendrite arm direction of hcp Zn is normal to the primary dendritic growth direction.

  4. Investigating the Role of Surface Materials and Three Dimensional Architecture on In Vitro Differentiation of Porcine Monocyte-Derived Dendritic Cells

    DEFF Research Database (Denmark)

    Hartmann, Sofie Bruun; Mohanty, Soumyaranjan; Skovgaard, Kerstin

    2016-01-01

    In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured in materi......In vitro generation of dendritic-like cells through differentiation of peripheral blood monocytes is typically done using two-dimensional polystyrene culture plates. In the process of optimising cell culture techniques, engineers have developed fluidic micro-devises usually manufactured......-dimensional PDMS and carbonised three-dimensional PDMS. Cells cultured conventionally (on two-dimensional polystyrene) differentiated into moDCs as expected. Interestingly, gene expression of a wide range of cytokines, chemokines, and pattern recognition receptors was influenced by culture surface material...... and IL23A) but the influence of the surfaces was unchanged. These findings highlights future challenges of combining and comparing data generated from microfluidic cell culture-devices made using alternative materials to data generated using conventional polystyrene plates used by most laboratories today....

  5. Regulation of dendrite growth and maintenance by exocytosis

    Science.gov (United States)

    Peng, Yun; Lee, Jiae; Rowland, Kimberly; Wen, Yuhui; Hua, Hope; Carlson, Nicole; Lavania, Shweta; Parrish, Jay Z.; Kim, Michael D.

    2015-01-01

    ABSTRACT Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential requirements for exocytosis in the growth and maintenance of different dendritic compartments. Rop promotes dendrite growth together with the exocyst, an octameric protein complex involved in tethering vesicles to the plasma membrane, with Rop–exocyst complexes and exocytosis predominating in primary dendrites over terminal dendrites. By contrast, membrane-associated proteins readily diffuse from primary dendrites into terminals, but not in the reverse direction, suggesting that diffusion, rather than targeted exocytosis, supplies membranous material for terminal dendritic growth, revealing key differences in the distribution of materials to these expanding dendritic compartments. PMID:26483382

  6. Interlaboratory testing of porcine sera for antibodies to porcine circovirus type 2

    DEFF Research Database (Denmark)

    McNair, I.; Marshall, M.; McNeilly, F.

    2004-01-01

    A panel of 20 porcine sera was distributed to 5 laboratories across Europe and Canada. Each center was requested to test the sera for the presence of porcine circovirus type 2 antibodies using the routine assays, indirect immunofluorescence assay (IFA) and indirect immunoperoxidase monolayer assa...... than did IFA, and paraformaldehyde gave higher titers than did acetone or ethyl alcohol. This report highlights the need for standardized procedures and biologicals for this virus....

  7. Cigarette Smoke Decreases the Maturation of Lung Myeloid Dendritic Cells.

    Directory of Open Access Journals (Sweden)

    Elena Arellano-Orden

    Full Text Available Conflicting data exist on the role of pulmonary dendritic cells (DCs and their maturation in patients with chronic obstructive pulmonary disease (COPD. Herein, we investigated whether disease severity and smoking status could affect the distribution and maturation of DCs in lung tissues of patients undergoing elective pneumectomy or lobectomy for suspected primary lung cancer.A total of 75 consecutive patients were included. Spirometry testing was used to identify COPD. Lung parenchyma sections anatomically distant from the primary lesion were examined. We used flow cytometry to identify different DCs subtypes-including BDCA1-positive myeloid DCs (mDCs, BDCA3-positive mDCs, and plasmacytoid DCs (pDCs-and determine their maturation markers (CD40, CD80, CD83, and CD86 in all participants. We also identified follicular DCs (fDCs, Langerhans DCs (LDCs, and pDCs in 42 patients by immunohistochemistry.COPD was diagnosed in 43 patients (16 current smokers and 27 former smokers, whereas the remaining 32 subjects were classified as non-COPD (11 current smokers, 13 former smokers, and 8 never smokers. The number and maturation of DCs did not differ significantly between COPD and non-COPD patients. However, the results of flow cytometry indicated that maturation markers CD40 and CD83 of BDCA1-positive mDCs were significantly decreased in smokers than in non-smokers (P = 0.023 and 0.013, respectively. Immunohistochemistry also revealed a lower number of LDCs in COPD patients than in non-COPD subjects.Cigarette smoke, rather than airflow limitation, is the main determinant of impaired DCs maturation in the lung.

  8. Dendritic Kv3.3 potassium channels in cerebellar purkinje cells regulate generation and spatial dynamics of dendritic Ca2+ spikes.

    Science.gov (United States)

    Zagha, Edward; Manita, Satoshi; Ross, William N; Rudy, Bernardo

    2010-06-01

    Purkinje cell dendrites are excitable structures with intrinsic and synaptic conductances contributing to the generation and propagation of electrical activity. Voltage-gated potassium channel subunit Kv3.3 is expressed in the distal dendrites of Purkinje cells. However, the functional relevance of this dendritic distribution is not understood. Moreover, mutations in Kv3.3 cause movement disorders in mice and cerebellar atrophy and ataxia in humans, emphasizing the importance of understanding the role of these channels. In this study, we explore functional implications of this dendritic channel expression and compare Purkinje cell dendritic excitability in wild-type and Kv3.3 knockout mice. We demonstrate enhanced excitability of Purkinje cell dendrites in Kv3.3 knockout mice, despite normal resting membrane properties. Combined data from local application pharmacology, voltage clamp analysis of ionic currents, and assessment of dendritic Ca(2+) spike threshold in Purkinje cells suggest a role for Kv3.3 channels in opposing Ca(2+) spike initiation. To study the physiological relevance of altered dendritic excitability, we measured [Ca(2+)](i) changes throughout the dendritic tree in response to climbing fiber activation. Ca(2+) signals were specifically enhanced in distal dendrites of Kv3.3 knockout Purkinje cells, suggesting a role for dendritic Kv3.3 channels in regulating propagation of electrical activity and Ca(2+) influx in distal dendrites. These findings characterize unique roles of Kv3.3 channels in dendrites, with implications for synaptic integration, plasticity, and human disease.

  9. Long-term culture and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized mesenchymal cells.

    Science.gov (United States)

    Garba, Abubakar; Acar, Delphine D; Roukaerts, Inge D M; Desmarets, Lowiese M B; Devriendt, Bert; Nauwynck, Hans J

    2017-09-01

    Mesenchymal cells are multipotent stromal cells with self-renewal, differentiation and immunomodulatory capabilities. We aimed to develop a co-culture model for differentiating hematopoietic cells on top of immortalized mesenchymal cells for studying interactions between hematopoietic and mesenchymal cells, useful for adequately exploring the therapeutic potential of mesenchymal cells. In this study, we investigated the survival, proliferation and differentiation of porcine red bone marrow hematopoietic cells co-cultured with immortalized porcine bone marrow mesenchymal cells for a period of five weeks. Directly after collection, primary porcine bone marrow mesenchymal cells adhered firmly to the bottom of the culture plates and showed a fibroblast-like appearance, one week after isolation. Upon immortalization, porcine bone marrow mesenchymal cells were continuously proliferating. They were positive for simian virus 40 (SV40) large T antigen and the mesenchymal cell markers CD44 and CD55. Isolated red bone marrow cells were added to these immortalized mesenchymal cells. Five weeks post-seeding, 92±6% of the red bone marrow hematopoietic cells were still alive and their number increased 3-fold during five weekly subpassages on top of the immortalized mesenchymal cells. The red bone marrow hematopoietic cells were originally small and round; later, the cells increased in size. Some of them became elongated, while others remained round. Tiny dendrites appeared attaching hematopoietic cells to the underlying immortalized mesenchymal cells. Furthermore, weekly differential-quick staining of the cells indicated the presence of monoblasts, monocytes, macrophages and lymphocytes in the co-cultures. At three weeks of co-culture, flow cytometry analysis showed an increased surface expression of CD172a, CD14, CD163, CD169, CD4 and CD8 up to 37±0.8%, 40±8%, 41±4%, 23±3% and 19±5% of the hematopoietic cells, respectively. In conclusion, continuous mesenchymal cell

  10. Dendritic Cells in the Context of Human Tumors: Biology and Experimental Tools.

    Science.gov (United States)

    Volovitz, Ilan; Melzer, Susanne; Amar, Sarah; Bocsi, József; Bloch, Merav; Efroni, Sol; Ram, Zvi; Tárnok, Attila

    2016-01-01

    Dendritic cells (DC) are the most potent and versatile antigen-presenting cells (APC) in the immune system. DC have an exceptional ability to comprehend the immune context of a captured antigen based on molecular signals identified from its vicinity. The analyzed information is then conveyed to other immune effector cells. Such capability enables DC to play a pivotal role in mediating either an immunogenic response or immune tolerance towards an acquired antigen. This review summarizes current knowledge on DC in the context of human tumors. It covers the basics of human DC biology, elaborating on the different markers, morphology and function of the different subsets of human DC. Human blood-borne DC are comprised of at least three subsets consisting of one plasmacytoid DC (pDC) and two to three myeloid DC (mDC) subsets. Some tissues have unique DC. Each subset has a different phenotype and function and may induce pro-tumoral or anti-tumoral effects. The review also discusses two methods fundamental to the research of DC on the single-cell level: multicolor flow cytometry (FCM) and image-based cytometry (IC). These methods, along with new genomics and proteomics tools, can provide high-resolution information on specific DC subsets and on immune and tumor cells with which they interact. The different layers of collected biological data may then be integrated using Immune-Cytomics modeling approaches. Such novel integrated approaches may help unravel the complex network of cellular interactions that DC carry out within tumors, and may help harness this complex immunological information into the development of more effective treatments for cancer.

  11. A Multicentric T-Cell Lymphoma with a Plasmacytoid Morphology in a Dog

    Directory of Open Access Journals (Sweden)

    Alissa Bally

    2018-01-01

    Full Text Available An 8-year-old male (neutered Labrador with a history of erythematous skin lesions and exercise intolerance for a prolonged period was suddenly found dead. Necropsy findings revealed an infiltrative, focally extensive mass which occupied 25% of the cardiac interventricular septum. Severe endocardiosis was also found on the bicuspid and tricuspid valves. The submandibular lymph nodes and kidneys were bilaterally enlarged, and the pre-hepatic lymph node and spleen were also enlarged. Multiple dermal pustules were present around the mouth and on the ear, and small ulcers were present on the tongue. Histopathological examination detected the presence of neoplastic lymphocytes with a plasmacytoid morphology in these tissues as well as in the tongue and skin lesions. Immunohistochemical (CD3+/CD18+ evaluation was consistent with a T-cell lymphoma, which could be classified as a peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS.

  12. Investigation of cutaneous penetration properties of stearic acid loaded to dendritic core-multi-shell (CMS) nanocarriers.

    Science.gov (United States)

    Lohan, S B; Icken, N; Teutloff, C; Saeidpour, S; Bittl, R; Lademann, J; Fleige, E; Haag, R; Haag, S F; Meinke, M C

    2016-03-30

    Dendritic core-multi shell (CMS) particles are polymer based systems consisting of a dendritic polar polyglycerol polymer core surrounded by a two-layer shell of nonpolar C18 alkyl chains and hydrophilic polyethylene glycol. Belonging to nanotransport systems (NTS) they allow the transport and storage of molecules with different chemical characters. Their amphipihilic character CMS-NTS permits good solubility in aqueous and organic solutions. We showed by multifrequency electron paramagnetic resonance (EPR) spectroscopy that spin-labeled 5-doxyl stearic acid (5DSA) can be loaded into the CMS-NTS. Furthermore, the release of 5DSA from the carrier into the stratum corneum of porcine skin was monitored ex vivo by EPR spectroscopy. Additionally, the penetration of the CMS-NTS into the skin was analyzed by fluorescence microscopy using indocarbocyanine (ICC) covalently bound to the nanocarrier. Thereby, no transport into the viable skin was observed, whereas the CMS-NTS had penetrated into the hair follicles down to a depth of 340 μm ± 82 μm. Thus, it could be shown that the combined application of fluorescence microscopy and multi-frequency EPR spectroscopy can be an efficient tool for investigating the loading of spin labeled drugs to nanocarrier systems, drug release and penetration into the skin as well as the localization of the NTS in the skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Divergent Effects of Dendritic Cells on Pancreatitis

    Science.gov (United States)

    2015-09-01

    role of dendritic cells in pancreatitis. Dendritic cells are professional antigen presenting cells which initiate innate and adaptive immune... Lymphoid -tissue-specific homing of bone- marrow-derived dendritic cells . Blood. 113:6638–6647. http://dx.doi .org/10.1182/blood-2009-02-204321 Dapito...Award Number: W81XWH-12-1-0313 TITLE: Divergent Effects of Dendritic Cells on Pancreatitis PRINCIPAL INVESTIGATOR: Dr. George Miller

  14. The role of dendritic cell subsets and innate immunity in the pathogenesis of type 1 diabetes and other autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Jeffrey D. Price

    2015-06-01

    Full Text Available Dendritic cells (DCs are key antigen presenting cells that have an important role in autoimmune pathogenesis. DCs control both steady-state T cell tolerance and activation of pathogenic responses. The balance between these two outcomes depends on several factors, including genetic susceptibility, environmental signals that stimulate varied innate responses, and which DC subset is presenting antigen. Although the specific DC phenotype can diverge depending on the tissue location and context, there are 4 main subsets identified in both mouse and human: conventional cDC1 and cDC2, plasmacytoid DCs, and monocyte-derived DCs. In this review, we will discuss the role of these subsets in autoimmune pathogenesis and regulation, as well as the genetic and environmental signals that influence their function. Specific topics to be addressed include: impact of susceptibility loci on DC subsets, alterations in DC subset development, the role of infection- and host-derived innate inflammatory signals, and the role of the intestinal microbiota on DC phenotype. The effects of these various signals on disease progression and the relative effects of DC subset composition and maturation level of DCs will be examined. These areas will be explored using examples from several autoimmune diseases but will focus mainly on type 1 diabetes.

  15. Mesothelioma tumor cells modulate dendritic cell lipid content, phenotype and function.

    Directory of Open Access Journals (Sweden)

    Joanne K Gardner

    Full Text Available Dendritic cells (DCs play an important role in the generation of anti-cancer immune responses, however there is evidence that DCs in cancer patients are dysfunctional. Lipid accumulation driven by tumor-derived factors has recently been shown to contribute to DC dysfunction in several human cancers, but has not yet been examined in mesothelioma. This study investigated if mesothelioma tumor cells and/or their secreted factors promote increases in DC lipid content and modulate DC function. Human monocyte-derived DCs (MoDCs were exposed to human mesothelioma tumor cells and tumor-derived factors in the presence or absence of lipoproteins. The data showed that immature MoDCs exposed to mesothelioma cells or factors contained increased lipid levels relative to control DCs. Lipid accumulation was associated with reduced antigen processing ability (measured using a DQ OVA assay, upregulation of the co-stimulatory molecule, CD86, and production of the tolerogenic cytokine, IL-10. Increases in DC lipid content were further enhanced by co-exposure to mesothelioma-derived factors and triglyceride-rich lipoproteins, but not low-density lipoproteins. In vivo studies using a murine mesothelioma model showed that the lipid content of tumor-infiltrating CD4+ CD8α- DCs, CD4- CD8α- DCs DCs and plasmacytoid DCs increased with tumor progression. Moreover, increasing tumor burden was associated with reduced proliferation of tumor-antigen-specific CD8+ T cells in tumor-draining lymph nodes. This study shows that mesothelioma promotes DC lipid acquisition, which is associated with altered activation status and reduced capacity to process and present antigens, which may impair the ability of DCs to generate effective anti mesothelioma T cell responses.

  16. 7 CFR 1230.18 - Porcine animal.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Porcine animal. 1230.18 Section 1230.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS... animal. Porcine animal means a swine, that is raised as (a) a feeder pig, that is, a young pig sold to...

  17. Regulation of dendrite growth and maintenance by exocytosis

    OpenAIRE

    Peng, Yun; Lee, Jiae; Rowland, Kimberly; Wen, Yuhui; Hua, Hope; Carlson, Nicole; Lavania, Shweta; Parrish, Jay Z.; Kim, Michael D.

    2015-01-01

    Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential req...

  18. A Genome-Wide Screen for Dendritically Localized RNAs Identifies Genes Required for Dendrite Morphogenesis

    Directory of Open Access Journals (Sweden)

    Mala Misra

    2016-08-01

    Full Text Available Localizing messenger RNAs at specific subcellular sites is a conserved mechanism for targeting the synthesis of cytoplasmic proteins to distinct subcellular domains, thereby generating the asymmetric protein distributions necessary for cellular and developmental polarity. However, the full range of transcripts that are asymmetrically distributed in specialized cell types, and the significance of their localization, especially in the nervous system, are not known. We used the EP-MS2 method, which combines EP transposon insertion with the MS2/MCP in vivo fluorescent labeling system, to screen for novel localized transcripts in polarized cells, focusing on the highly branched Drosophila class IV dendritic arborization neurons. Of a total of 541 lines screened, we identified 55 EP-MS2 insertions producing transcripts that were enriched in neuronal processes, particularly in dendrites. The 47 genes identified by these insertions encode molecularly diverse proteins, and are enriched for genes that function in neuronal development and physiology. RNAi-mediated knockdown confirmed roles for many of the candidate genes in dendrite morphogenesis. We propose that the transport of mRNAs encoded by these genes into the dendrites allows their expression to be regulated on a local scale during the dynamic developmental processes of dendrite outgrowth, branching, and/or remodeling.

  19. Evaluating Local Primary Dendrite Arm Spacing Characterization Techniques Using Synthetic Directionally Solidified Dendritic Microstructures

    Science.gov (United States)

    Tschopp, Mark A.; Miller, Jonathan D.; Oppedal, Andrew L.; Solanki, Kiran N.

    2015-10-01

    Microstructure characterization continues to play an important bridge to understanding why particular processing routes or parameters affect the properties of materials. This statement certainly holds true in the case of directionally solidified dendritic microstructures, where characterizing the primary dendrite arm spacing is vital to developing the process-structure-property relationships that can lead to the design and optimization of processing routes for defined properties. In this work, four series of simulations were used to examine the capability of a few Voronoi-based techniques to capture local microstructure statistics (primary dendrite arm spacing and coordination number) in controlled (synthetically generated) microstructures. These simulations used both cubic and hexagonal microstructures with varying degrees of disorder (noise) to study the effects of length scale, base microstructure, microstructure variability, and technique parameters on the local PDAS distribution, local coordination number distribution, bulk PDAS, and bulk coordination number. The Voronoi tesselation technique with a polygon-side-length criterion correctly characterized the known synthetic microstructures. By systematically studying the different techniques for quantifying local primary dendrite arm spacings, we have evaluated their capability to capture this important microstructure feature in different dendritic microstructures, which can be an important step for experimentally correlating with both processing and properties in single crystal nickel-based superalloys.

  20. Vertical solidification of dendritic binary alloys

    Science.gov (United States)

    Heinrich, J. C.; Felicelli, S.; Poirier, D. R.

    1991-01-01

    Three numerical techniques are employed to analyze the influence of thermosolutal convection on defect formation in directionally solidified (DS) alloys. The finite-element models are based on the Boussinesq approximation and include the plane-front model and two plane-front models incorporating special dendritic regions. In the second model the dendritic region has a time-independent volume fraction of liquid, and in the last model the dendritic region evolves as local conditions dictate. The finite-element models permit the description of nonlinear thermosolutal convection by treating the dendritic regions as porous media with variable porosities. The models are applied to lead-tin alloys including DS alloys, and severe segregation phenomena such as freckles and channels are found to develop in the DS alloys. The present calculations and the permeability functions selected are shown to predict behavior in the dendritic regions that qualitatively matches that observed experimentally.

  1. Gastrin-releasing peptide in the porcine pancreas

    DEFF Research Database (Denmark)

    Holst, J J; Poulsen, Steen Seier

    1987-01-01

    to consist of one main form, namely the 27-amino acid peptide originally extracted from porcine stomach, and small amounts of a C-terminal fragment identical with the C-terminal 10-amino acid peptide. Gastrin-releasing peptide-like immunoreactivity released from the isolated perfused porcine pancreas during...... electrical vagal stimulation was shown by gel filtration to consist of the same two forms. By use of immunocytochemical techniques employing an antiserum directed against its N terminus, GRP was localized to varicose nerve fibers in close association with the exocrine tissue of the porcine pancreas...... in particular. Some fibers were found penetrating into pancreatic islets also. Immunoreactive nerve cell bodies as well as fibers were found within intrapancreatic ganglia. The potency of GRP in stimulating exocrine as well as endocrine secretion from the porcine pancreas, its presence in close contact...

  2. Important role for Toll-like receptor 9 in host defense against meningococcal sepsis

    DEFF Research Database (Denmark)

    Sjölinder, Hong; Mogensen, Trine; Kilian, Mogens

    2008-01-01

    have been reported to be involved in the host response to N. meningitidis. While TLR4 has been suggested to play an important role in early containment of infection, the roles of TLR2 and TLR9 in meningococcal disease are not well described. Using a model for meningococcal sepsis, we report that TLR9...... and induction of cytokine gene expression were independent of TLR2 or TLR9 in macrophages and conventional dendritic cells. In contrast, plasmacytoid dendritic cells relied entirely on TLR9 to induce these activities. Thus, our data demonstrate an important role for TLR9 in host defense against N. meningitidis....

  3. Aminopeptidase-N-independent entry of porcine epidemic diarrhea virus into Vero or porcine small intestine epithelial cells.

    Science.gov (United States)

    Ji, Chun-Miao; Wang, Bin; Zhou, Jiyong; Huang, Yao-Wei

    2018-04-01

    A monkey cell line Vero (ATCC CCL-81) is commonly used for porcine epidemic diarrhea virus (PEDV) propagation in vitro. However, it is still controversial whether the porcine aminopeptidase N (pAPN) counterpart on Vero cells (Vero-APN) confers PEDV entry. We found that endogenous expression of Vero-APN was undetectable in the mRNA and the protein levels in Vero cells. We cloned the partial Vero-APN gene (3340-bp) containing exons 1 to 9 from cellular DNA and subsequently generated two APN-knockout Vero cell lines by CRISPR/Cas9 approach. PEDV infection of two APN-knockout Vero cells had the same efficiency as the Vero cells with or without neuraminidase treatment. A Vero cells stably expressing pAPN did not increase PEDV production. SiRNA-knockdown of pAPN in porcine jejunum epithelial cells had no effects on PEDV infection. The results suggest that there exists an additional cellular receptor on Vero or porcine jejunal cells independent of APN for PEDV entry. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Synaptic Control of Secretory Trafficking in Dendrites

    Directory of Open Access Journals (Sweden)

    Cyril Hanus

    2014-06-01

    Full Text Available Localized signaling in neuronal dendrites requires tight spatial control of membrane composition. Upon initial synthesis, nascent secretory cargo in dendrites exits the endoplasmic reticulum (ER from local zones of ER complexity that are spatially coupled to post-ER compartments. Although newly synthesized membrane proteins can be processed locally, the mechanisms that control the spatial range of secretory cargo transport in dendritic segments are unknown. Here, we monitored the dynamics of nascent membrane proteins in dendritic post-ER compartments under regimes of low or increased neuronal activity. In response to activity blockade, post-ER carriers are highly mobile and are transported over long distances. Conversely, increasing synaptic activity dramatically restricts the spatial scale of post-ER trafficking along dendrites. This activity-induced confinement of secretory cargo requires site-specific phosphorylation of the kinesin motor KIF17 by Ca2+/calmodulin-dependent protein kinases (CaMK. Thus, the length scales of early secretory trafficking in dendrites are tuned by activity-dependent regulation of microtubule-dependent transport.

  5. Quantification of Porcine Vocal Fold Geometry.

    Science.gov (United States)

    Stevens, Kimberly A; Thomson, Scott L; Jetté, Marie E; Thibeault, Susan L

    2016-07-01

    The aim of this study was to quantify porcine vocal fold medial surface geometry and three-dimensional geometric distortion induced by freezing the larynx, especially in the region of the vocal folds. The medial surface geometries of five excised porcine larynges were quantified and reported. Five porcine larynges were imaged in a micro-CT scanner, frozen, and rescanned. Segmentations and three-dimensional reconstructions were used to quantify and characterize geometric features. Comparisons were made with geometry data previously obtained using canine and human vocal folds as well as geometries of selected synthetic vocal fold models. Freezing induced an overall expansion of approximately 5% in the transverse plane and comparable levels of nonuniform distortion in sagittal and coronal planes. The medial surface of the porcine vocal folds was found to compare reasonably well with other geometries, although the compared geometries exhibited a notable discrepancy with one set of published human female vocal fold geometry. Porcine vocal folds are qualitatively geometrically similar to data available for canine and human vocal folds, as well as commonly used models. Freezing of tissue in the larynx causes distortion of around 5%. The data can provide direction in estimating uncertainty due to bulk distortion of tissue caused by freezing, as well as quantitative geometric data that can be directly used in developing vocal fold models. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  6. Loss of Dendritic Complexity Precedes Neurodegeneration in a Mouse Model with Disrupted Mitochondrial Distribution in Mature Dendrites

    Directory of Open Access Journals (Sweden)

    Guillermo López-Doménech

    2016-10-01

    Full Text Available Correct mitochondrial distribution is critical for satisfying local energy demands and calcium buffering requirements and supporting key cellular processes. The mitochondrially targeted proteins Miro1 and Miro2 are important components of the mitochondrial transport machinery, but their specific roles in neuronal development, maintenance, and survival remain poorly understood. Using mouse knockout strategies, we demonstrate that Miro1, as opposed to Miro2, is the primary regulator of mitochondrial transport in both axons and dendrites. Miro1 deletion leads to depletion of mitochondria from distal dendrites but not axons, accompanied by a marked reduction in dendritic complexity. Disrupting postnatal mitochondrial distribution in vivo by deleting Miro1 in mature neurons causes a progressive loss of distal dendrites and compromises neuronal survival. Thus, the local availability of mitochondrial mass is critical for generating and sustaining dendritic arbors, and disruption of mitochondrial distribution in mature neurons is associated with neurodegeneration.

  7. Diagnostic investigation of porcine periweaning failure-to-thrive syndrome: lack of compelling evidence linking to common porcine pathogens.

    Science.gov (United States)

    Huang, Yanyun; Gauvreau, Henry; Harding, John

    2012-01-01

    Porcine periweaning failure-to-thrive syndrome (PFTS), an increasingly recognized syndrome in the swine industry of North America, is characterized by the anorexia of nursery pigs noticeable within 1 week of weaning, and progressive loss of body condition and lethargy during the next 1-2 weeks. Morbidity caused by PFTS is moderate, but case fatality is high. The etiology of PFTS is presently unknown and may include infectious agent(s), noninfectious factors, or both. PFTS was identified in a high health status farm with good management in early 2007. A diagnostic investigation was undertaken to identify the pathological lesions of, and infectious agents associated with, pigs demonstrating typical clinical signs. Affected (PFTS-SICK) and unaffected (PFTS-HLTHY) pigs from an affected farm, and unaffected pigs from 2 unaffected farms, were examined. The most prevalent lesions in PFTS-SICK pigs were superficial lymphocytic fundic gastritis, atrophic enteritis, superficial colitis, lymphocytic and neutrophilic rhinitis, mild nonsuppurative meningoencephalitis, and thymic atrophy. Rotavirus A and Betacoronavirus 1 (Porcine hemagglutinating encephalomyelitis virus) were identified only in PFTS-SICK pigs, but the significance of the viruses is uncertain because PFTS is not consistent with the typical presentation following infection by these pathogens. Porcine reproductive and respiratory syndrome virus, Porcine circovirus-2, Influenza A virus, Alphacoronavirus 1 (Transmissible gastroenteritis virus), Torque teno virus 1, Brachyspira hyodysenteriae, and Brachyspira pilosicoli were not identified in PFTS-SICK pigs. Suid herpesvirus 2 (Porcine cytomegalovirus), Porcine enteric calicivirus, Torque teno virus 2, pathogenic Escherichia coli, and coccidia were detected in both PFTS-SICK and PFTS-HLTHY pigs. It was concluded that there is a lack of compelling evidence that PFTS is caused by any of these pathogens.

  8. Coding and decoding with dendrites.

    Science.gov (United States)

    Papoutsi, Athanasia; Kastellakis, George; Psarrou, Maria; Anastasakis, Stelios; Poirazi, Panayiota

    2014-02-01

    Since the discovery of complex, voltage dependent mechanisms in the dendrites of multiple neuron types, great effort has been devoted in search of a direct link between dendritic properties and specific neuronal functions. Over the last few years, new experimental techniques have allowed the visualization and probing of dendritic anatomy, plasticity and integrative schemes with unprecedented detail. This vast amount of information has caused a paradigm shift in the study of memory, one of the most important pursuits in Neuroscience, and calls for the development of novel theories and models that will unify the available data according to some basic principles. Traditional models of memory considered neural cells as the fundamental processing units in the brain. Recent studies however are proposing new theories in which memory is not only formed by modifying the synaptic connections between neurons, but also by modifications of intrinsic and anatomical dendritic properties as well as fine tuning of the wiring diagram. In this review paper we present previous studies along with recent findings from our group that support a key role of dendrites in information processing, including the encoding and decoding of new memories, both at the single cell and the network level. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Systemic RNA delivery to dendritic cells exploits antiviral defence for cancer immunotherapy

    Science.gov (United States)

    Kranz, Lena M.; Diken, Mustafa; Haas, Heinrich; Kreiter, Sebastian; Loquai, Carmen; Reuter, Kerstin C.; Meng, Martin; Fritz, Daniel; Vascotto, Fulvia; Hefesha, Hossam; Grunwitz, Christian; Vormehr, Mathias; Hüsemann, Yves; Selmi, Abderraouf; Kuhn, Andreas N.; Buck, Janina; Derhovanessian, Evelyna; Rae, Richard; Attig, Sebastian; Diekmann, Jan; Jabulowsky, Robert A.; Heesch, Sandra; Hassel, Jessica; Langguth, Peter; Grabbe, Stephan; Huber, Christoph; Türeci, Özlem; Sahin, Ugur

    2016-06-01

    Lymphoid organs, in which antigen presenting cells (APCs) are in close proximity to T cells, are the ideal microenvironment for efficient priming and amplification of T-cell responses. However, the systemic delivery of vaccine antigens into dendritic cells (DCs) is hampered by various technical challenges. Here we show that DCs can be targeted precisely and effectively in vivo using intravenously administered RNA-lipoplexes (RNA-LPX) based on well-known lipid carriers by optimally adjusting net charge, without the need for functionalization of particles with molecular ligands. The LPX protects RNA from extracellular ribonucleases and mediates its efficient uptake and expression of the encoded antigen by DC populations and macrophages in various lymphoid compartments. RNA-LPX triggers interferon-α (IFNα) release by plasmacytoid DCs and macrophages. Consequently, DC maturation in situ and inflammatory immune mechanisms reminiscent of those in the early systemic phase of viral infection are activated. We show that RNA-LPX encoding viral or mutant neo-antigens or endogenous self-antigens induce strong effector and memory T-cell responses, and mediate potent IFNα-dependent rejection of progressive tumours. A phase I dose-escalation trial testing RNA-LPX that encode shared tumour antigens is ongoing. In the first three melanoma patients treated at a low-dose level, IFNα and strong antigen-specific T-cell responses were induced, supporting the identified mode of action and potency. As any polypeptide-based antigen can be encoded as RNA, RNA-LPX represent a universally applicable vaccine class for systemic DC targeting and synchronized induction of both highly potent adaptive as well as type-I-IFN-mediated innate immune mechanisms for cancer immunotherapy.

  10. Dendritic cells in uninfected infants born to hepatitis B virus-positive mothers.

    Science.gov (United States)

    Koumbi, Lemonica J; Papadopoulos, Nikolaos G; Anastassiadou, Vassiliki; Machaira, Maria; Kafetzis, Dimitris A; Papaevangelou, Vassiliki

    2010-07-01

    Plasmacytoid dendritic cells (pDCs) play a central role in antiviral immunity, detecting viruses via Toll-like receptors (TLR) and producing in response vast amounts of type I interferons (IFNs). Hepatitis B virus (HBV) causes chronic infection after vertical transmission. This study investigated whether an HBV-infected maternal environment might influence DC numbers and pDC function in uninfected infants. Blood was collected from inactive HBsAg carrier and control mothers and their infants at birth and 1 and 6 months of age. HBV DNA was measured in maternal and neonatal perinatal sera using real-time PCR. The circulating frequencies of myeloid DCs (mDCs) and pDCs were determined in the babies by flow cytometry. Peripheral blood mononuclear cells (PBMCs) and cord blood pDCs were stimulated with resiquimod, and alpha interferon (IFN-alpha) production and the pDC phenotype were assessed. The effect of the common-cold virus, rhinovirus (RV), on resiquimod stimulation was also determined. HBV DNA was detected in 62.3% of the mothers and 41% of their infants. DC numbers and pDC functions were similar between subjects and controls and were not correlated with maternal or neonatal viremia. RV infection did not induce pDC maturation until the age of 6 months, and it reduced TLR7-dependent resiquimod-induced IFN-alpha production similarly in both groups. Although the DC system is immature at birth, DCs of uninfected neonates of HBV-positive mothers are competent to initiate and maintain T-cell responses. RV is a weak inducer of IFN-alpha production until the age of 6 months and inhibits IFN-alpha responses triggered by the TLR7 pathway.

  11. Sleeping dendrites: fiber-optic measurements of dendritic calcium activity in freely moving and sleeping animals

    Directory of Open Access Journals (Sweden)

    Julie Seibt

    2014-03-01

    Full Text Available Dendrites are the post-synaptic sites of most excitatory and inhibitory synapses in the brain, making them the main location of cortical information processing and synaptic plasticity. Although current hypotheses suggest a central role for sleep in proper cognitive function and brain plasticity, virtually nothing is known about changes in dendritic activity across the sleep-wake cycle and how waking experience modifies this activity. To start addressing these questions, we developed a method that allows long-term recordings of EEGs/EMG combined with in vivo cortical calcium (Ca2+ activity in freely moving and sleeping rats. We measured Ca2+ activity from populations of dendrites of layer (L 5 pyramidal neurons (n = 13 rats that we compared with Ca2+ activity from populations of neurons in L2/3 (n = 11 rats. L5 and L2/3 neurons were labelled using bolus injection of OGB1-AM or GCaMP6 (1. Ca2+ signals were detected using a fiber-optic system (cannula diameter = 400µm, transmitting the changes in fluorescence to a photodiode. Ca2+ fluctuations could then be correlated with ongoing changes in brain oscillatory activity during 5 major brain states: active wake [AW], quiet wake [QW], NREM, REM and NREM-REM transition (or intermediate state, [IS]. Our Ca2+ recordings show large transients in L5 dendrites and L2/3 neurons that oscillate predominantly at frequencies In summary, we show that this technique is successful in monitoring fluctuations in ongoing dendritic Ca2+ activity during natural brain states and allows, in principle, to combine behavioral measurement with imaging from various brain regions (e.g. deep structures in freely behaving animals. Using this method, we show that Ca2+ transients from populations of L2/3 neurons and L5 dendrites are deferentially regulated across the sleep/wake cycle, with dendritic activity being the highest during the IS sleep. Our correlation analysis suggests that specific sleep EEG activity during NREM and IS

  12. Randomly oriented twin domains in electrodeposited silver dendrites

    Directory of Open Access Journals (Sweden)

    Ivanović Evica R.

    2015-01-01

    Full Text Available Silver dendrites were prepared by electrochemical deposition. The structures of Ag dendrites, the type of twins and their distribution were investigated by scanning electron microscopy (SEM, Z-contrast high angle annular dark field transmission electron microscopy (HAADF, and crystallografically sensitive orientation imaging microscopy (OIM. The results revealed that silver dendrites are characterized by the presence of randomly distributed 180° rotational twin domains. The broad surface of dendrites was of the {111} type. Growth directions of the main dendrite stem and all branches were of type. [Projekat Ministarstva nauke Republike Srbije, br. 172054

  13. Orchestration of transplantation tolerance by regulatory dendritic cell therapy or in-situ targeting of dendritic cells.

    Science.gov (United States)

    Morelli, Adrian E; Thomson, Angus W

    2014-08-01

    Extensive research in murine transplant models over the past two decades has convincingly demonstrated the ability of regulatory dendritic cells (DCregs) to promote long-term allograft survival. We review important considerations regarding the source of therapeutic DCregs (donor or recipient) and their mode of action, in-situ targeting of DCregs, and optimal therapeutic regimens to promote DCreg function. Recent studies have defined protocols and mechanisms whereby ex-vivo-generated DCregs of donor or recipient origin subvert allogeneic T-cell responses and promote long-term organ transplant survival. Particular interest has focused on how donor antigen is acquired, processed and presented by autologous dendritic cells, on the stability of DCregs, and on in-situ targeting of dendritic cells to promote their tolerogenic function. New evidence of the therapeutic efficacy of DCregs in a clinically relevant nonhuman primate organ transplant model and production of clinical grade DCregs support early evaluation of DCreg therapy in human graft recipients. We discuss strategies currently used to promote dendritic cell tolerogenicity, including DCreg therapy and in-situ targeting of dendritic cells, with a view to improved understanding of underlying mechanisms and identification of the most promising strategies for therapeutic application.

  14. Molecular identity of dendritic voltage-gated sodium channels.

    Science.gov (United States)

    Lorincz, Andrea; Nusser, Zoltan

    2010-05-14

    Active invasion of the dendritic tree by action potentials (APs) generated in the axon is essential for associative synaptic plasticity and neuronal ensemble formation. In cortical pyramidal cells (PCs), this AP back-propagation is supported by dendritic voltage-gated Na+ (Nav) channels, whose molecular identity is unknown. Using a highly sensitive electron microscopic immunogold technique, we revealed the presence of the Nav1.6 subunit in hippocampal CA1 PC proximal and distal dendrites. Here, the subunit density is lower by a factor of 35 to 80 than that found in axon initial segments. A gradual decrease in Nav1.6 density along the proximodistal axis of the dendritic tree was also detected without any labeling in dendritic spines. Our results reveal the characteristic subcellular distribution of the Nav1.6 subunit, identifying this molecule as a key substrate enabling dendritic excitability.

  15. Tachykinins in the porcine pancreas

    DEFF Research Database (Denmark)

    Schmidt, P T; Tornøe, K; Poulsen, Steen Seier

    2000-01-01

    The localization, release, and effects of substance P and neurokinin A were studied in the porcine pancreas and the localization of substance P immunoreactive nerve fibers was examined by immunohistochemistry. The effects of electrical vagus stimulation and capsaicin infusion on tachykinin release...... and the effects of substance P and neurokinin A infusion on insulin, glucagon, somatostatin, and exocrine secretion were studied using the isolated perfused porcine pancreas with intact vagal innervation. NK-1 and NK-2 receptor antagonists were used to investigate receptor involvement. Substance P immunoreactive...

  16. Sequence learning in differentially activated dendrites

    DEFF Research Database (Denmark)

    Nielsen, Bjørn Gilbert

    2003-01-01

    . It is proposed that the neural machinery required in such a learning/retrieval mechanism could involve the NMDA receptor, in conjunction with the ability of dendrites to maintain differentially activated regions. In particular, it is suggested that such a parcellation of the dendrite allows the neuron......Differentially activated areas of a dendrite permit the existence of zones with distinct rates of synaptic modification, and such areas can be individually accessed using a reference signal which localizes synaptic plasticity and memory trace retrieval to certain subregions of the dendrite...... to participate in multiple sequences, which can be learned without suffering from the 'wash-out' of synaptic efficacy associated with superimposition of training patterns. This is a biologically plausible solution to the stability-plasticity dilemma of learning in neural networks....

  17. Dendritic Actin Cytoskeleton: Structure, Functions, and Regulations

    Directory of Open Access Journals (Sweden)

    Anja Konietzny

    2017-05-01

    Full Text Available Actin is a versatile and ubiquitous cytoskeletal protein that plays a major role in both the establishment and the maintenance of neuronal polarity. For a long time, the most prominent roles that were attributed to actin in neurons were the movement of growth cones, polarized cargo sorting at the axon initial segment, and the dynamic plasticity of dendritic spines, since those compartments contain large accumulations of actin filaments (F-actin that can be readily visualized using electron- and fluorescence microscopy. With the development of super-resolution microscopy in the past few years, previously unknown structures of the actin cytoskeleton have been uncovered: a periodic lattice consisting of actin and spectrin seems to pervade not only the whole axon, but also dendrites and even the necks of dendritic spines. Apart from that striking feature, patches of F-actin and deep actin filament bundles have been described along the lengths of neurites. So far, research has been focused on the specific roles of actin in the axon, while it is becoming more and more apparent that in the dendrite, actin is not only confined to dendritic spines, but serves many additional and important functions. In this review, we focus on recent developments regarding the role of actin in dendrite morphology, the regulation of actin dynamics by internal and external factors, and the role of F-actin in dendritic protein trafficking.

  18. Methods for the detection and serum depletion of porcine galectin-3.

    Science.gov (United States)

    Eliaz, Isaac; Patil, Aarti; Navarro-Alvarez, Nalu; Wang, Zhirui; Eliaz, Amity; Weil, Elaine; Wilk, Barry; Sachs, David H; Huang, Christene A

    2017-10-01

    Circulating galectin-3 (Gal-3) is elevated in systemic inflammatory disorders, fibrotic diseases, and in cancers. Gal-3 is a promising cancer target where it promotes tumorigenesis and metastasis, as well as in renal, pulmonary, hepatic, and cardiovascular diseases, because of its role as a driver of fibrotic remodeling. This reports goal was to establish methods for the detection and removal of porcine Gal-3 that will enable further studies of the therapeutic potential of Gal-3 depletion by apheresis in porcine disease models. The long-term aim is to develop a safe, effective method of removing Gal-3 via apheresis as a standalone therapeutic tool and as an adjuvant to other therapies. Purified recombinant porcine Gal-3 was prepared and used as the standard for development of a porcine Gal-3 enzyme-linked immunosorbent assay (ELISA). Different affinity column matrices that incorporated either a rat IgG2a anti-Gal-3 monoclonal antibody or carbohydrate ligand were assessed for depletion of Gal-3 from porcine serum. A porcine Gal-3 ELISA with a linear range from 0.3 to 20 ng/mL was able to detect native porcine Gal-3 in both fetal (∼150-200 ng/mL) and juvenile (∼5-15 ng/mL) porcine serum samples. Use of an anti-Gal-3 monoclonal antibody affinity column depleted Gal-3 from porcine serum to at least 313 pg/mL, the limit of ELISA detection. Methods have been developed for the detection and depletion of porcine Gal-3. These methods will be used to study the specific effects of Gal-3 depletion via apheresis in porcine models of disease. © 2017 Wiley Periodicals, Inc.

  19. Lentiviral Vector Gene Transfer to Porcine Airways

    Directory of Open Access Journals (Sweden)

    Patrick L Sinn

    2012-01-01

    Full Text Available In this study, we investigated lentiviral vector development and transduction efficiencies in well-differentiated primary cultures of pig airway epithelia (PAE and wild-type pigs in vivo. We noted gene transfer efficiencies similar to that observed for human airway epithelia (HAE. Interestingly, feline immunodeficiency virus (FIV-based vectors transduced immortalized pig cells as well as pig primary cells more efficiently than HIV-1–based vectors. PAE express TRIM5α, a well-characterized species-specific lentiviral restriction factor. We contrasted the restrictive properties of porcine TRIM5α against FIV- and HIV-based vectors using gain and loss of function approaches. We observed no effect on HIV-1 or FIV conferred transgene expression in response to porcine TRIM5α overexpression or knockdown. To evaluate the ability of GP64-FIV to transduce porcine airways in vivo, we delivered vector expressing mCherry to the tracheal lobe of the lung and the ethmoid sinus of 4-week-old pigs. One week later, epithelial cells expressing mCherry were readily detected. Our findings indicate that pseudotyped FIV vectors confer similar tropisms in porcine epithelia as observed in human HAE and provide further support for the selection of GP64 as an appropriate envelope pseudotype for future preclinical gene therapy studies in the porcine model of cystic fibrosis (CF.

  20. Progress, problems and prospects of porcine pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hanning WANG,Yangli PEI,Ning LI,Jianyong HAN

    2014-02-01

    Full Text Available Pluripotent stem cells (PSCs, including embryonic stem cells (ESCs and induced PSCs (iPSCs, can differentiate into cells of the three germ layers, suggesting that PSCs have great potential for basic developmental biology research and wide applications for clinical medicine. Genuine ESCs and iPSCs have been derived from mice and rats, but not from livestock such as the pig─an ideal animal model for studying human disease and regenerative medicine due to similarities with human physiologic processes. Efforts to derive porcine ESCs and iPSCs have not yielded high-quality PSCs that can produce chimeras with germline transmission. Thus, exploration of the unique porcine gene regulation network of preimplantation embryonic development may permit optimization of in vitro culture systems for raising porcine PSCs. Here we summarize the recent progress in porcine PSC generation as well as the problems encountered during this progress and we depict prospects for generating porcine naive PSCs.

  1. Analyzing dendritic growth in a population of immature neurons in the adult dentate gyrus using laminar quantification of disjointed dendrites

    Directory of Open Access Journals (Sweden)

    Shira eRosenzweig

    2011-03-01

    Full Text Available In the dentate gyrus of the hippocampus, new granule neurons are continuously produced throughout adult life. A prerequisite for the successful synaptic integration of these neurons is the sprouting and extension of dendrites into the molecular layer of the dentate gyrus. Thus, studies aimed at investigating the developmental stages of adult neurogenesis often use dendritic growth as an important indicator of neuronal health and maturity. Based on the known topography of the dentate gyrus, characterized by distinct laminar arrangement of granule neurons and their extensions, we have developed a new method for analysis of dendritic growth in immature adult-born granule neurons. The method is comprised of laminar quantification of cell bodies, primary, secondary and tertiary dendrites separately and independently from each other. In contrast to most existing methods, laminar quantification of dendrites does not require the use of exogenous markers and does not involve arbitrary selection of individual neurons. The new method relies on immonuhistochemical detection of endogenous markers such as doublecortin to perform a comprehensive analysis of a sub-population of immature neurons. Disjointed, orphan dendrites that often appear in the thin histological sections are taken into account. Using several experimental groups of rats and mice, we demonstrate here the suitable techniques for quantifying neurons and dendrites, and explain how the ratios between the quantified values can be used in a comparative analysis to indicate variations in dendritic growth and complexity.

  2. Porcine circovirus diseases

    Directory of Open Access Journals (Sweden)

    Ristoski Trpe

    2009-05-01

    Full Text Available Porcine circovirus type 2 belongs on the family Circoviridae. This virus family includes small, non-enveloped viruses, with a circular, single-standed DNA genome.This virus causes mainly subclinical infections, but a number of diseases have been linked to it (porcine circovirus diseases, PCVD. The most economically important PCVD is postweaning multisystemic wasting syndrome (PMWS, which mainly affects pigs of 2 to 5 months of age, with progressive wasting, diarrhea and respiratory disorders. Main PMWS lesions are found in lymphoid tissues, which are characterized by lymphocyte depletion with granulomatous (histiocytic and multinucleate giant cell infiltration. PMWS is considered as multifactorial disease, with a number of infectious and non-infectious factors able to act as disease triggering in PCV2 infected pigs. PCVDs are worldwide distributed, and PMWS was diagnosed in Macedonia in 2007.

  3. The Complete Reconfiguration of Dendritic Gold

    Science.gov (United States)

    Paneru, Govind; Flanders, Bret

    2014-03-01

    Reconfigurability-by-design is an important strategy in modern materials science, as materials with this capability could potentially be used to confer hydrophobic, lipophobic, or anti-corrosive character to substrates in a regenerative manner. The present work extends the directed electrochemical nanowire assembly (DENA) methodology, which is a technique that employs alternating voltages to grow single crystalline metallic nanowires and nano-dendrites from simple salt solutions, to enable the complete dissolution of macroscopic arrays of metallic dendrites following their growth. Our main finding is that structural reconfiguration of dendritic gold is induced by changes in the MHz-level frequencies of voltages that are applied to the dendrites. Cyclic voltammetry and micro-Raman spectroscopy have been used to show that dendritic gold grows and dissolves by the same chemical mechanisms as bulk gold. Hence, the redox chemistry that occurs at the crystal-solution interface is no different than the established electrochemistry of gold. What differs in this process and allows for reconfiguration to occur is the diffusive behavior of the gold chloride molecules in the solution adjacent to the interface. We will present a simple model that captures the physics of this behavior.

  4. Circulating dendritic cells of multiple sclerosis patients are proinflammatory and their frequency is correlated with MS-associated genetic risk factors.

    Science.gov (United States)

    Thewissen, Kristof; Nuyts, Amber H; Deckx, Nathalie; Van Wijmeersch, Bart; Nagels, Guy; D'hooghe, Marie; Willekens, Barbara; Cras, Patrick; Eijnde, Bert O; Goossens, Herman; Van Tendeloo, Viggo F I; Stinissen, Piet; Berneman, Zwi N; Hellings, Niels; Cools, Nathalie

    2014-04-01

    The role of the adaptive immune system and more specifically T cells in the pathogenesis of multiple sclerosis (MS) has been studied extensively. Emerging evidence suggests that dendritic cells (DCs), which are innate immune cells, also contribute to MS. This study aimed to characterize circulating DC populations in MS and to investigate the contribution of MS-associated genetic risk factors to DCs. Ex vivo analysis of conventional (cDCs) and plasmacytoid DCs (pDCs) was carried out on peripheral blood of MS patients (n = 110) and age- and gender-matched healthy controls (n = 112). Circulating pDCs were significantly decreased in patients with chronic progressive MS compared to relapsing-remitting MS and healthy controls. While no differences in cDCs frequency were found between the different study groups, HLA-DRB1*1501(+) MS patients and patients not carrying the protective IL-7Rα haplotype 2 have reduced frequencies of circulating cDCs and pDCs, respectively. MS-derived DCs showed enhanced IL-12p70 production upon TLR ligation and had an increased expression of the migratory molecules CCR5 and CCR7 as well as an enhanced in vitro chemotaxis. DCs in MS are in a pro-inflammatory state, have a migratory phenotype and are affected by genetic risk factors, thereby contributing to pathogenic responses.

  5. Deciphering the porcine intestinal microRNA transcriptome

    Directory of Open Access Journals (Sweden)

    Keller Andreas

    2010-04-01

    Full Text Available Abstract Background While more than 700 microRNAs (miRNAs are known in human, a comparably low number has been identified in swine. Because of the close phylogenetic distance to humans, pigs serve as a suitable model for studying e.g. intestinal development or disease. Recent studies indicate that miRNAs are key regulators of intestinal development and their aberrant expression leads to intestinal malignancy. Results Here, we present the identification of hundreds of apparently novel miRNAs in the porcine intestine. MiRNAs were first identified by means of deep sequencing followed by miRNA precursor prediction using the miRDeep algorithm as well as searching for conserved miRNAs. Second, the porcine miRNAome along the entire intestine (duodenum, proximal and distal jejunum, ileum, ascending and transverse colon was unraveled using customized miRNA microarrays based on the identified sequences as well as known porcine and human ones. In total, the expression of 332 intestinal miRNAs was discovered, of which 201 represented assumed novel porcine miRNAs. The identified hairpin forming precursors were in part organized in genomic clusters, and most of the precursors were located on chromosomes 3 and 1, respectively. Hierarchical clustering of the expression data revealed subsets of miRNAs that are specific to distinct parts of the intestine pointing to their impact on cellular signaling networks. Conclusions In this study, we have applied a straight forward approach to decipher the porcine intestinal miRNAome for the first time in mammals using a piglet model. The high number of identified novel miRNAs in the porcine intestine points out their crucial role in intestinal function as shown by pathway analysis. On the other hand, the reported miRNAs may share orthologs in other mammals such as human still to be discovered.

  6. Leukemia-associated activating mutation of Flt3 expands dendritic cells and alters T cell responses.

    Science.gov (United States)

    Lau, Colleen M; Nish, Simone A; Yogev, Nir; Waisman, Ari; Reiner, Steven L; Reizis, Boris

    2016-03-07

    A common genetic alteration in acute myeloid leukemia is the internal tandem duplication (ITD) in FLT3, the receptor for cytokine FLT3 ligand (FLT3L). Constitutively active FLT3-ITD promotes the expansion of transformed progenitors, but also has pleiotropic effects on hematopoiesis. We analyzed the effect of FLT3-ITD on dendritic cells (DCs), which express FLT3 and can be expanded by FLT3L administration. Pre-leukemic mice with the Flt3(ITD) knock-in allele manifested an expansion of classical DCs (cDCs) and plasmacytoid DCs. The expansion originated in DC progenitors, was cell intrinsic, and was further enhanced in Flt3(ITD/ITD) mice. The mutation caused the down-regulation of Flt3 on the surface of DCs and reduced their responsiveness to Flt3L. Both canonical Batf3-dependent CD8(+) cDCs and noncanonical CD8(+) cDCs were expanded and showed specific alterations in their expression profiles. Flt3(ITD) mice showed enhanced capacity to support T cell proliferation, including a cell-extrinsic expansion of regulatory T (T reg) cells. Accordingly, these mice restricted alloreactive T cell responses during graft-versus-host reaction, but failed to control autoimmunity without T reg cells. Thus, the FLT3-ITD mutation directly affects DC development, indirectly modulating T cell homeostasis and supporting T reg cell expansion. We hypothesize that this effect of FLT3-ITD might subvert immunosurveillance and promote leukemogenesis in a cell-extrinsic manner. © 2016 Lau et al.

  7. Growth hormone-specific induction of the nuclear localization of porcine growth hormone receptor in porcine hepatocytes.

    Science.gov (United States)

    Lan, H N; Hong, P; Li, R N; Shan, A S; Zheng, X

    2017-10-01

    The phenomenon of nuclear translocation of growth hormone receptor (GHR) in human, rat, and fish has been reported. To date, this phenomenon has not been described in a domestic animal (such as pig). In addition, the molecular mechanisms of GHR nuclear translocation have not been thoroughly elucidated. To this end, porcine hepatocytes were isolated and used as a cell model. We observed that porcine growth hormone (pGH) can induce porcine GHR's nuclear localization in porcine hepatocytes. Subsequently, the dynamics of pGH-induced pGHR's nuclear localization were analyzed and demonstrated that pGHR's nuclear localization occurs in a time-dependent manner. Next, we explored the mechanism of pGHR nuclear localization using different pGHR ligands, and we demonstrated that pGHR's nuclear translocation is GH(s)-dependent. We also observed that pGHR translocates into cell nuclei in a pGH dimerization-dependent fashion, whereas further experiments indicated that IMPα/β is involved in the nuclear translocation of the pGH-pGHR dimer. The pGH-pGHR dimer may form a pGH-GHR-JAK2 multiple complex in cell nuclei, which would suggest that similar to its function in the cell membrane, the nuclear-localized pGH-pGHR dimer might still have the ability to signal. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Suppression of EAE by oral tolerance is independent of endogenous IFN-beta whereas treatment with recombinant IFN-beta ameliorates EAE

    DEFF Research Database (Denmark)

    Liu, Yawei; Teige, Ingrid; Ericsson, Ida

    2010-01-01

    IFN-beta is anticipated to have an important function in mucosal tolerance, as it is one of the major cytokines produced by plasmacytoid dendritic cells, and has recently been suggested as central to the maintenance of mucosal homeostasis. Here, we have investigated whether oral tolerance is depe......, however this was not a prerequisite for establishment of oral tolerance.Immunology and Cell Biology advance online publication, 12 January 2010; doi:10.1038/icb.2009.111....

  9. Characterization and Evaluation of Neuronal Trans-Differentiation with Electrophysiological Properties of Mesenchymal Stem Cells Isolated from Porcine Endometrium

    Directory of Open Access Journals (Sweden)

    Raghavendra Baregundi Subbarao

    2015-05-01

    Full Text Available Endometrial stromal cells (EMSCs obtained from porcine uterus (n = 6 were positive for mesenchymal stem cell markers (CD29, CD44 and CD90, and negative for epithelial marker CD9 and hematopoietic markers CD34, CD45 analyzed by flow cytometry. Further the cells were positive for expression of mesenchymal markers, CD105, CD140b, and CD144 by PCR. Pluripotent markers OCT4, SOX2, and NANOG were positively expressed in EMSCs analyzed by Western blotting and PCR. Further, differentiation into adipocytes and osteocytes was confirmed by cytochemical staining and lineage specific gene expression by quantitative realtime-PCR. Adipocyte (FABP, LPL, AP2 and osteocyte specific genes (ON, BG, RUNX2 in differentiated EMSCs showed significant (p < 0.05 increase in expression compared to undifferentiated control cells. Neurogenic transdifferentiation of EMSCs exhibited distinctive dendritic morphology with axon projections and neuronal specific genes, NFM, NGF, MBP, NES, B3T and MAP2 and proteins, B3T, NFM, NGF, and TRKA were positively expressed in neuronal differentiated cells. Functional analysis of neuronal differentiated EMSCs displayed voltage-dependence and kinetics for transient outward K+ currents (Ito, at holding potential of −80 mV, Na+ currents and during current clamp, neuronal differentiated EMSCs was more negative than that of control EMSCs. Porcine EMSCs is a suitable model for studying molecular mechanism of transdifferentiation, assessment of electrophysiological properties and their efficiency during in vivo transplantation.

  10. Phospholipid Homeostasis Regulates Dendrite Morphogenesis in Drosophila Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Shan Meltzer

    2017-10-01

    Full Text Available Disruptions in lipid homeostasis have been observed in many neurodevelopmental disorders that are associated with dendrite morphogenesis defects. However, the molecular mechanisms of how lipid homeostasis affects dendrite morphogenesis are unclear. We find that easily shocked (eas, which encodes a kinase with a critical role in phospholipid phosphatidylethanolamine (PE synthesis, and two other enzymes in this synthesis pathway are required cell autonomously in sensory neurons for dendrite growth and stability. Furthermore, we show that the level of Sterol Regulatory Element-Binding Protein (SREBP activity is important for dendrite development. SREBP activity increases in eas mutants, and decreasing the level of SREBP and its transcriptional targets in eas mutants largely suppresses the dendrite growth defects. Furthermore, reducing Ca2+ influx in neurons of eas mutants ameliorates the dendrite morphogenesis defects. Our study uncovers a role for EAS kinase and reveals the in vivo function of phospholipid homeostasis in dendrite morphogenesis.

  11. Dendritic ion channelopathy in acquired epilepsy

    Science.gov (United States)

    Poolos, Nicholas P.; Johnston, Daniel

    2012-01-01

    Summary Ion channel dysfunction or “channelopathy” is a proven cause of epilepsy in the relatively uncommon genetic epilepsies with Mendelian inheritance. But numerous examples of acquired channelopathy in experimental animal models of epilepsy following brain injury have also been demonstrated. Our understanding of channelopathy has grown due to advances in electrophysiology techniques that have allowed the study of ion channels in the dendrites of pyramidal neurons in cortex and hippocampus. The apical dendrites of pyramidal neurons comprise the vast majority of neuronal surface membrane area, and thus the majority of the neuronal ion channel population. Investigation of dendritic ion channels has demonstrated remarkable plasticity in ion channel localization and biophysical properties in epilepsy, many of which produce hyperexcitability and may contribute to the development and maintenance of the epileptic state. Here we review recent advances in dendritic physiology and cell biology, and their relevance to epilepsy. PMID:23216577

  12. Sequence conservation between porcine and human LRRK2

    DEFF Research Database (Denmark)

    Larsen, Knud; Madsen, Lone Bruhn

    2009-01-01

     Leucine-rich repeat kinase 2 (LRRK2) is a member of the ROCO protein superfamily (Ras of complex proteins (Roc) with a C-terminal Roc domain). Mutations in the LRRK2 gene lead to autosomal dominant Parkinsonism. We have cloned the porcine LRRK2 cDNA in an attempt to characterize conserved...... and expression patterns are conserved across species. The porcine LRRK2 gene was mapped to chromosome 5q25. The results obtained suggest that the LRRK2 gene might be of particular interest in our attempt to generate a transgenic porcine model for Parkinson's disease...

  13. First identification of porcine parvovirus 6 in North America by viral metagenomic sequencing of serum from pigs infected with porcine reproductive and respiratory syndrome virus.

    Science.gov (United States)

    Schirtzinger, Erin E; Suddith, Andrew W; Hause, Benjamin M; Hesse, Richard A

    2015-10-16

    Currently, eight species in four genera of parvovirus have been described that infect swine. These include ungulate protoparvovirus 1 (classical porcine parvovirus, PPV), ungulate tetraparvovirus 2 (PPV3), ungulate tetraparvovirus 3 (which includes PPV2, porcine hokovirus, porcine partetravirus and porcine PARV4), ungulate copiparvovirus 2 (which includes PPV4 and PPV5), ungulate bocaparvovirus 2 (which includes porcine bocavirus 1, 2 and 6), ungulate bocaparvovirus 3 (porcine bocavirus 5), ungulate bocaparvovirus 4 (porcine bocavirus 7) and ungulate bocaparvovirus 5 (porcine bocavirus 3, 4-1 and 4-2). PPV6, the most recently described porcine parvovirus, was first identified in China in late 2014 in aborted pig fetuses. Prevalence of PPV6 in China was found to be similar in finishing age pigs from farms with and without evidence of swine reproductive failure. Porcine parvovirus 6 (PPV6) was detected by sequence-independent single primer amplification (SISPA) and confirmed by overlapping and real-time PCR in the serum of porcine reproductive and respiratory virus (PRRSv) positive samples. Seven nearly complete genomes of PPV6 were identified in PRRSv genotype 2 positive serum samples submitted to state veterinary diagnostic laboratories in 2014. Further testing using overlapping and real-time PCR determined PPV6 to be present in 13.2 % of the serums tested. Additionally, PPV6 was present in samples from all of the geographic locations sampled encompassing nine states in the United States and one state in Mexico. The presence of PPV6 in serum indicates that the PPV6 infection is disseminated and not localized to a specific tissue type. Alignments of the near full length genomes, NS1, and capsid genes identified one of the five PPV6 isolates from China (98.6-99.5 % identity with the North American strains) to be the North American strains nearest relative. These results are the first to report the presence of PPV6 in North America and demonstrate that the virus is

  14. Immune monitoring using mRNA-transfected dendritic cells

    DEFF Research Database (Denmark)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by m......RNA electroporation, ensuring presentation of antigen through major histocompatibility complex I and potentially activating T cells, enabling them to kill the tumor cells. Despite extensive research in the field, only one dendritic cell-based vaccine has been approved. There is therefore a great need to elucidate...... and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA....

  15. Transient potentials in dendritic systems of arbitrary geometry.

    Science.gov (United States)

    Butz, E G; Cowan, J D

    1974-09-01

    A simple graphical calculus is developed that generates analytic solutions for membrane potential transforms at any point on the dendritic tree of neurons with arbitrary dendritic geometries, in response to synaptic "current" inputs. Such solutions permit the computation of transients in neurons with arbitrary geometry and may facilitate analysis of the role of dendrites in such cells.

  16. Statistical Physics of Neural Systems with Nonadditive Dendritic Coupling

    Directory of Open Access Journals (Sweden)

    David Breuer

    2014-03-01

    Full Text Available How neurons process their inputs crucially determines the dynamics of biological and artificial neural networks. In such neural and neural-like systems, synaptic input is typically considered to be merely transmitted linearly or sublinearly by the dendritic compartments. Yet, single-neuron experiments report pronounced supralinear dendritic summation of sufficiently synchronous and spatially close-by inputs. Here, we provide a statistical physics approach to study the impact of such nonadditive dendritic processing on single-neuron responses and the performance of associative-memory tasks in artificial neural networks. First, we compute the effect of random input to a neuron incorporating nonlinear dendrites. This approach is independent of the details of the neuronal dynamics. Second, we use those results to study the impact of dendritic nonlinearities on the network dynamics in a paradigmatic model for associative memory, both numerically and analytically. We find that dendritic nonlinearities maintain network convergence and increase the robustness of memory performance against noise. Interestingly, an intermediate number of dendritic branches is optimal for memory functionality.

  17. Spatial clustering of porcine cysticercosis in Mbulu district, northern Tanzania.

    Directory of Open Access Journals (Sweden)

    Helena A Ngowi

    Full Text Available BACKGROUND: Porcine cysticercosis is caused by a zoonotic tapeworm, Taenia solium, which causes serious disease syndromes in human. Effective control of the parasite requires knowledge on the burden and pattern of the infections in order to properly direct limited resources. The objective of this study was to establish the spatial distribution of porcine cysticercosis in Mbulu district, northern Tanzania, to guide control strategies. METHODOLOGY/PRINCIPAL FINDINGS: This study is a secondary analysis of data collected during the baseline and follow-up periods of a randomized community trial aiming at reducing the incidence rate of porcine cysticercosis through an educational program. At baseline, 784 randomly selected pig-keeping households located in 42 villages in 14 wards were included. Lingual examination of indigenous pigs aged 2-12 (median 8 months, one randomly selected from each household, were conducted. Data from the control group of the randomized trial that included 21 of the 42 villages were used for the incidence study. A total of 295 pig-keeping households were provided with sentinel pigs (one each and reassessed for cysticercosis incidence once or twice for 2-9 (median 4 months using lingual examination and antigen ELISA. Prevalence of porcine cysticercosis was computed in Epi Info 3.5. The prevalence and incidence of porcine cysticercosis were mapped at household level using ArcView 3.2. K functions were computed in R software to assess general clustering of porcine cysticercosis. Spatial scan statistics were computed in SatScan to identify local clusters of the infection. The overall prevalence of porcine cysticercosis was 7.3% (95% CI: 5.6, 9.4; n = 784. The K functions revealed a significant overall clustering of porcine cysticercosis incidence for all distances between 600 m and 5 km from a randomly chosen case household based on Ag-ELISA. Lingual examination revealed clustering from 650 m to 6 km and between 7.5 and 10 km

  18. Porcine SLITRK1

    DEFF Research Database (Denmark)

    Larsen, Knud Erik; Momeni, Jamal; Farajzadeh, Leila

    2014-01-01

    The membrane protein SLITRK1 functions as a developmentally regulated stimulator of neurite outgrowth and variants in this gene have been implicated in Tourette syndrome. In the current study we have cloned and characterized the porcine SLITRK1 gene. The genomic organization of SLITRK1 lacks...

  19. Modification of dendritic development.

    Science.gov (United States)

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  20. Dendritic cells in Barrett's esophagus and esophageal adenocarcinoma.

    Science.gov (United States)

    Bobryshev, Yuri V; Tran, Dinh; Killingsworth, Murray C; Buckland, Michael; Lord, Reginald V N

    2009-01-01

    Like other premalignant conditions that develop in the presence of chronic inflammation, the development and progression of Barrett's esophagus is associated with the development of an immune response, but how this immune response is regulated is poorly understood. A comprehensive literature search failed to find any report of the presence of dendritic cells in Barrett's intestinal metaplasia and esophageal adenocarcinoma and this prompted our study. We used immunohistochemical staining and electron microscopy to examine whether dendritic cells are present in Barrett's esophagus and esophageal adenocarcinoma. Immunohistochemical staining with CD83, a specific marker for dendritic cells, was performed on paraffin-embedded sections of Barrett's intestinal metaplasia (IM, n = 12), dysplasia (n = 11) and adenocarcinoma (n = 14). CD83+ cells were identified in the lamina propria surrounding intestinal type glands in Barrett's IM, dysplasia, and cancer tissues. Computerized quantitative analysis showed that the numbers of dendritic cells were significantly higher in cancer tissues. Double immunostaining with CD83, CD20, and CD3, and electron microscopy demonstrated that dendritic cells are present in Barrett's esophagus and form clusters with T cells and B cells directly within the lamina propria. These findings demonstrate that dendritic cells are present in Barrett's tissues, with a significant increase in density in adenocarcinoma compared to benign Barrett's esophagus. Dendritic cells may have a role in the pathogenesis and immunotherapy treatment of Barrett's esophagus and adenocarcinoma.

  1. Functional verification of a porcine myostatin propeptide mutant.

    Science.gov (United States)

    Ma, Dezun; Jiang, Shengwang; Gao, Pengfei; Qian, Lili; Wang, Qingqing; Cai, Chunbo; Xiao, Gaojun; Yang, Jinzeng; Cui, Wentao

    2015-10-01

    Myostatin is a member of TGF-β superfamily that acts as a key negative regulator in development and growth of embryonic and postnatal muscles. In this study, the inhibitory activities of recombinant porcine myostatin propeptide and its mutated form (at the cleavage site of metalloproteinases of BMP-1/TLD family) against murine myostatin was evaluated in vivo by intraperitoneal injection into mice. Results showed that both wild type and mutated form of porcine propeptide significantly inhibited myostatin activity in vivo. The average body weight of mice receiving wild type propeptide or its mutated form increased by 12.5 % and 24.14%, respectively, compared to mice injected with PBS, implying that the in vivo efficacy of porcine propeptide mutant is greater than its wild type propeptide. Transgenic mice expressing porcine myostatin propeptide mutant were generated to further verify the results obtained from mice injected with recombinant porcine propeptide mutant. Compared with wild type (non-transgenic) mice, relative weight of gastrocnemius, rectusfemoris, and tibialis anterior increased by 22.14 %, 34.13 %, 25.37%, respectively, in transgenic male mice, and by 19.90 %, 42.47 %, 45.61%, respectively, in transgenic female mice. Our data also demonstrated that the mechanism by which muscle growth enhancement is achieved by these propeptides is due to an increase in fiber sizes, not by an increase in number of fiber cells.

  2. The role of dendritic non-linearities in single neuron computation

    Directory of Open Access Journals (Sweden)

    Boris Gutkin

    2014-05-01

    Full Text Available Experiment has demonstrated that summation of excitatory post-synaptic protientials (EPSPs in dendrites is non-linear. The sum of multiple EPSPs can be larger than their arithmetic sum, a superlinear summation due to the opening of voltage-gated channels and similar to somatic spiking. The so-called dendritic spike. The sum of multiple of EPSPs can also be smaller than their arithmetic sum, because the synaptic current necessarily saturates at some point. While these observations are well-explained by biophysical models the impact of dendritic spikes on computation remains a matter of debate. One reason is that dendritic spikes may fail to make the neuron spike; similarly, dendritic saturations are sometime presented as a glitch which should be corrected by dendritic spikes. We will provide solid arguments against this claim and show that dendritic saturations as well as dendritic spikes enhance single neuron computation, even when they cannot directly make the neuron fire. To explore the computational impact of dendritic spikes and saturations, we are using a binary neuron model in conjunction with Boolean algebra. We demonstrate using these tools that a single dendritic non-linearity, either spiking or saturating, combined with somatic non-linearity, enables a neuron to compute linearly non-separable Boolean functions (lnBfs. These functions are impossible to compute when summation is linear and the exclusive OR is a famous example of lnBfs. Importantly, the implementation of these functions does not require the dendritic non-linearity to make the neuron spike. Next, We show that reduced and realistic biophysical models of the neuron are capable of computing lnBfs. Within these models and contrary to the binary model, the dendritic and somatic non-linearity are tightly coupled. Yet we show that these neuron models are capable of linearly non-separable computations.

  3. Targeted Porcine Genome Engineering with TALENs

    DEFF Research Database (Denmark)

    Luo, Yonglun; Lin, Lin; Golas, Mariola Monika

    2015-01-01

    confers precisely editing (e.g., mutations or indels) or insertion of a functional transgenic cassette to user-designed loci. Techniques for targeted genome engineering are growing dramatically and include, e.g., zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs......, including construction of sequence-specific TALENs, delivery of TALENs into primary porcine fibroblasts, and detection of TALEN-mediated cleavage, is described. This chapter is useful for scientists who are inexperienced with TALEN engineering of porcine cells as well as of other large animals....

  4. Dendritic thickness: a morphometric parameter to classify mouse retinal ganglion cells

    Directory of Open Access Journals (Sweden)

    L.D. Loopuijt

    2007-10-01

    Full Text Available To study the dendritic morphology of retinal ganglion cells in wild-type mice we intracellularly injected these cells with Lucifer yellow in an in vitro preparation of the retina. Subsequently, quantified values of dendritic thickness, number of branching points and level of stratification of 73 Lucifer yellow-filled ganglion cells were analyzed by statistical methods, resulting in a classification into 9 groups. The variables dendritic thickness, number of branching points per cell and level of stratification were independent of each other. Number of branching points and level of stratification were independent of eccentricity, whereas dendritic thickness was positively dependent (r = 0.37 on it. The frequency distribution of dendritic thickness tended to be multimodal, indicating the presence of at least two cell populations composed of neurons with dendritic diameters either smaller or larger than 1.8 µm ("thin" or "thick" dendrites, respectively. Three cells (4.5% were bistratified, having thick dendrites, and the others (95.5% were monostratified. Using k-means cluster analysis, monostratified cells with either thin or thick dendrites were further subdivided according to level of stratification and number of branching points: cells with thin dendrites were divided into 2 groups with outer stratification (0-40% and 2 groups with inner (50-100% stratification, whereas cells with thick dendrites were divided into one group with outer and 3 groups with inner stratification. We postulate, that one group of cells with thin dendrites resembles cat ß-cells, whereas one group of cells with thick dendrites includes cells that resemble cat a-cells.

  5. Dendritic cells recognize tumor-specific glycosylation of carcinoembryonic antigen on colorectal cancer cells through dendritic cell-specific intercellular adhesion molecule-3-grabbing nonintegrin

    NARCIS (Netherlands)

    van Gisbergen, Klaas P. J. M.; Aarnoudse, Corlien A.; Meijer, Gerrit A.; Geijtenbeek, Teunis B. H.; van Kooyk, Yvette

    2005-01-01

    Dendritic cells play a pivotal role in the induction of antitumor immune responses. Immature dendritic cells are located intratumorally within colorectal cancer and intimately interact with tumor cells, whereas mature dendritic cells are present peripheral to the tumor. The majority of colorectal

  6. Cancer Vaccine Composed of Oligonucleotides Conjugated to Apoptotic Tumor Cells | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    Synthetic oligodeoxynucleotides (ODN) containing unmethylated Cytosine-Guanine (CpG) motifs mimic the immunostimulatory activity of bacterial DNA. CpG ODN directly stimulate B cells and plasmacytoid dendritic cells (pDC), promote the production of T Helper 1 cells (Th1) and pro-inflammatory cytokines, and  trigger the maturation/activation of professional antigen presenting cells. The National Cancer Institute, Laboratory of Experimental Immunology, seeks interested parties to co- develop methods for inducing an immune response to tumors.

  7. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Lv, Xiaonan [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); CAS Key Lab for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience & Technology of China, Beijing 100090 (China); Herrler, Georg [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Enjuanes, Luis [Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Cantoblanco, Madrid (Spain); Zhou, Xingdong [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China); Qu, Bo [Faculty of Life Sciences, Northeast Agricultural University, Harbin 150030 (China); Meng, Fandan [Institute for Virology, University of Veterinary Medicine, Hannover D-30559 (Germany); Cong, Chengcheng [College Animal Husbandry and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110161 (China); Ren, Xiaofeng; Li, Guangxing [College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030 (China)

    2015-04-15

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs.

  8. Porcine aminopeptidase N mediated polarized infection by porcine epidemic diarrhea virus in target cells

    International Nuclear Information System (INIS)

    Cong, Yingying; Li, Xiaoxue; Bai, Yunyun; Lv, Xiaonan; Herrler, Georg; Enjuanes, Luis; Zhou, Xingdong; Qu, Bo; Meng, Fandan; Cong, Chengcheng; Ren, Xiaofeng; Li, Guangxing

    2015-01-01

    Infection of polarized intestinal epithelial cells by porcine epidemic diarrhea virus (PEDV) was characterized. Indirect immunofluorescence assay, real-time PCR, and transmission electron microscopy confirmed PEDV can be successfully propagated in immortalized swine small intestine epithelial cells (IECs). Infection involved porcine aminpeptidase N (pAPN), a reported cellular receptor for PEDV, transient expression of pAPN and siRNA targeted pAPN increased and decreased the infectivity of PEDV in IECs, respectively. Subsequently, polarized entry into and release from both Vero E6 and IECs was analyzed. PEDV entry into polarized cells and pAPN grown on membrane inserts occurs via apical membrane. The progeny virus released into the medium was also quantified which demonstrated that PEDV is preferentially released from the apical membrane. Collectively, our data demonstrate that pAPN, the cellular receptor for PEDV, mediates polarized PEDV infection. These results imply the possibility that PEDV infection may proceed by lateral spread of virus in intestinal epithelial cells. - Highlights: • PEDV infection of polarized intestinal epithelial cells (IECs) was characterized. • Porcine aminpeptidase N (pAPN) facilitated PEDV infection in IECs. • PEDV entry into and release from polarized cell via its apical membrane. • PEDV infection may proceed by lateral spread of virus in IECs

  9. Comparison of commercial and experimental porcine circovirus type 2 (PCV2) vaccines using a triple challenge with PCV2, porcine reproductive and respiratory syndrome virus (PRRSV), and porcine parvovirus (PPV).

    Science.gov (United States)

    Shen, H G; Beach, N M; Huang, Y W; Halbur, P G; Meng, X J; Opriessnig, T

    2010-08-23

    The efficacies of commercial porcine circovirus type 2 (PCV2) vaccines and a live PCV1-2a chimeric vaccine were compared in conventional, PCV2-positive piglets using a PCV2-porcine reproductive and respiratory syndrome virus (PRRSV)-porcine parvovirus (PPV) coinfection challenge model. Seventy-three, 2-week-old pigs were randomized into seven groups including five vaccinated and two control groups. Pigs in the vaccinated groups were vaccinated at 3 weeks (one dose) or at 3 and 6 weeks (two dose) of age. All vaccine regimens tested were effective in reducing naturally occurring PCV2 viremia at 16 weeks of age and after PCV2 challenge, demonstrating the capability of the products to induce a lasting protective immunity despite the presence of PCV2 viremia at the time of vaccination. Copyright 2010 Elsevier Ltd. All rights reserved.

  10. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization

    Science.gov (United States)

    Zou, Wei; Yadav, Smita; DeVault, Laura; Jan, Yuh Nung; Sherwood, David R.

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth. PMID:26394140

  11. Circovirose suína Porcine circovirosis: a review

    Directory of Open Access Journals (Sweden)

    Ticiana do Nascimento França

    2005-06-01

    Full Text Available Por meio de revisão da literatura pertinente foram coligidos e são apresentados os principais dados relativos aos aspectos epidemiológicos, clínicos, anátomo e histopatológicos observados na infecção por Circovírus Porcino tipo 2 (PCV-2 em suínos. São abordados a Síndrome Definhante Multissistêmica dos Suínos Desmamados (SDMDS, o Tremor Congênito Suíno (TCS, a Síndrome da Nefropatia e Dermatite Porcina (SNDP, bem como outras enfermidades associadas ou correlatas, a Síndrome Respiratória e Reprodutiva Porcina (SRRP, a Pneumonia Necrotizante Proliferativa (PNP e as falhas reprodutivas. Uma vez que a SDMSD já foi registrada na Região Sul do Brasil e no Estado do Rio de Janeiro esse estudo objetiva chamar a atenção para o especial significado dessa virose para a suinocultura brasileira, em função dos prejuízos econômicos por ela determinados.The literature of Porcine Circovirosis, including the main data on epidemiology and clinical, macroscopic and microscopic alterations of the infection of swine by Porcine Circovirus type 2 (PCV-2, is reviewed. There are various forms of infection: the [Porcine] Postweaning Multisystemic Wasting Syndrome (PMWS, Porcine Congenital Tremor, Porcine Dermatitis and Nephropathy Syndrome, and other associated or correlated diseases as the Porcine Reproductive and Respiratory Syndrome, Proliferative Necrotizing Pneumonia, and reproductive disorders. As PMWS already has been reported from southern Brazil and from the state of Rio de Janeiro, the objective of this review is to draw attention to the implications of this virosis for swine production in Brazil and its economical importance.

  12. The unfolded protein response is required for dendrite morphogenesis

    Science.gov (United States)

    Wei, Xing; Howell, Audrey S; Dong, Xintong; Taylor, Caitlin A; Cooper, Roshni C; Zhang, Jianqi; Zou, Wei; Sherwood, David R; Shen, Kang

    2015-01-01

    Precise patterning of dendritic fields is essential for the formation and function of neuronal circuits. During development, dendrites acquire their morphology by exuberant branching. How neurons cope with the increased load of protein production required for this rapid growth is poorly understood. Here we show that the physiological unfolded protein response (UPR) is induced in the highly branched Caenorhabditis elegans sensory neuron PVD during dendrite morphogenesis. Perturbation of the IRE1 arm of the UPR pathway causes loss of dendritic branches, a phenotype that can be rescued by overexpression of the ER chaperone HSP-4 (a homolog of mammalian BiP/ grp78). Surprisingly, a single transmembrane leucine-rich repeat protein, DMA-1, plays a major role in the induction of the UPR and the dendritic phenotype in the UPR mutants. These findings reveal a significant role for the physiological UPR in the maintenance of ER homeostasis during morphogenesis of large dendritic arbors. DOI: http://dx.doi.org/10.7554/eLife.06963.001 PMID:26052671

  13. Adolescent cocaine exposure simplifies orbitofrontal cortical dendritic arbors

    Directory of Open Access Journals (Sweden)

    Lauren M DePoy

    2014-10-01

    Full Text Available Cocaine and amphetamine remodel dendritic spines within discrete cortico-limbic brain structures including the orbitofrontal cortex (oPFC. Whether dendrite structure is similarly affected, and whether pre-existing cellular characteristics influence behavioral vulnerabilities to drugs of abuse, remain unclear. Animal models provide an ideal venue to address these issues because neurobehavioral phenotypes can be defined both before, and following, drug exposure. We exposed mice to cocaine from postnatal days 31-35, corresponding to early adolescence, using a dosing protocol that causes impairments in an instrumental reversal task in adulthood. We then imaged and reconstructed excitatory neurons in deep-layer oPFC. Prior cocaine exposure shortened and simplified arbors, particularly in the basal region. Next, we imaged and reconstructed orbital neurons in a developmental-genetic model of cocaine vulnerability – the p190rhogap+/- mouse. p190RhoGAP is an actin cytoskeleton regulatory protein that stabilizes dendrites and dendritic spines, and p190rhogap+/- mice develop rapid and robust locomotor activation in response to cocaine. Despite this, oPFC dendritic arbors were intact in drug-naïve p190rhogap+/- mice. Together, these findings provide evidence that adolescent cocaine exposure has long-term effects on dendrite structure in the oPFC, and they suggest that cocaine-induced modifications in dendrite structure may contribute to the behavioral effects of cocaine more so than pre-existing structural abnormalities in this cell population.

  14. Cellular Automaton Modeling of Dendritic Growth Using a Multi-grid Method

    International Nuclear Information System (INIS)

    Natsume, Y; Ohsasa, K

    2015-01-01

    A two-dimensional cellular automaton model with a multi-grid method was developed to simulate dendritic growth. In the present model, we used a triple-grid system for temperature, solute concentration and solid fraction fields as a new approach of the multi-grid method. In order to evaluate the validity of the present model, we carried out simulations of single dendritic growth, secondary dendrite arm growth, multi-columnar dendritic growth and multi-equiaxed dendritic growth. From the results of the grid dependency from the simulation of single dendritic growth, we confirmed that the larger grid can be used in the simulation and that the computational time can be reduced dramatically. In the simulation of secondary dendrite arm growth, the results from the present model were in good agreement with the experimental data and the simulated results from a phase-field model. Thus, the present model can quantitatively simulate dendritic growth. From the simulated results of multi-columnar and multi-equiaxed dendrites, we confirmed that the present model can perform simulations under practical solidification conditions. (paper)

  15. Active action potential propagation but not initiation in thalamic interneuron dendrites

    Science.gov (United States)

    Casale, Amanda E.; McCormick, David A.

    2012-01-01

    Inhibitory interneurons of the dorsal lateral geniculate nucleus of the thalamus modulate the activity of thalamocortical cells in response to excitatory input through the release of inhibitory neurotransmitter from both axons and dendrites. The exact mechanisms by which release can occur from dendrites are, however, not well understood. Recent experiments using calcium imaging have suggested that Na/K based action potentials can evoke calcium transients in dendrites via local active conductances, making the back-propagating action potential a candidate for dendritic neurotransmitter release. In this study, we employed high temporal and spatial resolution voltage-sensitive dye imaging to assess the characteristics of dendritic voltage deflections in response to Na/K action potentials in interneurons of the mouse dorsal lateral geniculate nucleus. We found that trains or single action potentials elicited by somatic current injection or local synaptic stimulation led to action potentials that rapidly and actively back-propagated throughout the entire dendritic arbor and into the fine filiform dendritic appendages known to release GABAergic vesicles. Action potentials always appeared first in the soma or proximal dendrite in response to somatic current injection or local synaptic stimulation, and the rapid back-propagation into the dendritic arbor depended upon voltage-gated sodium and TEA-sensitive potassium channels. Our results indicate that thalamic interneuron dendrites integrate synaptic inputs that initiate action potentials, most likely in the axon initial segment, that then back-propagate with high-fidelity into the dendrites, resulting in a nearly synchronous release of GABA from both axonal and dendritic compartments. PMID:22171033

  16. Macrophages and dendritic cells emerge in the liver during intestinal inflammation and predispose the liver to inflammation.

    Directory of Open Access Journals (Sweden)

    Yohei Mikami

    Full Text Available The liver is a physiological site of immune tolerance, the breakdown of which induces immunity. Liver antigen-presenting cells may be involved in both immune tolerance and activation. Although inflammatory diseases of the liver are frequently associated with inflammatory bowel diseases, the underlying immunological mechanisms remain to be elucidated. Here we report two murine models of inflammatory bowel disease: RAG-2(-/- mice adoptively transferred with CD4(+CD45RB(high T cells; and IL-10(-/- mice, accompanied by the infiltration of mononuclear cells in the liver. Notably, CD11b(-CD11c(lowPDCA-1(+ plasmacytoid dendritic cells (DCs abundantly residing in the liver of normal wild-type mice disappeared in colitic CD4(+CD45RB(high T cell-transferred RAG-2(-/- mice and IL-10(-/- mice in parallel with the emergence of macrophages (Mφs and conventional DCs (cDCs. Furthermore, liver Mφ/cDCs emerging during intestinal inflammation not only promote the proliferation of naïve CD4(+ T cells, but also instruct them to differentiate into IFN-γ-producing Th1 cells in vitro. The emergence of pathological Mφ/cDCs in the liver also occurred in a model of acute dextran sulfate sodium (DSS-induced colitis under specific pathogen-free conditions, but was canceled in germ-free conditions. Last, the Mφ/cDCs that emerged in acute DSS colitis significantly exacerbated Fas-mediated hepatitis. Collectively, intestinal inflammation skews the composition of antigen-presenting cells in the liver through signaling from commensal bacteria and predisposes the liver to inflammation.

  17. Con-nectin axons and dendrites.

    Science.gov (United States)

    Beaudoin, Gerard M J

    2006-07-03

    Unlike adherens junctions, synapses are asymmetric connections, usually between axons and dendrites, that rely on various cell adhesion molecules for structural stability and function. Two cell types of adhesion molecules found at adherens junctions, cadherins and nectins, are thought to mediate homophilic interaction between neighboring cells. In this issue, Togashi et al. (see p. 141) demonstrate that the differential localization of two heterophilic interacting nectins mediates the selective attraction of axons and dendrites in cooperation with cadherins.

  18. Dendrites Enable a Robust Mechanism for Neuronal Stimulus Selectivity.

    Science.gov (United States)

    Cazé, Romain D; Jarvis, Sarah; Foust, Amanda J; Schultz, Simon R

    2017-09-01

    Hearing, vision, touch: underlying all of these senses is stimulus selectivity, a robust information processing operation in which cortical neurons respond more to some stimuli than to others. Previous models assume that these neurons receive the highest weighted input from an ensemble encoding the preferred stimulus, but dendrites enable other possibilities. Nonlinear dendritic processing can produce stimulus selectivity based on the spatial distribution of synapses, even if the total preferred stimulus weight does not exceed that of nonpreferred stimuli. Using a multi-subunit nonlinear model, we demonstrate that stimulus selectivity can arise from the spatial distribution of synapses. We propose this as a general mechanism for information processing by neurons possessing dendritic trees. Moreover, we show that this implementation of stimulus selectivity increases the neuron's robustness to synaptic and dendritic failure. Importantly, our model can maintain stimulus selectivity for a larger range of loss of synapses or dendrites than an equivalent linear model. We then use a layer 2/3 biophysical neuron model to show that our implementation is consistent with two recent experimental observations: (1) one can observe a mixture of selectivities in dendrites that can differ from the somatic selectivity, and (2) hyperpolarization can broaden somatic tuning without affecting dendritic tuning. Our model predicts that an initially nonselective neuron can become selective when depolarized. In addition to motivating new experiments, the model's increased robustness to synapses and dendrites loss provides a starting point for fault-resistant neuromorphic chip development.

  19. The kinetics of interaction of porcine - alpha-, and porcine - beta -trypsin with intact and modified soybean trypsin inhibitor (kunitz)

    International Nuclear Information System (INIS)

    Hamid, M.A.

    1994-01-01

    The association of porcine trypsin with soybean trypsin inhibitor (Kunitz) resulted in characteristic changes in absorption spectrum, indicating an alteration of the micro environments of the enzyme chromophores as a consequence of the interaction. The rates of formation of the stable trypsin - inhibitor complexes from porcine - alpha - trypsin and soybean trypsin inhibitor and from porcine - beta - trypsin and either intact or modified soybean trypsin inhibitor were measured by mixing the equimolar concentration of the reactants in a Stopped - Flow apparatus at pH (4.5 to 10.0). The reaction of trypsin with soybean trypsin inhibitor was of first order with respect to the concentration of the reactants used. The rates of dissociation of the stable complexes, alpha - trypsin - soybean trypsin inhibitor, beta -trypsin - soybean trypsin inhibitor and beta -trypsin modified soybean trypsin inhibitor were also measured at pH (1.92 to 3.58). The values of first order rate constant, k/sub D/ obtained for the dissociation of all the three complexes were identical with one another. The kinetics results obtained for the porcine trypsin were compared with those of bovine trypsin system and it was suggested that the reaction mechanisms in both these systems were identical. (author)

  20. Rapid Exercise-Induced Mobilization of Dendritic Cells Is Potentially Mediated by a Flt3L- and MMP-9-Dependent Process in Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Nathalie Deckx

    2015-01-01

    Full Text Available In healthy individuals, one exercise bout induces a substantial increase in the number of circulating leukocytes, while their function is transiently suppressed. The effect of one exercise bout in multiple sclerosis (MS is less studied. Since recent evidence suggests a role of dendritic cells (DC in the pathogenesis of MS, we investigated the effect of one combined endurance/resistance exercise bout on the number and function of DC in MS patients and healthy controls. Our results show a rapid increase in the number of DC in response to physical exercise in both MS patients and controls. Further investigation revealed that in particular DC expressing the migratory molecules CCR5 and CD62L were increased upon acute physical activity. This may be mediated by Flt3L- and MMP-9-dependent mobilization of DC, as demonstrated by increased circulating levels of Flt3L and MMP-9 following one exercise bout. Circulating DC display reduced TLR responsiveness after acute exercise, as evidenced by a less pronounced upregulation of activation markers, HLA-DR and CD86, on plasmacytoid DC and conventional DC, respectively. Our results indicate mobilization of DC, which may be less prone to drive inflammatory processes, following exercise. This may present a negative feedback mechanism for exercise-induced tissue damage and inflammation.

  1. Neutrophils, dendritic cells and Toxoplasma.

    Science.gov (United States)

    Denkers, Eric Y; Butcher, Barbara A; Del Rio, Laura; Bennouna, Soumaya

    2004-03-09

    Toxoplasma gondii rapidly elicits strong Type 1 cytokine-based immunity. The necessity for this response is well illustrated by the example of IFN-gamma and IL-12 gene knockout mice that rapidly succumb to the effects of acute infection. The parasite itself is skilled at sparking complex interactions in the innate immune system that lead to protective immunity. Neutrophils are one of the first cell types to arrive at the site of infection, and the cells release several proinflammatory cytokines and chemokines in response to Toxoplasma. Dendritic cells are an important source of IL-12 during infection with T. gondii and other microbial pathogens, and they are also specialized for high-level antigen presentation to T lymphocytes. Tachyzoites express at least two types of molecules that trigger innate immune cell cytokine production. One of these involves Toll-like receptor/MyD88 pathways common to many microbial pathogens. The second pathway is less conventional and involves molecular mimicry between a parasite cyclophilin and host CC chemokine receptor 5-binding ligands. Neutrophils, dendritic cells and Toxoplasma work together to elicit the immune response required for host survival. Cytokine and chemokine cross-talk between parasite-triggered neutrophils and dendritic cells results in recruitment, maturation and activation of the latter. Neutrophil-empowered dendritic cells possess properties expected of highly potent antigen presenting cells that drive T helper 1 generation.

  2. Bacteriospermia in extended porcine semen.

    Science.gov (United States)

    Althouse, Gary C; Lu, Kristina G

    2005-01-15

    Bacteriospermia is a frequent finding in freshly extended porcine semen and can result in detrimental effects on semen quality and longevity if left uncontrolled. The primary source of bacterial contamination is the boar. Other sources that have been identified include environment, personnel, and the water used for extender preparation. A 1-year retrospective study was performed on submissions of extended porcine semen for routine quality control bacteriological screening at the University of Pennsylvania. Out of 250 sample submissions, 78 (31.2%) tested positive for bacterial contamination. The most popular contaminants included Enterococcus spp. (20.5%), Stenotrophomonas maltophilia (15.4%), Alcaligenes xylosoxidans (10.3%), Serratia marcescens (10.3%), Acinetobacter lwoffi (7.7%), Escherichia coli (6.4%), Pseudomonas spp. (6.4%), and others (23.0%). Prudent individual hygiene, good overall sanitation, and regular monitoring can contribute greatly in controlling bacterial load. Strategies that incorporate temperature-dependent bacterial growth and hyperthermic augmentation of antimicrobial activity are valuable for effective control of susceptible bacterial loads. Aminoglycosides remain the most popular antimicrobial class used in porcine semen extenders, with beta-lactam and lincosamide use increasing. With the advent of more novel antimicrobial selection and semen extender compositions in swine, prudent application and understanding of in vitro pharmacodynamics are becoming paramount to industry success in the use of this breeding modality.

  3. Formation mechanism of PbTe dendritic nanostructures grown by electrodeposition

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Sangwoo; Kim, Hyunghoon; Lee, Ho Seong, E-mail: hs.lee@knu.ac.kr

    2017-02-01

    The formation mechanism of PbTe dendritic nanostructures grown at room temperature by electrodeposition in nitric acid electrolytes containing Pb and Te was investigated. Scanning electron microscopy and transmission electron microscopy analyses indicated that the PbTe dendritic nanostructures were composed of triangular-shaped units surrounded by {111} and {110} planes. Because of the interfacial energy anisotropy of the {111} and {110} planes and the difference in the current density gradient, the growth rate in the vertical direction of the (111) basal plane was slower than that in the direction of the tip of the triangular shape, leading to growth in the tip direction. In contrast to the general growth direction of fcc dendrites, namely <100>, the tip direction of the {111} basal plane for our samples was <112>, and the PbTe dendritic nanostructures grew in the tip direction. The angles formed by the main trunk and first branches were regular and approximately 60°, and those between the first and second branches were also approximately 60°. Finally, the nanostructures grew in single-crystalline dendritic form. - Highlights: • PbTe dendrite nanostructures were grown by electrodeposition. • PbTe dendritic nanostructures were composed of triangular-shaped units. • The formation mechanism of PbTe dendrite nanostructures was characterized.

  4. Porcine UCHL1: genomic organization, chromosome localization and expression analysis

    DEFF Research Database (Denmark)

    Larsen, Knud; Madsen, Lone Bruhn; Bendixen, Christian

    2012-01-01

    to and protection from Parkinson’s disease. Here we report cloning, characterization, expression analysis and mapping of porcine UCHL1. The UCHL1 cDNA was amplified by reverse transcriptase polymerase chain reaction (RT-PCR) using oligonucleotide primers derived from in silico sequences. The porcine cDNA codes...... in developing porcine embryos. UCHL1 transcript was detected as early as 40 days of gestation. A significant decrease in UCHL1 transcript was detected in basal ganglia from day 60 to day 115 of gestation...

  5. Recrystallization phenomena of solution grown paraffin dendrites

    NARCIS (Netherlands)

    Hollander, F.F.A.; Hollander, F.; Stasse, O.; van Suchtelen, J.; van Enckevort, W.J.P.

    2001-01-01

    Paraffin crystals were grown from decane solutions using a micro-Bridgman set up for in-situ observation of the morphology at the growth front. It is shown that for large imposed velocities, dendrites are obtained. After dendritic growth, aging or recrystallization processes set in rather quickly,

  6. A Tryptophan-Rich Motif in the Human Parainfluenza Virus Type 2 V Protein Is Critical for the Blockade of Toll-Like Receptor 7 (TLR7)- and TLR9-Dependent Signaling▿

    OpenAIRE

    Kitagawa, Yoshinori; Yamaguchi, Mayu; Zhou, Min; Komatsu, Takayuki; Nishio, Machiko; Sugiyama, Tsuyoshi; Takeuchi, Kenji; Itoh, Masae; Gotoh, Bin

    2011-01-01

    Plasmacytoid dendritic cells (pDCs) do not produce alpha interferon (IFN-α) unless viruses cause a systemic infection or overcome the first-line defense provided by conventional DCs and macrophages. We show here that even paramyxoviruses, whose infections are restricted to the respiratory tract, have a V protein able to prevent Toll-like receptor 7 (TLR7)- and TLR9-dependent IFN-α induction specific to pDCs. Mutational analysis of human parainfluenza virus type 2 demonstrates that the second ...

  7. New stepwise cooling system for short-term porcine islet preservation.

    Science.gov (United States)

    Ikemoto, Tetsuya; Noguchi, Hirofumi; Fujita, Yasutaka; Takita, Morihito; Shimoda, Masayuki; Sugimoto, Koji; Jackson, Andrew; Naziruddin, Bashoo; Shimada, Mitsuo; Levy, Marlon F; Matsumoto, Shinichi

    2010-10-01

    Porcine islets are the most suitable for xeno-islet transplantation. However, it is necessary to establish an effective preservation method against its fragility. Recently, we developed a new cooling and preservation (Keep and Fresh [KFC]; FUJIYA Co, Tokushima, Japan) system, which can maintain viability of hepatocyte. In this study, we examined the KFC for porcine islet preservation. Isolated porcine islets were preserved in CMRL 1066 culture media with bovine serum at 37°C, 22°C, and 4°C and KFC for 24, 48, and 72 hours. Islet recovery rate, purity, and viability were evaluated. After 24-hour preservation, the recovery rate was the highest in the KFC, but no significant difference was found. After 48-hour preservation, the recovery rate by the KFC was 73.9% ± 17.3%, which was significantly higher than the other groups (48.7% ± 28.6% at 37°C, P KFC group, purities and viabilities were the highest among the groups after 24-, 48-, and 72-hour preservation. The KFC system significantly improved porcine islet preservation; therefore, the KFC might be useful for porcine islet preservation.

  8. Extraction Socket Preservation Using Porcine-Derived Collagen Membrane Alone or Associated with Porcine-Derived Bone. Clinical Results of Randomized Controlled Study

    Directory of Open Access Journals (Sweden)

    Renzo Guarnieri

    2017-03-01

    Full Text Available Objectives: The aim of present randomized controlled clinical trial was to clinically evaluate hard tissue changes after extraction socket preservation procedures compared to natural spontaneous healing. Material and Methods: Thirty patients were enrolled in the present study and underwent single-tooth extraction in the premolar/molar areas. Ten sites were grafted with porcine-derived bone covered by collagen membrane, 10 covered by porcine-derived collagen membrane alone, and 10 underwent natural spontaneous healing. Vertical and horizontal bone changes after 3-month were evaluated at implant placement. Results: The vertical and horizontal bone changes at the extraction sockets treated with collagen membrane alone (vertical: -0.55 [SD 0.11] mm, and horizontal: -1.21 [SD 0.69] mm and collagen membrane plus porcine-derived bone (vertical: -0.37 [SD 0.7] mm, and horizontal: -0.91 [SD 0.53] mm were found significantly lower (P < 0.001, when compared to non-grafted sockets (vertical: -2.09 [SD 0.19] mm, and horizontal: -3.96 [SD 0.87] mm. In type 1 extraction sockets, in premolar sites, and in presence of vestibular bone thicknesses ≥ 1.5 mm, the use of collagen membrane alone revealed similar outcomes to those with additional graft material. Conclusions: At the re-entry surgery, extraction sockets grafted with porcine-derived bone and covered by collagen membrane, and extraction sockets covered by porcine-derived collagen membrane alone, showed significantly lower vertical and horizontal bone changes, compared to extraction sockets sites underwent natural spontaneous healing. However, a complete prevention of remodelling is not achievable, irrespective of the technique used.

  9. Dendritic biomimicry: microenvironmental hydrogen-bonding effects on tryptophan fluorescence.

    Science.gov (United States)

    Koenig, S; Müller, L; Smith, D K

    2001-03-02

    Two series of dendritically modified tryptophan derivatives have been synthesised and their emission spectra measured in a range of different solvents. This paper presents the syntheses of these novel dendritic structures and discusses their emission spectra in terms of both solvent and dendritic effects. In the first series of dendrimers, the NH group of the indole ring is available for hydrogen bonding, whilst in the second series, the indole NH group has been converted to NMe. Direct comparison of the emission wavelengths of analogous NH and NMe derivatives indicates the importance of the Kamlet-Taft solvent beta3 parameter, which reflects the ability of the solvent to accept a hydrogen bond from the NH group, an effect not possible for the NMe series of dendrimers. For the NH dendrimers, the attachment of a dendritic shell to the tryptophan subunit leads to a red shift in emission wavelength. This dendritic effect only operates in non-hydrogen-bonding solvents. For the NMe dendrimers, however, the attachment of a dendritic shell has no effect on the emission spectra of the indole ring. This proves the importance of hydrogen bonding between the branched shell and the indole NH group in causing the dendritic effect. This is the first time a dendritic effect has been unambiguously assigned to individual hydrogen-bonding interactions and indicates that such intramolecular interactions are important in dendrimers, just as they are in proteins. Furthermore, this paper sheds light on the use of tryptophan residues as a probe of the microenvironment within proteins--in particular, it stresses the importance of hydrogen bonds formed by the indole NH group.

  10. Characteristics of the Dendrite Growth in the Electrochemical Alane Production Process

    Directory of Open Access Journals (Sweden)

    Park Hyun-Kyu

    2016-01-01

    Full Text Available The electrochemical alane production process was proposed for a feasible production of alane. The operation of process was difficult because of short circuit by a dendrite growth in the reactor. Therefore, characteristics of the dendrite growth in the process were investigated. We conducted the electrochemical alane production process using Teflon block for inhibition of the dendrite growth. The obtained dendrite was characterized by XRD, SEM and ICP-AES. It was concluded that the dendrite growth was attributed to a melting and agglomeration of Al fine particles existed in the solution.

  11. Porcine embryonic stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2008-01-01

    The development of porcine embryonic stem cell lines (pESC) has received renewed interest given the advances being made in the production of immunocompatible transgenic pigs. However, difficulties are evident in the production of pESCs in-vitro. This may largely be attributable to differences...

  12. The Cell Surface Markers Expression in Postmenopausal Women and Relation to Obesity and Bone Status.

    Science.gov (United States)

    Horváthová, Mira; Ilavská, Silvia; Štefíková, Kornélia; Szabová, Michaela; Krivošíková, Zora; Jahnová, Eva; Tulinská, Jana; Spustová, Viera; Gajdoš, Martin

    2017-07-11

    The age-related changes and hormonal deprivation in postmenopausal women are associated with the immune response alteration. The excessive fat accumulation, local and systemic inflammation may lead to dysregulation in immune function and relevant health problems, including obesity and osteoporosis. We analyzed the expression of cell surface markers in the venous blood specimens, stained with fluorophores-conjugated monoclonal antibodies and analysed by multicolour flow cytometry. The significant changes of cytotoxic, naive, and memory T-lymphocytes, plasmacytoid dendritic cells (DCs) were in postmenopausal women versus fertile women. Body mass index (BMI) affected markedly the cell surface expression of CD265/RANK. Osteoporosis is linked to reduced percentage of plasmacytoid DCs, and elevated natural Treg cells ( p < 0.05). The confounding factors such as women age, BMI, bone mineral density (BMD), waist size and tissue fat affect the expression of RANK on myeloid DCs and CD40L on T-lymphocytes that might be the immunophenotypic modulators after menopause.

  13. The Cell Surface Markers Expression in Postmenopausal Women and Relation to Obesity and Bone Status

    Directory of Open Access Journals (Sweden)

    Mira Horváthová

    2017-07-01

    Full Text Available The age-related changes and hormonal deprivation in postmenopausal women are associated with the immune response alteration. The excessive fat accumulation, local and systemic inflammation may lead to dysregulation in immune function and relevant health problems, including obesity and osteoporosis. We analyzed the expression of cell surface markers in the venous blood specimens, stained with fluorophores-conjugated monoclonal antibodies and analysed by multicolour flow cytometry. The significant changes of cytotoxic, naive, and memory T-lymphocytes, plasmacytoid dendritic cells (DCs were in postmenopausal women versus fertile women. Body mass index (BMI affected markedly the cell surface expression of CD265/RANK. Osteoporosis is linked to reduced percentage of plasmacytoid DCs, and elevated natural Treg cells (p < 0.05. The confounding factors such as women age, BMI, bone mineral density (BMD, waist size and tissue fat affect the expression of RANK on myeloid DCs and CD40L on T-lymphocytes that might be the immunophenotypic modulators after menopause.

  14. Tumour tissue microenvironment can inhibit dendritic cell maturation in colorectal cancer.

    LENUS (Irish Health Repository)

    Michielsen, Adriana J

    2011-01-01

    Inflammatory mediators in the tumour microenvironment promote tumour growth, vascular development and enable evasion of anti-tumour immune responses, by disabling infiltrating dendritic cells. However, the constituents of the tumour microenvironment that directly influence dendritic cell maturation and function are not well characterised. Our aim was to identify tumour-associated inflammatory mediators which influence the function of dendritic cells. Tumour conditioned media obtained from cultured colorectal tumour explant tissue contained high levels of the chemokines CCL2, CXCL1, CXCL5 in addition to VEGF. Pre-treatment of monocyte derived dendritic cells with this tumour conditioned media inhibited the up-regulation of CD86, CD83, CD54 and HLA-DR in response to LPS, enhancing IL-10 while reducing IL-12p70 secretion. We examined if specific individual components of the tumour conditioned media (CCL2, CXCL1, CXCL5) could modulate dendritic cell maturation or cytokine secretion in response to LPS. VEGF was also assessed as it has a suppressive effect on dendritic cell maturation. Pre-treatment of immature dendritic cells with VEGF inhibited LPS induced upregulation of CD80 and CD54, while CXCL1 inhibited HLA-DR. Interestingly, treatment of dendritic cells with CCL2, CXCL1, CXCL5 or VEGF significantly suppressed their ability to secrete IL-12p70 in response to LPS. In addition, dendritic cells treated with a combination of CXCL1 and VEGF secreted less IL-12p70 in response to LPS compared to pre-treatment with either cytokine alone. In conclusion, tumour conditioned media strongly influences dendritic cell maturation and function.

  15. Electrochemical migration of tin in electronics and microstructure of the dendrites

    Energy Technology Data Exchange (ETDEWEB)

    Minzari, Daniel, E-mail: dmin@mek.dtu.d [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark); Grumsen, Flemming Bjerg; Jellesen, Morten S.; Moller, Per; Ambat, Rajan [Section for Materials and Surface Technology, Department for Mechanical Engineering, Technical University of Denmark (Denmark)

    2011-05-15

    Graphical abstract: The electrochemical migration of tin in electronics forms dendritic structures, consisting of a metallic tin core, which is surrounded by oxide layers having various thickness. Display Omitted Research highlights: Electrochemical migration occurs if two conductors are connected by condensed moisture. Metallic ions are dissolved and grow in a dendritic structure that short circuit the electrodes. The dendrite consists of a metallic tin core with oxide layers of various thickness surrounding. Detailed microstructure of dendrites is investigated using electron microscopy. The dendrite microstructure is heterogeneous along the growth direction. - Abstract: The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb ({approx}2 wt.%) was investigated by scanning electron microscopy and transmission electron microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12 V potential bias in 10 ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have heterogeneous microstructure along the growth direction, which is attributed to unstable growth conditions inside the micro-volume of electrolyte. Selected area electron diffraction showed that the dendrites are metallic tin having sections of single crystal orientation and lead containing intermetallic particles embedded in the structure. At certain areas, the dendrite structure was found to be surrounded by an oxide crust, which is believed to be due to unstable growth conditions during the dendrite formation. The oxide layer was found to be of nanocrystalline structure, which is expected to be formed by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.

  16. A dendrite-suppressing composite ion conductor from aramid nanofibres.

    Science.gov (United States)

    Tung, Siu-On; Ho, Szushen; Yang, Ming; Zhang, Ruilin; Kotov, Nicholas A

    2015-01-27

    Dendrite growth threatens the safety of batteries by piercing the ion-transporting separators between the cathode and anode. Finding a dendrite-suppressing material that combines high modulus and high ionic conductance has long been considered a major technological and materials science challenge. Here we demonstrate that these properties can be attained in a composite made from Kevlar-derived aramid nanofibres assembled in a layer-by-layer manner with poly(ethylene oxide). Importantly, the porosity of the membranes is smaller than the growth area of the dendrites so that aramid nanofibres eliminate 'weak links' where the dendrites pierce the membranes. The aramid nanofibre network suppresses poly(ethylene oxide) crystallization detrimental for ion transport, giving a composite that exhibits high modulus, ionic conductivity, flexibility, ion flux rates and thermal stability. Successful suppression of hard copper dendrites by the composite ion conductor at extreme discharge conditions is demonstrated, thereby providing a new approach for the materials engineering of solid ion conductors.

  17. Thermosolutal convection and macrosegregation in dendritic alloys

    Science.gov (United States)

    Poirier, David R.; Heinrich, J. C.

    1993-01-01

    A mathematical model of solidification, that simulates the formation of channel segregates or freckles, is presented. The model simulates the entire solidification process, starting with the initial melt to the solidified cast, and the resulting segregation is predicted. Emphasis is given to the initial transient, when the dendritic zone begins to develop and the conditions for the possible nucleation of channels are established. The mechanisms that lead to the creation and eventual growth or termination of channels are explained in detail and illustrated by several numerical examples. A finite element model is used for the simulations. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. The major task was to develop the solidification model. In addition, other tasks that were performed in conjunction with the modeling of dendritic solidification are briefly described.

  18. Dendritic growth forms of borax crystals

    International Nuclear Information System (INIS)

    Takoo, R.K.; Patel, B.R.; Joshi, M.S.

    1983-01-01

    A variety of dendritic forms of borax grown from solutions by the film formation method is given. The changing growth morphology is followed as a function of concentration and temperature. The initial, intermediate and final growth morphologies are described and discussed. Influence of evaporation rate and supersaturation on the mechanism of growth is assessed. It is suggested that under all crystallization conditions, borax crystals have dendritic form in the initial stages of growth. (author)

  19. Thermosolutal convection during dendritic solidification

    Science.gov (United States)

    Heinrich, J. C.; Nandapurkar, P.; Poirier, D. R.; Felicelli, S.

    1989-01-01

    This paper presents a mathematical model for directional solidification of a binary alloy including a dendritic region underlying an all-liquid region. It is assumed initially that there exists a nonconvecting state with planar isotherms and isoconcentrates solidifying at a constant velocity. The stability of this system has been analyzed and nonlinear calculations are performed that show the effect of convection in the solidification process when the system is unstable. Results of calculations for various cases defined by the initial temperature gradient at the dendrite tips and varying strength of the gravitational field are presented for systems involving lead-tin alloys. The results show that the systems are stable for a gravitational constant of 0.0001 g(0) and that convection can be suppressed by appropriate choice of the container's size for higher values of the gravitational constant. It is also concluded that for the lead-tin systems considered, convection in the mushy zone is not significant below the upper 20 percent of the dendritic zone, if al all.

  20. Isolation and purification of porcine LH for radioimmunoassay and radioreceptor assay

    International Nuclear Information System (INIS)

    Ziecik, A.; Goralska, M.; Krzymowski, T.; Pogorzelski, K.

    1979-01-01

    The procedure of isolation and purification of LH from porcine pituitary glands is described. From 1 kg of pituitary glands 150 mg of LH GPZ-1 preparation of high purity were obtained. Immunization of rabbits with the prepared hormone gave homogeneous antibodies against porcine LH with high affinity and low cross-reactions with FSH. Radioreceptor assay with the use of the prepared porcine LH demonstrated the high capacity of cell membrane receptors of the boar tests for binding this hormone. (author)

  1. Immunological half-life of porcine proinsulin C-peptide

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, H; Horino, M; Matsumura, S [Kawasaki Medical Coll., Kurashiki (Japan). Div. of Endocrinology; Kobayshi, K; Suetsugu, N [Yamaguchi Univ., Ube (Japan). School of Medicine

    1975-11-01

    Immunological half-lifes of injected porcine C-peptide and insulin with RIA were studied and calculated as 9.8 and 8.0 minutes. Higher circulating levels of C-peptide as compared to insulin in normal young swines lead to speculation about a longer half-life of C-peptide. This hypothesis was verified in this study. Immunological half-lifes of porcine proinsulin and insulin in the pig were 20 and 6 minutes, respectively.

  2. Emerging technologies to create inducible and genetically defined porcine cancer models

    Directory of Open Access Journals (Sweden)

    Lawrence B Schook

    2016-02-01

    Full Text Available There is an emerging need for new animal models that address unmet translational cancer research requirements. Transgenic porcine models provide an exceptional opportunity due to their genetic, anatomic and physiological similarities with humans. Due to recent advances in the sequencing of domestic animal genomes and the development of new organism cloning technologies, it is now very feasible to utilize pigs as a malleable species, with similar anatomic and physiological features with humans, in which to develop cancer models. In this review, we discuss genetic modification technologies successfully used to produce porcine biomedical models, in particular the Cre-loxP System as well as major advances and perspectives the CRISPR/Cas9 System. Recent advancements in porcine tumor modeling and genome editing will bring porcine models to the forefront of translational cancer research.

  3. Emerging Technologies to Create Inducible and Genetically Defined Porcine Cancer Models.

    Science.gov (United States)

    Schook, Lawrence B; Rund, Laurie; Begnini, Karine R; Remião, Mariana H; Seixas, Fabiana K; Collares, Tiago

    2016-01-01

    There is an emerging need for new animal models that address unmet translational cancer research requirements. Transgenic porcine models provide an exceptional opportunity due to their genetic, anatomic, and physiological similarities with humans. Due to recent advances in the sequencing of domestic animal genomes and the development of new organism cloning technologies, it is now very feasible to utilize pigs as a malleable species, with similar anatomic and physiological features with humans, in which to develop cancer models. In this review, we discuss genetic modification technologies successfully used to produce porcine biomedical models, in particular the Cre-loxP System as well as major advances and perspectives the CRISPR/Cas9 System. Recent advancements in porcine tumor modeling and genome editing will bring porcine models to the forefront of translational cancer research.

  4. Characterization of serotonergic receptors in rabbit, porcine and human conjunctivae.

    Science.gov (United States)

    Turner, Helen C; Alvarez, Lawrence J; Candia, Oscar A; Bernstein, Audrey M

    2003-10-01

    To characterize the serotonin (5-HT) receptors linked to the modulation of adenylyl cyclase activity in rabbit, porcine and human conjunctivae. Serotonin receptor-subtype expression was examined using reverse transcription-polymerase chain reaction (RT-PCR) and receptor subtype-specific polyclonal antibodies for the immunofluorescent labeling of conjunctival cryosections. In addition, measurements of the effects of serotonergics on the short-circuit current (I(sc)) across rabbit and porcine conjunctivae were contrasted. RT-PCR assays indicated the expression of 5-HT(1B ) and 5-HT(1D) receptors, subtypes negatively coupled to adenylyl cyclase, in the rabbit conjunctiva. This approach also suggested the co-expression of 5-HT(1B), 5-HT(1D), 5-HT(1F), 5-HT(4) and 5-HT(7) mRNA's in the porcine conjunctiva, and 5-HT( 1D), 5-HT(1F) and 5-HT(7) in the human conjunctiva. Since the 5-HT(4) and 5-HT(7) receptors are positively linked to adenylyl cyclase, these results implied that the porcine and human tissues exhibited subtypes both positively and negatively linked to the enzyme. However, immunohistochemical observations, using currently available antibodies solely localized the 5-HT(7) moiety in the porcine and human epithelia, suggested that the 1B/1D forms may be minor elements. Consistent with this prospect, 5-HT was a stimulant of the transepithelial I(sc) across the porcine conjunctiva, an opposite response from earlier findings that demonstrated inhibitory effects by 5-HT on the rabbit I(sc), which are now explained by the localization of the 1B/1D receptors in the rabbit stratified epithelium. The 5-HT receptors expressed by mammalian conjunctivae are not identical. In terms of 5-HT receptor expression, the porcine tissue may be a more appropriate model for human, than is the rabbit, in that 5-HT may serve as a secretagogue in the human epithelium.

  5. CD163 positive subsets of blood dendritic cells

    DEFF Research Database (Denmark)

    Maniecki, Maciej Bogdan; Møller, Holger Jon; Moestrup, Søren Kragh

    2006-01-01

    CD163 and CD91 are scavenging receptors with highly increased expression during the differentiation of monocytes into the anti-inflammatory macrophage phenotype. In addition, CD91 is expressed in monocyte-derived dendritic cells (MoDCs), where the receptor is suggested to be important...... for internalization of CD91-targeted antigens to be presented on the dendritic cell surface for T-cell stimulation. Despite their overlap in functionality, the expression of CD91 and CD163 has never been compared and the expression of CD163 in the monocyte-dendritic cell lineage is not yet characterized. CD163...... expression in dendritic cells (DCs) was investigated using multicolor flow cytometry in peripheral blood from 31 healthy donors and 15 HIV-1 patients in addition to umbilical cord blood from 5 newborn infants. Total RNA was isolated from MACS purified DCs and CD163 mRNA was determined with real-time reverse...

  6. Supramolecular effects in dendritic systems containing photoactive groups

    Directory of Open Access Journals (Sweden)

    GIANLUCA CAMILLO AZZELLINI

    2000-03-01

    Full Text Available In this article are described dendritic structures containing photoactive groups at the surface or in the core. The observed supramolecular effects can be attributed to the nature of the photoactive group and their location in the dendritic architecture. The peripheric azobenzene groups in these dendrimeric compounds can be regarded as single residues that retain the spectroscopic and photochemical properties of free azobenzene moiety. The E and Z forms of higher generation dendrimer, functionalized with azobenzene groups, show different host ability towards eosin dye, suggesting the possibility of using such dendrimer in photocontrolled host-guest systems. The photophysical properties of many dendritic-bipyridine ruthenium complexes have been investigated. Particularly in aerated medium more intense emission and a longer excited-state lifetime are observed as compared to the parent unsubstituted bipyridine ruthenium complexes. These differences can be attributed to a shielding effect towards dioxygen quenching originated by the dendritic branches.

  7. Numerical Simulation on Dendrite Growth During Solidification of Al-4%Cu Alloy

    Directory of Open Access Journals (Sweden)

    ZHANG Min

    2016-06-01

    Full Text Available A new two-dimensional cellular automata and finite difference (CA-FD model of dendritic growth was improved, which a perturbation function was introduced to control the growth of secondary and tertiary dendrite, the concentration of the solute was clearly defined as the liquid solute concentration and the solid-phase solute concentration in dendrite growth processes, and the eight moore calculations method was used to reduce the anisotropy caused by the shape of the grid in the process of redistribution and diffusion of solute. Single and multi equiaxed dendrites along different preferential direction, single and multi directions of columnar dendrites of Al-4% Cu alloy were simulated, as well as the distribution of liquid solute concentration and solid solute concentration. The simulation results show that the introduced perturbation function can promote the dendrite branching, liquid/solid phase solute calculation model is able to simulate the solute distribution of liquid/solid phase accurately in the process of dendritic growth, and the improved model can realize competitive growth of dendrite in any direction.

  8. Dynamics of adaptive and innate immunity in patients treated during primary human immunodeficiency virus infection: results from Maraviroc in HIV Acute Infection (MAIN) randomized clinical trial.

    Science.gov (United States)

    Ripa, M; Pogliaghi, M; Chiappetta, S; Galli, L; Pensieroso, S; Cavarelli, M; Scarlatti, G; De Biasi, S; Cossarizza, A; De Battista, D; Malnati, M; Lazzarin, A; Nozza, S; Tambussi, G

    2015-09-01

    We evaluated the dynamics of innate and adaptive immunity in patients treated with combined antiretroviral therapy (cART) during primary human immunodeficiency virus infection (PHI), enrolled in a prospective randomized trial (MAIN, EUDRACT 2008-007004-29). After 48 weeks of cART, we documented a reduction in activated B cells and CD8(+) T cells. Natural killer cell and dendritic cell frequencies were measured and a decrease in CD16(+) CD56(dim) with a reciprocal rise in CD56(high) natural killer cells and an increase in myeloid and plasmacytoid dendritic cells were recorded. In conclusion, 48 weeks of cART during PHI showed significant benefits for both innate and adaptive immunity. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  9. CO2-switchable fluorescence of a dendritic polymer and its applications

    Science.gov (United States)

    Gao, Chunmei; Lü, Shaoyu; Liu, Mingzhu; Wu, Can; Xiong, Yun

    2015-12-01

    The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the solubility of curcumin, and the drug released faster in the presence of CO2. Such CO2 responsive fluorescent dendritic polymers are potentially applicable in cellular imaging or drug controlled release.The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the

  10. [Characteristics of porcine thoracic arteries fixed with polyepoxy compound].

    Science.gov (United States)

    Yu, Xi-Xun; Chen, Huai-Qing

    2005-09-01

    To investigate the characteristics of porcine thoracic arteries fixed with ethylene glycol diglycidyl ether (EX-810) and to provide the proper scaffold materials for tissue-engineered blood vessel. The porcine thoracic arteries were respectively treated with 40 ml/L EX-810 and 6.25 g/L glutaraldehyde, and then they were examined with naked-eye, light microscope and scanning electron microscope. The fixation index determination, the amino acid analysis and the biomechanics test were also performed. The antigenicity of vascular tissues can be diminished by EX-810 through getting rid of cell in the vascular tissues or reducing the level of free amino groups in the vascular tissues. The structural integrity of vascular tissues can be preserved after treatment with EX-810. It was also found that the EX-810-fixed porcine vascular tissues appeared more similar to the natural vascular tissues in color and mechanical properties, and were more pliable than the glutaraldehyde-fixed tissues. The EX-810-fixed porcine thoracic arteries with low cytotoxicity and low antigenicity showed favorable characteristic similar to those of natural vessel, and it should be a promising material for fabricating scaffold of tissue-engineered blood vessel.

  11. Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin

    Indian Academy of Sciences (India)

    Porcine circovirus type 2 ORF4 protein binds heavy chain ferritin. Qizhuang Lv Kangkang Guo Tao Wang ... Keywords. Cellular protein; FHC; ORF4 protein; porcine circovirus type 2 (PCV2); yeast two-hybrid ... Journal of Biosciences | News ...

  12. Anatomy and bronchoscopy of the porcine lung. A model for translational respiratory medicine.

    LENUS (Irish Health Repository)

    Judge, Eoin P

    2014-09-01

    The porcine model has contributed significantly to biomedical research over many decades. The similar size and anatomy of pig and human organs make this model particularly beneficial for translational research in areas such as medical device development, therapeutics and xenotransplantation. In recent years, a major limitation with the porcine model was overcome with the successful generation of gene-targeted pigs and the publication of the pig genome. As a result, the role of this model is likely to become even more important. For the respiratory medicine field, the similarities between pig and human lungs give the porcine model particular potential for advancing translational medicine. An increasing number of lung conditions are being studied and modeled in the pig. Genetically modified porcine models of cystic fibrosis have been generated that, unlike mouse models, develop lung disease similar to human cystic fibrosis. However, the scientific literature relating specifically to porcine lung anatomy and airway histology is limited and is largely restricted to veterinary literature and textbooks. Furthermore, methods for in vivo lung procedures in the pig are rarely described. The aims of this review are to collate the disparate literature on porcine lung anatomy, histology, and microbiology; to provide a comparison with the human lung; and to describe appropriate bronchoscopy procedures for the pig lungs to aid clinical researchers working in the area of translational respiratory medicine using the porcine model.

  13. Preservation of enucleated porcine eyes for use in a wet laboratory

    NARCIS (Netherlands)

    Nibourg, Lisanne M.; Koopmans, Steven A.

    PURPOSE: To design a method to preserve enucleated porcine eyes for use in a wet laboratory. SETTING: Laboratory of Experimental Ophthalmology, University Medical Center Groningen, the Netherlands. DESIGN: Experimental study. METHODS: Porcine eyes were preserved using 15 methods including salt

  14. Structural and optical properties of solid-state synthesized Au dendritic structures

    International Nuclear Information System (INIS)

    Gentile, A.; Ruffino, F.; Romano, L.; Boninelli, S.; Reitano, R.; Piccitto, G.; Grimaldi, M.G.

    2014-01-01

    Graphical abstract: - Highlights: • Au dendritic structures were produced on surfaces. • The chemical and structural properties of the dendritic structures are presented. • The optical properties of the dendritic structures are presented. • The ability of the dendritic structures to serve as light scattering centers is presented. - Abstract: Au dendrites (Au Ds) are synthesized, on various substrates, by a simple physical methodology involving the deposition of a thin Au film on a Si surface followed by thermal processes at high temperatures (>1273 K) in an inert ambient (N 2 ), using fast heating and cooling rates (1273 K/min). Microscopic analyses reveal the evolution, thanks to the thermal processes, of the Au film from a continuous coating to dendritic structures covering the entire sample surface. In particular, transmission electron microscopy analyses indicate that, below the Au surface, the dendritic structures consist of Si atoms originating from the substrate. Furthermore, optical characterizations reveal the ability of the Au Ds to serve as scattering centers in the infrared region. Finally, on the basis of the experimental observations, a phenomenological model for the growth of the Au Ds is proposed

  15. Effects of dendritic load on the firing frequency of oscillating neurons.

    Science.gov (United States)

    Schwemmer, Michael A; Lewis, Timothy J

    2011-03-01

    We study the effects of passive dendritic properties on the dynamics of neuronal oscillators. We find that the addition of a passive dendrite can sometimes have counterintuitive effects on firing frequency. Specifically, the addition of a hyperpolarized passive dendritic load can either increase, decrease, or have negligible effects on firing frequency. We use the theory of weak coupling to derive phase equations for "ball-and-stick" model neurons and two-compartment model neurons. We then develop a framework for understanding how the addition of passive dendrites modulates the frequency of neuronal oscillators. We show that the average value of the neuronal oscillator's phase response curves measures the sensitivity of the neuron's firing rate to the dendritic load, including whether the addition of the dendrite causes an increase or decrease in firing frequency. We interpret this finding in terms of to the slope of the neuronal oscillator's frequency-applied current curve. We also show that equivalent results exist for constant and noisy point-source input to the dendrite. We note that the results are not specific to neurons but are applicable to any oscillator subject to a passive load.

  16. Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons.

    Science.gov (United States)

    Zhou, Wen-Liang; Yan, Ping; Wuskell, Joseph P; Loew, Leslie M; Antic, Srdjan D

    2008-02-01

    Basal dendrites of neocortical pyramidal neurons are relatively short and directly attached to the cell body. This allows electrical signals arising in basal dendrites to strongly influence the neuronal output. Likewise, somatic action potentials (APs) should readily propagate back into the basilar dendritic tree to influence synaptic plasticity. Two recent studies, however, determined that sodium APs are severely attenuated in basal dendrites of cortical pyramidal cells, so that they completely fail in distal dendritic segments. Here we used the latest improvements in the voltage-sensitive dye imaging technique (Zhou et al., 2007) to study AP backpropagation in basal dendrites of layer 5 pyramidal neurons of the rat prefrontal cortex. With a signal-to-noise ratio of > 15 and minimal temporal averaging (only four sweeps) we were able to sample AP waveforms from the very last segments of individual dendritic branches (dendritic tips). We found that in short- (< 150 microm) and medium (150-200 microm in length)-range basal dendrites APs backpropagated with modest changes in AP half-width or AP rise-time. The lack of substantial changes in AP shape and dynamics of rise is inconsistent with the AP-failure model. The lack of substantial amplitude boosting of the third AP in the high-frequency burst also suggests that in short- and medium-range basal dendrites backpropagating APs were not severely attenuated. Our results show that the AP-failure concept does not apply in all basal dendrites of the rat prefrontal cortex. The majority of synaptic contacts in the basilar dendritic tree actually received significant AP-associated electrical and calcium transients.

  17. Enzyme immunoassay for the detection of porcine gelatine in edible bird's nests.

    Science.gov (United States)

    Tukiran, Nur Azira; Ismail, Amin; Mustafa, Shuhaimi; Hamid, Muhajir

    2015-01-01

    Porcine gelatine is a common adulterant found in edible bird's nests (EBNs) used to increase the net weight prior to sale. This study aimed to develop indirect enzyme-linked immunosorbent assays (ELISAs) for porcine gelatine adulteration using anti-peptide polyclonal antibodies. Three indirect ELISAs were developed (PAB1, 2 and 3), which had limits of detection (LODs) of 0.12, 0.10 and 0.11 µg g(-1), respectively. When applied to standard solutions of porcine gelatine, the inter- and intra-assays showed coefficients of variation (CVs) less than 20% and were able to detect at least 0.5 ng µg(-1) (0.05%) porcine gelatine in spiked samples. The proposed ELISA offers attractions for quality control in the EBN industry.

  18. Possibilities of microscopic detection of isolated porcine proteins in model meat products

    Directory of Open Access Journals (Sweden)

    Michaela Petrášová

    2016-05-01

    Full Text Available In recent years, various protein additives intended for manufacture of meat products have increasing importance in the food industry. These ingredients include both, plant-origin as well as animal-origin proteins. Among animal proteins, blood plasma, milk protein or collagen are used most commonly. Collagen is obtained from pork, beef, and poultry or fish skin. Collagen does not contain all the essential amino acids, thus it is not a full protein in terms of essential amino acids supply for one's organism. However, it is rather rich in amino acids of glycine, hydroxyproline and proline which are almost absent in other proteins and their synthesis is very energy intensive. Collagen, which is added to the soft and small meat products in the form of isolated porcine protein, significantly affects the organoleptic properties of these products. This work focused on detection of isolated porcine protein in model meat products where detection of isolated porcine protein was verified by histological staining and light microscopy. Seven model meat products from poultry meat and 7 model meat products from beef and pork in the ratio of 1:1, which contained 2.5% concentration of various commercially produced isolated porcine proteins, were examined. These model meat products were histologically processed by means of cryosections and stained with hematoxylin-eosin staining, toluidine blue staining and Calleja. For the validation phase, Calleja was utilized. To determine the sensitivity and specificity, five model meat products containing the addition of isolated porcine protein and five model meat products free of it were used. The sensitivity was determined for isolated porcine protein at 1.00 and specificity was determined at 1.00. The detection limit of the method was at the level of 0.001% addition. Repeatability of the method was carried out using products with addition as well as without addition of isolated porcine protein and detection was repeated

  19. Surgical induction of choroidal neovascularization in a porcine model

    DEFF Research Database (Denmark)

    Lassota, Nathan; Kiilgaard, Jens Folke; Prause, Jan Ulrik

    2007-01-01

    PURPOSE: To develop a reproducible surgical technique for the induction of choroidal neovascularization (CNV) in the subretinal space of porcine eyes and to analyse the resulting CNV clinically and histologically. METHODS: Two different modifications of a surgical technique previously described...... were compared with the original method. In ten porcine eyes retinal pigment epithelial (RPE) cells were removed using a silicone tipped cannula, in ten porcine eyes Bruch's membrane was perforated once with a retinal perforator without prior RPE removal and in ten eyes RPE removal was followed...... by a single perforation of Bruch's membrane. Fifteen of the eyes, five from each group, were enucleated 30 minutes after surgery, while the remaining eyes were enucleated after 14 days. Prior to enucleation, at day 14, fundus photographs and fluorescein angiograms were obtained. Eyes were examined by light...

  20. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation

    International Nuclear Information System (INIS)

    Han, Jun; Wang, Qiao-Chu; Zhu, Cheng-Cheng; Liu, Jun; Zhang, Yu; Cui, Xiang-Shun; Kim, Nam-Hyung; Sun, Shao-Chen

    2016-01-01

    Deoxynivalenol (DON) is a widespread trichothecene mycotoxin which contaminates agricultural staples and elicits a complex spectrum of toxic effects on humans and animals. It has been shown that DON impairs oocyte maturation, reproductive function and causes abnormal fetal development in mammals; however, the mechanisms remain unclear. In the present study, we investigate the possible reasons of the toxic effects of DON on porcine oocytes. Our results showed that DON significantly inhibited porcine oocyte maturation and disrupted meiotic spindle by reducing p-MAPK protein level, which caused retardation of cell cycle progression. In addition, up-regulated LC3 protein expression and aberrant Lamp2, LC3 and mTOR mRNA levels were observed with DON exposure, together with Annexin V-FITC staining assay analysis, these results indicated that DON treatment induced autophagy/apoptosis in porcine oocytes. We also showed that DON exposure increased DNA methylation level in porcine oocytes through altering DNMT3A mRNA levels. Histone methylation levels were also changed showing with increased H3K27me3 and H3K4me2 protein levels, and mRNA levels of their relative methyltransferase genes, indicating that epigenetic modifications were affected. Taken together, our results suggested that DON exposure reduced porcine oocytes maturation capability through affecting cytoskeletal dynamics, cell cycle, autophagy/apoptosis and epigenetic modifications. - Highlights: • DON exposure disrupted meiotic spindle by reducing p-MAPK expression. • DON exposure caused retardation of cell cycle progression in porcine oocytes. • DON triggered autophagy and early-apoptosis in porcine oocytes. • DON exposure led to aberrant epigenetic modifications in porcine oocytes.

  1. Deoxynivalenol exposure induces autophagy/apoptosis and epigenetic modification changes during porcine oocyte maturation

    Energy Technology Data Exchange (ETDEWEB)

    Han, Jun; Wang, Qiao-Chu; Zhu, Cheng-Cheng; Liu, Jun; Zhang, Yu [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China); Cui, Xiang-Shun; Kim, Nam-Hyung [Department of Animal Science, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Sun, Shao-Chen, E-mail: sunsc@njau.edu.cn [College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095 (China)

    2016-06-01

    Deoxynivalenol (DON) is a widespread trichothecene mycotoxin which contaminates agricultural staples and elicits a complex spectrum of toxic effects on humans and animals. It has been shown that DON impairs oocyte maturation, reproductive function and causes abnormal fetal development in mammals; however, the mechanisms remain unclear. In the present study, we investigate the possible reasons of the toxic effects of DON on porcine oocytes. Our results showed that DON significantly inhibited porcine oocyte maturation and disrupted meiotic spindle by reducing p-MAPK protein level, which caused retardation of cell cycle progression. In addition, up-regulated LC3 protein expression and aberrant Lamp2, LC3 and mTOR mRNA levels were observed with DON exposure, together with Annexin V-FITC staining assay analysis, these results indicated that DON treatment induced autophagy/apoptosis in porcine oocytes. We also showed that DON exposure increased DNA methylation level in porcine oocytes through altering DNMT3A mRNA levels. Histone methylation levels were also changed showing with increased H3K27me3 and H3K4me2 protein levels, and mRNA levels of their relative methyltransferase genes, indicating that epigenetic modifications were affected. Taken together, our results suggested that DON exposure reduced porcine oocytes maturation capability through affecting cytoskeletal dynamics, cell cycle, autophagy/apoptosis and epigenetic modifications. - Highlights: • DON exposure disrupted meiotic spindle by reducing p-MAPK expression. • DON exposure caused retardation of cell cycle progression in porcine oocytes. • DON triggered autophagy and early-apoptosis in porcine oocytes. • DON exposure led to aberrant epigenetic modifications in porcine oocytes.

  2. A porcine astrocyte/endothelial cell co-culture model of the blood-brain barrier.

    Science.gov (United States)

    Jeliazkova-Mecheva, Valentina V; Bobilya, Dennis J

    2003-10-01

    A method for the isolation of porcine atrocytes as a simple extension of a previously described procedure for isolation of brain capillary endothelial cells from adolescent pigs [Methods Cell Sci. 17 (1995) 2] is described. The obtained astroglial culture purified through two passages and by the method of the selective detachment was validated by a phase contrast microscopy and through an immunofluorescent assay for the glial fibrillary acidic protein (GFAP). Porcine astrocytes were co-cultivated with porcine brain capillary endothelial cells (PBCEC) for the development of an in vitro blood-brain barrier (BBB) model. The model was visualized by an electron microscopy and showed elevated transendothellial electrical resistance and reduced inulin permeability. To our knowledge, this is the first report for the establishment of a porcine astrocyte/endothelial cell co-culture BBB model, which avoids interspecies and age differences between the two cell types, usually encountered in the other reported co-culture BBB models. Considering the availability of the porcine brain tissue and the close physiological and anatomical relation between the human and pig brain, the porcine astrocyte/endothelial cell co-culture system can serve as a reliable and easily reproducible model for different in vitro BBB studies.

  3. Novel porcine repetitive elements

    Directory of Open Access Journals (Sweden)

    Nonneman Dan J

    2006-12-01

    Full Text Available Abstract Background Repetitive elements comprise ~45% of mammalian genomes and are increasingly known to impact genomic function by contributing to the genomic architecture, by direct regulation of gene expression and by affecting genomic size, diversity and evolution. The ubiquity and increasingly understood importance of repetitive elements contribute to the need to identify and annotate them. We set out to identify previously uncharacterized repetitive DNA in the porcine genome. Once found, we characterized the prevalence of these repeats in other mammals. Results We discovered 27 repetitive elements in 220 BACs covering 1% of the porcine genome (Comparative Vertebrate Sequencing Initiative; CVSI. These repeats varied in length from 55 to 1059 nucleotides. To estimate copy numbers, we went to an independent source of data, the BAC-end sequences (Wellcome Trust Sanger Institute, covering approximately 15% of the porcine genome. Copy numbers in BAC-ends were less than one hundred for 6 repeat elements, between 100 and 1000 for 16 and between 1,000 and 10,000 for 5. Several of the repeat elements were found in the bovine genome and we have identified two with orthologous sites, indicating that these elements were present in their common ancestor. None of the repeat elements were found in primate, rodent or dog genomes. We were unable to identify any of the replication machinery common to active transposable elements in these newly identified repeats. Conclusion The presence of both orthologous and non-orthologous sites indicates that some sites existed prior to speciation and some were generated later. The identification of low to moderate copy number repetitive DNA that is specific to artiodactyls will be critical in the assembly of livestock genomes and studies of comparative genomics.

  4. Radiation sensitivity of bacteria and virus in porcine xenoskin for dressing agent

    International Nuclear Information System (INIS)

    Jo, Eu-Ri; Jung, Pil-Mun; Choi, Jong-il; Lee, Ju-Woon

    2012-01-01

    In this study, gamma irradiation sensitivities of bacteria and viruses in porcine skin were evaluated to establish the optimum sterilization condition for the dressing material and a xenoskin graft. Escherichia coli and Bacillus subtilis were used as model pathogens and inoculated at 10 6 –10 7 log CFU/g. As model viruses, porcine parvovirus (PPV), bovine viral diarrhea virus (BVDV), and poliovirus were used and inoculated at 10 5 –10 6 TCID 50 /g into porcine skin. The D 10 value of E. coli was found to be 0.25±0.1 kGy. B. subtilis endospores produced under stressful environmental conditions showed lower radiation sensitivity as D 10 was 3.88±0.3 kGy in porcine skin. The D 10 values of PPV, BVDV, and poliovirus were found to be 1.73±0.2, 3.81±0.2, and 6.88±0.3 kGy, respectively. These results can offer the basic information required for inactivating pathogens by gamma irradiation and achieving dressing material and porcine skin grafts.

  5. Short-Course Toll-Like Receptor 9 Agonist Treatment Impacts Innate Immunity and Plasma Viremia in Individuals With Human Immunodeficiency Virus Infection.

    Science.gov (United States)

    Vibholm, Line; Schleimann, Mariane H; Højen, Jesper F; Benfield, Thomas; Offersen, Rasmus; Rasmussen, Katrine; Olesen, Rikke; Dige, Anders; Agnholt, Jørgen; Grau, Judith; Buzon, Maria; Wittig, Burghardt; Lichterfeld, Mathias; Petersen, Andreas Munk; Deng, Xutao; Abdel-Mohsen, Mohamed; Pillai, Satish K; Rutsaert, Sofie; Trypsteen, Wim; De Spiegelaere, Ward; Vandekerchove, Linos; Østergaard, Lars; Rasmussen, Thomas A; Denton, Paul W; Tolstrup, Martin; Søgaard, Ole S

    2017-06-15

    Treatment with latency reversing agents (LRAs) enhances human immunodeficiency virus type 1 (HIV-1) transcription in vivo but leads to only modest reductions in the size of the reservoir, possibly due to insufficient immune-mediated elimination of infected cells. We hypothesized that a single drug molecule-a novel Toll-like receptor 9 (TLR9) agonist, MGN1703-could function as an enhancer of innate immunity and an LRA in vivo. We conducted a single-arm, open-label study in which 15 virologically suppressed HIV-1-infected individuals on antiretroviral therapy received 60 mg MGN1703 subcutaneously twice weekly for 4 weeks. We characterized plasmacytoid dendritic cell, natural killer (NK), and T-cell activation using flow cytometry on baseline and after 4 weeks of treatment. HIV-1 transcription was quantified by measuring plasma HIV-1 RNA during MGN1703 administration. In accordance with the cell type-specific expression of TLR9, MGN1703 treatment led to pronounced activation of plasmacytoid dendritic cells and substantial increases in plasma interferon-α2 levels (P 1500 copies/mL (range, 21-1571 copies/mL) during treatment. TLR9 agonist treatment in HIV infection has a dual potential by increasing HIV-1 transcription and enhancing cytotoxic NK cell activation, both of which are key outcomes in HIV-1 eradication therapy. NCT02443935. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  6. Dendrite tungsten liquation in molybdenum alloys

    International Nuclear Information System (INIS)

    Kantor, M.M.; Ageeva, E.N.; Kolotinskij, V.N.

    1992-01-01

    A study was made on primary crystallization structure of ingots of Mo-W-B system alloys with electron microscopy were used to establish, that cells and cellular dendrites were the main elements of primary crystallization structure. Method of local X-ray spectral analysis enabled to establish, that intracrystallite liquation at cellular growth developed more intensively, as compared to the case of cellular dendrite formation. Change of boron content in alloys didn't practically affect the degree of development of intracrystallite W liquation in Mo

  7. Equine dendritic cells generated with horse serum have enhanced functionality in comparison to dendritic cells generated with fetal bovine serum.

    Science.gov (United States)

    Ziegler, Anja; Everett, Helen; Hamza, Eman; Garbani, Mattia; Gerber, Vinzenz; Marti, Eliane; Steinbach, Falko

    2016-11-15

    Dendritic cells are professional antigen-presenting cells that play an essential role in the initiation and modulation of T cell responses. They have been studied widely for their potential clinical applications, but for clinical use to be successful, alternatives to xenogeneic substances like fetal bovine serum (FBS) in cell culture need to be found. Protocols for the generation of dendritic cells ex vivo from monocytes are well established for several species, including horses. Currently, the gold standard protocol for generating dendritic cells from monocytes across various species relies upon a combination of GM-CSF and IL-4 added to cell culture medium which is supplemented with FBS. The aim of this study was to substitute FBS with heterologous horse serum. For this purpose, equine monocyte-derived dendritic cells (eqMoDC) were generated in the presence of horse serum or FBS and analysed for the effect on morphology, phenotype and immunological properties. Changes in the expression of phenotypic markers (CD14, CD86, CD206) were assessed during dendritic cell maturation by flow cytometry. To obtain a more complete picture of the eqMoDC differentiation and assess possible differences between FBS- and horse serum-driven cultures, a transcriptomic microarray analysis was performed. Lastly, immature eqMoDC were primed with a primary antigen (ovalbumin) or a recall antigen (tetanus toxoid) and, after maturation, were co-cultured with freshly isolated autologous CD5 + T lymphocytes to assess their T cell stimulatory capacity. The microarray analysis demonstrated that eqMoDC generated with horse serum were indistinguishable from those generated with FBS. However, eqMoDC incubated with horse serum-supplemented medium exhibited a more characteristic dendritic cell morphology during differentiation from monocytes. A significant increase in cell viability was also observed in eqMoDC cultured with horse serum. Furthermore, eqMoDC generated in the presence of horse serum

  8. Sequence and expression analyses of porcine ISG15 and ISG43 genes.

    Science.gov (United States)

    Huang, Jiangnan; Zhao, Shuhong; Zhu, Mengjin; Wu, Zhenfang; Yu, Mei

    2009-08-01

    The coding sequences of porcine interferon-stimulated gene 15 (ISG15) and the interferon-stimulated gene (ISG43) were cloned from swine spleen mRNA. The amino acid sequences deduced from porcine ISG15 and ISG43 genes coding sequence shared 24-75% and 29-83% similarity with ISG15s and ISG43s from other vertebrates, respectively. Structural analyses revealed that porcine ISG15 comprises two ubiquitin homologues motifs (UBQ) domain and a conserved C-terminal LRLRGG conjugating motif. Porcine ISG43 contains an ubiquitin-processing proteases-like domain. Phylogenetic analyses showed that porcine ISG15 and ISG43 were mostly related to rat ISG15 and cattle ISG43, respectively. Using quantitative real-time PCR assay, significant increased expression levels of porcine ISG15 and ISG43 genes were detected in porcine kidney endothelial cells (PK15) cells treated with poly I:C. We also observed the enhanced mRNA expression of three members of dsRNA pattern-recognition receptors (PRR), TLR3, DDX58 and IFIH1, which have been reported to act as critical receptors in inducing the mRNA expression of ISG15 and ISG43 genes. However, we did not detect any induced mRNA expression of IFNalpha and IFNbeta, suggesting that transcriptional activations of ISG15 and ISG43 were mediated through IFN-independent signaling pathway in the poly I:C treated PK15 cells. Association analyses in a Landrace pig population revealed that ISG15 c.347T>C (BstUI) polymorphism and the ISG43 c.953T>G (BccI) polymorphism were significantly associated with hematological parameters and immune-related traits.

  9. Conserved RNA-Binding Proteins Required for Dendrite Morphogenesis in Caenorhabditis elegans Sensory Neurons

    Science.gov (United States)

    Antonacci, Simona; Forand, Daniel; Wolf, Margaret; Tyus, Courtney; Barney, Julia; Kellogg, Leah; Simon, Margo A.; Kerr, Genevieve; Wells, Kristen L.; Younes, Serena; Mortimer, Nathan T.; Olesnicky, Eugenia C.; Killian, Darrell J.

    2015-01-01

    The regulation of dendritic branching is critical for sensory reception, cell−cell communication within the nervous system, learning, memory, and behavior. Defects in dendrite morphology are associated with several neurologic disorders; thus, an understanding of the molecular mechanisms that govern dendrite morphogenesis is important. Recent investigations of dendrite morphogenesis have highlighted the importance of gene regulation at the posttranscriptional level. Because RNA-binding proteins mediate many posttranscriptional mechanisms, we decided to investigate the extent to which conserved RNA-binding proteins contribute to dendrite morphogenesis across phyla. Here we identify a core set of RNA-binding proteins that are important for dendrite morphogenesis in the PVD multidendritic sensory neuron in Caenorhabditis elegans. Homologs of each of these genes were previously identified as important in the Drosophila melanogaster dendritic arborization sensory neurons. Our results suggest that RNA processing, mRNA localization, mRNA stability, and translational control are all important mechanisms that contribute to dendrite morphogenesis, and we present a conserved set of RNA-binding proteins that regulate these processes in diverse animal species. Furthermore, homologs of these genes are expressed in the human brain, suggesting that these RNA-binding proteins are candidate regulators of dendrite development in humans. PMID:25673135

  10. Soft-template synthesis of single-crystalline CdS dendrites.

    Science.gov (United States)

    Niu, Haixia; Yang, Qing; Tang, Kaibin; Xie, Yi; Zhu, Yongchun

    2006-01-01

    The single-crystalline CdS dendrites have been fabricated from the reaction of CdCl2 and thiourea at 180 degrees C, in which glycine was employed as a soft template. The obtained products were explored by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and selected area electronic diffraction. The optical properties of CdS dendrites have been investigated by ultraviolet and visible light (UV-vis) and photoluminescence techniques. The investigations indicated that the dendrites were grown due to the anisotropic properties enhanced by the use of Glycine in the route.

  11. A porcine model of haematogenous brain infectionwith staphylococcus aureus

    DEFF Research Database (Denmark)

    Astrup, Lærke Boye; Agerholm, Jørgen Steen; Nielsen, Ole Lerberg

    2012-01-01

    A PORCINE MODEL OF HAEMATOGENOUS BRAIN INFECTION WITH STAPHYLOCOCCUS AUREUS Astrup Lærke1, Agerholm Jørgen1, Nielsen Ole1, Jensen Henrik1, Leifsson Páll1, Iburg Tine2. 1: Faculty of Health and Medical Sciences, University of Copenhagen, Denmark boye@life.ku.dk 2: National Veterinary Institute......, Uppsala, Sweden Introduction Staphylococcus aureus (S.aureus) is a common cause of sepsis and brain abscesses in man and a frequent cause of porcine pyaemia. Here we present a porcine model of haematogenous S. aureus-induced brain infection. Materials and Methods Four pigs had two intravenous catheters...... thromboemboli (two pigs). The venous catheter was used for blood sampling before, during and after inoculation. The pigs were euthanized either 24 or 48 hours after inoculation. The brains were collected and examined histologically. Results We describe unifocal suppurative encephalitis 48 hours after...

  12. Molecular characterization of the porcine surfactant, pulmonary-associated protein C gene

    DEFF Research Database (Denmark)

    Cirera, S.; Nygård, A.B.; Jensen, H.E.

    2006-01-01

    The surfactant, pulmonary-associated protein C (SFTPC) is a peptide secreted by the alveolar type II pneumocytes of the lung. We have characterized the porcine SFTPC gene at genomic, transcriptional, and protein levels. The porcine SFTPC is a single-copy gene on pig chromosome 14. Two transcripts...

  13. Secretion of pancreastatins from the porcine digestive tract

    International Nuclear Information System (INIS)

    Boerglum Jensen, T.D.; Holst, J.J.; Fahrenkrug, J.

    1994-01-01

    Pancreastatin, a 49-amino acid peptide with a COOH-terminal glycine amide, was originally isolated from porcine pancreas, but pancreastatin immunoreactivity has been found in several neuroendocrine tissues. There are strong indications that pancreastatin is derived from chromogranin A, since the amino acid sequence 240-288 in porcine chromogranin A corresponds to pancreastatin flanked by typical signals for proteolytic processing. The authors studied the effect of electric stimulation of the nervous supply to perfused porcine pancreas, antrum, nonantral stomach, and small intestine on the release of immunoreactive pancreastatin, and they have characterized the molecular nature of the secreted immunoreactivity by using a radioimmunoassay specific for the COOH-terminal glycine amide of porcine pancreastatin in combination with chromatography. In all tissues nerve stimulation significantly increased the release of immunoreactive pancreastatin. The secreted immunoreactive pancreastatin was heterogeneous, consisting of pancreastatin itself, a COOH-terminal pancreastatin fragment, and NH 2 -terminally extended pancreastatin forms. Pancreastatin predominated in the perfusate from pancreas and antrum, whereas mainly NH 2 -terminally extended molecular forms were secreted from the antrectomized stomach and small intestine. The different molecular forms of pancreastatin were secreted from the perfused organs in the same molar ratio as they occur in extracts of the corresponding tissues. Thus, pancreastatin and other chromogranin A-derived peptides in organ-specific proportions regularly accompany the secretion of the peptide hormones from the gastrointestinal tissues on appropriate stimulation. 40 refs., 5 figs

  14. Type I interferon production during herpes simplex virus infection is controlled by cell-type-specific viral recognition through Toll-like receptor 9, the mitochondrial antiviral signaling protein pathway, and novel recognition systems

    DEFF Research Database (Denmark)

    Rasmussen, Simon Brandtoft; Sørensen, Louise Nørgaard; Malmgaard, Lene

    2007-01-01

    Recognition of viruses by germ line-encoded pattern recognition receptors of the innate immune system is essential for rapid production of type I interferon (IFN) and early antiviral defense. We investigated the mechanisms of viral recognition governing production of type I IFN during herpes...... simplex virus (HSV) infection. We show that early production of IFN in vivo is mediated through Toll-like receptor 9 (TLR9) and plasmacytoid dendritic cells, whereas the subsequent alpha/beta IFN (IFN-alpha/beta) response is derived from several cell types and induced independently of TLR9...

  15. Cigarette smoke promotes dendritic cell accumulation in COPD; a Lung Tissue Research Consortium study

    Directory of Open Access Journals (Sweden)

    Yi Eunhee S

    2010-04-01

    Full Text Available Abstract Background Abnormal immune responses are believed to be highly relevant in the pathogenesis of chronic obstructive pulmonary disease (COPD. Dendritic cells provide a critical checkpoint for immunity by their capacity to both induce and suppress immunity. Although evident that cigarette smoke, the primary cause of COPD, significantly influences dendritic cell functions, little is known about the roles of dendritic cells in the pathogenesis of COPD. Methods The extent of dendritic cell infiltration in COPD tissue specimens was determined using immunohistochemical localization of CD83+ cells (marker of matured myeloid dendritic cells, and CD1a+ cells (Langerhans cells. The extent of tissue infiltration with Langerhans cells was also determined by the relative expression of the CD207 gene in COPD versus control tissues. To determine mechanisms by which dendritic cells accumulate in COPD, complimentary studies were conducted using monocyte-derived human dendritic cells exposed to cigarette smoke extract (CSE, and dendritic cells extracted from mice chronically exposed to cigarette smoke. Results In human COPD lung tissue, we detected a significant increase in the total number of CD83+ cells, and significantly higher amounts of CD207 mRNA when compared with control tissue. Human monocyte-derived dendritic cells exposed to CSE (0.1-2% exhibited enhanced survival in vitro when compared with control dendritic cells. Murine dendritic cells extracted from mice exposed to cigarette smoke for 4 weeks, also demonstrated enhanced survival compared to dendritic cells extracted from control mice. Acute exposure of human dendritic cells to CSE induced the cellular pro-survival proteins heme-oxygenase-1 (HO-1, and B cell lymphoma leukemia-x(L (Bcl-xL, predominantly through oxidative stress. Although activated human dendritic cells conditioned with CSE expressed diminished migratory CCR7 expression, their migration towards the CCR7 ligand CCL21 was not

  16. First update of the International Xenotransplantation Association consensus statement on conditions for undertaking clinical trials of porcine islet products in type 1 diabetes--Chapter 3: Porcine islet product manufacturing and release testing criteria.

    Science.gov (United States)

    Rayat, Gina R; Gazda, Lawrence S; Hawthorne, Wayne J; Hering, Bernhard J; Hosking, Peter; Matsumoto, Shinichi; Rajotte, Ray V

    2016-01-01

    In the 2009 IXA consensus, the requirements for the quality and control of manufacturing of porcine islet products were based on the U.S. regulatory framework where the porcine islet products fall within the definition of somatic cell therapy under the statutory authority of the U.S. Food and Drug Administration (FDA). In addition, porcine islet products require pre-market approval as a biologic product under the Public Health Services Act and they meet the definition of a drug under the Federal Food, Drug, and Cosmetic Act (FD&C Act). Thus, they are subject to applicable provisions of the law and as such, control of manufacturing as well as reproducibility and consistency of porcine islet products, safety of porcine islet products, and characterization of porcine islet products must be met before proceeding to clinical trials. In terms of control of manufacturing as well as reproducibility and consistency of porcine islet products, the manufacturing facility must be in compliance with current Good Manufacturing Practices (cGMP) guidelines appropriate for the initiation of Phase 1/2 clinical trials. Sponsors intending to conduct a Phase 1/2 trial of islet xenotransplantation products must be able to demonstrate the safety of the product through the establishment of particular quality assurance and quality control procedures. All materials (including animal source and pancreas) used in the manufacturing process of the porcine islet products must be free of adventitious agents. The final porcine islet product must undergo tests for the presence of these adventitious agents including sterility, mycoplasma (if they are cultured), and endotoxin. Assessments of the final product must include the safety specifications mentioned above even if the results are not available until after release as these data would be useful for patient diagnosis and treatment if necessary. In addition, a plan of action must be in place for patient notification and treatment in case the

  17. A Model of Dendritic Cell Therapy for Melanoma

    Directory of Open Access Journals (Sweden)

    Ami eRadunskaya

    2013-03-01

    Full Text Available Dendritic cells are a promising immunotherapy tool for boosting an individual's antigen specific immune response to cancer. We develop a mathematical model using differential and delay-differential equations to describe the interactions between dendritic cells, effector-immune cells and tumor cells. We account for the trafficking of immune cells between lymph, blood, and tumor compartments. Our model reflects experimental results both for dendritic-cell trafficking and for immune suppression of tumor growth in mice. In addition, in silico experiments suggest more effective immunotherapy treatment protocols can be achieved by modifying dose location and schedule. A sensitivity analysis of the model reveals which patient-specific parameters have the greatest impact on treatment efficacy.

  18. A high-resolution comparative RH map of porcine chromosome (SSC) 2.

    NARCIS (Netherlands)

    Rattink, A.P.; Faivre, M.; Jungerius, B.J.; Groenen, M.A.M.; Harlizius, B.

    2001-01-01

    A high-resolution comparative map was constructed for porcine Chromosome (SSC) 2, where a QTL for back fat thickness (BFT) is located. A radiation hybrid (RH) map containing 33 genes and 25 microsatellite markers was constructed for this chromosome with a 3000-rad porcine RH panel. In total, 16

  19. CD11c(hi) Dendritic Cells Regulate Ly-6C(hi) Monocyte Differentiation to Preserve Immune-privileged CNS in Lethal Neuroinflammation.

    Science.gov (United States)

    Kim, Jin Hyoung; Choi, Jin Young; Kim, Seong Bum; Uyangaa, Erdenebelig; Patil, Ajit Mahadev; Han, Young Woo; Park, Sang-Youel; Lee, John Hwa; Kim, Koanhoi; Eo, Seong Kug

    2015-12-02

    Although the roles of dendritic cells (DCs) in adaptive defense have been defined well, the contribution of DCs to T cell-independent innate defense and subsequent neuroimmunopathology in immune-privileged CNS upon infection with neurotropic viruses has not been completely defined. Notably, DC roles in regulating innate CD11b(+)Ly-6C(hi) monocyte functions during neuroinflammation have not yet been addressed. Using selective ablation of CD11c(hi)PDCA-1(int/lo) DCs without alteration in CD11c(int)PDCA-1(hi) plasmacytoid DC number, we found that CD11c(hi) DCs are essential to control neuroinflammation caused by infection with neurotropic Japanese encephalitis virus, through early and increased infiltration of CD11b(+)Ly-6C(hi) monocytes and higher expression of CC chemokines. More interestingly, selective CD11c(hi) DC ablation provided altered differentiation and function of infiltrated CD11b(+)Ly-6C(hi) monocytes in the CNS through Flt3-L and GM-CSF, which was closely associated with severely enhanced neuroinflammation. Furthermore, CD11b(+)Ly-6C(hi) monocytes generated in CD11c(hi) DC-ablated environment had a deleterious rather than protective role during neuroinflammation, and were more quickly recruited into inflamed CNS, depending on CCR2, thereby exacerbating neuroinflammation via enhanced supply of virus from the periphery. Therefore, our data demonstrate that CD11c(hi) DCs provide a critical and unexpected role to preserve the immune-privileged CNS in lethal neuroinflammation via regulating the differentiation, function, and trafficking of CD11b(+)Ly-6C(hi) monocytes.

  20. CT radiation dose and image quality optimization using a porcine model.

    Science.gov (United States)

    Zarb, Francis; McEntee, Mark F; Rainford, Louise

    2013-01-01

    To evaluate potential radiation dose savings and resultant image quality effects with regard to optimization of commonly performed computed tomography (CT) studies derived from imaging a porcine (pig) model. Imaging protocols for 4 clinical CT suites were developed based on the lowest milliamperage and kilovoltage, the highest pitch that could be set from current imaging protocol parameters, or both. This occurred before significant changes in noise, contrast, and spatial resolution were measured objectively on images produced from a quality assurance CT phantom. The current and derived phantom protocols were then applied to scan a porcine model for head, abdomen, and chest CT studies. Further optimized protocols were developed based on the same methodology as in the phantom study. The optimization achieved with respect to radiation dose and image quality was evaluated following data collection of radiation dose recordings and image quality review. Relative visual grading analysis of image quality criteria adapted from the European guidelines on radiology quality criteria for CT were used for studies completed with both the phantom-based or porcine-derived imaging protocols. In 5 out of 16 experimental combinations, the current clinical protocol was maintained. In 2 instances, the phantom protocol reduced radiation dose by 19% to 38%. In the remaining 9 instances, the optimization based on the porcine model further reduced radiation dose by 17% to 38%. The porcine model closely reflects anatomical structures in humans, allowing the grading of anatomical criteria as part of image quality review without radiation risks to human subjects. This study demonstrates that using a porcine model to evaluate CT optimization resulted in more radiation dose reduction than when imaging protocols were tested solely on quality assurance phantoms.

  1. Construction of EMSC-islet co-localizing composites for xenogeneic porcine islet transplantation.

    Science.gov (United States)

    Kim, Jung-Sik; Chung, Hyunwoo; Byun, Nari; Kang, Seong-Jun; Lee, Sunho; Shin, Jun-Seop; Park, Chung-Gyu

    2018-03-04

    Pancreatic islet transplantation is an ultimate solution for treating patients with type 1 diabetes (T1D). The pig is an ideal donor of islets for replacing scarce human islets. Besides immunological hurdles, non-immunological hurdles including fragmentation and delayed engraftment of porcine islets need solutions to succeed in porcine islet xenotransplantation. In this study, we suggest a simple but effective modality, a cell/islet co-localizing composite, to overcome these challenges. Endothelial-like mesenchymal stem cells (EMSCs), differentiated from bone-marrow derived mouse mesenchymal stem cells (MSCs), and MSCs evenly coated the surface of porcine islets (>85%) through optimized culture conditions. Both MSCs and EMSCs significantly reduced the fragmentation of porcine islets and increased the islet masses, designated as islet equivalents (IEQs). In fibrin in vitro and in vivo angiogenesis analysis, constructed EMSC-islet composites showed higher angiogenic potentials than naked islets, MSC-islet composites, or human endothelial cell-islet composites. This novel delivery method of porcine islets may have beneficial effects on the engraftment of transplanted islets by prevention of fragmentation and enhancement of revascularization. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Xenopus laevis Retinal Ganglion Cell Dendritic Arbors Develop Independently of Visual Stimulation

    Directory of Open Access Journals (Sweden)

    Barbara Lom

    2004-01-01

    Full Text Available Newly formed neurons must locate their appropriate target cells and then form synaptic connections with these targets in order to establish a functional nervous system. In the vertebrate retina, retinal ganglion cell (RGC dendrites extend from the cell body and form synapses with nearby amacrine and bipolar cells. RGC axons, however, exit the retina and synapse with the dendrites of midbrain neurons in the optic tectum. We examined how visual stimulation influenced Xenopus RGC dendritic arborization. Neuronal activity is known to be an important factor in shaping dendritic and axonal arborization. Thus, we reared tadpoles in dark and light environments then used rhodamine dextran retrograde labeling to identify RGCs in the retina. When we compared RGC dendritic arbors from tadpoles reared in dark and light environments, we found no morphological differences, suggesting that physiological visual activity did not contribute to the morphological development of Xenopus RGC dendritic arbors.

  3. Neuronal gain modulability is determined by dendritic morphology: A computational optogenetic study.

    Science.gov (United States)

    Jarvis, Sarah; Nikolic, Konstantin; Schultz, Simon R

    2018-03-01

    The mechanisms by which the gain of the neuronal input-output function may be modulated have been the subject of much investigation. However, little is known of the role of dendrites in neuronal gain control. New optogenetic experimental paradigms based on spatial profiles or patterns of light stimulation offer the prospect of elucidating many aspects of single cell function, including the role of dendrites in gain control. We thus developed a model to investigate how competing excitatory and inhibitory input within the dendritic arbor alters neuronal gain, incorporating kinetic models of opsins into our modeling to ensure it is experimentally testable. To investigate how different topologies of the neuronal dendritic tree affect the neuron's input-output characteristics we generate branching geometries which replicate morphological features of most common neurons, but keep the number of branches and overall area of dendrites approximately constant. We found a relationship between a neuron's gain modulability and its dendritic morphology, with neurons with bipolar dendrites with a moderate degree of branching being most receptive to control of the gain of their input-output relationship. The theory was then tested and confirmed on two examples of realistic neurons: 1) layer V pyramidal cells-confirming their role in neural circuits as a regulator of the gain in the circuit in addition to acting as the primary excitatory neurons, and 2) stellate cells. In addition to providing testable predictions and a novel application of dual-opsins, our model suggests that innervation of all dendritic subdomains is required for full gain modulation, revealing the importance of dendritic targeting in the generation of neuronal gain control and the functions that it subserves. Finally, our study also demonstrates that neurophysiological investigations which use direct current injection into the soma and bypass the dendrites may miss some important neuronal functions, such as gain

  4. Pathology and biofilm formation in a porcine model of staphylococcal osteomyelitis

    DEFF Research Database (Denmark)

    Johansen, L K; Koch, J; Frees, D

    2012-01-01

    A porcine model was used to examine the potential of human and porcine Staphylococcus aureus isolates to induce haematogenously spread osteomyelitis. Pigs were inoculated in the right femoral artery with one of the following S. aureus strains: S54F9 (from a porcine lung abscess; n = 3 animals), N...... dependent on the strain of bacteria inoculated and on the formation of a biofilm....... with colonies of S. aureus as demonstrated immunohistochemically. By peptide nucleic acid fluorescence in situ hybridization bacterial aggregates were demonstrated to be embedded in an opaque matrix, indicating that the bacteria had formed a biofilm. Development of experimental osteomyelitis was therefore...

  5. An Investigation of the Pathology and Pathogens Associated with Porcine Respiratory Disease Complex in Denmark

    DEFF Research Database (Denmark)

    Hansen, Mette Sif; Pors, S. E.; Jensen, H. E.

    2010-01-01

    ), porcine reproductive and respiratory syndrome virus (both European and US type), porcine circovirus type 2 (PCV2), porcine respiratory coronavirus, porcine cytomegalovirus, Mycoplasma hyopneumoniae and Mycoplasma hyorhinis. All cases had cranioventral lobular bronchopneumonia consistent with PRDC....... There was a broad range of microscopical lesions and the cases were characterized as acute (n=10), subacute (n=24) or chronic (n=114) bronchopneumonia. Five bacterial species, five viruses and two Mycoplasma spp. were detected in different combinations. PCV2, M. hyopneumoniae, M. hyorhinis and Pasteurella multocida...

  6. Antimicrobial compounds of porcine mucosa

    Science.gov (United States)

    Kotenkova, E. A.; Lukinova, E. A.; Fedulova, L. V.

    2017-09-01

    The aim of the study was to investigate porcine oral cavity mucosa (OCM), nasal cavity mucosa (NCM), rectal mucosa (RM) and tongue mucosa (TM) as sources of antimicrobial compounds. Ultrafiltrates with MW >30 kDa, MW 5-30 kDa and MW 30 kDa, the zone of microbial growth inhibition was 7.5 mm, for the MW<5 kDa fraction, it was 7 mm, and for MW 5-30 kDa fraction, it was 4.5 mm. No significant differences were found in high molecular weight proteomic profile, while qualitative and quantitative differences were observed in the medium and low molecular weight areas, especially in OCM and NCM. HPLC showed 221 tissue-specific peptides in OCM, 156 in NCM, 225 in RM, but only 5 in TM. The results observed confirmed porcine mucous tissues as a good source of antimicrobial compounds, which could be an actual alternative for reduction of microbial spoilage of foods.

  7. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.

    Science.gov (United States)

    Hausselt, Susanne E; Euler, Thomas; Detwiler, Peter B; Denk, Winfried

    2007-07-01

    Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs) playing a major role. SACs generate larger dendritic Ca(2+) signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS) in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+)] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+) channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.

  8. A dendrite-autonomous mechanism for direction selectivity in retinal starburst amacrine cells.

    Directory of Open Access Journals (Sweden)

    Susanne E Hausselt

    2007-07-01

    Full Text Available Detection of image motion direction begins in the retina, with starburst amacrine cells (SACs playing a major role. SACs generate larger dendritic Ca(2+ signals when motion is from their somata towards their dendritic tips than for motion in the opposite direction. To study the mechanisms underlying the computation of direction selectivity (DS in SAC dendrites, electrical responses to expanding and contracting circular wave visual stimuli were measured via somatic whole-cell recordings and quantified using Fourier analysis. Fundamental and, especially, harmonic frequency components were larger for expanding stimuli. This DS persists in the presence of GABA and glycine receptor antagonists, suggesting that inhibitory network interactions are not essential. The presence of harmonics indicates nonlinearity, which, as the relationship between harmonic amplitudes and holding potential indicates, is likely due to the activation of voltage-gated channels. [Ca(2+] changes in SAC dendrites evoked by voltage steps and monitored by two-photon microscopy suggest that the distal dendrite is tonically depolarized relative to the soma, due in part to resting currents mediated by tonic glutamatergic synaptic input, and that high-voltage-activated Ca(2+ channels are active at rest. Supported by compartmental modeling, we conclude that dendritic DS in SACs can be computed by the dendrites themselves, relying on voltage-gated channels and a dendritic voltage gradient, which provides the spatial asymmetry necessary for direction discrimination.

  9. Porcine pluripotency cell signaling develops from the inner cell mass to the epiblast during early development

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane; Christensen, Josef; Gao, Yu

    2009-01-01

      The signaling mechanisms regulating pluripotency in porcine embryonic stem cells and embryos are unknown. In this study, we characterize cell signaling in the in-vivo porcine inner cell mass and later-stage epiblast. We evaluate expression of OCT4, NANOG, SOX2, genes within the JAK/STAT pathway...... pluripotency in human embryonic stem cells is detectable in the porcine epiblast, but not in the inner cell mass. Copyright (c) 2009 Wiley-Liss, Inc.......  The signaling mechanisms regulating pluripotency in porcine embryonic stem cells and embryos are unknown. In this study, we characterize cell signaling in the in-vivo porcine inner cell mass and later-stage epiblast. We evaluate expression of OCT4, NANOG, SOX2, genes within the JAK/STAT pathway...... (LIF, LIFR, GP130), FGF pathway (bFGF, FGFR1, FGFR2), BMP pathway (BMP4), and downstream-activated genes (STAT3, c-Myc, c-Fos, and SMAD4). We discovered two different expression profiles exist in the developing porcine embryo. The D6 porcine blastocyst (inner cell mass stage) is devoid...

  10. Human intestinal dendritic cells as controllers of mucosal immunity

    Directory of Open Access Journals (Sweden)

    David Bernardo

    2013-06-01

    Full Text Available Dendritic cells are the most potent, professional antigen-presenting cells in the body; following antigen presentation they control the type (proinflammatory/regulatory of immune response that will take place, as well as its location. Given their high plasticity and maturation ability in response to local danger signals derived from innate immunity, dendritic cells are key actors in the connection between innate immunity and adaptive immunity responses. In the gut dendritic cells control immune tolerance mechanisms against food and/or commensal flora antigens, and are also capable of initiating an active immune response in the presence of invading pathogens. Dendritic cells are thus highly efficient in controlling the delicate balance between tolerance and immunity in an environment so rich in antigens as the gut, and any factor involving these cells may impact their function, ultimately leading to the development of bowel conditions such as celiac disease or inflammatory bowel disease. In this review we shall summarize our understanding of human intestinal dendritic cells, their ability to express and induce migration markers, the various environmental factors modulating their properties, their subsets in the gut, and the problems entailed by their study, including identification strategies, differences between humans and murine models, and phenotypical variations along the gastrointestinal tract.

  11. Large-conductance calcium-dependent potassium channels prevent dendritic excitability in neocortical pyramidal neurons.

    Science.gov (United States)

    Benhassine, Narimane; Berger, Thomas

    2009-03-01

    Large-conductance calcium-dependent potassium channels (BK channels) are homogeneously distributed along the somatodendritic axis of layer 5 pyramidal neurons of the rat somatosensory cortex. The relevance of this conductance for dendritic calcium electrogenesis was studied in acute brain slices using somatodendritic patch clamp recordings and calcium imaging. BK channel activation reduces the occurrence of dendritic calcium spikes. This is reflected in an increased critical frequency of somatic spikes necessary to activate the distal initiation zone. Whilst BK channels repolarise the somatic spike, they dampen it only in the distal dendrite. Their activation reduces dendritic calcium influx via glutamate receptors. Furthermore, they prevent dendritic calcium electrogenesis and subsequent somatic burst discharges. However, the time window for coincident somatic action potential and dendritic input to elicit dendritic calcium events is not influenced by BK channels. Thus, BK channel activation in layer 5 pyramidal neurons affects cellular excitability primarily by establishing a high threshold at the distal action potential initiation zone.

  12. Electroless Growth of Aluminum Dendrites in NaCl-AlCl3 Melts

    DEFF Research Database (Denmark)

    Li, Qingfeng; Hjuler, H.A.; Berg, Rolf W.

    1989-01-01

    The spontaneous growth of aluminum dendrites after deposition was observed and examined in sodium chloride-aluminumchloride melts. The concentration gradient of AlCl3 in the vicinity of the cathode surface resulting from electrolysisconstitutes a type of concentration cell with aluminum dendrites...... as electrodes. The short-circuit discharge of thecell is found to be the driving force for the growth of aluminum dendrites. Such a concentration gradient is proposed to beone of the causes for dendrite formation in the case of metal deposition....

  13. Molecular characterization, sequence analysis and tissue expression of a porcine gene – MOSPD2

    Directory of Open Access Journals (Sweden)

    Yang Jie

    2017-01-01

    Full Text Available The full-length cDNA sequence of a porcine gene, MOSPD2, was amplified using the rapid amplification of cDNA ends method based on a pig expressed sequence tag sequence which was highly homologous to the coding sequence of the human MOSPD2 gene. Sequence prediction analysis revealed that the open reading frame of this gene encodes a protein of 491 amino acids that has high homology with the motile sperm domain-containing protein 2 (MOSPD2 of five species: horse (89%, human (90%, chimpanzee (89%, rhesus monkey (89% and mouse (85%; thus, it could be defined as a porcine MOSPD2 gene. This novel porcine gene was assigned GeneID: 100153601. This gene is structured in 15 exons and 14 introns as revealed by computer-assisted analysis. The phylogenetic analysis revealed that the porcine MOSPD2 gene has a closer genetic relationship with the MOSPD2 gene of horse. Tissue expression analysis indicated that the porcine MOSPD2 gene is generally and differentially expressed in the spleen, muscle, skin, kidney, lung, liver, fat and heart. Our experiment is the first to establish the primary foundation for further research on the porcine MOSPD2 gene.

  14. Preferential control of basal dendritic protrusions by EphB2.

    Directory of Open Access Journals (Sweden)

    Matthew S Kayser

    2011-02-01

    Full Text Available The flow of information between neurons in many neural circuits is controlled by a highly specialized site of cell-cell contact known as a synapse. A number of molecules have been identified that are involved in central nervous system synapse development, but knowledge is limited regarding whether these cues direct organization of specific synapse types or on particular regions of individual neurons. Glutamate is the primary excitatory neurotransmitter in the brain, and the majority of glutamatergic synapses occur on mushroom-shaped protrusions called dendritic spines. Changes in the morphology of these structures are associated with long-lasting modulation of synaptic strength thought to underlie learning and memory, and can be abnormal in neuropsychiatric disease. Here, we use rat cortical slice cultures to examine how a previously-described synaptogenic molecule, the EphB2 receptor tyrosine kinase, regulates dendritic protrusion morphology in specific regions of the dendritic arbor in cortical pyramidal neurons. We find that alterations in EphB2 signaling can bidirectionally control protrusion length, and knockdown of EphB2 expression levels reduces the number of dendritic spines and filopodia. Expression of wild-type or dominant negative EphB2 reveals that EphB2 preferentially regulates dendritic protrusion structure in basal dendrites. Our findings suggest that EphB2 may act to specify synapse formation in a particular subcellular region of cortical pyramidal neurons.

  15. File list: Unc.Bld.50.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.50.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...203,SRX818202,SRX818182,SRX818195,SRX818196,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.50.AllAg.Dendritic_Cells.bed ...

  16. File list: Unc.Bld.20.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Unc.Bld.20.AllAg.Dendritic_Cells hg19 Unclassified Blood Dendritic Cells SRX818200,...189,SRX818202,SRX818182,SRX818195,SRX818196,SRX818181 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/Unc.Bld.20.AllAg.Dendritic_Cells.bed ...

  17. Concise classification of the genomic porcine endogenous retroviral gamma1 load to defined lineages.

    Science.gov (United States)

    Klymiuk, Nikolai; Wolf, Eckhard; Aigner, Bernhard

    2008-02-05

    We investigated the infection history of porcine endogenous retroviruses (PERV) gamma1 by analyzing published env and LTR sequences. PERV sequences from various breeds, porcine cell lines and infected human primary cells were included in the study. We identified a considerable number of retroviral lineages indicating multiple independent colonization events of the porcine genome. A recent boost of the proviral load in an isolated pig herd and exclusive occurrence of distinct lineages in single studies indicated the ongoing colonization of the porcine genome with endogenous retroviruses. Retroviral recombination between co-packaged genomes was a general factor for PERV gamma1 diversity which indicated the simultaneous expression of different proviral loci over a period of time. In total, our detailed description of endogenous retroviral lineages is the prerequisite for breeding approaches to minimize the infectious potential of porcine tissues for the subsequent use in xenotransplantation.

  18. Temperature profiles of different cooling methods in porcine pancreas procurement.

    Science.gov (United States)

    Weegman, Bradley P; Suszynski, Thomas M; Scott, William E; Ferrer Fábrega, Joana; Avgoustiniatos, Efstathios S; Anazawa, Takayuki; O'Brien, Timothy D; Rizzari, Michael D; Karatzas, Theodore; Jie, Tun; Sutherland, David E R; Hering, Bernhard J; Papas, Klearchos K

    2014-01-01

    Porcine islet xenotransplantation is a promising alternative to human islet allotransplantation. Porcine pancreas cooling needs to be optimized to reduce the warm ischemia time (WIT) following donation after cardiac death, which is associated with poorer islet isolation outcomes. This study examines the effect of four different cooling Methods on core porcine pancreas temperature (n = 24) and histopathology (n = 16). All Methods involved surface cooling with crushed ice and chilled irrigation. Method A, which is the standard for porcine pancreas procurement, used only surface cooling. Method B involved an intravascular flush with cold solution through the pancreas arterial system. Method C involved an intraductal infusion with cold solution through the major pancreatic duct, and Method D combined all three cooling Methods. Surface cooling alone (Method A) gradually decreased core pancreas temperature to <10 °C after 30 min. Using an intravascular flush (Method B) improved cooling during the entire duration of procurement, but incorporating an intraductal infusion (Method C) rapidly reduced core temperature 15-20 °C within the first 2 min of cooling. Combining all methods (Method D) was the most effective at rapidly reducing temperature and providing sustained cooling throughout the duration of procurement, although the recorded WIT was not different between Methods (P = 0.36). Histological scores were different between the cooling Methods (P = 0.02) and the worst with Method A. There were differences in histological scores between Methods A and C (P = 0.02) and Methods A and D (P = 0.02), but not between Methods C and D (P = 0.95), which may highlight the importance of early cooling using an intraductal infusion. In conclusion, surface cooling alone cannot rapidly cool large (porcine or human) pancreata. Additional cooling with an intravascular flush and intraductal infusion results in improved core porcine pancreas temperature profiles during procurement and

  19. Denervation-induced homeostatic dendritic plasticity in morphological granule cell models

    Directory of Open Access Journals (Sweden)

    Hermann Cuntz

    2014-03-01

    Full Text Available Neuronal death and subsequent denervation of target areas are major consequences of several neurological conditions such asischemia or neurodegeneration (Alzheimer's disease. The denervation-induced axonal loss results in reorganization of the dendritic tree of denervated neurons. The dendritic reorganization has been previously studied using entorhinal cortex lesion (ECL. ECL leads to shortening and loss of dendritic segments in the denervated outer molecular layer of the dentate gyrus. However, the functional importance of these long-term dendritic alterations is not yet understood and their impact on neuronal electrical properties remains unclear. Here we analyzed what happens to the electrotonic structure and excitability of dentate granule cells after lesion-induced alterations of their dendritic morphology, assuming all other parameters remain equal. We performed comparative electrotonic analysis in anatomically and biophysically realistic compartmental models of 3D-reconstructed healthy and denervated granule cells. Using the method of morphological modeling based on optimization principles minimizing the amount of wiring and maximizing synaptic democracy, we built artificial granule cells which replicate morphological features of their real counterparts. Our results show that somatofugal and somatopetal voltage attenuation in the passive cable model are strongly reduced in denervated granule cells. In line with these predictions, the attenuation both of simulated backpropagating action potentials and forward propagating EPSPs was significantly reduced in dendrites of denervated neurons. Intriguingly, the enhancement of action potential backpropagation occurred specifically in the denervated dendritic layers. Furthermore, simulations of synaptic f-I curves revealed a homeostatic increase of excitability in denervated granule cells. In summary, our morphological and compartmental modeling indicates that unless modified by changes of

  20. A sensitive duplex nanoparticle-assisted PCR assay for identifying porcine epidemic diarrhea virus and porcine transmissible gastroenteritis virus from clinical specimens.

    Science.gov (United States)

    Zhu, Yu; Liang, Lin; Luo, Yakun; Wang, Guihua; Wang, Chunren; Cui, Yudong; Ai, Xia; Cui, Shangjin

    2017-02-01

    In this study, a novel duplex nanoparticle-assisted polymerase chain reaction (nanoPCR) assay was developed to detect porcine epidemic diarrhea virus (PEDV) and porcine transmissible gastroenteritis virus (TGEV). Two pairs of primers were designed based on the conserved region within the N gene of PEDV and TGEV. In a screening of 114 clinical samples from four provinces in China for PEDV and TGEV, 48.2 and 3.5 % of the samples, respectively, tested positive. Under optimized conditions, the duplex nanoPCR assay had a detection limit of 7.6 × 10 1 and 8.5 × 10 1 copies μL -1 for PEDV and TGEV, respectively. The sensitivity of the duplex nanoPCR assay was ten times higher than that of a conventional PCR assay. Moreover, no fragments were amplified when the duplex nanoPCR assay was used to test samples containing other porcine viruses. Our results indicate that the duplex nanoPCR assay described here is useful for the rapid detection of PEDV and TGEV and can be applied in clinical diagnosis.

  1. Multiple modes of action potential initiation and propagation in mitral cell primary dendrite

    DEFF Research Database (Denmark)

    Chen, Wei R; Shen, Gongyu Y; Shepherd, Gordon M

    2002-01-01

    recordings with computational modeling to analyze action-potential initiation and propagation in the primary dendrite. In response to depolarizing current injection or distal olfactory nerve input, fast Na(+) action potentials were recorded along the entire length of the primary dendritic trunk. With weak......-to-moderate olfactory nerve input, an action potential was initiated near the soma and then back-propagated into the primary dendrite. As olfactory nerve input increased, the initiation site suddenly shifted to the distal primary dendrite. Multi-compartmental modeling indicated that this abrupt shift of the spike......-initiation site reflected an independent thresholding mechanism in the distal dendrite. When strong olfactory nerve excitation was paired with strong inhibition to the mitral cell basal secondary dendrites, a small fast prepotential was recorded at the soma, which indicated that an action potential was initiated...

  2. Neuroelectric Tuning of Cortical Oscillations by Apical Dendrites in Loop Circuits

    Directory of Open Access Journals (Sweden)

    David LaBerge

    2017-06-01

    Full Text Available Bundles of relatively long apical dendrites dominate the neurons that make up the thickness of the cerebral cortex. It is proposed that a major function of the apical dendrite is to produce sustained oscillations at a specific frequency that can serve as a common timing unit for the processing of information in circuits connected to that apical dendrite. Many layer 5 and 6 pyramidal neurons are connected to thalamic neurons in loop circuits. A model of the apical dendrites of these pyramidal neurons has been used to simulate the electric activity of the apical dendrite. The results of that simulation demonstrated that subthreshold electric pulses in these apical dendrites can be tuned to specific frequencies and also can be fine-tuned to narrow bandwidths of less than one Hertz (1 Hz. Synchronous pulse outputs from the circuit loops containing apical dendrites can tune subthreshold membrane oscillations of neurons they contact. When the pulse outputs are finely tuned, they function as a local “clock,” which enables the contacted neurons to synchronously communicate with each other. Thus, a shared tuning frequency can select neurons for membership in a circuit. Unlike layer 6 apical dendrites, layer 5 apical dendrites can produce burst firing in many of their neurons, which increases the amplitude of signals in the neurons they contact. This difference in amplitude of signals serves as basis of selecting a sub-circuit for specialized processing (e.g., sustained attention within the typically larger layer 6-based circuit. After examining the sustaining of oscillations in loop circuits and the processing of spikes in network circuits, we propose that cortical functioning can be globally viewed as two systems: a loop system and a network system. The loop system oscillations influence the network system’s timing and amplitude of pulse signals, both of which can select circuits that are momentarily dominant in cortical activity.

  3. Selective dysfunction of subsets of peripheral blood mononuclear cells during pediatric dengue and its relationship with clinical outcome.

    Science.gov (United States)

    Perdomo-Celis, Federico; Salgado, Doris M; Narváez, Carlos F

    2017-07-01

    During dengue virus (DENV) infection, a blockage of secretion of cytokines such as tumor necrosis factor (TNF)-α and members of the interferon (IFN) family has been described in vitro. We evaluated the functionality of monocytes as well as dendritic, B and T cells isolated from children with mild and severe dengue. Compared with those of healthy children, stimulated monocytes, CD4 + T cells and dendritic cells from children with dengue had lower production of proinflammatory cytokines. The interferon axis was dramatically modulated by infection as plasmacytoid dendritic cells (pDCs) and CD4 + T cells had low production of IFN-α and IFN-γ, respectively; plasma levels of IFN-α and IFN-γ were lower in severely ill children, suggesting a protective role. Patients with antigenemia had the highest levels of IFN-α in plasma but the lowest frequency of IFN-α-producing pDCs, suggesting that DENV infection stimulates a systemic type I IFN response but affects the pDCs function. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Tissue Sampling Guides for Porcine Biomedical Models.

    Science.gov (United States)

    Albl, Barbara; Haesner, Serena; Braun-Reichhart, Christina; Streckel, Elisabeth; Renner, Simone; Seeliger, Frank; Wolf, Eckhard; Wanke, Rüdiger; Blutke, Andreas

    2016-04-01

    This article provides guidelines for organ and tissue sampling adapted to porcine animal models in translational medical research. Detailed protocols for the determination of sampling locations and numbers as well as recommendations on the orientation, size, and trimming direction of samples from ∼50 different porcine organs and tissues are provided in the Supplementary Material. The proposed sampling protocols include the generation of samples suitable for subsequent qualitative and quantitative analyses, including cryohistology, paraffin, and plastic histology; immunohistochemistry;in situhybridization; electron microscopy; and quantitative stereology as well as molecular analyses of DNA, RNA, proteins, metabolites, and electrolytes. With regard to the planned extent of sampling efforts, time, and personnel expenses, and dependent upon the scheduled analyses, different protocols are provided. These protocols are adjusted for (I) routine screenings, as used in general toxicity studies or in analyses of gene expression patterns or histopathological organ alterations, (II) advanced analyses of single organs/tissues, and (III) large-scale sampling procedures to be applied in biobank projects. Providing a robust reference for studies of porcine models, the described protocols will ensure the efficiency of sampling, the systematic recovery of high-quality samples representing the entire organ or tissue as well as the intra-/interstudy comparability and reproducibility of results. © The Author(s) 2016.

  5. Activation of human CD141+ and CD1c+ dendritic cells in vivo with combined TLR3 and TLR7/8 ligation.

    Science.gov (United States)

    Pearson, Frances E; Chang, Karshing; Minoda, Yoshihito; Rojas, Ingrid M Leal; Haigh, Oscar L; Daraj, Ghazal; Tullett, Kirsteen M; Radford, Kristen J

    2018-04-01

    Mice reconstituted with human hematopoietic stem cells are valuable models to study aspects of the human immune system in vivo. We describe a humanized mouse model (hu mice) in which fully functional human CD141 + and CD1c + myeloid and CD123 + plasmacytoid dendritic cells (DC) develop from human cord blood CD34 + cells in immunodeficient mice. CD141 + DC are the human equivalents of murine CD8 + /CD103 + DC which are essential for the induction of tumor-inhibitory cytotoxic T lymphocyte responses, making them attractive targets to exploit for the development of new cancer immunotherapies. We used CD34 + -engrafted NSG-A2 mice to investigate activation of DC subsets by synthetic dsRNA or ssRNA analogs polyinosinic-polycytidylic acid/poly I:C and Resiquimod/R848, agonists for TLR3 and TLR8, respectively, both of which are expressed by CD141 + DC. Injection of hu mice with these agonists resulted in upregulation of costimulatory molecules CD80, CD83 and CD86 by CD141 + and CD1c + DC alike, and their combination further enhanced expression of these molecules by both subsets. When combined, poly I:C and R848 enhanced serum levels of key cytokines associated with cross-presentation and the induction of cytotoxic T lymphocyte responses including IFN-α, IFN-β, IL-12 and CXCL10. These data advocate a combination of poly I:C and R848 TLR agonists as means of activating human DC for immunotherapy. © 2018 Australasian Society for Immunology Inc.

  6. Purification, characterization and immunolocalization of porcine surfactant protein D

    DEFF Research Database (Denmark)

    Sørensen, C.M.; Nielsen, Ove Lilholm; Willis, A.

    2005-01-01

    in a dose and Ca2+-dependent manner with a saccharide specificity similar to rat and human SP-D. The purified protein was used for the production of a monoclonal anti-pSP-D antibody. The antibody reacted specifically with pSP-D in the reduced and unreduced state when analysed by Western blotting......Surfactant protein D (SP-D) is a collectin believed to play an important role in innate immunity. SP-D is characterized by having a collagen-like domain and a carbohydrate recognition domain (CRD), which has a specific Ca2+-dependent specificity for saccharides and thus the ability to bind complex...... glycoconjugates on micro-organisms. This paper describes the tissue immunolocalization of porcine SP-D (pSP-D) in normal slaughter pigs using a monoclonal antibody raised against purified pSP-D. Porcine SP-D was purified from porcine bronchoalveolar lavage (BAL) by maltose-agarose and immunoglobulin M affinity...

  7. Dendritic development of Drosophila high order visual system neurons is independent of sensory experience

    Directory of Open Access Journals (Sweden)

    Reuter John E

    2003-06-01

    Full Text Available Abstract Background The complex and characteristic structures of dendrites are a crucial part of the neuronal architecture that underlies brain function, and as such, their development has been a focal point of recent research. It is generally believed that dendritic development is controlled by a combination of endogenous genetic mechanisms and activity-dependent mechanisms. Therefore, it is of interest to test the relative contributions of these two types of mechanisms towards the construction of specific dendritic trees. In this study, we make use of the highly complex Vertical System (VS of motion sensing neurons in the lobula plate of the Drosophila visual system to gauge the importance of visual input and synaptic activity to dendritic development. Results We find that the dendrites of VS1 neurons are unchanged in dark-reared flies as compared to control flies raised on a 12 hour light, 12 hour dark cycle. The dendrites of these flies show no differences from control in dendrite complexity, spine number, spine density, or axon complexity. Flies with genetically ablated eyes show a slight but significant reduction in the complexity and overall length of VS1 dendrites, although this effect may be due to a reduction in the overall size of the dendritic field in these flies. Conclusions Overall, our results indicate no role for visual experience in the development of VS dendrites, while spontaneous activity from photoreceptors may play at most a subtle role in the formation of fully complex dendrites in these high-order visual processing neurons.

  8. Dendritic branching of olfactory bulb mitral and tufted cells: regulation by TrkB.

    Directory of Open Access Journals (Sweden)

    Fumiaki Imamura

    2009-08-01

    Full Text Available Projection neurons of mammalian olfactory bulb (OB, mitral and tufted cells, have dendrites whose morphologies are specifically differentiated for efficient odor information processing. The apical dendrite extends radially and arborizes in single glomerulus where it receives primary input from olfactory sensory neurons that express the same odor receptor. The lateral dendrites extend horizontally in the external plexiform layer and make reciprocal dendrodendritic synapses with granule cells, which moderate mitral/tufted cell activity. The molecular mechanisms regulating dendritic development of mitral/tufted cells is one of the unsolved important problems in the olfactory system. Here, we focused on TrkB receptors to test the hypothesis that neurotrophin-mediate mechanisms contributed to dendritic differentiation of OB mitral/tufted cells.With immunohistochemical analysis, we found that the TrkB neurotrophin receptor is expressed by both apical and lateral dendrites of mitral/tufted cells and that expression is evident during the early postnatal days when these dendrites exhibit their most robust growth and differentiation. To examine the effect of TrkB activation on mitral/tufted cell dendritic development, we cultured OB neurons. When BDNF or NT4 were introduced into the cultures, there was a significant increase in the number of primary neurites and branching points among the mitral/tufted cells. Moreover, BDNF facilitated filopodial extension along the neurites of mitral/tufted cells.In this report, we show for the first time that TrkB activation stimulates the dendritic branching of mitral/tufted cells in developing OB. This suggests that arborization of the apical dendrite in a glomerulus is under the tight regulation of TrkB activation.

  9. Functional Identification of Dendritic Cells in the Teleost Model, Rainbow Trout (Oncorhynchus mykiss)

    Science.gov (United States)

    Bassity, Elizabeth; Clark, Theodore G.

    2012-01-01

    Dendritic cells are specialized antigen presenting cells that bridge innate and adaptive immunity in mammals. This link between the ancient innate immune system and the more evolutionarily recent adaptive immune system is of particular interest in fish, the oldest vertebrates to have both innate and adaptive immunity. It is unknown whether dendritic cells co-evolved with the adaptive response, or if the connection between innate and adaptive immunity relied on a fundamentally different cell type early in evolution. We approached this question using the teleost model organism, rainbow trout (Oncorhynchus mykiss), with the aim of identifying dendritic cells based on their ability to stimulate naïve T cells. Adapting mammalian protocols for the generation of dendritic cells, we established a method of culturing highly motile, non-adherent cells from trout hematopoietic tissue that had irregular membrane processes and expressed surface MHCII. When side-by-side mixed leukocyte reactions were performed, these cells stimulated greater proliferation than B cells or macrophages, demonstrating their specialized ability to present antigen and therefore their functional homology to mammalian dendritic cells. Trout dendritic cells were then further analyzed to determine if they exhibited other features of mammalian dendritic cells. Trout dendritic cells were found to have many of the hallmarks of mammalian DCs including tree-like morphology, the expression of dendritic cell markers, the ability to phagocytose small particles, activation by toll-like receptor-ligands, and the ability to migrate in vivo. As in mammals, trout dendritic cells could be isolated directly from the spleen, or larger numbers could be derived from hematopoietic tissue and peripheral blood mononuclear cells in vitro. PMID:22427987

  10. Location-dependent excitatory synaptic interactions in pyramidal neuron dendrites.

    Directory of Open Access Journals (Sweden)

    Bardia F Behabadi

    Full Text Available Neocortical pyramidal neurons (PNs receive thousands of excitatory synaptic contacts on their basal dendrites. Some act as classical driver inputs while others are thought to modulate PN responses based on sensory or behavioral context, but the biophysical mechanisms that mediate classical-contextual interactions in these dendrites remain poorly understood. We hypothesized that if two excitatory pathways bias their synaptic projections towards proximal vs. distal ends of the basal branches, the very different local spike thresholds and attenuation factors for inputs near and far from the soma might provide the basis for a classical-contextual functional asymmetry. Supporting this possibility, we found both in compartmental models and electrophysiological recordings in brain slices that the responses of basal dendrites to spatially separated inputs are indeed strongly asymmetric. Distal excitation lowers the local spike threshold for more proximal inputs, while having little effect on peak responses at the soma. In contrast, proximal excitation lowers the threshold, but also substantially increases the gain of distally-driven responses. Our findings support the view that PN basal dendrites possess significant analog computing capabilities, and suggest that the diverse forms of nonlinear response modulation seen in the neocortex, including uni-modal, cross-modal, and attentional effects, could depend in part on pathway-specific biases in the spatial distribution of excitatory synaptic contacts onto PN basal dendritic arbors.

  11. Identification of the porcine homologous of human disease causing trinucleotide repeat sequences

    DEFF Research Database (Denmark)

    Madsen, Lone Bruhn; Thomsen, Bo; Sølvsten, Christina Ane Elisabeth

    2007-01-01

    in this paper the identification of porcine noncoding and polyglutamine-encoding TNR regions and the comparison to the homologous TNRs from human, chimpanzee, dog, opossum, rat, and mouse. Several of the porcine TNR regions are highly polymorphic both within and between different breeds. The TNR regions...

  12. Equine dendritic cells generated with horse serum have enhanced functionality in comparison to dendritic cells generated with fetal bovine serum

    OpenAIRE

    Ziegler, Anja; Everett, Helen; Hamza, Eman; Garbani, Mattia; Gerber, Vinzenz; Marti, Eliane; Steinbach, Falko

    2016-01-01

    BACKGROUND: Dendritic cells are professional antigen-presenting cells that play an essential role in the initiation and modulation of T cell responses. They have been studied widely for their potential clinical applications, but for clinical use to be successful, alternatives to xenogeneic substances like fetal bovine serum (FBS) in cell culture need to be found. Protocols for the generation of dendritic cells ex vivo from monocytes are well established for several species, including hor...

  13. Development of non-dendritic microstructures in AA6061 cast billets

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.-D.; Chadwick, T.A.; Bryant, J.D. [Reynolds Metals Co., Chester, VA (United States)

    2000-07-01

    Non-dendritic structures have been shown to have many advantages over conventional, dendritic structures in castable aluminum alloys. Examples include high structural integrity, reduced porosity, excellent formability and enhanced near net-shape forming capability. Non-dendritic materials are characterized by an equiaxed, globularized grain structure. Previous work has focused on the application of these structures in traditional casting alloys such as A356 and A357, and on the processing of these alloys during semi-solid forming and squeeze casting. There is considerably less information on the impact of non-dendritic microstructures upon solid state deformation, and the use of such microstructures in the processing of traditional wrought aluminum alloys. In this paper, we will present our recent work in casting non-dendritic AA6061 alloy using different techniques, and discuss the effects of cast structure on deformation behavior during solid state processing at elevated temperatures. Cast microstructures were modified during direct chill casting using three different methods: magneto-hydrodynamic (MHD) agitation, mechanical stirring, and high loadings of grain refiner. A detailed microstructure characterization will be presented and discussed in terms of structural integrity, grain morphology, and their effects on deformation in the solid state. (orig.)

  14. Nanofibrous nonwovens based on dendritic-linear-dendritic poly(ethylene glycol) hybrids

    DEFF Research Database (Denmark)

    Kikionis, Stefanos; Ioannou, Efstathia; Andren, Oliver C.J.

    2017-01-01

    unsuccessful. Nevertheless, when these DLD hybrids were blended with an array of different biodegradable polymers as entanglement enhancers, nanofibrous nonwovens were successfully prepared by electrospinning. The pseudogeneration degree of the DLDs, the nature of the co-electrospun polymer and the solvent...... nanofibers. Such dendritic nanofibrous scaffolds can be promising materials for biomedical applications due to their biocompatibility, biodegradability, multifunctionality, and advanced structural architecture....

  15. D1 receptors regulate dendritic morphology in normal and stressed prelimbic cortex.

    Science.gov (United States)

    Lin, Grant L; Borders, Candace B; Lundewall, Leslie J; Wellman, Cara L

    2015-01-01

    Both stress and dysfunction of prefrontal cortex are linked to psychological disorders, and structure and function of medial prefrontal cortex (mPFC) are altered by stress. Chronic restraint stress causes dendritic retraction in the prelimbic region (PL) of mPFC in rats. Dopamine release in mPFC increases during stress, and chronic administration of dopaminergic agonists results in dendritic remodeling. Thus, stress-induced alterations in dopaminergic transmission in PL may contribute to dendritic remodeling. We examined the effects of dopamine D1 receptor (D1R) blockade in PL during daily restraint stress on dendritic morphology in PL. Rats either underwent daily restraint stress (3h/day, 10 days) or remained unstressed. In each group, rats received daily infusions of either the D1R antagonist SCH23390 or vehicle into PL prior to restraint; unstressed and stressed rats that had not undergone surgery were also examined. On the final day of restraint, rats were euthanized and brains were processed for Golgi histology. Pyramidal neurons in PL were reconstructed and dendritic morphology was quantified. Vehicle-infused stressed rats demonstrated dendritic retraction compared to unstressed rats, and D1R blockade in PL prevented this effect. Moreover, in unstressed rats, D1R blockade produced dendritic retraction. These effects were not due to attenuation of the HPA axis response to acute stress: plasma corticosterone levels in a separate group of rats that underwent acute restraint stress with or without D1R blockade were not significantly different. These findings indicate that dopaminergic transmission in mPFC during stress contributes directly to the stress-induced retraction of apical dendrites, while dopamine transmission in the absence of stress is important in maintaining normal dendritic morphology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. File list: InP.Bld.10.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.10.AllAg.Dendritic_Cells hg19 Input control Blood Dendritic Cells SRX627429...,SRX627427 http://dbarchive.biosciencedbc.jp/kyushu-u/hg19/assembled/InP.Bld.10.AllAg.Dendritic_Cells.bed ...

  17. Data for spatial characterization of AC signal propagation over primary neuron dendrites

    Directory of Open Access Journals (Sweden)

    Hojeong Kim

    2016-03-01

    Full Text Available Action potentials generated near the soma propagate not only into the axonal nerve connecting to the adjacent neurons but also into the dendrites interacting with a diversity of synaptic inputs as well as voltage gated ion channels. Measuring voltage attenuation factors between the soma and all single points of the dendrites in the anatomically reconstructed primary neurons with the same cable properties, we report the signal propagation data showing how the alternating current (AC signal such as action potentials back-propagates over the dendrites among different types of primary neurons. Fitting equations and their parameter values for the data are also presented to quantitatively capture the spatial profile of AC signal propagation from the soma to the dendrites in primary neurons. Our data is supplemental to our original study for the dependency of dendritic signal propagation and excitability, and their relationship on the cell type-specific structure in primary neurons (DOI: 10.1016/j.neulet.2015.10.017 [1]. Keywords: Primary neurons, Dendritic signal processing, AC signal propagation, Voltage attenuation analysis

  18. Geranylgeranyltransferase I is essential for dendritic development of cerebellar Purkinje cells

    Directory of Open Access Journals (Sweden)

    Wu Kong-Yan

    2010-06-01

    Full Text Available Abstract Background During cerebellar development, Purkinje cells (PCs form the most elaborate dendritic trees among neurons in the brain, but the mechanism regulating PC arborization remains largely unknown. Geranylgeranyltransferase I (GGT is a prenyltransferase that is responsible for lipid modification of several signaling proteins, such as Rho family small GTPase Rac1, which has been shown to be involved in neuronal morphogenesis. Here we show that GGT plays an important role in dendritic development of PCs. Results We found that GGT was abundantly expressed in the developing rat cerebellum, in particular molecular layer (ML, the region enriched with PC dendrites. Inhibition or down-regulation of GGT using small interference RNA (siRNA inhibited dendritic development of PCs. In contrast, up-regulation of GGT promoted dendritic arborization of PCs. Furthermore, neuronal depolarization induced by high K+ or treatment with brain-derived neurotrophic factor (BDNF promoted membrane association of Rac1 and dendritic development of PCs in cultured cerebellar slices. The effect of BDNF or high K+ was inhibited by inhibition or down-regulation of GGT. Conclusion Our results indicate that GGT plays an important role in Purkinje cell development, and suggest a novel role of GGT in neuronal morphogenesis in vivo.

  19. An anatomical study of porcine peripheral nerve and its potential use in nerve tissue engineering

    Science.gov (United States)

    Zilic, Leyla; Garner, Philippa E; Yu, Tong; Roman, Sabiniano; Haycock, John W; Wilshaw, Stacy-Paul

    2015-01-01

    Current nerve tissue engineering applications are adopting xenogeneic nerve tissue as potential nerve grafts to help aid nerve regeneration. However, there is little literature that describes the exact location, anatomy and physiology of these nerves to highlight their potential as a donor graft. The aim of this study was to identify and characterise the structural and extracellular matrix (ECM) components of porcine peripheral nerves in the hind leg. Methods included the dissection of porcine nerves, localisation, characterisation and quantification of the ECM components and identification of nerve cells. Results showed a noticeable variance between porcine and rat nerve (a commonly studied species) in terms of fascicle number. The study also revealed that when porcine peripheral nerves branch, a decrease in fascicle number and size was evident. Porcine ECM and nerve fascicles were found to be predominately comprised of collagen together with glycosaminoglycans, laminin and fibronectin. Immunolabelling for nerve growth factor receptor p75 also revealed the localisation of Schwann cells around and inside the fascicles. In conclusion, it is shown that porcine peripheral nerves possess a microstructure similar to that found in rat, and is not dissimilar to human. This finding could extend to the suggestion that due to the similarities in anatomy to human nerve, porcine nerves may have utility as a nerve graft providing guidance and support to regenerating axons. PMID:26200940

  20. Apparatus for growing a dendritic web

    International Nuclear Information System (INIS)

    Duncan, C.S.; Mchugh, J.P.; Piotrowski, P.A.; Skutch, M.E.

    1983-01-01

    A melt system including a susceptor-crucible assembly having improved gradient control when melt replenishment is used during dendritic web growth. The improvement lies in the formation of a thermal barrier in the base of the receptor which is in the form of a vertical slot in the region of the susceptor underlying the crucible at the location of a compartmental separator dividing the crucible into a growth compartment and a melt replenishment compartment. The result achieved is a step change in temperature gradient in the melt thereby providing a more uniform temperature in the growth compartment from which the dendritic web is drawn

  1. Chemoresistance of human monocyte-derived dendritic cells is regulated by IL-17A.

    Directory of Open Access Journals (Sweden)

    Selma Olsson Åkefeldt

    Full Text Available Dendritic cells initiate adaptive immune responses, leading either to control cancer by effector T cells or to exacerbate cancer by regulatory T cells that inhibit IFN-γ-mediated Th1-type response. Dendritic cells can also induce Th17-type immunity, mediated by IL-17A. However, the controversial role of this cytokine in cancer requires further investigations. We generated dendritic cells from peripheral blood monocytes to investigate lifespan, phenotype and chemoresistance of dendritic cells, treated with IL-17A with or without IFN-γ. Studying the expression of Bcl-2 family members, we demonstrated that dendritic cells constitutively express one pro-survival Bcl-2 member: MCL1. Immature dendritic cells were CD40(lowHLADR(low CD1a(+ MCL1(+, did not express CD14, CD68 or BCL2A1, and displayed a short 2-day lifespan. IL-17A-treated DC exhibited a semi-mature (CD40(high HLADR(low pre-M2 (CCL22(+ CD206(+ CD163(+ IL1RN(+ IL-10(- CXCL10(- IL-12(- mixed (CD1a(+ CD14+ CD68(+ macrophage-dendritic cell phenotype. They efficiently exerted mannose receptor-mediated endocytosis and did not produce superoxide anions, in the absence of TLR engagement. Interestingly, IL-17A promoted a long-term survival of dendritic cells, beyond 12 days, that correlated to BCL2A1 induction, a pro-survival Bcl-2 family member. BCL2A1 transcription was activated by NF-κB, downstream of IL-17A transduction. Thus, immature dendritic cells only express MCL1, whereas IL-17A-treated dendritic cells concomitantly expressed two pro-survival Bcl-2 family members: MCL1 and BCL2A1. These latter developed chemoresistance to 11 of the 17 chemotherapy agents tested. However, high doses of either vinblastine or cytarabine decreased MCL1 expression and induced dendritic cell death. When IL-17A is produced in vivo, administration of anti-IL-17A biotherapy may impair dendritic cell survival by targeting BCL2A1 expression. Consequently, depending on the effector or regulatory role of dendritic

  2. Porcine cluster of differentiation (CD) markers 2018 update.

    Science.gov (United States)

    Dawson, Harry D; Lunney, Joan K

    2018-06-01

    Pigs are a major source of food worldwide; preventing and treating their infectious diseases is essential, requiring a thorough understanding of porcine immunity. The use of pigs as models for human physiology is a growing area; progress in this area has been limited because the immune toolkit is not robust. The international community has established cluster of differentiation (CD) markers for assessing cells involved in immunity as well as characterizing numerous other cells like stem cells. Overall, for humans 419 proteins have been designated as CD markers, each reacting with a defined set of antibodies (Abs). This paper summarizes current knowledge of swine CD markers and identifies 359 corresponding CD proteins in pigs. A broad-based literature and vendor search was conducted to identify defined sets of monoclonal (mAbs) and polyclonal Abs (pAbs) reacting with porcine CD markers along with other reagents (fusion proteins, ELISAs, PCR assays, and gene edited cell and pig models). This process identified over 800 reagents that are reportedly reactive with 266 pig CD markers. Despite this number, there is a great need to develop and characterize additional CD marker reagents, particularly mAbs, for pig research. There are numerous high priority targets: reagents for the characterization of porcine innate lymphoid cells, polarized macrophages and T regulatory cells and for the detection of porcine CD45 isoforms. Overall, improved technologies and genomics have contributed to dramatic increases in our knowledge of the pig, its immune system, disease and vaccine responses, and utility as a biomedical model. The development of more CD reagents will clearly advance these initiatives. Published by Elsevier Ltd.

  3. Discovery of a novel putative atypical porcine pestivirus in pigs in the USA.

    Science.gov (United States)

    Hause, Ben M; Collin, Emily A; Peddireddi, Lalitha; Yuan, Fangfeng; Chen, Zhenhai; Hesse, Richard A; Gauger, Phillip C; Clement, Travis; Fang, Ying; Anderson, Gary

    2015-10-01

    Pestiviruses are some of the most significant pathogens affecting ruminants and swine. Here, we assembled a 11 276 bp contig encoding a predicted 3635 aa polyprotein from porcine serum with 68 % pairwise identity to that of a recently partially characterized Rhinolophus affinis pestivirus (RaPV) and approximately 25-28 % pairwise identity to those of other pestiviruses. The virus was provisionally named atypical porcine pestivirus (APPV). Metagenomic sequencing of 182 serum samples identified four additional APPV-positive samples. Positive samples originated from five states and ELISAs using recombinant APPV Erns found cross-reactive antibodies in 94 % of a collection of porcine serum samples, suggesting widespread distribution of APPV in the US swine herd. The molecular and serological results suggest that APPV is a novel, highly divergent porcine pestivirus widely distributed in US pigs.

  4. Porcine, murine and human sialoadhesin (Sn/Siglec-1/CD169): portals for porcine reproductive and respiratory syndrome virus entry into target cells.

    Science.gov (United States)

    Van Breedam, Wander; Verbeeck, Mieke; Christiaens, Isaura; Van Gorp, Hanne; Nauwynck, Hans J

    2013-09-01

    Porcine sialoadhesin (pSn; a sialic acid-binding lectin) and porcine CD163 (pCD163) are molecules that facilitate infectious entry of porcine reproductive and respiratory syndrome virus (PRRSV) into alveolar macrophages. In this study, it was shown that murine Sn (mSn) and human Sn (hSn), like pSn, can promote PRRSV infection of pCD163-expressing cells. Intact sialic acid-binding domains are crucial, since non-sialic acid-binding mutants of pSn, mSn and hSn did not promote infection. Endodomain-deletion mutants of pSn, mSn and hSn promoted PRRSV infection less efficiently, but also showed markedly reduced expression levels, making further research into the potential role of the Sn endodomain in PRRSV receptor activity necessary. These data further complement our knowledge on Sn as an important PRRSV receptor, and suggest - in combination with other published data - that species differences in the main PRRSV entry mediators Sn and CD163 do not account for the strict host species specificity displayed by the virus.

  5. hamlet, a binary genetic switch between single- and multiple- dendrite neuron morphology.

    Science.gov (United States)

    Moore, Adrian W; Jan, Lily Yeh; Jan, Yuh Nung

    2002-08-23

    The dendritic morphology of neurons determines the number and type of inputs they receive. In the Drosophila peripheral nervous system (PNS), the external sensory (ES) neurons have a single nonbranched dendrite, whereas the lineally related multidendritic (MD) neurons have extensively branched dendritic arbors. We report that hamlet is a binary genetic switch between these contrasting morphological types. In hamlet mutants, ES neurons are converted to an MD fate, whereas ectopic hamlet expression in MD precursors results in transformation of MD neurons into ES neurons. Moreover, hamlet expression induced in MD neurons undergoing dendrite outgrowth drastically reduces arbor branching.

  6. Enteric porcine viruses in farmed shellfish in Denmark.

    Science.gov (United States)

    Krog, J S; Larsen, L E; Schultz, A C

    2014-09-01

    Bivalve shellfish are at constant risk of being exposed to pathogens as a consequence of contamination of the shellfish beds with human or animal waste originating from sewage treatment plants or slurry fertilized fields. Consumption of contaminated oysters and mussels are frequently reported as causes of disease outbreaks caused by norovirus or hepatitis A virus. Other zoonotic pathogens such as hepatitis E virus (HEV), rotavirus (RV) and Salmonella from livestock may also be transmitted to shellfish via this route. In this study, 29 pooled samples from commercial Danish blue mussels were tested for porcine pathogens and indicator bacteria Escherichia coli (E. coli). All samples tested negative for HEV, RV and Salmonella, whereas E. coli and the highly stable porcine circovirus type 2 (PCV2) were detected in eight and 12 samples, respectively. This is the first study to report the detection of PCV2 in commercial mussels. Based on the detection of PCV2 in clean areas with low prevalence of the normally applied fecal indicator E. coli, testing for PCV2 may be a more sensitive and robust specific porcine waste indicator in shellfish harvesting areas. Copyright © 2014. Published by Elsevier B.V.

  7. PINK1 regulates mitochondrial trafficking in dendrites of cortical neurons through mitochondrial PKA.

    Science.gov (United States)

    Das Banerjee, Tania; Dagda, Raul Y; Dagda, Marisela; Chu, Charleen T; Rice, Monica; Vazquez-Mayorga, Emmanuel; Dagda, Ruben K

    2017-08-01

    Mitochondrial Protein Kinase A (PKA) and PTEN-induced kinase 1 (PINK1), which is linked to Parkinson's disease, are two neuroprotective serine/threonine kinases that regulate dendrite remodeling and mitochondrial function. We have previously shown that PINK1 regulates dendrite morphology by enhancing PKA activity. Here, we show the molecular mechanisms by which PINK1 and PKA in the mitochondrion interact to regulate dendrite remodeling, mitochondrial morphology, content, and trafficking in dendrites. PINK1-deficient cortical neurons exhibit impaired mitochondrial trafficking, reduced mitochondrial content, fragmented mitochondria, and a reduction in dendrite outgrowth compared to wild-type neurons. Transient expression of wild-type, but not a PKA-binding-deficient mutant of the PKA-mitochondrial scaffold dual-specificity A Kinase Anchoring Protein 1 (D-AKAP1), restores mitochondrial trafficking, morphology, and content in dendrites of PINK1-deficient cortical neurons suggesting that recruiting PKA to the mitochondrion reverses mitochondrial pathology in dendrites induced by loss of PINK1. Mechanistically, full-length and cleaved forms of PINK1 increase the binding of the regulatory subunit β of PKA (PKA/RIIβ) to D-AKAP1 to enhance the autocatalytic-mediated phosphorylation of PKA/RIIβ and PKA activity. D-AKAP1/PKA governs mitochondrial trafficking in dendrites via the Miro-2/TRAK2 complex and by increasing the phosphorylation of Miro-2. Our study identifies a new role of D-AKAP1 in regulating mitochondrial trafficking through Miro-2, and supports a model in which PINK1 and mitochondrial PKA participate in a similar neuroprotective signaling pathway to maintain dendrite connectivity. © 2017 International Society for Neurochemistry.

  8. Immunological Characterization of Whole Tumour Lysate-Loaded Dendritic Cells for Cancer Immunotherapy

    Science.gov (United States)

    Ottobrini, Luisa; Biasin, Mara; Borelli, Manuela; Lucignani, Giovanni; Trabattoni, Daria; Clerici, Mario

    2016-01-01

    Introduction Dendritic cells play a key role as initiators of T-cell responses, and even if tumour antigen-loaded dendritic cells can induce anti-tumour responses, their efficacy has been questioned, suggesting a need to enhance immunization strategies. Matherials & Methods We focused on the characterization of bone marrow-derived dendritic cells pulsed with whole tumour lysate (TAA-DC), as a source of known and unknown antigens, in a mouse model of breast cancer (MMTV-Ras). Dendritic cells were evaluated for antigen uptake and for the expression of MHC class I/II and costimulatory molecules and markers associated with maturation. Results Results showed that antigen-loaded dendritic cells are characterized by a phenotypically semi-mature/mature profile and by the upregulation of genes involved in antigen presentation and T-cell priming. Activated dendritic cells stimulated T-cell proliferation and induced the production of high concentrations of IL-12p70 and IFN-γ but only low levels of IL-10, indicating their ability to elicit a TH1-immune response. Furthermore, administration of Antigen loaded-Dendritic Cells in MMTV-Ras mice evoked a strong anti-tumour response in vivo as demonstrated by a general activation of immunocompetent cells and the release of TH1 cytokines. Conclusion Data herein could be useful in the design of antitumoral DC-based therapies, showing a specific activation of immune system against breast cancer. PMID:26795765

  9. Exercise Maintains Dendritic Complexity in an Animal Model of Posttraumatic Stress Disorder.

    Science.gov (United States)

    Hoffman, Jay R; Cohen, Hadas; Ostfeld, Ishay; Kaplan, Zeev; Zohar, Joseph; Cohen, Hagit

    2016-12-01

    This study examined the effect of endurance exercise on dendritic arborization in the dentate gyrus subregion in rodents exposed to a predator scent stress (PSS). Sprague-Dawley rats were randomly assigned to one of four treatment groups. In two of the groups, rats were unexposed to PSS but either remained sedentary (SED + UNEXP) or were exercised (EX + UNEXP). In the other two groups, rats were exposed to the PSS but either remained sedentary (SED + PSS) or were exercised (EX + PSS). After 6 wk of either exercise or sedentary lifestyle, rats were exposed to either the PSS or a sham protocol. During exercise, the animals ran on a treadmill at 15 m·min, 5 min·d gradually increasing to 20 min·d, 5 d·wk for 6 wk. Eight days after exposure to either PSS or sham protocol, changes in the cytoarchitecture (dendritic number, dendritic length, and dendrite spine density) of the dentate gyrus subregion of the hippocampus were assessed. No differences (P = 0.493) were noted in dendritic number between the groups. However, dendritic length and dendrite spine density for SED + PSS was significantly smaller (P animals in SED + PSS had significantly fewer (P stress. This provides further evidence for supporting the inclusion of an exercise regimen for reducing the risk of posttraumatic stress disorder.

  10. The shaping of two distinct dendritic spikes by A-type voltage-gated K+ channels

    Directory of Open Access Journals (Sweden)

    Sungchil eYang

    2015-12-01

    Full Text Available Dendritic ion channels have been a subject of intense research in neuroscience because active ion channels in dendrites shape input signals. Ca2+-permeable channels including NMDA receptors (NMDARs have been implicated in supralinear dendritic integration, and the IA conductance in sublinear integration. Despite their essential roles in dendritic integration, it has remained uncertain whether these conductances coordinate with, or counteract, each other in the process of dendritic integration. To address this question, experiments were designed in hippocampal CA1 neurons with a recent 3D digital holography system that has shown excellent performance for spatial photoactivation. The results demonstrated a role of IA as a key contributor to two distinct dendritic spikes, low- and high-threshold Ca2+ spikes, through a preferential action of IA on Ca2+-permeable channel-mediated currents, over fast AMPAR-mediated currents. It is likely that the rapid kinetics of IA provides feed-forward inhibition to counteract the delayed Ca2+ channel-mediated dendritic excitability. This research reveals one dynamic ionic mechanism of dendritic integration, and may contribute to a new understanding of neuronal hyperexcitability embedded in several neural diseases such as epilepsy, fragile X syndrome and Alzheimer's disease.

  11. File list: InP.Bld.05.AllAg.Dendritic_Cells [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.Bld.05.AllAg.Dendritic_Cells mm9 Input control Blood Dendritic Cells SRX885956,...76,SRX122481,SRX667880,SRX667874,SRX667878 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.Bld.05.AllAg.Dendritic_Cells.bed ...

  12. Lipid Supplement in the Cultural Condition Facilitates the Porcine iPSC Derivation through cAMP/PKA/CREB Signal Pathway

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-02-01

    Full Text Available Large numbers of lipids exist in the porcine oocytes and early embryos and have the positive effects on their development, suggesting that the lipids may play an important role in pluripotency establishment and maintenance in pigs. However, the effects of lipids and their metabolites, such as fatty acids on reprogramming and the pluripotency gene expression of porcine-induced pluripotent stem cells (iPSCs, are unclear. Here, we generated the porcine iPSCs that resemble the mouse embryonic stem cells (ESCs under lipid and fatty-acid-enriched cultural conditions (supplement of AlbuMAX. These porcine iPSCs show positive for the ESCs pluripotency markers and have the differentiation abilities to all three germ layers, and importantly, have the capability of aggregation into the inner cell mass (ICM of porcine blastocysts. We further confirmed that lipid and fatty acid enriched condition can promote the cell proliferation and improve reprogramming efficiency by elevating cAMP levels. Interestingly, this lipids supplement promotes mesenchymal–epithelial transition (MET through the cAMP/PKA/CREB signal pathway and upregulates the E-cadherin expression during porcine somatic cell reprogramming. The lipids supplement also makes a contribution to lipid droplets accumulation in the porcine iPSCs that resemble porcine preimplantation embryos. These findings may facilitate understanding of the lipid metabolism in porcine iPSCs and lay the foundation of bona fide porcine embryonic stem cell derivation.

  13. Occurrences of dendritic gold at the McLaughlin Mine hot-spring gold deposit

    Science.gov (United States)

    Sherlock, R. L.; Lehrman, N. J.

    1995-06-01

    Two styles of gold dendrites are variably developed at the McLaughlin Mine. The most abundant occurrence is hosted by amber-coloured hydrocarbon-rich opal. Silica likely precipitated from a boiling hydrothermal fluid and complexed with immiscible hydrocarbons forming an amorphous hydrocarbon-silica phase. This phase likely scavenged particulate gold by electrostatic attraction to the hydrocarbon-silica phase. The dendritic nature of the gold is secondary and is the result of dewatering of the amorphous hydrocarbon-silica phase and crystallization of gold into syneresis fractures. The second style of dendritic gold is hosted within vein swarms that focused large volumes of fluid flow. The dendrites occur along with hydrocarbon-rich silica at the upper contact of the vein margins which isolated the dendrites allowing sufficient time for them to grow. In a manner similar to the amber-coloured opal, the dendrites may have formed by scavenging particulate gold by electrostatic attraction to the hydrocarbon-silica phase.

  14. Sarcomeres pattern proprioceptive sensory dendritic endings through Perlecan/UNC-52 in C. elegans

    Science.gov (United States)

    Liang, Xing; Dong, Xintong; Moerman, Donald G.; Shen, Kang; Wang, Xiangming

    2015-01-01

    Sensory dendrites innervate peripheral tissues through cell-cell interactions that are poorly understood. The proprioceptive neuron PVD in C. elegans extends regular terminal dendritic branches between muscle and hypodermis. We found that the PVD branch pattern was instructed by adhesion molecule SAX-7/L1CAM, which formed regularly spaced stripes on the hypodermal cell. The regularity of the SAX-7 pattern originated from the repeated and regularly spaced dense body of the sarcomeres in the muscle. The extracellular proteoglycan, UNC-52/Perlecan, links the dense body to the hemidesmosome on the hypodermal cells, which in turn instructed the SAX-7 stripes and PVD dendrites. Both UNC-52 and hemidesmosome components exhibited highly regular stripes that interdigitated with the SAX-7 stripe and PVD dendrites, reflecting the striking precision of subcellular patterning between muscle, hypodermis and dendrites. Hence, the muscular contractile apparatus provides the instructive cues to pattern proprioceptive dendrites. PMID:25982673

  15. Action potential-independent and pharmacologically unique vesicular serotonin release from dendrites

    Science.gov (United States)

    Colgan, Lesley A.; Cavolo, Samantha L.; Commons, Kathryn G.; Levitan, Edwin S.

    2012-01-01

    Serotonin released within the dorsal raphe nucleus (DR) induces feedback inhibition of serotonin neuron activity and consequently regulates mood-controlling serotonin release throughout the forebrain. Serotonin packaged in vesicles is released in response to action potentials by the serotonin neuron soma and terminals, but the potential for release by dendrites is unknown. Here three-photon (3P) microscopy imaging of endogenous serotonin in living rat brain slice, immunofluorescence and immuno-gold electron microscopy detection of VMAT2 (vesicular monoamine transporter 2) establish the presence of vesicular serotonin within DR dendrites. Furthermore, activation of glutamate receptors is shown to induce vesicular serotonin release from dendrites. However, unlike release from the soma and terminals, dendritic serotonin release is independent of action potentials, relies on L-type Ca2+ channels, is induced preferentially by NMDA, and displays distinct sensitivity to the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. The unique control of dendritic serotonin release has important implications for DR physiology and the antidepressant action of SSRIs, dihydropyridines and NMDA receptor antagonists. PMID:23136413

  16. Location matters: the endoplasmic reticulum and protein trafficking in dendrites

    Directory of Open Access Journals (Sweden)

    Omar A Ramírez

    2011-01-01

    Full Text Available Neurons are highly polarized, but the trafficking mechanisms that operate in these cells and the topological organization of their secretory organelles are still poorly understood. Particularly incipient is our knowledge of the role of the neuronal endoplasmic reticulum. Here we review the current understanding of the endoplasmic reticulum in neurons, its structure, composition, dendritic distribution and dynamics. We also focus on the trafficking of proteins through the dendritic endoplasmic reticulum, emphasizing the relevance of transport, retention, assembly of multi-subunit protein complexes and export. We additionally discuss the roles of the dendritic endoplasmic reticulum in synaptic plasticity.

  17. Calcium transient prevalence across the dendritic arbour predicts place field properties.

    Science.gov (United States)

    Sheffield, Mark E J; Dombeck, Daniel A

    2015-01-08

    Establishing the hippocampal cellular ensemble that represents an animal's environment involves the emergence and disappearance of place fields in specific CA1 pyramidal neurons, and the acquisition of different spatial firing properties across the active population. While such firing flexibility and diversity have been linked to spatial memory, attention and task performance, the cellular and network origin of these place cell features is unknown. Basic integrate-and-fire models of place firing propose that such features result solely from varying inputs to place cells, but recent studies suggest instead that place cells themselves may play an active role through regenerative dendritic events. However, owing to the difficulty of performing functional recordings from place cell dendrites, no direct evidence of regenerative dendritic events exists, leaving any possible connection to place coding unknown. Using multi-plane two-photon calcium imaging of CA1 place cell somata, axons and dendrites in mice navigating a virtual environment, here we show that regenerative dendritic events do exist in place cells of behaving mice, and, surprisingly, their prevalence throughout the arbour is highly spatiotemporally variable. Furthermore, we show that the prevalence of such events predicts the spatial precision and persistence or disappearance of place fields. This suggests that the dynamics of spiking throughout the dendritic arbour may play a key role in forming the hippocampal representation of space.

  18. Effect of the dendritic morphology on hot tearing of carbon steels

    International Nuclear Information System (INIS)

    Ridolfi, M R

    2016-01-01

    Hot tears form during solidification in the brittle region of the dendritic front. Most hot tearing criteria are based on solid and fluid mechanics, being the phenomenon strictly depending on the solid resistance to applied strains and on the liquid capability of filling the void spaces. Modelling both mechanisms implies the precise description of the dendritic morphology. To this scope, the theory of coalescence of the dendritic arms at grain boundaries of Rappaz et al. has been applied, in this work, to the columnar growth of carbon steels by means of a simple mathematical model. Depending on the alloy composition, solid bridging starts at solid fractions down to about 0.8 and up to above 0.995 (very low carbon). The morphology of the brittle region changes drastically with increasing carbon and adding other solutes. In particular, ferritic dendrites, typical of low carbon steels, tend to offer short and wide interdendritic spaces to the surrounding liquid making possible their complete filling, and few solid bridges; peritectic steels show the rise of austenite growing and bridging rapidly in the interdendritic spaces, preventing void formation; austenitic dendrites form long and narrow interdendritic spaces difficult to reach for the liquid and with a lot of solid bridges. Sulphur addition mainly acts in delaying the coalescence end, more markedly in ferritic dendrites. (paper)

  19. Dendritic nonlinearities are tuned for efficient spike-based computations in cortical circuits.

    Science.gov (United States)

    Ujfalussy, Balázs B; Makara, Judit K; Branco, Tiago; Lengyel, Máté

    2015-12-24

    Cortical neurons integrate thousands of synaptic inputs in their dendrites in highly nonlinear ways. It is unknown how these dendritic nonlinearities in individual cells contribute to computations at the level of neural circuits. Here, we show that dendritic nonlinearities are critical for the efficient integration of synaptic inputs in circuits performing analog computations with spiking neurons. We developed a theory that formalizes how a neuron's dendritic nonlinearity that is optimal for integrating synaptic inputs depends on the statistics of its presynaptic activity patterns. Based on their in vivo preynaptic population statistics (firing rates, membrane potential fluctuations, and correlations due to ensemble dynamics), our theory accurately predicted the responses of two different types of cortical pyramidal cells to patterned stimulation by two-photon glutamate uncaging. These results reveal a new computational principle underlying dendritic integration in cortical neurons by suggesting a functional link between cellular and systems--level properties of cortical circuits.

  20. EFFECT OF NATURAL PLANT EXTRACTS ON PORCINE OVARIAN FUNCTIONS

    Directory of Open Access Journals (Sweden)

    Attila Kádasi

    2015-02-01

    Full Text Available This report provides information about the impact of chosen natural plant extracts on basic ovarian functions. This article summarizes our results concerning the effect of selected plant extracts on proliferation, apoptosis and hormone secretion – release of progesterone (P4, testosterone (T and leptin (L on porcine granulosa cells (GC, We analyzed effects of ginkgo (GB, rooibos (RB, flaxseed (FL, green tea polyphenols (GTPP, green tea - epigallocatechin-3-gallate (EGCG, resveratrol (RSV and curcumin (CURC (0; 1; 10 and 100 μg.ml-1 on markers of proliferation, apoptosis and secretory activity of porcine ovarian granulosa cells by using immunocytochemistry and EIA. It was demonstrated, that all these natural plants and plant molecules inhibited the accumulation of proliferation-related peptide (PCNA and apoptosis-associated peptide (Bax in cultured. Furthermore, it was observed that natural plant extracts altered progesterone, testosterone and leptin release in porcine ovarian cells. It is concluded, that GB, RB, FL, RSV, CURC, GTPP and EGCG can directly affect ovarian cells and therefore they could potentially influence ovarian functions.

  1. Pro-apoptotic Effect of Pifithrin-α on Preimplantation Porcine Fertilized Embryo Development

    Directory of Open Access Journals (Sweden)

    Brendan Mulligan

    2012-12-01

    Full Text Available The aim of this study was to investigate the impact of a reported p53 inhibitor, pifithrin-α (PFT-α, on preimplantation porcine in vitro fertilized (IVF embryo development in culture. Treatment of PFT-α was administered at both early (0 to 48 hpi, and later stages (48 to 168 hpi of preimplantation development, and its impact upon the expression of five genes related to apoptosis (p53, bak, bcl-xL, p66Shc and caspase3, was assessed in resulting d 7 blastocysts, using real-time quantitative PCR. Total cell numbers, along with the number of apoptotic nuclei, as detected by the in situ cell death detection assay, were also calculated on d 7 in treated and non-treated control embryos. The results indicate that PFT-α, when administered at both early and later stages of porcine IVF embryo development, increases the incidence of apoptosis in resulting blastocysts. When administered at early cleavage stages, PFT-α treatment was shown to reduce the developmental competence of porcine IVF embryos, as well as reducing the quality of resulting blastocysts in terms of overall cell numbers. In contrast, at later stages, PFT-α administration resulted in marginally increased blastocyst development rates amongst treated embryos, but did not affect cell numbers. However, PFT-α treatment induced apoptosis and apoptotic related gene expression, in all treated embryos, irrespective of the timing of treatment. Our results indicate that PFT-α may severely compromise the developmental potential of porcine IVF embryos, and is a potent apoptotic agent when placed into porcine embryo culture media. Thus, caution should be exercised when using PFT-α as a specific inhibitor of p53 mediated apoptosis, in the context of porcine IVF embryo culture systems.

  2. Molecular characterization and analysis of the porcine NURR1 gene

    Directory of Open Access Journals (Sweden)

    Knud Larsen

    2016-12-01

    Here we report the isolation and characterization of porcine NURR1 cDNA. The NURR1 cDNA was RT-PCR cloned using NURR1-specific oligonucleotide primers derived from in silico sequences. The porcine NURR1 cDNA encodes a polypeptide of 598 amino acids, displaying a very high similarity with bovine, human and mouse (99% NURR1 protein. Expression analysis revealed a differential NURR1 mRNA expression in various organs and tissues. NURR1 transcripts could be detected as early as at 60 days of embryo development in different brain tissues. A significant increase in NURR1 transcript in the cerebellum and a decrease in NURR1 transcript in the basal ganglia was observed during embryo development. The porcine NURR1 gene was mapped to chromosome 15. Two missense mutations were found in exon 3, the first coding exon of NURR1. Methylation analysis of the porcine NURR1 gene body revealed a high methylation degree in brain tissue, whereas methylation of the promoter was very low. A decrease in DNA methylation in a discrete region of the NURR1 promoter was observed in pig frontal cortex during pig embryo development. This observation correlated with an increase in NURR1 transcripts. Therefore, methylation might be a determinant of NURR1 expression at certain time points in embryo development.

  3. REMOD: a computational tool for remodeling neuronal dendrites

    Directory of Open Access Journals (Sweden)

    Panagiotis Bozelos

    2014-05-01

    Full Text Available In recent years, several modeling studies have indicated that dendritic morphology is a key determinant of how individual neurons acquire a unique signal processing profile. The highly branched dendritic structure that originates from the cell body, explores the surrounding 3D space in a fractal-like manner, until it reaches a certain amount of complexity. Its shape undergoes significant alterations not only in various neuropathological conditions, but in physiological, too. Yet, despite the profound effect that these alterations can have on neuronal function, the causal relationship between structure and function remains largely elusive. The lack of a systematic approach for remodeling neuronal cells and their dendritic trees is a key limitation that contributes to this problem. In this context, we developed a computational tool that allows the remodeling of any type of neurons, given a set of exemplar morphologies. The tool is written in Python and provides a simple GUI that guides the user through various options to manipulate selected neuronal morphologies. It provides the ability to load one or more morphology files (.swc or .hoc and choose specific dendrites to operate one of the following actions: shrink, remove, extend or branch (as shown in Figure 1. The user retains complete control over the extent of each alteration and if a chosen action is not possible due to pre-existing structural constraints, appropriate warnings are produced. Importantly, the tool can also be used to extract morphology statistics for one or multiple morphologies, including features such as the total dendritic length, path length to the root, branch order, diameter tapering, etc. Finally, an experimental utility enables the user to remodel entire dendritic trees based on preloaded statistics from a database of cell-type specific neuronal morphologies. To our knowledge, this is the first tool that allows (a the remodeling of existing –as opposed to the de novo

  4. Simulation of dendritic growth of magnesium alloys with fluid flow

    Directory of Open Access Journals (Sweden)

    Meng-wu Wu

    2017-11-01

    Full Text Available Fluid flow has a significant impact on the microstructure evolution of alloys during solidification. Based on the previous work relating simulation of the dendritic growth of magnesium alloys with hcp (hexagonal close-packed structure, an extension was made to the formerly established CA (cellular automaton model with the purpose of studying the effect of fluid flow on the dendritic growth of magnesium alloys. The modified projection method was used to solve the transport equations of flow field. By coupling the flow field with the solute field, simulation results of equiaxed and columnar dendritic growth of magnesium alloys with fluid flow were achieved. The simulated results were quantitatively compared with those without fluid flow. Moreover, a comparison was also made between the present work and previous works conducted by others. It can be concluded that a deep understanding of the dendritic growth of magnesium alloys with fluid flow can be obtained by applying the present numerical model.

  5. Thermo-solutal growth of an anisotropic dendrite with six-fold symmetry

    Science.gov (United States)

    Alexandrov, D. V.; Galenko, P. K.

    2018-03-01

    A stable growth of dendritic crystal with the six-fold crystalline anisotropy is analyzed in a binary nonisothermal mixture. A selection criterion representing a relationship between the dendrite tip velocity and its tip diameter is derived on the basis of morphological stability analysis and solvability theory. A complete set of nonlinear equations, consisting of the selection criterion and undercooling balance condition, which determines implicit dependencies of the dendrite tip velocity and tip diameter as functions of the total undercooling, is formulated. Exact analytical solutions of these nonlinear equations are found in a parametric form. Asymptotic solutions describing the crystal growth at small Péclet numbers are determined. Theoretical predictions are compared with experimental data obtained for ice dendrites growing in binary water-ethylenglycol solutions as well as in pure water.

  6. The Isothermal Dendritic Growth Experiment Archive

    Science.gov (United States)

    Koss, Matthew

    2009-03-01

    The growth of dendrites is governed by the interplay between two simple and familiar processes---the irreversible diffusion of energy, and the reversible work done in the formation of new surface area. To advance our understanding of these processes, NASA sponsored a project that flew on the Space Shuttle Columbia is 1994, 1996, and 1997 to record and analyze benchmark data in an apparent-microgravity ``laboratory.'' In this laboratory, energy transfer by gravity driven convection was essentially eliminated and one could test independently, for the first time, both components of dendritic growth theory. The analysis of this data shows that although the diffusion of energy can be properly accounted for, the results from interfacial physics appear to be in disagreement and alternate models should receive increased attention. Unfortunately, currently and for the foreseeable future, there is no access or financial support to develop and conduct additional experiments of this type. However, the benchmark data of 35mm photonegatives, video, and all supporting instrument data are now available at the IDGE Archive at the College of the Holy Cross. This data may still have considerable relevance to researchers working specifically with dendritic growth, and more generally those working in the synthesis, growth & processing of materials, multiscale computational modeling, pattern formation, and systems far from equilibrium.

  7. Separate transcriptionally regulated pathways specify distinct classes of sister dendrites in a nociceptive neuron.

    Science.gov (United States)

    O'Brien, Barbara M J; Palumbos, Sierra D; Novakovic, Michaela; Shang, Xueying; Sundararajan, Lakshmi; Miller, David M

    2017-12-15

    The dendritic processes of nociceptive neurons transduce external signals into neurochemical cues that alert the organism to potentially damaging stimuli. The receptive field for each sensory neuron is defined by its dendritic arbor, but the mechanisms that shape dendritic architecture are incompletely understood. Using the model nociceptor, the PVD neuron in C. elegans, we determined that two types of PVD lateral branches project along the dorsal/ventral axis to generate the PVD dendritic arbor: (1) Pioneer dendrites that adhere to the epidermis, and (2) Commissural dendrites that fasciculate with circumferential motor neuron processes. Previous reports have shown that the LIM homeodomain transcription factor MEC-3 is required for all higher order PVD branching and that one of its targets, the claudin-like membrane protein HPO-30, preferentially promotes outgrowth of pioneer branches. Here, we show that another MEC-3 target, the conserved TFIIA-like zinc finger transcription factor EGL-46, adopts the alternative role of specifying commissural dendrites. The known EGL-46 binding partner, the TEAD transcription factor EGL-44, is also required for PVD commissural branch outgrowth. Double mutants of hpo-30 and egl-44 show strong enhancement of the lateral branching defect with decreased numbers of both pioneer and commissural dendrites. Thus, HPO-30/Claudin and EGL-46/EGL-44 function downstream of MEC-3 and in parallel acting pathways to direct outgrowth of two distinct classes of PVD dendritic branches. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Significant Down-Regulation of “Biological Adhesion” Genes in Porcine Oocytes after IVM

    Directory of Open Access Journals (Sweden)

    Joanna Budna

    2017-12-01

    Full Text Available Proper maturation of the mammalian oocyte is a compound processes determining successful monospermic fertilization, however the number of fully mature porcine oocytes is still unsatisfactory. Since oocytes’ maturation and fertilization involve cellular adhesion and membranous contact, the aim was to investigate cell adhesion ontology group in porcine oocytes. The oocytes were collected from ovaries of 45 pubertal crossbred Landrace gilts and subjected to two BCB tests. After the first test, only granulosa cell-free BCB+ oocytes were directly exposed to microarray assays and RT-qPCR (“before IVM” group, or first in vitro matured and then if classified as BCB+ passed to molecular analyses (“after IVM” group. As a result, we have discovered substantial down-regulation of genes involved in adhesion processes, such as: organization of actin cytoskeleton, migration, proliferation, differentiation, apoptosis, survival or angiogenesis in porcine oocytes after IVM, compared to oocytes analyzed before IVM. In conclusion, we found that biological adhesion may be recognized as the process involved in porcine oocytes’ successful IVM. Down-regulation of genes included in this ontology group in immature oocytes after IVM points to their unique function in oocyte’s achievement of fully mature stages. Thus, results indicated new molecular markers involved in porcine oocyte IVM, displaying essential roles in biological adhesion processes.

  9. POMT1-associated walker-warburg syndrome: a disorder of dendritic development of neocortical neurons.

    Science.gov (United States)

    Judas, M; Sedmak, G; Rados, M; Sarnavka, V; Fumić, K; Willer, T; Gross, C; Hehr, U; Strahl, S; Cuk, M; Barić, I

    2009-02-01

    We have analyzed the morphology and dendritic development of neocortical neurons in a 2.5-month-old infant with Walker-Warburg syndrome homozygotic for a novel POMT1 gene mutation, by Golgi methods. We found that pyramidal neurons frequently displayed abnormal (oblique, horizontal, or inverted) orientation. A novel finding of this study is that members of the same population of pyramidal neurons display different stages of development of their dendritic arborizations: some neurons had poorly developed dendrites and thus resembled pyramidal neurons of the late fetal cortex; for some neurons, the level of differentiation corresponded to that in the newborn cortex; finally, some neurons had quite elaborate dendritic trees as expected for the cortex of 2.5-month-old infant. In addition, apical dendrites of many pyramidal neurons were conspiciously bent to one side, irrespective to the general orientation of the pyramidal neuron. These findings suggest that Walker-Warburg lissencephaly is characterized by two hitherto unnoticed pathogenetic changes in the cerebral cortex: (a) heterochronic decoupling of dendritic maturation within the same neuronal population (with some members significantly lagging behind the normal maturational schedule) and (b) anisotropically distorted shaping of dendritic trees, probably caused by patchy displacement of molecular guidance cues for dendrites in the malformed cortex. Copyright Georg Thieme Verlag KG Stuttgart New York.

  10. Effect of plasma viremia on apoptosis and immunophenotype of dendritic cells subsets in acute SIVmac239 infection of Chinese rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Hou-Jun Xia

    Full Text Available Non-human primates such as Chinese rhesus macaques (Ch Rhs provide good animal models for research on human infectious diseases. Similar to humans, there are two principal subsets of dendritic cells (DCs in the peripheral blood of Ch Rhs: myeloid DCs (mDCs and plasmacytoid DCs (pDCs. In this study, two-color fluorescence-activated cell sorting (FACS analyses were used to identify the main DC subsets, namely CD1c(+ mDCs and pDCs from Ch Rhs. Then, the apoptosis and immunophenotype changes of DCs subsets were first described during the acute phase of SIVmac239 infection. Both the DCs subsets showed decreased CD4 expression and enhanced CCR5 expression; in particular, those of pDCs significantly changed at most time points. Interestingly, the plasma viral loads were negatively correlated with CD4 expression, but were positively correlated with CCR5 expression of pDCs. During this period, both CD1c(+ mDCs and pDCs were activated by enhancing expressions of co-stimulatory molecules, accompanied with increase in CCR7. Either CD80 or CD86 expressed on CD1c(+ mDCs and pDCs was positively correlated with the plasma viral loads. Our analysis demonstrates that the pDCs were more prone to apoptosis after infection during the acute phase of SIVmac239 infection, which may be due to their high expressions of CD4 and CCR5. Both DCs subsets activated through elevating the expression of co-stimulatory molecules, which was beneficial in controlling the replication of SIV. However, a mere broad immune activation initiated by activated DCs may lead to tragic AIDS progression.

  11. Spiny Neurons of Amygdala, Striatum and Cortex Use Dendritic Plateau Potentials to Detect Network UP States

    Directory of Open Access Journals (Sweden)

    Katerina D Oikonomou

    2014-09-01

    Full Text Available Spiny neurons of amygdala, striatum, and cerebral cortex share four interesting features: [1] they are the most abundant cell type within their respective brain area, [2] covered by thousands of thorny protrusions (dendritic spines, [3] possess high levels of dendritic NMDA conductances, and [4] experience sustained somatic depolarizations in vivo and in vitro (UP states. In all spiny neurons of the forebrain, adequate glutamatergic inputs generate dendritic plateau potentials (dendritic UP states characterized by (i fast rise, (ii plateau phase lasting several hundred milliseconds and (iii abrupt decline at the end of the plateau phase. The dendritic plateau potential propagates towards the cell body decrementally to induce a long-lasting (longer than 100 ms, most often 200 – 800 ms steady depolarization (~20 mV amplitude, which resembles a neuronal UP state. Based on voltage-sensitive dye imaging, the plateau depolarization in the soma is precisely time-locked to the regenerative plateau potential taking place in the dendrite. The somatic plateau rises after the onset of the dendritic voltage transient and collapses with the breakdown of the dendritic plateau depolarization. We hypothesize that neuronal UP states in vivo reflect the occurrence of dendritic plateau potentials (dendritic UP states. We propose that the somatic voltage waveform during a neuronal UP state is determined by dendritic plateau potentials. A mammalian spiny neuron uses dendritic plateau potentials to detect and transform coherent network activity into a ubiquitous neuronal UP state. The biophysical properties of dendritic plateau potentials allow neurons to quickly attune to the ongoing network activity, as well as secure the stable amplitudes of successive UP states.

  12. Barriers in the brain : resolving dendritic spine morphology and compartmentalization

    NARCIS (Netherlands)

    Adrian, Max; Kusters, Remy; Wierenga, Corette J; Storm, Cornelis; Hoogenraad, Casper C; Kapitein, Lukas C

    2014-01-01

    Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50-400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and

  13. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Jianlong; Li, Pengwei; Sang, Shengbo, E-mail: sbsang@tyut.edu.cn; Zhang, Wendong, E-mail: wdzhang@tyut.edu.cn; Li, Gang; Hu, Jie [Micro and Nano-system Research Centre, College of Information Engineering, Taiyuan University of Technology, 030024, Taiyuan (China); Zhou, Zhaoying, E-mail: zhouzy@mail.tsinghua.edu.cn; Yang, Xing; Dong, Hualai [MEMS Laboratory, Department of Precision Instruments, Tsinghua University, 100084, Beijing (China)

    2014-03-15

    Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM), energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA) models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO) flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS) activity, using 4-mercaptopyridine (4-MP) as model molecules.

  14. Electrodeposition of Au/Ag bimetallic dendrites assisted by Faradaic AC-electroosmosis flow

    Directory of Open Access Journals (Sweden)

    Jianlong Ji

    2014-03-01

    Full Text Available Au/Ag bimetallic dendrites were synthesized successfully from the corresponding aqueous solution via the AC electrodeposition method. Both of the morphologies and compositions could be tuned by the electrolyte concentration and AC frequency. The prepared bimetallic dendrites were characterized by scanning electron microscopy (SEM, energy dispersive X-ray spectrometer (EDS, transmission electron microscopy (TEM and UV–vis spectroscopy. The underlying dendrite growth mechanism was then proposed in the context of the Directed Electrochemical Nanowires Assembly (DENA models. Owing to the unscreened voltage dropping in the electrolyte bulk, electromigration dominates the species flux process, and cations tend to accumulate in areas with strong electric field intensity, such as electrode edges. Moreover, Faradaic AC-electro-osmosis (ACEO flow could increase the effective diffusion layer thickness in these areas during the electrochemical reaction, and leads to dendrite growth. Further Micro-Raman observations illustrated that the Au/Ag bimetallic dendrites exhibited pronounced surface-enhanced Raman scattering (SERS activity, using 4-mercaptopyridine (4-MP as model molecules.

  15. Search for a solute-drag effect in dendritic solidification

    International Nuclear Information System (INIS)

    Eckler, K.; Herlach, D.M.; Aziz, M.J.

    1994-01-01

    The authors report the results of an indirect experimental test for the solute-drag effect in alloy solidification by fitting the data of Eckler et.al. for Ni-B dendrite tip velocities vs undercooling to models in several ways. The unknown equilibrium partition coefficient, k e , was varied as a fitting parameter. When they combine the dendrite growth model of Boettinger et al. with the Continuous Growth Model (CGM) of Aziz and Kaplan with solute drag, they cannot fit the data for any value of k e . When they combine dendrite growth theory with the CGM without solute drag, they obtain a reasonable fit to the data for k e = 4 x 10 -6 . When they combine dendrite growth theory with a new partial-solute-drag interpolation between the with-solute-drag and the without-solute-drag versions of the CGM, they obtain a still better fit to the data for k e = 2.8 x 10 - 4. This result points out the possibility of partial solute-drag during solidification and the importance of an independent determination of k e in order to distinguish between models

  16. Appraisal of the porcine kidney autotransplantation model

    NARCIS (Netherlands)

    Post, Ivo C. J. H.; Dirkes, Marcel C.; Heger, Michal; van Loon, Johannes P. A. M.; Swildens, Bas; Huijzer, Goos M.; van Gulik, Thomas M.

    2012-01-01

    Animal models are extensively used for transplantation related research, especially kidney transplantation. Porcine autotransplantation models are considered to be favorable regarding translatability to the human setting. The key determinants for translatability of the model are discussed,

  17. Comparison of the effect of fatty alcohols on the permeation of melatonin between porcine and human skin.

    Science.gov (United States)

    Andega, S; Kanikkannan, N; Singh, M

    2001-11-09

    Melatonin (MT) is a hormone secreted by the pineal gland that plays an important role in the regulation of the circadian sleep-wake cycle. It would be advantageous to administer MT using a transdermal delivery system for the treatment of sleep disorders such as delayed sleep syndrome, jet lag in travelers, cosmonauts and shift workers. The porcine skin has been found to have similar morphological and functional characteristics as human skin. The elastic fibres in the dermis, enzyme pattern of the epidermis, epidermal tissue turnover time, keratinous proteins and thickness of epidermis of porcine skin are similar to human skin. However, the fat deposition and vascularisation of the cutaneous glands of porcine skin are different from human skin. In addition, porcine skin has been found to have a close permeability character to human skin. However, the comparative effect of chemical penetration enhancers on the permeation of drugs between porcine and human skin has not been reported. The purpose of this study was to compare the effect of fatty alcohols on the permeability of porcine and human skin using MT as a model compound. The effect of saturated fatty alcohols (octanol, nonanol, decanol, undecanol, lauryl alcohol, tridecanol, myristyl alcohol) and unsaturated fatty alcohols (oleyl alcohol, linoleyl alcohol, linolenyl alcohol) at 5% concentration was tested across dermatomed porcine and human skin. Our studies showed a parabolic relationship between the carbon chain length of saturated fatty alcohols and permeation enhancement of MT with both porcine and human skin. Maximum permeation of MT was observed when fatty alcohol carbon chain length was 10. In general, as the level of unsaturation increased from one to two double bonds, there was an increase in the permeation of MT both in porcine and human skin. However, a decrease in the permeation was observed with three double bonds. Regression analysis using the steady state flux data showed a significant positive

  18. Age-Based Comparison of Human Dendritic Spine Structure Using Complete Three-Dimensional Reconstructions

    Science.gov (United States)

    Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; Robles, Victor; Yuste, Rafael; DeFelipe, Javier

    2013-01-01

    Dendritic spines of pyramidal neurons are targets of most excitatory synapses in the cerebral cortex. Recent evidence suggests that the morphology of the dendritic spine could determine its synaptic strength and learning rules. However, unfortunately, there are scant data available regarding the detailed morphology of these structures for the human cerebral cortex. In the present study, we analyzed over 8900 individual dendritic spines that were completely 3D reconstructed along the length of apical and basal dendrites of layer III pyramidal neurons in the cingulate cortex of 2 male humans (aged 40 and 85 years old), using intracellular injections of Lucifer Yellow in fixed tissue. We assembled a large, quantitative database, which revealed a major reduction in spine densities in the aged case. Specifically, small and short spines of basal dendrites and long spines of apical dendrites were lost, regardless of the distance from the soma. Given the age difference between the cases, our results suggest selective alterations in spines with aging in humans and indicate that the spine volume and length are regulated by different biological mechanisms. PMID:22710613

  19. Photoinduced electron transfer between the dendritic zinc phthalocyanines and anthraquinone

    Science.gov (United States)

    Chen, Kuizhi; Wen, Junri; Liu, Jiangsheng; Chen, Zhenzhen; Pan, Sujuan; Huang, Zheng; Peng, Yiru

    2015-03-01

    The intermolecular electron transfer between the novel dendritic zinc (II) phthalocyanines (G1-DPcB and G2-DPcB) and anthraquinone (AQ) was studied by steady-state fluorescence and UV/Vis absorption spectroscopic methods. The effect of dendron generation on intermolecular electron transfer was investigated. The results showed that the fluorescence emission of these dendritic phthalocyanines could be greatly quenched by AQ upon excitation at 610 nm. The Stern- Volmer constant (KSV) of electron transfer was decreased with increasing the dendron generations. Our study suggested that these novel dendritic phthalocyanines were effective new electron donors and transmission complexes and could be used as a potential artifical photosysthesis system.

  20. Isolation and culture of porcine neural progenitor cells from embryos and pluripotent stem cells

    DEFF Research Database (Denmark)

    Rasmussen, Mikkel Aabech; Hall, Vanessa Jane; Hyttel, Poul

    2013-01-01

    from porcine embryos or induced pluripotent stem cells is presented. The neural induction is performed in coculture and the isolation of rosette structures is carried out manually to ensure a homogenous population of NPCs. Using this method, multipotent NPCs can be obtained in approximately 1 month......The isolation and culture of neural progenitor cells (NPCs) from pluripotent stem cells has facilitated in vitro mechanistic studies of diseases related to the nervous system, as well as discovery of new medicine. In addition, NPCs are envisioned to play a crucial role in future cell replacement...... therapy. The pig has become recognized as an important large animal model and establishment of in vitro-derived porcine NPCs would allow for preclinical safety testing by transplantation in a porcine biomedical model. In this chapter, a detailed method for isolation and in vitro culture of porcine NPCs...

  1. Transcription analysis of the porcine alveolar macrophage response to Mycoplasma hyopneumoniae.

    Directory of Open Access Journals (Sweden)

    Li Bin

    Full Text Available Mycoplasma hyopneumoniae is considered the major causative agent of porcine respiratory disease complex, occurs worldwide and causes major economic losses to the pig industry. To gain more insights into the pathogenesis of this organism, the high throughput cDNA microarray assays were employed to evaluate host responses of porcine alveolar macrophages to M. hyopneumoniae infection. A total of 1033 and 1235 differentially expressed genes were identified in porcine alveolar macrophages in responses to exposure to M. hyopneumoniae at 6 and 15 hours post infection, respectively. The differentially expressed genes were involved in many vital functional classes, including inflammatory response, immune response, apoptosis, cell adhesion, defense response, signal transduction, protein folding, protein ubiquitination and so on. The pathway analysis demonstrated that the most significant pathways were the chemokine signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, nucleotide-binding oligomerization domains (Nod-like receptor signaling pathway and apoptosis signaling pathway. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR. The expression kinetics of chemokines was further analyzed. The present study is the first to document the response of porcine alveolar macrophages to M. hyopneumoniae infection. The data further developed our understanding of the molecular pathogenesis of M. hyopneumoniae.

  2. Transcription analysis of the porcine alveolar macrophage response to Mycoplasma hyopneumoniae.

    Science.gov (United States)

    Bin, Li; Luping, Du; Bing, Sun; Zhengyu, Yu; Maojun, Liu; Zhixin, Feng; Yanna, Wei; Haiyan, Wang; Guoqing, Shao; Kongwang, He

    2014-01-01

    Mycoplasma hyopneumoniae is considered the major causative agent of porcine respiratory disease complex, occurs worldwide and causes major economic losses to the pig industry. To gain more insights into the pathogenesis of this organism, the high throughput cDNA microarray assays were employed to evaluate host responses of porcine alveolar macrophages to M. hyopneumoniae infection. A total of 1033 and 1235 differentially expressed genes were identified in porcine alveolar macrophages in responses to exposure to M. hyopneumoniae at 6 and 15 hours post infection, respectively. The differentially expressed genes were involved in many vital functional classes, including inflammatory response, immune response, apoptosis, cell adhesion, defense response, signal transduction, protein folding, protein ubiquitination and so on. The pathway analysis demonstrated that the most significant pathways were the chemokine signaling pathway, Toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway, nucleotide-binding oligomerization domains (Nod)-like receptor signaling pathway and apoptosis signaling pathway. The reliability of the data obtained from the microarray was verified by performing quantitative real-time PCR. The expression kinetics of chemokines was further analyzed. The present study is the first to document the response of porcine alveolar macrophages to M. hyopneumoniae infection. The data further developed our understanding of the molecular pathogenesis of M. hyopneumoniae.

  3. Interdigitated electrode (IDE) for porcine detection based on titanium dioxide (TiO_2) thin films

    International Nuclear Information System (INIS)

    Nordin, N.; Azizah, N.; Hashim, U.

    2016-01-01

    Interdigited Electrode (IDE) porcine detection can be accomplished to authenticate the halal issue that has been a concern to Muslim not only in Malaysia but all around the world. The method used is photolithography that used the p-type photoresist on the spin coater with 2500 rpm. Bare IDEs device is deposited with Titanium Dioxide (TiO_2) to improve the performance of the device. The result indicates that current-voltage (I-V) measurement of porcine probe line slightly above porcine target due to negative charges repelled each other. The IDE device can detect the porcine presence in food as lowest as 1.0 µM. Better performance of the device can be achieved with the replacement of gold deposited to trigger more sensitivity of the device.

  4. Interdigitated electrode (IDE) for porcine detection based on titanium dioxide (TiO2) thin films

    Science.gov (United States)

    Nordin, N.; Hashim, U.; Azizah, N.

    2016-07-01

    Interdigited Electrode (IDE) porcine detection can be accomplished to authenticate the halal issue that has been a concern to Muslim not only in Malaysia but all around the world. The method used is photolithography that used the p-type photoresist on the spin coater with 2500 rpm. Bare IDEs device is deposited with Titanium Dioxide (TiO2) to improve the performance of the device. The result indicates that current-voltage (I-V) measurement of porcine probe line slightly above porcine target due to negative charges repelled each other. The IDE device can detect the porcine presence in food as lowest as 1.0 µM. Better performance of the device can be achieved with the replacement of gold deposited to trigger more sensitivity of the device.

  5. Dendritic protein synthesis in the normal and diseased brain

    Science.gov (United States)

    Swanger, Sharon A.; Bassell, Gary J.

    2015-01-01

    Synaptic activity is a spatially-limited process that requires a precise, yet dynamic, complement of proteins within the synaptic micro-domain. The maintenance and regulation of these synaptic proteins is regulated, in part, by local mRNA translation in dendrites. Protein synthesis within the postsynaptic compartment allows neurons tight spatial and temporal control of synaptic protein expression, which is critical for proper functioning of synapses and neural circuits. In this review, we discuss the identity of proteins synthesized within dendrites, the receptor-mediated mechanisms regulating their synthesis, and the possible roles for these locally synthesized proteins. We also explore how our current understanding of dendritic protein synthesis in the hippocampus can be applied to new brain regions and to understanding the pathological mechanisms underlying varied neurological diseases. PMID:23262237

  6. Immunity and Tolerance Induced by Intestinal Mucosal Dendritic Cells

    Directory of Open Access Journals (Sweden)

    Julio Aliberti

    2016-01-01

    Full Text Available Dendritic cells present in the digestive tract are constantly exposed to environmental antigens, commensal flora, and invading pathogens. Under steady-state conditions, these cells have high tolerogenic potential, triggering differentiation of regulatory T cells to protect the host from unwanted proinflammatory immune responses to innocuous antigens or commensals. On the other hand, these cells must discriminate between commensal flora and invading pathogens and mount powerful immune response against pathogens. A potential result of unbalanced tolerogenic versus proinflammatory responses mediated by dendritic cells is associated with chronic inflammatory conditions, such as Crohn’s disease, ulcerative colitis, food allergies, and celiac disease. Herein, we review the dendritic cell population involved in mediating tolerance and immunity in mucosal surfaces, the progress in unveiling their development in vivo, and factors that can influence their functions.

  7. A new and efficient culture method for porcine bone marrow-derived M1- and M2-polarized macrophages.

    Science.gov (United States)

    Gao, Jiye; Scheenstra, Maaike R; van Dijk, Albert; Veldhuizen, Edwin J A; Haagsman, Henk P

    2018-06-01

    Macrophages play an important role in the innate immune system as part of the mononuclear phagocyte system (MPS). They have a pro-inflammatory signature (M1-polarized macrophages) or anti-inflammatory signature (M2-polarized macrophages) based on expression of surface receptors and secretion of cytokines. However, very little is known about the culture of macrophages from pigs and more specific about the M1 and M2 polarization in vitro. Porcine monocytes or mononuclear bone marrow cells were used to culture M1- and M2-polarized macrophages in the presence of GM-CSF and M-CSF, respectively. Surface receptor expression was measured with flow cytometry and ELISA was used to quantify cytokine secretion in response to LPS and PAM 3 CSK 4 stimulation. Human monocyte-derived macrophages were used as control. Porcine M1- and M2-polarized macrophages were cultured best using porcine GM-CSF and murine M-CSF, respectively. Cultures from bone marrow cells resulted in a higher yield M1- and M2-polarized macrophages which were better comparable to human monocyte-derived macrophages than cultures from porcine monocytes. Porcine M1-polarized macrophages displayed the characteristic fried egg shape morphology, lower CD163 expression and low IL-10 production. Porcine M2-polarized macrophages contained the spindle-like morphology, higher CD163 expression and high IL-10 production. Porcine M1- and M2-polarized macrophages can be most efficiently cultured from mononuclear bone marrow cells using porcine GM-CSF and murine M-CSF. The new culture method facilitates more refined studies of porcine macrophages in vitro, important for both porcine and human health since pigs are increasingly used as model for translational research. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Dendritic calcium activity precedes inspiratory bursts in preBotzinger complex neurons

    DEFF Research Database (Denmark)

    Del Negro, Christopher A; Hayes, John A; Rekling, Jens C

    2011-01-01

    to evoke a Ca(2+)-activated inward current that contributes to inspiratory burst generation. We measured Ca(2+) transients by two-photon imaging dendrites while recording neuronal somata electrophysiologically. Dendritic Ca(2+) accumulation frequently precedes inspiratory bursts, particularly at recording...

  9. Modelling dendritic ecological networks in space: An integrated network perspective

    Science.gov (United States)

    Erin E. Peterson; Jay M. Ver Hoef; Dan J. Isaak; Jeffrey A. Falke; Marie-Josee Fortin; Chris E. Jordan; Kristina McNyset; Pascal Monestiez; Aaron S. Ruesch; Aritra Sengupta; Nicholas Som; E. Ashley Steel; David M. Theobald; Christian E. Torgersen; Seth J. Wenger

    2013-01-01

    Dendritic ecological networks (DENs) are a unique form of ecological networks that exhibit a dendritic network topology (e.g. stream and cave networks or plant architecture). DENs have a dual spatial representation; as points within the network and as points in geographical space. Consequently, some analytical methods used to quantify relationships in other types of...

  10. Characterisation of the porcine eyeball as an in-vitro model for dry eye.

    Science.gov (United States)

    Menduni, Francesco; Davies, Leon N; Madrid-Costa, D; Fratini, Antonio; Wolffsohn, James S

    2018-02-01

    To characterise the anatomical parameters of the porcine eye for potentially using it as a laboratory model of dry eye. Anterior chamber depth and angle, corneal curvature, shortest and longest diameter, endothelial cell density, and pachymetry were measured in sixty freshly enucleated porcine eyeballs. Corneal steepest meridian was 7.85±0.32mm, corneal flattest meridian was 8.28±0.32mm, shortest corneal diameter was 12.69±0.58mm, longest corneal diameter was 14.88±0.66mm and central corneal ultrasonic pachymetry was 1009±1μm. Anterior chamber angle was 28.83±4.16°, anterior chamber depth was 1.77±0.27mm, and central corneal thickness measured using OCT was 1248±144μm. Corneal endothelial cell density was 3250±172 cells/mm 2 . Combining different clinical techniques produced a pool of reproducible data on the porcine eye anatomy, which can be used by researchers to assess the viability of using the porcine eye as an in-vitro/ex-vivo model for dry eye. Due to the similar morphology with the human eye, porcine eyeballs may represent a useful and cost effective model to individually study important key factors in the development of dry eye, such as environmental and mechanical stresses. Copyright © 2017 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  11. Purification and characterization of glutaryl-CoA dehydrogenase from porcine and human liver

    International Nuclear Information System (INIS)

    Lenich, A.C.

    1985-01-01

    Glutaryl-CoA dehydrogenase (GCDH) was purified from porcine liver mitochondria by pH and ammonium sulfate fractionations followed by a series of column chromatographies. The purified porcine enzyme was found by sodium dodecyl-sulfate polyacrylamide gel electrophoresis to have a subunit molecular weight of 47,800 and by gradient polyacrylamide gel electrophoresis (PAGE) to have a native molecular weight of approximately 186,000. The product of the GCDH reaction with its primary substrate, glutaryl-CoA, was investigated by radio-gas chromatography and found to be crotonyl-CoA. Alternate substrates as well as crotonyl-CoA, the glutaryl-CoA reaction end product, demonstrated competitive inhibition when incubated with (1,5- 14 C)-glutaryl-CoA in the presence of porcine GCDH. Kinetic parameters for the interaction of both ETF and glutaryl-CoA with porcine GCDH were determined. Purified porcine GCDH was used to produce an antiserum which cross-reacted with human liver GCDH with a reaction of partial identity, but proved too insensitive to detect GCDH in control human fibroblasts. As a result of these negative findings, GCDH was purified by a series of column chromatographies from human liver. The purified human enzyme was found by SDS-PAGE and gel filtration to have subunit and native molecular weights of 58,800 and 256,000 respectively

  12. Dendritic Ni(Cu)-polypyrrole hybrid films for a pseudo-capacitor.

    Science.gov (United States)

    Choi, Bit Na; Chun, Woo Won; Qian, Aniu; Lee, So Jeong; Chung, Chan-Hwa

    2015-11-28

    Dendritic Ni(Cu)-polypyrrole hybrid films are fabricated for a pseudo-capacitor in a unique morphology using two simple methods: electro-deposition and electrochemical de-alloying. Three-dimensional structures of porous dendrites are prepared by electro-deposition within the hydrogen evolution reaction (HER) at a high cathodic potential; the high-surface-area structure provides sufficient redox reactions between the electrodes and the electrolyte. The dependence of the active-layer thickness on the super-capacitor performance is also investigated, and the 60 μm-thick Ni(Cu)PPy hybrid electrode presents the highest performance of 659.52 F g(-1) at the scan rate of 5 mV s(-1). In the thicker layers, the specific capacitance became smaller due to the diffusion limitation of the ions in an electrolyte. The polypyrrole-hybridization on the porous dendritic Ni(Cu) electrode provides superior specific capacitance and excellent cycling stability due to the improvement in electric conductivity by the addition of conducting polypyrrole in the matrices of the dendritic nano-porous Ni(Cu) layer and the synergistic effect of composite materials.

  13. Cloning and expression of porcine SRPK1 gene

    African Journals Online (AJOL)

    Academic Journals

    2012-01-10

    Jan 10, 2012 ... different porcine tissue and skeletal muscle repair processes. ... Biology Engineering Technology Service Co., Ltd; while ethanol, agarose gel DNA ..... muscle fiber regeneration after bupivacaine hydrochloride-and acid.

  14. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells

    International Nuclear Information System (INIS)

    Gao, Hui; Lin, Lu; Haq, Ihtesham Ul; Zeng, Shen-ming

    2016-01-01

    The transcription factor nuclear factor-κB (NF-κB) plays an important role in diverse processes, including cell proliferation and differentiation, apoptosis and inflammation. However, the role of NF-κB in porcine follicle development is not clearly elucidated. In this study, we demonstrated that follicle stimulating hormone (FSH) increased the level of inhibitor of NF-κB (IκB) protein and promoted the cytoplasmic localization of p65, indicating that FSH inhibits the activation of NF-κB in porcine granulosa cells. Moreover, inhibition of NF-κB by FSH or another specific inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), could activate JNK signaling and enhance autophagic activity in porcine granulosa cells. Knockdown of RelA (p65) Subunit of NF-κB by RNA interference abrogated the activation of JNK signaling pathway and the increase of autophagic protein expression by FSH. Meanwhile, the functional significance of FSH or PDTC-mediated autophagy were further investigated. Our results demonstrated that the increased autophagy promoted progesterone secretion in porcine granulosa cells. Blockage of autophagy by chloroquine obviated the FSH or PDTC-induced progesterone production. Taken together, these results indicate that inhibition of NF-κB increased autophagy via JNK signaling, and promote steroidogenesis in porcine granulosa cells. Our results provide new insights into the regulation and function of autophagy in mammalian follicle development. - Highlights: • FSH inhibits the activation of NF-κB in porcine primary granulosa cells. • Inhibition of NF-κB by FSH promotes autophagy via JNK signaling in granulosa cells. • Increased autophagy contributes to progesterone production in granulosa cells. • This is the first report against beclin1 regulation in porcine granulosa cells.

  15. Inhibition of NF-κB promotes autophagy via JNK signaling pathway in porcine granulosa cells

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Hui; Lin, Lu; Haq, Ihtesham Ul; Zeng, Shen-ming, E-mail: zengshenming@gmail.com

    2016-04-22

    The transcription factor nuclear factor-κB (NF-κB) plays an important role in diverse processes, including cell proliferation and differentiation, apoptosis and inflammation. However, the role of NF-κB in porcine follicle development is not clearly elucidated. In this study, we demonstrated that follicle stimulating hormone (FSH) increased the level of inhibitor of NF-κB (IκB) protein and promoted the cytoplasmic localization of p65, indicating that FSH inhibits the activation of NF-κB in porcine granulosa cells. Moreover, inhibition of NF-κB by FSH or another specific inhibitor of NF-κB, pyrrolidine dithiocarbamate (PDTC), could activate JNK signaling and enhance autophagic activity in porcine granulosa cells. Knockdown of RelA (p65) Subunit of NF-κB by RNA interference abrogated the activation of JNK signaling pathway and the increase of autophagic protein expression by FSH. Meanwhile, the functional significance of FSH or PDTC-mediated autophagy were further investigated. Our results demonstrated that the increased autophagy promoted progesterone secretion in porcine granulosa cells. Blockage of autophagy by chloroquine obviated the FSH or PDTC-induced progesterone production. Taken together, these results indicate that inhibition of NF-κB increased autophagy via JNK signaling, and promote steroidogenesis in porcine granulosa cells. Our results provide new insights into the regulation and function of autophagy in mammalian follicle development. - Highlights: • FSH inhibits the activation of NF-κB in porcine primary granulosa cells. • Inhibition of NF-κB by FSH promotes autophagy via JNK signaling in granulosa cells. • Increased autophagy contributes to progesterone production in granulosa cells. • This is the first report against beclin1 regulation in porcine granulosa cells.

  16. Genetic Characterization of porcine circovirus type 2 isolated from different pig-farms in Croatia

    DEFF Research Database (Denmark)

    Rudan, Nevenka; Hjulsager, Charlotte Kristiane; Dupont, Kitt

    2009-01-01

    Histopathological fifi ndings in 25 pig tissue samples, which indicated PCVD (porcine circovirus diseases), were studied. Pig tissue samples originated from 5 different pig-farms in the north-west part of Croatia. Histopathological lesions showed two clinical pictures of the disease: porcine...

  17. Porcine head response to blast.

    Science.gov (United States)

    Shridharani, Jay K; Wood, Garrett W; Panzer, Matthew B; Capehart, Bruce P; Nyein, Michelle K; Radovitzky, Raul A; Bass, Cameron R 'dale'

    2012-01-01

    Recent studies have shown an increase in the frequency of traumatic brain injuries related to blast exposure. However, the mechanisms that cause blast neurotrauma are unknown. Blast neurotrauma research using computational models has been one method to elucidate that response of the brain in blast, and to identify possible mechanical correlates of injury. However, model validation against experimental data is required to ensure that the model output is representative of in vivo biomechanical response. This study exposes porcine subjects to primary blast overpressures generated using a compressed-gas shock tube. Shock tube blasts were directed to the unprotected head of each animal while the lungs and thorax were protected using ballistic protective vests similar to those employed in theater. The test conditions ranged from 110 to 740 kPa peak incident overpressure with scaled durations from 1.3 to 6.9 ms and correspond approximately with a 50% injury risk for brain bleeding and apnea in a ferret model scaled to porcine exposure. Instrumentation was placed on the porcine head to measure bulk acceleration, pressure at the surface of the head, and pressure inside the cranial cavity. Immediately after the blast, 5 of the 20 animals tested were apneic. Three subjects recovered without intervention within 30 s and the remaining two recovered within 8 min following respiratory assistance and administration of the respiratory stimulant doxapram. Gross examination of the brain revealed no indication of bleeding. Intracranial pressures ranged from 80 to 390 kPa as a result of the blast and were notably lower than the shock tube reflected pressures of 300-2830 kPa, indicating pressure attenuation by the skull up to a factor of 8.4. Peak head accelerations were measured from 385 to 3845 G's and were well correlated with peak incident overpressure (R(2) = 0.90). One SD corridors for the surface pressure, intracranial pressure (ICP), and head acceleration are

  18. Transformation of Leaf-like Zinc Dendrite in Oxidation and Reduction Cycle

    International Nuclear Information System (INIS)

    Nakata, Akiyoshi; Murayama, Haruno; Fukuda, Katsutoshi; Yamane, Tomokazu; Arai, Hajime; Hirai, Toshiro; Uchimoto, Yoshiharu; Yamaki, Jun-ichi; Ogumi, Zempachi

    2015-01-01

    Highlights: • Leaf-like zinc dendrites change to leaf-like residual oxides at high oxidation current density (10 mA cm −2 ) whereas it completely dissolves at low oxidation current density (1 mA cm −2 ). • Leaf-like residual oxide products is transformed to zinc deposits with particulate morphology, resulting in good rechargeability. • The residual zinc oxide provides sufficient zincate on its reduction, preventing the diffusion-limited condition that causes leaf-like dendrite formation. - Abstract: Zinc is a promising negative electrode material for aqueous battery systems whereas it shows insufficient rechargeability for use in secondary batteries. It has been reported that leaf-like dendrite deposits are often the origin of cell-failure, however, their nature and behavior on discharge (oxidation) - charge (reduction) cycling have been only poorly understood. Here we investigate the transformation of the leaf-like zinc dendrites using ex-situ scanning electron microscopy, X-ray computational tomography and in-situ X-ray diffraction. It is shown that the leaf-like zinc dendrites obtained under diffusion-limited conditions are nearly completely dissolved at a low oxidation current density of 1 mA cm −2 and cause re-evolution of the zinc dendrites. Oxidation at a high current density of 10 mA cm −2 leads to the formation of leaf-like zinc oxide residual products that result in particulate zinc deposits in the following reduction process, enabling good rechargeability. The reaction behavior of this oxide residue is detailed and discussed for the development of long-life zinc electrodes

  19. Active signal conduction through the sensory dendrite of a spider mechanoreceptor neuron.

    Science.gov (United States)

    Gingl, Ewald; French, Andrew S

    2003-07-09

    Rapid responses to sensory stimulation are crucial for survival. This must be especially true for mechanical stimuli containing temporal information, such as vibration. Sensory transduction occurs at the tips of relatively long sensory dendrites in many mechanoreceptors of both vertebrates and invertebrates, but little is known about the electrical properties of these crucial links between transduction and action potential generation. The VS-3 slit-sense organ of the spider Cupiennius salei contains bipolar mechanosensory neurons that allow voltage-clamp recording from the somata, whereas mechanotransduction occurs at the tips of 100- to 200-microm-long sensory dendrites. We studied the properties of VS-3 sensory dendrites using three approaches. Voltage-jump experiments measured the spread of voltage outward from the soma by observing total mechanically transduced charge recovered at the soma as a function of time after a voltage jump. Frequency-response measurements between pseudorandom mechanical stimulation and somatic membrane potential estimated the passive cable properties of the dendrite for voltage spread in the opposite direction. Both of these sets of data indicated that the dendritic cable would significantly attenuate and retard a passively propagated receptor potential. Finally, current-clamp observations of receptor potentials and action potentials indicated that action potentials normally start at the distal dendrites and propagate regeneratively to the soma, reducing the temporal delay of passive conduction.

  20. Selected mode of dendritic growth with n-fold symmetry in the presence of a forced flow

    Science.gov (United States)

    Alexandrov, D. V.; Galenko, P. K.

    2017-07-01

    The effect of n-fold crystal symmetry is investigated for a two-dimensional stable dendritic growth in the presence of a forced convective flow. We consider dendritic growth in a one-component undercooled liquid. The theory is developed for the parabolic solid-liquid surface of dendrite growing at arbitrary growth Péclet numbers keeping in mind small anisotropies of surface energy and growth kinetics. The selection criterion determining the stable growth velocity of the dendritic tip and its stable tip diameter is found on the basis of solvability analysis. The obtained criterion includes previously developed theories of thermally and kinetically controlled dendritic growth with convection for the case of four-fold crystal symmetry. The obtained nonlinear system of equations (representing the selection criterion and undercooling balance) for the determination of dendrite tip velocity and dendrite tip diameter is analytically solved in a parametric form. These exact solutions clearly demonstrate a transition between thermally and kinetically controlled growth regimes. In addition, we show that the dendrites with larger crystal symmetry grow faster than those with smaller symmetry.

  1. Dendrite short-circuit and fuse effect on Li/polymer/Li cells

    International Nuclear Information System (INIS)

    Rosso, Michel; Brissot, Claire; Teyssot, Anna; Dolle, Mickael; Sannier, Lucas; Tarascon, Jean-Marie; Bouchet, Renaud; Lascaud, Stephane

    2006-01-01

    We report on experimental and theoretical studies of dendritic growth in Li/polymer/Li symmetric cells. Potential evolution with time, impedance and in situ microscopy experiments enable to characterise the onset and evolution of dendrites. In particular we observe that dendrites may burn when a high enough current goes through them, a thermo-fusible effect predicted in a previous paper and confirmed by SEM experiments. We present a calculation that gives a quantitative description of this effect: our results enable to understand a series of experimental data published in the literature concerning impedance variations observed while cycling lithium-polymer cells

  2. Cdk5 Is Essential for Amphetamine to Increase Dendritic Spine Density in Hippocampal Pyramidal Neurons

    Directory of Open Access Journals (Sweden)

    Soledad Ferreras

    2017-11-01

    Full Text Available Psychostimulant drugs of abuse increase dendritic spine density in reward centers of the brain. However, little is known about their effects in the hippocampus, where activity-dependent changes in the density of dendritic spine are associated with learning and memory. Recent reports suggest that Cdk5 plays an important role in drug addiction, but its role in psychostimulant’s effects on dendritic spines in hippocampus remain unknown. We used in vivo and in vitro approaches to demonstrate that amphetamine increases dendritic spine density in pyramidal neurons of the hippocampus. Primary cultures and organotypic slice cultures were used for cellular, molecular, pharmacological and biochemical analyses of the role of Cdk5/p25 in amphetamine-induced dendritic spine formation. Amphetamine (two-injection protocol increased dendritic spine density in hippocampal neurons of thy1-green fluorescent protein (GFP mice, as well as in hippocampal cultured neurons and organotypic slice cultures. Either genetic or pharmacological inhibition of Cdk5 activity prevented the amphetamine–induced increase in dendritic spine density. Amphetamine also increased spine density in neurons overexpressing the strong Cdk5 activator p25. Finally, inhibition of calpain, the protease necessary for the conversion of p35 to p25, prevented amphetamine’s effect on dendritic spine density. We demonstrate, for the first time, that amphetamine increases the density of dendritic spine in hippocampal pyramidal neurons in vivo and in vitro. Moreover, we show that the Cdk5/p25 signaling and calpain activity are both necessary for the effect of amphetamine on dendritic spine density. The identification of molecular mechanisms underlying psychostimulant effects provides novel and promising therapeutic approaches for the treatment of drug addiction.

  3. Sensitive detection of porcine DNA in processed animal proteins using a TaqMan real-time PCR assay.

    Science.gov (United States)

    Pegels, N; González, I; Fernández, S; García, T; Martín, R

    2012-01-01

    A TaqMan real-time PCR method was developed for specific detection of porcine-prohibited material in industrial feeds. The assay combines the use of a porcine-specific primer pair, which amplifies a 79 bp fragment of the mitochondrial (mt) 12 S rRNA gene, and a locked nucleic acid (LNA) TaqMan probe complementary to a target sequence lying between the porcine-specific primers. The nuclear 18 S rRNA gene system, yielding a 77 bp amplicon, was employed as a positive amplification control to monitor the total content of amplifiable DNA in the samples. The specificity of the porcine primers-probe system was verified against different animal and plant species, including mammals, birds and fish. The applicability of the real-time PCR protocol to detect the presence of porcine mt DNA in feeds was determined through the analysis of 190 industrial feeds (19 known reference and 171 blind samples) subjected to stringent processing treatments. The performance of the method allows qualitative and highly sensitive detection of short fragments from porcine DNA in all the industrial feeds declared to contain porcine material. Although the method has quantitative potential, the real quantitative capability of the assay is limited by the existing variability in terms of composition and processing conditions of the feeds, which affect the amount and quality of amplifiable DNA.

  4. Dendritic Zinc Growth in Acid Electrolyte: Effect of the pH

    Science.gov (United States)

    Bengoa, Leandro N.; Pary, Paola; Seré, Pablo R.; Conconi, M. Susana; Egli, Walter A.

    2018-03-01

    In this paper, dendritic growth at the edges of electrogalvanized steel strip has been studied using a specially designed rotating washer electrode which simulates the fluid dynamic conditions and the current density distribution at the steel strip edge found in a production line. The effect of electrolyte pH and current density on dendritic growth in an acidic zinc plating bath (ZnSO4 and H2SO4) was addressed. The temperature was kept constant at 60 °C. Solution pH was adjusted to 1, 2 or 3 using different amounts of H2SO4. In addition, the influence of temperature on the pH of the solution was determined. The current density was set at 40 or 60 A/dm2, similar to that used in the industry. Deposits were characterized using SEM and XRD. The results showed that pH strongly affects dendrites shape, length and texture. Furthermore, the morphology of dendrites at the washer edge and of deposits on the flat portion of the washer changed considerably as solution pH was increased from 1 to 3. It was found that the morphology of dendrites at the washer edge stems from the morphology of the deposit on its flat portion, which in turn determines their shape.

  5. Ascorbic acid as a free radical scavenger in porcine and bovine aqueous humour.

    Science.gov (United States)

    Erb, Carl; Nau-Staudt, Kerstin; Flammer, Josef; Nau, Werner

    2004-01-01

    To study the antioxidant activity, UV absorption, concentration and stability of ascorbic acid (AA) in porcine and bovine aqueous humour (AH). Porcine and bovine AH was taken within 5 min after death and frozen at -70 degrees C. The characteristic UV absorption band of AA and the concentration of AA in AH was determined by UV spectrophotometry. The antioxidant activity of AA to serve as a free radical scavenger in AH has been determined by using a novel fluorescent probe for antioxidants, the azoalkane 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO). The fluorescence lifetime and intensity of this probe reflect the concentration of dissolved antioxidants. The time-resolved fluorescence of DBO (laser excitation at 351 nm) in AH and in a neutral phosphate-buffered saline (PBS) solution containing only the natural amount of AA as an additive were measured. The characteristic UV absorption band of AA has its maximum at 266 nm in AH. The concentration of AA in porcine and bovine AH was found to be 0.547 +/- 0.044 and 1.09 +/- 0.16 mM, respectively, by spectrophotometry. The fluorescence lifetime of the probe DBO was reduced from 320 +/- 5 ns in pure aerated PBS to 205 +/- 5 ns in porcine AH and 165 +/- 3 ns in bovine AH. A detailed kinetic analysis of the lifetime shortening suggests that AA contributes approximately 75 and 85% to the antioxidant activity of porcine and bovine AH, respectively. Our experiments suggest that AA is the major contributor to the antioxidant activity of porcine and bovine AH. The role of AA to serve as an antioxidant in AH is discussed. In addition, UV spectrophotometry is established as an alternative method to determine the concentration of AA in AH. Copyright 2004 S. Karger AG, Basel

  6. Responsive linear-dendritic block copolymers.

    Science.gov (United States)

    Blasco, Eva; Piñol, Milagros; Oriol, Luis

    2014-06-01

    The combination of dendritic and linear polymeric structures in the same macromolecule opens up new possibilities for the design of block copolymers and for applications of functional polymers that have self-assembly properties. There are three main strategies for the synthesis of linear-dendritic block copolymers (LDBCs) and, in particular, the emergence of click chemistry has made the coupling of preformed blocks one of the most efficient ways of obtaining libraries of LDBCs. In these materials, the periphery of the dendron can be precisely functionalised to obtain functional LDBCs with self-assembly properties of interest in different technological areas. The incorporation of stimuli-responsive moieties gives rise to smart materials that are generally processed as self-assemblies of amphiphilic LDBCs with a morphology that can be controlled by an external stimulus. Particular emphasis is placed on light-responsive LDBCs. Furthermore, a brief review of the biomedical or materials science applications of LDBCs is presented. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments.

    Science.gov (United States)

    Yamakoshi, Yasuo; Nagano, Takatoshi; Hu, Jan Cc; Yamakoshi, Fumiko; Simmer, James P

    2011-02-03

    Dentin sialophosphoprotein (Dspp) is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp), the N-terminal domain of dentin sialophosphoprotein (Dspp), is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB) and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG) attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were tentatively assigned at Thr200, Thr216 and Thr

  8. Porcine dentin sialoprotein glycosylation and glycosaminoglycan attachments

    Directory of Open Access Journals (Sweden)

    Yamakoshi Fumiko

    2011-02-01

    Full Text Available Abstract Background Dentin sialophosphoprotein (Dspp is a multidomain, secreted protein that is critical for the formation of tooth dentin. Mutations in DSPP cause inherited dentin defects categorized as dentin dysplasia type II and dentinogenesis imperfecta type II and type III. Dentin sialoprotein (Dsp, the N-terminal domain of dentin sialophosphoprotein (Dspp, is a highly glycosylated proteoglycan, but little is known about the number, character, and attachment sites of its carbohydrate moieties. Results To identify its carbohydrate attachment sites we isolated Dsp from developing porcine molars and digested it with endoproteinase Glu-C or pronase, fractionated the digestion products, identified fractions containing glycosylated peptides using a phenol sulfuric acid assay, and characterized the glycopeptides by N-terminal sequencing, amino acid analyses, or LC/MSMS. To determine the average number of sialic acid attachments per N-glycosylation, we digested Dsp with glycopeptidase A, labeled the released N-glycosylations with 2-aminobenzoic acid, and quantified the moles of released glycosylations by comparison to labeled standards of known concentration. Sialic acid was released by sialidase digestion and quantified by measuring β-NADH reduction of pyruvic acid, which was generated stoichiometrically from sialic acid by aldolase. To determine its forms, sialic acid released by sialidase digestion was labeled with 1,2-diamino-4,5-methyleneoxybenzene (DMB and compared to a DMB-labeled sialic acid reference panel by RP-HPLC. To determine the composition of Dsp glycosaminoglycan (GAG attachments, we digested Dsp with chondroitinase ABC and compared the chromotagraphic profiles of the released disaccharides to commercial standards. N-glycosylations were identified at Asn37, Asn77, Asn136, Asn155, Asn161, and Asn176. Dsp averages one sialic acid per N-glycosylation, which is always in the form of N-acetylneuraminic acid. O-glycosylations were

  9. Electrical and Structural Characterization of Web Dendrite Crystals

    Science.gov (United States)

    Schwuttke, G. H.; Koliwad, K.; Dumas, K. A.

    1985-01-01

    Minority carrier lifetime distributions in silicon web dendrites are measured. Emphasis is placed on measuring areal homogeneity of lifetime, show its dependency on structural defects, and its unique change during hot processing. The internal gettering action of defect layers present in web crystals and their relation to minority carrier lifetime distributions is discussed. Minority carrier lifetime maps of web dendrites obtained before and after high temperature heat treatment are compared to similar maps obtained from 100 mm diameter Czochralski silicon wafers. Such maps indicate similar or superior areal homogeneity of minority carrier lifetime in webs.

  10. Dscam1-mediated self-avoidance counters netrin-dependent targeting of dendrites in Drosophila.

    Science.gov (United States)

    Matthews, Benjamin J; Grueber, Wesley B

    2011-09-13

    Dendrites and axons show precise targeting and spacing patterns for proper reception and transmission of information in the nervous system. Self-avoidance promotes complete territory coverage and nonoverlapping spacing between processes from the same cell [1, 2]. Neurons that lack Drosophila Down syndrome cell adhesion molecule 1 (Dscam1) show aberrant overlap, fasciculation, and accumulation of dendrites and axons, demonstrating a role in self-recognition and repulsion leading to self-avoidance [3-11]. Fasciculation and accumulation of processes suggested that Dscam1 might promote process spacing by counterbalancing developmental signals that otherwise promote self-association [9, 12]. Here we show that Dscam1 functions to counter Drosophila sensory neuron dendritic targeting signals provided by secreted Netrin-B and Frazzled, a netrin receptor. Loss of Dscam1 function resulted in aberrant dendrite accumulation at a Netrin-B-expressing target, whereas concomitant loss of Frazzled prevented accumulation and caused severe deficits in dendritic territory coverage. Netrin misexpression was sufficient to induce ectopic dendritic targeting in a Frazzled-dependent manner, whereas Dscam1 was required to prevent ectopic accumulation, consistent with separable roles for these receptors. Our results suggest that Dscam1-mediated self-avoidance counters extrinsic signals that are required for normal dendritic patterning, but whose action would otherwise favor neurite accumulation. Counterbalancing roles for Dscam1 may be deployed in diverse contexts during neural circuit formation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Investigations of the functional states of dendritic cells under different conditioned microenvironments by Fourier transformed infrared spectroscopy.

    Science.gov (United States)

    Dong, Rong; Long, Jinhua; Xu, Xiaoli; Zhang, Chunlin; Wen, Zongyao; Li, Long; Yao, Weijuan; Zeng, Zhu

    2014-01-10

    Dendritic cells are potent and specialized antigen presenting cells, which play a crucial role in initiating and amplifying both the innate and adaptive immune responses. The dendritic cell-based vaccination against cancer has been clinically achieved promising successes. But there are still many challenges in its clinical application, especially for how to identify the functional states. The CD14+ monocytes were isolated from human peripheral blood after plastic adherence and purified to approximately 98% with cocktail immunomagnetic beads. The immature dendritic cells and mature dendritic cells were induced by traditional protocols. The resulting dendritic cells were cocultured with normal cells and cancer cells. The functional state of dendritic cells including immature dendritic cells (imDCs) and mature dendritic cells (mDCs) under different conditioned microenvironments were investigated by Fourier transformed infrared spectroscopy (FTIR) and molecular biological methods. The results of Fourier transformed infrared spectroscopy showed that the gene transcription activity and energy states of dendritic cells were specifically suppressed by tumor cells (P Fourier transformed infrared spectroscopy at given wave numbers were closely correlated with the expression levels of NF-κB (R2:0.69 and R2:0.81, respectively). Our results confirmed that the ratios of absorption intensities of Fourier transformed infrared spectroscopy at given wave numbers were positively correlated with the expression levels of NF-κB, suggesting that Fourier transformed infrared spectroscopy technology could be clinically applied to identify the functional states of dendritic cell when performing dendritic cell-based vaccination. It's significant for the simplification and standardization of dendritic cell-based vaccination clinical preparation protocols.

  12. Basal Dendritic Morphology of Cortical Pyramidal Neurons in Williams Syndrome: Prefrontal Cortex and Beyond.

    Science.gov (United States)

    Hrvoj-Mihic, Branka; Hanson, Kari L; Lew, Caroline H; Stefanacci, Lisa; Jacobs, Bob; Bellugi, Ursula; Semendeferi, Katerina

    2017-01-01

    Williams syndrome (WS) is a unique neurodevelopmental disorder with a specific behavioral and cognitive profile, which includes hyperaffiliative behavior, poor social judgment, and lack of social inhibition. Here we examined the morphology of basal dendrites on pyramidal neurons in the cortex of two rare adult subjects with WS. Specifically, we examined two areas in the prefrontal cortex (PFC)-the frontal pole (Brodmann area 10) and the orbitofrontal cortex (Brodmann area 11)-and three areas in the motor, sensory, and visual cortex (BA 4, BA 3-1-2, BA 18). The findings suggest that the morphology of basal dendrites on the pyramidal neurons is altered in the cortex of WS, with differences that were layer-specific, more prominent in PFC areas, and displayed an overall pattern of dendritic organization that differentiates WS from other disorders. In particular, and unlike what was expected based on typically developing brains, basal dendrites in the two PFC areas did not display longer and more branched dendrites compared to motor, sensory and visual areas. Moreover, dendritic branching, dendritic length, and the number of dendritic spines differed little within PFC and between the central executive region (BA 10) and BA 11 that is part of the orbitofrontal region involved into emotional processing. In contrast, the relationship between the degree of neuronal branching in supra- versus infra-granular layers was spared in WS. Although this study utilized tissue held in formalin for a prolonged period of time and the number of neurons available for analysis was limited, our findings indicate that WS cortex, similar to that in other neurodevelopmental disorders such as Down syndrome, Rett syndrome, Fragile X, and idiopathic autism, has altered morphology of basal dendrites on pyramidal neurons, which appears more prominent in selected areas of the PFC. Results were examined from developmental perspectives and discussed in the context of other neurodevelopmental disorders

  13. Basal Dendritic Morphology of Cortical Pyramidal Neurons in Williams Syndrome: Prefrontal Cortex and Beyond

    Directory of Open Access Journals (Sweden)

    Branka Hrvoj-Mihic

    2017-08-01

    Full Text Available Williams syndrome (WS is a unique neurodevelopmental disorder with a specific behavioral and cognitive profile, which includes hyperaffiliative behavior, poor social judgment, and lack of social inhibition. Here we examined the morphology of basal dendrites on pyramidal neurons in the cortex of two rare adult subjects with WS. Specifically, we examined two areas in the prefrontal cortex (PFC—the frontal pole (Brodmann area 10 and the orbitofrontal cortex (Brodmann area 11—and three areas in the motor, sensory, and visual cortex (BA 4, BA 3-1-2, BA 18. The findings suggest that the morphology of basal dendrites on the pyramidal neurons is altered in the cortex of WS, with differences that were layer-specific, more prominent in PFC areas, and displayed an overall pattern of dendritic organization that differentiates WS from other disorders. In particular, and unlike what was expected based on typically developing brains, basal dendrites in the two PFC areas did not display longer and more branched dendrites compared to motor, sensory and visual areas. Moreover, dendritic branching, dendritic length, and the number of dendritic spines differed little within PFC and between the central executive region (BA 10 and BA 11 that is part of the orbitofrontal region involved into emotional processing. In contrast, the relationship between the degree of neuronal branching in supra- versus infra-granular layers was spared in WS. Although this study utilized tissue held in formalin for a prolonged period of time and the number of neurons available for analysis was limited, our findings indicate that WS cortex, similar to that in other neurodevelopmental disorders such as Down syndrome, Rett syndrome, Fragile X, and idiopathic autism, has altered morphology of basal dendrites on pyramidal neurons, which appears more prominent in selected areas of the PFC. Results were examined from developmental perspectives and discussed in the context of other

  14. First identification of porcine parvovirus 7 in China.

    Science.gov (United States)

    Xing, Xiulin; Zhou, Han; Tong, Ling; Chen, Yao; Sun, Yankuo; Wang, Heng; Zhang, Guihong

    2018-01-01

    Porcine parvovirus (PPV) are small, non-enveloped and single-stranded DNA viruses, taxonomically classifiable within the family Parvoviridae. Seven PPV genotypes (PPV1 to PPV7) have been identified to date. PPV7, the most recently discovered PPV genotype, was first reported in US pigs in 2016. To explore PPV7 status in Chinese pig populations a total of 64 serum samples collected from two commercial farms in Guangdong province in 2014 were analyzed. PPV7 DNA was detected in 32.8% (21/64) of tested samples. On the porcine circovirus type 2 (PCV2) positive farm, the prevalence rate of PPV7 was 65.5% (19/29) which was significantly higher than that on the PCV2 negative farm (2/35, 5.7%), indicating a possible association between PCV2 and PPV7 infections. The sequences of three PPV7 strains were determined. Phylogenetic analysis revealed that the identified PPV7 strains circulating in China shared 98.7%-99.7% nucleotide homology with the US strain. Further sequence comparison analysis indicated that GD-2014-2 and GD-2014-3 possess a consecutive 9-nt deletion in the VP gene. This is the first report of the existence of PPV7 in China and this finding will strengthen understanding of the epidemiology of porcine parvovirus in Chinese pigs.

  15. Perspectives on the Evolution of Porcine Parvovirus.

    Science.gov (United States)

    Oh, Woo-Taek; Kim, Ri-Yeon; Nguyen, Van-Giap; Chung, Hee-Chun; Park, Bong-Kyun

    2017-07-26

    Porcine parvovirus (PPV) is one of the main causes of porcine reproductive failure. It is important for swine industries to understand the recent trends in PPV evolution. Previous data show that PPV has two genetic lineages originating in Germany. In this study, two more genetic lineages were defined, one of which was distinctly Asian. Additionally, amino acid substitutions in European strains and Asian strains showed distinct differences in several regions of the VP2 gene. The VP1 gene of the recent PPV isolate (T142_South Korea) was identical to that of Kresse strain isolated in the USA in 1985, indicating that modern PPV strains now resemble the original strains (Kresse and NADL-2). In this study, we compared strains isolated in the 20th century to recent isolates and confirmed the trend that modern strains are becoming more similar to previous strains.

  16. Electrochemical migration of tin in electronics and microstructure of the dendrites

    DEFF Research Database (Denmark)

    Minzari, Daniel; Grumsen, Flemming Bjerg; Jellesen, Morten Stendahl

    2011-01-01

    The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb (∼2wt.%) was investigated by scanning electron microscopy and transmission electr...... by the dehydration of the hydrated oxide originally formed in solution ex-situ in ambient air.......The macro-, micro-, and nano-scale morphology and structure of tin dendrites, formed by electrochemical migration on a surface mount ceramic chip resistor having electrodes consisting of tin with small amounts of Pb (∼2wt.%) was investigated by scanning electron microscopy and transmission electron...... microscopy including Energy dispersive X-ray spectroscopy and electron diffraction. The tin dendrites were formed under 5 or 12V potential bias in 10ppm by weight NaCl electrolyte as a micro-droplet on the resistor during electrochemical migration experiments. The dendrites formed were found to have...

  17. Stochastic modeling of columnar dendritic grain growth in weld pool of Al-Cu alloy

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Z.B.; Tian, N. [The State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin (China); Wei, Y.H. [College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing (China); The State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin (China); Zhan, X.H.

    2009-04-15

    A multi-scale model is used to simulate columnar dendritic growth in TIG (tungsten inert-gas) weld molten pool of Al-Cu alloy. The grain morphologies at the edge of the weld pool are studied. The simulated results indicate that the average primary dendrite spacing changes during the solidification process in the weld pool because of the complicated thermal field, solute diffusion field and competitive growth. And it is shown that the secondary dendrite arms grow insufficiently in the space between dendrite trunks if the primary dendrite spacing is small. And the phenomenon has been explained by analyzing the influence of the solute accumulation on the constitutional undercooling and undercooling gradient when there are two different opposite solute diffusion fields. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. A Quantitative Golgi Study of Dendritic Morphology in the Mice Striatal Medium Spiny Neurons

    Directory of Open Access Journals (Sweden)

    Ana Hladnik

    2017-04-01

    Full Text Available In this study we have provided a detailed quantitative morphological analysis of medium spiny neurons (MSNs in the mice dorsal striatum and determined the consistency of values among three groups of animals obtained in different set of experiments. Dendritic trees of 162 Golgi Cox (FD Rapid GolgiStain Kit impregnated MSNs from 15 adult C57BL/6 mice were 3-dimensionally reconstructed using Neurolucida software, and parameters of dendritic morphology have been compared among experimental groups. The parameters of length and branching pattern did not show statistically significant difference and were highly consistent among groups. The average neuronal soma surface was between 160 μm2 and 180 μm2, and the cells had 5–6 primary dendrites with close to 40 segments per neuron. Sholl analysis confirmed regular pattern of dendritic branching. The total length of dendrites was around 2100 μm with the average length of individual branching (intermediate segment around 22 μm and for the terminal segment around 100 μm. Even though each experimental group underwent the same strictly defined protocol in tissue preparation and Golgi staining, we found inconsistency in dendritic volume and soma surface. These changes could be methodologically influenced during the Golgi procedure, although without affecting the dendritic length and tree complexity. Since the neuronal activity affects the dendritic thickness, it could not be excluded that observed volume inconsistency was related with functional states of neurons prior to animal sacrifice. Comprehensive analyses of tree complexity and dendritic length provided here could serve as an additional tool for understanding morphological variability in the most numerous neuronal population of the striatum. As reference values they could provide basic ground for comparisons with the results obtained in studies that use various models of genetically modified mice in explaining different pathological conditions that

  19. Preparation and Characterization of an Antibody Antagonist That Targets the Porcine Growth Hormone Receptor

    Directory of Open Access Journals (Sweden)

    Huanzhong Cui

    2016-10-01

    Full Text Available A series of antagonists specifically targeting growth hormone receptors (GHR in different species, such as humans, rats, bovines, and mice, have been designed; however, there are currently no antagonists that target the porcine growth hormone (GH. Therefore, in this study, we developed and characterized a porcine GHR (pGHR antibody antagonist (denoted by AN98 via the hybridoma technique. The results from enzyme-linked immunosorbent assay, fluorescence activated cell sorter, indirect immunoinfluscent assay, and competitive receptor binding analysis showed that AN98 could specifically recognize pGHR, and further experiments indicated that AN98 could effectively inhibit pGH-induced signalling in CHO-pGHR cells and porcine hepatocytes. In addition, AN98 also inhibited GH-induced insulin-like growth factor-1 (IGF-1 secretion in porcine hepatocytes. In summary, these findings indicated that AN98, as a pGHR-specific antagonist, has potential applications in pGH-pGHR-related research on domestic pigs.

  20. Immobilization of pseudorabies virus in porcine tracheal respiratory mucus revealed by single particle tracking.

    Directory of Open Access Journals (Sweden)

    Xiaoyun Yang

    Full Text Available Pseudorabies virus (PRV initially replicates in the porcine upper respiratory tract. It easily invades the mucosae and submucosae for subsequent spread throughout the body via blood vessels and nervous system. In this context, PRV developed ingenious processes to overcome different barriers such as epithelial cells and the basement membrane. Another important but often overlooked barrier is the substantial mucus layer which coats the mucosae. However, little is known about how PRV particles interact with porcine respiratory mucus. We therefore measured the barrier properties of porcine tracheal respiratory mucus, and investigated the mobility of nanoparticles including PRV in this mucus. We developed an in vitro model utilizing single particle tracking microscopy. Firstly, the mucus pore size was evaluated with polyethylene glycol coupled (PEGylated nanoparticles and atomic force microscope. Secondly, the mobility of PRV in porcine tracheal respiratory mucus was examined and compared with that of negative, positive and PEGylated nanoparticles. The pore size of porcine tracheal respiratory mucus ranged from 80 to 1500 nm, with an average diameter of 455±240 nm. PRV (zeta potential: -31.8±1.5 mV experienced a severe obstruction in porcine tracheal respiratory mucus, diffusing 59-fold more slowly than in water. Similarly, the highly negatively (-49.8±0.6 mV and positively (36.7±1.1 mV charged nanoparticles were significantly trapped. In contrast, the nearly neutral, hydrophilic PEGylated nanoparticles (-9.6±0.8 mV diffused rapidly, with the majority of particles moving 50-fold faster than PRV. The mobility of the particles measured was found to be related but not correlated to their surface charge. Furthermore, PEGylated PRV (-13.8±0.9 mV was observed to diffuse 13-fold faster than native PRV. These findings clearly show that the mobility of PRV was significantly hindered in porcine tracheal respiratory mucus, and that the obstruction of PRV

  1. Stoichiometric iodination and purification of porcine insulin with chloramine T for radioimmunoassay

    International Nuclear Information System (INIS)

    Toledo e Souza, I.T. de; Giannella Neto, D.; Wajchenberg, B.L.

    1986-01-01

    Stoichiometric iodination and purification of porcine insulin was performed to the general method of Hunter and Greenwood (classical chloramine T) with modifications recommended by Roth (chloramine T is added in limiting amounts in multiple small additions). Satisfactory specific activity of the labeled hormone was obtained and the characteristics of the radioimmunoassay, based on the competition of the 125-I labeled porcine and cold insulin for specific antibody were studied. (Author) [pt

  2. Mechanics of fresh, frozen-thawed and heated porcine liver tissue.

    Science.gov (United States)

    Wex, Cora; Stoll, Anke; Fröhlich, Marlen; Arndt, Susann; Lippert, Hans

    2014-06-01

    For a better understanding of the effects of thermally altered soft tissue, the biothermomechanics of these tissues need to be studied. Without the knowledge of the underlying physical processes and the parameters that can be controlled clinically, thermal treatment of cancerous hepatic tissue or the preservation of liver grafts are based primarily on trial and error. Thus, this study is concerned with the investigation of the influence of temperature on the rheological properties and the histological properties of porcine liver. Heating previously cooled porcine liver tissue above 40 °C leads to significant, irreversible stiffness changes observed in the amplitude sweep. The increase of the complex shear module of healthy porcine liver from room temperature to 70 °C is approximately 9-fold. Comparing the temperatures -20 °C and 20 °C, no significant difference of the mechanical properties was observed. Furthermore, there is a strong relation between the mechanical and histological properties of the porcine liver. Temperatures above 40 °C destroy the collagen matrix within the liver tissue. This results in the alteration of the biomechanical properties. The time-temperature superposition principle is applied to generate temperature-dependent shift factors that can be described by a two-part exponential function model with an inflection temperature of 45 °C. Tumor ablation techniques such as heating or freezing have a significant influence on the histology of liver tissue. However, only for temperatures above body temperature an influence on the mechanical properties of hepatic tissues was noticeable. Freezing up to -20 °C did not affect the liver mechanics.

  3. Characterization of porcine MMP-2 and its association with immune traits

    DEFF Research Database (Denmark)

    Huang, Honggang; Zhao, Weimin; Tang, Zhonglin

    2009-01-01

    cloned the 5'-upstream sequence, 3'-downstream sequence as well as other missed genomic sequences of porcine MMP-2, the genomic structure and the promotor sequence were analyzed and found to share high similarity with those of human MMP-2. Porcine MMP-2 was assigned to SSC6p14-p15, and closely linked......Matrix metalloproteinase-2 (MMP-2) plays important roles in inflammation and immunity besides its basic role in degrading and remodelling extracellular matrix (ECM). The expression of MMP-2 is up-regulated in many human as well as animal models of inflammatory and immune diseases. In this study, we...... to microsatellite SW1108 (53cR, LOD score 7.59) by IMpRH panel. Real-time PCR analysis revealed that the expression of porcine MMP-2 was remarkably different in diverse tissues, a high level expression was observed in the testis and uterus, relatively low expression in other tissues. Allele frequencies...

  4. An in-depth comparison of the porcine, murine and human inflammasomes; lessons from the porcine genome and transcriptome.

    Science.gov (United States)

    Dawson, Harry D; Smith, Allen D; Chen, Celine; Urban, Joseph F

    2017-04-01

    Emerging evidence suggests that swine are a scientifically acceptable intermediate species between rodents and humans to model immune function relevant to humans. The swine genome has recently been sequenced and several preliminary structural and functional analysis of the porcine immunome have been published. Herein we provide an expanded in silico analysis using an improved assembly of the porcine transcriptome that provides an in depth analysis of genes that are related to inflammasomes, responses to Toll-like receptor ligands, and M1 macrophage polarization and Escherichia coli as a model organism. Comparisons of the expansion or contraction of orthologous gene families indicated more similar rates and classes of genes in humans and pigs than in mice; however several novel porcine or artiodactyl-specific paralogs or pseudogenes were identified. Conservation of homology and structural motifs of orthologs revealed that the overall similarity to human proteins was significantly higher for pigs compared to mouse. Despite these similarities, two out of four canonical inflammasome pathways, Absent in melanoma 2 (AIM2) and NLR family and CARD domain containing 4 (NLRC4), were found to be missing in pigs. Pig M1 Mφ polarization in response to interferon-γ (IFN-γ) and lipopolysaccharide (LPS) was assessed, via the transcriptome, using next generation sequencing. Our analysis revealed predominantly human-like responses however some, mouse-like responses were observed, as well as induction of numerous pig or artiodactyl-specific genes. This work supports using swine to model both human immunological and inflammatory responses to infection. However, caution must be exercised as pigs differ from humans in several fundamental pathways. Published by Elsevier B.V.

  5. Sensitivity of Dendritic Cells to Microenvironment Signals

    Directory of Open Access Journals (Sweden)

    Juliana Maria Motta

    2016-01-01

    Full Text Available Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies.

  6. Evaluating Primary Dendrite Trunk Diameters in Directionally Solidified Al-Si Alloys

    Science.gov (United States)

    Grugel, R. N.; Tewari, S. N.; Poirier, D. R.

    2014-01-01

    The primary dendrite trunk diameters of Al-Si alloys that were directionally solidified over a range of processing conditions have been measured. These data are analyzed with a model based primarily on an assessment of secondary dendrite arm dissolution in the mushy zone. Good fit with the experimental data is seen and it is suggested that the primary dendrite trunk diameter is a useful metric that correlates well with the actual solidification processing parameters. These results are placed in context with the limited results from the aluminium - 7 wt. % silicon samples directionally solidified aboard the International Space Station as part of the MICAST project.

  7. A Novel Forward Genetic Screen for Identifying Mutations Affecting Larval Neuronal Dendrite Development in Drosophila melanogaster

    OpenAIRE

    Medina, Paul Mark B.; Swick, Lance L.; Andersen, Ryan; Blalock, Zachary; Brenman, Jay E.

    2006-01-01

    Vertebrate and invertebrate dendrites are information-processing compartments that can be found on both central and peripheral neurons. Elucidating the molecular underpinnings of information processing in the nervous system ultimately requires an understanding of the genetic pathways that regulate dendrite formation and maintenance. Despite the importance of dendrite development, few forward genetic approaches have been used to analyze the latest stages of dendrite development, including the ...

  8. Porcine Is a Positional Candidate Gene Associated with Growth and Fat Deposition

    Directory of Open Access Journals (Sweden)

    Bong Hwan Choi

    2012-12-01

    Full Text Available Crosses between Korean and Landrace pigs have revealed a large quantitative trait loci (QTL region for fat deposition in a region (89 cM of porcine chromosome 4 (SSC4. To more finely map this QTL region and identify candidate genes for this trait, comparative mapping of pig and human chromosomes was performed in the present study. A region in the human genome that corresponds to the porcine QTL region was identified in HSA1q21. Furthermore, the LMNA gene, which is tightly associated with fat augmentation in humans, was localized to this region. Radiation hybrid (RH mapping using a Sus scrofa RH panel localized LMNA to a region of 90.3 cM in the porcine genome, distinct from microsatellite marker S0214 (87.3 cM. Two-point analysis showed that LMNA was linked to S0214, SW1996, and S0073 on SSC4 with logarithm (base 10 of odds scores of 20.98, 17.78, and 16.73, respectively. To clone the porcine LMNA gene and to delineate the genomic structure and sequences, including the 3′untranslated region (UTR, rapid amplification of cDNA ends was performed. The coding sequence of porcine LMNA consisted of 1,719 bp, flanked by a 5’UTR and a 3’UTR. Two synonymous single nucleotide polymorphisms (SNPs were identified in exons 3 and 7. Association tests showed that the SNP located in exon 3 (A193A was significantly associated with weight at 30 wks (p<0.01 and crude fat content (p<0.05. This association suggests that SNPs located in LMNA could be used for marker-assisted selection in pigs.

  9. High efficient differentiation of functional hepatocytes from porcine induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Ying Ao

    Full Text Available Hepatocyte transplantation is considered to be a promising therapy for patients with liver diseases. Induced pluripotent stem cells (iPSCs provide an unlimited source for the generation of functional hepatocytes. In this study, we generated iPSCs from porcine ear fibroblasts (PEFs by overexpressing Sox2, Klf4, Oct4, and c-Myc (SKOM, and developed a novel strategy for the efficient differentiation of hepatocyte-like cells from porcine iPSCs by following the processes of early liver development. The differentiated cells displayed the phenotypes of hepatocytes, exhibited classic hepatocyte-associated bio-functions, such as LDL uptake, glycogen storage and urea secretion, as well as possessed the metabolic activities of cytochrome P-450 (CYP 3A and 2C. Furthermore, we compared the hepatocyte differentiation efficacy of our protocol with another published method, and the results demonstrated that our differentiation strategy could significantly improve the generation of morphological and functional hepatocyte-like cells from porcine iPSCs. In conclusion, this study establishes an efficient method for in vitro generation of functional hepatocytes from porcine iPSCs, which could represent a promising cell source for preclinical testing of cell-based therapeutics for liver failure and for pharmacological applications.

  10. Porcine prion protein amyloid.

    Science.gov (United States)

    Hammarström, Per; Nyström, Sofie

    2015-01-01

    Mammalian prions are composed of misfolded aggregated prion protein (PrP) with amyloid-like features. Prions are zoonotic disease agents that infect a wide variety of mammalian species including humans. Mammals and by-products thereof which are frequently encountered in daily life are most important for human health. It is established that bovine prions (BSE) can infect humans while there is no such evidence for any other prion susceptible species in the human food chain (sheep, goat, elk, deer) and largely prion resistant species (pig) or susceptible and resistant pets (cat and dogs, respectively). PrPs from these species have been characterized using biochemistry, biophysics and neurobiology. Recently we studied PrPs from several mammals in vitro and found evidence for generic amyloidogenicity as well as cross-seeding fibril formation activity of all PrPs on the human PrP sequence regardless if the original species was resistant or susceptible to prion disease. Porcine PrP amyloidogenicity was among the studied. Experimentally inoculated pigs as well as transgenic mouse lines overexpressing porcine PrP have, in the past, been used to investigate the possibility of prion transmission in pigs. The pig is a species with extraordinarily wide use within human daily life with over a billion pigs harvested for human consumption each year. Here we discuss the possibility that the largely prion disease resistant pig can be a clinically silent carrier of replicating prions.

  11. Dendrite Array Disruption by Bubbles during Re-melting in a Microgravity Environment

    Science.gov (United States)

    Grugel, Richard N.

    2012-01-01

    As part of the Pore Formation and Mobility Investigation (PFMI), Succinonitrile Water alloys consisting of aligned dendritic arrays were re-melted prior to conducting directional solidification experiments in the microgravity environment aboard the International Space Station. Thermocapillary convection initiated by bubbles at the solid-liquid interface during controlled melt back of the alloy was observed to disrupt the initial dendritic alignment. Disruption ranged from detaching large arrays to the transport of small dendrite fragments at the interface. The role of bubble size and origin is discussed along with subsequent consequences upon reinitiating controlled solidification.

  12. Silver Flakes and Silver Dendrites for Hybrid Electrically Conductive Adhesives with Enhanced Conductivity

    Science.gov (United States)

    Ma, Hongru; Li, Zhuo; Tian, Xun; Yan, Shaocun; Li, Zhe; Guo, Xuhong; Ma, Yanqing; Ma, Lei

    2018-03-01

    Silver dendrites were prepared by a facile replacement reaction between silver nitrate and zinc microparticles of 20 μm in size. The influence of reactant molar ratio, reaction solution volume, silver nitrate concentration, and reaction time on the morphology of dendrites was investigated systematically. It was found that uniform tree-like silver structures are synthesized under the optimal conditions. Their structure can be described as a trunk, symmetrical branches, and leaves, which length scales of 5-10, 1-2 μm, and 100-300 nm, respectively. All features were systematically characterized by scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and x-ray powder diffraction. A hybrid fillers system using silver flakes and dendrites as electrically conductive adhesives (ECAs) exhibited excellent overall performance. This good conductivity can be attributed mainly to the synergy between the silver microflakes (5-20 μm sized irregular sheet structures) and dendrites, allowing more conductive pathways to be formed between the fillers. In order to further optimize the overall electrical conductivity, various mixtures of silver microflakes and silver dendrites were tested in ECAs, with results indicating that the highest conductivity was shown when the amounts of silver microflakes, silver dendrites and the polymer matrix were 69.4 wt.% (20.82 vol.%), 0.6 wt.% (0.18 vol.%), and 30.0 wt.% (79.00 vol.%), respectively. The corresponding mass ratio of silver flakes to silver dendrites was 347:3. The resistivity of ECAs reached as low as 1.7 × 10-4 Ω cm.

  13. Spatio-temporal regulation of circular RNA expression during porcine embryonic brain development

    DEFF Research Database (Denmark)

    Venø, Morten T; Hansen, Thomas B; Venø, Susanne T

    2015-01-01

    BACKGROUND: Recently, thousands of circular RNAs (circRNAs) have been discovered in various tissues and cell types from human, mouse, fruit fly and nematodes. However, expression of circRNAs across mammalian brain development has never been examined. RESULTS: Here we profile the expression of circ......RNA in five brain tissues at up to six time-points during fetal porcine development, constituting the first report of circRNA in the brain development of a large animal. An unbiased analysis reveals a highly complex regulation pattern of thousands of circular RNAs, with a distinct spatio-temporal expression...... are functionally conserved between mouse and human. Furthermore, we observe that "hot-spot" genes produce multiple circRNA isoforms, which are often differentially expressed across porcine brain development. A global comparison of porcine circRNAs reveals that introns flanking circularized exons are longer than...

  14. Directory of Open Access Journals (Sweden)

    Paula Maio

    2013-02-01

    Full Text Available Blastic plasmacytoid dendritic cell tumor is a rare, highly aggressive systemic neoplasm for which effective therapies have not yet been established. We describe a 73-year-old man with multiple nodules and patches emerging on the trunk and limbs. Lesional skin biopsy revealed a plasmacytoid dendritic cell tumor with dense dermal infiltrate of tumor cells with blastoid features. No apparent systemic involvement was identified in the initial stage. The patient was treated with prednisone daily, with notorious improvement of the skin lesions, although no complete remission was obtained. During the six-month follow-up period, no disease progression was documented, but fatal systemic progression occurred after that period of time.A leucemia de células dendríticas plasmocitóides blásticas é uma entidade de classificação recente. Descrevese o caso de um homem de 73 anos com dermatose envolvendo manchas, placas infiltradas e nódulos eritematosos na face anterior do tronco, no dorso e nos membros. A biopsia cutânea revelou presença de infiltração difusa por células linfóides de tamanho intermediário. A imunocitoquímica permitiu o diagnóstico de neoplasia de células dendríticas plasmocitóides blásticas. O estadiamento não revelou envolvimento sistêmico na época do diagnóstico. O doente iniciou a terapêutica com prednisolona e apresentou remissão inicial das lesões cutâneas. Posteriormente, observou-se progressão sistêmica da doença, e o doente veio a falecer.

  15. Dendritic morphology observed in the solid-state precipitation in binary alloys

    Energy Technology Data Exchange (ETDEWEB)

    Husain, S.W.; Ahmed, M.S.; Qamar, I. [Dr. A.Q. Khan Research Labs., Rawalpindi (Pakistan)

    1999-06-01

    The precipitation of {gamma}{sub 2} phase in Cu-Al {beta}-phase alloys has been observed to occur in the dendritic morphology. Such morphology is rarely observed in the solid-state transformations. Earlier it was reported that the {gamma} precipitates were formed in the dendritic shape when Cu-Zn {beta}-phase alloys were cooled from high temperature. The characteristics of these two alloy systems have been examined to find the factors promoting the dendritic morphology in the solid-state transformations. Rapid bulk diffusion and fast interfacial reaction kinetics would promote such morphology. The kinetics of atom attachment to the growing interface is expected to be fast when crystallographic similarities exist between the parent phase and the precipitate. The authors have predicted the dendritic morphology in the solid-state precipitation in many binary alloy systems simply based on such crystallographic similarities. These alloys include, in addition to Cu-Al and Cu-Zn, the {beta}-phase alloys in Ag-Li, Ag-Zn, Cu-Ga, Au-Zn, and Ni-Zn systems, {gamma}-phase alloys in Cu-Sn and Ag-Cd systems, and {delta}-phase alloys in Au-Cd system. Of these, the alloys in Ag-Zn, Ni-Zn, Ag-Cd, and Cu-Sn systems were prepared and it was indeed found that the precipitates formed in the dendritic shape.

  16. The scavenger receptor MARCO modulates TLR-induced responses in dendritic cells.

    Directory of Open Access Journals (Sweden)

    Haydn T Kissick

    Full Text Available The scavenger receptor MARCO mediates macrophage recognition and clearance of pathogens and their polyanionic ligands. However, recent studies demonstrate MARCO expression and function in dendritic cells, suggesting MARCO might serve to bridge innate and adaptive immunity. To gain additional insight into the role of MARCO in dendritic cell activation and function, we profiled transcriptomes of mouse splenic dendritic cells obtained from MARCO deficient mice and their wild type counterparts under resting and activating conditions. In silico analysis uncovered major alterations in gene expression in MARCO deficient dendritic cells resulting in dramatic alterations in key dendritic cell-specific pathways and functions. Specifically, changes in CD209, FCGR4 and Complement factors can have major consequences on DC-mediated innate responses. Notably, these perturbations were magnified following activation with the TLR-4 agonist lipopolysaccharide. To validate our in silico data, we challenged DC's with various agonists that recognize all mouse TLRs and assessed expression of a set of immune and inflammatory marker genes. This approach identified a differential contribution of MARCO to TLR activation and validated a major role for MARCO in mounting an inflammatory response. Together, our data demonstrate that MARCO differentially affects TLR-induced DC activation and suggest targeting of MARCO could lead to different outcomes that depend on the inflammatory context encountered by DC.

  17. Dendritic Spines in Depression: What We Learned from Animal Models

    OpenAIRE

    Qiao, Hui; Li, Ming-Xing; Xu, Chang; Chen, Hui-Bin; An, Shu-Cheng; Ma, Xin-Ming

    2016-01-01

    Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have ...

  18. In vivo survival of [14C]sucrose-loaded porcine carrier erythrocytes

    International Nuclear Information System (INIS)

    DeLoach, J.R.

    1983-01-01

    Porcine carrier erythrocyte survival was measured in adult pigs. [14C]Sucrose-loaded erythrocytes had a biphasic survival curve, with as much as 50% of the cells removed from circulation in the first 24 hours. The remaining cells had a 35-day half-life. Encapsulation values were measured for porcine erythrocytes and entrapment of [14C]sucrose was greater than 45%. Addition of inosine and glucose to the dialyzed cells and to the final wash buffer before reinjection of autologous cells did not improve their survival

  19. Genetic analysis of the porcine group B rotavirus NSP2 gene from wild-type Brazilian strains

    Directory of Open Access Journals (Sweden)

    K.C. Médici

    2010-01-01

    Full Text Available Group B rotaviruses (RV-B were first identified in piglet feces, being later associated with diarrhea in humans, cattle, lambs, and rats. In human beings, the virus was only described in China, India, and Bangladesh, especially infecting adults. Only a few studies concerning molecular analysis of the RV-B NSP2 gene have been conducted, and porcine RV-B has not been characterized. In the present study, three porcine wild-type RV-B strains from piglet stool samples collected from Brazilian pig herds were used for analysis. PAGE results were inconclusive for those samples, but specific amplicons of the RV-B NSP2 gene (segment 8 were obtained in a semi-nested PCR assay. The three porcine RV-B strains showed the highest nucleotide identity with the human WH1 strain and the alignments with other published sequences resulted in three groups of strains divided according to host species. The group of human strains showed 92.4 to 99.7% nucleotide identity while the porcine strains of the Brazilian RV-B group showed 90.4 to 91.8% identity to each other. The identity of the Brazilian porcine RV-B strains with outer sequences consisting of group A and C rotaviruses was only 35.3 to 38.8%. A dendrogram was also constructed to group the strains into clusters according to host species: human, rat, and a distinct third cluster consisting exclusively of the Brazilian porcine RV-B strains. This is the first study of the porcine RV-B NSP2 gene that contributes to the partial characterization of this virus and demonstrates the relationship among RV-B strains from different host species.

  20. Neuron array with plastic synapses and programmable dendrites.

    Science.gov (United States)

    Ramakrishnan, Shubha; Wunderlich, Richard; Hasler, Jennifer; George, Suma

    2013-10-01

    We describe a novel neuromorphic chip architecture that models neurons for efficient computation. Traditional architectures of neuron array chips consist of large scale systems that are interfaced with AER for implementing intra- or inter-chip connectivity. We present a chip that uses AER for inter-chip communication but uses fast, reconfigurable FPGA-style routing with local memory for intra-chip connectivity. We model neurons with biologically realistic channel models, synapses and dendrites. This chip is suitable for small-scale network simulations and can also be used for sequence detection, utilizing directional selectivity properties of dendrites, ultimately for use in word recognition.

  1. Optimal doses of EGF and GDNF act as biological response modifiers to improve porcine oocyte maturation and quality

    DEFF Research Database (Denmark)

    Valleh, Mehdi Vafaye; Zandi, Nahid Karimi; Rasmussen, Mikkel Aabech

    2017-01-01

    It is well documented that both epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) are critical for porcine oocyte maturation, however, little information is known about their mechanism of action in vitro. To gain insight into the mechanisms of action of the opti......It is well documented that both epidermal growth factor (EGF) and glial cell line-derived neurotrophic factor (GDNF) are critical for porcine oocyte maturation, however, little information is known about their mechanism of action in vitro. To gain insight into the mechanisms of action...... of the optimum doses of EGF and GDNF on porcine oocyte maturation, porcine cumulus-oocyte complexes (COCs) were matured in defined porcine oocyte medium supplemented with EGF, GDNF or a combination of both at varying concentrations (0-100 ng/ml) for 44 h. Nuclear and cytoplasmic maturation were determined...

  2. Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons.

    Science.gov (United States)

    Harnett, Mark T; Magee, Jeffrey C; Williams, Stephen R

    2015-01-21

    The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. Copyright © 2015 the authors 0270-6474/15/351024-14$15.00/0.

  3. Extrinsic Repair of Injured Dendrites as a Paradigm for Regeneration by Fusion in Caenorhabditis elegans

    Science.gov (United States)

    Oren-Suissa, Meital; Gattegno, Tamar; Kravtsov, Veronika; Podbilewicz, Benjamin

    2017-01-01

    Injury triggers regeneration of axons and dendrites. Research has identified factors required for axonal regeneration outside the CNS, but little is known about regeneration triggered by dendrotomy. Here, we study neuronal plasticity triggered by dendrotomy and determine the fate of complex PVD arbors following laser surgery of dendrites. We find that severed primary dendrites grow toward each other and reconnect via branch fusion. Simultaneously, terminal branches lose self-avoidance and grow toward each other, meeting and fusing at the tips via an AFF-1-mediated process. Ectopic branch growth is identified as a step in the regeneration process required for bypassing the lesion site. Failure of reconnection to the severed dendrites results in degeneration of the distal end of the neuron. We discover pruning of excess branches via EFF-1 that acts to recover the original wild-type arborization pattern in a late stage of the process. In contrast, AFF-1 activity during dendritic auto-fusion is derived from the lateral seam cells and not autonomously from the PVD neuron. We propose a model in which AFF-1-vesicles derived from the epidermal seam cells fuse neuronal dendrites. Thus, EFF-1 and AFF-1 fusion proteins emerge as new players in neuronal arborization and maintenance of arbor connectivity following injury in Caenorhabditis elegans. Our results demonstrate that there is a genetically determined multi-step pathway to repair broken dendrites in which EFF-1 and AFF-1 act on different steps of the pathway. EFF-1 is essential for dendritic pruning after injury and extrinsic AFF-1 mediates dendrite fusion to bypass injuries. PMID:28283540

  4. Interdigitated electrode (IDE) for porcine detection based on titanium dioxide (TiO{sub 2}) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nordin, N.; Azizah, N. [Institute of Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000 Kangar Perlis (Malaysia); Hashim, U., E-mail: uda@unimap.edu.my [Institute of Electronic Engineering (INEE), Universiti Malaysia Perlis, 01000 Kangar Perlis (Malaysia); School of Microelctronic Engineering, Universiti Malaysia Perlis, 01000 Kangar Perlis (Malaysia)

    2016-07-06

    Interdigited Electrode (IDE) porcine detection can be accomplished to authenticate the halal issue that has been a concern to Muslim not only in Malaysia but all around the world. The method used is photolithography that used the p-type photoresist on the spin coater with 2500 rpm. Bare IDEs device is deposited with Titanium Dioxide (TiO{sub 2}) to improve the performance of the device. The result indicates that current-voltage (I-V) measurement of porcine probe line slightly above porcine target due to negative charges repelled each other. The IDE device can detect the porcine presence in food as lowest as 1.0 µM. Better performance of the device can be achieved with the replacement of gold deposited to trigger more sensitivity of the device.

  5. Human Blood CD1c+ Dendritic Cells Promote Th1 and Th17 Effector Function in Memory CD4+ T Cells.

    Science.gov (United States)

    Leal Rojas, Ingrid M; Mok, Wai-Hong; Pearson, Frances E; Minoda, Yoshihito; Kenna, Tony J; Barnard, Ross T; Radford, Kristen J

    2017-01-01

    Dendritic cells (DC) initiate the differentiation of CD4 + helper T cells into effector cells including Th1 and Th17 responses that play an important role in inflammation and autoimmune disease pathogenesis. In mice, Th1 and Th17 responses are regulated by different conventional (c) DC subsets, with cDC1 being the main producers of IL-12p70 and inducers of Th1 responses, while cDC2 produce IL-23 to promote Th17 responses. The role that human DC subsets play in memory CD4 + T cell activation is not known. This study investigated production of Th1 promoting cytokine IL-12p70, and Th17 promoting cytokines, IL-1β, IL-6, and IL-23, by human blood monocytes, CD1c + DC, CD141 + DC, and plasmacytoid DC and examined their ability to induce Th1 and Th17 responses in memory CD4 + T cells. Human CD1c + DC produced IL-12p70, IL-1β, IL-6, and IL-23 in response to R848 combined with LPS or poly I:C. CD141 + DC were also capable of producing IL-12p70 and IL-23 but were not as proficient as CD1c + DC. Activated CD1c + DC were endowed with the capacity to promote both Th1 and Th17 effector function in memory CD4 + T cells, characterized by high production of interferon-γ, IL-17A, IL-17F, IL-21, and IL-22. These findings support a role for CD1c + DC in autoimmune inflammation where Th1/Th17 responses play an important role in disease pathogenesis.

  6. Expression of selected genes of dendritic and Treg cells in blood and skin of morphea patients treated with UVA1 phototherapy

    Science.gov (United States)

    Osmola-Mańkowska, Agnieszka J.; Kowalczyk, Michał J.; Żaba, Ryszard W.; Adamski, Zygmunt; Dańczak-Pazdrowska, Aleksandra

    2018-01-01

    Introduction Morphea is a chronic autoimmune disease characterized by fibrosis of the skin. Dendritic cells (DC) and regulatory T cells (Tregs) play a significant role in development of autoimmune and tolerance mechanisms. The aim of the study was to establish the expression of selected genes of plasmacytoid and myeloid DC, Treg cells, and the microenvironment of cytokines (interleukin-17A (IL-17A), transforming growth factor β (TGF-β)) in blood and skin of morphea patients. In addition, the effect of UVA1 phototherapy on expression of the aforementioned genes was evaluated. Material and methods The study was performed on 15 blood and 10 skin samples from patients with morphea. The evaluation included expression of CLEC4C (C-type lectin domain family 4, member C receptor), Lymphocyte antigen 75 (LY75), Forkhead box p3 (foxp3) transcription factor, IL-17A and TGF-β genes in peripheral blood mononuclear cells (PBMC) and in skin samples both before and after UVA1 phototherapy using real-time polymerase chain reaction. Results The study revealed lower expression of CLEC4C before (p = 0.010) and after (p = 0.009) phototherapy and lower expression of IL-17A before (p = 0.038) phototherapy in PBMC of patients with morphea vs. the control group. Expression of CLEC4C in PBMC correlated negatively (rho = –0.90; p = 0.001) with activity of disease after phototherapy. No significant differences were found between expression of analysed genes before and after UVA1 therapy in PBMC and skin of morphea patients. Conclusions The results do not confirm the involvement of analysed subsets of DC and Tregs in UVA1 phototherapy in morphea, but point to CLEC4C as a possible biomarker associated with the disease activity. PMID:29593811

  7. 糖尿病视网膜病变患者外周血 DC 细胞数量和功能的分析研究%Functional analysis of dendritic cells from peripheral blood in patients with diabetic retinopathy

    Institute of Scientific and Technical Information of China (English)

    金鑫; 刘铁城; 张卯年

    2013-01-01

    AIM: To analyze the functions of dendritic cells ( DC ) from peripheral blood in type 2 diabetes mellitus (T2DM) patients with diabetic retinopathy ( DR ) , and investigate the role of DC in the pathogenesis of DR. METHODS:The subjects were divided into simple T2DM group, T2DM with DR group and normal control group. Flow cytometry was used to analyze classification and number of DC in peripheral blood, and ELISA was used to detect the level of Interleukin -12 (IL-12). RESULTS:Compared with the simple T2DM and normal control groups, the number and percentage of myeloid dendritic cells ( mDC ) in peripheral blood increased significantly in T2DM with DR group ( P0.05 ) . CONCLUSION: Drift of the mDC/pDC subtype causes Th1/Th2 immune function disorders and promotes the immune inflammatory reaction, which may play an important role in the occurrence and development of DR.%目的:观察糖尿病视网膜病变( diabetic retinopathy ,DR)患者外周血树突状细胞( dendritic cells ,DC)数量和功能的变化,探讨DC在DR发病中的作用及其机制。方法:将受试者分为单纯2型糖尿病( Type 2 diabetes mellitus,T2DM)组、T2DM合并 DR组以及正常对照组。流式细胞仪检测外周血DC细胞分类及数量,ELISA法检测白介素-12( IL-12)水平。结果:与单纯T2DM组和正常对照组相比,T2DM合并DR组外周血中髓样树突状细胞( myeloid dendritic cells ,mDC)绝对数以及占单个核细胞的百分比显著上升(P<0.05),血浆中IL-12含量显著升高, mDC培养上清中IL-12含量与单个mDC的IL-12分泌量显著降低( P<0.05);而各组浆细胞样外周血树突状细胞( plasmacytoid dendritic cells,pDC)绝对数以及占单个核细胞的百分比无显著性差别(P>0.05)。结论:mDC/pDC 亚型漂移引起Th1/Th2免疫功能失调, mDC特性和功能异常启动免疫炎症反应可能在DR的发生发展中产生了重要作用。

  8. Rapid synthesis of dendritic Pt/Pb nanoparticles and their electrocatalytic performance toward ethanol oxidation

    Science.gov (United States)

    Zhang, Ke; Xu, Hui; Yan, Bo; Wang, Jin; Gu, Zhulan; Du, Yukou

    2017-12-01

    This article reports a rapid synthetic method for the preparation of dendritic platinum-lead bimetallic catalysts by using an oil bath for 5 min in the presence of hexadecyltrimethylammonium chloride (CTAC) and ascorbic acid (AA). CTAC acts as a shape-direction agent, and AA acts as a reducing agent during the reaction process. A series of physical techniques are used to characterize the morphology, structure and electronic properties of the dendritic Pt/Pb nanoparticles, indicating the Pt/Pb dendrites are porous, highly alloying, and self-supported nanostructures. Various electrochemical techniques were also investigated the catalytic performance of the Pt/Pb catalysts toward the ethanol electrooxidation reaction. Cyclic voltammetry and chronoamperometry indicated that the synthesized dendritic Pt/Pb nanoparticles possessed much higher electrocatalytic performance than bulk Pt catalyst. This study may inspire the engineering of dendritic bimetallic catalysts, which are expected to have great potential applications in fuel cells.

  9. Cranial irradiation alters dendritic spine density and morphology in the hippocampus.

    Directory of Open Access Journals (Sweden)

    Ayanabha Chakraborti

    Full Text Available Therapeutic irradiation of the brain is a common treatment modality for brain tumors, but can lead to impairment of cognitive function. Dendritic spines are sites of excitatory synaptic transmission and changes in spine structure and number are thought to represent a morphological correlate of altered brain functions associated with hippocampal dependent learning and memory. To gain some insight into the temporal and sub region specific cellular changes in the hippocampus following brain irradiation, we investigated the effects of 10 Gy cranial irradiation on dendritic spines in young adult mice. One week or 1 month post irradiation, changes in spine density and morphology in dentate gyrus (DG granule and CA1 pyramidal neurons were quantified using Golgi staining. Our results showed that in the DG, there were significant reductions in spine density at both 1 week (11.9% and 1 month (26.9% after irradiation. In contrast, in the basal dendrites of CA1 pyramidal neurons, irradiation resulted in a significant reduction (18.7% in spine density only at 1 week post irradiation. Analysis of spine morphology showed that irradiation led to significant decreases in the proportion of mushroom spines at both time points in the DG as well as CA1 basal dendrites. The proportions of stubby spines were significantly increased in both the areas at 1 month post irradiation. Irradiation did not alter spine density in the CA1 apical dendrites, but there were significant changes in the proportion of thin and mushroom spines at both time points post irradiation. Although the mechanisms involved are not clear, these findings are the first to show that brain irradiation of young adult animals leads to alterations in dendritic spine density and morphology in the hippocampus in a time dependent and region specific manner.

  10. Current limit diagrams for dendrite formation in solid-state electrolytes for Li-ion batteries

    Science.gov (United States)

    Raj, R.; Wolfenstine, J.

    2017-03-01

    We build upon the concept that nucleation of lithium dendrites at the lithium anode-solid state electrolyte interface is instigated by the higher resistance of grain boundaries that raises the local electro-chemical potential of lithium, near the lithium-electrode. This excess electro-chemo-mechanical potential, however, is reduced by the mechanical back stress generated when the dendrite is formed within the electrolyte. These parameters are coalesced into an analytical model that prescribes a specific criterion for dendrite formation. The results are presented in the form of current limit diagrams that show the "safe" and "fail" regimes for battery function. A higher conductivity of the electrolyte can reduce dendrite formation.

  11. GPU-accelerated 3D phase-field simulations of dendrite competitive growth during directional solidification of binary alloy

    International Nuclear Information System (INIS)

    Sakane, S; Takaki, T; Ohno, M; Shimokawabe, T; Aoki, T

    2015-01-01

    Phase-field method has emerged as the most powerful numerical scheme to simulate dendrite growth. However, most phase-field simulations of dendrite growth performed so far are limited to two-dimension or single dendrite in three-dimension because of the large computational cost involved. To express actual solidification microstructures, multiple dendrites with different preferred growth directions should be computed at the same time. In this study, in order to enable large-scale phase-field dendrite growth simulations, we developed a phase-field code using multiple graphics processing units in which a quantitative phase-field method for binary alloy solidification and moving frame algorithm for directional solidification were employed. First, we performed strong and weak scaling tests for the developed parallel code. Then, dendrite competitive growth simulations in three-dimensional binary alloy bicrystal were performed and the dendrite interactions in three-dimensional space were investigated. (paper)

  12. Porcine Tricuspid Valve Anatomy and Human Compatibility

    DEFF Research Database (Denmark)

    Waziri, Farhad; Lyager Nielsen, Sten; Hasenkam, J. Michael

    2016-01-01

    before clinical use. The study aim was to evaluate and compare the tricuspid valve anatomy of porcine and human hearts. METHODS: The anatomy of the tricuspid valve and the surrounding structures that affect the valve during a cardiac cycle were examined in detail in 100 fresh and 19 formalin...

  13. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)

    DEFF Research Database (Denmark)

    Kvisgaard, Lise Kirstine

    This PhD thesis presents the diversity of Porcine Reproductive and Respiratory Syndrome viruses (PRRSV) circulating in the Danish pig population. PRRS is a disease in pigs caused by the PRRS virus resulting in reproductive failures in sows and gilts and respiratory diseases in pigs . Due to genetic...

  14. Sulfated N-linked carbohydrate chains in porcine thyroglobulin

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Kamerling, J.P.; Rijkse, I.; Maas, A.A.M.; Kuik, J.A. van

    1988-01-01

    N-linked carbohydrate chains of porcine thyroglobulin were released by the hydrazinolysis procedure. The resulting mixture of oligosaccharide-alditols was fractionated by high-voltage paper electrophoresis, the acidic fractions were further separated by high-performance liquid chromatography on

  15. Strings on a Violin: Location Dependence of Frequency Tuning in Active Dendrites.

    Science.gov (United States)

    Das, Anindita; Rathour, Rahul K; Narayanan, Rishikesh

    2017-01-01

    Strings on a violin are tuned to generate distinct sound frequencies in a manner that is firmly dependent on finger location along the fingerboard. Sound frequencies emerging from different violins could be very different based on their architecture, the nature of strings and their tuning. Analogously, active neuronal dendrites, dendrites endowed with active channel conductances, are tuned to distinct input frequencies in a manner that is dependent on the dendritic location of the synaptic inputs. Further, disparate channel expression profiles and differences in morphological characteristics could result in dendrites on different neurons of the same subtype tuned to distinct frequency ranges. Alternately, similar location-dependence along dendritic structures could be achieved through disparate combinations of channel profiles and morphological characteristics, leading to degeneracy in active dendritic spectral tuning. Akin to strings on a violin being tuned to different frequencies than those on a viola or a cello, different neuronal subtypes exhibit distinct channel profiles and disparate morphological characteristics endowing each neuronal subtype with unique location-dependent frequency selectivity. Finally, similar to the tunability of musical instruments to elicit distinct location-dependent sounds, neuronal frequency selectivity and its location-dependence are tunable through activity-dependent plasticity of ion channels and morphology. In this morceau, we explore the origins of neuronal frequency selectivity, and survey the literature on the mechanisms behind the emergence of location-dependence in distinct forms of frequency tuning. As a coda to this composition, we present some future directions for this exciting convergence of biophysical mechanisms that endow a neuron with frequency multiplexing capabilities.

  16. Dendritic Cytoskeletal Architecture Is Modulated by Combinatorial Transcriptional Regulation in Drosophila melanogaster.

    Science.gov (United States)

    Das, Ravi; Bhattacharjee, Shatabdi; Patel, Atit A; Harris, Jenna M; Bhattacharya, Surajit; Letcher, Jamin M; Clark, Sarah G; Nanda, Sumit; Iyer, Eswar Prasad R; Ascoli, Giorgio A; Cox, Daniel N

    2017-12-01

    Transcription factors (TFs) have emerged as essential cell autonomous mediators of subtype specific dendritogenesis; however, the downstream effectors of these TFs remain largely unknown, as are the cellular events that TFs control to direct morphological change. As dendritic morphology is largely dictated by the organization of the actin and microtubule (MT) cytoskeletons, elucidating TF-mediated cytoskeletal regulatory programs is key to understanding molecular control of diverse dendritic morphologies. Previous studies in Drosophila melanogaster have demonstrated that the conserved TFs Cut and Knot exert combinatorial control over aspects of dendritic cytoskeleton development, promoting actin and MT-based arbor morphology, respectively. To investigate transcriptional targets of Cut and/or Knot regulation, we conducted systematic neurogenomic studies, coupled with in vivo genetic screens utilizing multi-fluor cytoskeletal and membrane marker reporters. These analyses identified a host of putative Cut and/or Knot effector molecules, and a subset of these putative TF targets converge on modulating dendritic cytoskeletal architecture, which are grouped into three major phenotypic categories, based upon neuromorphometric analyses: complexity enhancer, complexity shifter, and complexity suppressor. Complexity enhancer genes normally function to promote higher order dendritic growth and branching with variable effects on MT stabilization and F-actin organization, whereas complexity shifter and complexity suppressor genes normally function in regulating proximal-distal branching distribution or in restricting higher order branching complexity, respectively, with spatially restricted impacts on the dendritic cytoskeleton. Collectively, we implicate novel genes and cellular programs by which TFs distinctly and combinatorially govern dendritogenesis via cytoskeletal modulation. Copyright © 2017 by the Genetics Society of America.

  17. Improved cell line IPEC-J2, characterized as a model for porcine jejunal epithelium.

    Directory of Open Access Journals (Sweden)

    Silke S Zakrzewski

    Full Text Available Cell lines matching the source epithelium are indispensable for investigating porcine intestinal transport and barrier properties on a subcellular or molecular level and furthermore help to reduce animal usage. The porcine jejunal cell line IPEC-J2 is established as an in vitro model for porcine infection studies but exhibits atypically high transepithelial resistances (TER and only low active transport rates so that the effect of nutritional factors cannot be reliably investigated. This study aimed to properly remodel IPEC-J2 and then to re-characterize these cells regarding epithelial architecture, expression of barrier-relevant tight junction (TJ proteins, adequate TER and transport function, and reaction to secretagogues. For this, IPEC-J2 monolayers were cultured on permeable supports, either under conventional (fetal bovine serum, FBS or species-specific (porcine serum, PS conditions. Porcine jejunal mucosa was analyzed for comparison. Main results were that under PS conditions (IPEC-J2/PS, compared to conventional FBS culture (IPEC-J2/FBS, the cell height increased 6-fold while the cell diameter was reduced by 50%. The apical cell membrane of IPEC-J2/PS exhibited typical microvilli. Most importantly, PS caused a one order of magnitude reduction of TER and of trans- and paracellular resistance, and a 2-fold increase in secretory response to forskolin when compared to FBS condition. TJ ultrastructure and appearance of TJ proteins changed dramatically in IPEC-J2/PS. Most parameters measured under PS conditions were much closer to those of typical pig jejunocytes than ever reported since the cell line's initial establishment in 1989. In conclusion, IPEC-J2, if cultured under defined species-specific conditions, forms a suitable model for investigating porcine paracellular intestinal barrier function.

  18. Advanced dendritic web growth development

    Science.gov (United States)

    Hopkins, R. H.

    1985-01-01

    A program to develop the technology of the silicon dendritic web ribbon growth process is examined. The effort is being concentrated on the area rate and quality requirements necessary to meet the JPL/DOE goals for terrestrial PV applications. Closed loop web growth system development and stress reduction for high area rate growth is considered.

  19. Equiaxed and columnar dendrite growth simulation in Al-7Si- Mg ternary alloys using cellular automaton method

    International Nuclear Information System (INIS)

    Chen, Rui; Xu, Qingyan; Liu, Baicheng

    2015-01-01

    In this paper, a modified cellular automaton (MCA) model allowing for the prediction of dendrite growth of Al-Si-Mg ternary alloys in two and three dimensions is presented. The growth kinetic of S/L interface is calculated based on the solute equilibrium approach. In order to describe the dendrite growth with arbitrarily crystallographic orientations, this model introduces a modified decentered octahedron algorithm for neighborhood tracking to eliminate the effect of mesh dependency on dendrite growth. The thermody namic and kinetic data needed for dendrite growth is obtained through coupling with Pandat software package in combination with thermodynamic/kinetic/equilibrium phase diagram calculation databases. The effect of interactions between various alloying elements on solute diffusion coefficient is considered in the model. This model has first been used to simulate Al-7Si (weight percent) binary dendrite growth followed by a validation using theoretical predictions. For ternary alloy, Al-7Si-0.5Mg dendrite simulation has been carried out and the effects of solute interactions on diffusion matrix as well as the differences of Si and Mg in solute distribution have been analyzed. For actual application, this model has been applied to simulate the equiaxed dendrite growth with various crystallographic orientations of Al-7Si-0.36Mg ternary alloy, and the predicted secondary dendrite arm spacing (SDAS) shows a reasonable agreement with the experimental ones. Furthermore, the columnar dendrite growth in directional solidification has also been simulated and the predicted primary dendrite arm spacing (PDAS) is in good agreement with experiments. The simulated results effectively demonstrate the abilities of the model in prediction of dendritic microstructure of Al-Si-Mg ternary alloy. (paper)

  20. Equiaxed and columnar dendrite growth simulation in Al-7Si- Mg ternary alloys using cellular automaton method

    Science.gov (United States)

    Chen, Rui; Xu, Qingyan; Liu, Baicheng

    2015-06-01

    In this paper, a modified cellular automaton (MCA) model allowing for the prediction of dendrite growth of Al-Si-Mg ternary alloys in two and three dimensions is presented. The growth kinetic of S/L interface is calculated based on the solute equilibrium approach. In order to describe the dendrite growth with arbitrarily crystallographic orientations, this model introduces a modified decentered octahedron algorithm for neighborhood tracking to eliminate the effect of mesh dependency on dendrite growth. The thermody namic and kinetic data needed for dendrite growth is obtained through coupling with Pandat software package in combination with thermodynamic/kinetic/equilibrium phase diagram calculation databases. The effect of interactions between various alloying elements on solute diffusion coefficient is considered in the model. This model has first been used to simulate Al-7Si (weight percent) binary dendrite growth followed by a validation using theoretical predictions. For ternary alloy, Al-7Si-0.5Mg dendrite simulation has been carried out and the effects of solute interactions on diffusion matrix as well as the differences of Si and Mg in solute distribution have been analyzed. For actual application, this model has been applied to simulate the equiaxed dendrite growth with various crystallographic orientations of Al-7Si-0.36Mg ternary alloy, and the predicted secondary dendrite arm spacing (SDAS) shows a reasonable agreement with the experimental ones. Furthermore, the columnar dendrite growth in directional solidification has also been simulated and the predicted primary dendrite arm spacing (PDAS) is in good agreement with experiments. The simulated results effectively demonstrate the abilities of the model in prediction of dendritic microstructure of Al-Si-Mg ternary alloy.

  1. The FTLD risk factor TMEM106B and MAP6 control dendritic trafficking of lysosomes

    Science.gov (United States)

    Schwenk, Benjamin M; Lang, Christina M; Hogl, Sebastian; Tahirovic, Sabina; Orozco, Denise; Rentzsch, Kristin; Lichtenthaler, Stefan F; Hoogenraad, Casper C; Capell, Anja; Haass, Christian; Edbauer, Dieter

    2014-01-01

    TMEM106B is a major risk factor for frontotemporal lobar degeneration with TDP-43 pathology. TMEM106B localizes to lysosomes, but its function remains unclear. We show that TMEM106B knockdown in primary neurons affects lysosomal trafficking and blunts dendritic arborization. We identify microtubule-associated protein 6 (MAP6) as novel interacting protein for TMEM106B. MAP6 over-expression inhibits dendritic branching similar to TMEM106B knockdown. MAP6 knockdown fully rescues the dendritic phenotype of TMEM106B knockdown, supporting a functional interaction between TMEM106B and MAP6. Live imaging reveals that TMEM106B knockdown and MAP6 overexpression strongly increase retrograde transport of lysosomes in dendrites. Downregulation of MAP6 in TMEM106B knockdown neurons restores the balance of anterograde and retrograde lysosomal transport and thereby prevents loss of dendrites. To strengthen the link, we enhanced anterograde lysosomal transport by expressing dominant-negative Rab7-interacting lysosomal protein (RILP), which also rescues the dendrite loss in TMEM106B knockdown neurons. Thus, TMEM106B/MAP6 interaction is crucial for controlling dendritic trafficking of lysosomes, presumably by acting as a molecular brake for retrograde transport. Lysosomal misrouting may promote neurodegeneration in patients with TMEM106B risk variants. PMID:24357581

  2. A Bacterial Glycoengineered Antigen for Improved Serodiagnosis of Porcine Brucellosis.

    Science.gov (United States)

    Cortina, María E; Balzano, Rodrigo E; Rey Serantes, Diego A; Caillava, Ana J; Elena, Sebastián; Ferreira, A C; Nicola, Ana M; Ugalde, Juan E; Comerci, Diego J; Ciocchini, Andrés E

    2016-06-01

    Brucellosis is a highly zoonotic disease that affects animals and human beings. Brucella suis is the etiological agent of porcine brucellosis and one of the major human brucellosis pathogens. Laboratory diagnosis of porcine brucellosis mainly relies on serological tests, and it has been widely demonstrated that serological assays based on the detection of anti O-polysaccharide antibodies are the most sensitive tests. Here, we validate a recombinant glycoprotein antigen, an N-formylperosamine O-polysaccharide-protein conjugate (OAg-AcrA), for diagnosis of porcine brucellosis. An indirect immunoassay based on the detection of anti-O-polysaccharide IgG antibodies was developed coupling OAg-AcrA to enzyme-linked immunosorbent assay plates (glyco-iELISA). To validate the assay, 563 serum samples obtained from experimentally infected and immunized pigs, as well as animals naturally infected with B. suis biovar 1 or 2, were tested. A receiver operating characteristic (ROC) analysis was performed, and based on this analysis, the optimum cutoff value was 0.56 (relative reactivity), which resulted in a diagnostic sensitivity and specificity of 100% and 99.7%, respectively. A cutoff value of 0.78 resulted in a test sensitivity of 98.4% and a test specificity of 100%. Overall, our results demonstrate that the glyco-iELISA is highly accurate for diagnosis of porcine brucellosis, improving the diagnostic performance of current serological tests. The recombinant glycoprotein OAg-AcrA can be produced in large homogeneous batches in a standardized way, making it an ideal candidate for further validation as a universal antigen for diagnosis of "smooth" brucellosis in animals and humans. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  3. Virulence-associated gene pattern of porcine and human Yersinia enterocolitica biotype 4 isolates.

    Science.gov (United States)

    Schneeberger, M; Brodard, I; Overesch, G

    2015-04-02

    Yersinia enterocolitica 4/O:3 is the most important human pathogenic bioserotype in Europe and the predominant pathogenic bioserotype in slaughter pigs. Although many studies on the virulence of Y. enterocolitica strains have showed a broad spectrum of detectable factors in pigs and humans, an analysis based on a strict comparative approach and serving to verify the virulence capability of porcine Y. enterocolitica as a source for human yersiniosis is lacking. Therefore, in the present study, strains of biotype (BT) 4 isolated from Swiss slaughter pig tonsils and feces and isolates from human clinical cases were compared in terms of their spectrum of virulence-associated genes (yadA, virF, ail, inv, rovA, ymoA, ystA, ystB and myfA). An analysis of the associated antimicrobial susceptibility pattern completed the characterization. All analyzed BT 4 strains showed a nearly similar pattern, comprising the known fundamental virulence-associated genes yadA, virF, ail, inv, rovA, ymoA, ystA and myfA. Only ystB was not detectable among all analyzed isolates. Importantly, neither the source of the isolates (porcine tonsils and feces, humans) nor the serotype (ST) had any influence on the gene pattern. From these findings, it can be concluded that the presence of the full complement of virulence genes necessary for human infection is common among porcine BT 4 strains. Swiss porcine BT 4 strains not only showed antimicrobial susceptibility to chloramphenicol, cefotaxime, ceftazidime, ciprofloxacin, colistin, florfenicol, gentamicin, kanamycin, nalidixic acid, sulfamethoxazole, streptomycin, tetracycline and trimethoprim but also showed 100% antibiotic resistance to ampicillin. The human BT 4 strains revealed comparable results. However, in addition to 100% antibiotic resistance to ampicillin, 2 strains were resistant to chloramphenicol and nalidixic acid. Additionally, 1 of these strains was resistant to sulfamethoxazole. The results demonstrated that Y. enterocolitica BT 4

  4. Corneal epithelial cell viability of an ex vivo porcine eye model.

    Science.gov (United States)

    Chan, Ka Yin; Cho, Pauline; Boost, Maureen

    2014-07-01

    The aim was to assess the consistency of corneal epithelial cell viability of an ex vivo porcine eye model. Six porcine eye models (four test and two control) were prepared for each experiment. The model has a computer-controlled mechanical arm, which could move the eyelid of the porcine eye and apply phosphate buffered saline to simulate blinking and lacrimation. The four test eyes were set up to simulate evaporative dry eyes with simulated lacrimation and blinking (one blink and one drop of buffered saline per minute) over three hours. Control A models were set up to collect pre-experimental baseline data, while those of control B were the same as the test eyes but without lacrimation and blinking simulation. All porcine eyes were kept in a closed chamber with temperature and humidity well controlled. After three hours, the cells of all eyes (except control A, which were assessed immediately before commencement of the experiment) were assessed. The eyes were first dipped into 0.4 per cent trypan blue solution. Following the dissection and separation of the cells, the number of dead cells were then counted under the microscope with a field size of 0.25 mm(2). The experiment was repeated 11 times. No significant differences were found in the number of dead cells among the four test eyes in both the central and peripheral cornea. There were significantly more dead cells in the test eyes compared to control A but significantly less when compared to control B. More dead cells were found in the central cornea than the peripheral cornea in the test eyes but the difference was not observed in controls A and B. Epithelial cell viabilities among the four porcine eye models with simulated lacrimation and blinking were consistent. The majority of cells were viable before the experiment and simulated lacrimation and blinking maintained more viable cells over time. © 2014 The Authors. Clinical and Experimental Optometry © 2014 Optometrists Association Australia.

  5. Dendritic cells: biology of the skin

    NARCIS (Netherlands)

    Toebak, M.J.; Gibbs, S.; Bruynzeel, D.P.; Scheper, R.J.; Rustemeyer, T.

    2009-01-01

    Allergic contact dermatitis results from a T-cell-mediated, delayed-type hypersensitivity immune response induced by allergens. Skin dendritic cells (DCs) play a central role in the initiation of allergic skin responses. Following encounter with an allergen, DCs become activated and undergo

  6. Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications.

    Science.gov (United States)

    Lee, Jung Heon; Yi, Gyu Sung; Lee, Jin Woong; Kim, Deug Joong

    2017-12-01

    The physicochemical properties of a xenograft are very important because they strongly influence the bone regeneration capabilities of the graft material. Even though porcine xenografts have many advantages, only a few porcine xenografts are commercially available, and most of their physicochemical characteristics have yet to be reported. Thus, in this work we aimed to investigate the physicochemical characteristics of a porcine bone grafting material and compare them with those of 2 commercially available bovine xenografts to assess the potential of xenogenic porcine bone graft materials for dental applications. We used various characterization techniques, such as scanning electron microscopy, the Brunauer-Emmett-Teller adsorption method, atomic force microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and others, to compare the physicochemical properties of xenografts of different origins. The porcine bone grafting material had relatively high porosity (78.4%) and a large average specific surface area (SSA; 69.9 m 2 /g), with high surface roughness (10-point average roughness, 4.47 µm) and sub-100-nm hydroxyapatite crystals on the surface. Moreover, this material presented a significant fraction of sub-100-nm pores, with negligible amounts of residual organic substances. Apart from some minor differences, the overall characteristics of the porcine bone grafting material were very similar to those of one of the bovine bone grafting material. However, many of these morphostructural properties were significantly different from the other bovine bone grafting material, which exhibited relatively smooth surface morphology with a porosity of 62.0% and an average SSA of 0.5 m 2 /g. Considering that both bovine bone grafting materials have been successfully used in oral surgery applications in the last few decades, this work shows that the porcine-derived grafting material possesses most of the key physiochemical characteristics required for its

  7. Spatial distribution of excitatory synapses on the dendrites of ganglion cells in the mouse retina.

    Directory of Open Access Journals (Sweden)

    Yin-Peng Chen

    Full Text Available Excitatory glutamatergic inputs from bipolar cells affect the physiological properties of ganglion cells in the mammalian retina. The spatial distribution of these excitatory synapses on the dendrites of retinal ganglion cells thus may shape their distinct functions. To visualize the spatial pattern of excitatory glutamatergic input into the ganglion cells in the mouse retina, particle-mediated gene transfer of plasmids expressing postsynaptic density 95-green fluorescent fusion protein (PSD95-GFP was used to label the excitatory synapses. Despite wide variation in the size and morphology of the retinal ganglion cells, the expression of PSD95 puncta was found to follow two general rules. Firstly, the PSD95 puncta are regularly spaced, at 1-2 µm intervals, along the dendrites, whereby the presence of an excitatory synapse creates an exclusion zone that rules out the presence of other glutamatergic synaptic inputs. Secondly, the spatial distribution of PSD95 puncta on the dendrites of diverse retinal ganglion cells are similar in that the number of excitatory synapses appears to be less on primary dendrites and to increase to a plateau on higher branch order dendrites. These observations suggest that synaptogenesis is spatially regulated along the dendritic segments and that the number of synaptic contacts is relatively constant beyond the primary dendrites. Interestingly, we also found that the linear puncta density is slightly higher in large cells than in small cells. This may suggest that retinal ganglion cells with a large dendritic field tend to show an increased connectivity of excitatory synapses that makes up for their reduced dendrite density. Mapping the spatial distribution pattern of the excitatory synapses on retinal ganglion cells thus provides explicit structural information that is essential for our understanding of how excitatory glutamatergic inputs shape neuronal responses.

  8. Detection of porcine DNA in gelatine and gelatine-containing processed food products-Halal/Kosher authentication.

    Science.gov (United States)

    Demirhan, Yasemin; Ulca, Pelin; Senyuva, Hamide Z

    2012-03-01

    A commercially available real-time PCR, based on a multi-copy target cytochrome b (cyt b) using porcine specific primers, has been validated for the Halal/Kosher authentication of gelatine. Extraction and purification of DNA from gelatine were successfully achieved using the SureFood® PREP Animal system, and real-time PCR was carried out using SureFood® Animal ID Pork Sens kit. The minimum level of adulteration that could be detected was 1.0% w/w for marshmallows and gum drops. A small survey was undertaken of processed food products such as gum drops, marshmallows and Turkish delight, believed to contain gelatine. Of fourteen food products from Germany, two samples were found to contain porcine gelatine, whereas of twenty-nine samples from Turkey twenty-eight were negative. However, one product from Turkey contained porcine DNA and thus was not Halal, and neither was the use of porcine gelatine indicated on the product label. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. DMPD: Proximal effects of Toll-like receptor activation in dendritic cells. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17142025 Proximal effects of Toll-like receptor activation in dendritic cells. Watt...) (.svg) (.html) (.csml) Show Proximal effects of Toll-like receptor activation in dendritic cells. PubmedID... 17142025 Title Proximal effects of Toll-like receptor activation in dendritic ce

  10. Cardiac Dysfunction in a Porcine Model of Pediatric Malnutrition

    DEFF Research Database (Denmark)

    Fabiansen, Christian; Lykke, Mikkel; Hother, Anne-Louise

    2015-01-01

    BACKGROUND: Half a million children die annually of severe acute malnutrition and cardiac dysfunction may contribute to the mortality. However, cardiac function remains poorly examined in cases of severe acute malnutrition. OBJECTIVE: To determine malnutrition-induced echocardiographic disturbances...... and longitudinal changes in plasma pro-atrial natriuretic peptide and cardiac troponin-T in a pediatric porcine model. METHODS AND RESULTS: Five-week old piglets (Duroc-x-Danish Landrace-x-Yorkshire) were fed a nutritionally inadequate maize-flour diet to induce malnutrition (MAIZE, n = 12) or a reference diet...... groups. The myocardial performance index was 86% higher in MAIZE vs AGE-REF (pMalnutrition associates with cardiac dysfunction in a pediatric porcine model by increased myocardial performance index and pro-atrial natriuretic peptide...

  11. Self-referential forces are sufficient to explain different dendritic morphologies

    Directory of Open Access Journals (Sweden)

    Heraldo eMemelli

    2013-01-01

    Full Text Available Dendritic morphology constrains brain activity, as it determines first which neuronal circuits are possible and second which dendritic computations can be performed over a neuron's inputs. It is known that a range of chemical cues can influence the final shape of dendrites during development. Here, we investigate the extent to which self-referential influences, cues generated by the neuron itself, might influence morphology. To this end, we developed a phenomenological model and algorithm to generate virtual morphologies, which are then compared to experimentally reconstructed morphologies. In the model, branching probability follows a Galton-Watson process, while the geometry is determined by "homotypic forces" exerting influence on the direction of random growth in a constrained space. We model three such homotypic forces, namely an inertial force based on membrane stiffness, a soma-oriented tropism, and a force of self avoidance, as directional biases in the growth algorithm. With computer simulations we explored how each bias shapes neuronal morphologies. We show that based on these principles, we can generate realistic morphologies of several distinct neuronal types. We discuss the extent to which homotypic forces might influence real dendritic morphologies, and speculate about the influence of other environmental cues on neuronal shape and circuitry.

  12. Self-referential forces are sufficient to explain different dendritic morphologies

    Science.gov (United States)

    Memelli, Heraldo; Torben-Nielsen, Benjamin; Kozloski, James

    2013-01-01

    Dendritic morphology constrains brain activity, as it determines first which neuronal circuits are possible and second which dendritic computations can be performed over a neuron's inputs. It is known that a range of chemical cues can influence the final shape of dendrites during development. Here, we investigate the extent to which self-referential influences, cues generated by the neuron itself, might influence morphology. To this end, we developed a phenomenological model and algorithm to generate virtual morphologies, which are then compared to experimentally reconstructed morphologies. In the model, branching probability follows a Galton–Watson process, while the geometry is determined by “homotypic forces” exerting influence on the direction of random growth in a constrained space. We model three such homotypic forces, namely an inertial force based on membrane stiffness, a soma-oriented tropism, and a force of self-avoidance, as directional biases in the growth algorithm. With computer simulations we explored how each bias shapes neuronal morphologies. We show that based on these principles, we can generate realistic morphologies of several distinct neuronal types. We discuss the extent to which homotypic forces might influence real dendritic morphologies, and speculate about the influence of other environmental cues on neuronal shape and circuitry. PMID:23386828

  13. Dendritic Spines in Depression: What We Learned from Animal Models

    Directory of Open Access Journals (Sweden)

    Hui Qiao

    2016-01-01

    Full Text Available Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS, chronic unpredictable mild stress (CUMS, and chronic social defeat stress (CSDS, have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms.

  14. Multifunctional gadolinium-based dendritic macromolecules as liver targeting imaging probes.

    Science.gov (United States)

    Luo, Kui; Liu, Gang; He, Bin; Wu, Yao; Gong, Qingyong; Song, Bin; Ai, Hua; Gu, Zhongwei

    2011-04-01

    The quest for highly efficient and safe contrast agents has become the key factor for successful application of magnetic resonance imaging (MRI). The gadolinium (Gd) based dendritic macromolecules, with precise and tunable nanoscopic sizes, are excellent candidates as multivalent MRI probes. In this paper, a novel series of Gd-based multifunctional peptide dendritic probes (generation 2, 3, and 4) possessing highly controlled structures and single molecular weight were designed and prepared as liver MRI probes. These macromolecular Gd-ligand agents exhibited up to 3-fold increase in T(1) relaxivity comparing to Gd-DTPA complexes. No obvious in vitro cytotoxicity was observed from the measured concentrations. These dendritic probes were further functionalized with multiple galactosyl moieties and led to much higher cell uptake in vitro as demonstrated in T(1)-weighted scans. During in vivo animal studies, the probes provided better signal intensity (SI) enhancement in mouse liver, especially at 60 min post-injection, with the most efficient enhancement from the galactosyl moiety decorated third generation dendrimer. The imaging results were verified with analysis of Gd content in liver tissues. The design strategy of multifunctional Gd-ligand peptide dendritic macromolecules in this study may be used for developing other sensitive MRI probes with targeting capability. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Porcine Circovirus Diseases: A review of PMWS

    DEFF Research Database (Denmark)

    Baekbo, P.; Kristensen, C. S.; Larsen, L. E.

    2012-01-01

    Porcine Circo Virus type 2 have been coming on the market and many studies have shown great benefits of these to control PMWS. Today, sow vaccines as well as piglet vaccines are available in most countries. An extensive meta‐analysis of many of the vaccines has shown a comparable good efficacy...

  16. A Live-Attenuated Chimeric Porcine Circovirus Type 2 (PCV2) Vaccine Is Transmitted to Contact Pigs but Is Not Upregulated by Concurrent Infection with Porcine Parvovirus (PPV) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Is Efficacious in a PCV2b-PRRSV-PPV Challenge Model▿

    OpenAIRE

    Opriessnig, T.; Shen, H. G.; Pal, N.; Ramamoorthy, S.; Huang, Y. W.; Lager, K. M.; Beach, N. M.; Halbur, P. G.; Meng, X. J.

    2011-01-01

    The live chimeric porcine circovirus type 2 (PCV2) vaccine with the capsid gene of the emerging subtype 2b cloned in the genomic backbone of the nonpathogenic PCV1 is attenuated in vivo and induces protective immunity against PCV2. To further determine the safety and efficacy of this experimental vaccine, we tested for evidence of pig-to-pig transmission by commingling nonvaccinated and vaccinated pigs, determined potential upregulation by simultaneous vaccination and infection with porcine p...

  17. Spindle-F Is the Central Mediator of Ik2 Kinase-Dependent Dendrite Pruning in Drosophila Sensory Neurons.

    Directory of Open Access Journals (Sweden)

    Tzu Lin

    2015-11-01

    Full Text Available During development, certain Drosophila sensory neurons undergo dendrite pruning that selectively eliminates their dendrites but leaves the axons intact. How these neurons regulate pruning activity in the dendrites remains unknown. Here, we identify a coiled-coil protein Spindle-F (Spn-F that is required for dendrite pruning in Drosophila sensory neurons. Spn-F acts downstream of IKK-related kinase Ik2 in the same pathway for dendrite pruning. Spn-F exhibits a punctate pattern in larval neurons, whereas these Spn-F puncta become redistributed in pupal neurons, a step that is essential for dendrite pruning. The redistribution of Spn-F from puncta in pupal neurons requires the phosphorylation of Spn-F by Ik2 kinase to decrease Spn-F self-association, and depends on the function of microtubule motor dynein complex. Spn-F is a key component to link Ik2 kinase to dynein motor complex, and the formation of Ik2/Spn-F/dynein complex is critical for Spn-F redistribution and for dendrite pruning. Our findings reveal a novel regulatory mechanism for dendrite pruning achieved by temporal activation of Ik2 kinase and dynein-mediated redistribution of Ik2/Spn-F complex in neurons.

  18. Controlling T-Cell Activation with Synthetic Dendritic Cells Using the Multivalency Effect

    NARCIS (Netherlands)

    Hammink, R.; Mandal, S.; Eggermont, L.J.; Nooteboom, M.; Willems, P.H.G.M.; Tel, J.; Rowan, A.E.; Figdor, C.G.; Blank, K.G.

    2017-01-01

    Artificial antigen-presenting cells (aAPCs) have recently gained a lot of attention. They efficiently activate T cells and serve as powerful replacements for dendritic cells in cancer immunotherapy. Focusing on a specific class of polymer-based aAPCs, so-called synthetic dendritic cells (sDCs), we

  19. Cortical dendritic activity correlates with spindle-rich oscillations during sleep in rodents.

    Science.gov (United States)

    Seibt, Julie; Richard, Clément J; Sigl-Glöckner, Johanna; Takahashi, Naoya; Kaplan, David I; Doron, Guy; de Limoges, Denis; Bocklisch, Christina; Larkum, Matthew E

    2017-09-25

    How sleep influences brain plasticity is not known. In particular, why certain electroencephalographic (EEG) rhythms are linked to memory consolidation is poorly understood. Calcium activity in dendrites is known to be necessary for structural plasticity changes, but this has never been carefully examined during sleep. Here, we report that calcium activity in populations of neocortical dendrites is increased and synchronised during oscillations in the spindle range in naturally sleeping rodents. Remarkably, the same relationship is not found in cell bodies of the same neurons and throughout the cortical column. Spindles during sleep have been suggested to be important for brain development and plasticity. Our results provide evidence for a physiological link of spindles in the cortex specific to dendrites, the main site of synaptic plasticity.Different stages of sleep, marked by particular electroencephalographic (EEG) signatures, have been linked to memory consolidation, but underlying mechanisms are poorly understood. Here, the authors show that dendritic calcium synchronisation correlates with spindle-rich sleep phases.

  20. CTLA-4 blockade during dendritic cell based booster vaccination influences dendritic cell survival and CTL expansion

    DEFF Research Database (Denmark)

    Pedersen, Anders E; Ronchese, Franca

    2007-01-01

    Dendritic cells (DCs) are potent antigen-presenting cells and critical for the priming of CD8+ T cells. Therefore the use of these cells as adjuvant cells has been tested in a large number of experimental and clinical vaccination studies, in particular cancer vaccine studies. A number of protocols...

  1. Numerical model for dendritic solidification of binary alloys

    Science.gov (United States)

    Felicelli, S. D.; Heinrich, J. C.; Poirier, D. R.

    1993-01-01

    A finite element model capable of simulating solidification of binary alloys and the formation of freckles is presented. It uses a single system of equations to deal with the all-liquid region, the dendritic region, and the all-solid region. The dendritic region is treated as an anisotropic porous medium. The algorithm uses the bilinear isoparametric element, with a penalty function approximation and a Petrov-Galerkin formulation. Numerical simulations are shown in which an NH4Cl-H2O mixture and a Pb-Sn alloy melt are cooled. The solidification process is followed in time. Instabilities in the process can be clearly observed and the final compositions obtained.

  2. Retention of gene expression in porcine islets after agarose encapsulation and long-term culture

    International Nuclear Information System (INIS)

    Dumpala, Pradeep R.; Holdcraft, Robert W.; Martis, Prithy C.; Laramore, Melissa A.; Parker, Thomas S.; Levine, Daniel M.; Smith, Barry H.; Gazda, Lawrence S.

    2016-01-01

    Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expression profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture. - Highlights: • Effect of agarose encapsulation and 8 week culture on porcine islets was analyzed. • Transcriptome analysis revealed no significant change in a majority (98%) of genes. • Agarose encapsulation allows for long-term culture of porcine islets. • Islet culture allows for functional and microbial testing prior to clinical use.

  3. Retention of gene expression in porcine islets after agarose encapsulation and long-term culture

    Energy Technology Data Exchange (ETDEWEB)

    Dumpala, Pradeep R., E-mail: pdumpala@rixd.org [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States); Holdcraft, Robert W.; Martis, Prithy C.; Laramore, Melissa A. [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States); Parker, Thomas S.; Levine, Daniel M. [The Rogosin Institute, 505 East 70th Street, New York, NY 10021 (United States); Smith, Barry H. [The Rogosin Institute, 505 East 70th Street, New York, NY 10021 (United States); NewYork-Presbyterian Hospital, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10021 (United States); Gazda, Lawrence S. [The Rogosin Institute – Xenia Division, 740 Birch Road, Xenia, OH 45385 (United States)

    2016-08-05

    Agarose encapsulation of porcine islets allows extended in vitro culture, providing ample time to determine the functional capacity of the islets and conduct comprehensive microbiological safety testing prior to implantation as a treatment for type 1 diabetes mellitus. However, the effect that agarose encapsulation and long-term culture may have on porcine islet gene expression is unknown. The aim of the present study was to compare the transcriptome of encapsulated porcine islets following long-term in vitro culture against free islets cultured overnight. Global gene expression analysis revealed no significant change in the expression of 98.47% of genes. This indicates that the gene expression profile of free islets is highly conserved following encapsulation and long-term culture. Importantly, the expression levels of genes that code for critical hormones secreted by islets (insulin, glucagon, and somatostatin) as well as transcripts encoding proteins involved in their packaging and secretion are unchanged. While a small number of genes known to play roles in the insulin secretion and insulin signaling pathways are differentially expressed, our results show that overall gene expression is retained following islet isolation, agarose encapsulation, and long-term culture. - Highlights: • Effect of agarose encapsulation and 8 week culture on porcine islets was analyzed. • Transcriptome analysis revealed no significant change in a majority (98%) of genes. • Agarose encapsulation allows for long-term culture of porcine islets. • Islet culture allows for functional and microbial testing prior to clinical use.

  4. Paternal deprivation during infancy results in dendrite- and time-specific changes of dendritic development and spine formation in the orbitofrontal cortex of the biparental rodent Octodon degus.

    Science.gov (United States)

    Helmeke, C; Seidel, K; Poeggel, G; Bredy, T W; Abraham, A; Braun, K

    2009-10-20

    The aim of this study in the biparental rodent Octodon degus was to assess the impact of paternal deprivation on neuronal and synaptic development in the orbitofrontal cortex, a prefrontal region which is essential for emotional and cognitive function. On the behavioral level the quantitative comparison of parental behaviors in biparental and single-mother families revealed that (i) degu fathers significantly participate in parental care and (ii) single-mothers do not increase their maternal care to compensate the lack of paternal care. On the brain structural level we show in three-week-old father-deprived animals that layer II/III pyramidal neurons in the orbitofrontal cortex displayed significantly lower spine densities on apical and basal dendrites. Whereas biparentally raised animals have reached adult spine density values at postnatal day 21, fatherless animals seem "to catch up" by a delayed increase of spine density until reaching similar values as biparentally raised animals in adulthood. However, in adulthood reduced apical spine numbers together with shorter apical dendrites were observed in father-deprived animals, which indicates that dendritic growth and synapse formation (seen in biparental animals between postnatal day 21 and adulthood) were significantly suppressed. These results demonstrate that paternal deprivation delays and partly suppresses the development of orbitofrontal circuits. The retarded dendritic and synaptic development of the apical dendrites of layer II/III pyramidal neurons in the orbitofrontal cortex of adult fatherless animals may reflect a reduced excitatory connectivity of this cortical subregion.

  5. Peptides and proteins in dendritic assemblies

    NARCIS (Netherlands)

    Baal, van I.

    2007-01-01

    Multiple, simultaneous interactions are often used in biology to enhance the affinity and specificity of binding, an effect referred to as multivalency. This multivalency can be mimicked by anchoring multiple peptides and proteins onto synthetic dendritic scaffolds. The aim of this research was to

  6. Antigen dynamics of follicular dendritic cells

    NARCIS (Netherlands)

    Heesters, B.A.

    2015-01-01

    Stromal-derived follicular dendritic cells (FDCs) are a major depot for antigen that are essential for formation of germinal centers, the site where memory and effector B cells differentiate and high-affinity antibody production takes place. Historically, FDCs have been characterized as ‘accessory’

  7. [Quantitative analysis of the structure of neuronal dendritic spines in the striatum using the Leitz-ASM system].

    Science.gov (United States)

    Leontovich, T A; Zvegintseva, E G

    1985-10-01

    Two principal classes of striatum long axonal neurons (sparsely ramified reticular cells and densely ramified dendritic cells) were analyzed quantitatively in four animal species: hedgehog, rabbit, dog and monkey. The cross section area, total dendritic length and the area of dendritic field were measured using "LEITZ-ASM" system. Classes of neurons studied were significantly different in dogs and monkeys, while no differences were noted between hedgehog and rabbit. Reticular neurons of different species varied much more than dendritic ones. Quantitative analysis has revealed the progressive increase in the complexity of dendritic tree in mammals from rabbit to monkey.

  8. Clinical application of dendritic cells in cancer vaccination therapy

    DEFF Research Database (Denmark)

    Svane, Inge Marie; Soot, Mette Line; Buus, Søren

    2003-01-01

    During the last decade use of dendritic cells (DC) has moved from murine and in vitro studies to clinical trials as adjuvant in cancer immunotherapy. Here they function as delivery vehicles for exogenous tumor antigens, promoting an efficient antigen presentation. The development of protocols...... for large-scale generation of dendritic cells for clinical applications has made possible phase I/II studies designed to analyze the toxicity, feasibility and efficacy of this approach. In clinical trials, DC-based vaccination of patients with advanced cancer has in many cases led to immunity...

  9. THE KINETICS OF MULTIBRANCH INTEGRATION ON THE DENDRITIC ARBOR OF CA1 PYRAMIDAL NEURONS

    Directory of Open Access Journals (Sweden)

    Sunggu eYang

    2014-05-01

    Full Text Available The process by which synaptic inputs separated in time and space are integrated by the dendritic arbor to produce a sequence of action potentials is among the most fundamental signal transformations that takes place within the central nervous system. Some aspects of this complex process, such as integration at the level of individual dendritic branches, have been extensively studied. But other aspects, such as how inputs from multiple branches are combined, and the kinetics of that integration have not been systematically examined. Using a 3D digital holographic photolysis technique to overcome the challenges posed by the complexities of the 3D anatomy of the dendritic arbor of CA1 pyramidal neurons for conventional photolysis, we show that integration on a single dendrite is fundamentally different from that on multiple dendrites. Multibranch integration occurring at oblique and basal dendrites allows somatic action potential firing of the cell to faithfully follow the driving stimuli over a significantly wider frequency range than what is possible with single branch integration. However, multibranch integration requires greater input strength to drive the somatic action potentials. This tradeoff between sensitivity and kinetics may explain the puzzling report of the predominance of multibranch, rather than single branch, integration from in vivo recordings during presentation of visual stimuli.

  10. [Peripheral facial nerve lesion induced long-term dendritic retraction in pyramidal cortico-facial neurons].

    Science.gov (United States)

    Urrego, Diana; Múnera, Alejandro; Troncoso, Julieta

    2011-01-01

    Little evidence is available concerning the morphological modifications of motor cortex neurons associated with peripheral nerve injuries, and the consequences of those injuries on post lesion functional recovery. Dendritic branching of cortico-facial neurons was characterized with respect to the effects of irreversible facial nerve injury. Twenty-four adult male rats were distributed into four groups: sham (no lesion surgery), and dendritic assessment at 1, 3 and 5 weeks post surgery. Eighteen lesion animals underwent surgical transection of the mandibular and buccal branches of the facial nerve. Dendritic branching was examined by contralateral primary motor cortex slices stained with the Golgi-Cox technique. Layer V pyramidal (cortico-facial) neurons from sham and injured animals were reconstructed and their dendritic branching was compared using Sholl analysis. Animals with facial nerve lesions displayed persistent vibrissal paralysis throughout the five week observation period. Compared with control animal neurons, cortico-facial pyramidal neurons of surgically injured animals displayed shrinkage of their dendritic branches at statistically significant levels. This shrinkage persisted for at least five weeks after facial nerve injury. Irreversible facial motoneuron axonal damage induced persistent dendritic arborization shrinkage in contralateral cortico-facial neurons. This morphological reorganization may be the physiological basis of functional sequelae observed in peripheral facial palsy patients.

  11. Active Dendrites and Differential Distribution of Calcium Channels Enable Functional Compartmentalization of Golgi Cells.

    Science.gov (United States)

    Rudolph, Stephanie; Hull, Court; Regehr, Wade G

    2015-11-25

    Interneurons are essential to controlling excitability, timing, and synaptic integration in neuronal networks. Golgi cells (GoCs) serve these roles at the input layer of the cerebellar cortex by releasing GABA to inhibit granule cells (grcs). GoCs are excited by mossy fibers (MFs) and grcs and provide feedforward and feedback inhibition to grcs. Here we investigate two important aspects of GoC physiology: the properties of GoC dendrites and the role of calcium signaling in regulating GoC spontaneous activity. Although GoC dendrites are extensive, previous studies concluded they are devoid of voltage-gated ion channels. Hence, the current view holds that somatic voltage signals decay passively within GoC dendrites, and grc synapses onto distal dendrites are not amplified and are therefore ineffective at firing GoCs because of strong passive attenuation. Using whole-cell recording and calcium imaging in rat slices, we find that dendritic voltage-gated sodium channels allow somatic action potentials to activate voltage-gated calcium channels (VGCCs) along the entire dendritic length, with R-type and T-type VGCCs preferentially located distally. We show that R- and T-type VGCCs located in the dendrites can boost distal synaptic inputs and promote burst firing. Active dendrites are thus critical to the regulation of GoC activity, and consequently, to the processing of input to the cerebellar cortex. In contrast, we find that N-type channels are preferentially located near the soma, and control the frequency and pattern of spontaneous firing through their close association with calcium-activated potassium (KCa) channels. Thus, VGCC types are differentially distributed and serve specialized functions within GoCs. Interneurons are essential to neural processing because they modulate excitability, timing, and synaptic integration within circuits. At the input layer of the cerebellar cortex, a single type of interneuron, the Golgi cell (GoC), carries these functions. The

  12. Characterization of porcine eyes based on autofluorescence lifetime imaging

    Science.gov (United States)

    Batista, Ana; Breunig, Hans Georg; Uchugonova, Aisada; Morgado, António Miguel; König, Karsten

    2015-03-01

    Multiphoton microscopy is a non-invasive imaging technique with ideal characteristics for biological applications. In this study, we propose to characterize three major structures of the porcine eye, the cornea, crystalline lens, and retina using two-photon excitation fluorescence lifetime imaging microscopy (2PE-FLIM). Samples were imaged using a laser-scanning microscope, consisting of a broadband sub-15 femtosecond (fs) near-infrared laser. Signal detection was performed using a 16-channel photomultiplier tube (PMT) detector (PML-16PMT). Therefore, spectral analysis of the fluorescence lifetime data was possible. To ensure a correct spectral analysis of the autofluorescence lifetime data, the spectra of the individual endogenous fluorophores were acquired with the 16-channel PMT and with a spectrometer. All experiments were performed within 12h of the porcine eye enucleation. We were able to image the cornea, crystalline lens, and retina at multiple depths. Discrimination of each structure based on their autofluorescence intensity and lifetimes was possible. Furthermore, discrimination between different layers of the same structure was also possible. To the best of our knowledge, this was the first time that 2PE-FLIM was used for porcine lens imaging and layer discrimination. With this study we further demonstrated the feasibility of 2PE-FLIM to image and differentiate three of the main components of the eye and its potential as an ophthalmologic technique.

  13. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models.

    Science.gov (United States)

    Martínez-Cerdeño, Verónica

    2017-04-01

    Dendrites and spines are the main neuronal structures receiving input from other neurons and glial cells. Dendritic and spine number, size, and morphology are some of the crucial factors determining how signals coming from individual synapses are integrated. Much remains to be understood about the characteristics of neuronal dendrites and dendritic spines in autism and related disorders. Although there have been many studies conducted using autism mouse models, few have been carried out using postmortem human tissue from patients. Available animal models of autism include those generated through genetic modifications and those non-genetic models of the disease. Here, we review how dendrite and spine morphology and number is affected in autism and related neurodevelopmental diseases, both in human, and genetic and non-genetic animal models of autism. Overall, data obtained from human and animal models point to a generalized reduction in the size and number, as well as an alteration of the morphology of dendrites; and an increase in spine densities with immature morphology, indicating a general spine immaturity state in autism. Additional human studies on dendrite and spine number and morphology in postmortem tissue are needed to understand the properties of these structures in the cerebral cortex of patients with autism. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 419-437, 2017. © 2016 Wiley Periodicals, Inc.

  14. Changes in dendritic architecture: not your "usual suspect" in control of the onset of puberty in male rats.

    Science.gov (United States)

    Hemond, Peter J; O'Boyle, Michael P; Hemond, Zoe; Gay, Vernon L; Suter, Kelly

    2013-01-01

    Until the recent past, the search for the underlying drive for the pubertal increase in gonadotropin-releasing hormone (GnRH) hormone from the GnRH-containing neurons in the hypothalamus was largely focused on extrinsic factors. The most recent evidence however indicates changes in the structure of GnRH neurons themselves may contribute to this fundamental event in development. Based on our studies in males, dendritic architecture is not static from birth until adulthood. Instead, dendrites undergo a dramatic remodeling during the postnatal period which is independent of testosterone and occurs before the pubertal increase in GnRH release. First, the number of dendrites emanating from somata is reduced between infancy and adulthood. Moreover, a dendrite of adult GnRH neurons invariability arises at angle of 180°from the axon as opposed to the extraordinary variability in location during infancy. In fact, in some neurons from infants, no dendrite even resides in the adult location. Thus, there is a spatially selective remodeling of primary dendrites. Secondly, dendrites of GnRH neurons from infants were highly branched prior to assuming the compact morphology of adults. Finally, other morphological aspects of GnRH neurons such as total dendritic length, the numbers of dendrite branches and the lengths of higher order branches were significantly greater in infants than adults, indicating a consolidation of dendritic arbors. Activity in multi-compartment models of GnRH neurons, suggest the impact of structure on neuronal activity is exerted with both active and passive dendrites. Thus, passive properties make a defining contribution to function. Accordingly, changes in morphology alone are likely to have functional consequences for the pattern of activity in GnRH neurons. Our findings suggest structural remodeling of dendrites during the postnatal period likely facilitates repetitive action potentials and thus, GnRH release at the time of puberty.

  15. Quantification of dendritic and axonal growth after injury to the auditory system of the adult cricket Gryllus bimaculatus

    Directory of Open Access Journals (Sweden)

    Alexandra ePfister

    2013-08-01

    Full Text Available Dendrite and axon growth and branching during development are regulated by a complex set of intracellular and external signals. However, the cues that maintain or influence adult neuronal morphology are less well understood. Injury and deafferentation tend to have negative effects on adult nervous systems. An interesting example of injury-induced compensatory growth is seen in the cricket, Gryllus bimaculatus. After unilateral loss of an ear in the adult cricket, auditory neurons within the central nervous system sprout to compensate for the injury. Specifically, after being deafferented, ascending neurons (AN-1 and AN-2 send dendrites across the midline of the prothoracic ganglion where they receive input from auditory afferents that project through the contralateral auditory nerve (N5. Deafferentation also triggers contralateral N5 axonal growth. In this study, we quantified AN dendritic and N5 axonal growth at 30 hours, as well as at 3, 5, 7, 14 and 20 days after deafferentation in adult crickets. Significant differences in the rates of dendritic growth between males and females were noted. In females, dendritic growth rates were non-linear; a rapid burst of dendritic extension in the first few days was followed by a plateau reached at 3 days after deafferentation. In males, however, dendritic growth rates were linear, with dendrites growing steadily over time and reaching lengths, on average, twice as long as in females. On the other hand, rates of N5 axonal growth showed no significant sexual dimorphism and were linear. Within each animal, the growth rates of dendrites and axons were not correlated, indicating that independent factors likely influence dendritic and axonal growth in response to injury in this system. Our findings provide a basis for future study of the cellular features that allow differing dendrite and axon growth patterns as well as sexually dimorphic dendritic growth in response to deafferentation.

  16. Impact of immersion oils and mounting media on the confocal imaging of dendritic spines.

    Science.gov (United States)

    Peterson, Brittni M; Mermelstein, Paul G; Meisel, Robert L

    2015-03-15

    Structural plasticity, such as changes in dendritic spine morphology and density, reflect changes in synaptic connectivity and circuitry. Procedural variables used in different methods for labeling dendritic spines have been quantitatively evaluated for their impact on the ability to resolve individual spines in confocal microscopic analyses. In contrast, there have been discussions, though no quantitative analyses, of the potential effects of choosing specific mounting media and immersion oils on dendritic spine resolution. Here we provide quantitative data measuring the impact of these variables on resolving dendritic spines in 3D confocal analyses. Medium spiny neurons from the rat striatum and nucleus accumbens are used as examples. Both choice of mounting media and immersion oil affected the visualization of dendritic spines, with choosing the appropriate immersion oil as being more imperative. These biologic data are supported by quantitative measures of the 3D diffraction pattern (i.e. point spread function) of a point source of light under the same mounting medium and immersion oil combinations. Although not a new method, this manuscript provides quantitative data demonstrating that different mounting media and immersion oils can impact the ability to resolve dendritic spines. These findings highlight the importance of reporting which mounting medium and immersion oil are used in preparations for confocal analyses, especially when comparing published results from different laboratories. Collectively, these data suggest that choosing the appropriate immersion oil and mounting media is critical for obtaining the best resolution, and consequently more accurate measures of dendritic spine densities. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Factors influencing transmission of porcine cysticercosis in Tanzania

    DEFF Research Database (Denmark)

    Braae, Uffe Christian; Wendy, Harrison; Magnussen, Pascal

    Understanding the factors contributing to the transmission of Taenia solium in sub-Saharan Africa is essential for control. This study aimed to elucidate factors concerning the transmission of porcine cysticercosis in an endemic area. A longitudinal study composed of three cross-sectional surveys...

  18. Porcine circovirus: transcription and rolling-circle DNA replication

    Science.gov (United States)

    This review summarizes the molecular studies pertaining to porcine circovirus (PCV) transcription and DNA replication. The genome of PCV is circular, single-stranded DNA and contains 1759-1768 nucleotides. Both the genome-strand (packaged in the virus particle) and the complementary-strand (synthesi...

  19. Substitution of porcine small intestinal submucosa for rabbit Achilles tendon, an experimental study.

    Science.gov (United States)

    Gu, Yan; Dai, Kerong

    2002-09-25

    To study the effect of substitution of porcine small intestinal submucosa (SIS) for rabbit Achilles tendon. Porcine SIS was taken out and processed. Part of Achilles tendons of 20 rabbits' right legs were removed and substituted by porcine SIS and the Achilles tendon of the left legs were used as controls. One, four, eight, twelve, and sixteen weeks after the operation 4 rabbits were killed and their right Achilles tendons were taken out to be examined histologically and their maximum load was tested. One week after the operation, the porcine SIS was already fused with the remaining part of rabbit Achilles tendon. Sixteen weeks after all the Achilles tendons looked like normal one. The maximum load of experimental Achilles tendon was 48 N +/- 9 N one week after the operation, and increased gradually. In the 16th week af