WorldWideScience

Sample records for population genetic structures

  1. [Genetic structure of natural populations

    International Nuclear Information System (INIS)

    1988-01-01

    Our efforts in the first eight months were concentrated in obtaining a genomic clone of the copper-zinc superoxide dismutase (SOD) in Drosophila melanogaster and other Drosophila species. This we have now successfully accomplished. We seek to understand the role of SOD in radioresistance; how genetic variation in this enzyme is maintained in populations; and relevant aspects of its evolution that may contribute to these goals as well as to an understanding of molecular evolution in general. To accomplish these goals we are undertaking the following experiments: cloning and sequencing of (at least) one F allele, one S allele, and the null allele for SOD; cloning and sequencing SOD from species related to D. melanogaster; and cloning and sequencing the SOD gene from several independently sampled S and F alleles in D. melanogaster. We are also preparing to test the radioprotective effects of SOD. 67 refs

  2. Genetic structure of Potentilla acaulis (Rosaceae) populations ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... populations based on randomly amplified polymorphic. DNA (RAPD) in habitat ..... the correlation between ΦST values and genetic distances was highly ... Propagule recruitment from genets of perennial clonal plants could ...

  3. Assessing population genetic structure via the maximisation of genetic distance

    Directory of Open Access Journals (Sweden)

    Toro Miguel A

    2009-11-01

    Full Text Available Abstract Background The inference of the hidden structure of a population is an essential issue in population genetics. Recently, several methods have been proposed to infer population structure in population genetics. Methods In this study, a new method to infer the number of clusters and to assign individuals to the inferred populations is proposed. This approach does not make any assumption on Hardy-Weinberg and linkage equilibrium. The implemented criterion is the maximisation (via a simulated annealing algorithm of the averaged genetic distance between a predefined number of clusters. The performance of this method is compared with two Bayesian approaches: STRUCTURE and BAPS, using simulated data and also a real human data set. Results The simulations show that with a reduced number of markers, BAPS overestimates the number of clusters and presents a reduced proportion of correct groupings. The accuracy of the new method is approximately the same as for STRUCTURE. Also, in Hardy-Weinberg and linkage disequilibrium cases, BAPS performs incorrectly. In these situations, STRUCTURE and the new method show an equivalent behaviour with respect to the number of inferred clusters, although the proportion of correct groupings is slightly better with the new method. Re-establishing equilibrium with the randomisation procedures improves the precision of the Bayesian approaches. All methods have a good precision for FST ≥ 0.03, but only STRUCTURE estimates the correct number of clusters for FST as low as 0.01. In situations with a high number of clusters or a more complex population structure, MGD performs better than STRUCTURE and BAPS. The results for a human data set analysed with the new method are congruent with the geographical regions previously found. Conclusion This new method used to infer the hidden structure in a population, based on the maximisation of the genetic distance and not taking into consideration any assumption about Hardy

  4. Spatial and population genetic structure of microsatellites in white pine

    Science.gov (United States)

    Paula E. Marquardt; Bryan K. Epperson

    2004-01-01

    We evaluated the population genetic structure of seven microsatellite loci for old growth and second growth populations of eastern white pine (Pinus strobus). From each population, located within Hartwick Pines State Park, Grayling, Michigan, USA, 120-122 contiguous trees were sampled for genetic analysis. Within each population, genetic diversity...

  5. Extensive population genetic structure in the giraffe

    Directory of Open Access Journals (Sweden)

    Grether Gregory F

    2007-12-01

    Full Text Available Abstract Background A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (Giraffa camelopardalis are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation. Results By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations. Conclusion Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate in situ and ex situ management, not only of pelage morphs, but also of local populations.

  6. Population Genetic Structure and Gene Flow Among Nigerian Goats ...

    African Journals Online (AJOL)

    Population Genetic structure in 200 indigenous goats sampled across four states from the South-Western and South Southern region of Nigeria was assessed using 7 microsatellite DNA markers. Observed Analysis of molecular genetic variation (AMOVA) was higher within populations (3.47) than among populations (1.84) ...

  7. Genetic diversity and population structure of sweet cassava using ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the population structure and genetic diversity among 66 sweet cassava (Manihot esculenta Crantz) traditional accessions collected in Maringa, Parana, Brazil, using microsatellite molecular markers. Population structure was analyzed by means of genetic distances and ...

  8. Genetic diversity and population structure of Chinese honeybees ...

    African Journals Online (AJOL)

    Genetic diversity and population structure of Chinese honeybees (Apis cerana) under microsatellite markers. T Ji, L Yin, G Chen. Abstract. Using 21 microsatellite markers and PCR method, the polymorphisms of 20 Apis cerana honeybee populations across China was investigated and the genetic structure and diversity of ...

  9. Genetic structure of populations and differentiation in forest trees

    Science.gov (United States)

    Raymond P. Guries; F. Thomas Ledig

    1981-01-01

    Electrophoretic techniques permit population biologists to analyze genetic structure of natural populations by using large numbers of allozyme loci. Several methods of analysis have been applied to allozyme data, including chi-square contingency tests, F-statistics, and genetic distance. This paper compares such statistics for pitch pine (Pinus rigida...

  10. Population structure and genetic diversity of Sudanese native chickens

    African Journals Online (AJOL)

    The objectives of this study were to analyze genetic diversity and population structure of Sudanese native chicken breeds involved in a conservation program. Five Sudanese native chicken breeds were compared with populations studied previously, which included six purebred lines, six African populations and one ...

  11. Review: Genetic diversity and population structure of cotton ...

    African Journals Online (AJOL)

    Cotton (Gossypium spp.) is the world's leading natural fiber crop and is cultivated in diverse temperate and tropical areas. In this sense, molecular markers are important tools for polymorphism identification in genetic diversity analyses. The objective of this study was to evaluate genetic diversity and population structure in ...

  12. Genetic diversity, population structure and marker trait associations ...

    Indian Academy of Sciences (India)

    Supplementary data: Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum). Ashok Badigannavar and Gerald O. Myers. J. Genet. 94, 87–94. Table 1. List of cotton germplasm lines used in this study. Germplasm no. Cultivar. Region. Germplasm no. Cultivar.

  13. Genetic diversity and population structure of maize landraces from ...

    African Journals Online (AJOL)

    Genetic diversity and population structure of maize landraces from Côte ... However, no study on the genetic diversity of the species has been performed to date. ... The cross between two individuals from different groups might help exploit the ...

  14. Population genetic structure analysis in endangered Hordeum ...

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... populations are grown by few local farmers in low-input farming systems. Based on 117 random ... Triticeae of the Poaceae (Graminae) family found throughout the ... populations and phylogeography is made easy by the.

  15. Detailed genetic structure of European bitterling populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Veronika Bartáková

    2015-11-01

    Full Text Available The European bitterling (Rhodeus amarus is a small cyprinid fish whose populations declined markedly between 1950 and 1980. However, its range currently expands, partly due to human-assisted introductions. We determined the genetic variability and detailed spatial structure among bitterling populations in Central Europe and tested alternative hypotheses about colonization of this area. Twelve polymorphic microsatellite loci on a large sample of 688 individuals had been used to analyse genetic variability and population structure. Samples originated from 27 localities with emphasis on area of the Czech Republic where three major sea drainages (Black, Baltic, and Northern Sea meet. Highly variable level of intrapopulation genetic variability had generally been detected and a recent decrease in numbers (“bottleneck” had been indicated by genetic data among six populations. High level of interpopulation differentiation was identified even within the basins. There was a significant role of genetic drift and indications of low dispersal ability of R. amarus. Surprisingly, the Odra River was inhabited by two distinct populations without any genetic signatures of a secondary contact. Czech part of the Odra (Baltic basin was colonized from the Danubian refugium (similarly to adjacent Danubian basin rivers including the Morava, while Polish part of the Odra was genetically similar to the populations in the Vistula River (Baltic basin, that has been colonized by a different (Eastern phylogeographic lineage of R. amarus. Most Czech R. amarus populations were colonized from the Danubian refugium, suggesting potential for a human-mediated colonization of the Odra or Elbe Rivers by R. amarus. One Elbe basin population was genetically mixed from the two (Danubian and Eastern phylogeographic lineages. In general the Czech populations of R. amarus were genetically stable except for a single population which has probably been recently introduced. This research

  16. Genetic population structure of the vulnerable bog fritillary butterfly.

    Science.gov (United States)

    Vandewoestijne, S; Baguette, M

    2004-01-01

    Populations of the bog fritillary butterfly Proclossiana eunomia (Lepidoptera, Nymphalidae) occur in patchy habitat in central and western Europe. P. eunomia is a vulnerable species in the Belgian Ardennes and the number of occupied sites has significantly decreased in this region since the 1960s. RAPD (random amplified polymorphic DNA) markers were used to study the consequences of habitat loss and fragmentation on the genetic population structure of this species. Gene diversity was lower in populations with smaller population sizes. Genetic subdivision was high (Fst=0.0887) considering the small spatial scale of this study (150 km2). The most geographically isolated population was also the most genetically differentiated one. The genetic population structure and genetic differentiation detected in this study were explained by (1) differences in altitude of the sampled locations and, (2) lower dispersal propensity and dispersal rate in fragmented landscapes versus continuous landscapes. Results from the RAPD analyses were compared with a previous allozyme based study on the same populations. The results of this study suggest that increased fragmentation has lead to a greater genetic differentiation between remaining P. eunomia populations.

  17. Genetic diversity and population structure of leaf-nosed bat ...

    African Journals Online (AJOL)

    Genetic variation and population structure of the leaf-nosed bat Hipposideros speoris were estimated using 16S rRNA sequence and microsatellite analysis. Twenty seven distinct mitochondrial haplotypes were identified from 186 individuals, sampled from eleven populations. FST test revealed significant variations ...

  18. Genetic population structure of Shoal Bass within their native range

    Science.gov (United States)

    Taylor, Andrew T.; Tringali, Michael D.; Sammons, Steven M.; Ingram, Travis R.; O'Rouke, Patrick M.; Peterson, Douglas L.; Long, James M.

    2018-01-01

    Endemic to the Apalachicola River basin of the southeastern USA, the Shoal Bass Micropterus cataractae is a fluvial‐specialist sport fish that is imperiled because of anthropogenic habitat alteration. To counter population declines, restorative stocking efforts are becoming an increasingly relevant management strategy. However, population genetic structure within the species is currently unknown, but it could influence management decisions, such as brood source location. Leveraging a collaborative effort to collect and genotype specimens with 16 microsatellite loci, our objective was to characterize hierarchical population structure and genetic differentiation of the Shoal Bass across its native range, including an examination of structuring mechanisms, such as relatedness and inbreeding levels. Specimens identified as Shoal Bass were collected from 13 distinct sites (N ranged from 17 to 209 per location) and were then taxonomically screened to remove nonnative congeners and hybrids (pure Shoal Bass N ranged from 13 to 183 per location). Our results revealed appreciable population structure, with five distinct Shoal Bass populations identifiable at the uppermost hierarchical level that generally corresponded with natural geographic features and anthropogenic barriers. Substructure was recovered within several of these populations, wherein differences appeared related to spatial isolation and local population dynamics. An analysis of molecular variance revealed that 3.6% of the variation in our data set was accounted for among three larger river drainages, but substructure within each river drainage also explained an additional 8.9% of genetic variation, demonstrating that management at a scale lower than the river drainage level would likely best conserve genetic diversity. Results provide a population genetic framework that can inform future management decisions, such as brood source location, so that genetic diversity within and among populations is

  19. Genetic population structure of muskellunge in the Great Lakes

    Science.gov (United States)

    Kapuscinski, Kevin L.; Sloss, Brian L.; Farrell, John M.

    2013-01-01

    We quantified genetic relationships among Muskellunge Esox masquinongy from 15 locations in the Great Lakes to determine the extent and distribution of measurable population structure and to identify appropriate spatial scales for fishery management and genetic conservation. We hypothesized that Muskellunge from each area represented genetically distinct populations, which would be evident from analyses of genotype data. A total of 691 Muskellunge were sampled (n = 10–127/site) and genetic data were collected at 13 microsatellite loci. Results from a suite of analyses (including pairwise genetic differentiation, Bayesian admixture prediction, analysis of molecular variance, and tests of isolation by distance) indicated the presence of nine distinct genetic groups, including two that were approximately 50 km apart. Geographic proximity and low habitat complexity seemed to facilitate genetic similarity among areas, whereas Muskellunge from areas of greater habitat heterogeneity exhibited high differentiation. Muskellunge from most areas contained private alleles, and mean within-area genetic variation was similar to that reported for other freshwater fishes. Management programs aimed at conserving the broader diversity and long-term sustainability of Muskellunge could benefit by considering the genetically distinct groups as independent fisheries, and individual spawning and nursery habitats could subsequently be protected to conserve the evolutionary potential of Muskellunge.

  20. Genetic diversity, population structure, and traditional culture of Camellia reticulata.

    Science.gov (United States)

    Xin, Tong; Huang, Weijuan; De Riek, Jan; Zhang, Shuang; Ahmed, Selena; Van Huylenbroeck, Johan; Long, Chunlin

    2017-11-01

    Camellia reticulata is an arbor tree that has been cultivated in southwestern China by various sociolinguistic groups for esthetic purposes as well as to derive an edible seed oil. This study examined the influence of management, socio-economic factors, and religion on the genetic diversity patterns of Camellia reticulata utilizing a combination of ethnobotanical and molecular genetic approaches. Semi-structured interviews and key informant interviews were carried out with local communities in China's Yunnan Province. We collected plant material ( n  = 190 individuals) from five populations at study sites using single-dose AFLP markers in order to access the genetic diversity within and between populations. A total of 387 DNA fragments were produced by four AFLP primer sets. All DNA fragments were found to be polymorphic (100%). A relatively high level of genetic diversity was revealed in C. reticulata samples at both the species ( H sp  = 0.3397, I sp  = 0.5236) and population (percentage of polymorphic loci = 85.63%, H pop  = 0.2937, I pop  = 0.4421) levels. Findings further revealed a relatively high degree of genetic diversity within C. reticulata populations (Analysis of Molecular Variance = 96.31%). The higher genetic diversity within populations than among populations of C. reticulata from different geographies is likely due to the cultural and social influences associated with its long cultivation history for esthetic and culinary purposes by diverse sociolinguistic groups. This study highlights the influence of human management, socio-economic factors, and other cultural variables on the genetic and morphological diversity of C. reticulata at a regional level. Findings emphasize the important role of traditional culture on the conservation and utilization of plant genetic diversity.

  1. Population genetic structure and demographic history of small ...

    African Journals Online (AJOL)

    Population genetic structure and demographic history of small yellow croaker, ... diversity (0.0112 ± 0.0061 to 0.0141 ± 0.0075) were detected in the species. ... into two closely related clades, but did not appear to have any geographic ...

  2. Genetic structure and diversity within and among six populations of ...

    African Journals Online (AJOL)

    Yomi

    2010-04-24

    Apr 24, 2010 ... Genetic structure and diversity within and among six populations of .... Lyopholized samples were ground to a fine powder. DNA extraction ..... 22(3): 287-292. Pei YL, Zou, YP, Yin Z, Wang XQ, Zhang ZX, Hong DY (1995).

  3. Population genetic structure of coral reef species Plectorhinchus ...

    African Journals Online (AJOL)

    The population genetic structure and the dispersal ability of Plectorhinchus flavomaculatus from South China Sea were examined with a 464 bp segment of mtDNA control region. A total of 116 individuals were collected from 12 coral reefs in Xisha, Zhongsha and Nansha archipelagos and 22 haplotypes were obtained.

  4. Population structure and genetic trends for indigenous African beef ...

    African Journals Online (AJOL)

    The aim of this study was to investigate population structure and genetic trends based on pedigree and performance records of five indigenous African beef cattle breeds (Afrikaner, Boran, Drakensberger, Nguni and Tuli) in South Africa. Pedigree completeness over six generations was higher than 88.5% in the first ...

  5. Molecular genetic diversity and genetic structure of Vietnamese indigenous pig populations

    DEFF Research Database (Denmark)

    Pham, L. D.; Do, Duy Ngoc; Nam, L. Q.

    2014-01-01

    The study characterized genetic diversity and genetic structure of five indigenous pig populations (Ha Lang, Muong Te, Mong Cai, Lung and Lung Pu), two wild pig populations (Vietnamese and Thai wild pigs) and an exotic pig breed (Yorkshire) using FAO/ISAG recommended 16 microsatellite markers...

  6. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    Directory of Open Access Journals (Sweden)

    Jian-Wei Zong

    Full Text Available Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777. According to the coefficient of genetic differentiation (Fst = 0.1215, genetic variation within the populations (87.85% were remarkably higher than among populations (12.15%. The average gene flow (Nm = 1.8080 significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080 among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km among populations (r = 0.419, P = 0.005, suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic

  7. Assessment of Genetic Diversity and Population Genetic Structure of Corylus mandshurica in China Using SSR Markers.

    Science.gov (United States)

    Zong, Jian-Wei; Zhao, Tian-Tian; Ma, Qing-Hua; Liang, Li-Song; Wang, Gui-Xi

    2015-01-01

    Corylus mandshurica, also known as pilose hazelnut, is an economically and ecologically important species in China. In this study, ten polymorphic simple sequence repeat (SSR) markers were applied to evaluate the genetic diversity and population structure of 348 C. mandshurica individuals among 12 populations in China. The SSR markers expressed a relatively high level of genetic diversity (Na = 15.3, Ne = 5.6604, I = 1.8853, Ho = 0.6668, and He = 0.7777). According to the coefficient of genetic differentiation (Fst = 0.1215), genetic variation within the populations (87.85%) were remarkably higher than among populations (12.15%). The average gene flow (Nm = 1.8080) significantly impacts the genetic structure of C. mandshurica populations. The relatively high gene flow (Nm = 1.8080) among wild C. mandshurica may be caused by wind-pollinated flowers, highly nutritious seeds and self-incompatible mating system. The UPGMA (unweighted pair group method of arithmetic averages) dendrogram was divided into two main clusters. Moreover, the results of STRUCTURE analysis suggested that C. mandshurica populations fell into two main clusters. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among populations of C. mandshurica. Group I accessions were located in Northeast China, while Group II accessions were in North China. It is worth noting that a number of genetically similar populations were located in the same geographic region. The results further showed that there was obvious genetic differentiation among populations from Northeast China to North China. Results from the Mantel test showed a weak but still significant positive correlation between Nei's genetic distance and geographic distance (km) among populations (r = 0.419, P = 0.005), suggesting that genetic differentiation in the 12 C. mandshurica populations might be related to geographic distance. These

  8. Population genetic structure in wild and aquaculture populations of Hemibarbus maculates inferred from microsatellites markers

    Directory of Open Access Journals (Sweden)

    Linlin Li

    2017-03-01

    Full Text Available The objective of this study was to investigate 4 aquaculture populations Shanghai (SH, Hangzhou (HZ, Kaihua (KH and Xianju (XJ and one wild population Yingshan (YS of spotted barbell (Hemibarbus maculates to assess their genetic diversity level and investigate the genetic structure of the populations. The dendrogram and STRUCTURE revealed that the populations XJ, KH, and HZ jointly formed one cluster, to which the populations SH and YS were sequentially adhered. The genetic diversity of the cultured populations maintained better, possible due to favourable hatchery conditions that decreased the effect of environmental selection present in wild populations. The results of the present study will contribute to the management of spotted barbell genetic resources, but also demonstrates how the genetic diversity of freshwater species is vulnerable to human activity.

  9. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    Science.gov (United States)

    Al-Hamidhi, Salama; H Tageldin, Mohammed; Weir, William; Al-Fahdi, Amira; Johnson, Eugene H; Bobade, Patrick; Alqamashoui, Badar; Beja-Pereira, Albano; Thompson, Joanne; Kinnaird, Jane; Shiels, Brian; Tait, Andy; Babiker, Hamza

    2015-01-01

    Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle. Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites) representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman. We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia). A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075, θ = 0.07) were

  10. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    Directory of Open Access Journals (Sweden)

    Salama Al-Hamidhi

    Full Text Available Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle.Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman.We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia. A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075,

  11. Chronic irradiation as an ecological factor affecting genetic population structure

    International Nuclear Information System (INIS)

    Kal'chenko, V.A.; Kalabushkin, B.A.; Rubanovich, A.V.

    1991-01-01

    Genetic structure of two Centaurea scabiosa L. populations was studied by frequency distribution of leucine aminopeptidase (LAP) locus genotypes. The experimental population has been growing under conditions of chronic irradiation, with the dose per generation amounting to 1.2 to 25.5 Gy. In it, mutational variants are observed with a frequency of 5.4.10(-3)-4.5.10(-2) per generation (as compared to control population frequency at 5.4.10(-4)). Indexes for heterozygosity, mean number of genotypes, and effective number of alleles were higher in the experimental population. Segregation analysis revealed no differences in viability in the control population, and all genotypic combinations were found to be nearly neutral. In the experimental population, however, significant differences in relative viability of the genotypes were disclosed. The relative viability of heterozygotes for mutant allele C' was nearly maximum, while heterozygotes for other mutant alleles showed minimum viability. We reach the conclusion that the differences in genetic structure of the populations under investigation can be explained by the chronic irradiation factor that brought out differences in adaptability of both normal and mutant genotypes. The suggestion is that intra-locus interactions of the C' allele with normal alleles determine plant resistance to a wide range of unfavorable environmental conditions

  12. Genetic structure of Balearic honeybee populations based on microsatellite polymorphism

    Directory of Open Access Journals (Sweden)

    Moritz Robin FA

    2003-05-01

    Full Text Available Abstract The genetic variation of honeybee colonies collected in 22 localities on the Balearic Islands (Spain was analysed using eight polymorphic microsatellite loci. Previous studies have demonstrated that these colonies belong either to the African or west European evolutionary lineages. These populations display low variability estimated from both the number of alleles and heterozygosity values, as expected for the honeybee island populations. Although genetic differentiation within the islands is low, significant heterozygote deficiency is present, indicating a subpopulation genetic structure. According to the genetic differentiation test, the honeybee populations of the Balearic Islands cluster into two groups: Gimnesias (Mallorca and Menorca and Pitiusas (Ibiza and Formentera, which agrees with the biogeography postulated for this archipelago. The phylogenetic analysis suggests an Iberian origin of the Balearic honeybees, thus confirming the postulated evolutionary scenario for Apis mellifera in the Mediterranean basin. The microsatellite data from Formentera, Ibiza and Menorca show that ancestral populations are threatened by queen importations, indicating that adequate conservation measures should be developed for protecting Balearic bees.

  13. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient.

    Science.gov (United States)

    Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L

    2012-09-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients.

  14. Population structure and genetic diversity of native and invasive populations of Solanum rostratum (Solanaceae.

    Directory of Open Access Journals (Sweden)

    Jiali Zhao

    Full Text Available We investigate native and introduced populations of Solanum rostratum, an annual, self-compatible plant that has been introduced around the globe. This study is the first to compare the genetic diversity of Solanum rostratum between native and introduced populations. We aim to (1 determine the level of genetic diversity across the studied regions; (2 explore the likely origins of invasive populations in China; and (3 investigate whether there is the evidence of multiple introductions into China.We genotyped 329 individuals at 10 microsatellite loci to determine the levels of genetic diversity and to investigate population structure of native and introduced populations of S. rostratum. We studied five populations in each of three regions across two continents: Mexico, the U.S.A. and China.We found the highest genetic diversity among Mexican populations of S. rostratum. Genetic diversity was significantly lower in Chinese and U.S.A. populations, but we found no regional difference in inbreeding coefficients (F IS or population differentiation (F ST. Population structure analyses indicate that Chinese and U.S.A. populations are more closely related to each other than to sampled Mexican populations, revealing that introduced populations in China share an origin with the sampled U.S.A. populations. The distinctiveness between some introduced populations indicates multiple introductions of S. rostratum into China.

  15. Population Genetic Structure of the People of Qatar

    Science.gov (United States)

    Hunter-Zinck, Haley; Musharoff, Shaila; Salit, Jacqueline; Al-Ali, Khalid A.; Chouchane, Lotfi; Gohar, Abeer; Matthews, Rebecca; Butler, Marcus W.; Fuller, Jennifer; Hackett, Neil R.; Crystal, Ronald G.; Clark, Andrew G.

    2010-01-01

    People of the Qatar peninsula represent a relatively recent founding by a small number of families from three tribes of the Arabian Peninsula, Persia, and Oman, with indications of African admixture. To assess the roles of both this founding effect and the customary first-cousin marriages among the ancestral Islamic populations in Qatar's population genetic structure, we obtained and genotyped with Affymetrix 500k SNP arrays DNA samples from 168 self-reported Qatari nationals sampled from Doha, Qatar. Principal components analysis was performed along with samples from the Human Genetic Diversity Project data set, revealing three clear clusters of genotypes whose proximity to other human population samples is consistent with Arabian origin, a more eastern or Persian origin, and individuals with African admixture. The extent of linkage disequilibrium (LD) is greater than that of African populations, and runs of homozygosity in some individuals reflect substantial consanguinity. However, the variance in runs of homozygosity is exceptionally high, and the degree of identity-by-descent sharing generally appears to be lower than expected for a population in which nearly half of marriages are between first cousins. Despite the fact that the SNPs of the Affymetrix 500k chip were ascertained with a bias toward SNPs common in Europeans, the data strongly support the notion that the Qatari population could provide a valuable resource for the mapping of genes associated with complex disorders and that tests of pairwise interactions are particularly empowered by populations with elevated LD like the Qatari. PMID:20579625

  16. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient

    OpenAIRE

    Vangestel, C; Mergeay, Joachim; Dawson, D. A; Callens, T; Vandomme, V; Lens, L

    2012-01-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierar...

  17. Population genetic structure of the people of Qatar.

    Science.gov (United States)

    Hunter-Zinck, Haley; Musharoff, Shaila; Salit, Jacqueline; Al-Ali, Khalid A; Chouchane, Lotfi; Gohar, Abeer; Matthews, Rebecca; Butler, Marcus W; Fuller, Jennifer; Hackett, Neil R; Crystal, Ronald G; Clark, Andrew G

    2010-07-09

    People of the Qatar peninsula represent a relatively recent founding by a small number of families from three tribes of the Arabian Peninsula, Persia, and Oman, with indications of African admixture. To assess the roles of both this founding effect and the customary first-cousin marriages among the ancestral Islamic populations in Qatar's population genetic structure, we obtained and genotyped with Affymetrix 500k SNP arrays DNA samples from 168 self-reported Qatari nationals sampled from Doha, Qatar. Principal components analysis was performed along with samples from the Human Genetic Diversity Project data set, revealing three clear clusters of genotypes whose proximity to other human population samples is consistent with Arabian origin, a more eastern or Persian origin, and individuals with African admixture. The extent of linkage disequilibrium (LD) is greater than that of African populations, and runs of homozygosity in some individuals reflect substantial consanguinity. However, the variance in runs of homozygosity is exceptionally high, and the degree of identity-by-descent sharing generally appears to be lower than expected for a population in which nearly half of marriages are between first cousins. Despite the fact that the SNPs of the Affymetrix 500k chip were ascertained with a bias toward SNPs common in Europeans, the data strongly support the notion that the Qatari population could provide a valuable resource for the mapping of genes associated with complex disorders and that tests of pairwise interactions are particularly empowered by populations with elevated LD like the Qatari. Copyright 2010 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  18. Genetic variation and population structure of interleukin genes ...

    Indian Academy of Sciences (India)

    ... phylogenetic analysis based on genetic distances between populations agreed with known social and cultural data ... thus, impact on community genetics (Bittles 2001, 2002). ... reflect an interaction between evolutionary and demographic.

  19. Argentine Population Genetic Structure: Large Variance in Amerindian Contribution

    Science.gov (United States)

    Seldin, Michael F.; Tian, Chao; Shigeta, Russell; Scherbarth, Hugo R.; Silva, Gabriel; Belmont, John W.; Kittles, Rick; Gamron, Susana; Allevi, Alberto; Palatnik, Simon A.; Alvarellos, Alejandro; Paira, Sergio; Caprarulo, Cesar; Guillerón, Carolina; Catoggio, Luis J.; Prigione, Cristina; Berbotto, Guillermo A.; García, Mercedes A.; Perandones, Carlos E.; Pons-Estel, Bernardo A.; Alarcon-Riquelme, Marta E.

    2011-01-01

    Argentine population genetic structure was examined using a set of 78 ancestry informative markers (AIMs) to assess the contributions of European, Amerindian, and African ancestry in 94 individuals members of this population. Using the Bayesian clustering algorithm STRUCTURE, the mean European contribution was 78%, the Amerindian contribution was 19.4%, and the African contribution was 2.5%. Similar results were found using weighted least mean square method: European, 80.2%; Amerindian, 18.1%; and African, 1.7%. Consistent with previous studies the current results showed very few individuals (four of 94) with greater than 10% African admixture. Notably, when individual admixture was examined, the Amerindian and European admixture showed a very large variance and individual Amerindian contribution ranged from 1.5 to 84.5% in the 94 individual Argentine subjects. These results indicate that admixture must be considered when clinical epidemiology or case control genetic analyses are studied in this population. Moreover, the current study provides a set of informative SNPs that can be used to ascertain or control for this potentially hidden stratification. In addition, the large variance in admixture proportions in individual Argentine subjects shown by this study suggests that this population is appropriate for future admixture mapping studies. PMID:17177183

  20. Genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV)

    DEFF Research Database (Denmark)

    Snow, M.; Bain, N.; Black, J.

    2004-01-01

    The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders this the m......The nucleotide sequences of a specific region of the nucleoprotein gene were compared in order to investigate the genetic population structure of marine viral haemorrhagic septicaemia virus (VHSV). Analysis of the sequence from 128 isolates of diverse geographic and host origin renders...... this the most comprehensive molecular epidemiological study of marine VHSV conducted to date. Phylogenetic analysis of nucleoprotein gene sequences confirmed the existence of the 4 major genotypes previously identified based on N- and subsequent G-gene based analyses. The range of Genotype I included subgroups...... of isolates associated with rainbow trout aquaculture (Genotype la) and those from the Baltic marine environment (Genotype Ib) to emphasise the relatively close genetic relationship between these isolates. The existence of an additional genotype circulating within the Baltic Sea (Genotype II) was also...

  1. Population genetic structure in natural and reintroduced beaver (Castor fiber populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Kautenburger, R.

    2008-12-01

    Full Text Available Castor fiber Linnaeus, 1758 is the only indigenous species of the genus Castor in Europe and Asia. Due to extensive hunting until the beginning of the 20th century, the distribution of the formerly widespread Eurasian beaver was dramatically reduced. Only a few populations remained and these were in isolated locations, such as the region of the German Elbe River. The loss of genetic diversity in small or captive populations throughgenetic drift and inbreeding is a severe conservation problem. However, the reintroduction of beaver populations from several regions in Europe has shown high viability and populations today are growing fast. In the present study we analysed the population genetic structure of a natural and two reintroduced beaver populations in Germany and Austria. Furthermore, we studied the genetic differentiation between two beaver species, C. fiber and the American beaver (C. canadensis, using RAPD (Random Amplified Polymorphic DNA as a genetic marker. The reintroduced beaver populations of different origins and the autochthonous population of the Elbe River showed a similar low genetic heterogeneity. There was an overall high genetic similarity in the species C. fiber, and no evidence was found for a clear subspecific structure in the populations studied.

  2. Population genetic structure of the sidespot barb, Barbus neefi, from ...

    African Journals Online (AJOL)

    Allozyme analysis was used to determine patterns of genetic variation within and between populations of Barbus neefi. The products of 29 loci were analysed, with 17 loci being monomorphic in all populations. The genetic variability estimates compared well with values reported in the literature. The percentage of ...

  3. Shallow Population Genetic Structures of Thread-sail Filefish (Stephanolepis cirrhifer) Populations from Korean Coastal Waters.

    Science.gov (United States)

    Yoon, M; Park, W; Nam, Y K; Kim, D S

    2012-02-01

    Genetic diversities, population genetic structures and demographic histories of the thread-sail filefish Stephanolepis cirrhifer were investigated by nucleotide sequencing of 336 base pairs of the mitochondrial DNA (mtDNA) control region in 111 individuals collected from six populations in Korean coastal waters. A total of 70 haplotypes were defined by 58 variable nucleotide sites. The neighbor-joining tree of the 70 haplotypes was shallow and did not provide evidence of geographical associations. Expansion of S. cirrhifer populations began approximate 51,000 to 102,000 years before present, correlating with the period of sea level rise since the late Pleistocene glacial maximum. High levels of haplotype diversities (0.974±0.029 to 1.000±0.076) and nucleotide diversities (0.014 to 0.019), and low levels of genetic differentiation among populations inferred from pairwise population F ST values (-0.007 to 0.107), support an expansion of the S. cirrhifer population. Hierarchical analysis of molecular variance (AMOVA) revealed weak but significant genetic structures among three groups (F CT = 0.028, p<0.05), and no genetic variation within groups (0.53%; F SC = 0.005, p = 0.23). These results may help establish appropriate fishery management strategies for stocks of S. cirrhifer and related species.

  4. Shallow Population Genetic Structures of Thread-sail Filefish ( Populations from Korean Coastal Waters

    Directory of Open Access Journals (Sweden)

    M. Yoon

    2012-02-01

    Full Text Available Genetic diversities, population genetic structures and demographic histories of the thread-sail filefish Stephanolepis cirrhifer were investigated by nucleotide sequencing of 336 base pairs of the mitochondrial DNA (mtDNA control region in 111 individuals collected from six populations in Korean coastal waters. A total of 70 haplotypes were defined by 58 variable nucleotide sites. The neighbor-joining tree of the 70 haplotypes was shallow and did not provide evidence of geographical associations. Expansion of S. cirrhifer populations began approximate 51,000 to 102,000 years before present, correlating with the period of sea level rise since the late Pleistocene glacial maximum. High levels of haplotype diversities (0.974±0.029 to 1.000±0.076 and nucleotide diversities (0.014 to 0.019, and low levels of genetic differentiation among populations inferred from pairwise population FST values (−0.007 to 0.107, support an expansion of the S. cirrhifer population. Hierarchical analysis of molecular variance (AMOVA revealed weak but significant genetic structures among three groups (FCT = 0.028, p<0.05, and no genetic variation within groups (0.53%; FSC = 0.005, p = 0.23. These results may help establish appropriate fishery management strategies for stocks of S. cirrhifer and related species.

  5. Analysis of genetic structure in Melia volkensii (Gurke.) populations ...

    African Journals Online (AJOL)

    Administrator

    2Farm Forestry Programme, Kenya Forestry Research Institute, P. O. Box 20412, Nairobi, Kenya. Accepted 5 ... were used to estimate genetic distances between populations and for construction of neighbour-joining phenograms. Analysis of Molecular Variance (AMOVA) indicated significant genetic differentiation between ...

  6. Genetic Diversity, Population Structure and Ancestral Origin of Australian Wheat

    Directory of Open Access Journals (Sweden)

    Reem Joukhadar

    2017-12-01

    Full Text Available Since the introduction of wheat into Australia by the First Fleet settlers, germplasm from different geographical origins has been used to adapt wheat to the Australian climate through selection and breeding. In this paper, we used 482 cultivars, representing the breeding history of bread wheat in Australia since 1840, to characterize their diversity and population structure and to define the geographical ancestral background of Australian wheat germplasm. This was achieved by comparing them to a global wheat collection using in-silico chromosome painting based on SNP genotyping. The global collection involved 2,335 wheat accessions which was divided into 23 different geographical subpopulations. However, the whole set was reduced to 1,544 accessions to increase the differentiation and decrease the admixture among different global subpopulations to increase the power of the painting analysis. Our analysis revealed that the structure of Australian wheat germplasm and its geographic ancestors have changed significantly through time, especially after the Green Revolution. Before 1920, breeders used cultivars from around the world, but mainly Europe and Africa, to select potential cultivars that could tolerate Australian growing conditions. Between 1921 and 1970, a dependence on African wheat germplasm became more prevalent. Since 1970, a heavy reliance on International Maize and Wheat Improvement Center (CIMMYT germplasm has persisted. Combining the results from linkage disequilibrium, population structure and in-silico painting revealed that the dependence on CIMMYT materials has varied among different Australian States, has shrunken the germplasm effective population size and produced larger linkage disequilibrium blocks. This study documents the evolutionary history of wheat breeding in Australia and provides an understanding for how the wheat genome has been adapted to local growing conditions. This information provides a guide for industry to

  7. Genetic Diversity, Population Structure and Ancestral Origin of Australian Wheat.

    Science.gov (United States)

    Joukhadar, Reem; Daetwyler, Hans D; Bansal, Urmil K; Gendall, Anthony R; Hayden, Matthew J

    2017-01-01

    Since the introduction of wheat into Australia by the First Fleet settlers, germplasm from different geographical origins has been used to adapt wheat to the Australian climate through selection and breeding. In this paper, we used 482 cultivars, representing the breeding history of bread wheat in Australia since 1840, to characterize their diversity and population structure and to define the geographical ancestral background of Australian wheat germplasm. This was achieved by comparing them to a global wheat collection using in-silico chromosome painting based on SNP genotyping. The global collection involved 2,335 wheat accessions which was divided into 23 different geographical subpopulations. However, the whole set was reduced to 1,544 accessions to increase the differentiation and decrease the admixture among different global subpopulations to increase the power of the painting analysis. Our analysis revealed that the structure of Australian wheat germplasm and its geographic ancestors have changed significantly through time, especially after the Green Revolution. Before 1920, breeders used cultivars from around the world, but mainly Europe and Africa, to select potential cultivars that could tolerate Australian growing conditions. Between 1921 and 1970, a dependence on African wheat germplasm became more prevalent. Since 1970, a heavy reliance on International Maize and Wheat Improvement Center (CIMMYT) germplasm has persisted. Combining the results from linkage disequilibrium, population structure and in-silico painting revealed that the dependence on CIMMYT materials has varied among different Australian States, has shrunken the germplasm effective population size and produced larger linkage disequilibrium blocks. This study documents the evolutionary history of wheat breeding in Australia and provides an understanding for how the wheat genome has been adapted to local growing conditions. This information provides a guide for industry to assist with

  8. Genetic diversity and population genetic structure of the only population of Aoluguya Reindeer (Rangifer tarandus) in China.

    Science.gov (United States)

    Ju, Yan; Liu, Huamiao; Rong, Min; Zhang, Ranran; Dong, Yimeng; Zhou, Yongna; Xing, Xiumei

    2018-04-16

    Aoluguya Reindeer is the only reindeer species in China and currently approximately 1000 Aoluguya Reindeer remain semi-domesticated. A relative low diversity estimate was found by investigating genetic variability and demographic history of its population. Mismatch distribution curve of its nucleotide sequences and neutral test indicate its population has not experienced expansion. Genetic diversity and population structure were also analysed by using its mtDNA and microsatellites technology. Statistical results of these analyses showed there were varying degrees of population inbreeding and suggested that gene flow existed among its populations at one time. Three mutation models were also used to detect the bottleneck effect of reindeer population. The genetic variation of eight populations is relatively small. In addition, the clustering program STRUCTURE was used to analyse Aoluguya Reindeer population structure, to determine its optimal K and first time to analyse the phylogenetic status of Aoluguya Reindeer among other reindeer subspecies. It is recommended that the government establish a natural conservation area in Aoluguya Reindeer growing geography, forbade the trade and hunting of Aoluguya Reindeer, and strengthen the protection of this endangered species.

  9. Reduced fine-scale spatial genetic structure in grazed populations of Dianthus carthusianorum.

    Science.gov (United States)

    Rico, Y; Wagner, H H

    2016-11-01

    Strong spatial genetic structure in plant populations can increase homozygosity, reducing genetic diversity and adaptive potential. The strength of spatial genetic structure largely depends on rates of seed dispersal and pollen flow. Seeds without dispersal adaptations are likely to be dispersed over short distances within the vicinity of the mother plant, resulting in spatial clustering of related genotypes (fine-scale spatial genetic structure, hereafter spatial genetic structure (SGS)). However, primary seed dispersal by zoochory can promote effective dispersal, increasing the mixing of seeds and influencing SGS within plant populations. In this study, we investigated the effects of seed dispersal by rotational sheep grazing on the strength of SGS and genetic diversity using 11 nuclear microsatellites for 49 populations of the calcareous grassland forb Dianthus carthusianorum. Populations connected by rotational sheep grazing showed significantly weaker SGS and higher genetic diversity than populations in ungrazed grasslands. Independent of grazing treatment, small populations showed significantly stronger SGS and lower genetic diversity than larger populations, likely due to genetic drift. A lack of significant differences in the strength of SGS and genetic diversity between populations that were recently colonized and pre-existing populations suggested that populations colonized after the reintroduction of rotational sheep grazing were likely founded by colonists from diverse source populations. We conclude that dispersal by rotational sheep grazing has the potential to considerably reduce SGS within D. carthusianorum populations. Our study highlights the effectiveness of landscape management by rotational sheep grazing to importantly reduce genetic structure at local scales within restored plant populations.

  10. Genetic structure and variability within and among populations of the ...

    African Journals Online (AJOL)

    Lalouta

    2014-01-01

    Jan 1, 2014 ... The clustering analysis performed with 'structure' detected the absence of .... tance of molecular information in the establishment of genetic improvement ... applied using a Markov Chain Monte Carlo simulation (100 batches,.

  11. Genetic diversity and population structure of maize landraces from ...

    African Journals Online (AJOL)

    pc

    2016-11-02

    Nov 2, 2016 ... useful in selection. The cross between two individuals from different groups might help exploit the ... primers used are labeled with different colored .... with a view to detect a structuring of accessions in genetically different ...

  12. Alu polymorphic insertions reveal genetic structure of north Indian populations.

    Science.gov (United States)

    Tripathi, Manorama; Tripathi, Piyush; Chauhan, Ugam Kumari; Herrera, Rene J; Agrawal, Suraksha

    2008-10-01

    The Indian subcontinent is characterized by the ancestral and cultural diversity of its people. Genetic input from several unique source populations and from the unique social architecture provided by the caste system has shaped the current genetic landscape of India. In the present study 200 individuals each from three upper-caste and four middle-caste Hindu groups and from two Muslim populations in North India were examined for 10 polymorphic Alu insertions (PAIs). The investigated PAIs exhibit high levels of polymorphism and average heterozygosity. Limited interpopulation variance and genetic flow in the present study suggest admixture. The results of this study demonstrate that, contrary to common belief, the caste system has not provided an impermeable barrier to genetic exchange among Indian groups.

  13. Molecular markers for genetic diversity, gene flow and genetic population structure of freshwater mussel species

    Directory of Open Access Journals (Sweden)

    AB Choupina

    Full Text Available Freshwater mussel species are in global decline. Anthropogenic changes of river channels and the decrease of autochthonous fish population, the natural hosts of mussels larval stages (glochidia, are the main causes. Therefore, the conservation of mussel species depends not only on habitat conservation, but also on the availability of the fish host. In Portugal, information concerning most of the mussel species is remarkably scarce. One of the most known species, Unio pictorum is also in decline however, in the basins of the rivers Tua and Sabor (Northeast of Portugal, there is some indication of relatively large populations. The aforementioned rivers can be extremely important for this species conservation not only in Portugal, but also in the remaining Iberian Peninsula. Thus, it is important to obtain data concerning Unio pictorum bioecology (distribution, habitat requirements, population structure, genetic variability, reproductive cycle and recruitment rates, as well as the genetic variability and structure of the population. Concomitantly, information concerning fish population structure, the importance of the different fish species as “glochidia” hosts and their appropriate density to allow effective mussel recruitment, will also be assessed. The achieved data is crucial to obtain information to develop effective management measures in order to promote the conservation of this bivalve species, the conservation of autochthonous fish populations, and consequently the integrity of the river habitats.

  14. Genetic variability and structure of an isolated population of ...

    Indian Academy of Sciences (India)

    Rosa-Laura Heredia-Bobadilla

    2017-11-15

    Nov 15, 2017 ... Journal of Genetics, Vol. 96, No. 6, December 2017 ... or international status of protection. The mole ... populations by a matrix of agriculture and urbanization, can be considered ...... BioScience 38, 471–479. Lemos-Espinal ...

  15. Genetic population structure of sympatric and allopatric populations of Baltic ciscoes (Coregonus albula complex, Teleostei, Coregonidae).

    Science.gov (United States)

    Mehner, Thomas; Pohlmann, Kirsten; Elkin, Che; Monaghan, Michael T; Nitz, Barbara; Freyhof, Jörg

    2010-03-29

    Teleost fishes of the Coregonidae are good model systems for studying postglacial evolution, adaptive radiation and ecological speciation. Of particular interest is whether the repeated occurrence of sympatric species pairs results from in-situ divergence from a single lineage or from multiple invasions of one or more different lineages. Here, we analysed the genetic structure of Baltic ciscoes (Coregonus albula complex), examining 271 individuals from 8 lakes in northern Germany using 1244 polymorphic AFLP loci. Six lakes had only one population of C. albula while the remaining two lakes had C. albula as well as a sympatric species (C. lucinensis or C. fontanae). AFLP demonstrated a significant population structure (Bayesian thetaB = 0.22). Lower differentiation between allopatric (thetaB = 0.028) than sympatric (0.063-0.083) populations contradicts the hypothesis of a sympatric origin of taxa, and there was little evidence for stocking or ongoing hybridization. Genome scans found only three loci that appeared to be under selection in both sympatric population pairs, suggesting a low probability of similar mechanisms of ecological segregation. However, removal of all non-neutral loci decreased the genetic distance between sympatric pairs, suggesting recent adaptive divergence at a few loci. Sympatric pairs in the two lakes were genetically distinct from the six other C. albula populations, suggesting introgression from another lineage may have influenced these two lakes. This was supported by an analysis of isolation-by-distance, where the drift-gene flow equilibrium observed among allopatric populations was disrupted when the sympatric pairs were included. While the population genetic data alone can not unambiguously uncover the mode of speciation, our data indicate that multiple lineages may be responsible for the complex patterns typically observed in Coregonus. Relative differences within and among lakes raises the possibility that multiple lineages may be

  16. Multilocus genotypic data reveal high genetic diversity and low population genetic structure of Iranian indigenous sheep

    International Nuclear Information System (INIS)

    Vahidi, S.M.F.; Faruque, M.O.; Falahati Anbaran, M.; Afraz, F.; Mousavi, S.M.; Boettcher, P.; Joost, S.; Han, J.L.; Colli, L.; Periasamy, K.; Negrini, R.; Ajmone-Marsan, P.

    2016-01-01

    Full text: Iranian livestock diversity is still largely unexplored, in spite of the interest in the populations historically reared in this country located near the Fertile Crescent, a major livestock domestication centre. In this investigation, the genetic diversity and differentiation of 10 Iranian indigenous fat-tailed sheep breeds were investigated using 18 microsatellite markers. Iranian breeds were found to host a high level of diversity. This conclusion is substantiated by the large number of alleles observed across loci (average 13.83, range 7–22) and by the high within-breed expected heterozygosity (average 0.75, range 0.72–0.76). Iranian sheep have a low level of genetic differentiation, as indicated by the analysis of molecular variance, which allocated a very small proportion (1.67%) of total variation to the between-population component, and by the small fixation index (FST = 0.02). Both Bayesian clustering and principal coordinates analysis revealed the absence of a detectable genetic structure. Also, no isolation by distance was observed through comparison of genetic and geographical distances. In spite of high within-breed variation, signatures of inbreeding were detected by the FIS indices, which were positive in all and statistically significant in three breeds. Possible factors explaining the patterns observed, such as considerable gene flow and inbreeding probably due to anthropogenic activities in the light of population management and conservation programmes are discussed. (author)

  17. Integration of population genetic structure and plant response to climate change: sustaining genetic resources through evaluation of projected threats

    Science.gov (United States)

    Bryce A. Richardson; Marcus V. Warwell; Mee-Sook Kim; Ned B. Klopfenstein; Geral I. McDonald

    2010-01-01

    To assess threats or predict responses to disturbances, or both, it is essential to recognize and characterize the population structures of forest species in relation to changing environments. Appropriate management of these genetic resources in the future will require (1) understanding the existing genetic diversity/variation and population structure of forest trees...

  18. Demography and genetic structure of a recovering grizzly bear population

    Science.gov (United States)

    Kendall, K.C.; Stetz, J.B.; Boulanger, J.; Macleod, A.C.; Paetkau, David; White, Gary C.

    2009-01-01

    Grizzly bears (brown bears; Ursus arctos) are imperiled in the southern extent of their range worldwide. The threatened population in northwestern Montana, USA, has been managed for recovery since 1975; yet, no rigorous data were available to monitor program success. We used data from a large noninvasive genetic sampling effort conducted in 2004 and 33 years of physical captures to assess abundance, distribution, and genetic health of this population. We combined data from our 3 sampling methods (hair trap, bear rub, and physical capture) to construct individual bear encounter histories for use in Huggins-Pledger closed mark-recapture models. Our population estimate, N?? = 765 (95% CI = 715-831) was more than double the existing estimate derived from sightings of females with young. Based on our results, the estimated known, human-caused mortality rate in 2004 was 4.6% (95% CI = 4.2-4.9%), slightly above the 4% considered sustainable; however, the high proportion of female mortalities raises concern. We used location data from telemetry, confirmed sightings, and genetic sampling to estimate occupied habitat. We found that grizzly bears occupied 33,480 km2 in the Northern Continental Divide Ecosystem (NCDE) during 1994-2007, including 10,340 km beyond the Recovery Zone. We used factorial correspondence analysis to identify potential barriers to gene flow within this population. Our results suggested that genetic interchange recently increased in areas with low gene flow in the past; however, we also detected evidence of incipient fragmentation across the major transportation corridor in this ecosystem. Our results suggest that the NCDE population is faring better than previously thought, and they highlight the need for a more rigorous monitoring program.

  19. Genetic polymorphism and population structure of Echinococcus ortleppi.

    Science.gov (United States)

    Addy, F; Wassermann, M; Banda, F; Mbaya, H; Aschenborn, J; Aschenborn, O; Koskei, P; Umhang, G; DE LA Rue, M; Elmahdi, I E; Mackenstedt, U; Kern, P; Romig, T

    2017-04-01

    The zoonotic cestode Echinococcus ortleppi (Lopez-Neyra and Soler Planas, 1943) is mainly transmitted between dogs and cattle. It occurs worldwide but is only found sporadically in most regions, with the notable exception of parts of southern Africa and South America. Its epidemiology is little understood and the extent of intraspecific variability is unknown. We have analysed in the present study the genetic diversity among 178 E. ortleppi isolates from sub-Saharan Africa, Europe and South America using the complete mitochondrial cox1 (1608 bp) and nad1 (894 bp) DNA sequences. Genetic polymorphism within the loci revealed 15 cox1 and six nad1 haplotypes, respectively, and 20 haplotypes of the concatenated genes. Presence of most haplotypes was correlated to geographical regions, and only one haplotype had a wider spread in both eastern and southern Africa. Intraspecific microvariance was low in comparison with Echinococcus granulosus sensu stricto, despite the wide geographic range of examined isolates. In addition, the various sub-populations showed only subtle deviation from neutrality and were mostly genetically differentiated. This is the first insight into the population genetics of the enigmatic cattle adapted Echinococcus ortleppi. It, therefore, provides baseline data for biogeographical comparison among E. ortleppi endemic regions and for tracing its translocation paths.

  20. A population on the edge: genetic diversity and population structure of the world's northernmost harbour seals (Phoca vitulina)

    DEFF Research Database (Denmark)

    Andersen, Liselotte Wesley; Lydersen, Christian; Frie, Anne Kirstine

    2011-01-01

    insight into consequences of population declines in a broader conservation context. The harbour seal population at Svalbard is the world's northernmost harbour seal population. Nothing is known about the genetic diversity, distinctiveness or origin of this small, marginalized mammalian population. Thus......  It is crucial to examine the genetic diversity and structure of small, isolated populations, especially those at the edge of their distribution range, because they are vulnerable to stochastic processes if genetic diversity is low and isolation level high, and because such populations provide...... microsatellites and variation in the D-loop. Each of the four locations was a genetically distinct population. The Svalbard population was highly genetically distinct, had reduced genetic diversity, received limited gene flow, had a rather low effective population size and showed an indication of having...

  1. Analysis of genetic diversity and population structure in upland ...

    Indian Academy of Sciences (India)

    Mulugeta Seyoum

    2018-06-09

    Jun 9, 2018 ... diversity and population structure at DNA level, 302 elite upland cotton germplasm accessions ...... conservation of cotton germplasm in China (English abstract). ... and Alishah O. 2011 Inter simple sequence repeats (ISSR).

  2. Genetic diversity and population structure of endangered Aquilaria ...

    Indian Academy of Sciences (India)

    2015-12-03

    Dec 3, 2015 ... ... Aromatic and Economic Plants, CSIR - North-East Institute of Science and Technology ... and population structure is receiving tremendous attention for effective .... unreliable detection and to increase the quality of data. The.

  3. Genetic structure of West Greenland populations of lumpfish Cyclopterus lumpus

    DEFF Research Database (Denmark)

    Mayoral, Elsa Garcia; Olsen, M.; Hedeholm, R.

    2016-01-01

    In this study, 11 microsatellite markers were used to determine the structure of West Greenlandic lumpfish Cyclopterus lumpus populations across six spawning locations spanning >1500 km and compared with neighbouring populations in Canada and Iceland. To evaluate whether data allow for identifica...

  4. Population genetic structure and conservation genetics of threatened Okaloosa darters (Etheostoma okaloosae).

    Science.gov (United States)

    Austin, James D.; Jelks, Howard L.; Tate, Bill; Johnson, Aria R.; Jordan, Frank

    2011-01-01

    Imperiled Okaloosa darters (Etheostoma okaloosae) are small, benthic fish limited to six streams that flow into three bayous of Choctawhatchee Bay in northwest Florida, USA. We analyzed the complete mitochondrial cytochrome b gene and 10 nuclear microsatellite loci for 255 and 273 Okaloosa darters, respectively. Bayesian clustering analyses and AMOVA reflect congruent population genetic structure in both mitochondrial and microsatellite DNA. This structure reveals historical isolation of Okaloosa darter streams nested within bayous. Most of the six streams appear to have exchanged migrants though they remain genetically distinct. The U.S. Fish and Wildlife Service recently reclassified Okaloosa darters from endangered to threatened status. Our genetic data support the reclassification of Okaloosa darter Evolutionary Significant Units (ESUs) in the larger Tom's, Turkey, and Rocky creeks from endangered to threatened status. However, the three smaller drainages (Mill, Swift, and Turkey Bolton creeks) remain at risk due to their small population sizes and anthropogenic pressures on remaining habitat. Natural resource managers now have the evolutionary information to guide recovery actions within and among drainages throughout the range of the Okaloosa darter.

  5. Population genetic structure of Diaphorina citri Kuwayama (Hemiptera: Liviidae): host-driven genetic differentiation in China.

    Science.gov (United States)

    Meng, Lixue; Wang, Yongmo; Wei, Wen-Hua; Zhang, Hongyu

    2018-01-24

    The Asian citrus psyllid Diaphorina citri Kuwayama is a major pest in citrus production, transmitting Candidatus Liberibacter asiaticus. It has spread widely across eastern and southern China. Unfortunately, little is known about the genetic diversity and population structure of D. citri, making pest control difficult. In this study, nine specifically developed SSR markers and three known mitochondrial DNA were used for population genetics study of D. citri using 225 samples collected from all 7 distribution regions in China. Based on the SSR data, D. citri was found highly diverse with a mean observed heterozygosity of 0.50, and three subgroups were structured by host plant: (i) Shatangju, NF mandarin and Ponkan; (ii) Murraya paniculata and Lemon; (iii) Citrus unshiu, Bingtangcheng, Summer orange and Navel. No significant genetic differences were found with mtDNA data. We suggested the host-associated divergence is likely to have occurred very recently. A unimodal distribution of paired differences, the negative and significant Tajima's D and Fu's F S parameters among mtDNA suggested a recent demographic expansion. The extensive citrus cultivation and increased suitable living habitat was recommended as a key for this expansion event.

  6. Transferrin variation and genetic structure of reindeer populations in Scandinavia

    Directory of Open Access Journals (Sweden)

    Knut H. Røed

    1987-06-01

    Full Text Available Polyacrylamide gel electrophoresis was used to analyse transferrin variation in herds of semi-domestic reindeer from Scandinavia. The results are compared with previously reported values for other populations of both semi-domestic and wild reindeer using the same techniques as in the present study. In all populations the number of alleles was high, ranging from seven to eleven, and the heterozygosity was correspondingly high, with a mean of 0.749. This high genetic variation in all populations suggests that inbreeding is not widespread among Scandinavian reindeer. The pattern of allele frequency distribution indicates a high degree of genetic heterogeneity in the transferrin locus, both between the different semi-domestic herds and between the different wild populations. The mean value of genetic distance was 0.069 between semi-domestic herds and 0.091 between wild populations. Between semi-domestic and wild populations the genetic distance was particularly high, with a mean of 0.188. This high value was mainly due to a different pattern in the distribution of the two most common transferrin alleles: Tfu was most common among semi-domestic herds, while TfEI was most common among wild populations. These differences in transferrin allele distribution are discussed in relation to possible different origins of semi-domestic and wild reindeer in Scandinavia, or alternatively, to different selection forces acting on transferrin genotypes in semi-domestic and wild populations.Transferrin-variasjon og genetisk struktur hos rein i Skandinavia.Abstact in Norwegian / Sammendrag: Transferrin-variasjon i tamreinflokker ble analysert ved hjelp av polyacrylamid gel elektroforese. Resultatene er sammenlignet med verdier som tidligere er beskrevet for både tamrein og villrein hvor det ble benyttet samme metode som i denne undersøkelsen. I alle populasjonene ble det registrert et høyt antall alleler (7-11 og heterozygositeten var tilsvarende høy med en

  7. Urban habitat fragmentation and genetic population structure of bobcats in coastal southern California

    Science.gov (United States)

    Ruell, E.W.; Riley, S.P.D.; Douglas, M.R.; Antolin, M.F.; Pollinger, J.R.; Tracey, J.A.; Lyren, L.M.; Boydston, E.E.; Fisher, R.N.; Crooks, K.R.

    2012-01-01

    Although habitat fragmentation is recognized as a primary threat to biodiversity, the effects of urban development on genetic population structure vary among species and landscapes and are not yet well understood. Here we use non-invasive genetic sampling to compare the effects of fragmentation by major roads and urban development on levels of dispersal, genetic diversity, and relatedness between paired bobcat populations in replicate landscapes in coastal southern California. We hypothesized that bobcat populations in sites surrounded by urbanization would experience reduced functional connectivity relative to less isolated nearby populations. Our results show that bobcat genetic population structure is affected by roads and development but not always as predicted by the degree that these landscape features surround fragments. Instead, we suggest that urban development may affect functional connectivity between bobcat populations more by limiting the number and genetic diversity of source populations of migrants than by creating impermeable barriers to dispersal.

  8. Genetic structure of natural populations: Final technical report

    International Nuclear Information System (INIS)

    Ayala, F.J.

    1987-01-01

    We determined the LD 50 for individuals with any one of four genetic constitutions. The LD 50 was in kR units (S and F refer to the two common alleles found in natural populations and N is a mull allele) S/S 5.31, F/F 4.61, S/F 4.19, N/N 3.16. These results are as expected under the hypothesis the SOD is involved in radio-resistance and the degree of protection is a function of SOD specific activity. S codes for an allozyme that has the highest in vitro specific activity while N reduces the amount of enzyme to 3.5% of the normal level. Natural selection experiments in population cages were carried out for 13 generations. In control populations, the frequency of the S allele decreases from the initial frequency of 0.50 to an equilibrium value 0.1 to 0.2 in about 10 generations. In populations with the larvae receiving 4 KR in each generation, s reaches an equilibrium frequency of 0.6; when the irradiation was no longer applied, the frequency of S started declining, eventually reaching 0.1 to 0.2. These results corroborate the hypothesis that SOD protects against irradiation and that the degree of protection is correlated by the in vitro specific activity of the allozymes. 29 refs., 4 tabs

  9. Genetic diversity and population structure in Polygonum cespitosum: insights to an ongoing plant invasion.

    Directory of Open Access Journals (Sweden)

    Silvia Matesanz

    Full Text Available Molecular markers can help elucidate how neutral evolutionary forces and introduction history contribute to genetic variation in invaders. We examined genetic diversity, population structure and colonization patterns in the invasive Polygonum cespitosum, a highly selfing, tetraploid Asian annual introduced to North America. We used nine diploidized polymorphic microsatellite markers to study 16 populations in the introduced range (northeastern North America, via the analyses of 516 individuals, and asked the following questions: 1 Do populations have differing levels of within-population genetic diversity? 2 Do populations form distinct genetic clusters? 3 Does population structure reflect either geographic distances or habitat similarities? We found low heterozygosity in all populations, consistent with the selfing mating system of P. cespitosum. Despite the high selfing levels, we found substantial genetic variation within and among P. cespitosum populations, based on the percentage of polymorphic loci, allelic richness, and expected heterozygosity. Inferences from individual assignment tests (Bayesian clustering and pairwise FST values indicated high among-population differentiation, which indicates that the effects of gene flow are limited relative to those of genetic drift, probably due to the high selfing rates and the limited seed dispersal ability of P. cespitosum. Population structure did not reflect a pattern of isolation by distance nor was it related to habitat similarities. Rather, population structure appears to be the result of the random movement of propagules across the introduced range, possibly associated with human dispersal. Furthermore, the high population differentiation, genetic diversity, and fine-scale genetic structure (populations founded by individuals from different genetic sources in the introduced range suggest that multiple introductions to this region may have occurred. High genetic diversity may further

  10. Population genetic structure, linkage disequilibrium and effective population size of conserved and extensively raised village chicken populations of Southern Africa

    Directory of Open Access Journals (Sweden)

    Khulekhani Sedwell Khanyile

    2015-02-01

    Full Text Available Extensively raised village chickens are considered a valuable source of biodiversity, with genetic variability developed over thousands of years that ought to be characterised and utilized. Surveys that can reveal a population’s genetic structure and provide an insight into its demographic history will give valuable information to manage and conserve important indigenous animal genetic resources. This study reports population diversity and structure, linkage disequilibrium and effective population sizes of Southern African village chickens and conservation flocks from South Africa. DNA samples from 312 chickens from South African village and conservation flocks (n =146, Malawi (n =30 and Zimbabwe (n =136 were genotyped using the Illumina iSelect chicken SNP60K BeadChip. Population genetic structure analysis distinguished the four conservation flocks from the village chicken populations. Of the four flocks, the Ovambo clustered closer to the village chickens particularly those sampled from South Africa. Clustering of the village chickens followed a geographic gradient whereby South African chickens were closer to those from Zimbabwe than to chickens from Malawi. Different conservation flocks seemed to have maintained different components of the ancestral genomes with a higher proportion of village chicken diversity found in the Ovambo population. Overall population LD averaged over chromosomes ranged from 0.03 ± 0.07 to 0.58 ± 0.41 and averaged 0.15 ± 0.16. Higher LD, ranging from 0.29-0.36, was observed between SNP markers that were less than 10kb apart in the conservation flocks. LD in the conservation flocks steadily decreased to 0.15 (PK and 0.24 (VD at SNP marker interval of 500kb. Genomewide LD decay in the village chickens from Malawi, Zimbabwe and South Africa followed a similar trend as the conservation flocks although the mean LD values for the investigated SNP intervals were lower. The results suggest low effective population

  11. Genetic diversity and population structure of Sitodiplosis mosellana in Northern China.

    Directory of Open Access Journals (Sweden)

    Yun Duan

    Full Text Available The wheat midge, Sitodiplosis mosellana, is an important pest in Northern China. We tested the hypothesis that the population structure of this species arises during a range expansion over the past 30 years. This study used microsatellite and mitochondrial loci to conduct population genetic analysis of S. mosellana across its distribution range in China. We found strong genetic structure among the 16 studied populations, including two genetically distinct groups (the eastern and western groups, broadly consistent with the geography and habitat fragmentation. These results underline the importance of natural barriers in impeding dispersal and gene flow of S. mosellana populations. Low to moderate genetic diversity among the populations and moderate genetic differentiation (F ST = 0.117 between the two groups were also found. The populations in the western group had lower genetic diversity, higher genetic differentiation and lower gene flow (F ST = 0.116, Nm = 1.89 than those in the eastern group (F ST = 0.049, Nm = 4.91. Genetic distance between populations was positively and significantly correlated with geographic distance (r = 0.56, P<0.001. The population history of this species provided no evidence for population expansion or bottlenecks in any of these populations. Our data suggest that the distribution of genetic diversity, genetic differentiation and population structure of S. mosellana have resulted from a historical event, reflecting its adaptation to diverse habitats and forming two different gene pools. These results may be the outcome of a combination of restricted gene flow due to geographical and environmental factors, population history, random processes of genetic drift and individual dispersal patterns. Given the current risk status of this species in China, this study can offer useful information for forecasting outbreaks and designing effective pest management programs.

  12. Current and historical drivers of landscape genetic structure differ in core and peripheral salamander populations.

    Directory of Open Access Journals (Sweden)

    Rachael Y Dudaniec

    Full Text Available With predicted decreases in genetic diversity and greater genetic differentiation at range peripheries relative to their cores, it can be difficult to distinguish between the roles of current disturbance versus historic processes in shaping contemporary genetic patterns. To address this problem, we test for differences in historic demography and landscape genetic structure of coastal giant salamanders (Dicamptodon tenebrosus in two core regions (Washington State, United States versus the species' northern peripheral region (British Columbia, Canada where the species is listed as threatened. Coalescent-based demographic simulations were consistent with a pattern of post-glacial range expansion, with both ancestral and current estimates of effective population size being much larger within the core region relative to the periphery. However, contrary to predictions of recent human-induced population decline in the less genetically diverse peripheral region, there was no genetic signature of population size change. Effects of current demographic processes on genetic structure were evident using a resistance-based landscape genetics approach. Among core populations, genetic structure was best explained by length of the growing season and isolation by resistance (i.e. a 'flat' landscape, but at the periphery, topography (slope and elevation had the greatest influence on genetic structure. Although reduced genetic variation at the range periphery of D. tenebrosus appears to be largely the result of biogeographical history rather than recent impacts, our analyses suggest that inherent landscape features act to alter dispersal pathways uniquely in different parts of the species' geographic range, with implications for habitat management.

  13. Genetic structure of lake whitefish, Coregonus clupeaformis, populations in the northern main basin of Lake Huron

    Science.gov (United States)

    Stott, Wendylee; Ebener, Mark P.; Mohr, Lloyd; Schaeffer, Jeff; Roseman, Edward F.; Harford, William J.; Johnson, James E.; Fietsch, Cherie-Lee

    2012-01-01

    Genetic analysis of spawning lake whitefish (Coregonus clupeaformis) from six sites in the main basin of Lake Huron was conducted to determine population structure. Samples from fisheryindependent assessment surveys in the northwest main basin were analyzed to determine the relative contributions of lake whitefish genetic populations. Genetic population structure was identified using data from seven microsatellite DNA loci. One population was identified at Manitoulin Island, one to two were observed in the east-central main basin (Fishing Island and Douglas Point), and one to two populations were found in the northwest (Thunder Bay and Duncan Bay). The genetic identity of collections from Duncan Bay and Thunder Bay was not consistent among methods used to analyze population structure. Low genetic distances suggested that they comprised one population, but genic differences indicated that they may constitute separate populations. Simulated data indicated that the genetic origins of samples from a mixed-fishery could be accurately identified, but accuracy could be improved by incorporating additional microsatellite loci. Mixture analysis and individual assignment tests performed on mixed-stock samples collected from the western main basin suggested that genetic populations from the east-central main basin contributed less than those from the western main basin and that the proportional contribution of each baseline population was similar in each assessment sample. Analysis of additional microsatellite DNA loci may be useful to help improve the precision of the estimates, thus increasing our ability to manage and protect this valuable resource.

  14. A longitudinal cline characterizes the genetic structure of human populations in the Tibetan plateau

    Science.gov (United States)

    Peter, Benjamin M.; Basnyat, Buddha; Neupane, Maniraj; Beall, Cynthia M.; Childs, Geoff; Craig, Sienna R.; Novembre, John; Di Rienzo, Anna

    2017-01-01

    Indigenous populations of the Tibetan plateau have attracted much attention for their good performance at extreme high altitude. Most genetic studies of Tibetan adaptations have used genetic variation data at the genome scale, while genetic inferences about their demography and population structure are largely based on uniparental markers. To provide genome-wide information on population structure, we analyzed new and published data of 338 individuals from indigenous populations across the plateau in conjunction with worldwide genetic variation data. We found a clear signal of genetic stratification across the east-west axis within Tibetan samples. Samples from more eastern locations tend to have higher genetic affinity with lowland East Asians, which can be explained by more gene flow from lowland East Asia onto the plateau. Our findings corroborate a previous report of admixture signals in Tibetans, which were based on a subset of the samples analyzed here, but add evidence for isolation by distance in a broader geospatial context. PMID:28448508

  15. A longitudinal genetic survey identifies temporal shifts in the population structure of Dutch house sparrows

    Science.gov (United States)

    Cousseau, L; Husemann, M; Foppen, R; Vangestel, C; Lens, L

    2016-01-01

    Dutch house sparrow (Passer domesticus) densities dropped by nearly 50% since the early 1980s, and similar collapses in population sizes have been reported across Europe. Whether, and to what extent, such relatively recent demographic changes are accompanied by concomitant shifts in the genetic population structure of this species needs further investigation. Therefore, we here explore temporal shifts in genetic diversity, genetic structure and effective sizes of seven Dutch house sparrow populations. To allow the most powerful statistical inference, historical populations were resampled at identical locations and each individual bird was genotyped using nine polymorphic microsatellites. Although the demographic history was not reflected by a reduction in genetic diversity, levels of genetic differentiation increased over time, and the original, panmictic population (inferred from the museum samples) diverged into two distinct genetic clusters. Reductions in census size were supported by a substantial reduction in effective population size, although to a smaller extent. As most studies of contemporary house sparrow populations have been unable to identify genetic signatures of recent population declines, results of this study underpin the importance of longitudinal genetic surveys to unravel cryptic genetic patterns. PMID:27273323

  16. Refining and defining riverscape genetics: How rivers influence population genetic structure

    Science.gov (United States)

    Chanté D. Davis; Clinton W. Epps; Rebecca L. Flitcroft; Michael A. Banks

    2018-01-01

    Traditional analysis in population genetics evaluates differences among groups of individuals and, in some cases, considers the effects of distance or potential barriers to gene flow. Genetic variation of organisms in complex landscapes, seascapes, or riverine systems, however, may be shaped by many forces. Recent research has linked habitat heterogeneity and landscape...

  17. Genetic structure of Rajaka caste and affinities with other caste populations of Andhra Pradesh, India.

    Science.gov (United States)

    Parvatheesam, C; Babu, B V; Babu, M C

    1997-01-01

    The present study gives an account of the genetic structure in terms of distribution of a few genetic markers, viz., A1A2B0, Rh(D), G6PD deficiency and haemoglobin among the Rajaka caste population of Andhra Pradesh, India. The genetic relationships of the Rajaka caste with other Andhra caste populations were investigated in terms of genetic distance, i.e., Sq B (mn) of Balakrishnan and Sanghvi. Relatively lesser distance was established between the Rajaka and two Panchama castes. Also, the pattern of genetic distance corroborates the hierarchical order of the Hindu varna system.

  18. Environmental heterogeneity explains the genetic structure of Continental and Mediterranean populations of Fraxinus angustifolia Vahl.

    Directory of Open Access Journals (Sweden)

    Martina Temunović

    Full Text Available Tree species with wide distributions often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in a wind-pollinated Mediterranean tree species, Fraxinus angustifolia Vahl, within a recognised glacial refugium in Croatia. We sampled 11 populations from environmentally divergent habitats within the Continental and Mediterranean biogeographical regions. We combined genetic data analyses based on nuclear microsatellite loci, multivariate statistics on environmental data and ecological niche modelling (ENM. We identified a geographic structure with a high genetic diversity and low differentiation in the Continental region, which contrasted with the significantly lower genetic diversity and higher population divergence in the Mediterranean region. The positive and significant correlation between environmental and genetic distances after controlling for geographic distance suggests an important influence of ecological divergence of the sites in shaping genetic variation. The ENM provided support for niche differentiation between the populations from the Continental and Mediterranean regions, suggesting that contemporary populations may represent two divergent ecotypes. Ecotype differentiation was also supported by multivariate environmental and genetic distance analyses. Our results suggest that despite extensive gene flow in continental areas, long-term stability of heterogeneous environments have likely promoted genetic divergence of ashes in this region and can explain the present-day genetic variation patterns of these ancient populations.

  19. Genetic diversity and structure analysis based on hordein protein polymorphism in barley landrace populations from jordan

    International Nuclear Information System (INIS)

    Baloch, A.W.; Ali, M.; Baloch, A.M.; Mangan, B.U.N.; Song, W

    2014-01-01

    Jordan is unanimously considered to be one of the centers of genetic diversity for barley, where wild and landraces of barley has been grown under different climatic conditions. The genetic diversity and genetic structure based on hordein polymorphism was assessed in 90 different accessions collected from four different sites of Jordan. A-PAGE was used to reveal hordein polymorphism among the genotypes. A total of 29 distinct bands were identified, out of them 9 bands were distinguished for D, 11 for C, and 9 for the B hordein regions. The observed genetic similarity was an exceptionally high between the populations than expected, which is probably due to high gene flow estimated between them. The genetic diversity parameters were not differ largely among the populations, indicating that local selection of a particular site did not play a key role in shaping genetic diversity. Analysis of molecular variance (AMOVA) revealed significant population structure when accessions were structured according to population site. There was 94% of hordein variation resided within the populations and only 8% present among the populations. Both Bayesian and Principale Coordinate Analysis (PCoA) concordantly demonstrated admixture genotypes of the landraces barley populations. Consequently, none of the population found to be clustered separately according to its population site. It is concluded that this approach can be useful to explore the germplasm for genetic diversity but perhaps is not suitable for determining phylogenic relations in barley. (author)

  20. Population structure, genetic variation and linkage disequilibrium in perennial ryegrass populations divergently selected for freezing tolerance

    Directory of Open Access Journals (Sweden)

    Mallikarjuna Rao eKovi

    2015-11-01

    Full Text Available Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF] and 27 of Unselected [US] from the second generation of the two divergently selected populations and an unselected control population were genotyped using 278 genome-wide SNPs derived from Lolium perenne L. transcriptome sequence. Our studies showed that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two Fst outlier methods; finite island model (fdist by LOSITAN and hierarchical structure model using ARLEQUIN detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation and abiotic stress and might be the potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance.

  1. Population genetic structure of urban malaria vector Anopheles stephensi in India.

    Science.gov (United States)

    Sharma, Richa; Sharma, Arvind; Kumar, Ashwani; Dube, Madhulika; Gakhar, S K

    2016-04-01

    Malaria is a major public health problem in India because climatic condition and geography of India provide an ideal environment for development of malaria vector. Anopheles stephensi is a major urban malaria vector in India and its control has been hampered by insecticide resistance. In present study population genetic structure of A. stephensi is analyzed at macro geographic level using 13 microsatellite markers. Significantly high genetic differentiation was found in all studied populations with differentiation values (FST) ranging from 0.0398 to 0.1808. The geographic distance was found to be playing a major role in genetic differentiation between different populations. Overall three genetic pools were observed and population of central India was found to be coexisting in two genetic pools. High effective population size (Ne) was found in all the studied populations. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. High genetic diversity and low population structure in Porter's sunflower (Helianthus porteri).

    Science.gov (United States)

    Gevaert, Scott D; Mandel, Jennifer R; Burke, John M; Donovan, Lisa A

    2013-01-01

    Granite outcrops in the southeastern United States are rare and isolated habitats that support edaphically controlled communities dominated by herbaceous plants. They harbor rare and endemic species that are expected to have low genetic variability and high population structure due to small population sizes and their disjunct habitat. We test this expectation for an annual outcrop endemic, Helianthus porteri (Porter's sunflower). Contrary to expectation, H. porteri has relatively high genetic diversity (H e = 0.681) and relatively low genetic structure among the native populations (F ST = 0.077) when compared to 5 other Helianthus species (N = 288; 18 expressed sequence tag-SSR markers). These findings suggest greater gene flow than expected. The potential for gene flow is supported by the analysis of transplant populations established with propagules from a common source in 1959. One population established close to a native population (1.5 km) at the edge of the natural range is genetically similar to and shares rare alleles with the adjacent native population and is distinct from the central source population. In contrast, a transplant population established north of the native range has remained similar to the source population. The relatively high genetic diversity and low population structure of this species, combined with the long-term success of transplanted populations, bode well for its persistence as long as the habitat persists.

  3. Genetic structure of Leptopilina boulardi populations from different climatic zones of Iran

    NARCIS (Netherlands)

    Seyahooei, M.A.; van Alphen, J.J.M.; Kraaijeveld, K.

    2011-01-01

    Background The genetic structure of populations can be influenced by geographic isolation (including physical distance) and ecology. We examined these effects in Leptopilina boulardi, a parasitoid of Drosophila of African origin and widely distributed over temperate and (sub) tropical climates.

  4. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum.

    Directory of Open Access Journals (Sweden)

    Federica Costantini

    Full Text Available While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58-118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.

  5. Quantifying spatial genetic structuring in mesophotic populations of the precious coral Corallium rubrum.

    Science.gov (United States)

    Costantini, Federica; Carlesi, Lorenzo; Abbiati, Marco

    2013-01-01

    While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58-118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.

  6. Genetic structure of local populations of Lutzomyia longipalpis (Diptera: Psychodidae) in central Colombia.

    Science.gov (United States)

    Munstermann, L E; Morrison, A C; Ferro, C; Pardo, R; Torres, M

    1998-01-01

    Lutzomyia longipalpis (Lutz & Neiva), the sand fly vector of American visceral leishmaniasis in the New World tropics, has a broad but discontinuous geographical distribution from southern Mexico to Argentina. A baseline for population genetic structure and genetic variability for this species was obtained by analyzing 5 local, peridomestic populations at the approximate center of its distribution, the Magdalena River Valley of central Colombia. Three populations of L. longipalpis from El Callejón, a small rural community, were compared with 2 populations from neighboring areas 12 and 25 km distant for genetic variation at 15 isoenzyme loci. The mean heterozygosity ranged from 11 to 16%, with 1.2 to 2.3 alleles detected per locus. Nei's genetic distances among the populations were very low, ranging from 0.001 to 0.007. Gene flow estimates based on FST indicated high levels of gene flow among local L. longipalpis populations, with minimal population substructuring.

  7. Development of genetic diversity, differentiation and structure over 500 years in four ponderosa pine populations.

    Science.gov (United States)

    Lesser, M R; Parchman, T L; Jackson, S T

    2013-05-01

    Population history plays an important role in shaping contemporary levels of genetic variation and geographic structure. This is especially true in small, isolated range-margin populations, where effects of inbreeding, genetic drift and gene flow may be more pronounced than in large continuous populations. Effects of landscape fragmentation and isolation distance may have implications for persistence of range-margin populations if they are demographic sinks. We studied four small, disjunct populations of ponderosa pine over a 500-year period. We coupled demographic data obtained through dendroecological methods with microsatellite data to discern how and when contemporary levels of allelic diversity, among and within-population levels of differentiation, and geographic structure, arose. Alleles accumulated rapidly following initial colonization, demonstrating proportionally high levels of gene flow into the populations. At population sizes of approximately 100 individuals, allele accumulation saturated. Levels of genetic differentiation among populations (F(ST) and Jost's D(est)) and diversity within populations (F(IS)) remained stable through time. There was no evidence of geographic genetic structure at any time in the populations' history. Proportionally, high gene flow in the early stages of population growth resulted in rapid accumulation of alleles and quickly created relatively homogenous genetic patterns among populations. Our study demonstrates that contemporary levels of genetic diversity were formed quickly and early in population development. How contemporary genetic diversity accumulates over time is a key facet of understanding population growth and development. This is especially relevant given the extent and speed at which species ranges are predicted to shift in the coming century. © 2013 Blackwell Publishing Ltd.

  8. Nesting habits influence population genetic structure of a bee living in anthropogenic disturbance.

    Science.gov (United States)

    Vickruck, J L; Richards, M H

    2017-05-01

    While most organisms are negatively affected by anthropogenic disturbance, a few species thrive in landscapes altered by humans. Typically, native bees are negatively impacted by anthropogenic environmental change, including habitat alteration and climate change. Here, we investigate the population structure of the eastern carpenter bee Xylocopa virginica, a generalist pollinator with a broad geographic range spanning eastern North America. Eastern carpenter bees now nest almost exclusively in artificial wooden structures, linking their geographic distribution and population structure to human activities and disturbance. To investigate the population structure of these bees, we sampled females from 16 different populations from across their range. Nine species-specific microsatellite loci showed that almost all populations are genetically distinct, but with high levels of genetic diversity and low levels of inbreeding overall. Broadly speaking, populations clustered into three distinct genetic groups: a northern group, a western group and a core group. The northern group had low effective population sizes, decreased genetic variability and the highest levels of inbreeding in the data set, suggesting that carpenter bees may be expanding their range northward. The western group was genetically distinct, but lacked signals of a recent range expansion. Climatic data showed that summer and winter temperatures explained a significant amount of the genetic differentiation seen among populations, while precipitation did not. Our results indicate that X. virginica may be one of the rare 'anthrophilic' species that thrive in the face of anthropogenic disturbance. © 2017 John Wiley & Sons Ltd.

  9. Inference and Analysis of Population Structure Using Genetic Data and Network Theory.

    Science.gov (United States)

    Greenbaum, Gili; Templeton, Alan R; Bar-David, Shirli

    2016-04-01

    Clustering individuals to subpopulations based on genetic data has become commonplace in many genetic studies. Inference about population structure is most often done by applying model-based approaches, aided by visualization using distance-based approaches such as multidimensional scaling. While existing distance-based approaches suffer from a lack of statistical rigor, model-based approaches entail assumptions of prior conditions such as that the subpopulations are at Hardy-Weinberg equilibria. Here we present a distance-based approach for inference about population structure using genetic data by defining population structure using network theory terminology and methods. A network is constructed from a pairwise genetic-similarity matrix of all sampled individuals. The community partition, a partition of a network to dense subgraphs, is equated with population structure, a partition of the population to genetically related groups. Community-detection algorithms are used to partition the network into communities, interpreted as a partition of the population to subpopulations. The statistical significance of the structure can be estimated by using permutation tests to evaluate the significance of the partition's modularity, a network theory measure indicating the quality of community partitions. To further characterize population structure, a new measure of the strength of association (SA) for an individual to its assigned community is presented. The strength of association distribution (SAD) of the communities is analyzed to provide additional population structure characteristics, such as the relative amount of gene flow experienced by the different subpopulations and identification of hybrid individuals. Human genetic data and simulations are used to demonstrate the applicability of the analyses. The approach presented here provides a novel, computationally efficient model-free method for inference about population structure that does not entail assumption of

  10. Genetic diversity and population structure of common bean ...

    African Journals Online (AJOL)

    The Ethiopian genetic center is considered to be one of the secondary centers of diversity for the common bean. This study was conducted to characterize the distribution of genetic diversity between and within ecological/geographical regions of Ethiopia. A germplasm sample of 116 landrace accessions was developed, ...

  11. Population genetic structure of Rufous-Vented Prinia ( Prinia burnesii )

    African Journals Online (AJOL)

    The objective of the study is to ascertain genetic variation within Rufous-vented Prinia, Prinia burnesii an endemic species, by DNA fingerprinting applying random amplified polymorphic DNA (RAPD) technique. Genetic material was obtained from three distant sites along western bank of River Indus. These sites include ...

  12. Genetic diversity and population structure of Plasmodium falciparum in Thailand, a low transmission country.

    Science.gov (United States)

    Pumpaibool, Tepanata; Arnathau, Céline; Durand, Patrick; Kanchanakhan, Naowarat; Siripoon, Napaporn; Suegorn, Aree; Sitthi-Amorn, Chitr; Renaud, François; Harnyuttanakorn, Pongchai

    2009-07-14

    The population structure of the causative agents of human malaria, Plasmodium sp., including the most serious agent Plasmodium falciparum, depends on the local epidemiological and demographic situations, such as the incidence of infected people, the vector transmission intensity and migration of inhabitants (i.e. exchange between sites). Analysing the structure of P. falciparum populations at a large scale, such as continents, or with markers that are subject to non-neutral selection, can lead to a masking and misunderstanding of the effective process of transmission. Thus, knowledge of the genetic structure and organization of P. falciparum populations in a particular area with neutral genetic markers is needed to understand which epidemiological factors should be targeted for disease control. Limited reports are available on the population genetic diversity and structure of P. falciparum in Thailand, and this is of particular concern at the Thai-Myanmar and Thai-Cambodian borders, where there is a reported high resistance to anti-malarial drugs, for example mefloquine, with little understanding of its potential gene flow. The diversity and genetic differentiation of P. falciparum populations were analysed using 12 polymorphic apparently neutral microsatellite loci distributed on eight of the 14 different chromosomes. Samples were collected from seven provinces in the western, eastern and southern parts of Thailand. A strong difference in the nuclear genetic structure was observed between most of the assayed populations. The genetic diversity was comparable to the intermediate level observed in low P. falciparum transmission areas (average HS = 0.65 +/- 0.17), where the lowest is observed in South America and the highest in Africa. However, uniquely the Yala province, had only a single multilocus genotype present in all samples, leading to a strong geographic differentiation when compared to the other Thai populations during this study. Comparison of the genetic

  13. The Genetic Structure of Wild Orobanche cumana Wallr. (Orobanchaceae Populations in Eastern Bulgaria Reflects Introgressions from Weedy Populations

    Directory of Open Access Journals (Sweden)

    Rocío Pineda-Martos

    2014-01-01

    Full Text Available Orobanche cumana is a holoparasitic plant naturally distributed from central Asia to south-eastern Europe, where it parasitizes wild Asteraceae species. It is also an important parasitic weed of sunflower crops. The objective of this research was to investigate genetic diversity, population structure, and virulence on sunflower of O. cumana populations parasitizing wild plants in eastern Bulgaria. Fresh tissue of eight O. cumana populations and mature seeds of four of them were collected in situ on wild hosts. Genetic diversity and population structure were studied with SSR markers and compared to weedy populations. Two main gene pools were identified in Bulgarian populations, with most of the populations having intermediate characteristics. Cross-inoculation experiments revealed that O. cumana populations collected on wild species possessed similar ability to parasitize sunflower to those collected on sunflower. The results were explained on the basis of an effective genetic exchange between populations parasitizing sunflower crops and those parasitizing wild species. The occurrence of bidirectional gene flow may have an impact on wild populations, as new physiological races continuously emerge in weedy populations. Also, genetic variability of wild populations may favour the ability of weedy populations to overcome sunflower resistance mechanisms.

  14. The Genetic Structure of Wild Orobanche cumana Wallr. (Orobanchaceae) Populations in Eastern Bulgaria Reflects Introgressions from Weedy Populations

    Science.gov (United States)

    Pineda-Martos, Rocío; Pujadas-Salvà, Antonio J.; Fernández-Martínez, José M.; Stoyanov, Kiril; Pérez-Vich, Begoña

    2014-01-01

    Orobanche cumana is a holoparasitic plant naturally distributed from central Asia to south-eastern Europe, where it parasitizes wild Asteraceae species. It is also an important parasitic weed of sunflower crops. The objective of this research was to investigate genetic diversity, population structure, and virulence on sunflower of O. cumana populations parasitizing wild plants in eastern Bulgaria. Fresh tissue of eight O. cumana populations and mature seeds of four of them were collected in situ on wild hosts. Genetic diversity and population structure were studied with SSR markers and compared to weedy populations. Two main gene pools were identified in Bulgarian populations, with most of the populations having intermediate characteristics. Cross-inoculation experiments revealed that O. cumana populations collected on wild species possessed similar ability to parasitize sunflower to those collected on sunflower. The results were explained on the basis of an effective genetic exchange between populations parasitizing sunflower crops and those parasitizing wild species. The occurrence of bidirectional gene flow may have an impact on wild populations, as new physiological races continuously emerge in weedy populations. Also, genetic variability of wild populations may favour the ability of weedy populations to overcome sunflower resistance mechanisms. PMID:25143963

  15. Population genetic structure of Rhizoctonia solani AG 3-PT from potatoes in South Africa.

    Science.gov (United States)

    Muzhinji, Norman; Woodhall, James W; Truter, Mariette; van der Waals, Jacquie E

    2016-05-01

    Rhizoctonia solani AG 3-PT is an important potato pathogen causing significant yield and quality losses in potato production. However, little is known about the levels of genetic diversity and structure of this pathogen in South Africa. A total of 114 R. solani AG 3-PT isolates collected from four geographic regions were analysed for genetic diversity and structure using eight microsatellite loci. Microsatellite analysis found high intra-population genetic diversity, population differentiation and evidence of recombination. A total of 78 multilocus genotypes were identified with few shared among populations. Low levels of clonality (13-39 %) and high levels of population differentiation were observed among populations. Most of the loci were in Hardy-Weinberg equilibrium and all four populations showed evidence of a mixed reproductive mode of both clonality and recombination. The PCoA clustering method revealed genetically distinct geographic populations of R. solani AG 3-PT in South Africa. This study showed that populations of R. solani AG 3-PT in South Africa are genetically differentiated and disease management strategies should be applied accordingly. This is the first study of the population genetics of R. solani AG 3-PT in South Africa and results may help to develop knowledge-based disease management strategies. Copyright © 2016 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  16. Short communication Population structure and genetic trends for ...

    African Journals Online (AJOL)

    user

    2016-05-23

    May 23, 2016 ... been reported to have negative effects on some production and fitness traits in ..... Drakensberger Handbook 2011, First Edition. www.drakensbergers,co.za ... of National Farm Animal Genetic Resources Management Plans.

  17. Genetic structure of Suillus luteus populations in heavy metal polluted and nonpolluted habitats.

    Science.gov (United States)

    Muller, Ludo A H; Vangronsveld, Jaco; Colpaert, Jan V

    2007-11-01

    The genetic structure of populations of the ectomycorrhizal basidiomycete Suillus luteus in heavy metal polluted and nonpolluted areas was studied. Sporocarps were collected at nine different locations and genotyped at four microsatellite loci. Six of the sampling sites were severely contaminated with heavy metals and were dominated by heavy metal-tolerant individuals. Considerable genetic diversity was found within the geographical subpopulations, but no reduction of the genetic diversity, current or historic, was observed in subpopulations inhabiting polluted soils. The genetic differentiation between the geographical subpopulations was low, and no evidence for clustering of subpopulations from polluted soils vs. subpopulations from nonpolluted soils was found. These results indicate that heavy metal pollution has a limited effect on the genetic structure of S. luteus populations, and this may be due to the high frequency of sexual reproduction and extensive gene flow in S. luteus, which allows rapid evolution of the tolerance trait while maintaining high levels of genetic diversity.

  18. Introgression from cultivated rice alters genetic structures of wild relative populations: implications for in situ conservation

    Science.gov (United States)

    Jin, Xin; Chen, Yu; Liu, Ping; Li, Chen; Cai, Xingxing; Rong, Jun

    2018-01-01

    Abstract Maintaining genetic integrity is essential for in situ and ex situ conservation of crop wild relative (CWR) species. However, introgression of crop alleles into CWR species/populations may change their genetic structure and diversity, resulting in more invasive weeds or, in contrast, the extinction of endangered populations. To determine crop-wild introgression and its consequences, we examined the genetic structure and diversity of six wild rice (Oryza rufipogon) populations under in situ conservation in China. Thirty-four simple sequence repeat (SSR) and 34 insertion/deletion markers were used to genotype the wild rice populations and two sets of rice cultivars (O. sativa), corresponding to the two types of molecular markers. Shared alleles and STRUCTURE analyses suggested a variable level of crop-wild introgression and admixture. Principal coordinates and cluster analyses indicated differentiation of wild rice populations, which was associated with the spatial distances to cultivated rice fields. The level of overall genetic diversity was comparable between wild rice populations and rice cultivars, but a great number of wild-specific alleles was detected in the wild populations. We conclude based on the results that crop-wild introgression can considerably alter the pattern of genetic structure and relationships of CWR populations. Appropriate measures should be taken for effective in situ conservation of CWR species under the scenario of crop-wild introgression. PMID:29308123

  19. Genetic diversity and structure of domestic cavy (Cavia porcellus populations from smallholder farms in southern Cameroon

    Directory of Open Access Journals (Sweden)

    Basengere Ayagirwe

    2017-09-01

    Full Text Available Although domestic cavies are widely used in sub-Saharan Africa as a source of meat and income, there are only a few studies of their population structure and genetic relatedness. This seminal study was designed with the main objective to assess the genetic diversity and determine the population structure of cavy populations from Cameroon to guide the development of a cavy improvement program. Sixteen microsatellite markers were used to genotype 109 individuals from five cavy populations (Wouri, Moungo and Nkongsamba in the Littoral region, and Mémé and Fako in the Southwest region of Cameroon. Twelve markers worked in the five populations with a total of 17 alleles identified, with a range of 2.9 to 4.0 alleles per locus. Observed heterozygosity (from 0.022 to 0.277 among populations was lower than expected heterozygosity (from 0.42 to 0.54. Inbreeding rates between individuals of the populations and between individuals in each population were 59.3% and 57.2%, respectively, against a moderate differentiation rate of 4.9%. All the tested loci deviated from Hardy-Weinberg equilibrium, except for locus 3. Genetic distances between populations were small (from 0.008 to 0.277, with a high rate of variability among individuals within each population (54.4%. Three distinct genetic groups were structured. This study has shown that microsatellites are useful for the genetic characterization of cavy populations in Cameroon and that the populations investigated have sufficient genetic diversity that can be used to be deployed as a basis for weight, prolificacy and disease resistance improvement. The genetic of diversity in Southern Cameroon is wide and constitute an opportunity for cavy breeding program.

  20. Temporal genetic population structure and interannual variation in migration behavior of Pacific Lamprey Entosphenus tridentatus

    Science.gov (United States)

    Clemens, Benjamin J.; Wyss, Lance A.; McCoun, Rebecca; Courter, Ian; Schwabe, Lawrence; Peery, Christopher; Schreck, Carl B.; Spice, Erin K.; Docker, Margaret F.

    2017-01-01

    Studies using neutral loci suggest that Pacific lamprey, Entosphenus tridentatus, lack strong spatial genetic population structure. However, it is unknown whether temporal genetic population structure exists. We tested whether adult Pacific lamprey: (1) show temporal genetic population structure; and (2) migrate different distances between years. We non-lethally sampled lamprey for DNA in 2009 and 2010 and used eight microsatellite loci to test for genetic population structure. We used telemetry to record the migration behaviors of these fish. Lamprey were assignable to three moderately differentiated genetic clusters (FST = 0.16–0.24 for all pairwise comparisons): one cluster was composed of individuals from 2009, and the other two contained individuals from 2010. The FST value between years was 0.13 and between genetic clusters within 2010 was 0.20. A total of 372 (72.5%) fish were detected multiple times during their migrations. Most fish (69.9%) remained in the mainstem Willamette River; the remaining 30.1% migrated into tributaries. Eighty-two lamprey exhibited multiple back-and-forth movements among tributaries and the mainstem, which may indicate searching behaviors. All migration distances were significantly greater in 2010, when the amplitude of river discharge was greater. Our data suggest genetic structuring between and within years that may reflect different cohorts.

  1. Genetic structure analysis of Eufriesea violacea (Hymenoptera, Apidae populations from southern Brazilian Atlantic rainforest remnants

    Directory of Open Access Journals (Sweden)

    Silvia H. Sofia

    2005-09-01

    Full Text Available Random amplified polymorphic DNA (RAPD markers were used to analyze the genetic structure of Eufriesea violacea populations in three fragments (85.47, 832.58 and 2800 ha of Atlantic rainforest located in the north of the Brazilian state of Paraná. A total of twelve primers produced 206 loci, of which 129 were polymorphic (95% criterion. The proportions of polymorphic loci in each population ranged from 57.28% to 59.2%, revealing very similar levels of genetic variability in the groups of bees from each fragment. Unbiased genetic distances between groups ranged from 0.0171 to 0.0284, the smallest genetic distance occurring between bees from the two larger fragments. These results suggest that the E. violacea populations from the three fragments have maintained themselves genetically similar to native populations of this species originally present in northern Paraná.

  2. Genetic structure of the threatened Dipterocarpus costatus populations in lowland tropical rainforests of southern Vietnam.

    Science.gov (United States)

    Duc, N M; Duy, V D; Xuan, B T T; Thang, B V; Ha, N T H; Tam, N M

    2016-10-24

    Dipterocarpus costatus is an endangered species restricted to the lowland forests of southern Vietnam. Habitat loss and over-exploitation of D. costatus wood are the major threats to this species. We investigated the level of genetic variability within and among populations of D. costatus in order to provide guidelines for the conservation, management, and restoration of this species to the Forest Protection Department, Vietnam. Nine microsatellite markers were used to analyze 114 samples from four populations representing the natural range of D. costatus in southeast Vietnam. We indicated the low allelic diversity (N A = 2.3) and low genetic diversities with an average observed and expected heterozygosity of 0.130 and 0.151, respectively, in the lowland forests of southeast Vietnam. The low genetic diversity might be a consequence of inbreeding within the small and isolated populations of D. costatus owing to its habitat loss and over-exploitation. All populations deviated from Hardy-Weinberg equilibrium showing reduced heterozygosity. Alleles were lost from the populations by genetic drift. Genetic differentiation among populations was high (average pairwise F ST = 0.405), indicating low gene flow (<1) and isolated populations due to its destructed habitat and large geographical distances (P < 0.05) among populations. Heterozygosity excess tests (except of Bu Gia Map only under infinite allele model) were negative. The high genetic variation (62.7%) was found within populations. The STRUCTURE and neighbor joining tree results suggest strong differentiation among D. costatus populations, with the three genetic clusters, Phu Quoc, Tan Phu and Bu Gia Map, and Lo Go-Xa Mat due to habitat fragmentation and isolation. The threatened status of D. costatus was related to a lack of genetic diversity, with all its populations isolated in small forest patches. We recommend the establishment of an ex situ conservation site for D. costatus with a new big population comprising

  3. Genetic structure and demographic history of brown trout ( Salmo trutta ) populations from the southern Balkans

    DEFF Research Database (Denmark)

    Apostolidis, A.P.; Madeira, M.J.; Hansen, Michael Møller

    2008-01-01

    1. The present study was designed to characterize the genetic structure of brown trout (Salmo trutta) populations from the southern Balkans and to assess the spread of non-native strains and their introgression into native trout gene pools. We analysed polymorphism at nine microsatellite loci...... in seven supposedly non-admixed and three stocked brown trout populations. 2. The analyses confirmed the absence of immigration and extraordinarily strong genetic differentiation among the seven non-introgressed populations in parallel with low levels of intrapopulation genetic variability. In contrast...

  4. Genetic structure and diversity in Juniperus communis populations in Saxony, Germany

    Directory of Open Access Journals (Sweden)

    Reim Stefanie

    2016-06-01

    Full Text Available In recent years, land use changes led to a rapid decline and fragmentation of J. communis populations in Germany. Population isolation may lead to a restricted gene flow and, further, to negative effects on genetic variation. In this study, genetic diversity and population structure in seven fragmented J. communis populations in Saxony, Germany, were investigated using nuclear microsatellites (nSSR and chloroplast single nucleotide polymorphism (cpSNP. In all Saxony J. communis populations, a high genetic diversity was determined but no population differentiation could be detected whatever method was applied (Bayesian cluster analysis, F-statistics, AMOVA. The same was true for three J. communis out-group samples originating from Italy, Slovakia and Norway, which also showed high genetic diversity and low genetic differences regarding other J. communis populations. Low genetic differentiation among the J. communis populations ascertained with nuclear and chloroplast markers indicated high levels of gene flow by pollen and also by seeds between the sampled locations. Low genetic differentiation may also provide an indicator of Juniper survival during the last glacial maximum (LGM in Europe. The results of this study serve as a basis for the implementation of appropriate conservation measures in Saxony.

  5. Population genetic structure of rare and endangered plants using molecular markers

    Science.gov (United States)

    Raji, Jennifer; Atkinson, Carter T.

    2013-01-01

    This study was initiated to assess the levels of genetic diversity and differentiation in the remaining populations of Phyllostegia stachyoides and Melicope zahlbruckneri in Hawai`i Volcanoes National Park and determine the extent of gene flow to identify genetically distinct individuals or groups for conservation purposes. Thirty-six Amplified Fragment Length Polymorphic (AFLP) primer combinations generated a total of 3,242 polymorphic deoxyribonucleic acid (DNA) fragments in the P. stachyoides population with a percentage of polymorphic bands (PPB) ranging from 39.3 to 65.7% and 2,780 for the M. zahlbruckneri population with a PPB of 18.8 to 64.6%. Population differentiation (Fst) of AFLP loci between subpopulations of P. stachyoides was low (0.043) across populations. Analysis of molecular variance of P. stachyoides showed that 4% of the observed genetic differentiation occurred between populations in different kīpuka and 96% when individuals were pooled from all kīpuka. Moderate genetic diversity was detected within the M. zahlbruckneri population. Bayesian and multivariate analyses both classified the P. stachyoides and M. zahlbruckneri populations into genetic groups with considerable sub-structuring detected in the P. stachyoides population. The proportion of genetic differentiation among populations explained by geographical distance was estimated by Mantel tests. No spatial correlation was found between genetic and geographic distances in both populations. Finally, a moderate but significant gene flow that could be attributed to insect or bird-mediated dispersal of pollen across the different kīpuka was observed. The results of this study highlight the utility of a multi-allelic DNA-based marker in screening a large number of polymorphic loci in small and closely related endangered populations and revealed the presence of genetically unique groups of individuals in both M. zahlbruckneri and P. stachyoides populations. Based on these findings

  6. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis.

    Directory of Open Access Journals (Sweden)

    Melissa D Conrad

    Full Text Available Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes.Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2 differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages.Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.

  7. Extensive genetic diversity, unique population structure and evidence of genetic exchange in the sexually transmitted parasite Trichomonas vaginalis.

    Science.gov (United States)

    Conrad, Melissa D; Gorman, Andrew W; Schillinger, Julia A; Fiori, Pier Luigi; Arroyo, Rossana; Malla, Nancy; Dubey, Mohan Lal; Gonzalez, Jorge; Blank, Susan; Secor, William E; Carlton, Jane M

    2012-01-01

    Trichomonas vaginalis is the causative agent of human trichomoniasis, the most common non-viral sexually transmitted infection world-wide. Despite its prevalence, little is known about the genetic diversity and population structure of this haploid parasite due to the lack of appropriate tools. The development of a panel of microsatellite makers and SNPs from mining the parasite's genome sequence has paved the way to a global analysis of the genetic structure of the pathogen and association with clinical phenotypes. Here we utilize a panel of T. vaginalis-specific genetic markers to genotype 235 isolates from Mexico, Chile, India, Australia, Papua New Guinea, Italy, Africa and the United States, including 19 clinical isolates recently collected from 270 women attending New York City sexually transmitted disease clinics. Using population genetic analysis, we show that T. vaginalis is a genetically diverse parasite with a unique population structure consisting of two types present in equal proportions world-wide. Parasites belonging to the two types (type 1 and type 2) differ significantly in the rate at which they harbor the T. vaginalis virus, a dsRNA virus implicated in parasite pathogenesis, and in their sensitivity to the widely-used drug, metronidazole. We also uncover evidence of genetic exchange, indicating a sexual life-cycle of the parasite despite an absence of morphologically-distinct sexual stages. Our study represents the first robust and comprehensive evaluation of global T. vaginalis genetic diversity and population structure. Our identification of a unique two-type structure, and the clinically relevant phenotypes associated with them, provides a new dimension for understanding T. vaginalis pathogenesis. In addition, our demonstration of the possibility of genetic exchange in the parasite has important implications for genetic research and control of the disease.

  8. Genetic structure of South African Nguni (Zulu) sheep populations reveals admixture with exotic breeds.

    Science.gov (United States)

    Selepe, Mokhethi Matthews; Ceccobelli, Simone; Lasagna, Emiliano; Kunene, Nokuthula Winfred

    2018-01-01

    The population of Zulu sheep is reported to have declined by 7.4% between 2007 and 2011 due to crossbreeding. There is insufficient information on the genetic diversity of the Zulu sheep populations in the different area of KwaZulu Natal where they are reared. The study investigated genetic variation and genetic structure within and among eight Zulu sheep populations using 26 microsatellite markers. In addition, Damara, Dorper and South African Merino breeds were included to assess the genetic relationship between these breeds and the Zulu sheep. The results showed that there is considerable genetic diversity among the Zulu sheep populations (expected heterozygosity ranging from 0.57 to 0.69) and the level of inbreeding was not remarkable. The structure analysis results revealed that Makhathini Research Station and UNIZULU research station share common genetic structure, while three populations (Nongoma, Ulundi and Nquthu) had some admixture with the exotic Dorper breed. Thus, there is a need for sustainable breeding and conservation programmes to control the gene flow, in order to stop possible genetic dilution of the Zulu sheep.

  9. Genetic structure of South African Nguni (Zulu sheep populations reveals admixture with exotic breeds.

    Directory of Open Access Journals (Sweden)

    Mokhethi Matthews Selepe

    Full Text Available The population of Zulu sheep is reported to have declined by 7.4% between 2007 and 2011 due to crossbreeding. There is insufficient information on the genetic diversity of the Zulu sheep populations in the different area of KwaZulu Natal where they are reared. The study investigated genetic variation and genetic structure within and among eight Zulu sheep populations using 26 microsatellite markers. In addition, Damara, Dorper and South African Merino breeds were included to assess the genetic relationship between these breeds and the Zulu sheep. The results showed that there is considerable genetic diversity among the Zulu sheep populations (expected heterozygosity ranging from 0.57 to 0.69 and the level of inbreeding was not remarkable. The structure analysis results revealed that Makhathini Research Station and UNIZULU research station share common genetic structure, while three populations (Nongoma, Ulundi and Nquthu had some admixture with the exotic Dorper breed. Thus, there is a need for sustainable breeding and conservation programmes to control the gene flow, in order to stop possible genetic dilution of the Zulu sheep.

  10. Study of inter species diversity and population structure by molecular genetic method in Iranian Artemia

    OpenAIRE

    Hajirostamloo, Mahbobeh

    2005-01-01

    Artemia is a small crustacean that adapted to live in brine water and has been seen in different brine water sources in Iran. Considering the importance of genetic studies manifest inter population differences in species, to estimate genetic structure, detect difference at molecular level and separate different Artemia populations of Iran, also study of phylogenic relationships among them, samples of Artemia were collected from nine region: Urmia lake in West Azerbaijan, Sh...

  11. Population genetic structure of savannah elephants in Kenya: conservation and management implications

    DEFF Research Database (Denmark)

    Okello, John B A; Masembe, Charles; Rasmussen, Henrik B

    2008-01-01

    We investigated population genetic structure and regional differentiation among African savannah elephants in Kenya using mitochondrial and microsatellite markers. We observed mitochondrial DNA (mtDNA) nucleotide diversity of 1.68% and microsatellite variation in terms of average number of allele...... through male-mediated gene flow. Our results depicting 3 broad regional mtDNA groups and the observed population genetic differentiation as well as connectivity patterns should be incorporated in the planning of future management activities such as translocations....

  12. Genetic structure of the threatened West-Pannonian population of Great Bustard (Otis tarda

    Directory of Open Access Journals (Sweden)

    Jose L. Horreo

    2016-03-01

    Full Text Available The genetic diversity, population structure and gene flow of the Great Bustards (Otis tarda living in Austria-Slovakia-West Hungary (West-Pannonian region, one of the few populations of this globally threatened species that survives across the Palaearctic, has been assessed for the first time in this study. Fourteen recently developed microsatellite loci identified one single population in the study area, with high values of genetic diversity and gene flow between two different genetic subunits. One of these subunits (Heideboden was recognized as a priority for conservation, as it could be crucial to maintain connectivity with the central Hungarian population and thus contribute to keeping contemporary genetic diversity. Current conservation efforts have been successful in saving this threatened population from extinction two decades ago, and should continue to guarantee its future survival.

  13. Genetic structure of populations of whale sharks among ocean basins and evidence for their historic rise and recent decline

    KAUST Repository

    Vignaud, Thomas M.; Maynard, Jeffrey Allen; Leblois, Raphaë l; Meekan, Mark G.; Vá zquez-Juá rez, Ricardo; Ramí rez-Mací as, Dení ; Pierce, Simon J.; Rowat, David; Berumen, Michael L.; Beeravolu, Champak R.; Baksay, Sandra; Planes, Serge

    2014-01-01

    This study presents genetic evidence that whale sharks, Rhincodon typus, are comprised of at least two populations that rarely mix and is the first to document a population expansion. Relatively high genetic structure is found when comparing sharks

  14. Population genetic structure of peninsular Malaysia Malay sub-ethnic groups.

    Science.gov (United States)

    Hatin, Wan Isa; Nur-Shafawati, Ab Rajab; Zahri, Mohd-Khairi; Xu, Shuhua; Jin, Li; Tan, Soon-Guan; Rizman-Idid, Mohammed; Zilfalil, Bin Alwi

    2011-04-05

    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia.

  15. Population Genetic Structure of Peninsular Malaysia Malay Sub-Ethnic Groups

    Science.gov (United States)

    Hatin, Wan Isa; Nur-Shafawati, Ab Rajab; Zahri, Mohd-Khairi; Xu, Shuhua; Jin, Li; Tan, Soon-Guan; Rizman-Idid, Mohammed; Zilfalil, Bin Alwi

    2011-01-01

    Patterns of modern human population structure are helpful in understanding the history of human migration and admixture. We conducted a study on genetic structure of the Malay population in Malaysia, using 54,794 genome-wide single nucleotide polymorphism genotype data generated in four Malay sub-ethnic groups in peninsular Malaysia (Melayu Kelantan, Melayu Minang, Melayu Jawa and Melayu Bugis). To the best of our knowledge this is the first study conducted on these four Malay sub-ethnic groups and the analysis of genotype data of these four groups were compiled together with 11 other populations' genotype data from Indonesia, China, India, Africa and indigenous populations in Peninsular Malaysia obtained from the Pan-Asian SNP database. The phylogeny of populations showed that all of the four Malay sub-ethnic groups are separated into at least three different clusters. The Melayu Jawa, Melayu Bugis and Melayu Minang have a very close genetic relationship with Indonesian populations indicating a common ancestral history, while the Melayu Kelantan formed a distinct group on the tree indicating that they are genetically different from the other Malay sub-ethnic groups. We have detected genetic structuring among the Malay populations and this could possibly be accounted for by their different historical origins. Our results provide information of the genetic differentiation between these populations and a valuable insight into the origins of the Malay sub-ethnic groups in Peninsular Malaysia. PMID:21483678

  16. Polygyny and strong genetic structuring within an isolated population of the wood ant Formica rufa

    Directory of Open Access Journals (Sweden)

    Wouter Dekoninck

    2014-12-01

    Full Text Available Social structuring of populations within some Formica species exhibits considerable variation going from monodomous and monogynous populations to polydomous, polygynous populations. The wood ant species Formica rufa appears to be mainly monodomous and monogynous throughout most of its distribution area in central and northern Europe. Only occasionally it was mentioned that F. rufa can have both polygynous and monogynous colonies in the same geographical region. We studied an isolated polydomous F. rufa population in a deciduous mixed forest in the north-west of Belgium. The level of polydomy within the colonies varied from monodomous to 11 nests per colony. Our genetic analysis of eight variable microsatellites suggest an oligo- to polygynous structure for at least the major part of the sampled nests. Relatedness amongst nest mate workers varies considerable within the population and colonies but confirms in general a polygynous structure. Additionally high genetic diversity (e.g. up to 8 out of 11 alleles per nest for the most variable locus and high within nest genetic variance (93% indicate that multiple queens contribute to the gene pool of workers of the same nest. Moreover significant genetic structuring among colonies indicates that gene flow between colonies is restricted and that exchange of workers between colonies is very limited. Finally we explain how possible factors as budding and the absence of Serviformica can explain the differences in genetic structure within this polygynous F. rufa population.

  17. Population genetic structure of coral reef species Plectorhinchus ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-06-03

    Jun 3, 2008 ... 1The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao. 266003 P. R. ... marginal sea of Western Pacific, which was an enclosed inland sea ... coral islands and reefs in South China Sea. There are ..... strong genetic divergence in Southeast Asia (Liu et al., 2006).

  18. Population genetic structure and gene flow of Forsythia suspensa ...

    African Journals Online (AJOL)

    Forsythia suspensa (Thunb.) Vahl, is a climbing plant belonging to Oleaceae, which is widely distributed in China, North and South Korea and Japan. In this study, the genetic diversity of F. suspensa was analyzed using two noncoding chloroplast DNA regions (trnL-F and psbA-trnH) and nuclear ribosomal internal ...

  19. Local Climate Heterogeneity Shapes Population Genetic Structure of Two Undifferentiated Insular Scutellaria Species.

    Science.gov (United States)

    Hsiung, Huan-Yi; Huang, Bing-Hong; Chang, Jui-Tse; Huang, Yao-Moan; Huang, Chih-Wei; Liao, Pei-Chun

    2017-01-01

    Spatial climate heterogeneity may not only affect adaptive gene frequencies but could also indirectly shape the genetic structure of neutral loci by impacting demographic dynamics. In this study, the effect of local climate on population genetic variation was tested in two phylogenetically close Scutellaria species in Taiwan. Scutellaria taipeiensis , which was originally assumed to be an endemic species of Taiwan Island, is shown to be part of the widespread species S. barbata based on the overlapping ranges of genetic variation and climatic niches as well as their morphological similarity. Rejection of the scenario of "early divergence with secondary contact" and the support for multiple origins of populations of S. taipeiensis from S. barbata provide strong evolutionary evidence for a taxonomic revision of the species combination. Further tests of a climatic effect on genetic variation were conducted. Regression analyses show nonlinear correlations among any pair of geographic, climatic, and genetic distances. However, significantly, the bioclimatic variables that represent the precipitation from late summer to early autumn explain roughly 13% of the genetic variation of our sampled populations. These results indicate that spatial differences of precipitation in the typhoon season may influence the regeneration rate and colonization rate of local populations. The periodic typhoon episodes explain the significant but nonlinear influence of climatic variables on population genetic differentiation. Although, the climatic difference does not lead to species divergence, the local climate variability indeed impacts the spatial genetic distribution at the population level.

  20. Analysis of genetic diversity and population structure among exotic ...

    African Journals Online (AJOL)

    The same clustering pattern was also found in the PCoA analysis. In all the geographical populations, genotypes from the same country were often in different clusters and likewise accessions from different countries often clustered together indicating the possibility of exchange of materials between countries. Population ...

  1. Genetic variation and population structure of willowy flounder ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-11-05

    Nov 5, 2008 ... based on morphological features, and a piece of muscle tissue was obtained from .... The value within Niigata population (0.9%) was the lowest among the .... Ibaraki population could also get direct recruitment of larvae from ...

  2. Geographic patterns of genetic variation and population structure in Pinus aristata, Rocky Mountain bristlecone pine

    Science.gov (United States)

    Anna W. Schoettle; Betsy A. Goodrich; Valerie Hipkins; Christopher Richards; Julie Kray

    2012-01-01

    Pinus aristata Engelm., Rocky Mountain bristlecone pine, has a narrow core geographic and elevational distribution, occurs in disjunct populations, and is threatened by rapid climate change, white pine blister rust, and bark beetles. Knowledge of genetic diversity and population structure will help guide gene conservation strategies for this species. Sixteen sites...

  3. Strong population genetic structure and larval dispersal capability of the burrowing ghost shrimp (Neotrypaea californiensis)

    Science.gov (United States)

    The burrowing ghost shrimp, Neotrypaea californiensis, is a vital member of the estuarine benthic community. Dense populations of shrimp are found in the major estuaries of Washington and Oregon. Our study determines the genetic structure of shrimp populations in order to gain ...

  4. Comparison of genetic population structure of the large blue butterflies Maculinea nausithous and M. teleius

    DEFF Research Database (Denmark)

    Figurny-Puchalska, Edyta; Gadeberg, Rebekka M.E.; Boomsma, Jacobus Jan

    2000-01-01

    We investigated the genetic population structure of two rare myrmecophilous lycaenid butterflies, Maculinea nausithous and M. teleius, which often live sympatrically and have similar biology. In Europe, both species occur in highly fragmented populations and are vulnerable to local extinction. Th...

  5. Genetic population structure accounts for contemporary ecogeographic patterns in tropic and subtropic-dwelling humans.

    Science.gov (United States)

    Hruschka, Daniel J; Hadley, Craig; Brewis, Alexandra A; Stojanowski, Christopher M

    2015-01-01

    Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28). However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74). Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.

  6. Genetic population structure accounts for contemporary ecogeographic patterns in tropic and subtropic-dwelling humans.

    Directory of Open Access Journals (Sweden)

    Daniel J Hruschka

    Full Text Available Contemporary human populations conform to ecogeographic predictions that animals will become more compact in cooler climates and less compact in warmer ones. However, it remains unclear to what extent this pattern reflects plastic responses to current environments or genetic differences among populations. Analyzing anthropometric surveys of 232,684 children and adults from across 80 ethnolinguistic groups in sub-Saharan Africa, Asia and the Americas, we confirm that body surface-to-volume correlates with contemporary temperature at magnitudes found in more latitudinally diverse samples (Adj. R2 = 0.14-0.28. However, far more variation in body surface-to-volume is attributable to genetic population structure (Adj. R2 = 0.50-0.74. Moreover, genetic population structure accounts for nearly all of the observed relationship between contemporary temperature and body surface-to-volume among children and adults. Indeed, after controlling for population structure, contemporary temperature accounts for no more than 4% of the variance in body form in these groups. This effect of genetic affinity on body form is also independent of other ecological variables, such as dominant mode of subsistence and household wealth per capita. These findings suggest that the observed fit of human body surface-to-volume with current climate in this sample reflects relatively large effects of existing genetic population structure of contemporary humans compared to plastic response to current environments.

  7. Genetic structure of populations of Mugil cephalus using RAPD ...

    African Journals Online (AJOL)

    Dr.Suresh

    2013-10-30

    , Andhra Pradesh and. Tamil Nadu in India was studied using randomly amplified polymorphic DNA (RAPD) markers. Five selective primers provided distinct and consistent RAPD profiles in all the four populations. The bands.

  8. Structure and genetic diversity of natural Brazilian pepper populations (Schinus terebinthifolius Raddi).

    Science.gov (United States)

    Álvares-Carvalho, S V; Duarte, J F; Santos, T C; Santos, R M; Silva-Mann, R; Carvalho, D

    2016-06-17

    In the face of a possible loss of genetic diversity in plants due the environmental changes, actions to ensure the genetic variability are an urgent necessity. The extraction of Brazilian pepper fruits is a cause of concern because it results in the lack of seeds in soil, hindering its distribution in space and time. It is important to address this concern and explore the species, used by riparian communities and agro-factories without considering the need for keeping the seeds for natural seed banks and for species sustainability. The objective of this study was to evaluate the structure and the genetic diversity in natural Brazilian pepper populations (Schinus terebinthifolius Raddi). Twenty-two alleles in 223 individuals were identified from eight forest remnants located in the states of Minas Gerais, Espírito Santo, and Sergipe. All populations presented loci in Hardy-Weinberg equilibrium deviation. Four populations presented six combinations of loci in linkage disequilibrium. Six exclusive alleles were detected in four populations. Analysis of molecular variance showed the absence of diversity between regions and that between the populations (GST) was 41%. Genetic diversity was structured in seven clusters (ΔK7). Brazilian pepper populations were not structured in a pattern of isolation by distance and present genetic bottleneck. The populations São Mateus, Canastra, Barbacena, and Ilha das Flores were identified as management units and may support conservation projects, ecological restoration and in implementation of management plans for Brazilian pepper in the State of Sergipe.

  9. Into the depth of population genetics: pattern of structuring in mesophotic red coral populations

    Science.gov (United States)

    Costantini, Federica; Abbiati, Marco

    2016-03-01

    Deep-sea reef-building corals are among the most conspicuous invertebrates inhabiting the hard-bottom habitats worldwide and are particularly susceptible to human threats. The precious red coral ( Corallium rubrum, L. 1758) has a wide bathymetric distribution, from shallow up to 800 m depth, and represents a key species in the Mediterranean mesophotic reefs. Several studies have investigated genetic variability in shallow-water red coral populations, while geographic patterns in mesophotic habitats are largely unknown. This study investigated genetic variability of C. rubrum populations dwelling between 55 and 120 m depth, from the Ligurian to the Ionian Sea along about 1500 km of coastline. A total of 18 deep rocky banks were sampled. Colonies were analyzed by means of a set of microsatellite loci and the putative control region of the mitochondrial DNA. Collected data were compared with previous studies. Both types of molecular markers showed high genetic similarity between populations within the northern (Ligurian Sea and Tuscan Archipelago) and the southern (Tyrrhenian and Ionian seas) study areas. Variability in habitat features between the sampling sites did not affect the genetic variability of the populations. Conversely, the patchy distribution of suitable habitats affected populations' connectivity within and among deep coral banks. Based on these results and due to the emphasis on red coral protection in the Mediterranean Sea by international institutions, red coral could be promoted as a `focal species' to develop management plans for the conservation of deep coralligenous reefs, a reservoir of marine biodiversity.

  10. Genetic structure, divergence and admixture of Han Chinese, Japanese and Korean populations.

    Science.gov (United States)

    Wang, Yuchen; Lu, Dongsheng; Chung, Yeun-Jun; Xu, Shuhua

    2018-01-01

    Han Chinese, Japanese and Korean, the three major ethnic groups of East Asia, share many similarities in appearance, language and culture etc., but their genetic relationships, divergence times and subsequent genetic exchanges have not been well studied. We conducted a genome-wide study and evaluated the population structure of 182 Han Chinese, 90 Japanese and 100 Korean individuals, together with the data of 630 individuals representing 8 populations wordwide. Our analyses revealed that Han Chinese, Japanese and Korean populations have distinct genetic makeup and can be well distinguished based on either the genome wide data or a panel of ancestry informative markers (AIMs). Their genetic structure corresponds well to their geographical distributions, indicating geographical isolation played a critical role in driving population differentiation in East Asia. The most recent common ancestor of the three populations was dated back to 3000 ~ 3600 years ago. Our analyses also revealed substantial admixture within the three populations which occurred subsequent to initial splits, and distinct gene introgression from surrounding populations, of which northern ancestral component is dominant. These estimations and findings facilitate to understanding population history and mechanism of human genetic diversity in East Asia, and have implications for both evolutionary and medical studies.

  11. Spatial genetic structure in continuous and fragmented populations of Pinus pinaster Aiton.

    Science.gov (United States)

    De-Lucas, A I; González-Martínez, S C; Vendramin, G G; Hidalgo, E; Heuertz, M

    2009-11-01

    Habitat fragmentation, i.e., the reduction of populations into small isolated remnants, is expected to increase spatial genetic structure (SGS) in plant populations through nonrandom mating, lower population densities and potential aggregation of reproductive individuals. We investigated the effects of population size reduction and genetic isolation on SGS in maritime pine (Pinus pinaster Aiton) using a combined experimental and simulation approach. Maritime pine is a wind-pollinated conifer which has a scattered distribution in the Iberian Peninsula as a result of forest fires and habitat fragmentation. Five highly polymorphic nuclear microsatellites were genotyped in a total of 394 individuals from two population pairs from the Iberian Peninsula, formed by one continuous and one fragmented population each. In agreement with predictions, SGS was significant and stronger in fragments (Sp = 0.020 and Sp = 0.026) than in continuous populations, where significant SGS was detected for one population only (Sp = 0.010). Simulations suggested that under fat-tailed dispersal, small population size is a stronger determinant of SGS than genetic isolation, while under normal dispersal, genetic isolation has a stronger effect. SGS was always stronger in real populations than in simulations, except if unrealistically narrow dispersal and/or high variance of reproductive success were modelled (even when accounting for potential overestimation of SGS in real populations as a result of short-distance sampling). This suggests that factors such as nonrandom mating or selection not considered in the simulations were additionally operating on SGS in Iberian maritime pine populations.

  12. Population genetic structure and demographic history of Atrina pectinata based on mitochondrial DNA and microsatellite markers.

    Directory of Open Access Journals (Sweden)

    Dong-Xiu Xue

    Full Text Available The pen shell, Atrina pectinata, is one of the commercial bivalves in East Asia and thought to be recently affected by anthropogenic pressure (habitat destruction and/or fishing pressure. Information on its population genetic structure is crucial for the conservation of A. pectinata. Considering its long pelagic larval duration and iteroparity with high fecundity, the genetic structure for A. pectinata could be expected to be weak at a fine scale. However, the unusual oceanography in the coasts of China and Korea suggests potential for restricted dispersal of pelagic larvae and geographical differentiation. In addition, environmental changes associated with Pleistocene sea level fluctuations on the East China Sea continental shelf may also have strongly influenced historical population demography and genetic diversity of marine organisms. Here, partial sequences of the mitochondrial Cytochrome c oxidase subunit I (COI gene and seven microsatellite loci were used to estimate population genetic structure and demographic history of seven samples from Northern China coast and one sample from North Korea coast. Despite high levels of genetic diversity within samples, there was no genetic differentiation among samples from Northern China coast and low but significant genetic differentiation between some of the Chinese samples and the North Korean sample. A late Pleistocene population expansion, probably after the Last Glacial Maximum, was also demonstrated for A. pectinata samples. No recent genetic bottleneck was detected in any of the eight samples. We concluded that both historical recolonization (through population range expansion and demographic expansion in the late Pleistocene and current gene flow (through larval dispersal were responsible for the weak level of genetic structure detected in A. pectinata.

  13. Genetic diversity and population structure of 10 Chinese indigenous ...

    Indian Academy of Sciences (India)

    This program uses a Monte Carlo Markov chain. (MCMC) algorithm to ... tal population, measured as FST value, for the 29 loci var- ied from 0.002 (SMO11) to .... linked to loci affecting morphological, productive or adap- tive traits of selective ...

  14. Spatial genetic structure within populations and management implications of the South American species Acacia aroma (Fabaceae).

    Science.gov (United States)

    Pometti, Carolina; Bessega, Cecilia; Cialdella, Ana; Ewens, Mauricio; Saidman, Beatriz; Vilardi, Juan

    2018-01-01

    The identification of factors that structure intraspecific diversity is of particular interest for biological conservation and restoration ecology. All rangelands in Argentina are currently experiencing some form of deterioration or desertification. Acacia aroma is a multipurpose species widely distributed throughout this country. In this study, we used the AFLP technique to study genetic diversity, population genetic structure, and fine-scale spatial genetic structure in 170 individuals belonging to 6 natural Argentinean populations. With 401 loci, the mean heterozygosity (HE = 0.2) and the mean percentage of polymorphic loci (PPL = 62.1%) coefficients indicated that the genetic variation is relatively high in A. aroma. The analysis with STRUCTURE showed that the number of clusters (K) was 3. With Geneland analysis, the number of clusters was K = 4, sharing the same grouping as STRUCTURE but dividing one population into two groups. When studying SGS, significant structure was detected in 3 of 6 populations. The neighbourhood size in these populations ranged from 15.2 to 64.3 individuals. The estimated gene dispersal distance depended on the effective population density and disturbance level and ranged from 45 to 864 m. The combined results suggest that a sampling strategy, which aims to maintain a considerable part of the variability contained in natural populations sampled here, would include at least 3 units defined by the clusters analyses that exhibit particular genetic properties. Moreover, the current SGS analysis suggests that within the wider management units/provinces, seed collection from A. aroma should target trees separated by a minimum distance of 50 m but preferably 150 m to reduce genetic relatedness among seeds from different trees.

  15. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy

    DEFF Research Database (Denmark)

    Maggioni, Lorenzo; von Bothmer, Roland; Poulsen, Gert

    2014-01-01

    Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population...... structure of ten wild and 22 cultivated populations, as well as of a hybrid population and of four commercial cultivars of different B. oleracea crops. The level of genetic diversity was higher in leafy kales than in wild populations and this diversity was mainly distributed within populations. Wild...... populations remained distinct from cultivated material. Additionally, most wild populations were distinctively isolated from each other. On the other hand, it was not possible to molecularly distinguish even geographically distant leafy kale populations from each other or from different B. oleracea crops...

  16. Estimation of genetic structure of a Mycosphaerella musicola population using inter-simple sequence repeat markers.

    Science.gov (United States)

    Peixouto, Y S; Dórea Bragança, C A; Andrade, W B; Ferreira, C F; Haddad, F; Oliveira, S A S; Darosci Brito, F S; Miller, R N G; Amorim, E P

    2015-07-17

    Among the diseases affecting banana (Musa sp), yellow Sigatoka, caused by the fungal pathogen Mycosphaerella musicola Leach, is considered one of the most important in Brazil, causing losses throughout the year. Understanding the genetic structure of pathogen populations will provide insight into the life history of pathogens, including the evolutionary processes occurring in agrosystems. Tools for estimating the possible emergence of pathogen variants with altered pathogenicity, virulence, or aggressiveness, as well as resistance to systemic fungicides, can also be developed from such data. The objective of this study was to analyze the genetic diversity and population genetics of M. musicola in the main banana-producing regions in Brazil. A total of 83 isolates collected from different banana cultivars in the Brazilian states of Bahia, Rio Grande do Norte, and Minas Gerais were evaluated using inter-simple sequence repeat markers. High variability was detected between the isolates, and 85.5% of the haplotypes were singletons in the populations. The highest source of genetic diversity (97.22%) was attributed to variations within populations. Bayesian cluster analysis revealed the presence of 2 probable ancestral groups, however, showed no relationship to population structure in terms of collection site, state of origin, or cultivar. Similarly, we detected noevidence of genetic recombination between individuals within different states, indicating that asexual cycles play a major role in M. musicola reproduction and that long-distance dispersal of the pathogen is the main factor contributing to the lack of population structure in the fungus.

  17. Spatial genetic structure and mitochondrial DNA phylogeography of Argentinean populations of the grasshopper Dichroplus elongatus.

    Directory of Open Access Journals (Sweden)

    Natalia Rosetti

    Full Text Available Many grasshopper species are considered of agronomical importance because they cause damage to pastures and crops. Comprehension of pest population dynamics requires a clear understanding of the genetic diversity and spatial structure of populations. In this study we report on patterns of genetic variation in the South American grasshopper Dichroplus elongatus which is an agricultural pest of crops and forage grasses of great economic significance in Argentina. We use Direct Amplification of Minisatellite Regions (DAMD and partial sequences of the cytochrome oxydase 1 (COI mitochondrial gene to investigate intraspecific structure, demographic history and gene flow patterns in twenty Argentinean populations of this species belonging to different geographic and biogeographic regions. DAMD data suggest that, although genetic drift and migration occur within and between populations, measurable relatedness among neighbouring populations declines with distance and dispersal over distances greater than 200 km is not typical, whereas effective gene flow may occur for populations separated by less than 100 km. Landscape analysis was useful to detect genetic discontinuities associated with environmental heterogeneity reflecting the changing agroecosystem. The COI results indicate the existence of strong genetic differentiation between two groups of populations located at both margins of the Paraná River which became separated during climate oscillations of the Middle Pleistocene, suggesting a significant restriction in effective dispersion mediated by females and large scale geographic differentiation. The number of migrants between populations estimated through mitochondrial and DAMD markers suggest that gene flow is low prompting a non-homogeneous spatial structure and justifying the variation through space. Moreover, the genetic analysis of both markers allows us to conclude that males appear to disperse more than females, reducing the chance of the

  18. Genomic patterns in Acropora cervicornis show extensive population structure and variable genetic diversity.

    Science.gov (United States)

    Drury, Crawford; Schopmeyer, Stephanie; Goergen, Elizabeth; Bartels, Erich; Nedimyer, Ken; Johnson, Meaghan; Maxwell, Kerry; Galvan, Victor; Manfrino, Carrie; Lirman, Diego

    2017-08-01

    Threatened Caribbean coral communities can benefit from high-resolution genetic data used to inform management and conservation action. We use Genotyping by Sequencing (GBS) to investigate genetic patterns in the threatened coral, Acropora cervicornis , across the Florida Reef Tract (FRT) and the western Caribbean. Results show extensive population structure at regional scales and resolve previously unknown structure within the FRT. Different regions also exhibit up to threefold differences in genetic diversity (He), suggesting targeted management based on the goals and resources of each population is needed. Patterns of genetic diversity have a strong spatial component, and our results show Broward and the Lower Keys are among the most diverse populations in Florida. The genetic diversity of Caribbean staghorn coral is concentrated within populations and within individual reefs (AMOVA), highlighting the complex mosaic of population structure. This variance structure is similar over regional and local scales, which suggests that in situ nurseries are adequately capturing natural patterns of diversity, representing a resource that can replicate the average diversity of wild assemblages, serving to increase intraspecific diversity and potentially leading to improved biodiversity and ecosystem function. Results presented here can be translated into specific goals for the recovery of A. cervicornis , including active focus on low diversity areas, protection of high diversity and connectivity, and practical thresholds for responsible restoration.

  19. The genetic diversity and population structure of common bean ...

    African Journals Online (AJOL)

    SAM

    2014-07-16

    Jul 16, 2014 ... polymorphic molecular markers for use in hybridization and variety development. Genomic ... The model-based cluster analysis of SSR diversity in the ...... clusters of individuals using the software STRUCTURE: A simulation.

  20. [Genetic structure, subdivision, and population differentiation in Stankewiczii pine Pinus stankewiczii (Sukacz.) Fomin from Mountain Crimea].

    Science.gov (United States)

    Korshikov, I I; Gorlova, E M

    2006-06-01

    In order to analyze the genetic structure, subdivision and differentiation within and between two small isolated populations of the Crimea relict endemic, Pinus stankewiczii (Sukacz.) Fomin, electrophoretic analysis of the isozyme variation at nine enzymatic systems was carried out using 183 oldest trees. It was demonstrated that in populations of P. stankewiczii, 80% of the genes were in polymorphic state. Each tree was heterozygous at 19.1% loci, and at 21.6% loci in artificial 50-year-old plantation. The genetic structure of two populations was less differentiated (DN = 0.006), compared to their individual localities (DN = 0.008-0.009). Within-population subdivision of the diffusely dispersed populations was higher (FST-GST = 1.8-2.0%) than that of the populations themselves (0.8%).

  1. Diversity and population structure of a dominant deciduous tree based on morphological and genetic data

    Science.gov (United States)

    Zhang, Qin-di; Jia, Rui-Zhi; Meng, Chao; Ti, Chao-Wen; Wang, Yi-Ling

    2015-01-01

    Knowledge of the genetic diversity and structure of tree species across their geographic ranges is essential for sustainable use and management of forest ecosystems. Acer grosseri Pax., an economically and ecologically important maple species, is mainly distributed in North China. In this study, the genetic diversity and population differentiation of 24 natural populations of this species were evaluated using sequence-related amplified polymorphism markers and morphological characters. The results show that highly significant differences occurred in 32 morphological traits. The coefficient of variation of 34 characters was 18.19 %. Principal component analysis indicated that 18 of 34 traits explained 60.20 % of the total variance. The phenotypic differentiation coefficient (VST) was 36.06 % for all morphological traits. The Shannon–Wiener index of 34 morphological characters was 6.09, while at the population level, it was 1.77. The percentage of polymorphic bands of all studied A. grosseri populations was 82.14 %. Nei's gene diversity (He) and Shannon's information index (I) were 0.35 and 0.50, respectively. Less genetic differentiation was detected among the natural populations (GST = 0.20, ΦST = 0.10). Twenty-four populations of A. grosseri formed two main clusters, which is consistent with morphological cluster analysis. Principal coordinates analysis and STRUCTURE analysis supported the UPGMA-cluster dendrogram. There was no significant correlation between genetic and geographical distances among populations. Both molecular and morphological data suggested that A. grosseri is rich in genetic diversity. The high level of genetic variation within populations could be affected by the biological characters, mating system and lifespan of A. grosseri, whereas the lower genetic diversity among populations could be caused by effective gene exchange, selective pressure from environmental heterogeneity and the species' geographical range. PMID:26311734

  2. Microsatellite markers to determine population genetic structure in the golden anchovy, Coilia dussumieri.

    Science.gov (United States)

    Kathirvelpandian, A; Gopalakrishnan, A; Lakra, W S; Krishna, Gopal; Sharma, Rupam; Musammilu, K K; Basheer, V S; Jena, J K

    2014-06-01

    Coilia dussumieri (Valenciennes, 1848) commonly called as golden anchovy, constitutes a considerable fishery in the northern part of both the west and east coasts of India. Despite its clear-cut geographic isolation, the species is treated as a unit stock for fishery management purposes. We evaluated 32 microsatellite primer pairs from three closely related species (resource species) belonging to the family Engraulidae through cross-species amplification in C. dussumieri. Successful cross-priming was obtained with 10 loci, which were sequenced for confirmation of repeats. Loci were tested for delineating the genetic stock structure of four populations of C. dussumieri from both the coasts of India. The number of alleles per locus ranged from 8 to 18, with a mean of 12.3. Results of pairwise F ST indicated genetic stock structuring between the east and west coast populations of India and also validated the utilization of identified microsatellite markers in population genetic structure analysis.

  3. Genetic Structure and Gene Flows within Horses: A Genealogical Study at the French Population Scale

    OpenAIRE

    Pirault, Pauline; Danvy, Sophy; Verrier, Etienne; Leroy, Gr?goire

    2013-01-01

    Since horse breeds constitute populations submitted to variable and multiple outcrossing events, we analyzed the genetic structure and gene flows considering horses raised in France. We used genealogical data, with a reference population of 547,620 horses born in France between 2002 and 2011, grouped according to 55 breed origins. On average, individuals had 6.3 equivalent generations known. Considering different population levels, fixation index decreased from an overall species FIT of 1.37%...

  4. Genetic Diversity and Population Structure in Native Chicken Populations from Myanmar, Thailand and Laos by Using 102 Indels Markers

    Directory of Open Access Journals (Sweden)

    A. A. Maw

    2015-01-01

    Full Text Available The genetic diversity of native chicken populations from Myanmar, Thailand, and Laos was examined by using 102 insertion and/or deletion (indels markers. Most of the indels loci were polymorphic (71% to 96%, and the genetic variability was similar in all populations. The average observed heterozygosities (HO and expected heterozygosities (HE ranged from 0.205 to 0.263 and 0.239 to 0.381, respectively. The coefficients of genetic differentiation (Gst for all cumulated populations was 0.125, and the Thai native chickens showed higher Gst (0.088 than Myanmar (0.041 and Laotian (0.024 populations. The pairwise Fst distances ranged from 0.144 to 0.308 among populations. A neighbor-joining (NJ tree, using Nei’s genetic distance, revealed that Thai and Laotian native chicken populations were genetically close, while Myanmar native chickens were distant from the others. The native chickens from these three countries were thought to be descended from three different origins (K = 3 from STRUCTURE analysis. Genetic admixture was observed in Thai and Laotian native chickens, while admixture was absent in Myanmar native chickens.

  5. The genetic diversity and population structure of common bean ...

    African Journals Online (AJOL)

    The STRUCTURE result was confirmed by Principal Coordinate analysis (PCoA) which also clustered beans in three groups. Most Andean genotypes were included in K3.1 and Mesoamerican genotypes belonged to the K3.2 and K3.3 subgroups. This study sets the stage for further analyses for agronomic traits such as ...

  6. Microsatellite based genetic structure of regional transboundary Istrian sheep breed populations in Croatia and Slovenia

    Directory of Open Access Journals (Sweden)

    Beatriz Gutierrez-Gil

    2015-02-01

    Full Text Available Istrian dairy sheep is a local breed essential for the identity and development of the Northern- Adriatic karstic region through high-quality products, primarily the hard sheep artisanal cheese. Border changes fragmented the initial Istrian dairy sheep population in three genetically isolated sub-populations in Italy (1000 animals, Slovenia (1150 animals and Croatia (2500 animals. Due to the drastic reduction of their population sizes and fragmentation, the populations in Croatia and Slovenia are included in governmentally supported conservation programs. The initial subpopulation in Italy was restored after near extinction with stock from Slovenia, and is used today in meat production. The aim of this study was to provide an initial understanding of the current genetic structure and distribution of the genetic variability that exists in Istrian sheep by analysing individuals sampled in two regional groups of Istrian sheep from Croatia and Slovenia. Cres island sheep and Lika pramenka sheep were used as out-groups for comparison. Genetic differentiation was analysed using factorial correspondence analysis and structure clustering over 26 microsatellite loci for a total of 104 sheep belonging to three breeds from Croatia and Slovenia. Factorial correspondence analysis and clustering-based structure analysis both showed three distinct populations: Lika pramenka sheep, Cres island sheep and Istrian sheep. We did not find a marked genetic divergence of the regional groups of Istrian sheep. Istrian sheep regional group from Slovenia showed lower genetic variability compared to the one from Croatia. Variability and structure information obtained in this study considered alongside with socio-cultural-contexts and economic goals for the Istrian sheep reared in Croatia and Slovenia indicate that the cross-border exchange of genetic material of animals carrying private alleles among populations would maintain these alleles at low frequencies and minimize

  7. Characterization of Population Genetic Structure of red swamp crayfish, Procambarus clarkii, in China.

    Science.gov (United States)

    Yi, Shaokui; Li, Yanhe; Shi, Linlin; Zhang, Long; Li, Qingbin; Chen, Jing

    2018-04-03

    The red swamp crayfish (Procambarus clarkii) is one of the most economically important farmed aquatic species in China. However, it is also a famous invasive species in the world. This invasive species was dispersed most via human activities including intentional or unintentional carry in China. Thus, P. clarkii naturally distributed in China provides us a desirable mode to investigate the genetic structure of an invasive species dispersed mainly by human-mediated factors. To reveal the impact of human-mediated dispersal on genetic structure of P. clarkii in China, a total of 22,043 genome-wide SNPs were obtained from approximately 7.4 billion raw reads using 2b-RAD technique in this study. An evident pattern of population genetic structure and the asymmetrical migrational rates between different regions were observed with 22 populations based on these SNPs. This study provide a better understanding of the population genetic structure and demographic history of P. clarkii populations in China, inferring that anthropogenic factors (aquaculture or by accident) and ecological factors (e.g., complicated topography and climatic environment), as well as its special biological traits could account for the current population structure pattern and dispersal history of P. clarkii.

  8. The role of river drainages in shaping the genetic structure of capybara populations.

    Science.gov (United States)

    Byrne, María Soledad; Quintana, Rubén Darío; Bolkovic, María Luisa; Cassini, Marcelo H; Túnez, Juan Ignacio

    2015-12-01

    The capybara, Hydrochoerus hydrochaeris, is an herbivorous rodent widely distributed throughout most of South American wetlands that lives closely associated with aquatic environments. In this work, we studied the genetic structure of the capybara throughout part of its geographic range in Argentina using a DNA fragment of the mitochondrial control region. Haplotypes obtained were compared with those available for populations from Paraguay and Venezuela. We found 22 haplotypes in 303 individuals. Hierarchical AMOVAs were performed to evaluate the role of river drainages in shaping the genetic structure of capybara populations at the regional and basin scales. In addition, two landscape genetic models, isolation by distance and isolation by resistance, were used to test whether genetic distance was associated with Euclidean distance (i.e. isolation by distance) or river corridor distance (i.e. isolation by resistance) at the basin scale. At the regional scale, the results of the AMOVA grouping populations by mayor river basins showed significant differences between them. At the basin scale, we also found significant differences between sub-basins in Paraguay, together with a significant correlation between genetic and river corridor distance. For Argentina and Venezuela, results were not significant. These results suggest that in Paraguay, the current genetic structure of capybaras is associated with the lack of dispersion corridors through permanent rivers. In contrast, limited structuring in Argentina and Venezuela is likely the result of periodic flooding facilitating dispersion.

  9. Genetic structure and diversity of three Colombian southwest afrodescendent populations using 8 STR's

    International Nuclear Information System (INIS)

    Guauque Olarte, Sandra; Fuentes Pardo, Angela Patricia; Cardenas Henao, Heiber; Barreto, Guillermo

    2010-01-01

    To estimate the diversity, structure and genetic flow in three Colombian southwest afrodescendent populations (Buenaventura, Mulalo y Tumaco), the alleles revealed by 8 autosomal STR's were analyzed in 78 no-related individuals, by the use of PCR and comparison with specific allelic ladders for every system resolved by polyacrylamide gel (8%). the results were compared with 2 Amerindian populations (Awa-Kuaikier and Coyaima) and 2 mixed Colombian populations (Valle del Cauca and Cauca). For the afrodescendent and Amerindian populations was found moderate diversity (h between 0.768±0.414 and 0.796±0.424), in contrast, the mixed population showed higher rates (>0.803), which is probably caused by mixing with Amerindians, that also can explain the high endogamy seen in mixed populations. The AMOVA exhibited moderate genetic structure between the afrodescendent populations (FST= 0.098; p<0.05), but higher between the three ethnical groups compared (FST=0.26723; p<0.05). The closer genetics distances are in favor of Tumaco and Buenaventura, supported for the migration rate found (34.298), which was the same inside of Amerindian and mixed populations. Maybe, because Mulalo is a closed isolated population, its differences in front others afrodescendent populations are explained. The neighbor-joining tree showed nearest relations among Amerindian and mixed populations, furthermore, the ancestral character for the afrodescendents. That sustains the idea of genetic flow maintained between the 3 ethnical groups, principally between Amerindian and mixed populations, supported because the genetic differences, migration rates and Amerindian matrilineality reported in the literature

  10. Population genetic structure of the point-head flounder, Cleisthenes herzensteini, in the Northwestern Pacific.

    Science.gov (United States)

    Xiao, Yongshuang; Zhang, Yan; Yanagimoto, Takashi; Li, Jun; Xiao, Zhizhong; Gao, Tianxiang; Xu, Shihong; Ma, Daoyuan

    2011-02-01

    Intraspecific phylogenies can provide useful insights into how populations have been shaped by historical and contemporary processes. To determine the population genetic structure and the demographic and colonization history of Cleisthenes herzensteini in the Northwestern Pacific, one hundred and twenty-one individuals were sampled from six localities along the coastal regions of Japan and the Yellow Sea of China. Mitochondrial DNA variation was analyzed using DNA sequence data from the 5' end of control region. High levels of haplotype diversity (>0.96) were found for all populations, indicating a high level of genetic diversity. No pattern of isolation by distance was detected among the population differentiation throughout the examined range. Analyses of molecular variance (AMOVA) and the conventional population statistic Fst revealed no significant population genetic structure among populations. According to the exact test of differentiation among populations, the null hypothesis that C. herzensteini within the examined range constituted a non-differential mtDNA gene pool was accepted. The demographic history of C. herzensteini was examined using neutrality test and mismatch distribution analyses and results indicated Pleistocene population expansion (about 94-376 kya) in the species, which was consistent with the inference result of nested clade phylogeographical analysis (NCPA) showing contiguous range expansion for C. herzensteini. The lack of phylogeographical structure for the species may reflect a recent range expansion after the glacial maximum and insufficient time to attain migration-drift equilibrium.

  11. Population genetic structure of Monimopetalum chinense (Celastraceae), an endangered endemic species of eastern China.

    Science.gov (United States)

    Xie, Guo-Wen; Wang, De-Lian; Yuan, Yong-Ming; Ge, Xue-Jun

    2005-04-01

    Monimopetalum chinense (Celastraceae) standing for the monotypic genus is endemic to eastern China. Its conservation status is vulnerable as most populations are small and isolated. Monimopetalum chinense is capable of reproducing both sexually and asexually. The aim of this study was to understand the genetic structure of M. chinense and to suggest conservation strategies. One hundred and ninety individuals from ten populations sampled from the entire distribution area of M. chinense were investigated by using inter-simple sequence repeats (ISSR). A total of 110 different ISSR bands were generated using ten primers. Low levels of genetic variation were revealed both at the species level (Isp=0.183) and at the population level (Ipop=0.083). High clonal diversity (D = 0.997) was found, and strong genetic differentiation among populations was detected (49.06 %). Small population size, possible inbreeding, limited gene flow due to short distances of seed dispersal, fragmentation of the once continuous range and subsequent genetic drift, may have contributed to shaping the population genetic structure of the species.

  12. Genetic differentiation and population structure of five ethnic groups of Punjab (North-West India).

    Science.gov (United States)

    Singh, Gagandeep; Talwar, Indu; Sharma, Rubina; Matharoo, Kawaljit; Bhanwer, A J S

    2016-12-01

    The state of Punjab in the North-West part of India has acted as the main passage for all the major human invasions into the Indian subcontinent. It has resulted in the mixing of foreign gene pool into the local populations, which led to an extensive range of genetic diversity and has influenced the genetic structure of populations in Punjab, North-West India. The present study was conducted to examine the genetic structure, relationships, and extent of genetic differentiation in five Indo-European speaking ethnic groups of Punjab. A total of 1021 unrelated samples belonging to Banias, Brahmins, Jat Sikhs, Khatris, and Scheduled castes were analyzed for four human-specific Ins/Del polymorphic loci (ACE, APO, PLAT, and D1) and three restriction fragment length polymorphisms ESR (PvuII), LPL (PvuII), and T2 (MspI) using Polymerase chain reaction (PCR). All the loci were found to be polymorphic among the studied populations. The frequency of the Alu insertion at APO locus was observed to exhibit the highest value (82.6-96.3 %), whereas D1 exhibited the lowest (26.5-45.6 %) among all the ethnic groups. The average heterozygosity among the studied populations ranged from 0.3816 in Banias to 0.4163 in Khatris. The F ST values ranged from 0.0418 to 0.0033 for the PLAT and LPL loci, respectively, with an average value being 0.0166. Phylogenetic analysis revealed that Banias and Khatris are genetically closest to each other. The Jat Sikhs are genetically close to Brahmins and are distant from the Banias. The Jat Sikhs, Banias, Brahmins, and Khatris are genetically very distant from the Scheduled castes. Overall, Uniform allele frequency distribution patterns, high average heterozygosity values, and a small degree of genetic differentiation in this study suggest a genetic proximity among the selected populations. A low level of genetic differentiation was observed in the studied population groups indicating that genetic drift might have been small or negligible in shaping

  13. Dietary differentiation and the evolution of population genetic structure in a highly mobile carnivore.

    Directory of Open Access Journals (Sweden)

    Małgorzata Pilot

    Full Text Available Recent studies on highly mobile carnivores revealed cryptic population genetic structures correlated to transitions in habitat types and prey species composition. This led to the hypothesis that natal-habitat-biased dispersal may be responsible for generating population genetic structure. However, direct evidence for the concordant ecological and genetic differentiation between populations of highly mobile mammals is rare. To address this we analyzed stable isotope profiles (δ(13C and δ(15N values for Eastern European wolves (Canis lupus as a quantifiable proxy measure of diet for individuals that had been genotyped in an earlier study (showing cryptic genetic structure, to provide a quantitative assessment of the relationship between individual foraging behavior and genotype. We found a significant correlation between genetic distances and dietary differentiation (explaining 46% of the variation in both the marginal test and crucially, when geographic distance was accounted for as a co-variable. These results, interpreted in the context of other possible mechanisms such as allopatry and isolation by distance, reinforce earlier studies suggesting that diet and associated habitat choice are influencing the structuring of populations in highly mobile carnivores.

  14. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya.

    Science.gov (United States)

    Ingasia, Luicer A; Cheruiyot, Jelagat; Okoth, Sheila Akinyi; Andagalu, Ben; Kamau, Edwin

    2016-04-01

    Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; pKenya after introduction of the artemether-lumefantrine is important in refining the spread of drug resistant strains and malaria transmission for more effective control and eventual elimination of malaria in Kenya. Copyright © 2015. Published by Elsevier B.V.

  15. Hierarchical spatial genetic structure in a distinct population segment of greater sage-grouse

    Science.gov (United States)

    Oyler-McCance, Sara J.; Casazza, Michael L.; Fike, Jennifer A.; Coates, Peter S.

    2014-01-01

    Greater sage-grouse (Centrocercus urophasianus) within the Bi-State Management Zone (area along the border between Nevada and California) are geographically isolated on the southwestern edge of the species’ range. Previous research demonstrated that this population is genetically unique, with a high proportion of unique mitochondrial DNA (mtDNA) haplotypes and with significant differences in microsatellite allele frequencies compared to populations across the species’ range. As a result, this population was considered a distinct population segment (DPS) and was recently proposed for listing as threatened under the U.S. Endangered Species Act. A more comprehensive understanding of the boundaries of this genetically unique population (where the Bi-State population begins) and an examination of genetic structure within the Bi-State is needed to help guide effective management decisions. We collected DNA from eight sampling locales within the Bi-State (N = 181) and compared those samples to previously collected DNA from the two most proximal populations outside of the Bi-State DPS, generating mtDNA sequence data and amplifying 15 nuclear microsatellites. Both mtDNA and microsatellite analyses support the idea that the Bi-State DPS represents a genetically unique population, which has likely been separated for thousands of years. Seven mtDNA haplotypes were found exclusively in the Bi-State population and represented 73 % of individuals, while three haplotypes were shared with neighboring populations. In the microsatellite analyses both STRUCTURE and FCA separate the Bi-State from the neighboring populations. We also found genetic structure within the Bi-State as both types of data revealed differences between the northern and southern part of the Bi-State and there was evidence of isolation-by-distance. STRUCTURE revealed three subpopulations within the Bi-State consisting of the northern Pine Nut Mountains (PNa), mid Bi-State, and White Mountains (WM) following a

  16. Molecular analysis of population genetic structure and recolonization of rainbow trout following the Cantara spill

    Science.gov (United States)

    Nielsen, J.L.; Heine, Erika L.; Gan, Christina A.; Fountain, Monique C.

    2000-01-01

    Mitochondrial DNA (mtDNA) sequence and allelic frequency data for 12 microsatellite loci were used to analyze population genetic structure and recolonization by rainbow trout, Oncorhynchus mykiss, following the 1991 Cantara spill on the upper Sacramento River, California. Genetic analyses were performed on 1,016 wild rainbow trout collected between 1993 and 1996 from the mainstem and in 8 tributaries. Wild trout genotypes were compared to genotypes for 79 Mount Shasta Hatchery rainbow trout. No genetic heterogeneity was found 2 years after the spill (1993) between tributary populations and geographically proximate mainstem fish, suggesting recolonization of the upper mainstem directly from adjacent tributaries. Trout collections made in 1996 showed significant year-class genetic variation for mtDNA and microsatellites when compared to fish from the same locations in 1993. Five years after the spill, mainstem populations appeared genetically mixed with no significant allelic frequency differences between mainstem populations and geographically proximate tributary trout. In our 1996 samples, we found no significant genetic differences due to season of capture (summer or fall) or sampling technique used to capture rainbow trout, with the exception of trout collected by electrofishing and hook and line near Prospect Avenue. Haplotype and allelic frequencies in wild rainbow trout populations captured in the upper Sacramento River and its tributaries were found to differ genetically from Mount Shasta Hatchery trout for both years, with the notable exception of trout collected in the lower mainstem river near Shasta Lake, where mtDNA and microsatellite data both suggested upstream colonization by hatchery fish from the reservoir. These data suggest that the chemical spill in the upper Sacramento River produced significant effects over time on the genetic population structure of rainbow trout throughout the entire upper river basin.

  17. Genetic diversity and population structure of leafy kale and Brassica rupestris Raf. in south Italy.

    Science.gov (United States)

    Maggioni, Lorenzo; von Bothmer, Roland; Poulsen, Gert; Branca, Ferdinando; Bagger Jørgensen, Rikke

    2014-12-01

    Local varieties of leafy kales (Brassica oleracea L.) are grown in home gardens in Calabria and Sicily for self-consumption, in the same area where the wild relative Brassica rupestris Raf. also grows. With the use of AFLP markers, comparisons were made of the genetic diversity and population structure of ten wild and 22 cultivated populations, as well as of a hybrid population and of four commercial cultivars of different B. oleracea crops. The level of genetic diversity was higher in leafy kales than in wild populations and this diversity was mainly distributed within populations. Wild populations remained distinct from cultivated material. Additionally, most wild populations were distinctively isolated from each other. On the other hand, it was not possible to molecularly distinguish even geographically distant leafy kale populations from each other or from different B. oleracea crops. It was possible to detect inter-crossing between leafy kales and B. rupestris. Findings from this study illustrate the existing level of genetic diversity in the B. oleracea gene pool. Individual populations (either wild or leafy kales) with higher levels of genetic diversity have been identified and suggestions are given for an informed conservation strategy. Domestication hypotheses are also discussed. © 2015 The Authors.

  18. Genetic Diversity and Population Structure of Mesoamerican Jaguars (Panthera onca): Implications for Conservation and Management.

    Science.gov (United States)

    Wultsch, Claudia; Caragiulo, Anthony; Dias-Freedman, Isabela; Quigley, Howard; Rabinowitz, Salisa; Amato, George

    2016-01-01

    Mesoamerican jaguars (Panthera onca) have been extirpated from over 77% of their historic range, inhabiting fragmented landscapes at potentially reduced population sizes. Maintaining and restoring genetic diversity and connectivity across human-altered landscapes has become a major conservation priority; nonetheless large-scale genetic monitoring of natural populations is rare. This is the first regional conservation genetic study of jaguars to primarily use fecal samples collected in the wild across five Mesoamerican countries: Belize, Costa Rica, Guatemala, Honduras, and Mexico. We genotyped 445 jaguar fecal samples and examined patterns of genetic diversity and connectivity among 115 individual jaguars using data from 12 microsatellite loci. Overall, moderate levels of genetic variation were detected (NA = 4.50 ± 1.05, AR = 3.43 ± 0.22, HE = 0.59 ± 0.04), with Mexico having the lowest genetic diversity, followed by Honduras, Guatemala, Belize, and Costa Rica. Population-based gene flow measures (FST = 0.09 to 0.15, Dest = 0.09 to 0.21), principal component analysis, and Bayesian clustering applied in a hierarchical framework revealed significant genetic structure in Mesoamerican jaguars, roughly grouping individuals into four genetic clusters with varying levels of admixture. Gene flow was highest among Selva Maya jaguars (northern Guatemala and central Belize), whereas genetic differentiation among all other sampling sites was moderate. Genetic subdivision was most pronounced between Selva Maya and Honduran jaguars, suggesting limited jaguar movement between these close geographic regions and ultimately refuting the hypothesis of contemporary panmixia. To maintain a critical linkage for jaguars dispersing through the Mesoamerican landscape and ensure long-term viability of this near threatened species, we recommend continued management and maintenance of jaguar corridors. The baseline genetic data provided by this study underscores the importance of

  19. Genetic Diversity and Structure of Natural Quercus variabilis Population in China as Revealed by Microsatellites Markers

    Directory of Open Access Journals (Sweden)

    Xiaomeng Shi

    2017-12-01

    Full Text Available Quercus variabilis is a tree species of ecological and economic value that is widely distributed in China. To effectively evaluate, use, and conserve resources, we applied 25 pairs of simple sequence repeat (SSR primers to study its genetic diversity and genetic structure in 19 natural forest or natural secondary forest populations of Q. variabilis (a total of 879 samples. A total of 277 alleles were detected. Overall, the average expected heterozygosity (He was 0.707 and average allelic richness (AR was 7.79. Q. variabilis manifested a loss of heterozygosity, and the mean of inbreeding coefficient (FIS was 0.044. Less differentiation among populations was observed, and the genetic differentiation coefficient (FST was 0.063. Bayesian clustering analysis indicated that the 19 studied populations could be divided into three groups based on their genetic makeup, namely, the Southwest group, Central group, and Northeastern group. The Central group, compared to the populations of the Southwest and Northeast group, showed higher genetic diversities and lower genetic differentiations. As a widely distributed species, the historical migration of Q. variabilis contributed to its genetic differentiation.

  20. Population Genetic Structure of the Endangered Kaiser's Mountain Newt, Neurergus kaiseri (Amphibia: Salamandridae.

    Directory of Open Access Journals (Sweden)

    Hossein Farasat

    Full Text Available Species often exhibit different levels of genetic structuring correlated to their environment. However, understanding how environmental heterogeneity influences genetic variation is difficult because the effects of gene flow, drift and selection are confounded. We investigated the genetic variation and its ecological correlates in an endemic and critically endangered stream breeding mountain newt, Neurergus kaiseri, within its entire range in southwestern Iran. We identified two geographic regions based on phylogenetic relationships using Bayesian inference and maximum likelihood of 779 bp mtDNA (D-loop in 111 individuals from ten of twelve known breeding populations. This analysis revealed a clear divergence between northern populations, located in more humid habitats at higher elevation, and southern populations, from drier habitats at lower elevations regions. From seven haplotypes found in these populations none was shared between the two regions. Analysis of molecular variance (AMOVA of N. kaiseri indicates that 94.03% of sequence variation is distributed among newt populations and 5.97% within them. Moreover, a high degree of genetic subdivision, mainly attributable to the existence of significant variance among the two regions is shown (θCT = 0.94, P = 0.002. The positive and significant correlation between geographic and genetic distances (r = 0.61, P = 0.002 following controlling for environmental distance suggests an important influence of geographic divergence of the sites in shaping the genetic variation and may provide tools for a possible conservation based prioritization policy for the endangered species.

  1. Genetic diversity and population structure of the Guinea pig (Cavia porcellus, Rodentia, caviidae in Colombia

    Directory of Open Access Journals (Sweden)

    William Burgos-Paz

    2011-01-01

    Full Text Available The aim was to establish the genetic diversity and population structure of three guinea pig lines, from seven production zones located in Nariño, southwest Colombia. A total of 384 individuals were genotyped with six microsatellite markers. The measurement of intrapopulation diversity revealed allelic richness ranging from 3.0 to 6.56, and observed heterozygosity (Ho from 0.33 to 0.60, with a deficit in heterozygous individuals. Although statistically significant (p < 0.05, genetic differentiation between population pairs was found to be low. Genetic distance, as well as clustering of guinea-pig lines and populations, coincided with the historical and geographical distribution of the populations. Likewise, high genetic identity between improved and native lines was established. An analysis of group probabilistic assignment revealed that each line should not be considered as a genetically homogeneous group. The findings corroborate the absorption of native genetic material into the improved line introduced into Colombia from Peru. It is necessary to establish conservation programs for native-line individuals in Nariño, and control genealogical and production records in order to reduce the inbreeding values in the populations.

  2. Genetic evidence of population structuring in the neotropical freshwater fish Brycon hilarii (Valenciennes, 1850

    Directory of Open Access Journals (Sweden)

    A Sanches

    Full Text Available Brycon hilarii is a migratory fish widely distributed throughout the Paraguay River Basin. It is appreciated in sport fishing and for its superior meat quality. It is also the main species for tourist attraction in the Bonito region (State of Mato Grosso do Sul, Brazil. Considering the lack of information on the genetic structure of the fish of this species, the aim of the present study was to detect the genetic variability of Brycon hilarii through RAPD markers. A total of eighty specimens collected in different seasons at four sites of the Miranda River sub-basin (Paraguay River Basin, Brazil were used for analysis. The results of genetic similarity, Shannon diversity, and AMOVA revealed differences between the sampling sites. Through AMOVA, differences between populations were more evident among the animals collected during the non-reproductive season, corresponding to a time of less movement of these fish. A population structuring model in which B. hilarii appears organized into genetically differentiated reproductive units that coexist and co-migrate through the studied system was suggested, contrasting the currently accepted idea that freshwater migratory fish form large panmictic populations in a determined hydrographic system. Despite the lack of a complete picture regarding the distribution of B. hilarii in the studied region, this initial idea on its population genetic structure could be an important contribution to providing aid for management and conservation programs of these fish.

  3. Amphibian population genetics in agricultural landscapes: does viniculture drive the population structuring of the European common frog (Rana temporaria?

    Directory of Open Access Journals (Sweden)

    Patrick P. Lenhardt

    2017-07-01

    Full Text Available Amphibian populations have been declining globally over the past decades. The intensification of agriculture, habitat loss, fragmentation of populations and toxic substances in the environment are considered as driving factors for this decline. Today, about 50% of the area of Germany is used for agriculture and is inhabited by a diverse variety of 20 amphibian species. Of these, 19 are exhibiting declining populations. Due to the protection status of native amphibian species, it is important to evaluate the effect of land use and associated stressors (such as road mortality and pesticide toxicity on the genetic population structure of amphibians in agricultural landscapes. We investigated the effects of viniculture on the genetic differentiation of European common frog (Rana temporaria populations in Southern Palatinate (Germany. We analyzed microsatellite data of ten loci from ten breeding pond populations located within viniculture landscape and in the adjacent forest block and compared these results with a previously developed landscape permeability model. We tested for significant correlation of genetic population differentiation and landscape elements, including land use as well as roads and their associated traffic intensity, to explain the genetic structure in the study area. Genetic differentiation among forest populations was significantly lower (median pairwise FST = 0.0041 at 5.39 km to 0.0159 at 9.40 km distance than between viniculture populations (median pairwise FST = 0.0215 at 2.34 km to 0.0987 at 2.39 km distance. Our analyses rejected isolation by distance based on roads and associated traffic intensity as the sole explanation of the genetic differentiation and suggest that the viniculture landscape has to be considered as a limiting barrier for R. temporaria migration, partially confirming the isolation of breeding ponds predicted by the landscape permeability model. Therefore, arable land may act as a sink habitat

  4. Population structure and genetic variability of mainland and insular populations of the Neotropical water rat, Nectomys squamipes (Rodentia, Sigmodontinae

    Directory of Open Access Journals (Sweden)

    Francisca C. Almeida

    2005-12-01

    Full Text Available Seven microsatellite loci were used to investigate the genetic variability and structure of six mainland and two island populations of the Neotropical water rat Nectomys squamipes, a South American semi-aquatic rodent species with a wide distribution. High levels of variability were found within mainland populations while island populations were less variable but the more differentiated in respect to allele number and frequency. The time of biological divergence between mainland and island populations coincided with geological data. A significant geographic structure was found in mainland populations (theta = 0.099; rho = 0.086 although the degree of differentiation was relatively low in respect to the distance between surveyed localities (24 to 740 km. Genetic and geographic distances were not positively correlated as previously found with random amplified polymorphic DNA (RAPD markers. Significant but low genetic differentiation in the mainland and lack of isolation by distance can be explained by large population size and/or recent population expansion. Additionally, the agreement between the age of geologic events (sea level fluctuations and divergence times for insular populations points to a good reference for molecular clock calibration to associate recent environmental changes and the distribution pattern of small mammals in the Brazilian Atlantic Forest.

  5. Population structure and genetic diversity characterization of a sunflower association mapping population using SSR and SNP markers.

    Science.gov (United States)

    Filippi, Carla V; Aguirre, Natalia; Rivas, Juan G; Zubrzycki, Jeremias; Puebla, Andrea; Cordes, Diego; Moreno, Maria V; Fusari, Corina M; Alvarez, Daniel; Heinz, Ruth A; Hopp, Horacio E; Paniego, Norma B; Lia, Veronica V

    2015-02-13

    Argentina has a long tradition of sunflower breeding, and its germplasm is a valuable genetic resource worldwide. However, knowledge of the genetic constitution and variability levels of the Argentinean germplasm is still scarce, rendering the global map of cultivated sunflower diversity incomplete. In this study, 42 microsatellite loci and 384 single nucleotide polymorphisms (SNPs) were used to characterize the first association mapping population used for quantitative trait loci mapping in sunflower, along with a selection of allied open-pollinated and composite populations from the germplasm bank of the National Institute of Agricultural Technology of Argentina. The ability of different kinds of markers to assess genetic diversity and population structure was also evaluated. The analysis of polymorphism in the set of sunflower accessions studied here showed that both the microsatellites and SNP markers were informative for germplasm characterization, although to different extents. In general, the estimates of genetic variability were moderate. The average genetic diversity, as quantified by the expected heterozygosity, was 0.52 for SSR loci and 0.29 for SNPs. Within SSR markers, those derived from non-coding regions were able to capture higher levels of diversity than EST-SSR. A significant correlation was found between SSR and SNP- based genetic distances among accessions. Bayesian and multivariate methods were used to infer population structure. Evidence for the existence of three different genetic groups was found consistently across data sets (i.e., SSR, SNP and SSR + SNP), with the maintainer/restorer status being the most prevalent characteristic associated with group delimitation. The present study constitutes the first report comparing the performance of SSR and SNP markers for population genetics analysis in cultivated sunflower. We show that the SSR and SNP panels examined here, either used separately or in conjunction, allowed consistent

  6. Population structure and genetic diversity of the parasite Trichomonas vaginalis in Bristol, UK.

    Science.gov (United States)

    Hawksworth, Joseph; Levy, Max; Smale, Chloe; Cheung, Dean; Whittle, Alice; Longhurst, Denise; Muir, Peter; Gibson, Wendy

    2015-08-01

    The protozoan parasite Trichomonas vaginalis is the causative agent of trichomoniasis, an extremely common, but non-life-threatening, sexually-transmitted disease throughout the world. Recent population genetics studies of T. vaginalis have detected high genetic diversity and revealed a two-type population structure, associated with phenotypic differences in sensitivity to metronidazole, the drug commonly used for treatment, and presence of T. vaginalis virus. There is currently a lack of data on UK isolates; most isolates examined to date are from the US. Here we used a recently described system for multilocus sequence typing (MLST) of T. vaginalis to study diversity of clinical isolates from Bristol, UK. We used MLST to characterise 23 clinical isolates of T. vaginalis collected from female patients during 2013. Seven housekeeping genes were PCR-amplified for each isolate and sequenced. The concatenated sequences were then compared with data from other MLST-characterised isolates available from http://tvaginalis.mlst.net/ to analyse the population structure and construct phylogenetic trees. Among the 23 isolates from the Bristol population of T. vaginalis, we found 23 polymorphic nucleotide sites, 25 different alleles and 19 sequence types (genotypes). Most isolates had a unique genotype, in agreement with the high levels of heterogeneity observed elsewhere in the world. A two-type population structure was evident from population genetic analysis and phylogenetic reconstruction split the isolates into two major clades. Tests for recombination in the Bristol population of T. vaginalis gave conflicting results, suggesting overall a clonal pattern of reproduction. We conclude that the Bristol population of T. vaginalis parasites conforms to the two-type population structure found in most other regions of the world. We found the MLST scheme to be an efficient genotyping method. The online MLST database provides a useful repository and resource that will prove

  7. Spatial and temporal variation in population genetic structure of wild Nile tilapia (Oreochromis niloticus across Africa

    Directory of Open Access Journals (Sweden)

    Bezault Etienne

    2011-12-01

    Full Text Available Abstract Background Reconstructing the evolutionary history of a species is challenging. It often depends not only on the past biogeographic and climatic events but also the contemporary and ecological factors, such as current connectivity and habitat heterogeneity. In fact, these factors might interact with each other and shape the current species distribution. However, to what extent the current population genetic structure reflects the past and the contemporary factors is largely unknown. Here we investigated spatio-temporal genetic structures of Nile tilapia (Oreochromis niloticus populations, across their natural distribution in Africa. While its large biogeographic distribution can cause genetic differentiation at the paleo-biogeographic scales, its restricted dispersal capacity might induce a strong genetic structure at micro-geographic scales. Results Using nine microsatellite loci and 350 samples from ten natural populations, we found the highest genetic differentiation among the three ichthyofaunal provinces and regions (Ethiopian, Nilotic and Sudano-Sahelian (RST = 0.38 - 0.69. This result suggests the predominant effect of paleo-geographic events at macro-geographic scale. In addition, intermediate divergences were found between rivers and lakes within the regions, presumably reflecting relatively recent interruptions of gene flow between hydrographic basins (RST = 0.24 - 0.32. The lowest differentiations were observed among connected populations within a basin (RST = 0.015 in the Volta basin. Comparison of temporal sample series revealed subtle changes in the gene pools in a few generations (F = 0 - 0.053. The estimated effective population sizes were 23 - 143 and the estimated migration rate was moderate (m ~ 0.094 - 0.097 in the Volta populations. Conclusions This study revealed clear hierarchical patterns of the population genetic structuring of O. niloticus in Africa. The effects of paleo-geographic and climatic events were

  8. Genetic Diversity and Population Structure of Varronia curassavica: A Medicinal Polyploid Species in a Threatened Ecosystem.

    Science.gov (United States)

    Hoeltgebaum, Marcia Patricia; Dos Reis, Maurício Sedrez

    2017-06-01

    Varronia curassavica is an important medicinal species associated with the restinga, one of the most threatened coastal ecosystems of the Atlantic Forest. These circumstances call for studies aimed at estimating effective population size and gene flow to improve conservation efforts. Hence, the present study aimed to characterize the genetic diversity, ploidy level, and population structure of this species in different areas of restinga using microsatellites. Varronia curassavica was characterized as an autotetraploid, with high genetic variability, low divergence, and no significant fixation indices, indicating the absence of, or reduced, inbreeding and genetic drift in the study area. About 44% of the alleles occurred at low frequency in adults of all populations and 41% in the progenies evaluated. Gene flow was high, consistent with outcrossing species with high dispersal capacity (Nm = 4.87). The results showed no tendency toward isolation by distance. The estimated effective size indicates that the populations studied have the potential to ensure conservation of the species in the long term. The genetic variability and population structure of V. curassavica, as determined in this study, could form the foundation for activities directed toward the sustainable use of this resource and its conservation. Even though the restinga ecosystem has suffered dramatic reductions in area, this study provides evidence that this species is resilient to anthropogenic threats to its genetic integrity, since it is a polyploid with self-incompatibility mechanisms that contribute to maintaining high genetic diversity in an panmictic meta-population along the coast of Santa Catarina. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  9. Genetic structure of Plasmodium falciparum populations across the Honduras-Nicaragua border.

    Science.gov (United States)

    Larrañaga, Nerea; Mejía, Rosa E; Hormaza, José I; Montoya, Alberto; Soto, Aida; Fontecha, Gustavo A

    2013-10-04

    The Caribbean coast of Central America remains an area of malaria transmission caused by Plasmodium falciparum despite the fact that morbidity has been reduced in recent years. Parasite populations in that region show interesting characteristics such as chloroquine susceptibility and low mortality rates. Genetic structure and diversity of P. falciparum populations in the Honduras-Nicaragua border were analysed in this study. Seven neutral microsatellite loci were analysed in 110 P. falciparum isolates from endemic areas of Honduras (n = 77) and Nicaragua (n = 33), mostly from the border region called the Moskitia. Several analyses concerning the genetic diversity, linkage disequilibrium, population structure, molecular variance, and haplotype clustering were conducted. There was a low level of genetic diversity in P. falciparum populations from Honduras and Nicaragua. Expected heterozigosity (H(e)) results were similarly low for both populations. A moderate differentiation was revealed by the F(ST) index between both populations, and two putative clusters were defined through a structure analysis. The main cluster grouped most of samples from Honduras and Nicaragua, while the second cluster was smaller and included all the samples from the Siuna community in Nicaragua. This result could partially explain the stronger linkage disequilibrium (LD) in the parasite population from that country. These findings are congruent with the decreasing rates of malaria endemicity in Central America.

  10. Genetic structure of the gentle Africanized honey bee population (gAHB) in Puerto Rico.

    Science.gov (United States)

    Galindo-Cardona, Alberto; Acevedo-Gonzalez, Jenny P; Rivera-Marchand, Bert; Giray, Tugrul

    2013-08-06

    The Africanized honey bee is one of the most spectacular invasions in the Americas. African bees escaped from apiaries in Brazil in 1956, spread over Americas and by 1994 they were reported in Puerto Rico. In contrast to other places, the oceanic island conditions in Puerto Rico may mean a single introduction and different dynamics of the resident European and new-coming Africanized bees.To examine the genetic variation of honey bee feral populations and colonies from different locations in Puerto Rico, we used eight known polymorphic microsatellite loci. In Puerto Rico, gAHB population does not show any genetic structure (Fst = 0.0783), and is best described as one honey bee population, product of hybridization of AHB and EHB. The genetic variability in this Africanized population was similar to that reported in studies from Texas. We observed that European private allele frequencies are high in all but one locus. This contrasts with mainland Africanized populations, where European allele frequencies are diminished. Two loci with European private alleles, one on Linkage Group 7, known to carry two known defensiveness Quantitative Trait Loci (QTLs), and the other on Linkage Group 1, known to carry three functionally studied genes and 11 candidate genes associated with Varroa resistance mechanisms were respectively, significantly greater or lower in European allele frequency than the other loci with European private alleles. Genetic structure of Puerto Rico gAHB differs from mainland AHB populations, probably representing evolutionary processes on the island.

  11. Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed

    Directory of Open Access Journals (Sweden)

    Jurado Juan J

    2009-09-01

    Full Text Available Abstract Background Assessing genetic biodiversity and population structure of minor breeds through the information provided by neutral molecular markers, allows determination of their extinction risk and to design strategies for their management and conservation. Analysis of microsatellite loci is known to be highly informative in the reconstruction of the historical processes underlying the evolution and differentiation of animal populations. Guadarrama goat is a threatened Spanish breed which actual census (2008 consists of 3057 females and 203 males distributed in 22 populations more or less isolated. The aim of this work is to study the genetic status of this breed through the analysis of molecular data from 10 microsatellites typed in historic and actual live animals. Results The mean expected heterozygosity across loci within populations ranged from 0.62 to 0.77. Genetic differentiation measures were moderate, with a mean FST of 0.074, GST of 0.081 and RST of 0.085. Percentages of variation among and within populations were 7.5 and 92.5, respectively. Bayesian clustering analyses pointed out a population subdivision in 16 clusters, however, no correlation between geographical distances and genetic differences was found. Management factors such as the limited exchange of animals between farmers (estimated gene flow Nm = 3.08 mostly due to sanitary and social constraints could be the major causes affecting Guadarrama goat population subdivision. Conclusion Genetic diversity measures revealed a good status of biodiversity in the Guadarrama goat breed. Since diseases are the first cause affecting the census in this breed, population subdivision would be an advantage for its conservation. However, to maintain private alleles present at low frequencies in such small populations minimizing the inbreeding rate, it would necessitate some mating designs of animals carrying such alleles among populations. The systematic use of molecular markers will

  12. Hundred years of genetic structure in a sediment revived diatom population

    DEFF Research Database (Denmark)

    Haernstroem, Karolina; Ellegaard, Marianne; Andersen, Thorbjørn Joest

    2011-01-01

    This paper presents research on the genetic structure and diversity of populations of a common marine protist and their changes over time. The bloom-forming diatom Skeletonema marinoi was used as a model organism. Strains were revived from anoxic discrete layers of a 210Pb-dated sediment core...

  13. Genetic population structure in an equatorial sparrow: roles for culture and geography.

    Science.gov (United States)

    Danner, J E; Fleischer, R C; Danner, R M; Moore, I T

    2017-06-01

    Female preference for local cultural traits has been proposed as a barrier to breeding among animal populations. As such, several studies have found correlations between male bird song dialects and population genetics over relatively large distances. To investigate whether female choice for local dialects could act as a barrier to breeding between nearby and contiguous populations, we tested whether variation in male song dialects explains genetic structure among eight populations of rufous-collared sparrows (Zonotrichia capensis) in Ecuador. Our study sites lay along a transect, and adjacent study sites were separated by approximately 25 km, an order of magnitude less than previously examined for this and most other species. This transect crossed an Andean ridge and through the Quijos River Valley, both of which may be barriers to gene flow. Using a variance partitioning approach, we show that song dialect is important in explaining population genetics, independent of the geographic variables: distance, the river valley and the Andean Ridge. This result is consistent with the hypothesis that song acts as a barrier to breeding among populations in close proximity. In addition, songs of contiguous populations differed by the same degree or more than between two populations previously shown to exhibit female preference for local dialect, suggesting that birds from these populations would also breed preferentially with locals. As expected, all geographic variables (distance, the river valley and the Andean Ridge) also predicted population genetic structure. Our results have important implications for the understanding whether, and at what spatial scale, culture can affect population divergence. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.

  14. Low genetic diversity and strong population structure shaped by anthropogenic habitat fragmentation in a critically endangered primate, Trachypithecus leucocephalus.

    Science.gov (United States)

    Wang, W; Qiao, Y; Li, S; Pan, W; Yao, M

    2017-06-01

    Habitat fragmentation may strongly impact population genetic structure and reduce the genetic diversity and viability of small and isolated populations. The white-headed langur (Trachypithecus leucocephalus) is a critically endangered primate species living in a highly fragmented and human-modified habitat in southern China. We examined the population genetic structure and genetic diversity of the species and investigated the environmental and anthropogenic factors that may have shaped its population structure. We used 214 unique multi-locus genotypes from 41 social groups across the main distribution area of T. leucocephalus, and found strong genetic structure and significant genetic differentiation among local populations. Our landscape genetic analyses using a causal modelling framework suggest that a large habitat gap and geographical distance represent the primary landscape elements shaping genetic structure, yet high levels of genetic differentiation also exist between patches separated by a small habitat gap or road. This is the first comprehensive study that has evaluated the population genetic structure and diversity of T. leucocephalus using nuclear markers. Our results indicate strong negative impacts of anthropogenic land modifications and habitat fragmentation on primate genetic connectivity between forest patches. Our analyses suggest that two management units of the species could be defined, and indicate that habitat continuity should be enforced and restored to reduce genetic isolation and enhance population viability.

  15. Outlier SNP markers reveal fine-scale genetic structuring across European hake populations (Merluccius merluccius)

    DEFF Research Database (Denmark)

    Milano, I.; Babbucci, M.; Cariani, A.

    2014-01-01

    fishery. Analysis of 850 individuals from 19 locations across the entire distribution range showed evidence for several outlier loci, with significantly higher resolving power. While 299 putatively neutral SNPs confirmed the genetic break between basins (FCT = 0.016) and weak differentiation within basins...... even when neutral markers provide genetic homogeneity across populations. Here, 381 SNPs located in transcribed regions were used to assess largeand fine-scale population structure in the European hake (Merluccius merluccius), a widely distributed demersal species of high priority for the European...

  16. Fine-scale population genetic structure of arctic foxes (Vulpes lagopus) in the High Arctic.

    Science.gov (United States)

    Lai, Sandra; Quiles, Adrien; Lambourdière, Josie; Berteaux, Dominique; Lalis, Aude

    2017-12-01

    The arctic fox (Vulpes lagopus) is a circumpolar species inhabiting all accessible Arctic tundra habitats. The species forms a panmictic population over areas connected by sea ice, but recently, kin clustering and population differentiation were detected even in regions where sea ice was present. The purpose of this study was to examine the genetic structure of a population in the High Arctic using a robust panel of highly polymorphic microsatellites. We analyzed the genotypes of 210 individuals from Bylot Island, Nunavut, Canada, using 15 microsatellite loci. No pattern of isolation-by-distance was detected, but a spatial principal component analysis (sPCA) revealed the presence of genetic subdivisions. Overall, the sPCA revealed two spatially distinct genetic clusters corresponding to the northern and southern parts of the study area, plus another subdivision within each of these two clusters. The north-south genetic differentiation partly matched the distribution of a snow goose colony, which could reflect a preference for settling into familiar ecological environments. Secondary clusters may result from higher-order social structures (neighbourhoods) that use landscape features to delimit their borders. The cryptic genetic subdivisions found in our population may highlight ecological processes deserving further investigations in arctic foxes at larger, regional spatial scales.

  17. Genetic structure of a unique admixed population: implications for medical research.

    Science.gov (United States)

    Patterson, Nick; Petersen, Desiree C; van der Ross, Richard E; Sudoyo, Herawati; Glashoff, Richard H; Marzuki, Sangkot; Reich, David; Hayes, Vanessa M

    2010-02-01

    STATEMENT: In naming population groups, we think a chief aim is to use terms that the group members use themselves, or find familiar and comfortable. The terms used in this manuscript to describe populations are as historically correct as possible and are chosen so as not to offend any population group. Two of the authors (DCP and REvdR) belong to the Coloured population, with one of the authors (REvdR) having contributed extensively to current literature on the history of the Coloured people of South Africa and served as Vice-President of the South African Institute of Race Relations. According to the 2001 South African census (http://www.statssa.gov.za/census01/HTML/CInBrief/CIB2001.pdf), "Statistics South Africa continues to classify people by population group, in order to monitor progress in moving away from the apartheid-based discrimination of the past. However, membership of a population group is now based on self-perception and self-classification, not on a legal definition. Five options were provided on the questionnaire, Black African, Coloured, Indian or Asian, White and Other. Responses in the category 'Other' were very few and were therefore imputed". We have elected to use the term Bushmen rather than San to refer to the hunter-gatherer people of Southern Africa. Although they have no collective name for themselves, this decision was based on the term Bushmen (or Bossiesman) being the more familiar to the communities themselves, while the term San is the more accepted academic classification. Understanding human genetic structure has fundamental implications for understanding the evolution and impact of human diseases. In this study, we describe the complex genetic substructure of a unique and recently admixed population arising approximately 350 years ago as a direct result of European settlement in South Africa. Analysis was performed using over 900 000 genome-wide single nucleotide polymorphisms in 20 unrelated ancestry-informative marker selected

  18. Genetic structure of seven Mexican indigenous populations based on five polymarker loci.

    Science.gov (United States)

    Buentello-Malo, Leonora; Peñaloza-Espinosa, Rosenda I; Loeza, Francisco; Salamanca-Gomez, Fabio; Cerda-Flores, Ricardo M

    2003-01-01

    This descriptive study investigates the genetic structure of seven Mexican indigenous populations (Mixteca Alta, Mixteca Baja, Otomies, Purepecha, Nahuas-Guerrero, Nahuas-Xochimilco, and Tzeltales) on the basis of five PCR-based polymorphic DNA loci: LDLR, GYPA, HBGG, D7S8, and GC. Genetic distance and diversity analyses indicate that these Mexican indigenous are similar and that more than 96% of the total gene diversity (H(T)) can be attributed to individual variation within populations. Mixteca-Alta, Mixteca-Baja, and Nahuas-Xochimilco show indications of higher admixture with European-derived persons. The demonstration of a relative genetic homogeneity of Mexican Indians for the markers studied suggests that this population is suitable for studying disease-marker associations in the search for candidate genes of complex diseases. Copyright 2002 Wiley-Liss, Inc.

  19. Founder effects and genetic population structure of brown trout (Salmo trutta) in a Danish river system

    DEFF Research Database (Denmark)

    Hansen, Michael Møller; Mensberg, Karen-Lise Dons

    1996-01-01

    The influence of founder effects on the genetic population structure of brown trout (Salmo trutta) was studied in a small Danish river system. Samples of trout from seven locations were analysed by allozyme electrophoresis and mitochondrial DNA restriction fragment length polymorphism analysis....... For comparison, allozyme data from other Danish trout populations and mtDNA data from two hatchery strains were included. Genetic differentiation among populations was found to be small but significant. Pairwise tests for homogeneity of allele and haplotype frequencies between samples showed that significance...... simulations of the influence of founder effects on mitochondrial DNA differentiation and variability showed that the observed divergence could be due either to natural founder effects or to a genetic contribution by hatchery trout. However, the allozyme results pointed towards natural founder effects...

  20. Population genetic structure of the melon fly, Bactrocera cucurbitae (Diptera: Tephritidae), from China and Southeast Asia.

    Science.gov (United States)

    Hu, Jian; Zhang, Jun L; Nardi, Francesco; Zhang, Run J

    2008-11-01

    The melon fly, Bactrocera cucurbitae Coquillett, is a species of fruit flies of significant agricultural interest. Of supposed Indian origin, the melon fly is now widely distributed throughout South East Asia up to China, while it has been recently eradicated from Japan. The population structure of seven geographic populations from coastal China, as well as samples from other regions of South East Asia and Japan, including lab colonies, have been studied using a 782 bp fragment of mitochondrial cytochrome oxidase I (COI) gene sequence. The observed genetic diversity was exceedingly low, considering the geographic scale of the sampling, and one single haplotype was found to be predominant from Sri Lanka to China. We confirm that Bactrocera cucurbitae exists in South East Asia as a single phyletic lineage, that Chinese populations are genetically uniform, and that no apparent genetic differentiation exists between these and three available Japanese melon fly sequences.

  1. Population genetic structure of Plasmodium falciparum across a region of diverse endemicity in West Africa

    Directory of Open Access Journals (Sweden)

    Mobegi Victor A

    2012-07-01

    Full Text Available Abstract Background Malaria parasite population genetic structure varies among areas of differing endemicity, but this has not been systematically studied across Plasmodium falciparum populations in Africa where most infections occur. Methods Ten polymorphic P. falciparum microsatellite loci were genotyped in 268 infections from eight locations in four West African countries (Republic of Guinea, Guinea Bissau, The Gambia and Senegal, spanning a highly endemic forested region in the south to a low endemic Sahelian region in the north. Analysis was performed on proportions of mixed genotype infections, genotypic diversity among isolates, multilocus standardized index of association, and inter-population differentiation. Results Each location had similar levels of pairwise genotypic diversity among isolates, although there were many more mixed parasite genotype infections in the south. Apart from a few isolates that were virtually identical, the multilocus index of association was not significant in any population. Genetic differentiation between populations was low (most pairwise FST values  Conclusions Although proportions of mixed genotype infections varied with endemicity as expected, population genetic structure was similar across the diverse sites. Very substantial reduction in transmission would be needed to cause fragmented or epidemic sub-structure in this region.

  2. Assessment of genetic diversity and population structure of Vietnamese indigenous cattle populations by microsatellites

    DEFF Research Database (Denmark)

    Pham, Lan Doan; Do, Duy Ngoc; Binh, Nguyen Trong

    2013-01-01

    Cattle play a very important role in agriculture and food security in Vietnam. A high level of cattle diversity exists and serves different needs of Vietnamese cattle keepers but has not yet been molecularly characterized. This study evaluates the genetic diversity and structure of Vietnamese...... geographic distances. Structure analysis indicated five homogeneous clusters. The Brahman, Lang Son, Ha Giang and U Dau Riu cattle were assigned to independent clusters while Nghe An, Thanh Hoa and Phu Yen cattle were grouped in a single cluster. We conclude that Vietnamese indigenous cattle have high levels...

  3. Genetic structure and gene flows within horses: a genealogical study at the french population scale.

    Directory of Open Access Journals (Sweden)

    Pauline Pirault

    Full Text Available Since horse breeds constitute populations submitted to variable and multiple outcrossing events, we analyzed the genetic structure and gene flows considering horses raised in France. We used genealogical data, with a reference population of 547,620 horses born in France between 2002 and 2011, grouped according to 55 breed origins. On average, individuals had 6.3 equivalent generations known. Considering different population levels, fixation index decreased from an overall species FIT of 1.37%, to an average [Formula: see text] of -0.07% when considering the 55 origins, showing that most horse breeds constitute populations without genetic structure. We illustrate the complexity of gene flows existing among horse breeds, a few populations being closed to foreign influence, most, however, being submitted to various levels of introgression. In particular, Thoroughbred and Arab breeds are largely used as introgression sources, since those two populations explain together 26% of founder origins within the overall horse population. When compared with molecular data, breeds with a small level of coancestry also showed low genetic distance; the gene pool of the breeds was probably impacted by their reproducer exchanges.

  4. Genetic structure and gene flows within horses: a genealogical study at the french population scale.

    Science.gov (United States)

    Pirault, Pauline; Danvy, Sophy; Verrier, Etienne; Leroy, Grégoire

    2013-01-01

    Since horse breeds constitute populations submitted to variable and multiple outcrossing events, we analyzed the genetic structure and gene flows considering horses raised in France. We used genealogical data, with a reference population of 547,620 horses born in France between 2002 and 2011, grouped according to 55 breed origins. On average, individuals had 6.3 equivalent generations known. Considering different population levels, fixation index decreased from an overall species FIT of 1.37%, to an average [Formula: see text] of -0.07% when considering the 55 origins, showing that most horse breeds constitute populations without genetic structure. We illustrate the complexity of gene flows existing among horse breeds, a few populations being closed to foreign influence, most, however, being submitted to various levels of introgression. In particular, Thoroughbred and Arab breeds are largely used as introgression sources, since those two populations explain together 26% of founder origins within the overall horse population. When compared with molecular data, breeds with a small level of coancestry also showed low genetic distance; the gene pool of the breeds was probably impacted by their reproducer exchanges.

  5. Population structure and genetic diversity of the giant anteater (Myrmecophaga tridactyla: Myrmecophagidae, Pilosa in Brazil

    Directory of Open Access Journals (Sweden)

    Camila L. Clozato

    Full Text Available Abstract The giant anteater (Myrmecophaga tridactyla, Pilosa, Linnaeus 1758 belongs to the mammalian order Pilosa and presents a large distribution along South America, occupying a great variety of habitats. It is listed in the IUCN Red List of threatened species as Vulnerable. Despite threatened, there is a lack of studies regarding its genetic variability. The aim of this study was to examine the genetic diversity and patterns of genetic structure within remaining populations. We analyzed 77 individuals from seven different populations distributed in four biomes across Brazil: Cerrado, Pantanal, Atlantic Forest and Amazon Forest. We sequenced two mitochondrial markers (control region and Cyt-b and two nuclear markers (AMELY and RAG2. We found high genetic diversity within subpopulations from National Parks of Serra da Canastra and Emas, both within the Cerrado biome, with signs of population expansion. Besides, we found a notable population structure between populations from the Cerrado/Pantanal and Amazon Forest biomes. This data is a major contribution to the knowledge of the evolutionary history of the species and to future management actions concerning its conservation.

  6. Population structure and genetic diversity of the giant anteater (Myrmecophaga tridactyla: Myrmecophagidae, Pilosa) in Brazil.

    Science.gov (United States)

    Clozato, Camila L; Miranda, Flávia R; Lara-Ruiz, Paula; Collevatti, Rosane G; Santos, Fabrício R

    2017-01-01

    The giant anteater (Myrmecophaga tridactyla, Pilosa, Linnaeus 1758) belongs to the mammalian order Pilosa and presents a large distribution along South America, occupying a great variety of habitats. It is listed in the IUCN Red List of threatened species as Vulnerable. Despite threatened, there is a lack of studies regarding its genetic variability. The aim of this study was to examine the genetic diversity and patterns of genetic structure within remaining populations. We analyzed 77 individuals from seven different populations distributed in four biomes across Brazil: Cerrado, Pantanal, Atlantic Forest and Amazon Forest. We sequenced two mitochondrial markers (control region and Cyt-b) and two nuclear markers (AMELY and RAG2). We found high genetic diversity within subpopulations from National Parks of Serra da Canastra and Emas, both within the Cerrado biome, with signs of population expansion. Besides, we found a notable population structure between populations from the Cerrado/Pantanal and Amazon Forest biomes. This data is a major contribution to the knowledge of the evolutionary history of the species and to future management actions concerning its conservation.

  7. Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands

    KAUST Repository

    Pailles, Yveline

    2017-02-15

    Endemic flora of the Galapagos Islands has adapted to thrive in harsh environmental conditions. The wild tomato species from the Galapagos Islands, Solanum cheesmaniae and S. galapagense, are tolerant to various stresses, and can be crossed with cultivated tomato. However, information about genetic diversity and relationships within and between populations is necessary to use these resources efficiently in plant breeding. In this study, we analyzed 3,974 polymorphic SNP markers, obtained through the genotyping-by-sequencing technique, DArTseq, to elucidate the genetic diversity and population structure of 67 accessions of Galapagos tomatoes (compared to two S. lycopersicum varieties and one S. pimpinellifolium accession). Two clustering methods, Principal Component Analysis and STRUCTURE, showed clear distinction between the two species and a subdivision in the S. cheesmaniae group corresponding to geographical origin and age of the islands. High genetic variation among the accessions within each species was suggested by the AMOVA. High diversity in the S. cheesmaniae group and its correlation with the islands of origin were also suggested. This indicates a possible influence of the movement of the islands, from west to east, on the gene flow. Additionally, the absence of S. galapagense populations in the eastern islands points to the species divergence occurring after the eastern islands became isolated. Based on these results, it can be concluded that the population structure of the Galapagos tomatoes collection partially explains the evolutionary history of both species, knowledge that facilitates exploitation of their genetic potential for the identification of novel alleles contributing to stress tolerance.

  8. Lack of Population Genetic Structuring in Ocelots (Leopardus pardalis in a Fragmented Landscape

    Directory of Open Access Journals (Sweden)

    Marina G. Figueiredo

    2015-07-01

    Full Text Available Habitat fragmentation can promote patches of small and isolated populations, gene flow disruption between those populations, and reduction of local and total genetic variation. As a consequence, these small populations may go extinct in the long-term. The ocelot (Leopardus pardalis, originally distributed from Texas to southern Brazil and northern Argentina, has been impacted by habitat fragmentation throughout much of its range. To test whether habitat fragmentation has already induced genetic differentiation in an area where this process has been documented for a larger felid (jaguars, we analyzed molecular variation in ocelots inhabiting two Atlantic Forest fragments, Morro do Diabo (MD and Iguaçu Region (IR. Analyses using nine microsatellites revealed mean observed and expected heterozygosity of 0.68 and 0.70, respectively. The MD sampled population showed evidence of a genetic bottleneck under two mutational models (TPM = 0.03711 and SMM = 0.04883. Estimates of genetic structure (FST = 0.027; best fit of k = 1 with STRUCTURE revealed no meaningful differentiation between these populations. Thus, our results indicate that the ocelot populations sampled in these fragments are still not significantly different genetically, a pattern that strongly contrasts with that previously observed in jaguars for the same comparisons. This observation is likely due to a combination of two factors: (i larger effective population size of ocelots (relative to jaguars in each fragment, implying a slower effect of drift-induced differentiation; and (ii potentially some remaining permeability of the anthropogenic matrix for ocelots, as opposed to the observed lack of permeability for jaguars. The persistence of ocelot gene flow between these areas must be prioritized in long-term conservation planning on behalf of these felids.

  9. Genetic diversity and population structure analysis to construct a core collection from a large Capsicum germplasm.

    Science.gov (United States)

    Lee, Hea-Young; Ro, Na-Young; Jeong, Hee-Jin; Kwon, Jin-Kyung; Jo, Jinkwan; Ha, Yeaseong; Jung, Ayoung; Han, Ji-Woong; Venkatesh, Jelli; Kang, Byoung-Cheorl

    2016-11-14

    Conservation of genetic diversity is an essential prerequisite for developing new cultivars with desirable agronomic traits. Although a large number of germplasm collections have been established worldwide, many of them face major difficulties due to large size and a lack of adequate information about population structure and genetic diversity. Core collection with a minimum number of accessions and maximum genetic diversity of pepper species and its wild relatives will facilitate easy access to genetic material as well as the use of hidden genetic diversity in Capsicum. To explore genetic diversity and population structure, we investigated patterns of molecular diversity using a transcriptome-based 48 single nucleotide polymorphisms (SNPs) in a large germplasm collection comprising 3,821 accessions. Among the 11 species examined, Capsicum annuum showed the highest genetic diversity (H E  = 0.44, I = 0.69), whereas the wild species C. galapagoense showed the lowest genetic diversity (H E  = 0.06, I = 0.07). The Capsicum germplasm collection was divided into 10 clusters (cluster 1 to 10) based on population structure analysis, and five groups (group A to E) based on phylogenetic analysis. Capsicum accessions from the five distinct groups in an unrooted phylogenetic tree showed taxonomic distinctness and reflected their geographic origins. Most of the accessions from European countries are distributed in the A and B groups, whereas the accessions from Asian countries are mainly distributed in C and D groups. Five different sampling strategies with diverse genetic clustering methods were used to select the optimal method for constructing the core collection. Using a number of allelic variations based on 48 SNP markers and 32 different phenotypic/morphological traits, a core collection 'CC240' with a total of 240 accessions (5.2 %) was selected from within the entire Capsicum germplasm. Compared to the other core collections, CC240 displayed higher

  10. Understanding the genetic diversity and population structure of yam (Dioscorea alata L.) using microsatellite markers

    Science.gov (United States)

    Arnau, Gemma; MN, Sheela; Chair, Hana; Lebot, Vincent; K, Abraham; Perrier, Xavier; Petro, Dalila; Penet, Laurent; Pavis, Claudie

    2017-01-01

    Yams (Dioscorea sp.) are staple food crops for millions of people in tropical and subtropical regions. Dioscorea alata, also known as greater yam, is one of the major cultivated species and most widely distributed throughout the tropics. Despite its economic and cultural importance, very little is known about its origin, diversity and genetics. As a consequence, breeding efforts for resistance to its main disease, anthracnose, have been fairly limited. The objective of this study was to contribute to the understanding of D. alata genetic diversity by genotyping 384 accessions from different geographical regions (South Pacific, Asia, Africa and the Caribbean), using 24 microsatellite markers. Diversity structuration was assessed via Principal Coordinate Analysis, UPGMA analysis and the Bayesian approach implemented in STRUCTURE. Our results revealed the existence of a wide genetic diversity and a significant structuring associated with geographic origin, ploidy levels and morpho-agronomic characteristics. Seventeen major groups of genetically close cultivars have been identified, including eleven groups of diploid cultivars, four groups of triploids and two groups of tetraploids. STRUCTURE revealed the existence of six populations in the diploid genetic pool and a few admixed cultivars. These results will be very useful for rationalizing D. alata genetic resources in breeding programs across different regions and for improving germplasm conservation methods. PMID:28355293

  11. Competitive advantage and higher fitness in native populations of genetically structured planktonic diatoms.

    Science.gov (United States)

    Sildever, Sirje; Sefbom, Josefin; Lips, Inga; Godhe, Anna

    2016-12-01

    It has been shown that the planktonic diatom Skeletonema from neighbouring areas are genetically differentiated despite absence of physical dispersal barriers. We revisited two sites, Mariager Fjord and Kattegat, NE Atlantic, and isolated new strains. Microsatellite genotyping and F-statistics revealed that the populations were genetically differentiated. An experiment was designed to investigate if populations are locally adapted and have a native competitive advantage. Ten strains from each location were grown individually in native and foreign water to investigate differences in produced biomass. Additionally, we mixed six pairs, one strain from each site, and let them grow together in native and foreign water. Strains from Mariager Fjord and Kattegat produced higher biomass in native water. In the competition experiment, strains from both sites displayed higher relative abundance and demonstrated competitive advantage in their native water. The cause of the differentiated growth is unknown, but could possibly be attributed to differences in silica concentration or viruses in the two water types. Our data show that dispersal potential does not influence the genetic structure of the populations. We conclude that genetic adaptation has not been overruled by gene flow, but instead the responses to different selection conditions are enforcing the observed genetic structure. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Population Genetic Structure of the Dwarf Seahorse (Hippocampus zosterae) in Florida.

    Science.gov (United States)

    Fedrizzi, Nathan; Stiassny, Melanie L J; Boehm, J T; Dougherty, Eric R; Amato, George; Mendez, Martin

    2015-01-01

    The dwarf seahorse (Hippocampus zosterae) is widely distributed throughout near-shore habitats of the Gulf of Mexico and is of commercial significance in Florida, where it is harvested for the aquarium and curio trades. Despite its regional importance, the genetic structure of dwarf seahorse populations remains largely unknown. As an aid to ongoing conservation efforts, we employed three commonly applied mtDNA markers (ND4, DLoop and CO1) to investigate the genetic structuring of H. zosterae in Florida using samples collected throughout its range in the state. A total of 1450 bp provided sufficient resolution to delineate four populations of dwarf seahorses, as indicated by significant fixation indices. Despite an overall significant population structure, we observed evidence of interbreeding between individuals from geographically distant sites, supporting the hypothesis that rafting serves to maintain a degree of population connectivity. All individuals collected from Pensacola belong to a single distinct subpopulation, which is highly differentiated from the rest of Floridian dwarf seahorses sampled. Our findings highlight the utility of mtDNA markers in evaluating barriers to gene flow and identifying genetically distinct populations, which are vital to the development of comprehensive conservation strategies for exploited taxa.

  13. Myrciaria dubia, an Amazonian fruit: population structure and its implications for germplasm conservation and genetic improvement.

    Science.gov (United States)

    Nunes, C F; Setotaw, T A; Pasqual, M; Chagas, E A; Santos, E G; Santos, D N; Lima, C G B; Cançado, G M A

    2017-03-22

    Myrciaria dubia (camu-camu) is an Amazon tree that produces a tart fruit with high vitamin C content. It is probably the fruit with the highest vitamin C content among all Brazilian fruit crops and it can be used to supplement daily vitamin C dose. This property has attracted the attention of consumers and, consequently, encouraged fruit farmers to produce it. In order to identify and select potential accessions for commercial exploitation and breeding programs, M. dubia has received considerable research attention. The identification and characterization of genetic diversity, as well as identification of the population structure of accessions preserved in germplasm banks are fundamental for the success of any breeding program. The objective of this study was to evaluate the genetic variability of 10 M. dubia populations obtained from the shores of Reis Lake, located in the municipality of Caracaraí, Roraima, Brazil. Fourteen polymorphic inter simple sequence repeat (ISSR) markers were used to study the population genetic diversity, which resulted in 108 identified alleles. Among the 14 primers, GCV, UBC810, and UBC827 produced the highest number of alleles. The study illustrated the suitability and efficiency of ISSR markers to study the genetic diversity of M. dubia accessions. We also revealed the existence of high genetic variability among both accessions and populations that can be exploited in future breeding programs and conservation activities of this species.

  14. Population Genetic Structure and Species Status of Asiatic Toads (Bufo gargarizans) in Western China.

    Science.gov (United States)

    Wen, Guannan; Yang, Weizhao; Fu, Jinzhong

    2015-10-01

    We investigated the population genetic structure of Asiatic toads (Bufo gargarizans) from the mountains of western China to determine their species status, using genotypic data of ten microsatellite DNA loci and DNA sequences from one mitochondrial gene. A total of 197 samples from eight sites were examined, which cover a large range of elevations (559-3457 m), as well as all three traditionally defined species (or subspecies). AMOVA did not reveal any particularly large among-groups structure, whether the sites were grouped by drainage, elevation, region, or species (subspecies). Individual assignment tests placed all samples into two genetic clusters, which largely corresponded to their geographic locations. An isolation-by-distance pattern was also detected when an outlier population (site 3) was excluded. Furthermore, a mitochondrial gene tree revealed deep divergence among haplotypes, sometimes within the same site. The clade patterns were partially associated with geographic distribution but had no resemblance to the traditional 2- or 3-species classification. Overall, these toad populations harbor a large amount of genetic diversity and have very high population differentiation, but taken together the evidence suggests that all populations belong to a single species. Our results are consistent with most previous molecular studies, and we recommend using Bufo gargarizans to represent all Asiatic toad populations from western China without subspecies division.

  15. Genetic structuring of European anchovy (Engraulis encrasicolus) populations through mitochondrial DNA sequences.

    Science.gov (United States)

    Keskin, Emre; Atar, Hasan Huseyin

    2012-04-01

    Mitochondrial DNA sequence variation in 655 bpfragments of the cytochrome oxidase c subunit I gene, known as the DNA barcode, of European anchovy (Engraulis encrasicolus) was evaluated by analyzing 1529 individuals representing 16 populations from the Black Sea, through the Marmara Sea and the Aegean Sea to the Mediterranean Sea. A total of 19 (2.9%) variable sites were found among individuals, and these defined 10 genetically diverged populations with an overall mean distance of 1.2%. The highest nucleotide divergence was found between samples of eastern Mediterranean and northern Aegean (2.2%). Evolutionary history analysis among 16 populations clustered the Mediterranean Sea clades in one main branch and the other clades in another branch. Diverging pattern of the European anchovy populations correlated with geographic dispersion supports the genetic structuring through the Black Sea-Marmara Sea-Aegean Sea-Mediterranean Sea quad.

  16. Inter-chromosomal variation in the pattern of human population genetic structure

    Directory of Open Access Journals (Sweden)

    Baye Tesfaye M

    2011-05-01

    Full Text Available Abstract Emerging technologies now make it possible to genotype hundreds of thousands of genetic variations in individuals, across the genome. The study of loci at finer scales will facilitate the understanding of genetic variation at genomic and geographic levels. We examined global and chromosomal variations across HapMap populations using 3.7 million single nucleotide polymorphisms to search for the most stratified genomic regions of human populations and linked these regions to ontological annotation and functional network analysis. To achieve this, we used five complementary statistical and genetic network procedures: principal component (PC, cluster, discriminant, fixation index (FST and network/pathway analyses. At the global level, the first two PC scores were sufficient to account for major population structure; however, chromosomal level analysis detected subtle forms of population structure within continental populations, and as many as 31 PCs were required to classify individuals into homogeneous groups. Using recommended population ancestry differentiation measures, a total of 126 regions of the genome were catalogued. Gene ontology and networks analyses revealed that these regions included the genes encoding oculocutaneous albinism II (OCA2, hect domain and RLD 2 (HERC2, ectodysplasin A receptor (EDAR and solute carrier family 45, member 2 (SLC45A2. These genes are associated with melanin production, which is involved in the development of skin and hair colour, skin cancer and eye pigmentation. We also identified the genes encoding interferon-γ (IFNG and death-associated protein kinase 1 (DAPK1, which are associated with cell death, inflammatory and immunological diseases. An in-depth understanding of these genomic regions may help to explain variations in adaptation to different environments. Our approach offers a comprehensive strategy for analysing chromosome-based population structure and differentiation, and demonstrates the

  17. High genetic diversity and structured populations of the oriental fruit moth in its range of origin.

    Directory of Open Access Journals (Sweden)

    Yan Zheng

    Full Text Available The oriental fruit moth Grapholita ( = Cydia molesta is a key fruit pest globally. Despite its economic importance, little is known about its population genetics in its putative native range that includes China. We used five polymorphic microsatellite loci and two mitochondrial gene sequences to characterize the population genetic diversity and genetic structure of G. molesta from nine sublocations in three regions of a major fruit growing area of China. Larval samples were collected throughout the season from peach, and in late season, after host switch by the moth to pome fruit, also from apple and pear. We found high numbers of microsatellite alleles and mitochondrial DNA haplotypes in all regions, together with a high number of private alleles and of haplotypes at all sublocations, providing strong evidence that the sampled area belongs to the origin of this species. Samples collected from peach at all sublocations were geographically structured, and a significant albeit weak pattern of isolation-by-distance was found among populations, likely reflecting the low flight capacity of this moth. Interestingly, populations sampled from apple and pear in the late season showed a structure differing from that of populations sampled from peach throughout the season, indicating a selective host switch of a certain part of the population only. The recently detected various olfactory genotypes in G. molesta may underly this selective host switch. These genetic data yield, for the first time, an understanding of population dynamics of G. molesta in its native range, and of a selective host switch from peach to pome fruit, which may have a broad applicability to other global fruit production areas for designing suitable pest management strategies.

  18. Genetic structure in two northern muriqui populations (Brachyteles hypoxanthus, Primates, Atelidae as inferred from fecal DNA

    Directory of Open Access Journals (Sweden)

    Valéria Fagundes

    2008-01-01

    Full Text Available We assessed the genetic diversity of two northern muriqui (Brachyteles hypoxanthus Primata, Atelidae populations, the Feliciano Miguel Abdala population (FMA, n = 108 in the Brazilian state of Minas Gerais (19°44' S, 41°49' W and the Santa Maria de Jetibá population (SMJ, n = 18 in the Brazilian state of Espírito Santo (20°01' S, 40°44' W. Fecal DNA was isolated and PCR-RFLP analysis used to analyze 2160 bp of mitochondrial DNA, made up of an 820 bp segment of the gene cytochrome c oxidase subunit 2 (cox2, EC 1.9.3.1, an 880 bp segment of the gene cytochrome b (cytb, EC 1.10.2.2 and 460 bp of the hypervariable segment of the mtDNA control region (HVRI. The cox2 and cytb sequences were monomorphic within and between populations whereas the HVRI revealed three different population exclusive haplotypes, one unique to the SMJ population and two, present at similar frequencies, in the FMA population. Overall haplotype diversity (h = 0.609 and nucleotide diversity (pi = 0.181 were high but reduced within populations. The populations were genetically structured with a high fixation index (F ST = 0.725, possibly due to historical subdivision. These findings have conservation implications because they seem to indicate that the populations are distinct management units.

  19. Genetic Diversity and Population Structure of Cowpea (Vigna unguiculata L. Walp).

    Science.gov (United States)

    Xiong, Haizheng; Shi, Ainong; Mou, Beiquan; Qin, Jun; Motes, Dennis; Lu, Weiguo; Ma, Jianbing; Weng, Yuejin; Yang, Wei; Wu, Dianxing

    2016-01-01

    The genetic diversity of cowpea was analyzed, and the population structure was estimated in a diverse set of 768 cultivated cowpea genotypes from the USDA GRIN cowpea collection, originally collected from 56 countries. Genotyping by sequencing was used to discover single nucleotide polymorphism (SNP) in cowpea and the identified SNP alleles were used to estimate the level of genetic diversity, population structure, and phylogenetic relationships. The aim of this study was to detect the gene pool structure of cowpea and to determine its relationship between different regions and countries. Based on the model-based ancestry analysis, the phylogenetic tree, and the principal component analysis, three well-differentiated genetic populations were postulated from 768 worldwide cowpea genotypes. According to the phylogenetic analyses between each individual, region, and country, we may trace the accession from off-original, back to the two candidate original areas (West and East of Africa) to predict the migration and domestication history during the cowpea dispersal and development. To our knowledge, this is the first report of the analysis of the genetic variation and relationship between globally cultivated cowpea genotypes. The results will help curators, researchers, and breeders to understand, utilize, conserve, and manage the collection for more efficient contribution to international cowpea research.

  20. Population Genetic Structure of Glycyrrhiza inflata B. (Fabaceae) Is Shaped by Habitat Fragmentation, Water Resources and Biological Characteristics.

    Science.gov (United States)

    Yang, Lulu; Chen, Jianjun; Hu, Weiming; Yang, Tianshun; Zhang, Yanjun; Yukiyoshi, Tamura; Zhou, Yanyang; Wang, Ying

    2016-01-01

    Habitat fragmentation, water resources and biological characteristics are important factors that shape the genetic structure and geographical distribution of desert plants. Analysis of the relationships between these factors and population genetic variation should help to determine the evolutionary potential and conservation strategies for genetic resources for desert plant populations. As a traditional Chinese herb, Glycyrrhiza inflata B. (Fabaceae) is restricted to the fragmented desert habitat in China and has undergone a dramatic decline due to long-term over-excavation. Determining the genetic structure of the G. inflata population and identifying a core collection could help with the development of strategies to conserve this species. We investigated the genetic variation of 25 G. inflata populations based on microsatellite markers. A high level of population genetic divergence (FST = 0.257), population bottlenecks, reduced gene flow and moderate genetic variation (HE = 0.383) were detected. The genetic distances between the populations significantly correlated with the geographical distances, and this suggests that habitat fragmentation has driven a special genetic structure of G. inflata in China through isolation by distance. STRUCTURE analysis showed that G. inflata populations were structured into three clusters and that the populations belonged to multiple water systems, which suggests that water resources were related to the genetic structure of G. inflata. In addition, the biological characteristics of the perennial species G. inflata, such as its long-lived seeds, asexual reproduction, and oasis ecology, may be related to its resistance to habitat fragmentation. A core collection of G. inflata, that included 57 accessions was further identified, which captured the main allelic diversity of G. inflata. Recent habitat fragmentation has accelerated genetic divergence. The population genetic structure of G. inflata has been shaped by habitat

  1. Molecular markers reveal limited population genetic structure in a North American corvid, Clark's nutcracker (Nucifraga columbiana.

    Directory of Open Access Journals (Sweden)

    Kimberly M Dohms

    Full Text Available The genetic impact of barriers and Pleistocene glaciations on high latitude resident species has not been widely investigated. The Clark's nutcracker is an endemic North American corvid closely associated with Pinus-dominated forests. The nutcracker's encompasses known barriers to dispersal for other species, and glaciated and unglaciated areas. Clark's nutcrackers also irruptively disperse long distances in search of pine seed crops, creating the potential for gene flow among populations. Using the highly variable mitochondrial DNA control region, seven microsatellite loci, and species distribution modeling, we examined the effects of glaciations and dispersal barriers on population genetic patterns and population structure of nutcrackers. We sequenced 900 bp of mitochondrial control region for 169 individuals from 15 populations and analysed seven polymorphic microsatellite loci for 13 populations across the Clark's nutcracker range. We used species distribution modeling and a range of phylogeographic analyses to examine evolutionary history. Clark's nutcracker populations are not highly differentiated throughout their range, suggesting high levels of gene flow among populations, though we did find some evidence of isolation by distance and peripheral isolation. Our analyses suggested expansion from a single refugium after the last glacial maximum, but patterns of genetic diversity and paleodistribution modeling of suitable habitat were inconclusive as to the location of this refugium. Potential barriers to dispersal (e.g. mountain ranges do not appear to restrict gene flow in Clark's nutcracker, and postglacial expansion likely occurred quickly from a single refugium located south of the ice sheets.

  2. Genetic Diversity and Structure among Isolated Populations of the Endangered Gees Golden Langur in Assam, India

    Science.gov (United States)

    Biswas, Jihosuo; Nag, Sudipta; Shil, Joydeep; Umapathy, Govindhaswamy

    2016-01-01

    Gee’s golden langur (Trachypithecus geei) is an endangered colobine primate, endemic to the semi-evergreen and mixed-deciduous forests of Indo-Bhutan border. During the last few decades, extensive fragmentation has caused severe population decline and local extinction of golden langur from several fragments. However, no studies are available on the impact of habitat fragmentation and the genetic diversity of golden langur in the fragmented habitats. The present study aimed to estimate the genetic diversity in the Indian population of golden langur. We sequenced and analyzed around 500 bases of the mitochondrial DNA (mtDNA) hypervariable region-I from 59 fecal samples of wild langur collected from nine forest fragments. Overall, genetic diversity was high (h = 0.934, π = 0.0244) and comparable with other colobines. Populations in smaller fragments showed lower nucleotide diversity compared to the larger forest fragments. The median-joining network of haplotypes revealed a genetic structure that corresponded with the geographical distribution. The Aie and Champabati Rivers were found to be a barrier to gene flow between golden langur populations. In addition, it also established that T. geei is monophyletic but revealed possible hybridization with capped langur, T. pileatus, in the wild. It is hoped that these findings would result in a more scientific approach towards managing the fragmented populations of this enigmatic species. PMID:27564405

  3. Population Structure, Genetic Diversity, and Evolutionary History of Kleinia neriifolia (Asteraceae) on the Canary Islands.

    Science.gov (United States)

    Sun, Ye; Vargas-Mendoza, Carlos F

    2017-01-01

    Kleinia neriifolia Haw. is an endemic species on the Canarian archipelago, this species is widespread in the coastal thicket of all the Canarian islands. In the present study, genetic diversity and population structure of K. neriifolia were investigated using chloroplast gene sequences and nuclear SSR (simple sequence repeat). The differentiation among island populations, the historical demography, and the underlying evolutionary scenarios of this species are further tested based on the genetic data. Chloroplast diversity reveals a strong genetic divergence between eastern islands (Gran Canaria, Fuerteventura, and Lanzarote) and western islands (EI Hierro, La Palma, La Gomera, Tenerife), this west-east genetic divergence may reflect a very beginning of speciation. The evolutionary scenario with highest posterior probabilities suggests Gran Canaria as oldest population with a westward colonization path to Tenerife, La Gomera, La Palma, and EI Hierro, and eastward dispersal path to Lanzarote through Fuerteventura. In the western islands, there is a slight decrease in the effective population size toward areas of recent colonization. However, in the eastern islands, the effective population size increase in Lanzarote relative to Gran Canaria and Fuerteventura. These results further our understanding of the evolution of widespread endemic plants within Canarian archipelago.

  4. Population Structure, Genetic Diversity, and Evolutionary History of Kleinia neriifolia (Asteraceae on the Canary Islands

    Directory of Open Access Journals (Sweden)

    Ye Sun

    2017-06-01

    Full Text Available Kleinia neriifolia Haw. is an endemic species on the Canarian archipelago, this species is widespread in the coastal thicket of all the Canarian islands. In the present study, genetic diversity and population structure of K. neriifolia were investigated using chloroplast gene sequences and nuclear SSR (simple sequence repeat. The differentiation among island populations, the historical demography, and the underlying evolutionary scenarios of this species are further tested based on the genetic data. Chloroplast diversity reveals a strong genetic divergence between eastern islands (Gran Canaria, Fuerteventura, and Lanzarote and western islands (EI Hierro, La Palma, La Gomera, Tenerife, this west–east genetic divergence may reflect a very beginning of speciation. The evolutionary scenario with highest posterior probabilities suggests Gran Canaria as oldest population with a westward colonization path to Tenerife, La Gomera, La Palma, and EI Hierro, and eastward dispersal path to Lanzarote through Fuerteventura. In the western islands, there is a slight decrease in the effective population size toward areas of recent colonization. However, in the eastern islands, the effective population size increase in Lanzarote relative to Gran Canaria and Fuerteventura. These results further our understanding of the evolution of widespread endemic plants within Canarian archipelago.

  5. Colony social organization and population genetic structure of an introduced population of formosan subterranean termite from New Orleans, Louisiana.

    Science.gov (United States)

    Husseneder, Claudia; Messenger, Matthew T; Su, Nan-Yao; Grace, J Kenneth; Vargo, Edward L

    2005-10-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is an invasive species in many parts of the world, including the U.S. mainland. The reasons for its invasive success may have to do with the flexible social and spatial organization of colonies. We investigated the population and breeding structure of 14 C. formosanus colonies in Louis Armstrong Park, New Orleans, LA. This population has been the focus of extensive study for many years, providing the opportunity to relate aspects of colony breeding structure to previous findings on colony characteristics such as body weight and number of workers, wood consumption, and intercolony aggression. Eight colonies were headed by a single pair of outbred reproductives (simple families), whereas six colonies were headed by low numbers of multiple kings and/or queens that were likely the neotenic descendants of the original colony (extended families). Within the foraging area of one large extended family colony, we found genetic differentiation among different collection sites, suggesting the presence of separate reproductive centers. No significant difference between simple family colonies and extended family colonies was found in worker body weight, soldier body weight, foraging area, population size, or wood consumption. However, level of inbreeding within colonies was negatively correlated with worker body weight and positively correlated with wood consumption. Also, genetic distance between colonies was positively correlated with aggression levels, suggesting a genetic basis to nestmate discrimination cues in this termite population. No obvious trait associated with colony reproductive structure was found that could account for the invasion success of this species.

  6. Genetic variation, population structure, and linkage disequilibrium in European elite germplasm of perennial ryegrass

    DEFF Research Database (Denmark)

    Brazauskas, Gintaras; Lenk, Ingo; Pedersen, Morten Greve

    2011-01-01

    Perennial ryegrass (Lolium perenne L.) is a highly valued temperate climate grass species grown as forage crop and for amenity uses. Due to its outbreeding nature and recent domestication, a high degree of genetic diversity is expected among cultivars. The aim of this study was to assess the extent...... of linkage disequilibrium (LD) within European elite germplasm and to evaluate the appropriate methodology for genetic association mapping in perennial ryegrass. A high level of genetic diversity was observed in a set of 380 perennial ryegrass elite genotypes when genotyped with 40 SSRs and 2 STS markers...... and occurred within 0.4 cM across European varieties, when population structure was taken into consideration. However, an extended LD of up to 6.6 cM was detected within the variety Aberdart. High genetic diversity and rapid LD decay provide means for high resolution association mapping in elite materials...

  7. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic Diversity and Population Structure.

    Science.gov (United States)

    De Luca, Daniele; Catanese, Gaetano; Procaccini, Gabriele; Fiorito, Graziano

    2016-01-01

    The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective.

  8. The genetic structure of fermentative vineyard-associated Saccharomyces cerevisiae populations revealed by microsatellite analysis.

    Science.gov (United States)

    Schuller, Dorit; Casal, Margarida

    2007-02-01

    From the analysis of six polymorphic microsatellite loci performed in 361 Saccharomyces cerevisiae isolates, 93 alleles were identified, 52 of them being described for the first time. All these isolates have a distinct mtDNA RFLP pattern. They are derived from a pool of 1620 isolates obtained from spontaneous fermentations of grapes collected in three vineyards of the Vinho Verde Region in Portugal, during the 2001-2003 harvest seasons. For all loci analyzed, observed heterozygosity was 3-4 times lower than the expected value supposing a Hardy-Weinberg equilibrium (random mating and no evolutionary mechanisms acting), indicating a clonal structure and strong populational substructuring. Genetic differences among S. cerevisiae populations were apparent mainly from gradations in allele frequencies rather than from distinctive "diagnostic" genotypes, and the accumulation of small allele-frequency differences across six loci allowed the identification of population structures. Genetic differentiation in the same vineyard in consecutive years was of the same order of magnitude as the differences verified among the different vineyards. Correlation of genetic differentiation with the distance between sampling points within a vineyard suggested a pattern of isolation-by-distance, where genetic divergence in a vineyard increased with size. The continuous use of commercial yeasts has a limited influence on the autochthonous fermentative yeast population collected from grapes and may just slightly change populational structures of strains isolated from sites very close to the winery where they have been used. The present work is the first large-scale approach using microsatellite typing allowing a very fine resolution of indigenous S. cerevisiae populations isolated from vineyards.

  9. Assessment of Genetic Heterogeneity in Structured Plant Populations Using Multivariate Whole-Genome Regression Models.

    Science.gov (United States)

    Lehermeier, Christina; Schön, Chris-Carolin; de Los Campos, Gustavo

    2015-09-01

    Plant breeding populations exhibit varying levels of structure and admixture; these features are likely to induce heterogeneity of marker effects across subpopulations. Traditionally, structure has been dealt with as a potential confounder, and various methods exist to "correct" for population stratification. However, these methods induce a mean correction that does not account for heterogeneity of marker effects. The animal breeding literature offers a few recent studies that consider modeling genetic heterogeneity in multibreed data, using multivariate models. However, these methods have received little attention in plant breeding where population structure can have different forms. In this article we address the problem of analyzing data from heterogeneous plant breeding populations, using three approaches: (a) a model that ignores population structure [A-genome-based best linear unbiased prediction (A-GBLUP)], (b) a stratified (i.e., within-group) analysis (W-GBLUP), and (c) a multivariate approach that uses multigroup data and accounts for heterogeneity (MG-GBLUP). The performance of the three models was assessed on three different data sets: a diversity panel of rice (Oryza sativa), a maize (Zea mays L.) half-sib panel, and a wheat (Triticum aestivum L.) data set that originated from plant breeding programs. The estimated genomic correlations between subpopulations varied from null to moderate, depending on the genetic distance between subpopulations and traits. Our assessment of prediction accuracy features cases where ignoring population structure leads to a parsimonious more powerful model as well as others where the multivariate and stratified approaches have higher predictive power. In general, the multivariate approach appeared slightly more robust than either the A- or the W-GBLUP. Copyright © 2015 by the Genetics Society of America.

  10. Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea

    KAUST Repository

    Nanninga, Gerrit B.

    2014-01-20

    The relatively recent fields of terrestrial landscape and marine seascape genetics seek to identify the influence of biophysical habitat features on the spatial genetic structure of populations or individuals. Over the last few years, there has been accumulating evidence for the effect of environmental heterogeneity on patterns of gene flow and connectivity in marine systems. Here, we investigate the population genetic patterns of an anemonefish, Amphiprion bicinctus, along the Saudi Arabian coast of the Red Sea. We collected nearly one thousand samples from 19 locations, spanning approximately 1500 km, and genotyped them at 38 microsatellite loci. Patterns of gene flow appeared to follow a stepping-stone model along the northern and central Red Sea, which was disrupted by a distinct genetic break at a latitude of approximately 19°N. The Red Sea is characterized by pronounced environmental gradients along its axis, roughly separating the northern and central from the southern basin. Using mean chlorophyll-a concentrations as a proxy for this gradient, we ran tests of isolation by distance (IBD, R2 = 0.52) and isolation by environment (IBE, R2 = 0.64), as well as combined models using partial Mantel tests and multiple matrix regression with randomization (MMRR). We found that genetic structure across our sampling sites may be best explained by a combined model of IBD and IBE (Mantel: R2 = 0.71, MMRR: R2 = 0.86). Our results highlight the potential key role of environmental patchiness in shaping patterns of gene flow in species with pelagic larval dispersal. We support growing calls for the integration of biophysical habitat characteristics into future studies of population genetic structure. © 2014 John Wiley & Sons Ltd.

  11. Environmental gradients predict the genetic population structure of a coral reef fish in the Red Sea

    KAUST Repository

    Nanninga, Gerrit B.; Saenz Agudelo, Pablo; Manica, Andrea; Berumen, Michael L.

    2014-01-01

    The relatively recent fields of terrestrial landscape and marine seascape genetics seek to identify the influence of biophysical habitat features on the spatial genetic structure of populations or individuals. Over the last few years, there has been accumulating evidence for the effect of environmental heterogeneity on patterns of gene flow and connectivity in marine systems. Here, we investigate the population genetic patterns of an anemonefish, Amphiprion bicinctus, along the Saudi Arabian coast of the Red Sea. We collected nearly one thousand samples from 19 locations, spanning approximately 1500 km, and genotyped them at 38 microsatellite loci. Patterns of gene flow appeared to follow a stepping-stone model along the northern and central Red Sea, which was disrupted by a distinct genetic break at a latitude of approximately 19°N. The Red Sea is characterized by pronounced environmental gradients along its axis, roughly separating the northern and central from the southern basin. Using mean chlorophyll-a concentrations as a proxy for this gradient, we ran tests of isolation by distance (IBD, R2 = 0.52) and isolation by environment (IBE, R2 = 0.64), as well as combined models using partial Mantel tests and multiple matrix regression with randomization (MMRR). We found that genetic structure across our sampling sites may be best explained by a combined model of IBD and IBE (Mantel: R2 = 0.71, MMRR: R2 = 0.86). Our results highlight the potential key role of environmental patchiness in shaping patterns of gene flow in species with pelagic larval dispersal. We support growing calls for the integration of biophysical habitat characteristics into future studies of population genetic structure. © 2014 John Wiley & Sons Ltd.

  12. Genetic diversity and population structure of Lantana camara in India indicates multiple introductions and gene flow.

    Science.gov (United States)

    Ray, A; Quader, S

    2014-05-01

    Lantana camara is a highly invasive plant, which has spread over 60 countries and island groups of Asia, Africa and Australia. In India, it was introduced in the early nineteenth century, since when it has expanded and gradually established itself in almost every available ecosystem. We investigated the genetic diversity and population structure of this plant in India in order to understand its introduction, subsequent range expansion and gene flow. A total of 179 individuals were sequenced at three chloroplast loci and 218 individuals were genotyped for six nuclear microsatellites. Both chloroplasts (nine haplotypes) and microsatellites (83 alleles) showed high genetic diversity. Besides, each type of marker confirmed the presence of private polymorphism. We uncovered low to medium population structure in both markers, and found a faint signal of isolation by distance with microsatellites. Bayesian clustering analyses revealed multiple divergent genetic clusters. Taken together, these findings (i.e. high genetic diversity with private alleles and multiple genetic clusters) suggest that Lantana was introduced multiple times and gradually underwent spatial expansion with recurrent gene flow. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  13. Population Genetic Structure of red mullet (Mullus barbatus L. in Turkish Sea Based on Mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Fevzi Bardakci

    2014-06-01

    Full Text Available Aim: Mullus barbatus (red mullet is a commercial fish species naturally distributed from Eastern Atlantic: British Isles to Dakar, Senegal, Canary Islands, Mediterranean and Black Sea. There is no study in our knowledge aimed to determine population genetic structuring and genetic stocks of M. barbatus species in territorial waters of Turkey. Only a few studies have been carried out on their genetics in Turkey which are limited to determination of phylogenetic relationships between species in familia of Mullidae. In this study population genetic structure and genetic diversity of red mullet (Mullus barbatus L. in Turkish Seas was determined using sequence data of mitochondrial DNA control region. Material and Methods: Red mullet sample were collected from the Mediterranean Sea (Mersin, Antalya, the Aegean Sea (Ayvalık, Marmara Sea (Bandırma, the Black Sea (Zonguldak, Trabzon, Fatsa and Hopa. mtDNA control region of 410 bp in length were amplified and subsequently sequenced. The sequences were aligned in Bioedit ver 7.1.3.0 (Hall, 1999. Genetic distance between populations (γst (Nei, 1982, haplotype diversities (h, nucleotide diversities(π were detected by DNAsp ver. 5.10 (Rozas et al., 2003. Based on pairwise distance matrix data a UPGMA dendogram was constructed by MEGA 5.05 (Kumar et al., 2004. To explain genetic structuring of samples we performed analysis of molecular variance (AMOVA using Arlequin ver. 3.5 (Excoffier et al., 2010. Results: In total 190 individuals were studied and alignment of partial control region of mtDNA revealed 98 mtDNA haplotypes with 75 polymorphic sites. The average of nucleotide diversities and haplotype diversities were calculated 0,015 and 0,963 respectively. Haplotype and nucleotide (π diversities among the populations ranged from 0,907 (Zonguldak to 0,972 (Trabzon and from 0.0155 (Trabzon to 0,0114 (Bandırma, respectively. Distance tree based on gammast pairwise comparisons revealed two main clades, the

  14. Population Genetic Structure and Evidence of Demographic Expansion of the Ayu (Plecoglossus altivelis in East Asia

    Directory of Open Access Journals (Sweden)

    Ye-Seul Kwan

    2012-10-01

    Full Text Available Plecoglossus altivelis (ayu is an amphidromous fish widely distributed in Northeastern Asia from the East China Sea to the northern Japanese coastal waters, encompassing the Korean Peninsula within its range. The shore lines of northeastern region in Asia have severely fluctuated following glaciations in the Quaternary. In the present study, we investigate the population genetic structure and historical demographic change of P. altivelis at a population level in East Asia. Analysis of molecular variance (AMOVA based on 244 mitochondrial control region DNA sequences clearly showed that as the sampling scope extended to a larger geographic area, genetic differentiation began to become significant, particularly among Northeastern populations. A series of hierarchical AMOVA could detect the genetic relationship of three closely located islands between Korea and Japan that might have been tightly connected by the regional Tsushima current. Neutrality and mismatch distribution analyses revealed a strong signature of a recent population expansion of P. altivelis in East Asia, estimated at 126 to 391 thousand years ago during the late Pleistocene. Therefore it suggests that the present population of P. altivelis traces back to its approximate demographic change long before the last glacial maximum. This contrasts our a priori expectation that the most recent glacial event might have the most crucial effect on the present day demography of marine organisms through bottleneck and subsequent increase of effective population size in this region.

  15. Genetic diversity and population structure of the Guinea pig (Cavia porcellus, Rodentia, Caviidae) in Colombia.

    Science.gov (United States)

    Burgos-Paz, William; Cerón-Muñoz, Mario; Solarte-Portilla, Carlos

    2011-10-01

    The aim was to establish the genetic diversity and population structure of three guinea pig lines, from seven production zones located in Nariño, southwest Colombia. A total of 384 individuals were genotyped with six microsatellite markers. The measurement of intrapopulation diversity revealed allelic richness ranging from 3.0 to 6.56, and observed heterozygosity (Ho) from 0.33 to 0.60, with a deficit in heterozygous individuals. Although statistically significant (p guinea-pig lines and populations, coincided with the historical and geographical distribution of the populations. Likewise, high genetic identity between improved and native lines was established. An analysis of group probabilistic assignment revealed that each line should not be considered as a genetically homogeneous group. The findings corroborate the absorption of native genetic material into the improved line introduced into Colombia from Peru. It is necessary to establish conservation programs for native-line individuals in Nariño, and control genealogical and production records in order to reduce the inbreeding values in the populations.

  16. Genetic diversity and population structure of Brassica oleracea germplasm in Ireland using SSR markers.

    Science.gov (United States)

    El-Esawi, Mohamed A; Germaine, Kieran; Bourke, Paula; Malone, Renee

    2016-01-01

    The most economically important Brassica oleracea species is endangered in Ireland, with no prior reported genetic characterization studies. This study assesses the genetic diversity, population structure and relationships of B. oleracea germplasm in Ireland using microsatellite (SSRs) markers. A total of 118 individuals from 25 accessions of Irish B. oleracea were genotyped. The SSR loci used revealed a total of 47 alleles. The observed heterozygosity (0.699) was higher than the expected one (0.417). Moreover, the average values of fixation indices (F) were negative, indicating excess of heterozygotes in all accessions. Polymorphic information content (PIC) values of SSR loci ranged from 0.27 to 0.66, with an average of 0.571, and classified 10 loci as informative markers (PIC>0.5) to differentiate among the accessions studied. The genetic differentiation among accessions showed that 27.1% of the total genetic variation was found among accessions, and 72.9% of the variation resided within accessions. The averages of total heterozygosity (H(T)) and intra-accession genetic diversity (H(S)) were 0.577 and 0.442, respectively. Cluster analysis of SSR data distinguished among kale and Brussels sprouts cultivars. This study provided a new insight into the exploitation of the genetically diverse spring cabbages accessions, revealing a high genetic variation, as potential resources for future breeding programs. SSR loci were effective for differentiation among the accessions studied. Copyright © 2016 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  17. Gene flow and genetic structure in the Galician population (NW Spain according to Alu insertions

    Directory of Open Access Journals (Sweden)

    Diéguez Lois

    2008-12-01

    Full Text Available Abstract Background The most recent Alu insertions reveal different degrees of polymorphism in human populations, and a series of characteristics that make them particularly suitable genetic markers for Human Biology studies. This has led these polymorphisms to be used to analyse the origin and phylogenetic relationships between contemporary human groups. This study analyses twelve Alu sequences in a sample of 216 individuals from the autochthonous population of Galicia (NW Spain, with the aim of studying their genetic structure and phylogenetic position with respect to the populations of Western and Central Europe and North Africa, research that is of special interest in revealing European population dynamics, given the peculiarities of the Galician population due to its geographical situation in western Europe, and its historical vicissitudes. Results The insertion frequencies of eleven of the Alu elements analysed were within the variability range of European populations, while Yb8NBC125 proved to be the lowest so far recorded to date in Europe. Taking the twelve polymorphisms into account, the GD value for the Galician population was 0.268. The comparative analyses carried out using the MDS, NJ and AMOVA methods reveal the existence of spatial heterogeneity, and identify three population groups that correspond to the geographic areas of Western-Central Europe, Eastern Mediterranean Europe and North Africa. Galicia is shown to be included in the Western-Central European cluster, together with other Spanish populations. When only considering populations from Mediterranean Europe, the Galician population revealed a degree of genetic flow similar to that of the majority of the populations from this geographic area. Conclusion The results of this study reveal that the Galician population, despite its geographic situation in the western edge of the European continent, occupies an intermediate position in relation to other European populations in

  18. Genetic population structure of the desert shrub species lycium ruthenicum inferred from chloroplast dna

    International Nuclear Information System (INIS)

    Chen, H.; Yonezawa, T.

    2014-01-01

    Lycium ruthenicum (Solananeae), a spiny shrub mostly distributed in the desert regions of north and northwest China, has been shown to exhibit high tolerance to the extreme environment. In this study, the phylogeography and evolutionary history of L. ruthenicum were examined, on the basis of 80 individuals from eight populations. Using the sequence variations of two spacer regions of chloroplast DNA (trnH-psbA and rps16-trnK) , the absence of a geographic component in the chloroplast DNA genetic structure was identified (GST = 0.351, NST = 0.304, NST< GST), which was consisted with the result of SAMOVA, suggesting weak phylogeographic structure of this species. Phylogenetic and network analyses showed that a total of 10 haplotypes identified in the present study clustered into two clades, in which clade I harbored the ancestral haplotypes that inferred two independent glacial refugia in the middle of Qaidam Basin and the western Inner Mongolia. The existence of regional evolutionary differences was supported by GENETREE, which revealed that one of the population in Qaidam Basin and the two populations in Tarim Basin had experienced rapid expansion, and the other populations retained relatively stable population size during the Pleistocene . Given the results of long-term gene flow and pairwise differences, strong gene flow was insufficient to reduce the genetic differentiation among populations or within populations, probably due to the genetic composition containing a common haplotype and the high number of private haplotypes fixed for most of the population. The divergence times of different lineages were consistent with the rapid uplift phases of the Qinghai-Tibetan Plateau and the initiation and expansion of deserts in northern China, suggesting that the origin and evolution of L. ruthenicum were strongly influenced by Quaternary environment changes. (author)

  19. Population size, center-periphery, and seed dispersers' effects on the genetic diversity and population structure of the Mediterranean relict shrub Cneorum tricoccon.

    Science.gov (United States)

    Lázaro-Nogal, Ana; Matesanz, Silvia; García-Fernández, Alfredo; Traveset, Anna; Valladares, Fernando

    2017-09-01

    The effect of population size on population genetic diversity and structure has rarely been studied jointly with other factors such as the position of a population within the species' distribution range or the presence of mutualistic partners influencing dispersal. Understanding these determining factors for genetic variation is critical for conservation of relict plants that are generally suffering from genetic deterioration. Working with 16 populations of the vulnerable relict shrub Cneorum tricoccon throughout the majority of its western Mediterranean distribution range, and using nine polymorphic microsatellite markers, we examined the effects of periphery (peripheral vs. central), population size (large vs. small), and seed disperser (introduced carnivores vs. endemic lizards) on the genetic diversity and population structure of the species. Contrasting genetic variation ( H E : 0.04-0.476) was found across populations. Peripheral populations showed lower genetic diversity, but this was dependent on population size. Large peripheral populations showed high levels of genetic diversity, whereas small central populations were less diverse. Significant isolation by distance was detected, indicating that the effect of long-distance gene flow is limited relative to that of genetic drift, probably due to high selfing rates ( F IS  = 0.155-0.887), restricted pollen flow, and ineffective seed dispersal. Bayesian clustering also supported the strong population differentiation and highly fragmented structure. Contrary to expectations, the type of disperser showed no significant effect on either population genetic diversity or structure. Our results challenge the idea of an effect of periphery per se that can be mainly explained by population size, drawing attention to the need of integrative approaches considering different determinants of genetic variation. Furthermore, the very low genetic diversity observed in several small populations and the strong among-population

  20. Microsatellite Analysis of the Population Genetic Structure of Anolis carolinensis Introduced to the Ogasawara Islands.

    Science.gov (United States)

    Sugawara, Hirotaka; Takahashi, Hiroo; Hayashi, Fumio

    2015-01-01

    DNA analysis can reveal the origins and dispersal patterns of invasive species. The green anole Anolis carolinensis is one such alien animal, which has been dispersed widely by humans from its native North America to many Pacific Ocean islands. In the Ogasawara (Bonin) Islands, this anole was recorded from Chichi-jima at the end of the 1960s, and then from Haha-jima in the early 1980s. These two islands are inhabited. In 2013, it was also found on the uninhabited Ani-jima, close to Chichi-jima. Humans are thought to have introduced the anole to Haha-jima, while the mode of introduction to Ani-jima is unknown. To clarify its dispersal patterns within and among these three islands, we assessed the fine-scale population genetic structure using five microsatellite loci. The results show a homogeneous genetic structure within islands, but different genetic structures among islands, suggesting that limited gene flow occurs between islands. The recently established Ani-jima population may have originated from several individuals simultaneously, or by repeated immigration from Chichi-jima. We must consider frequent incursions among these islands to control these invasive lizard populations and prevent their negative impact on native biodiversity.

  1. Genetic Diversity and Geographic Population Structure of Bovine Neospora caninum Determined by Microsatellite Genotyping Analysis

    Science.gov (United States)

    Regidor-Cerrillo, Javier; Díez-Fuertes, Francisco; García-Culebras, Alicia; Moore, Dadín P.; González-Warleta, Marta; Cuevas, Carmen; Schares, Gereon; Katzer, Frank; Pedraza-Díaz, Susana; Mezo, Mercedes; Ortega-Mora, Luis M.

    2013-01-01

    The cyst-forming protozoan parasite Neospora caninum is one of the main causes of bovine abortion worldwide and is of great economic importance in the cattle industry. Recent studies have revealed extensive genetic variation among N . caninum isolates based on microsatellite sequences (MSs). MSs may be suitable molecular markers for inferring the diversity of parasite populations, molecular epidemiology and the basis for phenotypic variations in N . caninum , which have been poorly defined. In this study, we evaluated nine MS markers using a panel of 11 N . caninum -derived reference isolates from around the world and 96 N . caninum bovine clinical samples and one ovine clinical sample collected from four countries on two continents, including Spain, Argentina, Germany and Scotland, over a 10-year period. These markers were used as molecular tools to investigate the genetic diversity, geographic distribution and population structure of N . caninum . Multilocus microsatellite genotyping based on 7 loci demonstrated high levels of genetic diversity in the samples from all of the different countries, with 96 microsatellite multilocus genotypes (MLGs) identified from 108 N . caninum samples. Geographic sub-structuring was present in the country populations according to pairwise F ST. Principal component analysis (PCA) and Neighbor Joining tree topologies also suggested MLG segregation partially associated with geographical origin. An analysis of the MLG relationships, using eBURST, confirmed that the close genetic relationship observed between the Spanish and Argentinean populations may be the result of parasite migration (i.e., the introduction of novel MLGs from Spain to South America) due to cattle movement. The eBURST relationships also revealed genetically different clusters associated with the abortion. The presence of linkage disequilibrium, the co-existence of specific MLGs to individual farms and eBURST MLG relationships suggest a predominant clonal

  2. Population Genetic Structure of the Tropical Two-Wing Flyingfish (Exocoetus volitans.

    Directory of Open Access Journals (Sweden)

    Eric A Lewallen

    Full Text Available Delineating populations of pantropical marine fish is a difficult process, due to widespread geographic ranges and complex life history traits in most species. Exocoetus volitans, a species of two-winged flyingfish, is a good model for understanding large-scale patterns of epipelagic fish population structure because it has a circumtropical geographic range and completes its entire life cycle in the epipelagic zone. Buoyant pelagic eggs should dictate high local dispersal capacity in this species, although a brief larval phase, small body size, and short lifespan may limit the dispersal of individuals over large spatial scales. Based on these biological features, we hypothesized that E. volitans would exhibit statistically and biologically significant population structure defined by recognized oceanographic barriers. We tested this hypothesis by analyzing cytochrome b mtDNA sequence data (1106 bps from specimens collected in the Pacific, Atlantic and Indian oceans (n = 266. AMOVA, Bayesian, and coalescent analytical approaches were used to assess and interpret population-level genetic variability. A parsimony-based haplotype network did not reveal population subdivision among ocean basins, but AMOVA revealed limited, statistically significant population structure between the Pacific and Atlantic Oceans (ΦST = 0.035, p<0.001. A spatially-unbiased Bayesian approach identified two circumtropical population clusters north and south of the Equator (ΦST = 0.026, p<0.001, a previously unknown dispersal barrier for an epipelagic fish. Bayesian demographic modeling suggested the effective population size of this species increased by at least an order of magnitude ~150,000 years ago, to more than 1 billion individuals currently. Thus, high levels of genetic similarity observed in E. volitans can be explained by high rates of gene flow, a dramatic and recent population expansion, as well as extensive and consistent dispersal throughout the geographic

  3. Population Genetic Structure of the Tropical Two-Wing Flyingfish (Exocoetus volitans)

    Science.gov (United States)

    Lewallen, Eric A.; Bohonak, Andrew J.; Bonin, Carolina A.; van Wijnen, Andre J.; Pitman, Robert L.; Lovejoy, Nathan R.

    2016-01-01

    Delineating populations of pantropical marine fish is a difficult process, due to widespread geographic ranges and complex life history traits in most species. Exocoetus volitans, a species of two-winged flyingfish, is a good model for understanding large-scale patterns of epipelagic fish population structure because it has a circumtropical geographic range and completes its entire life cycle in the epipelagic zone. Buoyant pelagic eggs should dictate high local dispersal capacity in this species, although a brief larval phase, small body size, and short lifespan may limit the dispersal of individuals over large spatial scales. Based on these biological features, we hypothesized that E. volitans would exhibit statistically and biologically significant population structure defined by recognized oceanographic barriers. We tested this hypothesis by analyzing cytochrome b mtDNA sequence data (1106 bps) from specimens collected in the Pacific, Atlantic and Indian oceans (n = 266). AMOVA, Bayesian, and coalescent analytical approaches were used to assess and interpret population-level genetic variability. A parsimony-based haplotype network did not reveal population subdivision among ocean basins, but AMOVA revealed limited, statistically significant population structure between the Pacific and Atlantic Oceans (ΦST = 0.035, p<0.001). A spatially-unbiased Bayesian approach identified two circumtropical population clusters north and south of the Equator (ΦST = 0.026, p<0.001), a previously unknown dispersal barrier for an epipelagic fish. Bayesian demographic modeling suggested the effective population size of this species increased by at least an order of magnitude ~150,000 years ago, to more than 1 billion individuals currently. Thus, high levels of genetic similarity observed in E. volitans can be explained by high rates of gene flow, a dramatic and recent population expansion, as well as extensive and consistent dispersal throughout the geographic range of the

  4. Rangewide genetic analysis of Lesser Prairie-Chicken reveals population structure, range expansion, and possible introgression

    Science.gov (United States)

    Oyler-McCance, Sara J.; DeYoung, Randall W; Fike, Jennifer; Hagen, Christian A.; Johnson, Jeff A.; Larsson, Lena C.; Patten, Michael

    2016-01-01

    The distribution of the Lesser Prairie-Chicken (Tympanuchus pallidicinctus) has been markedly reduced due to loss and fragmentation of habitat. Portions of the historical range, however, have been recolonized and even expanded due to planting of conservation reserve program (CRP) fields that provide favorable vegetation structure for Lesser Prairie-Chickens. The source population(s) feeding the range expansion is unknown, yet has resulted in overlap between Lesser and Greater Prairie-Chickens (T. cupido) increasing the potential for hybridization. Our objectives were to characterize connectivity and genetic diversity among populations, identify source population(s) of recent range expansion, and examine hybridization with the Greater Prairie-Chicken. We analyzed 640 samples from across the range using 13 microsatellites. We identified three to four populations corresponding largely to ecoregions. The Shinnery Oak Prairie and Sand Sagebrush Prairie represented genetically distinct populations (F ST > 0.034 and F ST > 0.023 respectively). The Shortgrass/CRP Mosaic and Mixed Grass ecoregions appeared admixed (F ST = 0.009). Genetic diversity was similar among ecoregions and N e ranged from 142 (95 % CI 99–236) for the Shortgrass/CRP Mosaic to 296 (95 % CI 233–396) in the Mixed Grass Prairie. No recent migration was detected among ecoregions, except asymmetric dispersal from both the Mixed Grass Prairie and to a lesser extent the Sand Sagebrush Prairie north into adjacent Shortgrass/CRP Mosaic (m = 0.207, 95 % CI 0.116–0.298, m = 0.097, 95 % CI 0.010–0.183, respectively). Indices investigating potential hybridization in the Shortgrass/CRP Mosaic revealed that six of the 13 individuals with hybrid phenotypes were significantly admixed suggesting hybridization. Continued monitoring of diversity within and among ecoregions is warranted as are actions promoting genetic connectivity and range expansion.

  5. Three Molecular Markers Show No Evidence of Population Genetic Structure in the Gouldian Finch (Erythrura gouldiae.

    Directory of Open Access Journals (Sweden)

    Peri E Bolton

    Full Text Available Assessment of genetic diversity and connectivity between regions can inform conservation managers about risk of inbreeding, potential for adaptation and where population boundaries lie. The Gouldian finch (Erythrura gouldiae is a threatened species in northern Australia, occupying the savannah woodlands of the biogeographically complex monsoon tropics. We present the most comprehensive population genetic analysis of diversity and structure the Gouldian finch using 16 microsatellite markers, mitochondrial control region and 3,389 SNPs from genotyping-by-sequencing. Mitochondrial diversity is compared across three related, co-distributed finches with different conservation threat-statuses. There was no evidence of genetic differentiation across the western part of the range in any of the molecular markers, and haplotype diversity but not richness was lower than a common co-distributed species. Individuals within the panmictic population in the west may be highly dispersive within this wide area, and we urge caution when interpreting anecdotal observations of changes to the distribution and/or flock sizes of Gouldian finch populations as evidence of overall changes to the population size of this species.

  6. Living in isolation - population structure, reproduction, and genetic variation of the endangered plant species Dianthus gratianopolitanus (Cheddar pink).

    Science.gov (United States)

    Putz, Christina M; Schmid, Christoph; Reisch, Christoph

    2015-09-01

    The endangered plant species Dianthus gratianopolitanus exhibits a highly fragmented distribution range comprising many isolated populations. Based upon this pattern of distribution, we selected a study region in Switzerland with a lower magnitude of isolation (Swiss Jura) and another study region in Germany with a higher degree of isolation (Franconian Jura). In each region, we chose ten populations to analyze population structure, reproduction, and genetic variation in a comparative approach. Therefore, we determined population density, cushion size, and cushion density to analyze population structure, investigated reproductive traits, including number of flowers, capsules, and germination rate, and analyzed amplified fragment length polymorphisms to study genetic variation. Population and cushion density were credibly higher in German than in Swiss populations, whereas reproductive traits and genetic variation within populations were similar in both study regions. However, genetic variation among populations and isolation by distance were stronger in Germany than in Switzerland. Generally, cushion size and density as well as flower and capsule production increased with population size and density, whereas genetic variation decreased with population density. In contrast to our assumptions, we observed denser populations and cushions in the region with the higher magnitude of isolation, whereas reproductive traits and genetic variation within populations were comparable in both regions. This corroborates the assumption that stronger isolation must not necessarily result in the loss of fitness and genetic variation. Furthermore, it supports our conclusion that the protection of strongly isolated populations contributes essentially to the conservation of a species' full evolutionary potential.

  7. Pulses of movement across the sea ice: population connectivity and temporal genetic structure in the arctic fox.

    Science.gov (United States)

    Norén, Karin; Carmichael, Lindsey; Fuglei, Eva; Eide, Nina E; Hersteinsson, Pall; Angerbjörn, Anders

    2011-08-01

    Lemmings are involved in several important functions in the Arctic ecosystem. The Arctic fox (Vulpes lagopus) can be divided into two discrete ecotypes: "lemming foxes" and "coastal foxes". Crashes in lemming abundance can result in pulses of "lemming fox" movement across the Arctic sea ice and immigration into coastal habitats in search for food. These pulses can influence the genetic structure of the receiving population. We have tested the impact of immigration on the genetic structure of the "coastal fox" population in Svalbard by recording microsatellite variation in seven loci for 162 Arctic foxes sampled during the summer and winter over a 5-year period. Genetic heterogeneity and temporal genetic shifts, as inferred by STRUCTURE simulations and deviations from Hardy-Weinberg proportions, respectively, were recorded. Maximum likelihood estimates of movement as well as STRUCTURE simulations suggested that both immigration and genetic mixture are higher in Svalbard than in the neighbouring "lemming fox" populations. The STRUCTURE simulations and AMOVA revealed there are differences in genetic composition of the population between summer and winter seasons, indicating that immigrants are not present in the reproductive portion of the Svalbard population. Based on these results, we conclude that Arctic fox population structure varies with time and is influenced by immigration from neighbouring populations. The lemming cycle is likely an important factor shaping Arctic fox movement across sea ice and the subsequent population genetic structure, but is also likely to influence local adaptation to the coastal habitat and the prevalence of diseases.

  8. A bayesian approach to inferring the genetic population structure of sugarcane accessions from INTA (Argentina

    Directory of Open Access Journals (Sweden)

    Mariana Inés Pocovi

    2015-06-01

    Full Text Available Understanding the population structure and genetic diversity in sugarcane (Saccharum officinarum L. accessions from INTA germplasm bank (Argentina will be of great importance for germplasm collection and breeding improvement as it will identify diverse parental combinations to create segregating progenies with maximum genetic variability for further selection. A Bayesian approach, ordination methods (PCoA, Principal Coordinate Analysis and clustering analysis (UPGMA, Unweighted Pair Group Method with Arithmetic Mean were applied to this purpose. Sixty three INTA sugarcane hybrids were genotyped for 107 Simple Sequence Repeat (SSR and 136 Amplified Fragment Length Polymorphism (AFLP loci. Given the low probability values found with AFLP for individual assignment (4.7%, microsatellites seemed to perform better (54% for STRUCTURE analysis that revealed the germplasm to exist in five optimum groups with partly corresponding to their origin. However clusters shown high degree of admixture, F ST values confirmed the existence of differences among groups. Dissimilarity coefficients ranged from 0.079 to 0.651. PCoA separated sugarcane in groups that did not agree with those identified by STRUCTURE. The clustering including all genotypes neither showed resemblance to populations find by STRUCTURE, but clustering performed considering only individuals displaying a proportional membership > 0.6 in their primary population obtained with STRUCTURE showed close similarities. The Bayesian method indubitably brought more information on cultivar origins than classical PCoA and hierarchical clustering method.

  9. Proportioning whole-genome single-nucleotide-polymorphism diversity for the identification of geographic population structure and genetic ancestry

    NARCIS (Netherlands)

    O. Lao Grueso (Oscar); K. van Duijn (Kate); P. Kersbergen (Paula); P. de Knijff (Peter); M.H. Kayser (Manfred)

    2006-01-01

    textabstractThe identification of geographic population structure and genetic ancestry on the basis of a minimal set of genetic markers is desirable for a wide range of applications in medical and forensic sciences. However, the absence of sharp discontinuities in the neutral genetic diversity among

  10. Genetic structure and admixture between Bayash Roma from northwestern Croatia and general Croatian population: evidence from Bayesian clustering analysis.

    Science.gov (United States)

    Novokmet, Natalija; Galov, Ana; Marjanović, Damir; Škaro, Vedrana; Projić, Petar; Lauc, Gordan; Primorac, Dragan; Rudan, Pavao

    2015-01-01

    The European Roma represent a transnational mosaic of minority population groups with different migration histories and contrasting experiences in their interactions with majority populations across the European continent. Although historical genetic contributions of European lineages to the Roma pool were investigated before, the extent of contemporary genetic admixture between Bayash Roma and non-Romani majority population remains elusive. The aim of this study was to assess the genetic structure of the Bayash Roma population from northwestern Croatia and the general Croatian population and to investigate the extent of admixture between them. A set of genetic data from two original studies (100 Bayash Roma from northwestern Croatia and 195 individuals from the general Croatian population) was analyzed by Bayesian clustering implemented in STRUCTURE software. By re-analyzing published data we intended to focus for the first time on genetic differentiation and structure and in doing so we clearly pointed to the importance of considering social phenomena in understanding genetic structuring. Our results demonstrated that two population clusters best explain the genetic structure, which is consistent with social exclusion of Roma and the demographic history of Bayash Roma who have settled in NW Croatia only about 150 years ago and mostly applied rules of endogamy. The presence of admixture was revealed, while the percentage of non-Croatian individuals in general Croatian population was approximately twofold higher than the percentage of non-Romani individuals in Roma population corroborating the presence of ethnomimicry in Roma.

  11. Spatial extent of analysis influences observed patterns of population genetic structure in a widespread darter species (Percidae)

    Science.gov (United States)

    Argentina, Jane E.; Angermeier, Paul L.; Hallerman, Eric M.; Welsh, Stuart A.

    2018-01-01

    Connectivity among stream fish populations allows for exchange of genetic material and helps maintain genetic diversity, adaptive potential and population stability over time. Changes in species demographics and population connectivity have the potential to permanently alter the genetic patterns of stream fish, although these changes through space and time are variable and understudied in small‐bodied freshwater fish.As a spatially widespread, common species of benthic freshwater fish, the variegate darter (Etheostoma variatum) is a model species for documenting how patterns of genetic structure and diversity respond to increasing isolation due to large dams and how scale of study may shape our understanding of these patterns. We sampled variegate darters from 34 sites across their range in the North American Ohio River basin and examined how patterns of genetic structure and diversity within and between populations responded to historical population changes and dams within and between populations.Spatial scale and configuration of genetic structure varied across the eight identified populations, from tributaries within a watershed, to a single watershed, to multiple watersheds that encompass Ohio River mainstem habitats. This multiwatershed pattern of population structuring suggests genetic dispersal across large distances was and may continue to be common, although some populations remain isolated despite no apparent structural dispersal barriers. Populations with low effective population sizes and evidence of past population bottlenecks showed low allelic richness, but diversity patterns were not related to watershed size, a surrogate for habitat availability. Pairwise genetic differentiation (FST) increased with fluvial distance and was related to both historic and contemporary processes. Genetic diversity changes were influenced by underlying population size and stability, and while instream barriers were not strong determinants of genetic structuring or

  12. Fish population genetic structure shaped by hydroelectric power plants in the upper Rhine catchment.

    Science.gov (United States)

    Gouskov, Alexandre; Reyes, Marta; Wirthner-Bitterlin, Lisa; Vorburger, Christoph

    2016-02-01

    The Rhine catchment in Switzerland has been transformed by a chain of hydroelectric power stations. We addressed the impact of fragmentation on the genetic structure of fish populations by focusing on the European chub (Squalius cephalus). This fish species is not stocked and copes well with altered habitats, enabling an assessment of the effects of fragmentation per se. Using microsatellites, we genotyped 2133 chub from 47 sites within the catchment fragmented by 37 hydroelectric power stations, two weirs and the Rhine Falls. The shallow genetic population structure reflected drainage topology and was affected significantly by barriers to migration. The effect of power stations equipped with fishpasses on genetic differentiation was detectable, albeit weaker than that of man-made barriers without fishpasses. The Rhine Falls as the only long-standing natural obstacle (formed 14 000 to 17 000 years ago) also had a strong effect. Man-made barriers also exacerbated the upstream decrease in allelic diversity in the catchment, particularly when lacking fishpasses. Thus, existing fishpasses do have the desired effect of mitigating fragmentation, but barriers still reduce population connectivity in a fish that traverses fishpasses better than many other species. Less mobile species are likely to be affected more severely.

  13. Genetic structure of typical and atypical populations of Candida albicans from Africa.

    Science.gov (United States)

    Forche, A; Schönian, G; Gräser, Y; Vilgalys, R; Mitchell, T G

    1999-11-01

    Atypical isolates of the pathogenic yeast Candida albicans have been reported with increasing frequency. To investigate the origin of a set of atypical isolates and their relationship to typical isolates, we employed a combination of molecular phylogenetic and population genetic analyses using rDNA sequencing, PCR fingerprinting, and analysis of co-dominant DNA nucleotide polymorphisms to characterize the population structure of one typical and two atypical populations of C. albicans from Angola and Madagascar. The extent of clonality and recombination was assessed in each population. The analyses revealed that the structure of all three populations of C. albicans was predominantly clonal but, as in previous studies, there was also evidence for recombination. Allele frequencies differed significantly between the typical and the atypical populations, suggesting very low levels of gene flow between them. However, allele frequencies were quite similar in the two atypical C. albicans populations, suggesting that they are closely related. Phylogenetic analysis of partial sequences encoding the nuclear 26S rDNA demonstrated that all three populations belong to a single monophyletic group, which includes the type strain of C. albicans. Copyright 1999 Academic Press.

  14. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L.) varieties.

    Science.gov (United States)

    Nielsen, Nanna Hellum; Backes, Gunter; Stougaard, Jens; Andersen, Stig Uggerhøj; Jahoor, Ahmed

    2014-01-01

    Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT) was used to characterize a population of 94 bread wheat (Triticum aestivum L.) varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA). These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8) locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD) suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  15. Genetic diversity and population structure analysis of European hexaploid bread wheat (Triticum aestivum L. varieties.

    Directory of Open Access Journals (Sweden)

    Nanna Hellum Nielsen

    Full Text Available Progress in plant breeding is facilitated by accurate information about genetic structure and diversity. Here, Diversity Array Technology (DArT was used to characterize a population of 94 bread wheat (Triticum aestivum L. varieties of mainly European origin. In total, 1,849 of 7,000 tested markers were polymorphic and could be used for population structure analysis. Two major subgroups of wheat varieties, GrI and GrII, were identified using the program STRUCTURE, and confirmed by principal component analysis (PCA. These subgroups were largely separated according to origin; GrI comprised varieties from Southern and Eastern Europe, whereas GrII contained mostly modern varieties from Western and Northern Europe. A large proportion of the markers contributing most to the genetic separation of the subgroups were located on chromosome 2D near the Reduced height 8 (Rht8 locus, and PCR-based genotyping suggested that breeding for the Rht8 allele had a major impact on subgroup separation. Consistently, analysis of linkage disequilibrium (LD suggested that different selective pressures had acted on chromosome 2D in the two subgroups. Our data provides an overview of the allele composition of bread wheat varieties anchored to DArT markers, which will facilitate targeted combination of alleles following DArT-based QTL studies. In addition, the genetic diversity and distance data combined with specific Rht8 genotypes can now be used by breeders to guide selection of crossing parents.

  16. Genetic diversity and population structure of Miscanthus sinensis germplasm in China.

    Directory of Open Access Journals (Sweden)

    Hua Zhao

    Full Text Available Miscanthus is a perennial rhizomatous C4 grass native to East Asia. Endowed with great biomass yield, high ligno-cellulose composition, efficient use of radiation, nutrient and water, as well as tolerance to stress, Miscanthus has great potential as an excellent bioenergy crop. Despite of the high potential for biomass production of the allotriploid hybrid M. ×giganteus, derived from M. sacchariflorus and M. sinensis, other options need to be explored to improve the narrow genetic base of M. ×giganteus, and also to exploit other Miscanthus species, including M. sinensis (2n = 2x = 38, as bioenergy crops. In the present study, a large number of 459 M. sinensis accessions, collected from the wide geographical distribution regions in China, were genotyped using 23 SSR markers transferable from Brachypodium distachyon. Genetic diversity and population structure were assessed. High genetic diversity and differentiation of the germplasm were observed, with 115 alleles in total, a polymorphic rate of 0.77, Nei's genetic diversity index (He of 0.32 and polymorphism information content (PIC of 0.26. Clustering of germplasm accessions was primarily in agreement with the natural geographic distribution. AMOVA and genetic distance analyses confirmed the genetic differentiation in the M. sinensis germplasm and it was grouped into five clusters or subpopulations. Significant genetic variation among subpopulations indicated obvious genetic differentiation in the collections, but within-subpopulation variation (83% was substantially greater than the between-subpopulation variation (17%. Considerable phenotypic variation was observed for multiple traits among 300 M. sinensis accessions. Nine SSR markers were found to be associated with heading date and biomass yield. The diverse Chinese M. sinensis germplasm and newly identified SSR markers were proved to be valuable for breeding Miscanthus varieties with desired bioenergy traits.

  17. Population genetic structure in Atlantic and Pacific Ocean common murres (Uria aalge): Natural replicate tests of post-Pleistocene evolution

    Science.gov (United States)

    Morris-Pocock, J. A.; Taylor, S.A.; Birt, T.P.; Damus, M.; Piatt, John F.; Warheit, K.I.; Friesen, Vicki L.

    2008-01-01

    Understanding the factors that influence population differentiation in temperate taxa can be difficult because the signatures of both historic and contemporary demographics are often reflected in population genetic patterns. Fortunately, analyses based on coalescent theory can help untangle the relative influence of these historic and contemporary factors. Common murres (Uria aalge) are vagile seabirds that breed in the boreal and low arctic waters of the Northern Hemisphere. Previous analyses revealed that Atlantic and Pacific populations are genetically distinct; however, less is known about population genetic structure within ocean basins. We employed the mitochondrial control region, four microsatellite loci and four intron loci to investigate population genetic structure throughout the range of common murres. As in previous studies, we found that Atlantic and Pacific populations diverged during the Pleistocene and do not currently exchange migrants. Therefore, Atlantic and Pacific murre populations can be used as natural replicates to test mechanisms of population differentiation. While we found little population genetic structure within the Pacific, we detected significant east-west structuring among Atlantic colonies. The degree that population genetic structure reflected contemporary population demographics also differed between ocean basins. Specifically, while the low levels of population differentiation in the Pacific are at least partially due to high levels of contemporary gene flow, the east-west structuring of populations within the Atlantic appears to be the result of historic fragmentation of populations rather than restricted contemporary gene flow. The contrasting results in the Atlantic and Pacific Oceans highlight the necessity of carefully considering multilocus nonequilibrium population genetic approaches when reconstructing the demographic history of temperate Northern Hemisphere taxa. ?? 2008 The Authors.

  18. Highly structured genetic diversity of the Mycobacterium tuberculosis population in Djibouti.

    Science.gov (United States)

    Godreuil, S; Renaud, F; Choisy, M; Depina, J J; Garnotel, E; Morillon, M; Van de Perre, P; Bañuls, A L

    2010-07-01

    Djibouti is an East African country with a high tuberculosis incidence. This study was conducted over a 2-month period in Djibouti, during which 62 consecutive patients with pulmonary tuberculosis (TB) were included. Genetic characterization of Mycobacterium tuberculosis, using mycobacterial interspersed repetitive-unit variable-number tandem-repeat typing and spoligotyping, was performed. The genetic and phylogenetic analysis revealed only three major families (Central Asian, East African Indian and T). The high diversity and linkage disequilibrium within each family suggest a long period of clonal evolution. A Bayesian approach shows that the phylogenetic structure observed in our sample of 62 isolates is very likely to be representative of the phylogenetic structure of the M. tuberculosis population in the total number of TB cases.

  19. Variability and genetic structure of the population of watermelon mosaic virus infecting melon in Spain

    International Nuclear Information System (INIS)

    Moreno, I.M.; Malpica, J.M.; Diaz-Pendon, J.A.; Moriones, E.; Fraile, A.; Garcia-Arenal, F.

    2004-01-01

    The genetic structure of the population of Watermelon mosaic virus (WMV) in Spain was analysed by the biological and molecular characterisation of isolates sampled from its main host plant, melon. The population was a highly homogeneous one, built of a single pathotype, and comprising isolates closely related genetically. There was indication of temporal replacement of genotypes, but not of spatial structure of the population. Analyses of nucleotide sequences in three genomic regions, that is, in the cistrons for the P1, cylindrical inclusion (CI) and capsid (CP) proteins, showed lower similar values of nucleotide diversity for the P1 than for the CI or CP cistrons. The CI protein and the CP were under tighter evolutionary constraints than the P1 protein. Also, for the CI and CP cistrons, but not for the P1 cistron, two groups of sequences, defining two genetic strains, were apparent. Thus, different genomic regions of WMV show different evolutionary dynamics. Interestingly, for the CI and CP cistrons, sequences were clustered into two regions of the sequence space, defining the two strains above, and no intermediary sequences were identified. Recombinant isolates were found, accounting for at least 7% of the population. These recombinants presented two interesting features: (i) crossover points were detected between the analysed regions in the CI and CP cistrons, but not between those in the P1 and CI cistrons, (ii) crossover points were not observed within the analysed coding regions for the P1, CI or CP proteins. This indicates strong selection against isolates with recombinant proteins, even when originated from closely related strains. Hence, data indicate that genotypes of WMV, generated by mutation or recombination, outside of acceptable, discrete, regions in the evolutionary space, are eliminated from the virus population by negative selection

  20. [The use of RAPD and ITE molecular markers to study genetical structure of the Crimean population of Triticum boeoticum Boiss].

    Science.gov (United States)

    Mallabaeva, D Sh; Ignatov, A N; Sheĭko, I A; Isikov, V P; Geliuta, V P; Boĭko, N G; Seriapin, A A; Dorokhov, D B

    2007-01-01

    Wild wheat Triticum boeoticum Boiss. is the rare species are included in the Red Book of Ukraine. This species are reducing the magnitude of population and the area of distribution under anthropogenic activity. We studied genetic structure of two populations of T. boeoticum, located on Sapun Mountain and in Baidar Valley in Crimea. According RAPD and ITE molecular analysis we have estimated that the population of T. boeoticum on Sapun Mountain is genetically more impoverished than a population from the Baidar Valley. For preservation of maximal natural genetic polymorphism of the rare species it is recommended to direct efforts to preservations of a population of T. boeoticum from the Baidar Valley.

  1. Tabapuã breed in Northeastern Brazil: genetic progress and population structure

    Directory of Open Access Journals (Sweden)

    Dirlane Novais Caires

    2012-08-01

    Full Text Available The objective of this study was to evaluate the history of the Tabapuã breed in Northeastern Brazil by determining its population structure and genetic progress. Pedigree information from animals born in the period between 1965 and 2006 and weight-adjusted data at 205 (W205, 365 (W365 and 550 (W550 days of age for bovines born between 1975 and 2006 were used. The (covariance components and genetic value were estimated using the application MTDFREML. Also, the software ENDOG was used for pedigree analysis and parameter estimation based on the probabilities of gene origin, inbreeding and average generation interval. The heritability coefficients for direct genetic effects were 0.21±0.03, 0.26±0.04 and 0.36±0.05 for W205, W365 and W550, respectively. During the first 20 years studied, the observed effective size was small. The generation intervals by gametic pathway were: 7.7±3.4 (sire-son, 7.8±3.7 (sire-daughter, 6.9±3.3 (dam-son, 6.8 ± 3.1 (dam-daughter, and mean interval of 7.3±3.4 years. The studied population showed moderate heritability coefficients, whereas the genetic gains based on the studied traits may be higher than those estimated by genetic tendencies. Reduced generation interval, increased effective size and continuous mating control of relatives are important strategies for the genetic progress of the Tabapuã breed in the region.

  2. Approaches in Characterizing Genetic Structure and Mapping in a Rice Multiparental Population.

    Science.gov (United States)

    Raghavan, Chitra; Mauleon, Ramil; Lacorte, Vanica; Jubay, Monalisa; Zaw, Hein; Bonifacio, Justine; Singh, Rakesh Kumar; Huang, B Emma; Leung, Hei

    2017-06-07

    Multi-parent Advanced Generation Intercross (MAGIC) populations are fast becoming mainstream tools for research and breeding, along with the technology and tools for analysis. This paper demonstrates the analysis of a rice MAGIC population from data filtering to imputation and processing of genetic data to characterizing genomic structure, and finally quantitative trait loci (QTL) mapping. In this study, 1316 S6:8 indica MAGIC (MI) lines and the eight founders were sequenced using Genotyping by Sequencing (GBS). As the GBS approach often includes missing data, the first step was to impute the missing SNPs. The observable number of recombinations in the population was then explored. Based on this case study, a general outline of procedures for a MAGIC analysis workflow is provided, as well as for QTL mapping of agronomic traits and biotic and abiotic stress, using the results from both association and interval mapping approaches. QTL for agronomic traits (yield, flowering time, and plant height), physical (grain length and grain width) and cooking properties (amylose content) of the rice grain, abiotic stress (submergence tolerance), and biotic stress (brown spot disease) were mapped. Through presenting this extensive analysis in the MI population in rice, we highlight important considerations when choosing analytical approaches. The methods and results reported in this paper will provide a guide to future genetic analysis methods applied to multi-parent populations. Copyright © 2017 Raghavan et al.

  3. Approaches in Characterizing Genetic Structure and Mapping in a Rice Multiparental Population

    Directory of Open Access Journals (Sweden)

    Chitra Raghavan

    2017-06-01

    Full Text Available Multi-parent Advanced Generation Intercross (MAGIC populations are fast becoming mainstream tools for research and breeding, along with the technology and tools for analysis. This paper demonstrates the analysis of a rice MAGIC population from data filtering to imputation and processing of genetic data to characterizing genomic structure, and finally quantitative trait loci (QTL mapping. In this study, 1316 S6:8 indica MAGIC (MI lines and the eight founders were sequenced using Genotyping by Sequencing (GBS. As the GBS approach often includes missing data, the first step was to impute the missing SNPs. The observable number of recombinations in the population was then explored. Based on this case study, a general outline of procedures for a MAGIC analysis workflow is provided, as well as for QTL mapping of agronomic traits and biotic and abiotic stress, using the results from both association and interval mapping approaches. QTL for agronomic traits (yield, flowering time, and plant height, physical (grain length and grain width and cooking properties (amylose content of the rice grain, abiotic stress (submergence tolerance, and biotic stress (brown spot disease were mapped. Through presenting this extensive analysis in the MI population in rice, we highlight important considerations when choosing analytical approaches. The methods and results reported in this paper will provide a guide to future genetic analysis methods applied to multi-parent populations.

  4. Genetic structure of Mount Huang honey bee (Apis cerana) populations: evidence from microsatellite polymorphism.

    Science.gov (United States)

    Liu, Fang; Shi, Tengfei; Huang, Sisi; Yu, Linsheng; Bi, Shoudong

    2016-01-01

    The Mount Huang eastern honey bees ( Apis cerana ) are an endemic population, which is well adapted to the local agricultural and ecological environment. In this study, the genetic structure of seven eastern honey bees ( A. cerana ) populations from Mount Huang in China were analyzed by SSR (simple sequence repeat) markers. The results revealed that 16 pairs of primers used amplified a total of 143 alleles. The number of alleles per locus ranged from 6 to 13, with a mean value of 8.94 alleles per locus. Observed and expected heterozygosities showed mean values of 0.446 and 0.831 respectively. UPGMA cluster analysis grouped seven eastern honey bees in three groups. The results obtained show a high genetic diversity in the honey bee populations studied in Mount Huang, and high differentiation among all the populations, suggesting that scarce exchange of honey bee species happened in Mount Huang. Our study demonstrated that the Mount Huang honey bee populations still have a natural genome worth being protected for conservation.

  5. Genetic Diversity and Population Structure of Collard Landraces and their Relationship to Other Brassica oleracea Crops

    Directory of Open Access Journals (Sweden)

    Sandra E. Pelc

    2015-11-01

    Full Text Available Landraces have the potential to provide a reservoir of genetic diversity for crop improvement to combat the genetic erosion of the food supply. A landrace collection of the vitamin-rich specialty crop collard ( L. var. was genetically characterized to assess its potential for improving the diverse crop varieties of . We used the Illumina 60K SNP BeadChip array with 52,157 single nucleotide polymorphisms (SNPs to (i clarify the relationship of collard to the most economically important crop types, (ii evaluate genetic diversity and population structure of 75 collard landraces, and (iii assess the potential of the collection for genome-wide association studies (GWAS through characterization of genomic patterns of linkage disequilibrium. Confirming the collection as a valuable genetic resource, the collard landraces had twice the polymorphic markers (11,322 SNPs and 10 times the variety-specific alleles (521 alleles of the remaining crop types examined in this study. On average, linkage disequilibrium decayed to background levels within 600 kilobase (kb, allowing for sufficient coverage of the genome for GWAS using the physical positions of the 8273 SNPs polymorphic among the landraces. Although other relationships varied, the previous placement of collard with the cabbage family was confirmed through phylogenetic analysis and principal coordinates analysis (PCoA.

  6. Genetic Diversity and Population Structure of a Threatened African Tree Species, Milicia excelsa, Using Nuclear Micro satellites DNA Markers

    International Nuclear Information System (INIS)

    Ouinsavi, Ch.; Sokpon, N.; Ouinsavi, Ch.; Khasa, D.P.

    2009-01-01

    To accurately estimate the genetic diversity and population structure for improved conservation planning of Milicia excelsa tree, 212 individuals from twelve population samples covering the species' range in Benin were surveyed at seven specific micro satellite DNA loci. All loci were variable, with the mean number of alleles per locus ranging from 5.86 to 7.69. Considerable genetic variability was detected for all populations at the seven loci (AR=4.60; HE=0.811). Moderate but statistically significant genetic differentiation was found among populations considering both FST (0.112) and RST (0.342). All of the populations showed heterozygosity deficits in test of Hardy-Weinberg Equilibrium and significantly positive FIS values due to inbreeding occurring in the species. Pairwise FST values were positively and significantly correlated with geographical distances (r=0.432; P=.007, Mantel's test) indicating that populations are differentiated by isolation by distance. Bayesian analysis of population structure showed division of the genetic variation into four clusters revealing the existence of heterogeneity in population genetic structure. Altogether, these results indicate that genetic variation in Milicia excelsa is geographically structured. Information gained from this study also emphasized the need for in situ conservation of the relict populations and establishment of gene flow corridors through agroforestry systems for interconnecting these remnant populations.

  7. Analysis of the genetic structure of allopatric populations of Lutzomyia umbratilis using the period clock gene.

    Science.gov (United States)

    de Souza Freitas, Moises Thiago; Ríos-Velasquez, Claudia Maria; da Silva, Lidiane Gomes; Costa, César Raimundo Lima; Marcelino, Abigail; Leal-Balbino, Tereza Cristina; Balbino, Valdir de Queiroz; Pessoa, Felipe Arley Costa

    2016-02-01

    In South America, Lutzomyia umbratilis is the main vector of Leishmania guyanensis, one of the species involved in the transmission of American tegumentary leishmaniasis. In Brazil, L. umbratilis has been recorded in the Amazon region, and an isolated population has been identified in the state of Pernambuco, Northeastern region. This study assessed the phylogeographic structure of three allopatric Brazilian populations of L. umbratilis. Samples of L. umbratilis were collected from Rio Preto da Eva (north of the Amazon River, Amazonas), from Manacapuru (south of the Amazon River), and from the isolated population in Recife, Pernambuco state. These samples were processed to obtain sequences of the period gene. Phylogenetic analysis revealed the presence of two distinct monophyletic clades: one clade comprised of the Recife and Rio Preto da Eva samples, and one clade comprised of the Manacapuru samples. Comparing the Manacapuru population with the Recife and Rio Preto da Eva populations revealed high indices of interpopulational divergence. Phylogenetic analysis indicated that geographical distance and environmental differences have not modified the ancestral relationship shared by the Recife and Rio Preto da Eva populations. Genetic similarities suggest that, in evolutionary terms, these populations are more closely related to each other than to the Manacapuru population. These results confirm the existence of an L. umbratilis species complex composed of at least two incipient species. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Population genetic structure and long-distance dispersal of a recently expanding migratory bird.

    Science.gov (United States)

    Ramos, Raül; Song, Gang; Navarro, Joan; Zhang, Ruiying; Symes, Craig T; Forero, Manuela G; Lei, Fumin

    2016-06-01

    Long-distance dispersal events and their derivable increases of genetic diversity have been highlighted as important ecological and evolutionary determinants that improve performances of range-expanding species. In the context of global environmental change, specific dispersal strategies have to be understood and foreseen if we like to prevent general biodiversity impoverishment or the spread of allochthonous diseases. We explored the genetic structure and potential population mixing on the recently range-expanding European bee-eater Merops apiaster. In addition, the species is suspected of harbouring and disseminating the most relevant disease for bees and apiculture, Nosema microsporidia. In agreement with complementary ringing recovery data and morphometric measurements, genetic results on two mitochondrial genes and 12 microsatellites showed a reasonably well-structured population partitioning along its breeding distribution. Microsatellite results indicated that not only did a few birds recently disperse long distance during their return migrations and change their natal breeding areas, but also that a group of allochthonous birds together founded a new colony. Although we did not provide evidence on the direct implication of birds in the widespread of Nosema parasites, our finding on the long-distance dispersal of bird flocks between remote breeding colonies adds concern about the role of European bee-eaters in the spread of such disease at a large, inter-continental scale. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Population structure, genetic diversity and downy mildew resistance among Ocimum species germplasm.

    Science.gov (United States)

    Pyne, Robert M; Honig, Josh A; Vaiciunas, Jennifer; Wyenandt, Christian A; Simon, James E

    2018-04-23

    The basil (Ocimum spp.) genus maintains a rich diversity of phenotypes and aromatic volatiles through natural and artificial outcrossing. Characterization of population structure and genetic diversity among a representative sample of this genus is severely lacking. Absence of such information has slowed breeding efforts and the development of sweet basil (Ocimum basilicum L.) with resistance to the worldwide downy mildew epidemic, caused by the obligate oomycete Peronospora belbahrii. In an effort to improve classification of relationships 20 EST-SSR markers with species-level transferability were developed and used to resolve relationships among a diverse panel of 180 Ocimum spp. accessions with varying response to downy mildew. Results obtained from nested Bayesian model-based clustering, analysis of molecular variance and unweighted pair group method using arithmetic average (UPGMA) analyses were synergized to provide an updated phylogeny of the Ocimum genus. Three (major) and seven (sub) population (cluster) models were identified and well-supported (P UPGMA analysis provided best resolution for the 36-accession, DM resistant k3 cluster with consistently strong bootstrap support. Although the k3 cluster is a rich source of DM resistance introgression of resistance into the commercially important k1 accessions is impeded by reproductive barriers as demonstrated by multiple sterile F1 hybrids. The k2 cluster located between k1 and k3, represents a source of transferrable tolerance evidenced by fertile backcross progeny. The 90-accession k1 cluster was largely susceptible to downy mildew with accession 'MRI' representing the only source of DM resistance. High levels of genetic diversity support the observed phenotypic diversity among Ocimum spp. accessions. EST-SSRs provided a robust evaluation of molecular diversity and can be used for additional studies to increase resolution of genetic relationships in the Ocimum genus. Elucidation of population structure

  10. Low Genetic Diversity and Structuring of the Arapaima (Osteoglossiformes, Arapaimidae) Population of the Araguaia-Tocantins Basin.

    Science.gov (United States)

    Vitorino, Carla A; Nogueira, Fabrícia; Souza, Issakar L; Araripe, Juliana; Venere, Paulo C

    2017-01-01

    The arapaima, Arapaima gigas , is a fish whose populations are threatened by both overfishing and the ongoing destruction of its natural habitats. In the Amazon basin, varying levels of population structure have been found in A. gigas , although no data are available on the genetic diversity or structure of the populations found in the Araguaia-Tocantins basin, which has a topographic profile, hydrological regime, and history of fishing quite distinct from those of the Amazon. In this context, microsatellite markers were used to assess the genetic diversity and connectivity of five wild A. gigas populations in the Araguaia-Tocantins basin. The results of the analysis indicated low levels of genetic diversity in comparison with other A. gigas populations, studied in the Amazon basin. The AMOVA revealed that the Arapaima populations of the Araguaia-Tocantins basin are structured significantly. No correlation was found between pairwise F ST values and the geographical distance among populations. The low level of genetic variability and the evidence of restricted gene flow may both be accounted for by overfishing, as well as the other human impacts that these populations have been exposed to over the years. The genetic fragility of these populations demands attention, given that future environmental changes (natural or otherwise) may further reduce these indices and eventually endanger these populations. The results of this study emphasize the need to take the genetic differences among the study populations into account when planning management measures and conservation strategies for the arapaima stocks of the Araguaia-Tocantins basin.

  11. Variation and genetic structure of Melipona quadrifasciata Lepeletier (Hymenoptera, Apidae) populations based on ISSR pattern.

    Science.gov (United States)

    Nascimento, Marcília A; Batalha-Filho, Henrique; Waldschmidt, Ana M; Tavares, Mara G; Campos, Lucio A O; Salomão, Tânia M F

    2010-04-01

    For a study of diversity and genetic structuring in Melipona quadrifasciata, 61 colonies were collected in eight locations in the state of Minas Gerais, Brazil. By means of PCR analysis, 119 ISSR bands were obtained, 80 (68%) being polymorphic. H(e) and H (B) were 0.20 and 0.16, respectively. Two large groups were obtained by the UPGMA method, one formed by individuals from Januária, Urucuia, Rio Vermelho and Caeté and the other by individuals from São João Del Rei, Barbacena, Ressaquinha and Cristiano Otoni. The Φst and θ(B) values were 0.65 and 0.58, respectively, thereby indicating high population structuring. UPGMA grouping did not reveal genetic structuring of M. quadrifasciata in function of the tergite stripe pattern. The significant correlation between dissimilarity values and geographic distances (r = 0.3998; p Melipona quadrifasciata population structuring, possibly applicable to the studies of other bee species.

  12. The Use of Carcasses for the Analysis of Cetacean Population Genetic Structure: A Comparative Study in Two Dolphin Species

    Science.gov (United States)

    Bilgmann, Kerstin; Möller, Luciana M.; Harcourt, Robert G.; Kemper, Catherine M.; Beheregaray, Luciano B.

    2011-01-01

    Advances in molecular techniques have enabled the study of genetic diversity and population structure in many different contexts. Studies that assess the genetic structure of cetacean populations often use biopsy samples from free-ranging individuals and tissue samples from stranded animals or individuals that became entangled in fishery or aquaculture equipment. This leads to the question of how representative the location of a stranded or entangled animal is with respect to its natural range, and whether similar results would be obtained when comparing carcass samples with samples from free-ranging individuals in studies of population structure. Here we use tissue samples from carcasses of dolphins that stranded or died as a result of bycatch in South Australia to investigate spatial population structure in two species: coastal bottlenose (Tursiops sp.) and short-beaked common dolphins (Delphinus delphis). We compare these results with those previously obtained from biopsy sampled free-ranging dolphins in the same area to test whether carcass samples yield similar patterns of genetic variability and population structure. Data from dolphin carcasses were gathered using seven microsatellite markers and a fragment of the mitochondrial DNA control region. Analyses based on carcass samples alone failed to detect genetic structure in Tursiops sp., a species previously shown to exhibit restricted dispersal and moderate genetic differentiation across a small spatial scale in this region. However, genetic structure was correctly inferred in D. delphis, a species previously shown to have reduced genetic structure over a similar geographic area. We propose that in the absence of corroborating data, and when population structure is assessed over relatively small spatial scales, the sole use of carcasses may lead to an underestimate of genetic differentiation. This can lead to a failure in identifying management units for conservation. Therefore, this risk should be carefully

  13. Genetic diversity and population structure among six cattle breeds in South Africa using a whole genome SNP panel

    Directory of Open Access Journals (Sweden)

    Sithembile Olga Makina

    2014-09-01

    Full Text Available Information about genetic diversity and population structure among cattle breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of cattle breeds. This study investigated genetic diversity and the population structure among six cattle breeds in South African (SA including Afrikaner (n=44, Nguni (n=54, Drakensberger (n=47, Bonsmara (n=44, Angus (n=31 and Holstein (n=29. Genetic diversity within cattle breeds was analyzed using three measures of genetic diversity namely allelic richness (AR, expected heterozygosity (He and inbreeding coefficient (f. Genetic distances between breed pairs were evaluated using Nei’s genetic distance. Population structure was assessed using model-based clustering (ADMIXTURE. Results of this study revealed that the allelic richness ranged from 1.88 (Afrikaner to 1.73 (Nguni. Afrikaner cattle had the lowest level of genetic diversity (He=0.24 and the Drakensberger cattle (He=0.30 had the highest level of genetic variation among indigenous and locally-developed cattle breeds. The level of inbreeding was lower across the studied cattle breeds. As expected the average genetic distance was the greatest between indigenous cattle breeds and Bos taurus cattle breeds but the lowest among indigenous and locally-developed breeds. Model-based clustering revealed some level of admixture among indigenous and locally-developed breeds and supported the clustering of the breeds according to their history of origin. The results of this study provided useful insight regarding genetic structure of South African cattle breeds.

  14. Population genetic structure of the common warthog (Phacochoerus africanus) in Uganda: evidence for a strong philopatry among warthogs and social structure breakdown in a disturbed population

    DEFF Research Database (Denmark)

    Muwanka, V.B.; Nyakaana, S.; Siegismund, Hans Redlef

    2007-01-01

    populations from five localities in Uganda are genetically structured using both mitochondrial control region sequence and microsatellite allele length variation. Four of the localities (Queen Elizabeth, Murchison Falls, Lake Mburo and Kidepo Valley) are national parks with relatively good wildlife protection...

  15. Population expansion and genetic structure in Carcharhinus brevipinna in the southern Indo-Pacific.

    Directory of Open Access Journals (Sweden)

    Pascal T Geraghty

    Full Text Available Quantifying genetic diversity and metapopulation structure provides insights into the evolutionary history of a species and helps develop appropriate management strategies. We provide the first assessment of genetic structure in spinner sharks (Carcharhinus brevipinna, a large cosmopolitan carcharhinid, sampled from eastern and northern Australia and South Africa.Sequencing of the mitochondrial DNA NADH dehydrogenase subunit 4 gene for 430 individuals revealed 37 haplotypes and moderately high haplotype diversity (h = 0.6770 ±0.025. While two metrics of genetic divergence (ΦST and F ST revealed somewhat different results, subdivision was detected between South Africa and all Australian locations (pairwise ΦST, range 0.02717-0.03508, p values ≤ 0.0013; pairwise F ST South Africa vs New South Wales = 0.04056, p = 0.0008. Evidence for fine-scale genetic structuring was also detected along Australia's east coast (pairwise ΦST = 0.01328, p < 0.015, and between south-eastern and northern locations (pairwise ΦST = 0.00669, p < 0.04.The Indian Ocean represents a robust barrier to contemporary gene flow in C. brevipinna between Australia and South Africa. Gene flow also appears restricted along a continuous continental margin in this species, with data tentatively suggesting the delineation of two management units within Australian waters. Further sampling, however, is required for a more robust evaluation of the latter finding. Evidence indicates that all sampled populations were shaped by a substantial demographic expansion event, with the resultant high genetic diversity being cause for optimism when considering conservation of this commercially-targeted species in the southern Indo-Pacific.

  16. Molecular Population Genetics.

    Science.gov (United States)

    Casillas, Sònia; Barbadilla, Antonio

    2017-03-01

    Molecular population genetics aims to explain genetic variation and molecular evolution from population genetics principles. The field was born 50 years ago with the first measures of genetic variation in allozyme loci, continued with the nucleotide sequencing era, and is currently in the era of population genomics. During this period, molecular population genetics has been revolutionized by progress in data acquisition and theoretical developments. The conceptual elegance of the neutral theory of molecular evolution or the footprint carved by natural selection on the patterns of genetic variation are two examples of the vast number of inspiring findings of population genetics research. Since the inception of the field, Drosophila has been the prominent model species: molecular variation in populations was first described in Drosophila and most of the population genetics hypotheses were tested in Drosophila species. In this review, we describe the main concepts, methods, and landmarks of molecular population genetics, using the Drosophila model as a reference. We describe the different genetic data sets made available by advances in molecular technologies, and the theoretical developments fostered by these data. Finally, we review the results and new insights provided by the population genomics approach, and conclude by enumerating challenges and new lines of inquiry posed by increasingly large population scale sequence data. Copyright © 2017 Casillas and Barbadilla.

  17. Population structure, fluctuating asymmetry and genetic variability in an endemic and highly isolated Astyanax fish population (Characidae

    Directory of Open Access Journals (Sweden)

    Maria Claudia Gross

    2004-01-01

    Full Text Available Morphological and chromosomal markers were used to infer the structure and genetic variability of a population of fish of the genus Astyanax, geographically isolated at sinkhole 2 of Vila Velha State Park, Paraná, Brazil. Two morphotypes types were observed, the standard phenotype I and phenotype II which showed an anatomical alteration probably due to an inbreeding process. Fluctuating asymmetry (FA analysis of different characters showed low levels of morphological variation among the population from sinkhole 2 and in another population from the Tibagi river (Paraná, Brazil. The Astyanax karyotype was characterized in terms of chromosomal morphology, constitutive heterochromatin and nucleolar organizer regions. Males and females presented similar karyotypes (2n=48, 6M+18SM+14ST+10A with no evidence of a sex chromosome system. One female from sinkhole 2 was a natural triploid with 2n=3x=72 chromosomes (9M+27SM+21ST+15A. The data are discussed regarding the maintenance of population structure and their evolutionary importance, our data suggesting that Astyanax from the Vila Velha State Park sinkhole 2 is a recently isolated population.

  18. Molecular characterization and population structure study of cambuci: strategy for conservation and genetic improvement.

    Science.gov (United States)

    Santos, D N; Nunes, C F; Setotaw, T A; Pio, R; Pasqual, M; Cançado, G M A

    2016-12-19

    Cambuci (Campomanesia phaea) belongs to the Myrtaceae family and is native to the Atlantic Forest of Brazil. It has ecological and social appeal but is exposed to problems associated with environmental degradation and expansion of agricultural activities in the region. Comprehensive studies on this species are rare, making its conservation and genetic improvement difficult. Thus, it is important to develop research activities to understand the current situation of the species as well as to make recommendations for its conservation and use. This study was performed to characterize the cambuci accessions found in the germplasm bank of Coordenadoria de Assistência Técnica Integral using inter-simple sequence repeat markers, with the goal of understanding the plant's population structure. The results showed the existence of some level of genetic diversity among the cambuci accessions that could be exploited for the genetic improvement of the species. Principal coordinate analysis and discriminant analysis clustered the 80 accessions into three groups, whereas Bayesian model-based clustering analysis clustered them into two groups. The formation of two cluster groups and the high membership coefficients within the groups pointed out the importance of further collection to cover more areas and more genetic variability within the species. The study also showed the lack of conservation activities; therefore, more attention from the appropriate organizations is needed to plan and implement natural and ex situ conservation activities.

  19. A preliminary investigation into the genetic variation and population structure of Taenia hydatigena from Sardinia, Italy.

    Science.gov (United States)

    Boufana, Belgees; Scala, Antonio; Lahmar, Samia; Pointing, Steve; Craig, Philip S; Dessì, Giorgia; Zidda, Antonella; Pipia, Anna Paola; Varcasia, Antonio

    2015-11-30

    Cysticercosis caused by the metacestode stage of Taenia hydatigena is endemic in Sardinia. Information on the genetic variation of this parasite is important for epidemiological studies and implementation of control programs. Using two mitochondrial genes, the cytochrome c oxidase subunit 1 (cox1) and the NADH dehydrogenase subunit 1 (ND1) we investigated the genetic variation and population structure of Cysticercus tenuicollis from Sardinian intermediate hosts and compared it to that from other hosts from various geographical regions. The parsimony cox1 network analysis indicated the existence of a common lineage for T. hydatigena and the overall diversity and neutrality indices indicated demographic expansion. Using the cox1 sequences, low pairwise fixation index (Fst) values were recorded for Sardinian, Iranian and Palestinian sheep C. tenuicollis which suggested the absence of genetic differentiation. Using the ND1 sequences, C. tenuicollis from Sardinian sheep appeared to be differentiated from those of goat and pig origin. In addition, goat C. tenuicollis were genetically different from adult T. hydatigena as indicated by the statistically significant Fst value. Our results are consistent with biochemical and morphological studies that suggest the existence of variants of T. hydatigena. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil)

    DEFF Research Database (Denmark)

    Miller, Webb; Hayes, Vanessa M.; Ratan, Aakrosh

    2011-01-01

    The Tasmanian devil (Sarcophilus harrisii) is threatened with extinction because of a contagious cancer known as Devil Facial Tumor Disease. The inability to mount an immune response and to reject these tumors might be caused by a lack of genetic diversity within a dwindling population. Here we...... that the observed low genetic diversity in today's population preceded the Devil Facial Tumor Disease disease outbreak by at least 100 y. Using a genetically characterized breeding stock based on the genome sequence will enable preservation of the extant genetic diversity in future Tasmanian devil populations....

  1. Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica.

    Directory of Open Access Journals (Sweden)

    Nicholas John Deacon

    Full Text Available Quercus oleoides Cham. and Schlect., tropical live oak, is a species of conservation importance in its southern range limit of northwestern Costa Rica. It occurs in high-density stands across a fragmented landscape spanning a contrasting elevation and precipitation gradient. We examined genetic diversity and spatial genetic structure in this geographically isolated and genetically distinct population. We characterized population genetic diversity at 11 nuclear microsatellite loci in 260 individuals from 13 sites. We monitored flowering time at 10 sites, and characterized the local environment in order to compare observed spatial genetic structure to hypotheses of isolation-by-distance and isolation-by-environment. Finally, we quantified pollen dispersal distances and tested for local adaptation through a reciprocal transplant experiment in order to experimentally address these hypotheses.High genetic diversity is maintained in the population and the genetic variation is significantly structured among sampled sites. We identified 5 distinct genetic clusters and average pollen dispersal predominately occurred over short distances. Differences among sites in flowering phenology and environmental factors, however, were not strictly associated with genetic differentiation. Growth and survival of upland and lowland progeny in their native and foreign environments was expected to exhibit evidence of local adaptation due to the more extreme dry season in the lowlands. Seedlings planted in the lowland garden experienced much higher mortality than seedlings in the upland garden, but we did not identify evidence for local adaptation.Overall, this study indicates that the Costa Rican Q. oleoides population has a rich population genetic history. Despite environmental heterogeneity and habitat fragmentation, isolation-by-distance and isolation-by-environment alone do not explain spatial genetic structure. These results add to studies of genetic structure by

  2. Limited Pollen Dispersal Contributes to Population Genetic Structure but Not Local Adaptation in Quercus oleoides Forests of Costa Rica.

    Science.gov (United States)

    Deacon, Nicholas John; Cavender-Bares, Jeannine

    2015-01-01

    Quercus oleoides Cham. and Schlect., tropical live oak, is a species of conservation importance in its southern range limit of northwestern Costa Rica. It occurs in high-density stands across a fragmented landscape spanning a contrasting elevation and precipitation gradient. We examined genetic diversity and spatial genetic structure in this geographically isolated and genetically distinct population. We characterized population genetic diversity at 11 nuclear microsatellite loci in 260 individuals from 13 sites. We monitored flowering time at 10 sites, and characterized the local environment in order to compare observed spatial genetic structure to hypotheses of isolation-by-distance and isolation-by-environment. Finally, we quantified pollen dispersal distances and tested for local adaptation through a reciprocal transplant experiment in order to experimentally address these hypotheses. High genetic diversity is maintained in the population and the genetic variation is significantly structured among sampled sites. We identified 5 distinct genetic clusters and average pollen dispersal predominately occurred over short distances. Differences among sites in flowering phenology and environmental factors, however, were not strictly associated with genetic differentiation. Growth and survival of upland and lowland progeny in their native and foreign environments was expected to exhibit evidence of local adaptation due to the more extreme dry season in the lowlands. Seedlings planted in the lowland garden experienced much higher mortality than seedlings in the upland garden, but we did not identify evidence for local adaptation. Overall, this study indicates that the Costa Rican Q. oleoides population has a rich population genetic history. Despite environmental heterogeneity and habitat fragmentation, isolation-by-distance and isolation-by-environment alone do not explain spatial genetic structure. These results add to studies of genetic structure by examining a common

  3. Population genetic structure of Guiana dolphin (Sotalia guianensis from the southwestern Atlantic coast of Brazil.

    Directory of Open Access Journals (Sweden)

    Juliana Ywasaki Lima

    Full Text Available Sotalia guianensis is a small dolphin that is vulnerable to anthropogenic impacts. Along the Brazilian Atlantic coast, this species is threatened with extinction. A prioritized action plan for conservation strategies relies on increased knowledge of the population. The scarcity of studies about genetic diversity and assessments of population structure for this animal have precluded effective action in the region. Here, we assessed, for the first time, the genetic differentiation at 14 microsatellite loci in 90 S. guianensis specimens stranded on the southeastern Atlantic coast of the State of Espírito Santo, Brazil. We estimated population parameters and structure, measured the significance of global gametic disequilibrium and the intensity of non-random multiallelic interallelic associations and constructed a provisional synteny map using Bos taurus, the closest terrestrial mammal with a reference genome available. All microsatellite loci were polymorphic, with at least three and a maximum of ten alleles each. Allele frequencies ranged from 0.01 to 0.97. Observed heterozygosity ranged from 0.061 to 0.701. The mean inbreeding coefficient was 0.103. Three loci were in Hardy-Weinberg disequilibrium even when missing genotypes were inferred. Although 77 of the 91 possible two-locus associations were in global gametic equilibrium, we unveiled 13 statistically significant, sign-based, non-random multiallelic interallelic associations in 10 two-locus combinations with either coupling (D' values ranging from 0.782 to 0.353 or repulsion (D' values -0.517 to -1.000 forces. Most of the interallelic associations did not involve the major alleles. Thus, for either physically or non-physically linked loci, measuring the intensity of non-random interallelic associations is important for defining the evolutionary forces at equilibrium. We uncovered a small degree of genetic differentiation (FST = 0.010; P-value = 0.463 with a hierarchical clustering into one

  4. Genetic Diversity and Structure of the Apiosporina morbosa Populations on Prunus spp.

    Science.gov (United States)

    Zhang, Jinxiu; Fernando, W G Dilantha; Remphrey, William R

    2005-08-01

    ABSTRACT Populations of Apiosporina morbosa collected from 15 geographic locations in Canada and the United States and three host species, Prunus virginiana, P. pensylvanica, and P. padus, were evaluated using the sequence-related amplified polymorphism (SRAP) technique to determine their genetic diversity and population differentiation. Extensive diversity was detected in the A. morbosa populations, including 134 isolates from Canada and the United States, regardless of the origin of the population. The number of polymorphic loci varied from 6.9 to 82.8% in the geographic populations, and from 41.4 to 79.3% in the populations from four host genotypes based on 58 polymorphic fragments. In all, 44 to 100% of isolates in the geographic populations and 43.6 to 76.2% in populations from four host genotypes represented unique genotypes. Values of heterozygosity (H) varied from 2.8 to 28.3% in the geographic populations and 10.2 to 26.1% in the populations from four host genotypes. In general, the A. morbosa populations sampled from wild chokecherry showed a higher genetic diversity than those populations collected from other host species, whereas the populations isolated from cultivated chokecherry, P. virginiana 'Shubert Select', showed a reduction of genetic diversity compared with populations from wild P. virginiana. Significant population differentiation was found among both the geographic populations (P virginiana were closely clustered, and no population differentiation was detected except for the populations from Morris, Morden, and Winnipeg, Manitoba, Canada. Furthermore, the populations from P. virginiana in the same geographic locations had higher genetic identity and closer genetic distance to each other compared with those from different locations. Four populations from P. virginiana, P. pensylvanica, and P. padus, were significantly differentiated from each other (P P> = 0.334). Indirect estimation of gene flow showed that significant restricted gene flow

  5. Molecular genetic diversity and population structure of Ethiopian white lupin landraces: Implications for breeding and conservation

    Science.gov (United States)

    Yao, Nasser; Martina, Kyalo; Dagne, Kifle; Wegary, Dagne; Tesfaye, Kassahun

    2017-01-01

    White lupin is one of the four economically important species of the Lupinus genus and is an important grain legume in the Ethiopian farming system. However, there has been limited research effort to characterize the Ethiopian white lupin landraces. Fifteen polymorphic simple sequence repeat (SSR) markers were used to assess the genetic diversity and population structure of 212 Ethiopian white lupin (Lupinus albus) landraces and two genotypes from different species (Lupinus angustifolius and Lupinus mutabilis) were used as out-group. The SSR markers revealed 108 different alleles, 98 of them from 212 landraces and 10 from out-group genotypes, with an average of 6.5 alleles per locus. The average gene diversity was 0.31. Twenty eight landraces harbored one or more private alleles from the total of 28 private alleles identified in the 212 white lupin accessions. Seventy-seven rare alleles with a frequency of less than 5% were identified and accounted for 78.6% of the total alleles detected. Analysis of molecular variance (AMOVA) showed that 92% of allelic diversity was attributed to individual accessions within populations while only 8% was distributed among populations. At 70% similarity level, the UPGMA dendrogram resulted in the formation of 13 clusters comprised of 2 to 136 landraces, with the out-group genotypes and five landraces remaining distinct and ungrouped. Population differentiation and genetic distance were relatively high between Gondar and Ethiopian white lupin populations collected by Australians. A model-based population structure analysis divided the white lupin landraces into two populations. All Ethiopian white lupin landrace populations, except most of the landraces collected by Australians (77%) and about 44% from Awi, were grouped together with significant admixtures. The study also suggested that 34 accessions, as core collections, were sufficient to retain 100% of SSR diversity. These accessions (core G-34) represent 16% of the whole 212

  6. At the brink of supercoloniality: genetic, behavioral and chemical assessments of population structure of the desert ant Cataglyphis niger

    Directory of Open Access Journals (Sweden)

    Maya eSaar

    2014-05-01

    Full Text Available The nesting habits of ants play an important role in structuring ant populations. They vary from monodomy, a colony occupies a single nest, via polydomy, a colony occupies multiple adjacent nests, to supercoloniality, a colony spans over large territories comprising dozen to thousands nests without having any boundaries. The population structure of the desert ant Cataglyphis niger, previously considered to form supercolonies, was studied using genetic, chemical and behavioral tools in plots of 50x50 meters at two distinct populations. At the Palmahim site, the plot comprised 15 nests that according to the genetic analysis constituted three colonies. Likewise at the Rishon Leziyyon site 14 nests constituted 5 genetic colonies. In both sites, both chemical analysis and the behavioral (aggression tests confirmed the colony genetic architecture. The behavioral tests also revealed that aggression between colonies within a population was higher than that exhibited between colonies of different populations, suggesting the occurrence of the nasty neighbor phenomenon. In contrast to supercolony structure previously reported in another population of this species, the presently studied populations were composed of polydomous colonies. However, both the genetic and chemical data revealed that the inter-colonial differences between sites were larger than those within site, suggesting some within-site population viscosity. Thus, C. niger exhibits flexible nesting characteristics, from polydomy to supercoloniality, and can be considered at the brink of supercoloniality. We attribute the differences in population structure among sites to the intensity of intraspecific competition.

  7. Genetic Structure of Natural Populations of Escherichia coli in Wild Hosts on Different Continents

    Science.gov (United States)

    Souza, Valeria; Rocha, Martha; Valera, Aldo; Eguiarte, Luis E.

    1999-01-01

    plasmids than did strains isolated from wild mammals. Previous studies have shown that natural populations of E. coli harbor an extensive genetic diversity that is organized in a limited number of clones. However, knowledge of this worldwide bacterium has been limited. Here, we suggest that the strains from a wide range of wild hosts from different regions of the world are organized in an ecotypic structure where adaptation to the host plays an important role in the population structure. PMID:10427022

  8. Landscape attributes and life history variability shape genetic structure of trout populations in a stream network

    Science.gov (United States)

    Neville, H.M.; Dunham, J.B.; Peacock, M.M.

    2006-01-01

    Spatial and temporal landscape patterns have long been recognized to influence biological processes, but these processes often operate at scales that are difficult to study by conventional means. Inferences from genetic markers can overcome some of these limitations. We used a landscape genetics approach to test hypotheses concerning landscape processes influencing the demography of Lahontan cutthroat trout in a complex stream network in the Great Basin desert of the western US. Predictions were tested with population- and individual-based analyses of microsatellite DNA variation, reflecting patterns of dispersal, population stability, and local effective population sizes. Complementary genetic inferences suggested samples from migratory corridors housed a mixture of fish from tributaries, as predicted based on assumed migratory life histories in those habitats. Also as predicted, populations presumed to have greater proportions of migratory fish or from physically connected, large, or high quality habitats had higher genetic variability and reduced genetic differentiation from other populations. Populations thought to contain largely non-migratory individuals generally showed the opposite pattern, suggesting behavioral isolation. Estimated effective sizes were small, and we identified significant and severe genetic bottlenecks in several populations that were isolated, recently founded, or that inhabit streams that desiccate frequently. Overall, this work suggested that Lahontan cutthroat trout populations in stream networks are affected by a combination of landscape and metapopulation processes. Results also demonstrated that genetic patterns can reveal unexpected processes, even within a system that is well studied from a conventional ecological perspective. ?? Springer 2006.

  9. Genetic diversity and landscape genetic structure of otter (Lutra lutra) populations in Europe

    DEFF Research Database (Denmark)

    Mucci, Nadia; Arrendal, Johanna; Ansorge, Hermann

    2010-01-01

    Eurasian otter populations strongly declined and partially disappeared due to global and local causes (habitat destruction, water pollution, human persecution) in parts of their continental range. Conservation strategies, based on reintroduction projects or restoration of dispersal corridors...... and landscape genetic analyses however indicate that local populations are genetically differentiated, perhaps as consequence of post-glacial demographic fluctuations and recent isolation. These results delineate a framework that should be used for implementing conservation programs in Europe, particularly...

  10. Evolutionary mechanisms shaping the genetic population structure of marine fishes; lessons from the European flounder ( Platichthys flesus L.)

    DEFF Research Database (Denmark)

    Hansen, Jakob Hemmer; Eg Nielsen, Einar; Grønkjær, P.

    2007-01-01

    with the extreme isolation of the island population at the Faroe Islands. A sharp genetic break was associated with a change in life history from pelagic to benthic spawners in the Baltic Sea. Partial Mantel tests showed that geographical distance per se was not related with genetic structuring among Atlantic...

  11. Proportioning whole-genome single-nucleotide-polymorphism diversity for the identification of geographic population structure and genetic ancestry

    NARCIS (Netherlands)

    O. Lao Grueso (Oscar); K. van Duijn (Kate); P. Kersbergen; P. de Knijff (Peter); M.H. Kayser (Manfred)

    2006-01-01

    textabstractThe identification of geographic population structure and genetic ancestry on the basis of a minimal set of genetic markers is desirable for a wide range of applications in medical and forensic sciences. However, the absence of sharp discontinuities in the neutral

  12. Population genetic structure of Helicobacter pylori strains from Portuguese-speaking countries.

    Science.gov (United States)

    Oleastro, Mónica; Rocha, Raquel; Vale, Filipa F

    2017-08-01

    The human gastric colonizer Helicobacter pylori is useful to track human migrations given the agreement between the bacterium phylogeographic distribution and human migrations. As Portugal was an African and Brazilian colonizer for over 400 years, we hypothesized that Portuguese isolates were likely genetically closer with those from countries colonized by Portuguese in the past. We aimed to characterize the population structure of several Portuguese-speaking countries, including Portugal, Brazil, Angola, and Cape Verde. We included strains isolated in Portugal from Portuguese and from former Portuguese colonies. These strains were typed by multilocus sequence typing (MLST) for seven housekeeping genes. We also retrieved from Multi Locus Sequence Typing Web site additional housekeeping gene sequences, namely from Angola and Brazil. We provided evidence that strains from Portuguese belong to hpEurope and that the introgression of hpEurope in non-European countries that speak Portuguese is low, except for Brazil and Cape Verde, where hpEurope accounted for one quarter and one half of the population, respectively. We found genetic similarity for all strains from Portuguese-speaking countries that belong to hpEurope population. Moreover, these strains showed a predominance of ancestral Europe 2 (AE2) over ancestral Europe 1 (AE1), followed by ancestral Africa 1. H. pylori is a useful marker even for relative recent human migration events and may become rapidly differentiated from founder populations. H. pylori from Portuguese-speaking countries assigned to hpEurope appears to be a hybrid population resulting from the admixture of AE1, AE2 and ancestral hpAfrica1. © 2017 John Wiley & Sons Ltd.

  13. Variation in genetic admixture and population structure among Latinos: the Los Angeles Latino eye study (LALES

    Directory of Open Access Journals (Sweden)

    Le Marchand Loic

    2009-11-01

    Full Text Available Abstract Background Population structure and admixture have strong confounding effects on genetic association studies. Discordant frequencies for age-related macular degeneration (AMD risk alleles and for AMD incidence and prevalence rates are reported across different ethnic groups. We examined the genomic ancestry characterizing 538 Latinos drawn from the Los Angeles Latino Eye Study [LALES] as part of an ongoing AMD-association study. To help assess the degree of Native American ancestry inherited by Latino populations we sampled 25 Mayans and 5 Mexican Indians collected through Coriell's Institute. Levels of European, Asian, and African descent in Latinos were inferred through the USC Multiethnic Panel (USC MEP, formed from a sample from the Multiethnic Cohort (MEC study, the Yoruba African samples from HapMap II, the Singapore Chinese Health Study, and a prospective cohort from Shanghai, China. A total of 233 ancestry informative markers were genotyped for 538 LALES Latinos, 30 Native Americans, and 355 USC MEP individuals (African Americans, Japanese, Chinese, European Americans, Latinos, and Native Hawaiians. Sensitivity of ancestry estimates to relative sample size was considered. Results We detected strong evidence for recent population admixture in LALES Latinos. Gradients of increasing Native American background and of correspondingly decreasing European ancestry were observed as a function of birth origin from North to South. The strongest excess of homozygosity, a reflection of recent population admixture, was observed in non-US born Latinos that recently populated the US. A set of 42 SNPs especially informative for distinguishing between Native Americans and Europeans were identified. Conclusion These findings reflect the historic migration patterns of Native Americans and suggest that while the 'Latino' label is used to categorize the entire population, there exists a strong degree of heterogeneity within that population, and that

  14. Variation in genetic admixture and population structure among Latinos: the Los Angeles Latino eye study (LALES).

    Science.gov (United States)

    Shtir, Corina J; Marjoram, Paul; Azen, Stanley; Conti, David V; Le Marchand, Loic; Haiman, Christopher A; Varma, Rohit

    2009-11-10

    Population structure and admixture have strong confounding effects on genetic association studies. Discordant frequencies for age-related macular degeneration (AMD) risk alleles and for AMD incidence and prevalence rates are reported across different ethnic groups. We examined the genomic ancestry characterizing 538 Latinos drawn from the Los Angeles Latino Eye Study [LALES] as part of an ongoing AMD-association study. To help assess the degree of Native American ancestry inherited by Latino populations we sampled 25 Mayans and 5 Mexican Indians collected through Coriell's Institute. Levels of European, Asian, and African descent in Latinos were inferred through the USC Multiethnic Panel (USC MEP), formed from a sample from the Multiethnic Cohort (MEC) study, the Yoruba African samples from HapMap II, the Singapore Chinese Health Study, and a prospective cohort from Shanghai, China. A total of 233 ancestry informative markers were genotyped for 538 LALES Latinos, 30 Native Americans, and 355 USC MEP individuals (African Americans, Japanese, Chinese, European Americans, Latinos, and Native Hawaiians). Sensitivity of ancestry estimates to relative sample size was considered. We detected strong evidence for recent population admixture in LALES Latinos. Gradients of increasing Native American background and of correspondingly decreasing European ancestry were observed as a function of birth origin from North to South. The strongest excess of homozygosity, a reflection of recent population admixture, was observed in non-US born Latinos that recently populated the US. A set of 42 SNPs especially informative for distinguishing between Native Americans and Europeans were identified. These findings reflect the historic migration patterns of Native Americans and suggest that while the 'Latino' label is used to categorize the entire population, there exists a strong degree of heterogeneity within that population, and that it will be important to assess this heterogeneity

  15. Genetic diversity and population structure of Prunus mira (Koehne from the Tibet plateau in China and recommended conservation strategies.

    Directory of Open Access Journals (Sweden)

    Wenquan Bao

    Full Text Available Prunus mira Koehne, an important economic fruit crop with high breeding and medicinal values, and an ancestral species of many cultivated peach species, has recently been declared an endangered species. However, basic information about genetic diversity, population structure, and morphological variation is still limited for this species. In this study, we sampled 420 P. mira individuals from 21 wild populations in the Tibet plateau to conduct a comprehensive analysis of genetic and morphological characteristics. The results of molecular analyses based on simple sequence repeat (SSR markers indicated moderate genetic diversity and inbreeding (A = 3.8, Ae = 2.5, He = 0.52, Ho = 0.44, I = 0.95, FIS = 0.17 within P. mira populations. STRUCTURE, GENELAND, and phylogenetic analyses assigned the 21 populations to three genetic clusters that were moderately correlated with geographic altitudes, and this may have resulted from significantly different climatic and environmental factors at different altitudinal ranges. Significant isolation-by-distance was detected across the entire distribution of P. mira populations, but geographic altitude might have more significant effects on genetic structure than geographic distance in partial small-scale areas. Furthermore, clear genetic structure, high genetic differentiation, and restricted gene flow were detected between pairwise populations from different geographic groups, indicating that geographic barriers and genetic drift have significant effects on P. mira populations. Analyses of molecular variance based on the SSR markers indicated high variation (83.7% and 81.7%, whereas morphological analyses revealed low variation (1.30%-36.17% within the populations. Large and heavy fruits were better adapted than light fruits and nutlets to poor climate and environmental conditions at high altitudes. Based on the results of molecular and morphological analyses, we classified the area into three conservation units

  16. Population genetic structure and natural selection of apical membrane antigen-1 in Plasmodium vivax Korean isolates.

    Science.gov (United States)

    Kang, Jung-Mi; Lee, Jinyoung; Cho, Pyo-Yun; Moon, Sung-Ung; Ju, Hye-Lim; Ahn, Seong Kyu; Sohn, Woon-Mok; Lee, Hyeong-Woo; Kim, Tong-Soo; Na, Byoung-Kuk

    2015-11-16

    Plasmodium vivax apical membrane antigen-1 (PvAMA-1) is a leading candidate antigen for blood stage malaria vaccine. However, antigenic variation is a major obstacle in the development of an effective vaccine based on this antigen. In this study, the genetic structure and the effect of natural selection of PvAMA-1 among Korean P. vivax isolates were analysed. Blood samples were collected from 66 Korean patients with vivax malaria. The entire PvAMA-1 gene was amplified by polymerase chain reaction and cloned into a TA cloning vector. The PvAMA-1 sequence of each isolate was sequenced and the polymorphic characteristics and effect of natural selection were analysed using the DNASTAR, MEGA4, and DnaSP programs. Thirty haplotypes of PvAMA-1, which were further classified into seven different clusters, were identified in the 66 Korean P. vivax isolates. Domain II was highly conserved among the sequences, but substantial nucleotide diversity was observed in domains I and III. The difference between the rates of non-synonymous and synonymous mutations suggested that the gene has evolved under natural selection. No strong evidence indicating balancing or positive selection on PvAMA-1 was identified. Recombination may also play a role in the resulting genetic diversity of PvAMA-1. This study is the first comprehensive analysis of nucleotide diversity across the entire PvAMA-1 gene using a single population sample from Korea. Korean PvAMA-1 had limited genetic diversity compared to PvAMA-1 in global isolates. The overall pattern of genetic polymorphism of Korean PvAMA-1 differed from other global isolates and novel amino acid changes were also identified in Korean PvAMA-1. Evidences for natural selection and recombination event were observed, which is likely to play an important role in generating genetic diversity across the PvAMA-1. These results provide useful information for the understanding the population structure of P. vivax circulating in Korea and have important

  17. Microsatellite variation and genetic structuring in Mugil liza (Teleostei: Mugilidae) populations from Argentina and Brazil

    Science.gov (United States)

    Mai, Ana C. G.; Miño, Carolina I.; Marins, Luis F. F.; Monteiro-Neto, Cassiano; Miranda, Laura; Schwingel, Paulo R.; Lemos, Valéria M.; Gonzalez-Castro, Mariano; Castello, Jorge P.; Vieira, João P.

    2014-08-01

    The mullet Mugil liza is distributed along the Atlantic coast of South America, from Argentina to Venezuela, and it is heavily exploited in Brazil. We assessed patterns of distribution of neutral nuclear genetic variation in 250 samples from the Brazilian states of Rio de Janeiro, São Paulo, Santa Catarina and Rio Grande do Sul (latitudinal range of 23-31°S) and from Buenos Aires Province in Argentina (36°S). Nine microsatellite loci revealed 131 total alleles, 3-23 alleles per locus, He: 0.69 and Ho: 0.67. Significant genetic differentiation was observed between Rio de Janeiro samples (23°S) and those from all other locations, as indicated by FST, hierarchical analyses of genetic structure, Bayesian cluster analyses and assignment tests. The presence of two different demographic clusters better explains the allelic diversity observed in mullets from the southernmost portion of the Atlantic coast of Brazil and from Argentina. This may be taken into account when designing fisheries management plans involving Brazilian, Uruguayan and Argentinean M. liza populations.

  18. Management applications of genetic structure of anadromous sturgeon populations in the Lower Danube River (LDR, Romania

    Directory of Open Access Journals (Sweden)

    ONĂRĂ Dalia Florentina

    2013-12-01

    Full Text Available During the last decades, the over-exploitation of sturgeon stocks for caviar production simultaneously with severe habitat deteriorations has led to drastic declines in the natural populations of the Danube River. As a result of (i decrease of sturgeon catches from 37.5 tons in year 2002 to 11.8 tons in year 2005, (ii disrupted age class structure of sturgeon adult cohorts in years 2003 and 2004, and (iii lack or low recruitment in the period 2001 – 2004, in 2005 the Romanian Government started the Supportive Stocking Program of Lower Danube River with hatchery-produced young sturgeons in Romania. Subsequently, in 2006 the commercial sturgeon fishing in Romania was banned for a 10-year period. Genetic investigations were undertaken as an attempt to assess the genetic variability of the sturgeon brood fish, captured from the wild, used in two aquaculture facilities in Romania for obtaining juveniles for supportive stocking of LDR with young sturgeons produced by artificial propagation in year 2007. Our data indicate strong genetic diversity in case of stellate sturgeon and lack of diversity within the batch of beluga sturgeon brood fish captured in 2007, analyzed in the current study. Specific measures that could improve the management plan of sturgeon brood fish in the Romanian part of LDR in the light of recent FAO guidelines regarding the sturgeon hatchery practices and management for release were suggested

  19. Genetic structure and gene flow among Komodo dragon populations inferred by microsatellite loci analysis.

    Science.gov (United States)

    Ciofi, C; Bruford, M W

    1999-12-01

    A general concern for the conservation of endangered species is the maintenance of genetic variation within populations, particularly when they become isolated and reduced in size. Estimates of gene flow and effective population size are therefore important for any conservation initiative directed to the long-term persistence of a species in its natural habitat. In the present study, 10 microsatellite loci were used to assess the level of genetic variability among populations of the Komodo dragon Varanus komodoensis. Effective population size was calculated and gene flow estimates were compared with palaeogeographic data in order to assess the degree of vulnerability of four island populations. Rinca and Flores, currently separated by an isthmus of about 200 m, retained a high level of genetic diversity and showed a high degree of genetic similarity, with gene flow values close to one migrant per generation. The island of Komodo showed by far the highest levels of genetic divergence, and its allelic distinctiveness was considered of great importance in the maintenance of genetic variability within the species. A lack of distinct alleles and low levels of gene flow and genetic variability were found for the small population of Gili Motang island, which was identified as vulnerable to stochastic threats. Our results are potentially important for both the short- and long-term management of the Komodo dragon, and are critical in view of future re-introduction or augmentation in areas where the species is now extinct or depleted.

  20. Genetic diversity and population structure of Lactobacillus delbrueckii subspecies bulgaricus isolated from naturally fermented dairy foods.

    Science.gov (United States)

    Song, Yuqin; Sun, Zhihong; Guo, Chenyi; Wu, Yarong; Liu, Wenjun; Yu, Jie; Menghe, Bilige; Yang, Ruifu; Zhang, Heping

    2016-03-04

    Lactobacillus delbrueckii subsp. bulgaricus is one of the most widely used starter culture strains in industrial fermented dairy manufacture. It is also common in naturally fermented dairy foods made using traditional methods. The subsp. bulgaricus strains found in naturally fermented foods may be useful for improving current industrial starter cultures; however, little is known regarding its genetic diversity and population structure. Here, a collection of 298 L. delbrueckii strains from naturally fermented products in Mongolia, Russia, and West China was analyzed by multi-locus sequence typing based on eight conserved genes. The 251 confirmed subsp. bulgaricus strains produced 106 unique sequence types, the majority of which were assigned to five clonal complexes (CCs). The geographical distribution of CCs was uneven, with CC1 dominated by Mongolian and Russian isolates, and CC2-CC5 isolates exclusively from Xinjiang, China. Population structure analysis suggested six lineages, L1-L6, with various homologous recombination rates. Although L2-L5 were mainly restricted within specific regions, strains belonging to L1 and L6 were observed in diverse regions, suggesting historical transmission events. These results greatly enhance our knowledge of the population diversity of subsp. bulgaricus strains, and suggest that strains from CC1 and L4 may be useful as starter strains in industrial fermentation.

  1. Genetic structure of the Mon-Khmer speaking groups and their affinity to the neighbouring Tai populations in Northern Thailand.

    Science.gov (United States)

    Kutanan, Wibhu; Kampuansai, Jatupol; Fuselli, Silvia; Nakbunlung, Supaporn; Seielstad, Mark; Bertorelle, Giorgio; Kangwanpong, Daoroong

    2011-06-15

    The Mon-Khmer speaking peoples inhabited northern Thailand before the arrival of the Tai speaking people from southern China in the thirteenth century A.D. Historical and anthropological evidence suggests a close relationship between the Mon-Khmer groups and the present day majority northern Thai groups. In this study, mitochondrial and Y-chromosomal DNA polymorphisms in more than 800 volunteers from eight Mon-Khmer and ten Tai speaking populations were investigated to estimate the degree of genetic divergence between these major linguistic groups and their internal structure. A large fraction of genetic variation is observed within populations (about 80% and 90% for mtDNA and the Y-chromosome, respectively). The genetic divergence between populations is much higher in Mon-Khmer than in Tai speaking groups, especially at the paternally inherited markers. The two major linguistic groups are genetically distinct, but only for a marginal fraction (1 to 2%) of the total genetic variation. Genetic distances between populations correlate with their linguistic differences, whereas the geographic distance does not explain the genetic divergence pattern. The Mon-Khmer speaking populations in northern Thailand exhibited the genetic divergence among each other and also when compared to Tai speaking peoples. The different drift effects and the post-marital residence patterns between the two linguistic groups are the explanation for a small but significant fraction of the genetic variation pattern within and between them. © 2011 Kutanan et al; licensee BioMed Central Ltd.

  2. Microsatellite analysis of genetic diversity and population structure of hermaphrodite ridge gourd (Luffa hermaphrodita).

    Science.gov (United States)

    Pandey, Sudhakar; Ansari, W A; Choudhary, B R; Pandey, Maneesh; Jena, S N; Singh, A K; Dubey, R K; Singh, Bijendra

    2018-01-01

    Out of 103 microsatellite markers used for studying the genetic diversity among local landraces of Luffa species, 56 were found polymorphic, including 38 gSSR and 18 eSSR, respectively. A total of 197 amplification products were obtained. The mean number of alleles per locus was 3.52. The PIC ranged from 0.037 to 0.986, while size of amplified product ranged from 105 to 500 bp. Cucumber-derived SSRs were amplified within L. acutangula (68%), L. aegyptiaca (61.16%), and L. hermaphrodita (60.2%), with an average of 63.12% cross-transferability. The Jaccard's coefficient ranged from 0.66 to 0.97, with an average of 0.81. High genetic variability was observed for node of 1st hermaphrodite flower (6.4-17), days to 1st hermaphrodite flower (38-52.1), days to 1st fruit harvest (43-65), number of fruit per cluster (1-5.9), fruit length (3.9-25 cm), fruit weight (18.4-175 g), number of fruit per plant (20-147.5), and yield per plant (2.2-4.7 kg). Two sub-populations were identified including 21 genotypes (sub-population I) and 06 genotypes (sub-population II), these two sub-populations showed 0.608-0.395% of the ancestral relationship to each other. This study provides information for future exploration, collection, and utilization of Luffa genotypes, as well as the polymorphic markers identified could be available for the study of landmarks in linkages, genomic structures, evolutionary ecology, and marker-assisted selection (MAS) in Luffa species.

  3. Significant population genetic structure detected in the rock bream Oplegnathus fasciatus (Temminck & Schlegel, 1844) inferred from fluorescent-AFLP analysis

    Science.gov (United States)

    Xiao, Yongshuang; Ma, Daoyuan; Xu, Shihong; Liu, Qinghua; Wang, Yanfeng; Xiao, Zhizhong; Li, Jun

    2016-05-01

    Oplegnathus fasciatus (rock bream) is a commercial rocky reef fish species in East Asia that has been considered for aquaculture. We estimated the population genetic diversity and population structure of the species along the coastal waters of China using fluorescent-amplified fragment length polymorphisms technology. Using 53 individuals from three populations and four pairs of selective primers, we amplified 1 264 bands, 98.73% of which were polymorphic. The Zhoushan population showed the highest Nei's genetic diversity and Shannon genetic diversity. The results of analysis of molecular variance (AMOVA) showed that 59.55% of genetic variation existed among populations and 40.45% occurred within populations, which indicated that a significant population genetic structure existed in the species. The pairwise fixation index F st ranged from 0.20 to 0.63 and were significant after sequential Bonferroni correction. The topology of an unweighted pair group method with arithmetic mean tree showed two significant genealogical branches corresponding to the sampling locations of North and South China. The AMOVA and STRUCTURE analyses suggested that the O. fasciatus populations examined should comprise two stocks.

  4. An ancient Mediterranean melting pot: investigating the uniparental genetic structure and population history of sicily and southern Italy.

    Directory of Open Access Journals (Sweden)

    Stefania Sarno

    Full Text Available Due to their strategic geographic location between three different continents, Sicily and Southern Italy have long represented a major Mediterranean crossroad where different peoples and cultures came together over time. However, its multi-layered history of migration pathways and cultural exchanges, has made the reconstruction of its genetic history and population structure extremely controversial and widely debated. To address this debate, we surveyed the genetic variability of 326 accurately selected individuals from 8 different provinces of Sicily and Southern Italy, through a comprehensive evaluation of both Y-chromosome and mtDNA genomes. The main goal was to investigate the structuring of maternal and paternal genetic pools within Sicily and Southern Italy, and to examine their degrees of interaction with other Mediterranean populations. Our findings show high levels of within-population variability, coupled with the lack of significant genetic sub-structures both within Sicily, as well as between Sicily and Southern Italy. When Sicilian and Southern Italian populations were contextualized within the Euro-Mediterranean genetic space, we observed different historical dynamics for maternal and paternal inheritances. Y-chromosome results highlight a significant genetic differentiation between the North-Western and South-Eastern part of the Mediterranean, the Italian Peninsula occupying an intermediate position therein. In particular, Sicily and Southern Italy reveal a shared paternal genetic background with the Balkan Peninsula and the time estimates of main Y-chromosome lineages signal paternal genetic traces of Neolithic and post-Neolithic migration events. On the contrary, despite showing some correspondence with its paternal counterpart, mtDNA reveals a substantially homogeneous genetic landscape, which may reflect older population events or different demographic dynamics between males and females. Overall, both uniparental genetic

  5. Population genetic structure of eelgrass (Zostera marina on the Korean coast: Current status and conservation implications for future management.

    Directory of Open Access Journals (Sweden)

    Jae Hwan Kim

    Full Text Available Seagrasses provide numerous ecosystem services for coastal and estuarine environments, such as nursery functions, erosion protection, pollution filtration, and carbon sequestration. Zostera marina (common name "eelgrass" is one of the seagrass bed-forming species distributed widely in the northern hemisphere, including the Korean Peninsula. Recently, however, there has been a drastic decline in the population size of Z. marina worldwide, including Korea. We examined the current population genetic status of this species on the southern coast of Korea by estimating the levels of genetic diversity and genetic structure of 10 geographic populations using eight nuclear microsatellite markers. The level of genetic diversity was found to be significantly lower for populations on Jeju Island [mean allelic richness (AR = 1.92, clonal diversity (R = 0.51], which is located approximately 155 km off the southernmost region of the Korean Peninsula, than for those in the South Sea (mean AR = 2.69, R = 0.82, which is on the southern coast of the mainland. South Korean eelgrass populations were substantially genetically divergent from one another (FST = 0.061-0.573, suggesting that limited contemporary gene flow has been taking place among populations. We also found weak but detectable temporal variation in genetic structure within a site over 10 years. In additional depth comparisons, statistically significant genetic differentiation was observed between shallow (or middle and deep zones in two of three sites tested. Depleted genetic diversity, small effective population sizes (Ne and limited connectivity for populations on Jeju Island indicate that these populations may be vulnerable to local extinction under changing environmental conditions, especially given that Jeju Island is one of the fastest warming regions around the world. Overall, our work will inform conservation and restoration efforts, including transplantation for eelgrass populations at the

  6. Genetic Diversity and Population Structure of Two Tomato Species from the Galapagos Islands

    KAUST Repository

    Pailles, Yveline; Ho, Shwen; Pires, Inê s S.; Tester, Mark A.; Negrã o, Só nia; Schmö cke, Sandra M.

    2017-01-01

    with cultivated tomato. However, information about genetic diversity and relationships within and between populations is necessary to use these resources efficiently in plant breeding. In this study, we analyzed 3,974 polymorphic SNP markers, obtained through

  7. Population genetic structure in a Robertsonian race of house mice: evidence from microsatellite polymorphism

    NARCIS (Netherlands)

    Dallas, J.F.; Bonhomme, F.; Boursot, P.; Britton-Davidian, J.; Bauchau, V.

    1998-01-01

    Genetic evidence was assessed for inbreeding and population subdivision in a Robertsonian fusion (Rb) race of the western European form of house mouse, Mus musculus domesticus, in central Belgium. Inbreeding, and the factors responsible for subdivision (genetic drift and extinction-recolonization)

  8. Genetic Diversity, Population Structure, and Heritability of Fruit Traits in Capsicum annuum

    Science.gov (United States)

    Naegele, Rachel P.; Mitchell, Jenna; Hausbeck, Mary K.

    2016-01-01

    Cultivated pepper (Capsicum annuum) is a phenotypically diverse species grown throughout the world. Wild and landrace peppers are typically small-fruited and pungent, but contain many important traits such as insect and disease resistance. Cultivated peppers vary dramatically in size, shape, pungency, and color, and often lack resistance traits. Fruit characteristics (e.g. shape and pericarp thickness) are major determinants for cultivar selection, and their association with disease susceptibility can reduce breeding efficacy. This study evaluated a diverse collection of peppers for mature fruit phenotypic traits, correlation among fruit traits and Phytophthora fruit rot resistance, genetic diversity, population structure, and trait broad sense heritability. Significant differences within all fruit phenotype categories were detected among pepper lines. Fruit from Europe had the thickest pericarp, and fruit from Ecuador had the thinnest. For fruit shape index, fruit from Africa had the highest index, while fruit from Europe had the lowest. Five genetic clusters were detected in the pepper population and were significantly associated with fruit thickness, end shape, and fruit shape index. The genetic differentiation between clusters ranged from little to very great differentiation when grouped by the predefined categories. Broad sense heritability for fruit traits ranged from 0.56 (shoulder height) to 0.98 (pericarp thickness). When correlations among fruit phenotypes and fruit disease were evaluated, fruit shape index was negatively correlated with pericarp thickness, and positively correlated with fruit perimeter. Pepper fruit pericarp, perimeter, and width had a slight positive correlation with Phytophthora fruit rot, whereas fruit shape index had a slight negative correlation. PMID:27415818

  9. Information geometry and population genetics the mathematical structure of the Wright-Fisher model

    CERN Document Server

    Hofrichter, Julian; Tran, Tat Dat

    2017-01-01

    The present monograph develops a versatile and profound mathematical perspective of the Wright--Fisher model of population genetics. This well-known and intensively studied model carries a rich and beautiful mathematical structure, which is uncovered here in a systematic manner. In addition to approaches by means of analysis, combinatorics and PDE, a geometric perspective is brought in through Amari's and Chentsov's information geometry. This concept allows us to calculate many quantities of interest systematically; likewise, the employed global perspective elucidates the stratification of the model in an unprecedented manner. Furthermore, the links to statistical mechanics and large deviation theory are explored and developed into powerful tools. Altogether, the manuscript provides a solid and broad working basis for graduate students and researchers interested in this field.

  10. Small-scale genetic structure in an endangered wetland specialist: possible effects of landscape change and population recovery

    Science.gov (United States)

    van Rees, Charles B.; Reed, J. Michael; Wilson, Robert E.; Underwood, Jared G.; Sonsthagen, Sarah A.

    2018-01-01

    The effects of anthropogenic landscape change on genetic population structure are well studied, but the temporal and spatial scales at which genetic structure can develop, especially in taxa with high dispersal capabilities like birds, are less well understood. We investigated population structure in the Hawaiian gallinule (Gallinula galeata sandvicensis), an endangered wetland specialist bird on the island of O`ahu (Hawai`i, USA). Hawaiian gallinules have experienced a gradual population recovery from near extinction in the 1950s, and have recolonized wetlands on O`ahu in the context of a rapidly urbanizing landscape. We genotyped 152 Hawaiian gallinules at 12 microsatellite loci and sequenced a 520 base-pair fragment of the ND2 region of mitochondrial DNA (mtDNA) from individuals captured at 13 wetland locations on O`ahu in 2014–2016. We observed moderate to high genetic structuring (overall microsatellite FST = 0.098, mtDNA FST = 0.248) among populations of Hawaiian gallinules occupying wetlands at very close geographic proximity (e.g., 1.5–55 km). Asymmetry in gene flow estimates suggests that Hawaiian gallinules may have persisted in 2–3 strongholds which served as source populations that recolonized more recently restored habitats currently supporting large numbers of birds. Our results highlight that genetic structure can develop in taxa that are expanding their range after severe population decline, and that biologically significant structuring can occur over small geographic distances, even in avian taxa.

  11. Low Genetic Diversity and Structuring of the Arapaima (Osteoglossiformes, Arapaimidae Population of the Araguaia-Tocantins Basin

    Directory of Open Access Journals (Sweden)

    Carla A. Vitorino

    2017-10-01

    Full Text Available The arapaima, Arapaima gigas, is a fish whose populations are threatened by both overfishing and the ongoing destruction of its natural habitats. In the Amazon basin, varying levels of population structure have been found in A. gigas, although no data are available on the genetic diversity or structure of the populations found in the Araguaia-Tocantins basin, which has a topographic profile, hydrological regime, and history of fishing quite distinct from those of the Amazon. In this context, microsatellite markers were used to assess the genetic diversity and connectivity of five wild A. gigas populations in the Araguaia-Tocantins basin. The results of the analysis indicated low levels of genetic diversity in comparison with other A. gigas populations, studied in the Amazon basin. The AMOVA revealed that the Arapaima populations of the Araguaia-Tocantins basin are structured significantly. No correlation was found between pairwise FST values and the geographical distance among populations. The low level of genetic variability and the evidence of restricted gene flow may both be accounted for by overfishing, as well as the other human impacts that these populations have been exposed to over the years. The genetic fragility of these populations demands attention, given that future environmental changes (natural or otherwise may further reduce these indices and eventually endanger these populations. The results of this study emphasize the need to take the genetic differences among the study populations into account when planning management measures and conservation strategies for the arapaima stocks of the Araguaia-Tocantins basin.

  12. Population genetic structure of the grasshopper Eyprepocnemis plorans in the south and east of the Iberian Peninsula.

    Directory of Open Access Journals (Sweden)

    María Inmaculada Manrique-Poyato

    Full Text Available The grasshopper Eyprepocnemis plorans subsp. plorans harbors a very widespread polymorphism for supernumerary (B chromosomes which appear to have arisen recently. These chromosomes behave as genomic parasites because they are harmful for the individuals carrying them and show meiotic drive in the initial stages of population invasion. The rapid increase in B chromosome frequency at intrapopulation level is thus granted by meiotic drive, but its spread among populations most likely depends on interpopulation gene flow. We analyze here the population genetic structure in 10 natural populations from two regions (in the south and east of the Iberian Peninsula. The southern populations were coastal whereas the eastern ones were inland populations located at 260-655 m altitude. The analysis of 97 ISSR markers revealed significant genetic differentiation among populations (average G(ST = 0.129, and the Structure software and AMOVA indicated a significant genetic differentiation between southern and eastern populations. There was also significant isolation by distance (IBD between populations. Remarkably, these results were roughly similar to those found when only the markers showing low or no dropout were included, suggesting that allelic dropout had negligible effects on population genetic analysis. We conclude that high gene flow helped this parasitic B chromosome to spread through most of the geographical range of the subspecies E. plorans plorans.

  13. Temporal dynamics and population genetic structure of Fusarium graminearum in the upper Midwestern United States.

    Science.gov (United States)

    Liang, J M; Xayamongkhon, H; Broz, K; Dong, Y; McCormick, S P; Abramova, S; Ward, T J; Ma, Z H; Kistler, H C

    2014-12-01

    Fusarium graminearum sensu stricto causes Fusarium head blight (FHB) in wheat and barley, and contaminates grains with several trichothecene mycotoxins, causing destructive yield losses and economic impact in the United States. Recently, a F. graminearum strain collected from Minnesota (MN) was determined to produce a novel trichothecene toxin, called NX-2. In order to determine the spatial and temporal dynamics of NX-2 producing strains in MN, North Dakota (ND) and South Dakota (SD), a total of 463 F. graminearum strains were collected from three sampling periods, 1999-2000, 2006-2007 and 2011-2013. A PCR-RFLP based diagnostic test was developed and validated for NX-2 producing strains based on polymorphisms in the Tri1 gene. Trichothecene biosynthesis gene (Tri gene)-based polymerase chain reaction (PCR) assays and ten PCR-restriction fragment length polymorphism (RFLP) markers were used to genotype all strains. NX-2 strains were detected in each sampling period but with a very low overall frequency (2.8%) and were mainly collected near the borders of MN, ND and SD. Strains with the 3ADON chemotype were relatively infrequent in 1999-2000 (4.5%) but increased to 29.4% in 2006-2007 and 17.2% in 2011-2013. The distribution of 3ADON producing strains also expanded from a few border counties between ND and MN in 1999-2000, southward toward the border between SD and MN in 2006-2007 and westward in 2011-2013. Genetic differentiation between 2006-2007 and 2011-2013 populations (3%) was much lower than that between 1999-2000 and 2006-2007 (22%) or 1999-2000 and 2011-2013 (20%) suggesting that most change to population genetic structure of F. graminearum occurred between 1999-2000 and 2006-2007. This change was associated with the emergence of a new population consisting largely of individuals with a 3ADON chemotype. A Bayesian clustering analysis suggested that NX-2 chemotype strains are part of a previously described Upper Midwestern population. However, these analyses

  14. Genetic structure and seed germination in Portuguese populations of Cheirolophus uliginosus (Asteraceae: Implications for conservation strategies

    Directory of Open Access Journals (Sweden)

    Vitales, D.

    2013-12-01

    Full Text Available Cheirolophus uliginosus is a threatened species, endemic to the Atlantic coast of the Iberian Peninsula, where it occupies a few restricted localities. In our study we analysed the patterns of cpDNA haplotypes variation and reproductive success—germinability—among seven Portuguese populations of varying size. The aim was to examine the reproductive performance of Ch. uliginosus related to genetic structure and population size. The results showed very low within-population variability of cpDNA markers. Our study indicates that the germination rate is significantly reduced in small populations ( 250 individuals do not show any constraint. In the search for plausible causes explaining the lower germination success in the smallest populations, ecological concerns and genetic isolation must be taken into account. Besides, in large-sized populations of Ch. uliginosus (> 250 plants a higher incidence of predispersal seed predation was observed, maybe affecting their sexual reproductive response. Finally, smaller populations—presenting a reduced reproductive success—contain also the most evolutionary distant haplotypes, so their conservation should be a priority.Cheirolophus uliginosus es una especie amenazada endémica de la costa atlántica de la península ibérica, donde ocupa unas pocas y reducidas localidades. En nuestro estudio, analizamos los patrones de variación de los haplotipos de ADN cloroplástico y el éxito reproductivo —capacidad germinativa— en siete poblaciones portuguesas de diferente tamaño. El éxito reproductivo de Ch. uliginosus se ha examinado en relación con la estructura genética y el tamaño de sus poblaciones. Los resultados indican una variabilidad intrapoblacional muy baja para los marcadores cloroplásticos utilizados. Nuestro estudio muestra una tasa de germinación significativamente reducida en las poblaciones pequeñas ( 250 individuos. Para explicar este fenómeno, se deben tomar en consideración las

  15. Population Genetic Structure and Genetic Diversity in Twisted-Jaw Fish, Belodontichthys truncatus Kottelat & Ng, 1999 (Siluriformes: Siluridae, from Mekong Basin

    Directory of Open Access Journals (Sweden)

    Surapon Yodsiri

    2017-01-01

    Full Text Available The Mekong River and its tributaries possess the second highest diversity in fish species in the world. However, the fish biodiversity in this river is threatened by several human activities, such as hydropower plant construction. Understanding the genetic diversity and genetic structure of the species is important for natural resource management. Belodontichthys truncatus Kottelat & Ng is endemic to the Mekong River basin and is an important food source for people in this area. In this study, the genetic diversity, genetic structure, and demographic history of the twisted-jaw fish, B. truncatus, were investigated using mitochondrial cytochrome b gene sequences. A total of 124 fish specimens were collected from 10 locations in the Mekong and its tributaries. Relatively high genetic diversity was found in populations of B. truncatus compared to other catfish species in the Mekong River. The genetic structure analysis revealed that a population from the Chi River in Thailand was genetically significantly different from other populations, which is possibly due to the effect of genetic drift. Demographic history analysis indicated that B. truncatus has undergone recent demographic expansion dating back to the end of the Pleistocene glaciation.

  16. Genetic diversity and population structure in the Leishmania guyanensis vector Lutzomyia anduzei (Diptera, Psychodidae) from the Brazilian Amazon.

    Science.gov (United States)

    Scarpassa, Vera Margarete; Figueiredo, Adrya da Silva; Alencar, Ronildo Baiatone

    2015-04-01

    Lutzomyia (Nyssomyia) anduzei has been recognized as a secondary vector of Leishmania guyanensis in the Brazilian Amazon region. Since L. anduzei is anthropophilic, co-exists in areas of high leishmaniasis transmission and has been found infected with L. guyanensis, the understanding of the vector population structure and of the process responsible for it is paramount to the vector management and control efforts. In this study we analyzed 74 and 67 sequences of the COI and Cytb loci, respectively, from mitochondrial DNA, aiming to estimate the intra-population genetic variability and population structure in six L. anduzei samples from the Brazilian Amazon region. For COI, we found 58 haplotypes, low to high (FST=0.0310-0.4128) and significant (P=0.0033) genetic structure, and reduced gene flow among populations. The haplotype network yielded many reticulations that likely resulted from hypervariability in the locus. For Cytb, we observed 27 haplotypes, low to moderate (FST=0.0077-0.1954) and nonsignificant (P>0.05) genetic structure for the majority of comparisons and extensive gene flow among populations, in line with the haplotypes network data. AMOVA analysis indicated that most of the variation occurred within populations (83.41%, 90.94%); nevertheless, there were significant differences (ΦST=0.0906-0.1659; P=0.00098; P=0.00000) among them for both loci. The Mantel test showed that the genetic structure is not associated to an isolation-by-distance (IBD) model in either of both loci. These data suggest that L. anduzei is genetically very diverse. The genetic structure lacking IBD may be due to adaptation to local habitats and the low dispersal capacity of the sandflies, and both could lead to population fragmentation and geographic isolation. These findings have important implications for epidemiology, surveillance and vector control and may be a first step in understanding the evolutionary history of this species. Copyright © 2015 Elsevier B.V. All rights

  17. Genetic structure of European populations of Salmo salar L (Atlantic salmon) inferred from mitochondrial DNA

    DEFF Research Database (Denmark)

    Eg Nielsen, Einar; Hansen, Michael Møller; Loeschcke, V.

    1996-01-01

    The genetic relationships between the only natural population of Atlantic salmon (Salmo salar L.) in Denmark and seven other European salmon populations were studied using RFLP analysis of PCR amplified mitochondrial DNA segments. Six different haplotypes were detected by restriction enzyme...

  18. Global population genetic structure and biogeography of the oceanic copepods Eucalanus hyalinus and E. spinifer

    DEFF Research Database (Denmark)

    Goetze, Erica

    2005-01-01

    Although theory dictates that limited gene flow between populations is a necessary precursor to speciation under allopatric and parapatric models, it is currently unclear how genetic differentiation between conspecific populations can arise in open-ocean plankton species. I examined two recently...

  19. Genetic diversity and population genetic structure analysis of Echinococcus granulosus sensu stricto complex based on mitochondrial DNA signature.

    Directory of Open Access Journals (Sweden)

    Monika Sharma

    Full Text Available The genetic diversity and population genetics of the Echinococcus granulosus sensu stricto complex were investigated based on sequencing of mitochondrial DNA (mtDNA. Total 81 isolates of hydatid cyst collected from ungulate animals from different geographical areas of North India were identified by sequencing of cytochrome c oxidase subunit1 (coxi gene. Three genotypes belonging to E. granulosus sensu stricto complex were identified (G1, G2 and G3 genotypes. Further the nucleotide sequences (retrieved from GenBank for the coxi gene from seven populations of E. granulosus sensu stricto complex covering 6 continents, were compared with sequences of isolates analysed in this study. Molecular diversity indices represent overall high mitochondrial DNA diversity for these populations, but low nucleotide diversity between haplotypes. The neutrality tests were used to analyze signatures of historical demographic events. The Tajima's D test and Fu's FS test showed negative value, indicating deviations from neutrality and both suggested recent population expansion for the populations. Pairwise fixation index was significant for pairwise comparison of different populations (except between South America and East Asia, Middle East and Europe, South America and Europe, Africa and Australia, indicating genetic differentiation among populations. Based on the findings of the present study and those from earlier studies, we hypothesize that demographic expansion occurred in E. granulosus after the introduction of founder haplotype particular by anthropogenic movements.

  20. Genetic structure of arbuscular mycorrhizal populations in fallow and cultivated soils

    DEFF Research Database (Denmark)

    Rosendahl, Søren; Matzen, Hans

    2008-01-01

    protein-coding genes GmFOX2 and GmTOR2 were used as co-dominant genetic markers together with the large subunit (LSU) rDNA. The gene diversity and genetic structure of Glomus mosseae, Glomus geosporum and Glomus caledonium were compared within and between the fields. •  Spores of G. caledonium and G...

  1. Comparisons of the genetic structure of populations of Turnip mosaic virus in west east Eurasia

    Czech Academy of Sciences Publication Activity Database

    Tomimura, K.; Špak, Josef; Katis, N.; Jenner, C. E.; Walsh, J.A.; Gibbs, A.J.; Ohshima, K.

    2004-01-01

    Roč. 330, - (2004), 408-423 ISSN 0042-6822 Institutional research plan: CEZ:AV0Z5051902 Keywords : mosaic virus * genetic structure Subject RIV: EE - Microbiology, Virology Impact factor: 3.071, year: 2004

  2. Divergent population genetic structure of the endangered Helianthemum (Cistaceae) and its implication to conservation in northwestern China

    Science.gov (United States)

    Zhihao Su; Bryce A. Richardson; Li Zhuo; Xiaolong Jiang

    2017-01-01

    Population genetic studies provide a foundation for conservation planning, especially for endangered species. Three chloroplast SSRs (mtrnSf-trnGr, mtrnL2-trnF, and mtrnL5-trnL3) and the internal transcribed spacer were used to examine the population structure of Helianthemum in northwestern China. A total of 15 populations of the genus were collected. Nine chloroplast...

  3. Genetic population structure of the malaria vector Anopheles baimaii in north-east India using mitochondrial DNA.

    Science.gov (United States)

    Sarma, Devojit K; Prakash, Anil; O'Loughlin, Samantha M; Bhattacharyya, Dibya R; Mohapatra, Pradumnya K; Bhattacharjee, Kanta; Das, Kanika; Singh, Sweta; Sarma, Nilanju P; Ahmed, Gias U; Walton, Catherine; Mahanta, Jagadish

    2012-03-20

    Anopheles baimaii is a primary vector of human malaria in the forest settings of Southeast Asia including the north-eastern region of India. Here, the genetic population structure and the basic population genetic parameters of An. baimaii in north-east India were estimated using DNA sequences of the mitochondrial cytochrome oxidase sub unit II (COII) gene. Anopheles baimaii were collected from 26 geo-referenced locations across the seven north-east Indian states and the COII gene was sequenced from 176 individuals across these sites. Fifty-seven COII sequences of An. baimaii from six locations in Bangladesh, Myanmar and Thailand from a previous study were added to this dataset. Altogether, 233 sequences were grouped into eight population groups, to facilitate analyses of genetic diversity, population structure and population history. A star-shaped median joining haplotype network, unimodal mismatch distribution and significantly negative neutrality tests indicated population expansion in An. baimaii with the start of expansion estimated to be ~0.243 million years before present (MYBP) in north-east India. The populations of An. baimaii from north-east India had the highest haplotype and nucleotide diversity with all other populations having a subset of this diversity, likely as the result of range expansion from north-east India. The north-east Indian populations were genetically distinct from those in Bangladesh, Myanmar and Thailand, indicating that mountains, such as the Arakan mountain range between north-east India and Myanmar, are a significant barrier to gene flow. Within north-east India, there was no genetic differentiation among populations with the exception of the Central 2 population in the Barail hills area that was significantly differentiated from other populations. The high genetic distinctiveness of the Central 2 population in the Barail hills area of the north-east India should be confirmed and its epidemiological significance further

  4. Genetic population structure of the malaria vector Anopheles baimaii in north-east India using mitochondrial DNA

    Directory of Open Access Journals (Sweden)

    Sarma Devojit K

    2012-03-01

    Full Text Available Abstract Background Anopheles baimaii is a primary vector of human malaria in the forest settings of Southeast Asia including the north-eastern region of India. Here, the genetic population structure and the basic population genetic parameters of An. baimaii in north-east India were estimated using DNA sequences of the mitochondrial cytochrome oxidase sub unit II (COII gene. Methods Anopheles baimaii were collected from 26 geo-referenced locations across the seven north-east Indian states and the COII gene was sequenced from 176 individuals across these sites. Fifty-seven COII sequences of An. baimaii from six locations in Bangladesh, Myanmar and Thailand from a previous study were added to this dataset. Altogether, 233 sequences were grouped into eight population groups, to facilitate analyses of genetic diversity, population structure and population history. Results A star-shaped median joining haplotype network, unimodal mismatch distribution and significantly negative neutrality tests indicated population expansion in An. baimaii with the start of expansion estimated to be ~0.243 million years before present (MYBP in north-east India. The populations of An. baimaii from north-east India had the highest haplotype and nucleotide diversity with all other populations having a subset of this diversity, likely as the result of range expansion from north-east India. The north-east Indian populations were genetically distinct from those in Bangladesh, Myanmar and Thailand, indicating that mountains, such as the Arakan mountain range between north-east India and Myanmar, are a significant barrier to gene flow. Within north-east India, there was no genetic differentiation among populations with the exception of the Central 2 population in the Barail hills area that was significantly differentiated from other populations. Conclusions The high genetic distinctiveness of the Central 2 population in the Barail hills area of the north-east India should be

  5. Genetic Variation and Population Structure in Jamunapari Goats Using Microsatellites, Mitochondrial DNA, and Milk Protein Genes

    Science.gov (United States)

    Rout, P. K.; Thangraj, K.; Mandal, A.; Roy, R.

    2012-01-01

    Jamunapari, a dairy goat breed of India, has been gradually declining in numbers in its home tract over the years. We have analysed genetic variation and population history in Jamunapari goats based on 17 microsatellite loci, 2 milk protein loci, mitochondrial hypervariable region I (HVRI) sequencing, and three Y-chromosomal gene sequencing. We used the mitochondrial DNA (mtDNA) mismatch distribution, microsatellite data, and bottleneck tests to infer the population history and demography. The mean number of alleles per locus was 9.0 indicating that the allelic variation was high in all the loci and the mean heterozygosity was 0.769 at nuclear loci. Although the population size is smaller than 8,000 individuals, the amount of variability both in terms of allelic richness and gene diversity was high in all the microsatellite loci except ILST 005. The gene diversity and effective number of alleles at milk protein loci were higher than the 10 other Indian goat breeds that they were compared to. Mismatch analysis was carried out and the analysis revealed that the population curve was unimodal indicating the expansion of population. The genetic diversity of Y-chromosome genes was low in the present study. The observed mean M ratio in the population was above the critical significance value (Mc) and close to one indicating that it has maintained a slowly changing population size. The mode-shift test did not detect any distortion of allele frequency and the heterozygosity excess method showed that there was no significant departure from mutation-drift equilibrium detected in the population. However, the effects of genetic bottlenecks were observed in some loci due to decreased heterozygosity and lower level of M ratio. There were two observed genetic subdivisions in the population supporting the observations of farmers in different areas. This base line information on genetic diversity, bottleneck analysis, and mismatch analysis was obtained to assist the conservation

  6. Genetic diversity and population structure of Anastrepha striata (Diptera: Tephritidae) in three natural regions of southwestern Colombia using mitochondrial sequences.

    Science.gov (United States)

    Gallo-Franco, Jenny Johana; Velasco-Cuervo, Sandra Marcela; Aguirre-Ramirez, Elkin; González Obando, Ranulfo; Carrejo, Nancy Soraya; Toro-Perea, Nelson

    2017-02-01

    Anastrepha striata is widely distributed across the Americas and is a pest of economically important crops, especially crops of the Myrtaceae family. Insect population structures can be influenced by the presence of physical barriers or characteristics associated with habitat differences. This study evaluated the effect of the Western Andes on the population structure of A. striata. Individuals were collected from Psidium guajava fruits from three natural regions of southwestern Colombia (Pacific Coast, mountainous region and the inter-Andean valley of the Cauca River). Based on a 1318 bp concatenated of the genes Cytochrome Oxidase subunit I (COI) and NADH dehydrogenase subunit 6 (ND6), 14 haplotypes with few changes among them (between 1 and 3) were found. There was only one dominant haplotype in all three regions. No genetic structure associated with the three eco-geographical regions of the study was found. Moreover, the Western Andes are not an effective barrier for the genetic isolation of the populations from the Pacific Coast compared with the inter-Andean valley populations. This genetic homogeneity could be partially due to anthropogenic intervention, which acts as a dispersal agent of infested fruits. Another hypothesis to explain the lack of structure would be the relatively recent arrival of A. striata to the region, as indicated by an analysis of the demographic history, which reveals a process of population expansion. This study represents the first attempt to understand the population genetics of A. striata in Colombia and could contribute to the integral management of this pest.

  7. Comparative population genetic structure of redbelly tilapia (Coptodon zillii (Gervais, 1848)) from three different aquatic habitats in Egypt

    KAUST Repository

    Soliman, Taha

    2017-11-16

    Recently, tilapia have become increasingly important in aquaculture and fisheries worldwide. They are one of the major protein sources in many African countries and are helping to combat malnutrition. Therefore, maintenance and conservation genetics of wild populations of tilapia are of great significance. In this study, we report the population genetic structure and genetic diversity of the redbelly tilapia (Coptodon zillii) in three different Egyptian aquatic environments: brackish (Lake Idku), marine (Al-Max Bay), and freshwater (Lake Nasser). The habitat differences, environmental factors, and harvesting pressures are the main characteristics of the sampling sites. Three mitochondrial DNA markers (COI: cytochrome oxidase subunit I; the D-loop; CYTB: cytochrome b) were used to assess population structure differences among the three populations. The population at Lake Nasser presented the highest genetic diversity (Hd = 0.8116, H = 6), and the marine population of Al-Max Bay the lowest (Hd = 0.2391, H = 4) of the combined sequences. In addition, the phylogenetic haplotype network showed private haplotypes in each environmental habitat. Results presented here will be useful in aquaculture to introduce the appropriate broodstock for future aquaculture strategies of C. zillii. In addition, evidence of population structure may contribute to the management of tilapia fisheries in Egyptian waters.

  8. Comparative population genetic structure of redbelly tilapia (Coptodon zillii (Gervais, 1848)) from three different aquatic habitats in Egypt

    KAUST Repository

    Soliman, Taha; Aly, Walid; Fahim, Reda M.; Berumen, Michael L.; Jenke-Kodama, Holger; Bernardi, Giacomo

    2017-01-01

    Recently, tilapia have become increasingly important in aquaculture and fisheries worldwide. They are one of the major protein sources in many African countries and are helping to combat malnutrition. Therefore, maintenance and conservation genetics of wild populations of tilapia are of great significance. In this study, we report the population genetic structure and genetic diversity of the redbelly tilapia (Coptodon zillii) in three different Egyptian aquatic environments: brackish (Lake Idku), marine (Al-Max Bay), and freshwater (Lake Nasser). The habitat differences, environmental factors, and harvesting pressures are the main characteristics of the sampling sites. Three mitochondrial DNA markers (COI: cytochrome oxidase subunit I; the D-loop; CYTB: cytochrome b) were used to assess population structure differences among the three populations. The population at Lake Nasser presented the highest genetic diversity (Hd = 0.8116, H = 6), and the marine population of Al-Max Bay the lowest (Hd = 0.2391, H = 4) of the combined sequences. In addition, the phylogenetic haplotype network showed private haplotypes in each environmental habitat. Results presented here will be useful in aquaculture to introduce the appropriate broodstock for future aquaculture strategies of C. zillii. In addition, evidence of population structure may contribute to the management of tilapia fisheries in Egyptian waters.

  9. Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides)

    Science.gov (United States)

    Colin M. Callahan; Carol A. Rowe; Ronald J. Ryel; John D. Shaw; Michael D. Madritch; Karen E. Mock

    2013-01-01

    Aspen populations in the south-western portion of the range are consistent with expectations for a historically stable edge, with low within-population diversity, significant geographical population structuring, and little evidence of northward expansion. Structuring within the southwestern cluster may result from distinct gene pools separated during the Pleistocene...

  10. Using Random Amplified Polymorphic DNA to Assess Genetic Diversity and Structure of Natural Calophyllum brasiliense (Clusiaceae Populations in Riparian Forests

    Directory of Open Access Journals (Sweden)

    Evânia Galvão Mendonça

    2014-01-01

    Full Text Available The objective of this study was to assess the genetic variability in two natural populations of Calophyllum brasiliense located along two different rivers in the state of Minas Gerais, Brazil, using RAPD molecular markers. Eighty-two polymorphic fragments were amplified using 27 primers. The values obtained for Shannon index (I were 0.513 and 0.530 for the populations located on the margins of the Rio Grande and Rio das Mortes, respectively, demonstrating the high genetic diversity in the studied populations. Nei’s genetic diversity (He was 0.341 for the Rio Grande population and 0.357 for the Rio das Mortes population. These results were not significantly different between populations and suggest a large proportion of heterozygote individuals within both populations. AMOVA showed that 70.42% of the genetic variability is found within populations and 29.58% is found among populations (ФST=0.2958. The analysis of kinship coefficients detected the existence of family structures in both populations. Average kinship coefficients between neighboring individuals were 0.053 (P<0.001 in Rio das Mortes and 0.040 (P<0.001 in Rio Grande. This could be due to restricted pollen and seed dispersal and the history of anthropogenic disturbance in the area. These factors are likely to contribute to the relatedness observed among these genotypes.

  11. Genetic structure and relationships of an associated population in ramie (Boehmeria nivea L. Gaud evaluated by SSR markers

    Directory of Open Access Journals (Sweden)

    Siyuan Zhu

    2017-01-01

    Full Text Available Ramie (Boehmeria nivea L. Gaud is one of the most important natural fibre crops. For enhanced crop development, it is necessary to understand its population structure and genetic relationships. In this study, we assessed the genetic diversity and population structure of 134 ramie accessions (with three plants per accession from 12 regions by using 36 simple sequence repeat markers. The 36 microsatellite primers revealed 149 alleles in 134 ramie populations, with an average of 4.14 alleles per locus. The structure analysis divided the 134 ramie accessions into three groups (I, II and III, and into further six subgroups (a, b, c, d, e and f. In Subgroup b, 13 accessions were from Guizhou Province, 9 accessions were from Sichuan Province and the remaining 20 accessions were from Chongqing (4, Hunan (8, Guangxi (4, Jiangxi (2, Yunan (1 and Taiwan (1. In Subgroup d, 22 accessions were from Guizhou Province and the remaining 17 accessions were from Chongqing (6, Sichuan (5 and Yunnan (6. It can be inferred that the genetic background of these ramie accessions did not always correlate with their geographical regions. Similar results were found in Subgroups a and f. The pair-wise genetic similarity coefficients between the 134 accessions ranged from 0.390 to 0.939, which suggested that there was abundant genetic diversity in the ramie accessions. These markers have provided important information about the genetic structure of ramie, which can contribute to future breeding and improvement programmes for these resources.

  12. Genetic structure of Proclossiana eunomia populations at the regional scale (Lepidoptera, nymphalidae).

    Science.gov (United States)

    Nève, G; Barascud, B; Descimon, H; Baguette, M

    2000-06-01

    Populations of Proclossiana eunomia (Lepidoptera, Nymphalidae) occur in middle Europe in patchy habitats of hay meadows along valleys or peat bogs. Samples of P. eunomia populations from the Ardennes region (northern France and southern Belgium) were analysed by allozyme electrophoresis. Patches isolated by more than 2 km of mature forests proved genetically distinct from their neighbouring populations. Mantel tests and regression analysis showed that the degree of genetic differentiation between the 26 studied populations is related to the geographical distances between them. Autocorrelation analysis (Moran's I ) showed that allele frequencies are positively correlated for populations up to 13 km apart and that the genetic neighbourhood of individuals is in the range of 0.9 km, which is in accordance with movement studies in this species conducted in the same area. Analysis using Wright's F-statistics revealed that the highest differentiation occurs between populations of the same subregion, whereas the whole Ardennes region is not genetically partitioned into subregions. This is probably because the connectivity of the network of suitable habitats has significantly weakened only since the 1950s, and thus subregional differentiation has not yet occurred.

  13. Genetic diversity and population structure of a protected species: Polygala tenuifolia Willd.

    Science.gov (United States)

    Peng, Yan Qun; Fan, Ling Ling; Mao, Fu Ying; Zhao, Yun Sheng; Xu, Rui; Yin, Yu Jie; Chen, Xin; Wan, De Guang; Zhang, Xin Hui

    2018-03-01

    Polygala tenuifolia Willd. is an important protected species used in traditional Chinese medicine. In the present study, amplified fragment length polymorphism (AFLP) markers were employed to characterize the genetic diversity in wild and cultivated P. tenuifolia populations. Twelve primer combinations of AFLP produced 310 unambiguous and repetitious bands. Among these bands, 261 (84.2%) were polymorphic. The genetic diversity was high at the species level: percentage of polymorphic loci (PPL)=84.2%, Nei's gene diversity (h)=0.3296 and Shannon's information index (I)=0.4822. Between the two populations, the genetic differentiation of 0.1250 was low and the gene flow was relatively high, at 3.4989. The wild population (PPL=81.9%, h=0.3154, I=0.4635) showed a higher genetic diversity level than the cultivated population (PPL=63.9%, h=0.2507, I=0.3688). The results suggest that the major factors threatening the persistence of P. tenuifolia resources are ecological and human factors rather than genetic. These results will assist with the design of conservation and management programs, such as in natural habitat conservation, setting the excavation time interval for resource regeneration and the substitution of cultivated for wild plants. Copyright © 2018 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  14. A mosaic genetic structure of the human population living in the South Baltic region during the Iron Age.

    Science.gov (United States)

    Stolarek, Ireneusz; Juras, Anna; Handschuh, Luiza; Marcinkowska-Swojak, Malgorzata; Philips, Anna; Zenczak, Michal; Dębski, Artur; Kóčka-Krenz, Hanna; Piontek, Janusz; Kozlowski, Piotr; Figlerowicz, Marek

    2018-02-06

    Despite the increase in our knowledge about the factors that shaped the genetic structure of the human population in Europe, the demographic processes that occurred during and after the Early Bronze Age (EBA) in Central-East Europe remain unclear. To fill the gap, we isolated and sequenced DNAs of 60 individuals from Kowalewko, a bi-ritual cemetery of the Iron Age (IA) Wielbark culture, located between the Oder and Vistula rivers (Kow-OVIA population). The collected data revealed high genetic diversity of Kow-OVIA, suggesting that it was not a small isolated population. Analyses of mtDNA haplogroup frequencies and genetic distances performed for Kow-OVIA and other ancient European populations showed that Kow-OVIA was most closely linked to the Jutland Iron Age (JIA) population. However, the relationship of both populations to the preceding Late Neolithic (LN) and EBA populations were different. We found that this phenomenon is most likely the consequence of the distinct genetic history observed for Kow-OVIA women and men. Females were related to the Early-Middle Neolithic farmers, whereas males were related to JIA and LN Bell Beakers. In general, our findings disclose the mechanisms that could underlie the formation of the local genetic substructures in the South Baltic region during the IA.

  15. Genetic diversity and genetic structure of farmed and wild Chinese mitten crab (Eriocheir sinensis) populations from three major basins by mitochondrial DNA COI and Cyt b gene sequences.

    Science.gov (United States)

    Zhang, Cheng; Li, Qingqing; Wu, Xugan; Liu, Qing; Cheng, Yongxu

    2017-11-20

    The Chinese mitten crab, Eriocheir sinensis, is one of the important native crab species in East Asian region, which has been widely cultured throughout China, particularly in river basins of Yangtze, Huanghe and Liaohe. This study was designed to evaluate the genetic diversity and genetic structure of cultured and wild E. sinensis populations from the three river basins based on mitochondrial DNA (mtDNA) cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b). The results showed that there were 62 variable sites and 30 parsimony informative sites in the 647 bp of sequenced mtDNA COI from 335 samples. Similarly, a 637 bp segment of Cyt b provided 59 variable sites and 26 parsimony informative sites. AMOVA showed that the levels of genetic differentiation were low among six populations. Although the haplotype diversity and nucleotide diversity of Huanghe wild population had slightly higher than the other populations, there were no significant differences. There was no significant differentiation between the genetic and geographic distance of the six populations, and haplotype network diagram indicated that there may exist genetic hybrids of E. sinensis from different river basins. The results of clustering and neutrality tests revealed that the distance of geographical locations were not completely related to their genetic distance values for the six populations. In conclusion, these results have great significance for the evaluation and exploitation of germplasm resources of E. sinensis.

  16. Strong population genetic structuring in an annual fish, Nothobranchius furzeri, suggests multiple savannah refugia in southern Mozambique.

    Science.gov (United States)

    Bartáková, Veronika; Reichard, Martin; Janko, Karel; Polačik, Matej; Blažek, Radim; Reichwald, Kathrin; Cellerino, Alessandro; Bryja, Josef

    2013-09-12

    Intraspecific genetic variation of African fauna has been significantly affected by pronounced climatic fluctuations in Plio-Pleistocene, but, with the exception of large mammals, very limited empirical data on diversity of natural populations are available for savanna-dwelling animals. Nothobranchius furzeri is an annual fish from south-eastern Africa, inhabiting discrete temporary savannah pools outside main river alluvia. Their dispersal is limited and population processes affecting its genetic structure are likely a combination of those affecting terrestrial and aquatic taxa. N. furzeri is a model taxon in ageing research and several populations of known geographical origin are used in laboratory studies. Here, we analysed the genetic structure, diversity, historical demography and temporal patterns of divergence in natural populations of N. furzeri across its entire distribution range. Genetic structure and historical demography of N. furzeri were analysed using a combination of mitochondrial (partial cytochrome b sequences, 687 bp) and nuclear (13 microsatellites) markers in 693 fish from 36 populations. Genetic markers consistently demonstrated strong population structuring and suggested two main genetic groups associated with river basins. The split was dated to the Pliocene (>2 Mya). The northern group inhabits savannah pools across the basin of the intermittent river Chefu in south-western Mozambique and eastern Zimbabwe. The southern group (from southernmost Mozambique) is subdivided, with the River Limpopo forming a barrier (maximum divergence time 1 Mya). A strong habitat fragmentation (isolated temporary pools) is reflected in significant genetic structuring even between adjacent pools, with a major influence of genetic drift and significant isolation-by-distance. Analysis of historical demography revealed that the expansion of both groups is ongoing, supported by frequent founder effects in marginal parts of the range and evidence of secondary

  17. Genetic diversity and population structure of Pisum sativum accessions for marker-trait association of lipid content

    Directory of Open Access Journals (Sweden)

    Sajjad Ahmad

    2015-06-01

    Full Text Available Field pea (Pisum sativum L. is an important protein-rich pulse crop produced globally. Increasing the lipid content of Pisum seeds through conventional and contemporary molecular breeding tools may bring added value to the crop. However, knowledge about genetic diversity and lipid content in field pea is limited. An understanding of genetic diversity and population structure in diverse germplasm is important and a prerequisite for genetic dissection of complex characteristics and marker-trait associations. Fifty polymorphic microsatellite markers detecting a total of 207 alleles were used to obtain information on genetic diversity, population structure and marker-trait associations. Cluster analysis was performed using UPGMA to construct a dendrogram from a pairwise similarity matrix. Pea genotypes were divided into five major clusters. A model-based population structure analysis divided the pea accessions into four groups. Percentage lipid content in 35 diverse pea accessions was used to find potential associations with the SSR markers. Markers AD73, D21, and AA5 were significantly associated with lipid content using a mixed linear model (MLM taking population structure (Q and relative kinship (K into account. The results of this preliminary study suggested that the population could be used for marker-trait association mapping studies.

  18. The Genetic Diversity and Structure of Linkage Disequilibrium of the MTHFR Gene in Populations of Northern Eurasia.

    Science.gov (United States)

    Trifonova, E A; Eremina, E R; Urnov, F D; Stepanov, V A

    2012-01-01

    The structure of the haplotypes and linkage disequilibrium (LD) of the methylenetetrahydrofolate reductase gene (MTHFR) in 9 population groups from Northern Eurasia and populations of the international HapMap project was investigated in the present study. The data suggest that the architecture of LD in the human genome is largely determined by the evolutionary history of populations; however, the results of phylogenetic and haplotype analyses seems to suggest that in fact there may be a common "old" mechanism for the formation of certain patterns of LD. Variability in the structure of LD and the level of diversity of MTHFRhaplotypes cause a certain set of tagSNPs with an established prognostic significance for each population. In our opinion, the results obtained in the present study are of considerable interest for understanding multiple genetic phenomena: namely, the association of interpopulation differences in the patterns of LD with structures possessing a genetic susceptibility to complex diseases, and the functional significance of the pleiotropicMTHFR gene effect. Summarizing the results of this study, a conclusion can be made that the genetic variability analysis with emphasis on the structure of LD in human populations is a powerful tool that can make a significant contribution to such areas of biomedical science as human evolutionary biology, functional genomics, genetics of complex diseases, and pharmacogenomics.

  19. Genetic structure of Lutzomyia longipalpis populations in Mato Grosso Do Sul, Brazil, based on microsatellite markers.

    Directory of Open Access Journals (Sweden)

    Mirella F C Santos

    Full Text Available BACKGROUND: Lutzomyialongipalpis (Diptera: Psychodidae is the major vector of Leishmania (Leishmania infantum and thus plays a crucial role in the epidemiology of American visceral leishmaniasis (AVL. This vector is the best studied species of sand fly in the Neotropical region. Many studies claim that this vector is in fact a species complex; however there is still no consensus regarding the number of species that belong into this complex or the geographical distribution of sibling species. The aim of the present study was to analyze the genetic relationships within Lu. longipalpis populations in the state of Mato Grosso do Sul (MS, Brazil. METHODOLOGY/PRINCIPAL FINDINGS: We collected 30 Lu. longipalpis (15 females and 15 males from five localities (Campo Grande, Três Lagoas, Aquidauana, Miranda and Bonito and 30 Lu. Cruzi from Corumbá, totaling 180 sandflies from MS, and 30 Lu. longipalpis from Estrela de Alagoas, state of Alagoas (AL, Northeast Brazil. We show that eight previously described microsatellite loci were sufficient in distinguishing Lu. longipalpis from Lu. Cruzi, which is a closely related species, and in differentiating between Lu. longipalpis collected in MS versus Estrela de Alagoas. Analyses of the genotypes revealed introgression between sympatric Lu. longipalpis and Lu. Cruzi. CONCLUSIONS/SIGNIFICANCE: Our findings support the hypothesis of cryptic species within the Lu. longipalpis complex. Furthermore, our data revealed introgression between Lu. longipalpis and Lu. cruzi. This phenomenon should be further investigated to determine the level and incidence of hybridization between these two species. We also demonstrated that microsatellite markers are a powerful tool for differentiating sand fly populations and species. The present study has elucidated the population structure of Lu. longipalpis in MS and, by extension, the Neotropical Lu. longipalpis complex itself.

  20. Genetic structure of Lutzomyia longipalpis populations in Mato Grosso Do Sul, Brazil, based on microsatellite markers.

    Science.gov (United States)

    Santos, Mirella F C; Ribolla, Paulo E M; Alonso, Diego P; Andrade-Filho, José D; Casaril, Aline E; Ferreira, Alda M T; Fernandes, Carlos E S; Brazil, Reginaldo P; Oliveira, Alessandra G

    2013-01-01

    Lutzomyialongipalpis (Diptera: Psychodidae) is the major vector of Leishmania (Leishmania) infantum and thus plays a crucial role in the epidemiology of American visceral leishmaniasis (AVL). This vector is the best studied species of sand fly in the Neotropical region. Many studies claim that this vector is in fact a species complex; however there is still no consensus regarding the number of species that belong into this complex or the geographical distribution of sibling species. The aim of the present study was to analyze the genetic relationships within Lu. longipalpis populations in the state of Mato Grosso do Sul (MS), Brazil. We collected 30 Lu. longipalpis (15 females and 15 males) from five localities (Campo Grande, Três Lagoas, Aquidauana, Miranda and Bonito) and 30 Lu. Cruzi from Corumbá, totaling 180 sandflies from MS, and 30 Lu. longipalpis from Estrela de Alagoas, state of Alagoas (AL), Northeast Brazil. We show that eight previously described microsatellite loci were sufficient in distinguishing Lu. longipalpis from Lu. Cruzi, which is a closely related species, and in differentiating between Lu. longipalpis collected in MS versus Estrela de Alagoas. Analyses of the genotypes revealed introgression between sympatric Lu. longipalpis and Lu. Cruzi. Our findings support the hypothesis of cryptic species within the Lu. longipalpis complex. Furthermore, our data revealed introgression between Lu. longipalpis and Lu. cruzi. This phenomenon should be further investigated to determine the level and incidence of hybridization between these two species. We also demonstrated that microsatellite markers are a powerful tool for differentiating sand fly populations and species. The present study has elucidated the population structure of Lu. longipalpis in MS and, by extension, the Neotropical Lu. longipalpis complex itself.

  1. Genetic Structure of Lutzomyia longipalpis Populations in Mato Grosso Do Sul, Brazil, Based on Microsatellite Markers

    Science.gov (United States)

    Santos, Mirella F. C.; Ribolla, Paulo E. M.; Alonso, Diego P.; Andrade-Filho, José D.; Casaril, Aline E.; Ferreira, Alda M. T.; Fernandes, Carlos E. S.; Brazil, Reginaldo P.; Oliveira, Alessandra G.

    2013-01-01

    Background Lutzomyia longipalpis (Diptera: Psychodidae) is the major vector of Leishmania (Leishmania) infantum and thus plays a crucial role in the epidemiology of American visceral leishmaniasis (AVL). This vector is the best studied species of sand fly in the Neotropical region. Many studies claim that this vector is in fact a species complex; however there is still no consensus regarding the number of species that belong into this complex or the geographical distribution of sibling species. The aim of the present study was to analyze the genetic relationships within Lu. longipalpis populations in the state of Mato Grosso do Sul (MS), Brazil. Methodology/Principal Findings We collected 30 Lu. longipalpis (15 females and 15 males) from five localities (Campo Grande, Três Lagoas, Aquidauana, Miranda and Bonito) and 30 Lu. Cruzi from Corumbá, totaling 180 sandflies from MS, and 30 Lu. longipalpis from Estrela de Alagoas, state of Alagoas (AL), Northeast Brazil. We show that eight previously described microsatellite loci were sufficient in distinguishing Lu. longipalpis from Lu. Cruzi, which is a closely related species, and in differentiating between Lu. longipalpis collected in MS versus Estrela de Alagoas. Analyses of the genotypes revealed introgression between sympatric Lu. longipalpis and Lu. Cruzi. Conclusions/Significance Our findings support the hypothesis of cryptic species within the Lu. longipalpis complex. Furthermore, our data revealed introgression between Lu. longipalpis and Lu. cruzi. This phenomenon should be further investigated to determine the level and incidence of hybridization between these two species. We also demonstrated that microsatellite markers are a powerful tool for differentiating sand fly populations and species. The present study has elucidated the population structure of Lu. longipalpis in MS and, by extension, the Neotropical Lu. longipalpis complex itself. PMID:24066129

  2. Genetic structure of Quechua-speakers of the Central Andes and geographic patterns of gene frequencies in South Amerindian populations.

    Science.gov (United States)

    Luiselli, D; Simoni, L; Tarazona-Santos, E; Pastor, S; Pettener, D

    2000-09-01

    A sample of 141 Quechua-speaking individuals of the population of Tayacaja, in the Peruvian Central Andes, was typed for the following 16 genetic systems: ABO, Rh, MNSs, P, Duffy, AcP1, EsD, GLOI, PGM1, AK, 6-PGD, Hp, Gc, Pi, C3, and Bf. The genetic structure of the population was analyzed in relation to the allele frequencies available for other South Amerindian populations, using a combination of multivariate and multivariable techniques. Spatial autocorrelation analysis was performed independently for 13 alleles to identify patterns of gene flow in South America as a whole and in more specific geographic regions. We found a longitudinal cline for the AcP1*a and EsD*1 alleles which we interpreted as the result of an ancient longitudinal expansion of a putative ancestral population of modern Amerindians. Monmonnier's algorithm, used to identify areas of sharp genetic discontinuity, suggested a clear east-west differentiation of native South American populations, which was confirmed by analysis of the distribution of genetic distances. We suggest that this pattern of genetic structures is the consequence of the independent peopling of western and eastern South America or to low levels of gene flow between these regions, related to different environmental and demographic histories. Copyright 2000 Wiley-Liss, Inc.

  3. Mitochondrial D-loop analysis for uncovering the population structure and genetic diversity among the indigenous duck (Anas platyrhynchos) populations of India.

    Science.gov (United States)

    Gaur, Uma; Tantia, Madhu Sudan; Mishra, Bina; Bharani Kumar, Settypalli Tirumala; Vijh, Ramesh Kumar; Chaudhury, Ashok

    2018-03-01

    The indigenous domestic duck (Anas platyrhynchos domestica) which is domesticated from Mallard (Anas platyrhynchos) contributes significantly to poor farming community in coastal and North Eastern regions of India. For conservation and maintenance of indigenous duck populations it is very important to know the existing genetic diversity and population structure. To unravel the population structure and genetic diversity among the five indigenous duck populations of India, the mitochondrial D-loop sequences of 120 ducks were analyzed. The sequence analysis by comparison of mtDNA D-loop region (470 bp) of five Indian duck populations revealed 25 mitochondrial haplotypes. Pairwise F ST value among populations was 0.4243 (p land birds revealed introgression of the out group breed Khaki Campbell, which is used for breed improvement programs in India. The observations revealed very less selection and a single matrilineal lineage of indigenous domestic ducks.

  4. Genetic Diversity and Population Structure of F3:6 Nebraska Winter Wheat Genotypes Using Genotyping-By-Sequencing.

    Science.gov (United States)

    Eltaher, Shamseldeen; Sallam, Ahmed; Belamkar, Vikas; Emara, Hamdy A; Nower, Ahmed A; Salem, Khaled F M; Poland, Jesse; Baenziger, Peter S

    2018-01-01

    The availability of information on the genetic diversity and population structure in wheat ( Triticum aestivum L.) breeding lines will help wheat breeders to better use their genetic resources and manage genetic variation in their breeding program. The recent advances in sequencing technology provide the opportunity to identify tens or hundreds of thousands of single nucleotide polymorphism (SNPs) in large genome species (e.g., wheat). These SNPs can be utilized for understanding genetic diversity and performing genome wide association studies (GWAS) for complex traits. In this study, the genetic diversity and population structure were investigated in a set of 230 genotypes (F 3:6 ) derived from various crosses as a prerequisite for GWAS and genomic selection. Genotyping-by-sequencing provided 25,566 high-quality SNPs. The polymorphism information content (PIC) across chromosomes ranged from 0.09 to 0.37 with an average of 0.23. The distribution of SNPs markers on the 21 chromosomes ranged from 319 on chromosome 3D to 2,370 on chromosome 3B. The analysis of population structure revealed three subpopulations (G1, G2, and G3). Analysis of molecular variance identified 8% variance among and 92% within subpopulations. Of the three subpopulations, G2 had the highest level of genetic diversity based on three genetic diversity indices: Shannon's information index ( I ) = 0.494, diversity index ( h ) = 0.328 and unbiased diversity index (uh) = 0.331, while G3 had lowest level of genetic diversity ( I = 0.348, h = 0.226 and uh = 0.236). This high genetic diversity identified among the subpopulations can be used to develop new wheat cultivars.

  5. Evaluation of Genetic Diversity, Population Structure, and Relationship Between Legendary Vechur Cattle and Crossbred Cattle of Kerala State, India.

    Science.gov (United States)

    Radhika, G; Aravindakshan, T V; Jinty, S; Ramya, K

    2018-01-02

    The legendary Vechur cattle of Kerala, described as a very short breed, and the crossbred (CB) Sunandini cattle population exhibited great phenotypic variation; hence, the present study attempted to analyze the genetic diversity existing between them. A set of 14 polymorphic microsatellites were chosen from FAO-ISAG panel and amplified from genomic DNA isolated from blood samples of 30 Vechur and 64 unrelated crossbred cattle, using fluorescent labeled primers. Both populations revealed high genetic diversity as evidenced from high observed number of alleles, Polymorphic Information Content and expected heterozygosity. Observed heterozygosity was lesser (0.699) than expected (0.752) in Vechur population which was further supported by positive F IS value of 0.1149, indicating slight level of inbreeding in Vechur population. Overall, F ST value was 0.065, which means genetic differentiation between crossbred and Vechur population was 6.5%, indicating that the crossbred cattle must have differentiated into a definite population that is different from the indigenous Vechur cows. Structure analysis indicated that the two populations showed distinct differences, with two underlying clusters. The present study supports the separation between Taurine and Zebu cattle and throws light onto the genetic diversity and relationship between native Vechur and crossbred cattle populations in Kerala state.

  6. Clonal diversity and fine-scale genetic structure in a high andean treeline population

    Czech Academy of Sciences Publication Activity Database

    Peng, Y.; Macek, P.; Macková, Jana; Romoleroux, K.; Hensen, I.

    2015-01-01

    Roč. 47, č. 1 (2015), s. 59-65 ISSN 0006-3606 Grant - others:GA AV ČR(CZ) IAA601110702; GA MŠk(CZ) LM2010009 Program:IA Institutional support: RVO:60077344 Keywords : AFLP * clonal diversity * clonal propagation * fine-scale genetic structure * Polylepis reticulata * treeline Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.944, year: 2015

  7. Genetic diversity and population structure of 20 North European cattle breeds

    DEFF Research Database (Denmark)

    kantanen, J; Olsaker, Ingrid; Holm, Lars-Erik

    2000-01-01

    Blood samples were collected from 743 animals from 15 indigenous, 2 old imported, and 3 commercial North European cattle breeds. The samples were analyzed for 11 erythrocyte antigen systems, 8 proteins, and 10 microsatellites, and used to assess inter- and intrabreed genetic variation and genetic......, allelic diversity has been reduced in several breeds, which was explained by limited effective population sizes over the course of man-directed breed development and demographic bottlenecks of indigenous breeds. A tree showing genetic relationships between breeds was constructed from a matrix of random...... drift-based genetic distance estimates. The breeds were classified on the basis of the tree topology into four major breed groups, defined as Northern indigenous breeds, Southern breeds, Ayrshire and Friesian breeds, and Jersey. Grouping of Nordic breeds was supported by documented breed history...

  8. Population genetic structure of Bromus tectorum in the mountains of western North America

    Science.gov (United States)

    Spencer Arnesen; Craig E. Coleman; Susan E. Meyer

    2017-01-01

    PREMISE OF THE STUDY: Invasive species are often initially restricted to a narrow range and may then expand through any of multiple mechanisms including phenotypic plasticity, in situ evolution, or selection on traits preadapted for new habitats. Our study used population genetics to explore possible processes by which the highly selfing invasive annual grass Bromus...

  9. Microsatellite variability in the entomopathogenic fungus Paeciolomyces fumosoroseus: genetic diversity and population structure

    Science.gov (United States)

    The hyphomycete Paecilomyces fumosoroseus (Pfr) is a geographically widespread fungus capable of infecting various insect hosts. The fungus has been used for the biological control of several important insect pests of agriculture. However knowledge of the fungus’ genetic diversity and population str...

  10. Contrasting genetic structure of rear edge and continuous range populations of a parasitic butterfly infected by Wolbachia

    Directory of Open Access Journals (Sweden)

    Patricelli Dario

    2013-01-01

    Full Text Available Abstract Background Climatic oscillations are among the long-term factors shaping the molecular features of animals and plants and it is generally supposed that the rear edges (i.e., the low-latitude limits of distribution of any given specialised species situated closer to glacial refugia are vital long-term stores of genetic diversity. In the present study, we compared the genetic structure of several populations of an endangered and obligate myrmecophilous butterfly (Maculinea arion from two distinct and geographically distant parts of its European distribution (i.e., Italy and Poland, which fully represent the ecological and morphological variation occurring across the continent. Results We sequenced the COI mitochondrial DNA gene (the ‘barcoding gene’ and the EF-1α nuclear gene and found substantial genetic differentiation among M. arion Italian populations in both markers. Eleven mtDNA haplotypes were present in Italy. In contrast, almost no mtDNA polymorphisms was found in the Polish M. arion populations, where genetic differentiation at the nuclear gene was low to moderate. Interestingly, the within-population diversity levels in the EF-1α gene observed in Italy and in Poland were comparable. The genetic data did not support any subspecies divisions or any ecological specialisations. All of the populations studied were infected with a single strain of Wolbachia and our screening suggested 100% prevalence of the bacterium. Conclusions Differences in the genetic structure of M. arion observed in Italy and in Poland may be explained by the rear edge theory. Although we were not able to pinpoint any specific evolutionarily significant units, we suggest that the Italian peninsula should be considered as a region of special conservation concern and one that is important for maintaining the genetic diversity of M. arion in Europe. The observed pattern of mtDNA differentiation among the populations could not be explained by an

  11. Genetic Variability and Population Structure of the Potential Bioenergy Crop Miscanthus sinensis (Poaceae in Southwest China Based on SRAP Markers

    Directory of Open Access Journals (Sweden)

    Gang Nie

    2014-08-01

    Full Text Available The genus Miscanthus has great potential as a biofuel feedstock because of its high biomass, good burning quality, environmental tolerance, and good adaptability to marginal land. In this study, the genetic diversity and the relationship of 24 different natural Miscanthus sinensis populations collected from Southwestern China were analyzed by using 33 pairs of Sequence Related Amplified Polymorphism (SRAP primers. A total of 688 bands were detected with 646 polymorphic bands, an average of 19.58 polymorphic bands per primer pair. The average percentage of polymorphic loci (P, gene diversity (H, and Shannon’s diversity index (I among the 24 populations are 70.59%, 0.2589, and 0.3836, respectively. The mean value of total gene diversity (HT was 0.3373 ± 0.0221, while the allelic diversity within populations (HS was 0.2589 ± 0.0136 and the allelic diversity among populations (DST was 0.0784. The mean genetic differentiation coefficient (Gst = 0.2326 estimated from the detected 688 loci indicated that there was 76.74% genetic differentiation within the populations, which is consistent with the results from Analysis of Molecular Variance (AMOVA analysis. Based upon population structure and phylogenetic analysis, five groups were formed and a special population with mixed ancestry was inferred indicating that human-mediated dispersal may have had a significant effect on population structure of M. sinensis. Evaluating the genetic structure and genetic diversity at morphological and molecular levels of the wild M. sinensis in Southwest China is critical to further utilize the wild M. sinensis germplasm in the breeding program. The results in this study will facilitate the biofuel feedstock breeding program and germplasm conservation.

  12. The population genomic landscape of human genetic structure, admixture history and local adaptation in Peninsular Malaysia.

    Science.gov (United States)

    Deng, Lian; Hoh, Boon Peng; Lu, Dongsheng; Fu, Ruiqing; Phipps, Maude E; Li, Shilin; Nur-Shafawati, Ab Rajab; Hatin, Wan Isa; Ismail, Endom; Mokhtar, Siti Shuhada; Jin, Li; Zilfalil, Bin Alwi; Marshall, Christian R; Scherer, Stephen W; Al-Mulla, Fahd; Xu, Shuhua

    2014-09-01

    Peninsular Malaysia is a strategic region which might have played an important role in the initial peopling and subsequent human migrations in Asia. However, the genetic diversity and history of human populations--especially indigenous populations--inhabiting this area remain poorly understood. Here, we conducted a genome-wide study using over 900,000 single nucleotide polymorphisms (SNPs) in four major Malaysian ethnic groups (MEGs; Malay, Proto-Malay, Senoi and Negrito), and made comparisons of 17 world-wide populations. Our data revealed that Peninsular Malaysia has greater genetic diversity corresponding to its role as a contact zone of both early and recent human migrations in Asia. However, each single Orang Asli (indigenous) group was less diverse with a smaller effective population size (N(e)) than a European or an East Asian population, indicating a substantial isolation of some duration for these groups. All four MEGs were genetically more similar to Asian populations than to other continental groups, and the divergence time between MEGs and East Asian populations (12,000--6,000 years ago) was also much shorter than that between East Asians and Europeans. Thus, Malaysian Orang Asli groups, despite their significantly different features, may share a common origin with the other Asian groups. Nevertheless, we identified traces of recent gene flow from non-Asians to MEGs. Finally, natural selection signatures were detected in a batch of genes associated with immune response, human height, skin pigmentation, hair and facial morphology and blood pressure in MEGs. Notable examples include SYN3 which is associated with human height in all Orang Asli groups, a height-related gene (PNPT1) and two blood pressure-related genes (CDH13 and PAX5) in Negritos. We conclude that a long isolation period, subsequent gene flow and local adaptations have jointly shaped the genetic architectures of MEGs, and this study provides insight into the peopling and human migration

  13. Population genetic structure of Brazilian shrimp species (Farfantepenaeus sp., F. brasiliensis, F. paulensis and Litopenaeus schmitti: Decapoda: Penaeidae

    Directory of Open Access Journals (Sweden)

    Jaqueline Gusmão

    2005-03-01

    Full Text Available Penaeid shrimps are important resources for worldwide fisheries and aquaculture. In the Southwest Atlantic, Farfantepenaeus brasiliensis, F. paulensis, F. subtilis, Farfantepenaeus sp. and Litopenaeus schmitti are among the most important commercially exploited species. Despite their high commercial value, there is little information available on the different aspects of their biology or genetics and almost no data on their stock structure. We used allozymes to estimate variability levels and population genetic structure of F. brasiliensis, F. paulensis, L. schmitti and the recently detected species Farfantepenaeus sp. along as much as 4,000 km of Brazilian coastline. No population heterogeneity was detected in F. brasiliensis or L. schmitti along the studied area. In contrast, F ST values found for Farfantepenaeus sp. and F. paulensis indicate that the populations of those two species are genetically structured, comprising different fishery stocks. The largest genetic differences in F. paulensis were found between Lagoa dos Patos (South and the two populations from Southeast Brazil. In Farfantepenaeus sp., significant differences were detected between the population from Recife and those from Fortaleza and Ilhéus.

  14. Two disjunct Pleistocene populations and anisotropic postglacial expansion shaped the current genetic structure of the relict plant Amborella trichopoda.

    Directory of Open Access Journals (Sweden)

    Rémi Tournebize

    Full Text Available Past climate fluctuations shaped the population dynamics of organisms in space and time, and have impacted their present intra-specific genetic structure. Demo-genetic modelling allows inferring the way past demographic and migration dynamics have determined this structure. Amborella trichopoda is an emblematic relict plant endemic to New Caledonia, widely distributed in the understory of non-ultramafic rainforests. We assessed the influence of the last glacial climates on the demographic history and the paleo-distribution of 12 Amborella populations covering the whole current distribution. We performed coalescent genetic modelling of these dynamics, based on both whole-genome resequencing and microsatellite genotyping data. We found that the two main genetic groups of Amborella were shaped by the divergence of two ancestral populations during the last glacial maximum. From 12,800 years BP, the South ancestral population has expanded 6.3-fold while the size of the North population has remained stable. Recent asymmetric gene flow between the groups further contributed to the phylogeographical pattern. Spatially explicit coalescent modelling allowed us to estimate the location of ancestral populations with good accuracy (< 22 km and provided indications regarding the mid-elevation pathways that facilitated post-glacial expansion.

  15. Population genetic structure of a centipede species with high levels of developmental instability.

    Directory of Open Access Journals (Sweden)

    Giuseppe Fusco

    Full Text Available European populations of the geophilomorph centipede Haplophilus subterraneus show a high proportion of individuals with morphological anomalies, suggesting high levels of developmental instability. The broad geographic distribution of this phenomenon seems to exclude local environmental causes, but the source of instability is still to be identified. The goal of the present study was to collect quantitative data on the occurrence of phenodeviants in different populations, along with data on the patterns of genetic variation within and between populations, in order to investigate possible association between developmental instability and genetic features. In a sample of 11 populations of H. subterraneus, distributed in western and central Europe, we looked for phenodeviants, in particular with respect to trunk morphology, and studied genetic variation through the genotyping of microsatellite loci. Overall, no support was found to the idea that developmental instability in H. subterraneus is related to a specific patterns of genetic variation, including inbreeding estimates. We identified a major genetic partition that subdivides French populations from the others, and a low divergence among northwestern areas, which are possibly related to the post-glacial recolonization from southern refugia and/or to recent anthropogenic soil displacements. A weak correlation between individual number of leg bearing segments and the occurrence of trunk anomalies seems to support a trade-off between these two developmental traits. These results, complemented by preliminary data on developmental stability in two related species, suggest that the phenomenon has not a simple taxonomic distribution, while it exhibits an apparent localization in central and eastern Europe.

  16. Population Genetic Structure of Venturia effusa, Cause of Pecan Scab, in the Southeastern United States.

    Science.gov (United States)

    Bock, Clive H; Hotchkiss, Michael W; Young, Carolyn A; Charlton, Nikki D; Chakradhar, Mattupalli; Stevenson, Katherine L; Wood, Bruce W

    2017-05-01

    Venturia effusa is the most important pathogen of pecan in the southeastern United States. Little information exists on the population biology and genetic diversity of the pathogen. A hierarchical sampling of 784 isolates from 63 trees in 11 pecan orchards in the southeastern United States were screened against a set of 30 previously characterized microsatellite markers. Populations were collected from Georgia (n = 2), Florida (n = 1), Alabama (n = 2), Mississippi (n = 1), Louisiana (n = 1), Illinois (n = 1), Oklahoma (n = 1), Texas (n = 1), and Kansas (n = 1). Clonality was low in all orchard populations (≤10.1% of isolates), and there were consistently high levels of genotypic diversity (Shannon-Weiner's index = 3.49 to 4.59) and gene diversity (Nei's measure = 0.513 to 0.713). Analysis of molecular variance showed that, although 81% of genetic diversity occurred at the scale of the individual tree, 16% occurred between orchards and only 3% between trees within orchards. All populations could be differentiated from each other (P = 0.01), and various cluster analyses indicated that some populations were more closely related compared with other pairs of populations. This is indicative of some limited population differentiation in V. effusa in the southeastern United States. Bayesian and nearest-neighbor methods suggested eight clusters, with orchards from Georgia and Florida being grouped together. A minimum spanning tree of all 784 isolates also indicated some isolate identification with source population. Linkage disequilibrium was detected in all but one population (Kansas), although 8 of the 11 populations had pecan and pecan scab, which is that V. effusa became an issue on cultivated pecan in the last approximately 120 years (recent population expansion). Recently reported mating type genes and the sexual stage of this fungus may help explain the observed population characteristics, which bear a strong resemblance to those of other well

  17. Spatial genetic analyses reveal cryptic population structure and migration patterns in a continuously harvested grey wolf (Canis lupus population in north-eastern Europe.

    Directory of Open Access Journals (Sweden)

    Maris Hindrikson

    Full Text Available Spatial genetics is a relatively new field in wildlife and conservation biology that is becoming an essential tool for unravelling the complexities of animal population processes, and for designing effective strategies for conservation and management. Conceptual and methodological developments in this field are therefore critical. Here we present two novel methodological approaches that further the analytical possibilities of STRUCTURE and DResD. Using these approaches we analyse structure and migrations in a grey wolf (Canislupus population in north-eastern Europe. We genotyped 16 microsatellite loci in 166 individuals sampled from the wolf population in Estonia and Latvia that has been under strong and continuous hunting pressure for decades. Our analysis demonstrated that this relatively small wolf population is represented by four genetic groups. We also used a novel methodological approach that uses linear interpolation to statistically test the spatial separation of genetic groups. The new method, which is capable of using program STRUCTURE output, can be applied widely in population genetics to reveal both core areas and areas of low significance for genetic groups. We also used a recently developed spatially explicit individual-based method DResD, and applied it for the first time to microsatellite data, revealing a migration corridor and barriers, and several contact zones.

  18. Genetic diversity and population structure of elite foxtail millet [Setaria italica (L.) P. Beauv.] germplasm in China

    Science.gov (United States)

    China is among the countries that have the most severe water deficiency. Due to its excellent drought tolerance, foxtail millet [Setaria italica (L.) P. Beauv.] has become one of the important cereal crops in China. Information on genetic diversity and population structure of foxtail millet may faci...

  19. Genetic diversity and structure related to expansion history and habitat isolation: stone marten populating rural-urban habitats.

    Science.gov (United States)

    Wereszczuk, Anna; Leblois, Raphaël; Zalewski, Andrzej

    2017-12-22

    Population genetic diversity and structure are determined by past and current evolutionary processes, among which spatially limited dispersal, genetic drift, and shifts in species distribution boundaries have major effects. In most wildlife species, environmental modifications by humans often lead to contraction of species' ranges and/or limit their dispersal by acting as environmental barriers. However, in species well adapted to anthropogenic habitat or open landscapes, human induced environmental changes may facilitate dispersal and range expansions. In this study, we analysed whether isolation by distance and deforestation, among other environmental features, promotes or restricts dispersal and expansion in stone marten (Martes foina) populations. We genotyped 298 martens from eight sites at twenty-two microsatellite loci to characterize the genetic variability, population structure and demographic history of stone martens in Poland. At the landscape scale, limited genetic differentiation between sites in a mosaic of urban, rural and forest habitats was mostly influenced by isolation by distance. Statistical clustering and multivariate analyses showed weak genetic structuring with two to four clusters and a high rate of gene flow between them. Stronger genetic differentiation was detected for one stone marten population (NE1) located inside a large forest complex. Genetic differentiation between this site and all others was 20% higher than between other sites separated by similar distances. The genetic uniqueness index of NE1 was also twofold higher than in other sites. Past demographic history analyses showed recent expansion of this species in north-eastern Poland. A decrease in genetic diversity from south to north, and MIGRAINE analyses indicated the direction of expansion of stone marten. Our results showed that two processes, changes in species distribution boundaries and limited dispersal associated with landscape barriers, affect genetic diversity and

  20. Development, cross-species/genera transferability of novel EST-SSR markers and their utility in revealing population structure and genetic diversity in sugarcane

    KAUST Repository

    Singh, Ram K.; Jena, Satya N.; Khan, Mohammad Suhail; Yadav, Sonia; Banarjee, Nandita; Raghuvanshi, Saurabh; Bhardwaj, Vasudha; Dattamajumder, Sanjay K.; Kapur, Raman; Solomon, Sushil; Swapna, M.; Srivastava, Sangeeta; Tyagi, Akhilesh K.

    2013-01-01

    for population structure using model-based approach, seven genetically distinct groups or admixtures thereof were observed in sugarcane. Results of principal coordinate analysis or UPGMA to evaluate genetic relationships delineated also the 124 accessions

  1. Genetic Population Structure of Cacao Plantings within a Young Production Area in Nicaragua

    Science.gov (United States)

    Trognitz, Bodo; Scheldeman, Xavier; Hansel-Hohl, Karin; Kuant, Aldo; Grebe, Hans; Hermann, Michael

    2011-01-01

    Significant cocoa production in the municipality of Waslala, Nicaragua, began in 1961. Since the 1980s, its economic importance to rural smallholders increased, and the region now contributes more than 50% of national cocoa bean production. This research aimed to assist local farmers to develop production of high-value cocoa based on optimal use of cacao biodiversity. Using microsatellite markers, the allelic composition and genetic structure of cacao was assessed from 44 representative plantings and two unmanaged trees. The population at Waslala consists of only three putative founder genotype spectra (lineages). Two (B and R) were introduced during the past 50 years and occur in >95% of all trees sampled, indicating high rates of outcrossing. Based on intermediate allelic diversity, there was large farm-to-farm multilocus genotypic variation. GIS analysis revealed unequal distribution of the genotype spectra, with R being frequent within a 2 km corridor along roads, and B at more remote sites with lower precipitation. The third lineage, Y, was detected in the two forest trees. For explaining the spatial stratification of the genotype spectra, both human intervention and a combination of management and selection driven by environmental conditions, appear responsible. Genotypes of individual trees were highly diverse across plantings, thus enabling selection for farm-specific qualities. On-farm populations can currently be most clearly recognized by the degree of the contribution of the three genotype spectra. Of two possible strategies for future development of cacao in Waslala, i.e. introducing more unrelated germplasm, or working with existing on-site diversity, the latter seems most appropriate. Superior genotypes could be selected by their specific composite genotype spectra as soon as associations with desired quality traits are established, and clonally multiplied. The two Y trees from the forest share a single multilocus genotype, possibly representing the

  2. Clonal diversity and population genetic structure of arbuscular mycorrhizal fungi (Glomus spp.) studied by multilocus genotyping of single spores

    DEFF Research Database (Denmark)

    Holtgrewe-Stukenbrock, Eva; Rosendahl, Søren

    2005-01-01

    A nested multiplex PCR (polymerase chain reaction) approach was used for multilocus genotyping of arbuscular mycorrhizal fungal populations. This method allowed us to amplify multiple loci from Glomus single spores in a single PCR amplification. Variable introns in the two protein coding genes Gm......FOX2 and GmTOR2 were applied as codominant genetic markers together with the LSU rDNA.   Genetic structure of Glomus spp. populations from an organically and a conventionally cultured field were compared by hierarchical sampling of spores from four plots in each field. Multilocus genotypes were...

  3. The genetic structure of populations from Haiti and Jamaica reflect divergent demographic histories.

    Science.gov (United States)

    Simms, Tanya M; Rodriguez, Carol E; Rodriguez, Rosa; Herrera, Rene J

    2010-05-01

    The West Indies represent an amalgamation of African, European and in some cases, East Asian sources, but the contributions from each ethnic group remain relatively unexplored from a genetic perspective. In the present study, we report, for the first time, allelic frequency data across the complete set of 15 autosomal STR loci for general collections from Haiti and Jamaica, which were subsequently used to examine the genetic diversity present in each island population. Our results indicate that although both Haiti and Jamaica display genetic affinities with the continental African collections, a stronger African signal is detected in Haiti than in Jamaica. Although only minimal contributions from non-African sources were observed in Haiti, Jamaica displays genetic input from both European and East Asian sources, an admixture profile similar to other New World collections of African descent analyzed in this report. The divergent genetic signatures present in these populations allude to the different migratory events of Africans, Europeans, and East Asians into the New World.

  4. World without borders-genetic population structure of a highly migratory marine predator, the blue shark (Prionace glauca).

    Science.gov (United States)

    Veríssimo, Ana; Sampaio, Íris; McDowell, Jan R; Alexandrino, Paulo; Mucientes, Gonzalo; Queiroz, Nuno; da Silva, Charlene; Jones, Catherine S; Noble, Leslie R

    2017-07-01

    Highly migratory, cosmopolitan oceanic sharks often exhibit complex movement patterns influenced by ontogeny, reproduction, and feeding. These elusive species are particularly challenging to population genetic studies, as representative samples suitable for inferring genetic structure are difficult to obtain. Our study provides insights into the genetic population structure one of the most abundant and wide-ranging oceanic shark species, the blue shark Prionace glauca, by sampling the least mobile component of the populations, i.e., young-of-year and small juveniles (<2 year; N  = 348 individuals), at three reported nursery areas, namely, western Iberia, Azores, and South Africa. Samples were collected in two different time periods (2002-2008 and 2012-2015) and were screened at 12 nuclear microsatellites and at a 899-bp fragment of the mitochondrial control region. Our results show temporally stable genetic homogeneity among the three Atlantic nurseries at both nuclear and mitochondrial markers, suggesting basin-wide panmixia. In addition, comparison of mtDNA CR sequences from Atlantic and Indo-Pacific locations also indicated genetic homogeneity and unrestricted female-mediated gene flow between ocean basins. These results are discussed in light of the species' life history and ecology, but suggest that blue shark populations may be connected by gene flow at the global scale. The implications of the present findings to the management of this important fisheries resource are also discussed.

  5. Turtle soup, Prohibition, and the population genetic structure of Diamondback Terrapins (Malaclemys terrapin).

    Science.gov (United States)

    Converse, Paul E; Kuchta, Shawn R; Hauswaldt, J Susanne; Roosenburg, Willem M

    2017-01-01

    Diamondback terrapins (Malaclemys terrapin) were a popular food item in early twentieth century America, and were consumed in soup with sherry. Intense market demand for terrapin meat resulted in population declines, notably along the Atlantic seaboard. Efforts to supply terrapins to markets resulted in translocation events, as individuals were moved about to stock terrapin farms. However, in 1920 the market for turtle soup buckled with the enactment of the eighteenth amendment to the United States' Constitution-which initiated the prohibition of alcoholic drinks-and many terrapin fisheries dumped their stocks into local waters. We used microsatellite data to show that patterns of genetic diversity along the terrapin's coastal range are consistent with historical accounts of translocation and cultivation activities. We identified possible instances of human-mediated dispersal by estimating gene flow over historical and contemporary timescales, Bayesian model testing, and bottleneck tests. We recovered six genotypic clusters along the Gulf and Atlantic coasts with varying degrees of admixture, including increased contemporary gene flow from Texas to South Carolina, from North Carolina to Maryland, and from North Carolina to New York. In addition, Bayesian models incorporating translocation events outperformed stepping-stone models. Finally, we were unable to detect population bottlenecks, possibly due to translocation reintroducing genetic diversity into bottlenecked populations. Our data suggest that current patterns of genetic diversity in the terrapin were altered by the demand for turtle soup followed by the enactment of alcohol prohibition. In addition, our study shows that population genetic tools can elucidate metapopulation dynamics in taxa with complex genetic histories impacted by anthropogenic activities.

  6. Fine-scale population structure and riverscape genetics of brook trout (Salvelinus fontinalis) distributed continuously along headwater channel networks

    Science.gov (United States)

    Kanno, Yoichiro; Vokoun, Jason C.; Letcher, Benjamin H.

    2011-01-01

    Linear and heterogeneous habitat makes headwater stream networks an ideal ecosystem in which to test the influence of environmental factors on spatial genetic patterns of obligatory aquatic species. We investigated fine-scale population structure and influence of stream habitat on individual-level genetic differentiation in brook trout (Salvelinus fontinalis) by genotyping eight microsatellite loci in 740 individuals in two headwater channel networks (7.7 and 4.4 km) in Connecticut, USA. A weak but statistically significant isolation-by-distance pattern was common in both sites. In the field, many tagged individuals were recaptured in the same 50-m reaches within a single field season (summer to fall). One study site was characterized with a hierarchical population structure, where seasonal barriers (natural falls of 1.5–2.5 m in height during summer base-flow condition) greatly reduced gene flow and perceptible spatial patterns emerged because of the presence of tributaries, each with a group of genetically distinguishable individuals. Genetic differentiation increased when pairs of individuals were separated by high stream gradient (steep channel slope) or warm stream temperature in this site, although the evidence of their influence was equivocal. In a second site, evidence for genetic clusters was weak at best, but genetic differentiation between individuals was positively correlated with number of tributary confluences. We concluded that the population-level movement of brook trout was limited in the study headwater stream networks, resulting in the fine-scale population structure (genetic clusters and clines) even at distances of a few kilometres, and gene flow was mitigated by ‘riverscape’ variables, particularly by physical barriers, waterway distance (i.e. isolation-by-distance) and the presence of tributaries.

  7. HLA-C molecular characterization of a Lebanese population and genetic structure of 39 populations from Europe to India-Pakistan.

    Science.gov (United States)

    Buhler, S; Megarbane, A; Lefranc, G; Tiercy, J-M; Sanchez-Mazas, A

    2006-07-01

    Lebanon is located at a continental crossroad between Europe, Africa, and Asia. This region has been the center of wide-scale movements of populations as well as the theater of genetic and cultural trade off among neighboring populations. In this study, HLA-C alleles were characterized by a PCR-SSOP (sequence-specific oligonucleotide probes) hybridization protocol in a sample of 97 Lebanese. A total of 23 alleles were identified with four predominant, Cw*0401, Cw*0602, Cw*0701/06, and Cw*1203, accounting for almost 60% of HLA-C allele frequencies. We included the Lebanese data into a broad analysis of the HLA-C genetic structure of a large set of populations located in Europe, the Middle East, and the Indian subcontinent. Our results indicate that Lebanese exhibit an intermediate genetic profile among the populations from the Middle East, which constitute a rather homogeneous genetic group. In Europe, a high correlation coefficient is found between genetic and geographic distances. In this continent, we also identified a significant genetic frontier following a north-east to south-west axis. This frontier cuts through the Alps and the Pyrenees, thus separating the north-western European populations from those located in the eastern and Mediterranean areas. Finally, the populations from India - Pakistan are very heterogeneous, particularly the Dravidians. Their differentiation has probably been caused by rapid genetic drift under complex influences of cultural, linguistic, and/or religious barriers. Overall, the results show that the HLA-C genetic patterns of these three geographic regions, i.e., the Middle East, Europe, and India-Pakistan, have been shaped by very different genetic histories.

  8. Genetic structure of populations of whale sharks among ocean basins and evidence for their historic rise and recent decline

    KAUST Repository

    Vignaud, Thomas M.

    2014-05-01

    This study presents genetic evidence that whale sharks, Rhincodon typus, are comprised of at least two populations that rarely mix and is the first to document a population expansion. Relatively high genetic structure is found when comparing sharks from the Gulf of Mexico with sharks from the Indo-Pacific. If mixing occurs between the Indian and Atlantic Oceans, it is not sufficient to counter genetic drift. This suggests whale sharks are not all part of a single global metapopulation. The significant population expansion we found was indicated by both microsatellite and mitochondrial DNA. The expansion may have happened during the Holocene, when tropical species could expand their range due to sea-level rise, eliminating dispersal barriers and increasing plankton productivity. However, the historic trend of population increase may have reversed recently. Declines in genetic diversity are found for 6 consecutive years at Ningaloo Reef in Australia. The declines in genetic diversity being seen now in Australia may be due to commercial-scale harvesting of whale sharks and collision with boats in past decades in other countries in the Indo-Pacific. The study findings have implications for models of population connectivity for whale sharks and advocate for continued focus on effective protection of the world\\'s largest fish at multiple spatial scales. © 2014 John Wiley & Sons Ltd.

  9. Genetic structure of populations of whale sharks among ocean basins and evidence for their historic rise and recent decline.

    Science.gov (United States)

    Vignaud, Thomas M; Maynard, Jeffrey A; Leblois, Raphael; Meekan, Mark G; Vázquez-Juárez, Ricardo; Ramírez-Macías, Dení; Pierce, Simon J; Rowat, David; Berumen, Michael L; Beeravolu, Champak; Baksay, Sandra; Planes, Serge

    2014-05-01

    This study presents genetic evidence that whale sharks, Rhincodon typus, are comprised of at least two populations that rarely mix and is the first to document a population expansion. Relatively high genetic structure is found when comparing sharks from the Gulf of Mexico with sharks from the Indo-Pacific. If mixing occurs between the Indian and Atlantic Oceans, it is not sufficient to counter genetic drift. This suggests whale sharks are not all part of a single global metapopulation. The significant population expansion we found was indicated by both microsatellite and mitochondrial DNA. The expansion may have happened during the Holocene, when tropical species could expand their range due to sea-level rise, eliminating dispersal barriers and increasing plankton productivity. However, the historic trend of population increase may have reversed recently. Declines in genetic diversity are found for 6 consecutive years at Ningaloo Reef in Australia. The declines in genetic diversity being seen now in Australia may be due to commercial-scale harvesting of whale sharks and collision with boats in past decades in other countries in the Indo-Pacific. The study findings have implications for models of population connectivity for whale sharks and advocate for continued focus on effective protection of the world's largest fish at multiple spatial scales. © 2014 John Wiley & Sons Ltd.

  10. Long-term response to genomic selection: effects of estimation method and reference population structure for different genetic architectures.

    Science.gov (United States)

    Bastiaansen, John W M; Coster, Albart; Calus, Mario P L; van Arendonk, Johan A M; Bovenhuis, Henk

    2012-01-24

    Genomic selection has become an important tool in the genetic improvement of animals and plants. The objective of this study was to investigate the impacts of breeding value estimation method, reference population structure, and trait genetic architecture, on long-term response to genomic selection without updating marker effects. Three methods were used to estimate genomic breeding values: a BLUP method with relationships estimated from genome-wide markers (GBLUP), a Bayesian method, and a partial least squares regression method (PLSR). A shallow (individuals from one generation) or deep reference population (individuals from five generations) was used with each method. The effects of the different selection approaches were compared under four different genetic architectures for the trait under selection. Selection was based on one of the three genomic breeding values, on pedigree BLUP breeding values, or performed at random. Selection continued for ten generations. Differences in long-term selection response were small. For a genetic architecture with a very small number of three to four quantitative trait loci (QTL), the Bayesian method achieved a response that was 0.05 to 0.1 genetic standard deviation higher than other methods in generation 10. For genetic architectures with approximately 30 to 300 QTL, PLSR (shallow reference) or GBLUP (deep reference) had an average advantage of 0.2 genetic standard deviation over the Bayesian method in generation 10. GBLUP resulted in 0.6% and 0.9% less inbreeding than PLSR and BM and on average a one third smaller reduction of genetic variance. Responses in early generations were greater with the shallow reference population while long-term response was not affected by reference population structure. The ranking of estimation methods was different with than without selection. Under selection, applying GBLUP led to lower inbreeding and a smaller reduction of genetic variance while a similar response to selection was

  11. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    Directory of Open Access Journals (Sweden)

    Sharat Kumar Pradhan

    Full Text Available Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  12. Population Structure, Genetic Diversity and Molecular Marker-Trait Association Analysis for High Temperature Stress Tolerance in Rice.

    Science.gov (United States)

    Pradhan, Sharat Kumar; Barik, Saumya Ranjan; Sahoo, Ambika; Mohapatra, Sudipti; Nayak, Deepak Kumar; Mahender, Anumalla; Meher, Jitandriya; Anandan, Annamalai; Pandit, Elssa

    2016-01-01

    Rice exhibits enormous genetic diversity, population structure and molecular marker-traits associated with abiotic stress tolerance to high temperature stress. A set of breeding lines and landraces representing 240 germplasm lines were studied. Based on spikelet fertility percent under high temperature, tolerant genotypes were broadly classified into four classes. Genetic diversity indicated a moderate level of genetic base of the population for the trait studied. Wright's F statistic estimates showed a deviation of Hardy-Weinberg expectation in the population. The analysis of molecular variance revealed 25 percent variation between population, 61 percent among individuals and 14 percent within individuals in the set. The STRUCTURE analysis categorized the entire population into three sub-populations and suggested that most of the landraces in each sub-population had a common primary ancestor with few admix individuals. The composition of materials in the panel showed the presence of many QTLs representing the entire genome for the expression of tolerance. The strongly associated marker RM547 tagged with spikelet fertility under stress and the markers like RM228, RM205, RM247, RM242, INDEL3 and RM314 indirectly controlling the high temperature stress tolerance were detected through both mixed linear model and general linear model TASSEL analysis. These markers can be deployed as a resource for marker-assisted breeding program of high temperature stress tolerance.

  13. When gender matters: new insights into the relationships between social systems and the genetic structure of human populations.

    Science.gov (United States)

    Destro Bisol, Giovanni; Capocasa, Marco; Anagnostou, Paolo

    2012-10-01

    Due to its important effects on the ecological dynamics and the genetic structure of species, biologists have long been interested in gender-biased dispersal, a condition where one gender is more prone to move from the natal site. More recently, this topic has attracted a great attention from human evolutionary geneticists. Considering the close relations between residential rules and social structure, gender-biased dispersal is, in fact, regarded as an important case study concerning the effects of socio-cultural factors on human genetic variation. It all started with the seminal paper by Mark Seielstad, Erich Minch and Luigi Luca Cavalli Sforza from Stanford University (Seielstad et al. 1998). They observed a larger differentiation for Y-chromosome than mitochondrial DNA between extant human populations, purportedly a consequence of the prevalence of long-term patrilocality in human societies. Subsequent studies, however, have highlighted the need to consider geographically close and culturally homogeneous groups, disentangle signals due to different peopling events and obtain unbiased estimates of genetic diversity. In this issue of Molecular Ecology, not only do Marks et al. (2012) adopt an experimental design which addresses these concerns, but they also take a further and important step forward by integrating the genetic analysis of two distant populations, the Basotho and Spanish, with data regarding migration rates and matrimonial distances. Using both empirical evidence and simulations, the authors show that female-biased migration due to patrilocality might shape the genetic structure of human populations only at short ranges and under substantial differences in migration rates between genders. Providing a quantitative framework for future studies of the effects of residential rules on the human genome, this study paves the way for further developments in the field. On a wider perspective, Marks et al.'s work demonstrates the power of approaches which

  14. Homogenous Population Genetic Structure of the Non-Native Raccoon Dog (Nyctereutes procyonoides) in Europe as a Result of Rapid Population Expansion

    Science.gov (United States)

    Drygala, Frank; Korablev, Nikolay; Ansorge, Hermann; Fickel, Joerns; Isomursu, Marja; Elmeros, Morten; Kowalczyk, Rafał; Baltrunaite, Laima; Balciauskas, Linas; Saarma, Urmas; Schulze, Christoph; Borkenhagen, Peter; Frantz, Alain C.

    2016-01-01

    The extent of gene flow during the range expansion of non-native species influences the amount of genetic diversity retained in expanding populations. Here, we analyse the population genetic structure of the raccoon dog (Nyctereutes procyonoides) in north-eastern and central Europe. This invasive species is of management concern because it is highly susceptible to fox rabies and an important secondary host of the virus. We hypothesized that the large number of introduced animals and the species’ dispersal capabilities led to high population connectivity and maintenance of genetic diversity throughout the invaded range. We genotyped 332 tissue samples from seven European countries using 16 microsatellite loci. Different algorithms identified three genetic clusters corresponding to Finland, Denmark and a large ‘central’ population that reached from introduction areas in western Russia to northern Germany. Cluster assignments provided evidence of long-distance dispersal. The results of an Approximate Bayesian Computation analysis supported a scenario of equal effective population sizes among different pre-defined populations in the large central cluster. Our results are in line with strong gene flow and secondary admixture between neighbouring demes leading to reduced genetic structuring, probably a result of its fairly rapid population expansion after introduction. The results presented here are remarkable in the sense that we identified a homogenous genetic cluster inhabiting an area stretching over more than 1500km. They are also relevant for disease management, as in the event of a significant rabies outbreak, there is a great risk of a rapid virus spread among raccoon dog populations. PMID:27064784

  15. Population Genetic Structure and Isolation by Distance of Helicobacter pylori in Senegal and Madagascar

    Science.gov (United States)

    Linz, Bodo; Vololonantenainab, Clairette Romaine Raharisolo; Seck, Abdoulaye; Carod, Jean-François; Dia, Daouda; Garin, Benoit; Ramanampamonjy, Rado Manitrala; Thiberge, Jean-Michel; Raymond, Josette; Breurec, Sebastien

    2014-01-01

    Helicobacter pylori has probably infected the human stomach since our origins and subsequently diversified in parallel with their human hosts. The genetic population history of H. pylori can therefore be used as a marker for human migration. We analysed seven housekeeping gene sequences of H. pylori strains isolated from 78 Senegalese and 24 Malagasy patients and compared them with the sequences of strains from other geographical locations. H. pylori from Senegal and Madagascar can be placed in the previously described HpAfrica1 genetic population, subpopulations hspWAfrica and hspSAfrica, respectively. These 2 subpopulations correspond to the distribution of Niger-Congo speakers in West and most of subequatorial Africa (due to Bantu migrations), respectively. H. pylori appears as a single population in Senegal, indicating a long common history between ethnicities as well as frequent local admixtures. The lack of differentiation between these isolates and an increasing genetic differentiation with geographical distance between sampling locations in Africa was evidence for genetic isolation by distance. The Austronesian expansion that started from Taiwan 5000 years ago dispersed one of the 10 subgroups of the Austronesian language family via insular Southeast Asia into the Pacific and Madagascar, and hspMaori is a marker for the entire Austronesian expansion. Strain competition and replacement of hspMaori by hpAfrica1 strains from Bantu migrants are the probable reasons for the presence of hspSAfrica strains in Malagasy of Southeast Asian descent. hpAfrica1 strains appear to be generalist strains that have the necessary genetic diversity to efficiently colonise a wide host spectrum. PMID:24498084

  16. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    Directory of Open Access Journals (Sweden)

    Chunping Liu

    Full Text Available Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE, whereas it has a scattered and patchy distribution in South China (SC. In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM. Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278 among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  17. Genetic structure and hierarchical population divergence history of Acer mono var. mono in South and Northeast China.

    Science.gov (United States)

    Liu, Chunping; Tsuda, Yoshiaki; Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species' evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST  = 0.073; G'ST  = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species' more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study.

  18. Genetic Structure and Hierarchical Population Divergence History of Acer mono var. mono in South and Northeast China

    Science.gov (United States)

    Shen, Hailong; Hu, Lijiang; Saito, Yoko; Ide, Yuji

    2014-01-01

    Knowledge of the genetic structure and evolutionary history of tree species across their ranges is essential for the development of effective conservation and forest management strategies. Acer mono var. mono, an economically and ecologically important maple species, is extensively distributed in Northeast China (NE), whereas it has a scattered and patchy distribution in South China (SC). In this study, the genetic structure and demographic history of 56 natural populations of A. mono var. mono were evaluated using seven nuclear microsatellite markers. Neighbor-joining tree and STRUCTURE analysis clearly separated populations into NE and SC groups with two admixed-like populations. Allelic richness significantly decreased with increasing latitude within the NE group while both allelic richness and expected heterozygosity showed significant positive correlation with latitude within the SC group. Especially in the NE region, previous studies in Quercus mongolica and Fraxinus mandshurica have also detected reductions in genetic diversity with increases in latitude, suggesting this pattern may be common for tree species in this region, probably due to expansion from single refugium following the last glacial maximum (LGM). Approximate Bayesian Computation-based analysis revealed two major features of hierarchical population divergence in the species’ evolutionary history. Recent divergence between the NE group and the admixed-like group corresponded to the LGM period and ancient divergence of SC groups took place during mid-late Pleistocene period. The level of genetic differentiation was moderate (FST = 0.073; G′ST = 0.278) among all populations, but significantly higher in the SC group than the NE group, mirroring the species’ more scattered distribution in SC. Conservation measures for this species are proposed, taking into account the genetic structure and past demographic history identified in this study. PMID:24498039

  19. The Genetic Structure of Australian Populations of Mycosphaerella musicola Suggests Restricted Gene Flow at the Continental Scale.

    Science.gov (United States)

    Hayden, H L; Carlier, J; Aitken, E A B

    2005-05-01

    ABSTRACT Mycosphaerella musicola causes Sigatoka disease of banana and is endemic to Australia. The population genetic structure of M. musicola in Australia was examined by applying single-copy restriction fragment length polymorphism probes to hierarchically sampled populations collected along the Australian east coast. The 363 isolates studied were from 16 plantations at 12 sites in four different regions, and comprised 11 populations. These populations displayed moderate levels of gene diversity (H = 0.142 to 0.369) and similar levels of genotypic richness and evenness. Populations were dominated by unique genotypes, but isolates sharing the same genotype (putative clones) were detected. Genotype distribution was highly localized within each population, and the majority of putative clones were detected for isolates sampled from different sporodochia in the same lesion or different lesions on a plant. Multilocus gametic disequilibrium tests provided further evidence of a degree of clonality within the populations at the plant scale. A complex pattern of population differentiation was detected for M. musicola in Australia. Populations sampled from plantations outside the two major production areas were genetically very different to all other populations. Differentiation was much lower between populations of the two major production areas, despite their geographic separation of over 1,000 km. These results suggest low gene flow at the continental scale due to limited spore dispersal and the movement of infected plant material.

  20. Assessment of genetic diversity, population structure, and gene flow of tigers (Panthera tigris tigris) across Nepal's Terai Arc Landscape.

    Science.gov (United States)

    Thapa, Kanchan; Manandhar, Sulochana; Bista, Manisha; Shakya, Jivan; Sah, Govind; Dhakal, Maheshwar; Sharma, Netra; Llewellyn, Bronwyn; Wultsch, Claudia; Waits, Lisette P; Kelly, Marcella J; Hero, Jean-Marc; Hughes, Jane; Karmacharya, Dibesh

    2018-01-01

    With fewer than 200 tigers (Panthera tigris tigris) left in Nepal, that are generally confined to five protected areas across the Terai Arc Landscape, genetic studies are needed to provide crucial information on diversity and connectivity for devising an effective country-wide tiger conservation strategy. As part of the Nepal Tiger Genome Project, we studied landscape change, genetic variation, population structure, and gene flow of tigers across the Terai Arc Landscape by conducting Nepal's first comprehensive and systematic scat-based, non-invasive genetic survey. Of the 770 scat samples collected opportunistically from five protected areas and six presumed corridors, 412 were tiger (57%). Out of ten microsatellite loci, we retain eight markers that were used in identifying 78 individual tigers. We used this dataset to examine population structure, genetic variation, contemporary gene flow, and potential population bottlenecks of tigers in Nepal. We detected three genetic clusters consistent with three demographic sub-populations and found moderate levels of genetic variation (He = 0.61, AR = 3.51) and genetic differentiation (FST = 0.14) across the landscape. We detected 3-7 migrants, confirming the potential for dispersal-mediated gene flow across the landscape. We found evidence of a bottleneck signature likely caused by large-scale land-use change documented in the last two centuries in the Terai forest. Securing tiger habitat including functional forest corridors is essential to enhance gene flow across the landscape and ensure long-term tiger survival. This requires cooperation among multiple stakeholders and careful conservation planning to prevent detrimental effects of anthropogenic activities on tigers.

  1. The influence of natural barriers in shaping the genetic structure of Maharashtra populations.

    Directory of Open Access Journals (Sweden)

    Kumarasamy Thangaraj

    Full Text Available BACKGROUND: The geographical position of Maharashtra state makes it rather essential to study the dispersal of modern humans in South Asia. Several hypotheses have been proposed to explain the cultural, linguistic and geographical affinity of the populations living in Maharashtra state with other South Asian populations. The genetic origin of populations living in this state is poorly understood and hitherto been described at low molecular resolution level. METHODOLOGY/PRINCIPAL FINDINGS: To address this issue, we have analyzed the mitochondrial DNA (mtDNA of 185 individuals and NRY (non-recombining region of Y chromosome of 98 individuals belonging to two major tribal populations of Maharashtra, and compared their molecular variations with that of 54 South Asian contemporary populations of adjacent states. Inter and intra population comparisons reveal that the maternal gene pool of Maharashtra state populations is composed of mainly South Asian haplogroups with traces of east and west Eurasian haplogroups, while the paternal haplogroups comprise the South Asian as well as signature of near eastern specific haplogroup J2a. CONCLUSIONS/SIGNIFICANCE: Our analysis suggests that Indian populations, including Maharashtra state, are largely derived from Paleolithic ancient settlers; however, a more recent (∼10 Ky older detectable paternal gene flow from west Asia is well reflected in the present study. These findings reveal movement of populations to Maharashtra through the western coast rather than mainland where Western Ghats-Vindhya Mountains and Narmada-Tapti rivers might have acted as a natural barrier. Comparing the Maharastrian populations with other South Asian populations reveals that they have a closer affinity with the South Indian than with the Central Indian populations.

  2. The influence of natural barriers in shaping the genetic structure of Maharashtra populations.

    Science.gov (United States)

    Thangaraj, Kumarasamy; Naidu, B Prathap; Crivellaro, Federica; Tamang, Rakesh; Upadhyay, Shashank; Sharma, Varun Kumar; Reddy, Alla G; Walimbe, S R; Chaubey, Gyaneshwer; Kivisild, Toomas; Singh, Lalji

    2010-12-20

    The geographical position of Maharashtra state makes it rather essential to study the dispersal of modern humans in South Asia. Several hypotheses have been proposed to explain the cultural, linguistic and geographical affinity of the populations living in Maharashtra state with other South Asian populations. The genetic origin of populations living in this state is poorly understood and hitherto been described at low molecular resolution level. To address this issue, we have analyzed the mitochondrial DNA (mtDNA) of 185 individuals and NRY (non-recombining region of Y chromosome) of 98 individuals belonging to two major tribal populations of Maharashtra, and compared their molecular variations with that of 54 South Asian contemporary populations of adjacent states. Inter and intra population comparisons reveal that the maternal gene pool of Maharashtra state populations is composed of mainly South Asian haplogroups with traces of east and west Eurasian haplogroups, while the paternal haplogroups comprise the South Asian as well as signature of near eastern specific haplogroup J2a. Our analysis suggests that Indian populations, including Maharashtra state, are largely derived from Paleolithic ancient settlers; however, a more recent (∼10 Ky older) detectable paternal gene flow from west Asia is well reflected in the present study. These findings reveal movement of populations to Maharashtra through the western coast rather than mainland where Western Ghats-Vindhya Mountains and Narmada-Tapti rivers might have acted as a natural barrier. Comparing the Maharastrian populations with other South Asian populations reveals that they have a closer affinity with the South Indian than with the Central Indian populations.

  3. Population genetics without intraspecific data

    DEFF Research Database (Denmark)

    Thorne, Jeffrey L; Choi, Sang Chul; Yu, Jiaye

    2007-01-01

    A central goal of computational biology is the prediction of phenotype from DNA and protein sequence data. Recent models of sequence change use in silico prediction systems to incorporate the effects of phenotype on evolutionary rates. These models have been designed for analyzing sequence data...... populations, and parameters of interspecific models should have population genetic interpretations. We show, with two examples, how population genetic interpretations can be assigned to evolutionary models. The first example considers the impact of RNA secondary structure on sequence change, and the second...... reflects the tendency for protein tertiary structure to influence nonsynonymous substitution rates. We argue that statistical fit to data should not be the sole criterion for assessing models of sequence change. A good interspecific model should also yield a clear and biologically plausible population...

  4. Population Expansion and Genetic Structure in Carcharhinus brevipinna in the Southern Indo-Pacific

    Science.gov (United States)

    Geraghty, Pascal T.; Williamson, Jane E.; Macbeth, William G.; Wintner, Sabine P.; Harry, Alastair V.; Ovenden, Jennifer R.; Gillings, Michael R.

    2013-01-01

    Background Quantifying genetic diversity and metapopulation structure provides insights into the evolutionary history of a species and helps develop appropriate management strategies. We provide the first assessment of genetic structure in spinner sharks (Carcharhinus brevipinna), a large cosmopolitan carcharhinid, sampled from eastern and northern Australia and South Africa. Methods and Findings Sequencing of the mitochondrial DNA NADH dehydrogenase subunit 4 gene for 430 individuals revealed 37 haplotypes and moderately high haplotype diversity (h = 0.6770 ±0.025). While two metrics of genetic divergence (ΦST and F ST) revealed somewhat different results, subdivision was detected between South Africa and all Australian locations (pairwise ΦST, range 0.02717–0.03508, p values ≤ 0.0013; pairwise F ST South Africa vs New South Wales = 0.04056, p = 0.0008). Evidence for fine-scale genetic structuring was also detected along Australia’s east coast (pairwise ΦST = 0.01328, p Indo-Pacific. PMID:24086462

  5. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    Directory of Open Access Journals (Sweden)

    Richards Vincent P

    2012-12-01

    Full Text Available Abstract Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection. A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs [plasmid, phage, integrative conjugative element (ICE] and comparison to other species provided convincing evidence for lateral gene transfer (LGT between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae, with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST of a subset of the isolates (n = 45 detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types], suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human

  6. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis.

    Science.gov (United States)

    Richards, Vincent P; Zadoks, Ruth N; Pavinski Bitar, Paulina D; Lefébure, Tristan; Lang, Ping; Werner, Brenda; Tikofsky, Linda; Moroni, Paolo; Stanhope, Michael J

    2012-12-18

    Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus urinalis) is cause for concern

  7. Genome characterization and population genetic structure of the zoonotic pathogen, Streptococcus canis

    Science.gov (United States)

    2012-01-01

    Background Streptococcus canis is an important opportunistic pathogen of dogs and cats that can also infect a wide range of additional mammals including cows where it can cause mastitis. It is also an emerging human pathogen. Results Here we provide characterization of the first genome sequence for this species, strain FSL S3-227 (milk isolate from a cow with an intra-mammary infection). A diverse array of putative virulence factors was encoded by the S. canis FSL S3-227 genome. Approximately 75% of these gene sequences were homologous to known Streptococcal virulence factors involved in invasion, evasion, and colonization. Present in the genome are multiple potentially mobile genetic elements (MGEs) [plasmid, phage, integrative conjugative element (ICE)] and comparison to other species provided convincing evidence for lateral gene transfer (LGT) between S. canis and two additional bovine mastitis causing pathogens (Streptococcus agalactiae, and Streptococcus dysgalactiae subsp. dysgalactiae), with this transfer possibly contributing to host adaptation. Population structure among isolates obtained from Europe and USA [bovine = 56, canine = 26, and feline = 1] was explored. Ribotyping of all isolates and multi locus sequence typing (MLST) of a subset of the isolates (n = 45) detected significant differentiation between bovine and canine isolates (Fisher exact test: P = 0.0000 [ribotypes], P = 0.0030 [sequence types]), suggesting possible host adaptation of some genotypes. Concurrently, the ancestral clonal complex (54% of isolates) occurred in many tissue types, all hosts, and all geographic locations suggesting the possibility of a wide and diverse niche. Conclusion This study provides evidence highlighting the importance of LGT in the evolution of the bacteria S. canis, specifically, its possible role in host adaptation and acquisition of virulence factors. Furthermore, recent LGT detected between S. canis and human bacteria (Streptococcus

  8. The influence of habitat structure on genetic differentiation in red fox populations in north-eastern Poland.

    Science.gov (United States)

    Mullins, Jacinta; McDevitt, Allan D; Kowalczyk, Rafał; Ruczyńska, Iwona; Górny, Marcin; Wójcik, Jan M

    2014-01-01

    The red fox ( Vulpes vulpes ) has the widest global distribution among terrestrial carnivore species, occupying most of the Northern Hemisphere in its native range. Because it carries diseases that can be transmitted to humans and domestic animals, it is important to gather information about their movements and dispersal in their natural habitat but it is difficult to do so at a broad scale with trapping and telemetry. In this study, we have described the genetic diversity and structure of red fox populations in six areas of north-eastern Poland, based on samples collected from 2002-2003. We tested 22 microsatellite loci isolated from the dog and the red fox genome to select a panel of nine polymorphic loci suitable for this study. Genetic differentiation between the six studied populations was low to moderate and analysis in Structure revealed a panmictic population in the region. Spatial autocorrelation among all individuals showed a pattern of decreasing relatedness with increasing distance and this was not significantly negative until 93 km, indicating a pattern of isolation-by-distance over a large area. However, there was no correlation between genetic distance and either Euclidean distance or least-cost path distance at the population level. There was a significant relationship between genetic distance and the proportion of large forests and water along the Euclidean distances. These types of habitats may influence dispersal paths taken by red foxes, which is useful information in terms of wildlife disease management.

  9. Genetic diversity and population structure analysis in Perilla frutescens from Northern areas of China based on simple sequence repeats.

    Science.gov (United States)

    Ma, S J; Sa, K J; Hong, T K; Lee, J K

    2017-09-21

    In this study, 21 simple sequence repeat (SSR) markers were used to evaluate the genetic diversity and population structure among 77 Perilla accessions from high-latitude and middle-latitude areas of China. Ninety-five alleles were identified with an average of 4.52 alleles per locus. The average polymorphic information content (PIC) and genetic diversity values were 0.346 and 0.372, respectively. The level of genetic diversity and PIC value for cultivated accessions of Perilla frutescens var. frutescens from middle-latitude areas were higher than accessions from high-latitude areas. Based on the dendrogram of unweighted pair group method with arithmetic mean (UPGMA), all accessions were classified into four major groups with a genetic similarity of 46%. All accessions of the cultivated var. frutescens were discriminated from the cultivated P. frutescens var. crispa. Furthermore, most accessions of the cultivated var. frutescens collected in high-latitude and middle-latitude areas were distinguished depending on their geographical location. However, the geographical locations of several accessions of the cultivated var. frutescens have no relation with their positions in the UPGMA dendrogram and population structure. This result implies that the diffusion of accessions of the cultivated Perilla crop in the northern areas of China might be through multiple routes. On the population structure analysis, 77 Perilla accessions were divided into Group I, Group II, and an admixed group based on a membership probability threshold of 0.8. Finally, the findings in this study can provide useful theoretical knowledge for further study on the population structure and genetic diversity of Perilla and benefit for Perilla crop breeding and germplasm conservation.

  10. Genetic population structure of European sprat (Sprattus sprattus L.): differentiation across a steep environmental gradient in a small pelagic fish

    DEFF Research Database (Denmark)

    Limborg, Morten; Pedersen, Jes S.; Hansen, Jakob Hemmer

    2009-01-01

    locations in and around the North- and Baltic Sea area and from a geographically distant population from the Adriatic Sea. Analyses of nine microsatellite loci revealed a sharp genetic division separating samples from the Northeastern Atlantic and the Baltic Sea (pairwise θ = 0.019–0.035), concurring...... with a steep salinity gradient. We found, at most, weak structure among samples within the Northeastern Atlantic region and within the Baltic Sea (pairwise θ = 0.001–0.009). The Adriatic Sea population was highly differentiated from all northern samples (pairwise θ = 0.071–0.092). Overall, the observed...... population structure resembles that of most other marine fishes studied in the North/Baltic Sea areas. Nevertheless, spatially explicit differences are observed among species, likely reflecting specific life-histories. Such fine-scale population structure should be taken into account, e.g. in ecosystem...

  11. Spatial genetic structure of Long-tailed Ducks (Clangula hyemalis) among Alaskan, Canadian, and Russian breeding populations

    Science.gov (United States)

    Wilson, Robert E.; Gust, J R; Petersen, Margaret; Talbot, Sandra L.

    2016-01-01

    Arctic ecosystems are changing at an unprecedented rate. How Arctic species are able to respond to such environmental change is partially dependent on the connections between local and broadly distributed populations. For species like the Long-tailed Duck (Clangula hyemalis), we have limited telemetry and band-recovery information from which to infer population structure and migratory connectivity; however, genetic analyses can offer additional insights. To examine population structure in the Long-tailed Duck, we characterized variation at mtDNA control region and microsatellite loci among four breeding areas in Alaska, Canada, and Russia. We observed significant differences in the variance of mtDNA haplotype frequencies between the Yukon-Kuskokwim Delta (YKD) and the three Arctic locations (Arctic Coastal Plain in Alaska, eastern Siberia, and central Canadian Arctic). However, like most sea duck genetic assessments, our study found no evidence of population structure based on autosomal microsatellite loci. Long-tailed Ducks use multiple wintering areas where pair formation occurs with some populations using both the Pacific and Atlantic Oceans. This situation provides a greater opportunity for admixture across breeding locales, which would likely homogenize the nuclear genome even in the presence of female philopatry. The observed mtDNA differentiation was largely due to the presence of two divergent clades: (A) a clade showing signs of admixture among all breeding locales and (B) a clade primarily composed of YKD samples. We hypothesize that the pattern of mtDNA differentiation reflects some degree of philopatry to the YKD and isolation of two refugial populations with subsequent expansion and admixture. We recommend additional genetic assessments throughout the circumpolar range of Long-tailed Ducks to further quantify aspects of genetic diversity and migratory connectivity in this species.

  12. Development of novel SSR markers for evaluation of genetic diversity and population structure in Tribulus terrestris L. (Zygophyllaceae).

    Science.gov (United States)

    Kaur, Kuljit; Sharma, Vikas; Singh, Vijay; Wani, Mohammad Saleem; Gupta, Raghbir Chand

    2016-12-01

    Tribulus terrestris L., commonly called puncture vine and gokhru, is an important member of Zygophyllaceae. The species is highly important in context to therapeutic uses and provides important active principles responsible for treatment of various diseases and also used as tonic. It is widely distributed in tropical regions of India and the world. However, status of its genetic diversity remained concealed due to lack of research work in this species. In present study, genetic diversity and structure of different populations of T. terrestris from north India was examined at molecular level using newly developed Simple Sequence Repeat (SSR) markers. In total, 20 primers produced 48 alleles in a size range of 100-500 bp with maximum (4) fragments amplified by TTMS-1, TTMS-25 and TTMS-33. Mean Polymorphism Information Content (PIC) and Marker Index (MI) were 0.368 and 1.01, respectively. Dendrogram showed three groups, one of which was purely containing accessions from Rajasthan while other two groups corresponded to Punjab and Haryana regions with intermixing of few other accessions. Analysis of molecular variance partitioned 76 % genetic variance within populations and 24 % among populations. Bayesian model based STRUCTURE analysis detected two genetic stocks for analyzed germplasm and also detected some admixed individuals. Different geographical populations of this species showed high level of genetic diversity. Results of present study can be useful in identifying diverse accessions and management of this plant resource. Moreover, the novel SSR markers developed can be utilized for various genetic analyses in this species in future.

  13. Excavating past population structures by surname-based sampling: the genetic legacy of the Vikings in northwest England.

    Science.gov (United States)

    Bowden, Georgina R; Balaresque, Patricia; King, Turi E; Hansen, Ziff; Lee, Andrew C; Pergl-Wilson, Giles; Hurley, Emma; Roberts, Stephen J; Waite, Patrick; Jesch, Judith; Jones, Abigail L; Thomas, Mark G; Harding, Stephen E; Jobling, Mark A

    2008-02-01

    The genetic structures of past human populations are obscured by recent migrations and expansions and have been observed only indirectly by inference from modern samples. However, the unique link between a heritable cultural marker, the patrilineal surname, and a genetic marker, the Y chromosome, provides a means to target sets of modern individuals that might resemble populations at the time of surname establishment. As a test case, we studied samples from the Wirral Peninsula and West Lancashire, in northwest England. Place-names and archaeology show clear evidence of a past Viking presence, but heavy immigration and population growth since the industrial revolution are likely to have weakened the genetic signal of a 1,000-year-old Scandinavian contribution. Samples ascertained on the basis of 2 generations of residence were compared with independent samples based on known ancestry in the region plus the possession of a surname known from historical records to have been present there in medieval times. The Y-chromosomal haplotypes of these 2 sets of samples are significantly different, and in admixture analyses, the surname-ascertained samples show markedly greater Scandinavian ancestry proportions, supporting the idea that northwest England was once heavily populated by Scandinavian settlers. The method of historical surname-based ascertainment promises to allow investigation of the influence of migration and drift over the last few centuries in changing the population structure of Britain and will have general utility in other regions where surnames are patrilineal and suitable historical records survive.

  14. Population genetic diversity and genetic structure of Spodoptera exigua around the Bohai Gulf area of China based on mitochondrial DNA signatures.

    Science.gov (United States)

    Zhou, L-H; Wang, X-Y; Lei, J-J

    2016-09-30

    The beet armyworm, Spodoptera exigua (Lepidoptera: Noctuidae), is an economically important pest that causes major losses in some main crop-producing areas of China. To control this pest effectively, it is necessary to investigate its population genetic diversity and genetic structure around the Bohai Gulf area of China. In this study, we used two mitochondrial genes, COI (578 bp) and Cytb (724 bp), to investigate its genetic diversity. We obtained 622 COI sequences and 462 Cytb sequences from 23 populations, and 28 and 73 haplotypes, respectively, were identified. Low to moderate levels of genetic diversity (COI: Hd = 0.267 ± 0.023, Pi = 0.00082 ± 0.00010; Cytb: Hd = 0.689 ± 0.018, Pi = 0.00255 ± 0.00029) for the total populations were observed. Phylogenetic and median-joining network analyses indicated no distinct geographical distribution pattern among the haplotypes. Overall, this study revealed that there was significant differentiation among the populations (COI: F ST = 0.158, P neutrality test results, showed a recent population expansion of the beet armyworm around the Bohai Gulf area of China.

  15. Populational genetic structure of free-living maned wolves (Chrysocyon brachyurus determined by proteic markers

    Directory of Open Access Journals (Sweden)

    P. S. R. De Mattos

    Full Text Available Electrophoretic analysis of presumptive twenty gene loci products was conducted in hemolisates and plasma samples of twenty-eight maned wolves (Chrysocyon brachyurus from an area in northeastern São Paulo State, Brazil. The area sampled was divided into three sub-areas, with the Mogi-Guaçu and Pardo rivers regarded as barriers to the gene flow. The polymorphism degree and heterozygosity level (intralocus and average estimated in this study were similar to those detected by other authors for maned wolves and other species of wild free-living canids. The samples of each sub-area and the total sample exhibited genotype frequencies consistent with the genetic equilibrium model. The values of the F-statistics evidenced absence of inbreeding and population subdivision and, consequently, low genetic distances were found among the samples of each area.

  16. Genetic diversity and population structure of Eleutheronema rhadinum in the East and South China Seas revealed in mitochondrial COI sequences

    Science.gov (United States)

    Sun, Xinxu; Xu, Dongdong; Lou, Bao; Zhang, Tao; Xin, Jian; Guo, Yaoshi; Ma, Shilei

    2013-11-01

    Eleutheronema rhadinum is a potential commercial fisheries species and is subject to intense exploitation in China. Knowledge on the population structure of E. rhadinum in Chinese coastal waters, which is important for sustainable exploitation and proper resource management, is lacking. In the present study, the genetic diversity and population structure of E. rhadinum were evaluated using a 564-base pair fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 76 specimens were collected from three localities around the East (Qidong and Zhoushan) and South China Seas (Zhuhai). Among these individuals, nine polymorphic sites were detected and 11 distinct haplotypes were defined. High levels of haplotype diversity ( h =0.759±0.035) and low levels of nucleotide diversity ( π= 0.001 98±0.003 26) were observed in these populations. Hierarchical analysis of molecular variance (AMOVA) indicated that 96.72% of the genetic variation occurred within the populations, whereas 3.28% occurred among populations. No significant genealogical branches or clusters were recognized on the neighbor-joining tree. Intra-group variation among populations was significant ( φ st=0.032 85, PTests of neutral evolution and mismatch distribution suggest that E. rhadinum may have experienced a population expansion. The present study provides basic information for the conservation and sustainable exploitation of this species.

  17. Population genetic structure in Sabatieria (Nematoda) reveals intermediary gene flow and admixture between distant cold seeps from the Mediterranean Sea.

    Science.gov (United States)

    De Groote, Annelies; Hauquier, Freija; Vanreusel, Ann; Derycke, Sofie

    2017-07-01

    There is a general lack of information on the dispersal and genetic structuring for populations of small-sized deep-water taxa, including free-living nematodes which inhabit and dominate the seafloor sediments. This is also true for unique and scattered deep-sea habitats such as cold seeps. Given the limited dispersal capacity of marine nematodes, genetic differentiation between such geographically isolated habitat patches is expected to be high. Against this background, we examined genetic variation in both mitochondrial (COI) and nuclear (18S and 28S ribosomal) DNA markers of 333 individuals of the genus Sabatieria, abundantly present in reduced cold-seep sediments. Samples originated from four Eastern Mediterranean cold seeps, separated by hundreds of kilometers, and one seep in the Southeast Atlantic. Individuals from the Mediterranean and Atlantic were divided into two separate but closely-related species clades. Within the Eastern Mediterranean, all specimens belonged to a single species, but with a strong population genetic structure (Φ ST  = 0.149). The haplotype network of COI contained 19 haplotypes with the most abundant haplotype (52% of the specimens) shared between all four seeps. The number of private haplotypes was high (15), but the number of mutations between haplotypes was low (1-8). These results indicate intermediary gene flow among the Mediterranean Sabatieria populations with no evidence of long-term barriers to gene flow. The presence of shared haplotypes and multiple admixture events indicate that Sabatieria populations from disjunct cold seeps are not completely isolated, with gene flow most likely facilitated through water current transportation of individuals and/or eggs. Genetic structure and molecular diversity indices are comparable to those of epiphytic shallow-water marine nematodes, while no evidence of sympatric cryptic species was found for the cold-seep Sabatieria.

  18. Origin, Migration Routes and Worldwide Population Genetic Structure of the Wheat Yellow Rust Pathogen Puccinia striiformis f.sp. tritici

    Science.gov (United States)

    Ali, Sajid; Gladieux, Pierre; Leconte, Marc; Gautier, Angélique; Justesen, Annemarie F.; Hovmøller, Mogens S.; Enjalbert, Jérôme; de Vallavieille-Pope, Claude

    2014-01-01

    Analyses of large-scale population structure of pathogens enable the identification of migration patterns, diversity reservoirs or longevity of populations, the understanding of current evolutionary trajectories and the anticipation of future ones. This is particularly important for long-distance migrating fungal pathogens such as Puccinia striiformis f.sp. tritici (PST), capable of rapid spread to new regions and crop varieties. Although a range of recent PST invasions at continental scales are well documented, the worldwide population structure and the center of origin of the pathogen were still unknown. In this study, we used multilocus microsatellite genotyping to infer worldwide population structure of PST and the origin of new invasions based on 409 isolates representative of distribution of the fungus on six continents. Bayesian and multivariate clustering methods partitioned the set of multilocus genotypes into six distinct genetic groups associated with their geographical origin. Analyses of linkage disequilibrium and genotypic diversity indicated a strong regional heterogeneity in levels of recombination, with clear signatures of recombination in the Himalayan (Nepal and Pakistan) and near-Himalayan regions (China) and a predominant clonal population structure in other regions. The higher genotypic diversity, recombinant population structure and high sexual reproduction ability in the Himalayan and neighboring regions suggests this area as the putative center of origin of PST. We used clustering methods and approximate Bayesian computation (ABC) to compare different competing scenarios describing ancestral relationship among ancestral populations and more recently founded populations. Our analyses confirmed the Middle East-East Africa as the most likely source of newly spreading, high-temperature-adapted strains; Europe as the source of South American, North American and Australian populations; and Mediterranean-Central Asian populations as the origin of

  19. Phylogeographic and population genetic structure of bighorn sheep ( Ovis canadensis ) in North American deserts.

    Science.gov (United States)

    Buchalski, Michael R; Sacks, Benjamin N; Gille, Daphne A; Penedo, Maria Cecilia T; Ernest, Holly B; Morrison, Scott A; Boyce, Walter M

    2016-06-09

    Fossil data are ambiguous regarding the evolutionary origin of contemporary desert bighorn sheep ( Ovis canadensis subspecies). To address this uncertainty, we conducted phylogeographic and population genetic analyses on bighorn sheep subspecies found in southwestern North America. We analyzed 515 base pairs of mtDNA control region sequence and 39 microsatellites in 804 individuals from 58 locations. Phylogenetic analyses revealed 2 highly divergent clades concordant with Sierra Nevada ( O. c. sierrae ) and Rocky Mountain ( O. c. canadensis ) bighorn and showed that these 2 subspecies both diverged from desert bighorn prior to or during the Illinoian glaciation (~315-94 thousand years ago [kya]). Desert bighorn comprised several more recently diverged haplogroups concordant with the putative Nelson ( O. c. nelsoni ), Mexican ( O. c. mexicana ), and Peninsular ( O. c. cremnobates ) subspecies. Corresponding estimates of effective splitting times (~17-3 kya), and haplogroup ages (~85-72 kya) placed the most likely timeframe for divergence among desert bighorn subspecies somewhere within the last glacial maximum. Median-joining haplotype network and Bayesian skyline analyses both indicated that desert bighorn collectively comprised a historically large and haplotype-diverse population, which subsequently lost much of its diversity through demographic decline. Using microsatellite data, discriminant analysis of principle components (DAPC) and Bayesian clustering analyses both indicated genetic structure concordant with the geographic distribution of 3 desert subspecies. Likewise, microsatellite and mitochondrial-based F ST comparisons revealed significant fixation indices among the desert bighorn genetic clusters. We conclude these desert subspecies represent ancient lineages likely descended from separate Pleistocene refugial populations and should therefore be managed as distinct taxa to preserve maximal biodiversity. Los datos de fósiles sobre el origen evolutivo

  20. Genetic diversity and population structure of Chinese natural bermudagrass [Cynodon dactylon (L.) Pers.] germplasm based on SRAP markers.

    Science.gov (United States)

    Zheng, Yiqi; Xu, Shaojun; Liu, Jing; Zhao, Yan; Liu, Jianxiu

    2017-01-01

    Bermudagrass [Cynodon dactylon (L.) Pers.], an important turfgrass used in public parks, home lawns, golf courses and sports fields, is widely distributed in China. In the present study, sequence-related amplified polymorphism (SRAP) markers were used to assess genetic diversity and population structure among 157 indigenous bermudagrass genotypes from 20 provinces in China. The application of 26 SRAP primer pairs produced 340 bands, of which 328 (96.58%) were polymorphic. The polymorphic information content (PIC) ranged from 0.36 to 0.49 with a mean of 0.44. Genetic distance coefficients among accessions ranged from 0.04 to 0.61, with an average of 0.32. The results of STRUCTURE analysis suggested that 157 bermudagrass accessions can be grouped into three subpopulations. Moreover, according to clustering based on the unweighted pair-group method of arithmetic averages (UPGMA), accessions were divided into three major clusters. The UPGMA dendrogram revealed that accessions from identical or adjacent areas were generally, but not entirely, clustered into the same cluster. Comparison of the UPGMA dendrogram and the Bayesian STRUCTURE analysis showed general agreement between the population subdivisions and the genetic relationships among accessions. Principal coordinate analysis (PCoA) with SRAP markers revealed a similar grouping of accessions to the UPGMA dendrogram and STRUCTUE analysis. Analysis of molecular variance (AMOVA) indicated that 18% of total molecular variance was attributed to diversity among subpopulations, while 82% of variance was associated with differences within subpopulations. Our study represents the most comprehensive investigation of the genetic diversity and population structure of bermudagrass in China to date, and provides valuable information for the germplasm collection, genetic improvement, and systematic utilization of bermudagrass.

  1. Genetic Diversity and Population Structure of Broomcorn Millet (Panicum miliaceum L.) Cultivars and Landraces in China Based on Microsatellite Markers

    Science.gov (United States)

    Liu, Minxuan; Xu, Yue; He, Jihong; Zhang, Shuang; Wang, Yinyue; Lu, Ping

    2016-01-01

    Broomcorn millet (Panicum miliaceum L.), one of the first domesticated crops, has been grown in Northern China for at least 10,000 years. The species is presently a minor crop, and evaluation of its genetic diversity has been very limited. In this study, we analyzed the genetic diversity of 88 accessions of broomcorn millet collected from various provinces of China. Amplification with 67 simple sequence repeat (SSR) primers revealed moderate levels of diversity in the investigated accessions. A total of 179 alleles were detected, with an average of 2.7 alleles per locus. Polymorphism information content and expected heterozygosity ranged from 0.043 to 0.729 (mean = 0.376) and 0.045 to 0.771 (mean = 0.445), respectively. Cluster analysis based on the unweighted pair group method of mathematical averages separated the 88 accessions into four groups at a genetic similarity level of 0.633. A genetic structure assay indicated a close correlation between geographical regions and genetic diversity. The uncovered information will be valuable for defining gene pools and developing breeding programs for broomcorn millet. Furthermore, the millet-specific SSR markers developed in this study should serve as useful tools for assessment of genetic diversity and elucidation of population structure in broomcorn millet. PMID:26985894

  2. Genetic structure and contrasting selection pattern at two major histocompatibility complex genes in wild house mouse populations

    Czech Academy of Sciences Publication Activity Database

    Čížková, Dagmar; Goüy de Bellocq, J.; Baird, S. J. E.; Piálek, Jaroslav; Bryja, Josef

    2011-01-01

    Roč. 106, č. 5 (2011), s. 727-740 ISSN 0018-067X R&D Projects: GA AV ČR IAA600930608; GA ČR GA206/08/0640 Institutional research plan: CEZ:AV0Z60930519 Keywords : MHC * house mouse * selection * population structure * trans-species polymorphism Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.597, year: 2011

  3. Population genetic structure and genetic diversity of Chinese pomfret at the coast of the East China Sea and the South China Sea.

    Science.gov (United States)

    Sun, Peng; Tang, Baojun; Yin, Fei

    2018-05-01

    The Chinese pomfret Pampus chinensis is one of the most economic and ecological important marine fish species in China. In the present study, the population genetic structure and genetic diversity of P. chinensis were evaluated from a total sample size of 180 individuals representing six populations from the East China Sea and the South China Sea using mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 24 variable sites (including 3 singleton sites and 21 parsimony information sites) were observed, and 18 haplotypes were defined. The haplotype diversity (Hd) of the populations ranged from 0.559 to 0.775, and the nucleotide diversity (π) ranged from 0.330 to 1.090%. Analysis of molecular variance (AMOVA) reveals that the main variation (66.02%) was among individuals within populations. The average pairwise differences and ϕ ST values indicated significant genetic differentiation between Dongxing population and the other populations. The results of the present study are helpful for the sustainable management and utilization of this species.

  4. The genetic structure of Turnip mosaic virus population reveals the rapid expansion of a new emergent lineage in China.

    Science.gov (United States)

    Li, Xiangdong; Zhu, Tiansheng; Yin, Xiao; Zhang, Chengling; Chen, Jia; Tian, Yanping; Liu, Jinliang

    2017-08-29

    Turnip mosaic virus (TuMV) is one of the most widespread and economically important virus infecting both crop and ornamental species of the family Brassicaceae. TuMV isolates can be classified to five phylogenetic lineages, basal-B, basal-BR, Asian-BR, world-B and Orchis. To understand the genetic structure of TuMV from radish in China, the 3'-terminal genome of 90 TuMV isolates were determined and analyzed with other available Chinese isolates. The results showed that the Chinese TuMV isolates from radish formed three groups: Asian-BR, basal-BR and world-B. More than half of these isolates (52.54%) were clustered to basal-BR group, and could be further divided into three sub-groups. The TuMV basal-BR isolates in the sub-groups I and II were genetically homologous with Japanese ones, while those in sub-group III formed a distinct lineage. Sub-populations of TuMV basal-BR II and III were new emergent and in a state of expansion. The Chinese TuMV radish populations were under negative selection. Gene flow between TuMV populations from Tai'an, Weifang and Changchun was frequent. The genetic structure of Turnip mosaic virus population reveals the rapid expansion of a new emergent lineage in China.

  5. Genetic variation, population structure and linkage disequilibrium in Switchgrass with ISSR, SCoT and EST-SSR markers.

    Science.gov (United States)

    Zhang, Yu; Yan, Haidong; Jiang, Xiaomei; Wang, Xiaoli; Huang, Linkai; Xu, Bin; Zhang, Xinquan; Zhang, Lexin

    2016-01-01

    To evaluate genetic variation, population structure, and the extent of linkage disequilibrium (LD), 134 switchgrass ( Panicum virgatum L.) samples were analyzed with 51 markers, including 16 ISSRs, 20 SCoTs, and 15 EST-SSRs. In this study, a high level of genetic variation was observed in the switchgrass samples and they had an average Nei's gene diversity index (H) of 0.311. A total of 793 bands were obtained, of which 708 (89.28 %) were polymorphic. Using a parameter marker index (MI), the efficiency of the three types of markers (ISSR, SCoT, and EST-SSR) in the study were compared and we found that SCoT had a higher marker efficiency than the other two markers. The 134 switchgrass samples could be divided into two sub-populations based on STRUCTURE, UPGMA clustering, and principal coordinate analyses (PCA), and upland and lowland ecotypes could be separated by UPGMA clustering and PCA analyses. Linkage disequilibrium analysis revealed an average r 2 of 0.035 across all 51 markers, indicating a trend of higher LD in sub-population 2 than that in sub-population 1 ( P  < 0.01). The population structure revealed in this study will guide the design of future association studies using these switchgrass samples.

  6. Inferring Population Genetic Structure in Widely and Continuously Distributed Carnivores: The Stone Marten (Martes foina) as a Case Study.

    Science.gov (United States)

    Vergara, María; Basto, Mafalda P; Madeira, María José; Gómez-Moliner, Benjamín J; Santos-Reis, Margarida; Fernandes, Carlos; Ruiz-González, Aritz

    2015-01-01

    The stone marten is a widely distributed mustelid in the Palaearctic region that exhibits variable habitat preferences in different parts of its range. The species is a Holocene immigrant from southwest Asia which, according to fossil remains, followed the expansion of the Neolithic farming cultures into Europe and possibly colonized the Iberian Peninsula during the Early Neolithic (ca. 7,000 years BP). However, the population genetic structure and historical biogeography of this generalist carnivore remains essentially unknown. In this study we have combined mitochondrial DNA (mtDNA) sequencing (621 bp) and microsatellite genotyping (23 polymorphic markers) to infer the population genetic structure of the stone marten within the Iberian Peninsula. The mtDNA data revealed low haplotype and nucleotide diversities and a lack of phylogeographic structure, most likely due to a recent colonization of the Iberian Peninsula by a few mtDNA lineages during the Early Neolithic. The microsatellite data set was analysed with a) spatial and non-spatial Bayesian individual-based clustering (IBC) approaches (STRUCTURE, TESS, BAPS and GENELAND), and b) multivariate methods [discriminant analysis of principal components (DAPC) and spatial principal component analysis (sPCA)]. Additionally, because isolation by distance (IBD) is a common spatial genetic pattern in mobile and continuously distributed species and it may represent a challenge to the performance of the above methods, the microsatellite data set was tested for its presence. Overall, the genetic structure of the stone marten in the Iberian Peninsula was characterized by a NE-SW spatial pattern of IBD, and this may explain the observed disagreement between clustering solutions obtained by the different IBC methods. However, there was significant indication for contemporary genetic structuring, albeit weak, into at least three different subpopulations. The detected subdivision could be attributed to the influence of the

  7. Inferring Population Genetic Structure in Widely and Continuously Distributed Carnivores: The Stone Marten (Martes foina as a Case Study.

    Directory of Open Access Journals (Sweden)

    María Vergara

    Full Text Available The stone marten is a widely distributed mustelid in the Palaearctic region that exhibits variable habitat preferences in different parts of its range. The species is a Holocene immigrant from southwest Asia which, according to fossil remains, followed the expansion of the Neolithic farming cultures into Europe and possibly colonized the Iberian Peninsula during the Early Neolithic (ca. 7,000 years BP. However, the population genetic structure and historical biogeography of this generalist carnivore remains essentially unknown. In this study we have combined mitochondrial DNA (mtDNA sequencing (621 bp and microsatellite genotyping (23 polymorphic markers to infer the population genetic structure of the stone marten within the Iberian Peninsula. The mtDNA data revealed low haplotype and nucleotide diversities and a lack of phylogeographic structure, most likely due to a recent colonization of the Iberian Peninsula by a few mtDNA lineages during the Early Neolithic. The microsatellite data set was analysed with a spatial and non-spatial Bayesian individual-based clustering (IBC approaches (STRUCTURE, TESS, BAPS and GENELAND, and b multivariate methods [discriminant analysis of principal components (DAPC and spatial principal component analysis (sPCA]. Additionally, because isolation by distance (IBD is a common spatial genetic pattern in mobile and continuously distributed species and it may represent a challenge to the performance of the above methods, the microsatellite data set was tested for its presence. Overall, the genetic structure of the stone marten in the Iberian Peninsula was characterized by a NE-SW spatial pattern of IBD, and this may explain the observed disagreement between clustering solutions obtained by the different IBC methods. However, there was significant indication for contemporary genetic structuring, albeit weak, into at least three different subpopulations. The detected subdivision could be attributed to the influence

  8. Conservation genetics of managed ungulate populations

    Science.gov (United States)

    Scribner, Kim T.

    1993-01-01

    Natural populations of many species are increasingly impacted by human activities. Perturbations are particularly pronunced for large ungulates due in part to sport and commercial harvest, to reductions and fragmentation of native habitat, and as the result of reintroductions. These perturbations affect population size, sex and age composition, and population breeding structure, and as a consequence affect the levels and partitioning of genetic variation. Three case histories highlighting long-term ecological genetic research on mule deer Odocoileus hemionus (Rafinesque, 1817), white-tailed deer O. virginianus (Zimmermann, 1780), and Alpine ibex Capra i. ibex Linnaeus, 1758 are presented. Joint examinations of population ecological and genetic data from several populations of each species reveal: (1) that populations are not in genetic equilibrium, but that allele frequencies and heterozygosity change dramatically over time and among cohorts produced in successive years, (2) populations are genetically structured over short and large geographic distances reflecting local breeding structure and patterns of gene flow, respectively; however, this structure is quite dynamic over time, due in part to population exploitation, and (3) restocking programs are often undertaken with small numbers of founding individuals resulting in dramatic declines in levels of genetic variability and increasing levels of genetic differentiation among populations due to genetic drift. Genetic characteristics have and will continue to provide valuable indirect sources of information relating enviromental and human perturbations to changes in population processes.

  9. Genetic diversity and a population structure analysis of accessions in the Chinese cowpea [Vigna unguiculata (L. Walp.] germplasm collection

    Directory of Open Access Journals (Sweden)

    Honglin Chen

    2017-10-01

    Full Text Available Cowpea (Vigna unguiculata is an important legume crop with diverse uses. The species is presently a minor crop, and evaluation of its genetic diversity has been very limited. In this study, a total of 200 genic and 100 genomic simple sequence repeat (SSR markers were developed from cowpea unigene and genome sequences, respectively. Among them, 27 genic and 27 genomic SSR markers were polymorphic and were used for assessment of genetic diversity and population structure in 105 selected cowpea accessions. A total of 155 alleles and 2.9 alleles per marker were identified, and the average polymorphic information content (PIC value was 0.3615. The average PIC of genomic SSRs (0.3996 was higher than that of genic SSRs (0.3235, and most of the polymorphic genomic SSRs were composed of di- and trinucleotide repeats (51.9% and 37.0% of all loci, respectively. The low level of detected genetic diversity may be attributed to a severe genetic bottleneck that occurred during the cowpea domestication process. The accessions were classified by structure and cluster analysis into four subgroups that correlated well with their geographic origins or collection sites. The classification results were also consistent with the results from principal coordinate analysis and can be used as a guide during future germplasm collection and selection of accessions as breeding materials for cultivar improvement. The newly developed genic and genomic SSR markers described in this study will be valuable genomic resources for the assessment of genetic diversity, population structure, evaluation of germplasm accessions, construction of genetic maps, identification of genes of interest, and application of marker-assisted selection in cowpea breeding programs.

  10. STR-based genetic structure of the Berber population of Bejaia (Northern Algeria) and its relationships to various ethnic groups.

    Science.gov (United States)

    Amir, Nadir; Sahnoune, Mohamed; Chikhi, Lounes; Atmani, Djebbar

    2015-12-10

    Patterns of genetic variation in human populations have been described for decades. However, North Africa has received little attention and Algeria, in particular, is poorly studied, Here we genotyped a Berber-speaking population from Algeria using 15 short tandem repeat (STR) loci D8S1179, D21S11, D7S820, CSF1PO, D3S1358, TH01, D13S317, D16S539, D2S1338, D19S433, vWA, TPOX, D18S51, D5S818 and FGA from the commercially available AmpF/STR Identifiler kit. Altogether 150 unrelated North Algerian individuals were sampled across 10 administrative regions or towns from the Bejaia Wilaya (administrative district). We found that all of the STR loci met Hardy-Weinberg equilibrium expectations, after Bonferroni correction and that the Berber-speaking population of Bejaia presented a high level of observed heterozygosity for the 15 STR system (>0.7). Genetic parameters of forensic interest such as combined power of discrimination (PD) and combined probability of exclusion (PE) showed values higher than 0.999, suggesting that this set of STRs can be used for forensic studies. Our results were also compared to those published for 42 other human populations analyzed with the same set. We found that the Bejaia sample clustered with several North African populations but that some geographically close populations, including the Berber-speaking Mozabite from Algeria were closer to Near-Eastern populations. While we were able to detect some genetic structure among samples, we found that it was not correlated to language (Berber-speaking versus Arab-speaking) or to geography (east versus west). In other words, no significant genetic differences were found between the Berber-speaking and the Arab-speaking populations of North Africa. The genetic closeness of European, North African and Near-Eastern populations suggest that North Africa should be integrated in models aiming at reconstructing the demographic history of Europe. Similarly, the genetic proximity with sub-Saharan Africa is

  11. Genetic diversity and population structure in cultivated sunflower and a comparison to its wild progenitor, Helianthus annuus L.

    Science.gov (United States)

    Mandel, J R; Dechaine, J M; Marek, L F; Burke, J M

    2011-09-01

    Crop germplasm collections are valuable resources for ongoing plant breeding efforts. To fully utilize such collections, however, researchers need detailed information about the amount and distribution of genetic diversity present within collections. Here, we report the results of a population genetic analysis of the primary gene pool of sunflower (Helianthus annuus L.) based on a broad sampling of 433 cultivated accessions from North America and Europe, as well as a range-wide collection of 24 wild sunflower populations. Gene diversity across the cultivars was 0.47, as compared with 0.70 in the wilds, indicating that cultivated sunflower harbors roughly two-thirds of the total genetic diversity present in wild sunflower. Population structure analyses revealed that wild sunflower can be subdivided into four genetically distinct population clusters throughout its North American range, whereas the cultivated sunflower gene pool could be split into two main clusters separating restorer lines from the balance of the gene pool. Use of a maximum likelihood method to estimate the contribution of the wild gene pool to the cultivated sunflower germplasm revealed that the bulk of the cultivar diversity is derived from two wild sunflower population genetic clusters that are primarily composed of individuals from the east-central United States, the same general region in which sunflower domestication is believed to have occurred. We also identified a nested subset of accessions that capture as much of the allelic diversity present within the sampled cultivated sunflower germplasm collection as possible. At the high end, a core set of 288 captured nearly 90% of the alleles present in the full set of 433, whereas a core set of just 12 accessions was sufficient to capture nearly 50% of the total allelic diversity present within this sample of cultivated sunflower.

  12. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties.

    Directory of Open Access Journals (Sweden)

    Nivedita Singh

    Full Text Available Simple sequence repeat (SSR and Single Nucleotide Polymorphic (SNP, the two most robust markers for identifying rice varieties were compared for assessment of genetic diversity and population structure. Total 375 varieties of rice from various regions of India archived at the Indian National GeneBank, NBPGR, New Delhi, were analyzed using thirty six genetic markers, each of hypervariable SSR (HvSSR and SNP which were distributed across 12 rice chromosomes. A total of 80 alleles were amplified with the SSR markers with an average of 2.22 alleles per locus whereas, 72 alleles were amplified with SNP markers. Polymorphic information content (PIC values for HvSSR ranged from 0.04 to 0.5 with an average of 0.25. In the case of SNP markers, PIC values ranged from 0.03 to 0.37 with an average of 0.23. Genetic relatedness among the varieties was studied; utilizing an unrooted tree all the genotypes were grouped into three major clusters with both SSR and SNP markers. Analysis of molecular variance (AMOVA indicated that maximum diversity was partitioned between and within individual level but not between populations. Principal coordinate analysis (PCoA with SSR markers showed that genotypes were uniformly distributed across the two axes with 13.33% of cumulative variation whereas, in case of SNP markers varieties were grouped into three broad groups across two axes with 45.20% of cumulative variation. Population structure were tested using K values from 1 to 20, but there was no clear population structure, therefore Ln(PD derived Δk was plotted against the K to determine the number of populations. In case of SSR maximum Δk was at K=5 whereas, in case of SNP maximum Δk was found at K=15, suggesting that resolution of population was higher with SNP markers, but SSR were more efficient for diversity analysis.

  13. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties.

    Science.gov (United States)

    Singh, Nivedita; Choudhury, Debjani Roy; Singh, Amit Kumar; Kumar, Sundeep; Srinivasan, Kalyani; Tyagi, R K; Singh, N K; Singh, Rakesh

    2013-01-01

    Simple sequence repeat (SSR) and Single Nucleotide Polymorphic (SNP), the two most robust markers for identifying rice varieties were compared for assessment of genetic diversity and population structure. Total 375 varieties of rice from various regions of India archived at the Indian National GeneBank, NBPGR, New Delhi, were analyzed using thirty six genetic markers, each of hypervariable SSR (HvSSR) and SNP which were distributed across 12 rice chromosomes. A total of 80 alleles were amplified with the SSR markers with an average of 2.22 alleles per locus whereas, 72 alleles were amplified with SNP markers. Polymorphic information content (PIC) values for HvSSR ranged from 0.04 to 0.5 with an average of 0.25. In the case of SNP markers, PIC values ranged from 0.03 to 0.37 with an average of 0.23. Genetic relatedness among the varieties was studied; utilizing an unrooted tree all the genotypes were grouped into three major clusters with both SSR and SNP markers. Analysis of molecular variance (AMOVA) indicated that maximum diversity was partitioned between and within individual level but not between populations. Principal coordinate analysis (PCoA) with SSR markers showed that genotypes were uniformly distributed across the two axes with 13.33% of cumulative variation whereas, in case of SNP markers varieties were grouped into three broad groups across two axes with 45.20% of cumulative variation. Population structure were tested using K values from 1 to 20, but there was no clear population structure, therefore Ln(PD) derived Δk was plotted against the K to determine the number of populations. In case of SSR maximum Δk was at K=5 whereas, in case of SNP maximum Δk was found at K=15, suggesting that resolution of population was higher with SNP markers, but SSR were more efficient for diversity analysis.

  14. Genetic diversity and population structure assessed by SSR and SNP markers in a large germplasm collection of grape

    Science.gov (United States)

    2013-01-01

    Background The economic importance of grapevine has driven significant efforts in genomics to accelerate the exploitation of Vitis resources for development of new cultivars. However, although a large number of clonally propagated accessions are maintained in grape germplasm collections worldwide, their use for crop improvement is limited by the scarcity of information on genetic diversity, population structure and proper phenotypic assessment. The identification of representative and manageable subset of accessions would facilitate access to the diversity available in large collections. A genome-wide germplasm characterization using molecular markers can offer reliable tools for adjusting the quality and representativeness of such core samples. Results We investigated patterns of molecular diversity at 22 common microsatellite loci and 384 single nucleotide polymorphisms (SNPs) in 2273 accessions of domesticated grapevine V. vinifera ssp. sativa, its wild relative V. vinifera ssp. sylvestris, interspecific hybrid cultivars and rootstocks. Despite the large number of putative duplicates and extensive clonal relationships among the accessions, we observed high level of genetic variation. In the total germplasm collection the average genetic diversity, as quantified by the expected heterozygosity, was higher for SSR loci (0.81) than for SNPs (0.34). The analysis of the genetic structure in the grape germplasm collection revealed several levels of stratification. The primary division was between accessions of V. vinifera and non-vinifera, followed by the distinction between wild and domesticated grapevine. Intra-specific subgroups were detected within cultivated grapevine representing different eco-geographic groups. The comparison of a phenological core collection and genetic core collections showed that the latter retained more genetic diversity, while maintaining a similar phenotypic variability. Conclusions The comprehensive molecular characterization of our grape

  15. Genetic structure of populations of Drosophila melanogaster natives from Laguna Verde, Veracruz

    International Nuclear Information System (INIS)

    Salceda, V.M.

    2005-01-01

    The genetic variability hidden present in natural populations of Drosophila melanogaster, it has been broadly analyzed, and it is a tool that allows to detect differences among the different populations of this species, so much of natural nature as experimental. In this occasion we use it to see if differences exist in two neighboring populations inside the Laguna Verde nuclear power plant, Veracruz, and this way to suggest, of having differences in the mount of the relative frequencies of lethal genes, semi lethals and normal, be due to the radioactive emanations product of the reactors operation of the plant. Its were took samples of flies in both towns during three successive seasons and they were transported to the laboratory of the ININ where they were carried out the tests to determine the frequency of the different types of genes. This was made by means of the denominated technique C y L / Pm that allows by means of a cross series with a stump marker to obtain, in the third generation, in isolated form the different types of genes and this way to calculate their relative frequencies. The study understands the analysis of 299 chromosomes extracted from the populations, of those that 95 correspond at the control population and 204 to the experimental one. As a result of the analysis we find that 30.52 percent of the genes of the population witness contains detrimental genes (sum of the lethal plus the semi lethal genes) as long as in the experimental population this value corresponds to 23.03 percent. In accordance with this information was not significant difference among the studied populations. A similar analysis, but now comparing the seasons, (summer against winter), it showed significant difference to 5% with regard to the lethal genes frequency only in the population witness. These results indicate the absence of damage, however it is necessary to consider that this can be due to that indeed there is not him or that the investigation protocol is not

  16. Population genetic structure of Taenia solium from Madagascar and Mexico: implications for clinical profile diversity and immunological technology.

    Science.gov (United States)

    Vega, Rodrigo; Piñero, Daniel; Ramanankandrasana, Bienvenue; Dumas, Michel; Bouteille, Bernard; Fleury, Agnes; Sciutto, Edda; Larralde, Carlos; Fragoso, Gladis

    2003-11-01

    Taenia solium is a cestode parasitic of humans and pigs that strongly impacts on public health in developing countries. Its larvae (cysticercus) lodge in the brain, causing neurocysticercosis, and in other tissues, like skeletal muscle and subcutaneous space, causing extraneuronal cysticercosis. Prevalences of these two clinical manifestations vary greatly among continents. Also, neurocysticercosis may be clinically heterogeneous, ranging from asymptomatic forms to severely incapacitating and even fatal presentation. Further, vaccine design and diagnosis technology have met with difficulties in sensitivity, specificity and reproducibility. Parasite diversity underlying clinical heterogeneity and technological difficulties is little explored. Here, T. solium genetic population structure and diversity was studied by way of random amplified polymorphic DNA in individual cysticerci collected from pigs in Madagascar and two regions in Mexico. The amplification profiles of T. solium were also compared with those of the murine cysticercus Taenia crassiceps (ORF strain). We show significant genetic differentiation between Madagascar and Mexico and between regions in Mexico, but less so between cysticerci from different localities in Mexico and none between cysticerci from different tissues from the same pig. We also found restricted genetic variability within populations and gene flow was estimated to be low between populations. Thus, genetic differentiation of T. solium suggests that different evolutionary paths have been taken and provides support for its involvement in the differential tissue distribution of cysticerci and varying degrees of severity of the disease. It may also explain difficulties in the development of vaccines and tools for immunodiagnosis.

  17. Higher fine-scale genetic structure in peripheral than in core populations of a long-lived and mixed-mating conifer - eastern white cedar (Thuja occidentalis L.)

    Science.gov (United States)

    2012-01-01

    Background Fine-scale or spatial genetic structure (SGS) is one of the key genetic characteristics of plant populations. Several evolutionary and ecological processes and population characteristics influence the level of SGS within plant populations. Higher fine-scale genetic structure may be expected in peripheral than core populations of long-lived forest trees, owing to the differences in the magnitude of operating evolutionary and ecological forces such as gene flow, genetic drift, effective population size and founder effects. We addressed this question using eastern white cedar (Thuja occidentalis) as a model species for declining to endangered long-lived tree species with mixed-mating system. Results We determined the SGS in two core and two peripheral populations of eastern white cedar from its Maritime Canadian eastern range using six nuclear microsatellite DNA markers. Significant SGS ranging from 15 m to 75 m distance classes was observed in the four studied populations. An analysis of combined four populations revealed significant positive SGS up to the 45 m distance class. The mean positive significant SGS observed in the peripheral populations was up to six times (up to 90 m) of that observed in the core populations (15 m). Spatial autocorrelation coefficients and correlograms of single and sub-sets of populations were statistically significant. The extent of within-population SGS was significantly negatively correlated with all genetic diversity parameters. Significant heterogeneity of within-population SGS was observed for 0-15 m and 61-90 m between core and peripheral populations. Average Sp, and gene flow distances were higher in peripheral (Sp = 0.023, σg = 135 m) than in core (Sp = 0.014, σg = 109 m) populations. However, the mean neighborhood size was higher in the core (Nb = 82) than in the peripheral (Nb = 48) populations. Conclusion Eastern white cedar populations have significant fine-scale genetic structure at short distances. Peripheral

  18. Higher fine-scale genetic structure in peripheral than in core populations of a long-lived and mixed-mating conifer - eastern white cedar (Thuja occidentalis L.

    Directory of Open Access Journals (Sweden)

    Pandey Madhav

    2012-04-01

    Full Text Available Abstract Background Fine-scale or spatial genetic structure (SGS is one of the key genetic characteristics of plant populations. Several evolutionary and ecological processes and population characteristics influence the level of SGS within plant populations. Higher fine-scale genetic structure may be expected in peripheral than core populations of long-lived forest trees, owing to the differences in the magnitude of operating evolutionary and ecological forces such as gene flow, genetic drift, effective population size and founder effects. We addressed this question using eastern white cedar (Thuja occidentalis as a model species for declining to endangered long-lived tree species with mixed-mating system. Results We determined the SGS in two core and two peripheral populations of eastern white cedar from its Maritime Canadian eastern range using six nuclear microsatellite DNA markers. Significant SGS ranging from 15 m to 75 m distance classes was observed in the four studied populations. An analysis of combined four populations revealed significant positive SGS up to the 45 m distance class. The mean positive significant SGS observed in the peripheral populations was up to six times (up to 90 m of that observed in the core populations (15 m. Spatial autocorrelation coefficients and correlograms of single and sub-sets of populations were statistically significant. The extent of within-population SGS was significantly negatively correlated with all genetic diversity parameters. Significant heterogeneity of within-population SGS was observed for 0-15 m and 61-90 m between core and peripheral populations. Average Sp, and gene flow distances were higher in peripheral (Sp = 0.023, σg = 135 m than in core (Sp = 0.014, σg = 109 m populations. However, the mean neighborhood size was higher in the core (Nb = 82 than in the peripheral (Nb = 48 populations. Conclusion Eastern white cedar populations have significant fine-scale genetic structure at short

  19. Recent divergence, intercontinental dispersal and shared polymorphism are shaping the genetic structure of amphi-Atlantic peatmoss populations.

    Science.gov (United States)

    Szövényi, P; Terracciano, S; Ricca, M; Giordano, S; Shaw, A J

    2008-12-01

    Several lines of evidence suggest that recent long-distance dispersal may have been important in the evolution of intercontinental distribution ranges of bryophytes. However, the absolute rate of intercontinental migration and its relative role in the development of certain distribution ranges is still poorly understood. To this end, the genetic structure of intercontinental populations of six peatmoss species showing an amphi-Atlantic distribution was investigated using microsatellite markers. Methods relying on the coalescent were applied (IM and MIGRATE) to understand the evolution of this distribution pattern in peatmosses. Intercontinental populations of the six peatmoss species were weakly albeit significantly differentiated (average F(ST) = 0.104). This suggests that the North Atlantic Ocean is acting as a barrier to gene flow even in bryophytes adapted to long-range dispersal. The im analysis suggested a relatively recent split of intercontinental populations dating back to the last two glacial periods (9000-289,000 years ago). In contrast to previous hypotheses, analyses indicated that both ongoing migration and ancestral polymorphism are important in explaining the intercontinental genetic similarity of peatmoss populations, but their relative contribution varies with species. Migration rates were significantly asymmetric towards America suggesting differential extinction of genotypes on the two continents or invasion of the American continent by European lineages. These results indicate that low genetic divergence of amphi-Atlantic populations is a general pattern across numerous flowering plants and bryophytes. However, in bryophytes, ongoing intercontinental gene flow and retained shared ancestral polymorphism must both be considered to explain the genetic similarity of intercontinental populations.

  20. Genetic diversity and population structure of the New World screwworm fly from the Amazon region of Brazil.

    Science.gov (United States)

    Mastrangelo, Thiago; Fresia, Pablo; Lyra, Mariana L; Rodrigues, Rosangela A; Azeredo-Espin, Ana Maria L

    2014-10-01

    Cochliomyia hominivorax (Coquerel) is a myiasis fly that causes economic losses to livestock farmers in warmer American regions. Previous studies of this pest had found population structure at north and south of the Amazon Basin, which was considered to be a barrier to dispersal. The present study analyzed three mitochondrial DNA (mtDNA) markers and eight nuclear microsatellite loci to investigate for the first time the genetic diversity and population structure across the Brazilian Amazon region (Amazonia). Both mtDNA and microsatellite data supported the existence of much diversity and significant population structure among nine regional populations of C. hominivorax, which was found to be surprisingly common in Amazonia. Forty-six mtDNA haplotypes were identified, of which 39 were novel and seven had previously been found only at south of Amazonia. Seventy microsatellite alleles were identified by size, moderate to high values of heterozygosity were discovered in all regions, and a Bayesian clustering analysis identified four genetic groups that were not geographically distributed. Reproductive compatibility was also investigated by laboratory crossing, but no evidence of hybrid dysgenesis was found between an Amazonian colony and one each of from Northeast and Southeast Brazil. The results have important implications for area-wide control by the Sterile Insect Technique. Copyright © 2014 International Atomic Energy Agency 2014. Published by Elsevier B.V. All rights reserved.

  1. Genetic Diversity and Population Structure in Aromatic and Quality Rice (Oryza sativa L. Landraces from North-Eastern India.

    Directory of Open Access Journals (Sweden)

    Somnath Roy

    Full Text Available The North-eastern (NE India, comprising of Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim and Tripura, possess diverse array of locally adapted non-Basmati aromatic germplasm. The germplasm collections from this region could serve as valuable resources in breeding for abiotic stress tolerance, grain yield and cooking/eating quality. To utilize such collections, however, breeders need information about the extent and distribution of genetic diversity present within collections. In this study, we report the result of population genetic analysis of 107 aromatic and quality rice accessions collected from different parts of NE India, as well as classified these accessions in the context of a set of structured global rice cultivars. A total of 322 alleles were amplified by 40 simple sequence repeat (SSR markers with an average of 8.03 alleles per locus. Average gene diversity was 0.67. Population structure analysis revealed that NE Indian aromatic rice can be subdivided into three genetically distinct population clusters: P1, joha rice accessions from Assam, tai rices from Mizoram and those from Sikkim; P2, aromatic rice accessions from Nagaland; and P3, chakhao rice germplasm from Manipur [corrected]. Pair-wise FST between three groups varied from 0.223 (P1 vs P2 to 0.453 (P2 vs P3. With reference to the global classification of rice cultivars, two major groups (Indica and Japonica were identified in NE Indian germplasm. The aromatic accessions from Assam, Manipur and Sikkim were assigned to the Indica group, while the accessions from Nagaland exhibited close association with Japonica. The tai accessions of Mizoram along with few chakhao accessions collected from the hill districts of Manipur were identified as admixed. The results highlight the importance of regional genetic studies for understanding diversification of aromatic rice in India. The data also suggest that there is scope for exploiting the genetic diversity of

  2. Genetic Diversity and Population Structure in Aromatic and Quality Rice (Oryza sativa L.) Landraces from North-Eastern India.

    Science.gov (United States)

    Roy, Somnath; Banerjee, Amrita; Mawkhlieng, Bandapkuper; Misra, A K; Pattanayak, A; Harish, G D; Singh, S K; Ngachan, S V; Bansal, K C

    2015-01-01

    The North-eastern (NE) India, comprising of Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, Nagaland, Sikkim and Tripura, possess diverse array of locally adapted non-Basmati aromatic germplasm. The germplasm collections from this region could serve as valuable resources in breeding for abiotic stress tolerance, grain yield and cooking/eating quality. To utilize such collections, however, breeders need information about the extent and distribution of genetic diversity present within collections. In this study, we report the result of population genetic analysis of 107 aromatic and quality rice accessions collected from different parts of NE India, as well as classified these accessions in the context of a set of structured global rice cultivars. A total of 322 alleles were amplified by 40 simple sequence repeat (SSR) markers with an average of 8.03 alleles per locus. Average gene diversity was 0.67. Population structure analysis revealed that NE Indian aromatic rice can be subdivided into three genetically distinct population clusters: P1, joha rice accessions from Assam, tai rices from Mizoram and those from Sikkim; P2, aromatic rice accessions from Nagaland; and P3, chakhao rice germplasm from Manipur [corrected]. Pair-wise FST between three groups varied from 0.223 (P1 vs P2) to 0.453 (P2 vs P3). With reference to the global classification of rice cultivars, two major groups (Indica and Japonica) were identified in NE Indian germplasm. The aromatic accessions from Assam, Manipur and Sikkim were assigned to the Indica group, while the accessions from Nagaland exhibited close association with Japonica. The tai accessions of Mizoram along with few chakhao accessions collected from the hill districts of Manipur were identified as admixed. The results highlight the importance of regional genetic studies for understanding diversification of aromatic rice in India. The data also suggest that there is scope for exploiting the genetic diversity of aromatic and

  3. Piloting a Non-Invasive Genetic Sampling Method for Evaluating Population-Level Benefits of Wildlife Crossing Structures

    Directory of Open Access Journals (Sweden)

    Anthony P. Clevenger

    2010-03-01

    Full Text Available Intuitively, wildlife crossing structures should enhance the viability of wildlife populations. Previous research has demonstrated that a broad range of species will use crossing structures, however, questions remain as to whether these measures actually provide benefits to populations. To assess this, studies will need to determine the number of individuals using crossings, their sex, and their genetic relationships. Obtaining empirical data demonstrating population-level benefits for some species can be problematic and challenging at best. Molecular techniques now make it possible to identify species, individuals, their sex, and their genetic relatedness from hair samples collected through non-invasive genetic sampling (NGS. We describe efforts to pilot a method to assess potential population-level benefits of wildlife crossing structures. We tested the feasibility of a prototype NGS system designed to sample hair from black bears (Ursus americanus and grizzly bears (U. arctos at two wildlife underpasses. The piloted hair-sampling method did not deter animal use of the trial underpasses and was effective at sampling hair from more than 90% of the bear crossing events at the underpasses. Hair samples were also obtained from non-target carnivore species, including three out of five (60% cougar (Puma concolor crossing events. Individual identification analysis revealed that three female and two male grizzly bears used one wildlife underpass, whereas two female and three male black bears were identified as using the other underpass. Of the 36 hair samples from bears analyzed, five failed, resulting in an 87% extraction success rate, and six more were only identified to species. Overall, 70% of the hair samples from bears collected in the field had sufficient DNA for extraction purposes. Preliminary data from our NGS suggest the technique can be a reliable method to assess the population-level benefits of Banff wildlife crossings. Furthermore, NGS

  4. Population Genetics of the São Tomé Caecilian (Gymnophiona: Dermophiidae: Schistometopum thomense) Reveals Strong Geographic Structuring

    Science.gov (United States)

    Stoelting, Ricka E.; Measey, G. John; Drewes, Robert C.

    2014-01-01

    Islands provide exciting opportunities for exploring ecological and evolutionary mechanisms. The oceanic island of São Tomé in the Gulf of Guinea exhibits high diversity of fauna including the endemic caecilian amphibian, Schistometopum thomense. Variation in pigmentation, morphology and size of this taxon over its c. 45 km island range is extreme, motivating a number of taxonomic, ecological, and evolutionary hypotheses to explain the observed diversity. We conducted a population genetic study of S. thomense using partial sequences of two mitochondrial DNA genes (ND4 and 16S), together with morphological examination, to address competing hypotheses of taxonomic or clinal variation. Using Bayesian phylogenetic analysis and Spatial Analysis of Molecular Variance, we found evidence of four geographic clades, whose range and approximated age (c. 253 Kya – 27 Kya) are consistent with the spread and age of recent volcanic flows. These clades explained 90% of variation in ND4 (φCT = 0.892), and diverged by 4.3% minimum pairwise distance at the deepest node. Most notably, using Mismatch Distributions and Mantel Tests, we identified a zone of population admixture that dissected the island. In the northern clade, we found evidence of recent population expansion (Fu's Fs = −13.08 and Tajima's D = −1.80) and limited dispersal (Mantel correlation coefficient = 0.36, p = 0.01). Color assignment to clades was not absolute. Paired with multinomial regression of chromatic data, our analyses suggested that the genetic groups and a latitudinal gradient together describe variation in color of S. thomense. We propose that volcanism and limited dispersal ability are the likely proximal causes of the observed genetic structure. This is the first population genetic study of any caecilian and demonstrates that these animals have deep genetic divisions over very small areas in accordance with previous speculations of low dispersal abilities. PMID:25171066

  5. Genetic structure analysis of a highly inbred captive population of the African antelope Addax nasomaculatus. Conservation and management implications.

    Science.gov (United States)

    Armstrong, E; Leizagoyen, C; Martínez, A M; González, S; Delgado, J V; Postiglioni, A

    2011-01-01

    The African antelope Addax nasomaculatus is a rare mammal at high risk of extinction, with no more than 300 individuals in the wild and 1,700 captive animals distributed in zoos around the world. In this work, we combine genetic data and genealogical information to assess the structure and genetic diversity of a captive population located at Parque Lecocq Zoo (N=27), originated from only two founders. We amplified 39 microsatellites previously described in other Artiodactyls but new to this species. Seventeen markers were polymorphic, with 2-4 alleles per locus (mean=2.71). Mean expected heterozygosity (He) per locus was between 0.050 (marker ETH3) and 0.650 (marker D5S2), with a global He of 0.43. The mean inbreeding coefficient of the population computed from pedigree records of all registered individuals (N=53) was 0.222. The mean coancestry of the population was 0.298 and F(IS) index was -0.108. These results reflect the importance of an adequate breeding management on a severely bottlenecked captive population, which would benefit by the incorporation of unrelated individuals. Thanks to the successful amplification of a large number of microsatellites commonly used in domestic bovids, this study will provide useful information for the management of this population and serve as future reference for similar studies in other captive populations of this species. © 2010 Wiley-Liss, Inc.

  6. Global Population Structure of a Worldwide Pest and Virus Vector: Genetic Diversity and Population History of the Bemisia tabaci Sibling Species Group

    Science.gov (United States)

    2016-01-01

    The whitefly Bemisia tabaci sibling species (sibsp.) group comprises morphologically indiscernible lineages of well-known exemplars referred to as biotypes. It is distributed throughout tropical and subtropical latitudes and includes the contemporary invasive haplotypes, termed B and Q. Several well-studied B. tabaci biotypes exhibit ecological and biological diversity, however, most members are poorly studied or completely uncharacterized. Genetic studies have revealed substantial diversity within the group based on a fragment of the mitochondrial cytochrome oxidase I (mtCOI) sequence (haplotypes), with other tested markers being less useful for deep phylogenetic comparisons. The view of global relationships within the B. tabaci sibsp. group is largely derived from this single marker, making assessment of gene flow and genetic structure difficult at the population level. Here, the population structure was explored for B. tabaci in a global context using nuclear data from variable microsatellite markers. Worldwide collections were examined representing most of the available diversity, including known monophagous, polyphagous, invasive, and indigenous haplotypes. Well-characterized biotypes and other related geographic lineages discovered represented highly differentiated genetic clusters with little or no evidence of gene flow. The invasive B and Q biotypes exhibited moderate to high levels of genetic diversity, suggesting that they stemmed from large founding populations that have maintained ancestral variation, despite homogenizing effects, possibly due to human-mediated among-population gene flow. Results of the microsatellite analyses are in general agreement with published mtCOI phylogenies; however, notable conflicts exist between the nuclear and mitochondrial relationships, highlighting the need for a multifaceted approach to delineate the evolutionary history of the group. This study supports the hypothesis that the extant B. tabaci sibsp. group contains

  7. Genetic Diversity and Population Structure of the Critically Endangered Yangtze Finless Porpoise (Neophocaena asiaeorientalis asiaeorientalis as Revealed by Mitochondrial and Microsatellite DNA

    Directory of Open Access Journals (Sweden)

    Minmin Chen

    2014-06-01

    Full Text Available Ecological surveys have indicated that the population of the critically endangered Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis is becoming increasingly small and fragmented, and will be at high risk of extinction in the near future. Genetic conservation of this population will be an important component of the long-term conservation effort. We used a 597 base pair mitochondrial DNA (mtDNA control region and 11 microsatellite loci to analyze the genetic diversity and population structure of the YFP. The analysis of both mtDNA and microsatellite loci suggested that the genetic diversity of the YFP will possibly decrease in the future if the population keeps declining at a rapid rate, even though these two types of markers revealed different levels of genetic diversity. In addition, mtDNA revealed strong genetic differentiation between one local population, Xingchang–Shishou (XCSS, and the other five downstream local populations; furthermore, microsatellite DNA unveiled fine but significant genetic differentiation between three of the local populations (not only XCSS but also Poyang Lake (PY and Tongling (TL and the other local populations. With an increasing number of distribution gaps appearing in the Yangtze main steam, the genetic differentiation of local populations will likely intensify in the future. The YFP is becoming a genetically fragmented population. Therefore, we recommend attention should be paid to the genetic conservation of the YFP.

  8. Genetic Diversity and Population Structure of the Critically Endangered Yangtze Finless Porpoise (Neophocaena asiaeorientalis asiaeorientalis) as Revealed by Mitochondrial and Microsatellite DNA

    Science.gov (United States)

    Chen, Minmin; Zheng, Jinsong; Wu, Min; Ruan, Rui; Zhao, Qingzhong; Wang, Ding

    2014-01-01

    Ecological surveys have indicated that the population of the critically endangered Yangtze finless porpoise (YFP, Neophocaena asiaeorientalis asiaeorientalis) is becoming increasingly small and fragmented, and will be at high risk of extinction in the near future. Genetic conservation of this population will be an important component of the long-term conservation effort. We used a 597 base pair mitochondrial DNA (mtDNA) control region and 11 microsatellite loci to analyze the genetic diversity and population structure of the YFP. The analysis of both mtDNA and microsatellite loci suggested that the genetic diversity of the YFP will possibly decrease in the future if the population keeps declining at a rapid rate, even though these two types of markers revealed different levels of genetic diversity. In addition, mtDNA revealed strong genetic differentiation between one local population, Xingchang–Shishou (XCSS), and the other five downstream local populations; furthermore, microsatellite DNA unveiled fine but significant genetic differentiation between three of the local populations (not only XCSS but also Poyang Lake (PY) and Tongling (TL)) and the other local populations. With an increasing number of distribution gaps appearing in the Yangtze main steam, the genetic differentiation of local populations will likely intensify in the future. The YFP is becoming a genetically fragmented population. Therefore, we recommend attention should be paid to the genetic conservation of the YFP. PMID:24968271

  9. Stable genetic structure and connectivity in pollution-adapted and nearby pollution-sensitive populations of Fundulus heteroclitus

    Science.gov (United States)

    Biancani, Leann M.; Flight, Patrick A.; Nacci, Diane E.; Rand, David M.; Crawford, Douglas L.; Oleksiak, Marjorie F.

    2018-01-01

    Populations of the non-migratory estuarine fish Fundulus heteroclitus inhabiting the heavily polluted New Bedford Harbour (NBH) estuary have shown inherited tolerance to local pollutants introduced to their habitats in the past 100 years. Here we examine two questions: (i) Is there pollution-driven selection on the mitochondrial genome across a fine geographical scale? and (ii) What is the pattern of migration among sites spanning a strong pollution gradient? Whole mitochondrial genomes were analysed for 133 F. heteroclitus from seven nearby collection sites: four sites along the NBH pollution cline (approx. 5 km distance), which had pollution-adapted fish, as well as one site adjacent to the pollution cline and two relatively unpolluted sites about 30 km away, which had pollution-sensitive fish. Additionally, we used microsatellite analyses to quantify genetic variation over three F. heteroclitus generations in both pollution-adapted and sensitive individuals collected from two sites at two different time points (1999/2000 and 2007/2008). Our results show no evidence for a selective sweep of mtDNA in the polluted sites. Moreover, mtDNA analyses revealed that both pollution-adapted and sensitive populations harbour similar levels of genetic diversity. We observed a high level of non-synonymous mutations in the most polluted site. This is probably associated with a reduction in Ne and concomitant weakening of purifying selection, a demographic expansion following a pollution-related bottleneck or increased mutation rates. Our demographic analyses suggest that isolation by distance influences the distribution of mtDNA genetic variation between the pollution cline and the clean populations at broad spatial scales. At finer scales, population structure is patchy, and neither spatial distance, pollution concentration or pollution tolerance is a good predictor of mtDNA variation. Lastly, microsatellite analyses revealed stable population structure over the last

  10. Population genetic diversity and structure analysis of wild apricot (Prunus armeniaca L.) revealed by ssr markers in the Tien-Shan mountains of China

    International Nuclear Information System (INIS)

    Hu, X.; Ni, B.; Zheng, P.; Li, M.

    2018-01-01

    The simple sequence repeat markers were used to investigate the population genetic diversity and structure of 212 germplasm samples from 14 apricot (Prunus armeniaca) populations in the western of Tien-Shan Mountains, Sinkiang, China. The relatively high expected heterozygosity and Shannon's diversity index indicated the apricot populations maintained a high level of genetic diversity (He = 0.6109, I = 1.2208), with the population in Tuergen ditch of Xinyuan County having the highest genetic diversity index. A high level of intra-population genetic differentiation (91.51%) and a lower level of inter-population genetic differentiation were occurred, as well as a moderate but steady inter-population gene flow (Nm = 2.3735). The self-incompatible pattern, wide distribution, and long-distance pollen transmission via insects and gale are the main factors underlying the genetic variation structure. The UPGMA cluster analysis and genetic structure analysis showed that apricot germplasm could be divided into two or four groups, which was basically consistent with the geographic distribution pattern. The inter-population genetic distance and geographic distance showed a significant correlation (r = 0.2658, p<0.05). (author)

  11. Big mountains but small barriers: population genetic structure of the Chinese wood frog (Rana chensinensis) in the Tsinling and Daba Mountain region of northern China.

    Science.gov (United States)

    Zhan, Aibin; Li, Cheng; Fu, Jinzhong

    2009-04-09

    Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis) to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow. Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains. The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high elevations, which may significantly contribute to the

  12. Big mountains but small barriers: Population genetic structure of the Chinese wood frog (Rana chensinensis in the Tsinling and Daba Mountain region of northern China

    Directory of Open Access Journals (Sweden)

    Li Cheng

    2009-04-01

    Full Text Available Abstract Background Amphibians in general are poor dispersers and highly philopatric, and landscape features often have important impacts on their population genetic structure and dispersal patterns. Numerous studies have suggested that genetic differentiation among amphibian populations are particularly pronounced for populations separated by mountain ridges. The Tsinling Mountain range of northern China is a major mountain chain that forms the boundary between the Oriental and Palearctic zoogeographic realms. We studied the population structure of the Chinese wood frog (Rana chensinensis to test whether the Tsinling Mountains and the nearby Daba Mountains impose major barriers to gene flow. Results Using 13 polymorphic microsatellite DNA loci, 523 individuals from 12 breeding sites with geographical distances ranging from 2.6 to 422.8 kilometers were examined. Substantial genetic diversity was detected at all sites with an average of 25.5 alleles per locus and an expected heterozygosity ranging from 0.504 to 0.855, and two peripheral populations revealed significantly lower genetic diversity than the central populations. In addition, the genetic differentiation among the central populations was statistically significant, with pairwise FST values ranging from 0.0175 to 0.1625 with an average of 0.0878. Furthermore, hierarchical AMOVA analysis attributed most genetic variation to the within-population component, and the between-population variation can largely be explained by isolation-by-distance. None of the putative barriers detected from genetic data coincided with the location of the Tsinling Mountains. Conclusion The Tsinling and Daba Mountains revealed no significant impact on the population genetic structure of R. chensinensis. High population connectivity and extensive juvenile dispersal may account for the significant, but moderate differentiation between populations. Chinese wood frogs are able to use streams as breeding sites at high

  13. Analysis of Genetic Diversity and Population Structure of Sesame Accessions from Africa and Asia as Major Centers of Its Cultivation

    Directory of Open Access Journals (Sweden)

    Komivi Dossa

    2016-04-01

    Full Text Available Sesame is an important oil crop widely cultivated in Africa and Asia. Understanding the genetic diversity of accessions from these continents is critical to designing breeding methods and for additional collection of sesame germplasm. To determine the genetic diversity in relation to geographical regions, 96 sesame accessions collected from 22 countries distributed over six geographic regions in Africa and Asia were genotyped using 33 polymorphic SSR markers. Large genetic variability was found within the germplasm collection. The total number of alleles was 137, averaging 4.15 alleles per locus. The accessions from Asia displayed more diversity than those from Africa. Accessions from Southern Asia (SAs, Eastern Asia (EAs, and Western Africa (WAf were highly diversified, while those from Western Asia (WAs, Northern Africa (NAf, and Southeastern Africa (SAf had the lowest diversity. The analysis of molecular variance revealed that more than 44% of the genetic variance was due to diversity among geographic regions. Five subpopulations, including three in Asia and two in Africa, were cross-identified through phylogenetic, PCA, and STRUCTURE analyses. Most accessions clustered in the same population based on their geographical origins. Our results provide technical guidance for efficient management of sesame genetic resources in breeding programs and further collection of sesame germplasm from these different regions.

  14. Genetic Diversity and Population Structure of Tetraploid Wheats (Triticum turgidum L. Estimated by SSR, DArT and Pedigree Data.

    Directory of Open Access Journals (Sweden)

    Giovanni Laidò

    Full Text Available Levels of genetic diversity and population genetic structure of a collection of 230 accessions of seven tetraploid Triticum turgidum L. subspecies were investigated using six morphological, nine seed storage protein loci, 26 SSRs and 970 DArT markers. The genetic diversity of the morphological traits and seed storage proteins was always lower in the durum wheat compared to the wild and domesticated emmer. Using Bayesian clustering (K = 2, both of the sets of molecular markers distinguished the durum wheat cultivars from the other tetraploid subspecies, and two distinct subgroups were detected within the durum wheat subspecies, which is in agreement with their origin and year of release. The genetic diversity of morphological traits and seed storage proteins was always lower in the improved durum cultivars registered after 1990, than in the intermediate and older ones. This marked effect on diversity was not observed for molecular markers, where there was only a weak reduction. At K >2, the SSR markers showed a greater degree of resolution than for DArT, with their identification of a greater number of groups within each subspecies. Analysis of DArT marker differentiation between the wheat subspecies indicated outlier loci that are potentially linked to genes controlling some important agronomic traits. Among the 211 loci identified under selection, 109 markers were recently mapped, and some of these markers were clustered into specific regions on chromosome arms 2BL, 3BS and 4AL, where several genes/quantitative trait loci (QTLs are involved in the domestication of tetraploid wheats, such as the tenacious glumes (Tg and brittle rachis (Br characteristics. On the basis of these results, it can be assumed that the population structure of the tetraploid wheat collection partially reflects the evolutionary history of Triticum turgidum L. subspecies and the genetic potential of landraces and wild accessions for the detection of unexplored alleles.

  15. Population genetic structure of the major malaria vector Anopheles darlingi (Diptera: Culicidae from the Brazilian Amazon, using microsatellite markers

    Directory of Open Access Journals (Sweden)

    Vera Margarete Scarpassa

    2007-06-01

    Full Text Available The population genetic structure of Anopheles darlingi, the major human malaria vector in the Neotropics, was examined using seven microsatellite loci from nine localities in central and western Amazonian Brazil. High levels of genetic variability were detected (5-25 alleles per locus; H E = 0.519-0.949. There was deviation from Hardy-Weinberg Equilibrium for 59.79% of the tests due to heterozygote deficits, while the analysis of linkage disequilibrium was significant for only two of 189 (1.05% tests, most likely caused by null alleles. Genetic differentiation (F ST = 0.001-0.095; Nm = 4.7-363.8 indicates that gene flow is extensive among locations < 152 km apart (with two exceptions and reduced, but not absent, at a larger geographic scale. Genetic and geographic distances were significantly correlated (R² = 0.893, P < 0.0002, supporting the isolation by distance (IBD model. The overall estimate of Ne was 202.4 individuals under the linkage disequilibrium model, and 8 under the heterozygote excess model. Analysis of molecular variance showed that nearly all variation (~ 94% was within sample locations. The UPGMA phenogram clustered the samples geographically, with one branch including 5/6 of the state of Amazonas localities and the other branch the Acre, Rondônia, and remaining Amazonas localities. Taken together, these data suggest little genetic structure for An. darlingi from central and western Amazonian Brazil. These findings also imply that the IBD model explains nearly all of the differentiation detected. In practical terms, populations of An. darlingi at distances < 152 km should respond similarly to vector control measures, because of high gene flow.