WorldWideScience

Sample records for population dynamics structure

  1. Structural stability of nonlinear population dynamics.

    Science.gov (United States)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  2. Structural stability of nonlinear population dynamics

    Science.gov (United States)

    Cenci, Simone; Saavedra, Serguei

    2018-01-01

    In population dynamics, the concept of structural stability has been used to quantify the tolerance of a system to environmental perturbations. Yet, measuring the structural stability of nonlinear dynamical systems remains a challenging task. Focusing on the classic Lotka-Volterra dynamics, because of the linearity of the functional response, it has been possible to measure the conditions compatible with a structurally stable system. However, the functional response of biological communities is not always well approximated by deterministic linear functions. Thus, it is unclear the extent to which this linear approach can be generalized to other population dynamics models. Here, we show that the same approach used to investigate the classic Lotka-Volterra dynamics, which is called the structural approach, can be applied to a much larger class of nonlinear models. This class covers a large number of nonlinear functional responses that have been intensively investigated both theoretically and experimentally. We also investigate the applicability of the structural approach to stochastic dynamical systems and we provide a measure of structural stability for finite populations. Overall, we show that the structural approach can provide reliable and tractable information about the qualitative behavior of many nonlinear dynamical systems.

  3. Calculating evolutionary dynamics in structured populations.

    Directory of Open Access Journals (Sweden)

    Charles G Nathanson

    2009-12-01

    Full Text Available Evolution is shaping the world around us. At the core of every evolutionary process is a population of reproducing individuals. The outcome of an evolutionary process depends on population structure. Here we provide a general formula for calculating evolutionary dynamics in a wide class of structured populations. This class includes the recently introduced "games in phenotype space" and "evolutionary set theory." There can be local interactions for determining the relative fitness of individuals, but we require global updating, which means all individuals compete uniformly for reproduction. We study the competition of two strategies in the context of an evolutionary game and determine which strategy is favored in the limit of weak selection. We derive an intuitive formula for the structure coefficient, sigma, and provide a method for efficient numerical calculation.

  4. Structured population dynamics: continuous size and discontinuous stage structures.

    Science.gov (United States)

    Buffoni, Giuseppe; Pasquali, Sara

    2007-04-01

    A nonlinear stochastic model for the dynamics of a population with either a continuous size structure or a discontinuous stage structure is formulated in the Eulerian formalism. It takes into account dispersion effects due to stochastic variability of the development process of the individuals. The discrete equations of the numerical approximation are derived, and an analysis of the existence and stability of the equilibrium states is performed. An application to a copepod population is illustrated; numerical results of Eulerian and Lagrangian models are compared.

  5. Dynamics of a structured neuron population

    International Nuclear Information System (INIS)

    Pakdaman, Khashayar; Salort, Delphine; Perthame, Benoît

    2010-01-01

    We study the dynamics of assemblies of interacting neurons. For large fully connected networks, the dynamics of the system can be described by a partial differential equation reminiscent of age-structure models used in mathematical ecology, where the 'age' of a neuron represents the time elapsed since its last discharge. The nonlinearity arises from the connectivity J of the network. We prove some mathematical properties of the model that are directly related to qualitative properties. On the one hand, we prove that it is well-posed and that it admits stationary states which, depending upon the connectivity, can be unique or not. On the other hand, we study the long time behaviour of solutions; both for small and large J, we prove the relaxation to the steady state describing asynchronous firing of the neurons. In the middle range, numerical experiments show that periodic solutions appear expressing re-synchronization of the network and asynchronous firing

  6. Dynamical community structure of populations evolving on genotype networks

    International Nuclear Information System (INIS)

    Capitán, José A.; Aguirre, Jacobo; Manrubia, Susanna

    2015-01-01

    Neutral evolutionary dynamics of replicators occurs on large and heterogeneous networks of genotypes. These networks, formed by all genotypes that yield the same phenotype, have a complex architecture that conditions the molecular composition of populations and their movements on genome spaces. Here we consider as an example the case of populations evolving on RNA secondary structure neutral networks and study the community structure of the network revealed through dynamical properties of the population at equilibrium and during adaptive transients. We unveil a rich hierarchical community structure that, eventually, can be traced back to the non-trivial relationship between RNA secondary structure and sequence composition. We demonstrate that usual measures of modularity that only take into account the static, topological structure of networks, cannot identify the community structure disclosed by population dynamics

  7. A general modeling framework for describing spatially structured population dynamics

    Science.gov (United States)

    Sample, Christine; Fryxell, John; Bieri, Joanna; Federico, Paula; Earl, Julia; Wiederholt, Ruscena; Mattsson, Brady; Flockhart, Tyler; Nicol, Sam; Diffendorfer, James E.; Thogmartin, Wayne E.; Erickson, Richard A.; Norris, D. Ryan

    2017-01-01

    Variation in movement across time and space fundamentally shapes the abundance and distribution of populations. Although a variety of approaches model structured population dynamics, they are limited to specific types of spatially structured populations and lack a unifying framework. Here, we propose a unified network-based framework sufficiently novel in its flexibility to capture a wide variety of spatiotemporal processes including metapopulations and a range of migratory patterns. It can accommodate different kinds of age structures, forms of population growth, dispersal, nomadism and migration, and alternative life-history strategies. Our objective was to link three general elements common to all spatially structured populations (space, time and movement) under a single mathematical framework. To do this, we adopt a network modeling approach. The spatial structure of a population is represented by a weighted and directed network. Each node and each edge has a set of attributes which vary through time. The dynamics of our network-based population is modeled with discrete time steps. Using both theoretical and real-world examples, we show how common elements recur across species with disparate movement strategies and how they can be combined under a unified mathematical framework. We illustrate how metapopulations, various migratory patterns, and nomadism can be represented with this modeling approach. We also apply our network-based framework to four organisms spanning a wide range of life histories, movement patterns, and carrying capacities. General computer code to implement our framework is provided, which can be applied to almost any spatially structured population. This framework contributes to our theoretical understanding of population dynamics and has practical management applications, including understanding the impact of perturbations on population size, distribution, and movement patterns. By working within a common framework, there is less chance

  8. Stage-Structured Population Dynamics of AEDES AEGYPTI

    Science.gov (United States)

    Yusoff, Nuraini; Budin, Harun; Ismail, Salemah

    Aedes aegypti is the main vector in the transmission of dengue fever, a vector-borne disease affecting world population living in tropical and sub-tropical countries. Better understanding of the dynamics of its population growth will help in the efforts of controlling the spread of this disease. In looking at the population dynamics of Aedes aegypti, this paper explored the stage-structured modeling of the population growth of the mosquito using the matrix population model. The life cycle of the mosquito was divided into five stages: eggs, larvae, pupae, adult1 and adult2. Developmental rates were obtained for the average Malaysian temperature and these were used in constructing the transition matrix for the matrix model. The model, which was based only on temperature, projected that the population of Aedes aegypti will blow up with time, which is not realistic. For further work, other factors need to be taken into account to obtain a more realistic result.

  9. Population and evolutionary dynamics in spatially structured seasonally varying environments.

    Science.gov (United States)

    Reid, Jane M; Travis, Justin M J; Daunt, Francis; Burthe, Sarah J; Wanless, Sarah; Dytham, Calvin

    2018-03-25

    Increasingly imperative objectives in ecology are to understand and forecast population dynamic and evolutionary responses to seasonal environmental variation and change. Such population and evolutionary dynamics result from immediate and lagged responses of all key life-history traits, and resulting demographic rates that affect population growth rate, to seasonal environmental conditions and population density. However, existing population dynamic and eco-evolutionary theory and models have not yet fully encompassed within-individual and among-individual variation, covariation, structure and heterogeneity, and ongoing evolution, in a critical life-history trait that allows individuals to respond to seasonal environmental conditions: seasonal migration. Meanwhile, empirical studies aided by new animal-tracking technologies are increasingly demonstrating substantial within-population variation in the occurrence and form of migration versus year-round residence, generating diverse forms of 'partial migration' spanning diverse species, habitats and spatial scales. Such partially migratory systems form a continuum between the extreme scenarios of full migration and full year-round residence, and are commonplace in nature. Here, we first review basic scenarios of partial migration and associated models designed to identify conditions that facilitate the maintenance of migratory polymorphism. We highlight that such models have been fundamental to the development of partial migration theory, but are spatially and demographically simplistic compared to the rich bodies of population dynamic theory and models that consider spatially structured populations with dispersal but no migration, or consider populations experiencing strong seasonality and full obligate migration. Second, to provide an overarching conceptual framework for spatio-temporal population dynamics, we define a 'partially migratory meta-population' system as a spatially structured set of locations that can

  10. An age-structured population balance model for microbial dynamics

    Directory of Open Access Journals (Sweden)

    Duarte M.V.E.

    2003-01-01

    Full Text Available This work presents an age-structured population balance model (ASPBM for a bioprocess in a continuous stirred-tank fermentor. It relates the macroscopic properties and dynamic behavior of biomass to the operational parameters and microscopic properties of cells. Population dynamics is governed by two time- and age-dependent density functions for living and dead cells, accounting for the influence of substrate and dissolved oxygen concentrations on cell division, aging and death processes. The ASPBM described biomass and substrate oscillations in aerobic continuous cultures as experimentally observed. It is noteworthy that a small data set consisting of nonsegregated measurements was sufficient to adjust a complex segregated mathematical model.

  11. Estimating spatio-temporal dynamics of size-structured populations

    DEFF Research Database (Denmark)

    Kristensen, Kasper; Thygesen, Uffe Høgsbro; Andersen, Ken Haste

    2014-01-01

    with simple stock dynamics, to estimate simultaneously how size distributions and spatial distributions develop in time. We demonstrate the method for a cod population sampled by trawl surveys. Particular attention is paid to correlation between size classes within each trawl haul due to clustering...... of individuals with similar size. The model estimates growth, mortality and reproduction, after which any aspect of size-structure, spatio-temporal population dynamics, as well as the sampling process can be probed. This is illustrated by two applications: 1) tracking the spatial movements of a single cohort...

  12. Modeling structured population dynamics using data from unmarked individuals

    Science.gov (United States)

    Grant, Evan H. Campbell; Zipkin, Elise; Thorson, James T.; See, Kevin; Lynch, Heather J.; Kanno, Yoichiro; Chandler, Richard; Letcher, Benjamin H.; Royle, J. Andrew

    2014-01-01

    The study of population dynamics requires unbiased, precise estimates of abundance and vital rates that account for the demographic structure inherent in all wildlife and plant populations. Traditionally, these estimates have only been available through approaches that rely on intensive mark–recapture data. We extended recently developed N-mixture models to demonstrate how demographic parameters and abundance can be estimated for structured populations using only stage-structured count data. Our modeling framework can be used to make reliable inferences on abundance as well as recruitment, immigration, stage-specific survival, and detection rates during sampling. We present a range of simulations to illustrate the data requirements, including the number of years and locations necessary for accurate and precise parameter estimates. We apply our modeling framework to a population of northern dusky salamanders (Desmognathus fuscus) in the mid-Atlantic region (USA) and find that the population is unexpectedly declining. Our approach represents a valuable advance in the estimation of population dynamics using multistate data from unmarked individuals and should additionally be useful in the development of integrated models that combine data from intensive (e.g., mark–recapture) and extensive (e.g., counts) data sources.

  13. An age structured model for obesity prevalence dynamics in populations

    Directory of Open Access Journals (Sweden)

    Gilberto González Parra

    2010-08-01

    Full Text Available Objective. Modeling the correlation of the development of obesity in a population with age and time and predict the dynamics of the correlation of the development of obesity in a population with age and time under different scenarios in Valencia (Spain. Materials and methods. An age structured mathematical model is used to describe the future dynamics of obesity prevalence for different ages in human population with excess weight. Simulation of the model with parameters estimated using the Health Survey of the Region of Valencia 2000 (4.319 interviews and Health Survey of the Region of Valencia 2005 (4.012 interviews. The model considers only overweight and obese populations since these subpopulations are the most relevant on obesity health concern. Results. The model allows predicting and studying the prevalence of obesity for each age. Results showed an increasing trend of obesity in the following years in well accordance with the trend observed in several countries. Conclusions. Based on the numerical simulations it is possible to conclude that the age structured mathematical model is suitable to forecast the obesity epidemic in each age group in different countries. Additionally, this type of models may be applied to study other characteristics of other populations such animal populations.

  14. Evolutionary game dynamics in a growing structured population

    Energy Technology Data Exchange (ETDEWEB)

    Poncela, Julia; Gomez-Gardenes, Jesus; Moreno, Yamir [Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, E-50009 Zaragoza (Spain); Traulsen, Arne [Emmy-Noether Group for Evolutionary Dynamics, Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Strasse 2, 24306 Ploen (Germany)], E-mail: traulsen@evolbio.mpg.de

    2009-08-15

    We discuss a model for evolutionary game dynamics in a growing, network-structured population. In our model, new players can either make connections to random preexisting players or preferentially attach to those that have been successful in the past. The latter depends on the dynamics of strategies in the game, which we implement following the so-called Fermi rule such that the limits of weak and strong strategy selection can be explored. Our framework allows to address general evolutionary games. With only two parameters describing the preferential attachment and the intensity of selection, we describe a wide range of network structures and evolutionary scenarios. Our results show that even for moderate payoff preferential attachment, over represented hubs arise. Interestingly, we find that while the networks are growing, high levels of cooperation are attained, but the same network structure does not promote cooperation as a static network. Therefore, the mechanism of payoff preferential attachment is different to those usually invoked to explain the promotion of cooperation in static, already-grown networks.

  15. Evolutionary game dynamics in a growing structured population

    International Nuclear Information System (INIS)

    Poncela, Julia; Gomez-Gardenes, Jesus; Moreno, Yamir; Traulsen, Arne

    2009-01-01

    We discuss a model for evolutionary game dynamics in a growing, network-structured population. In our model, new players can either make connections to random preexisting players or preferentially attach to those that have been successful in the past. The latter depends on the dynamics of strategies in the game, which we implement following the so-called Fermi rule such that the limits of weak and strong strategy selection can be explored. Our framework allows to address general evolutionary games. With only two parameters describing the preferential attachment and the intensity of selection, we describe a wide range of network structures and evolutionary scenarios. Our results show that even for moderate payoff preferential attachment, over represented hubs arise. Interestingly, we find that while the networks are growing, high levels of cooperation are attained, but the same network structure does not promote cooperation as a static network. Therefore, the mechanism of payoff preferential attachment is different to those usually invoked to explain the promotion of cooperation in static, already-grown networks.

  16. Plasmodium vivax Population Structure and Transmission Dynamics in Sabah Malaysia

    Science.gov (United States)

    Abdullah, Noor Rain; Barber, Bridget E.; William, Timothy; Norahmad, Nor Azrina; Satsu, Umi Rubiah; Muniandy, Prem Kumar; Ismail, Zakiah; Grigg, Matthew J.; Jelip, Jenarun; Piera, Kim; von Seidlein, Lorenz; Yeo, Tsin W.; Anstey, Nicholas M.; Price, Ric N.; Auburn, Sarah

    2013-01-01

    Despite significant progress in the control of malaria in Malaysia, the complex transmission dynamics of P. vivax continue to challenge national efforts to achieve elimination. To assess the impact of ongoing interventions on P. vivax transmission dynamics in Sabah, we genotyped 9 short tandem repeat markers in a total of 97 isolates (8 recurrences) from across Sabah, with a focus on two districts, Kota Marudu (KM, n = 24) and Kota Kinabalu (KK, n = 21), over a 2 year period. STRUCTURE analysis on the Sabah-wide dataset demonstrated multiple sub-populations. Significant differentiation (F ST  = 0.243) was observed between KM and KK, located just 130 Km apart. Consistent with low endemic transmission, infection complexity was modest in both KM (mean MOI  = 1.38) and KK (mean MOI  = 1.19). However, population diversity remained moderate (H E  = 0.583 in KM and H E  = 0.667 in KK). Temporal trends revealed clonal expansions reflecting epidemic transmission dynamics. The haplotypes of these isolates declined in frequency over time, but persisted at low frequency throughout the study duration. A diverse array of low frequency isolates were detected in both KM and KK, some likely reflecting remnants of previous expansions. In accordance with clonal expansions, high levels of Linkage Disequilibrium (I A S >0.5 [P<0.0001] in KK and KM) declined sharply when identical haplotypes were represented once (I A S  = 0.07 [P = 0.0076] in KM, and I A S = -0.003 [P = 0.606] in KK). All 8 recurrences, likely to be relapses, were homologous to the prior infection. These recurrences may promote the persistence of parasite lineages, sustaining local diversity. In summary, Sabah's shrinking P. vivax population appears to have rendered this low endemic setting vulnerable to epidemic expansions. Migration may play an important role in the introduction of new parasite strains leading to epidemic expansions, with important implications for malaria

  17. Evolutionary Dynamics of Collective Action in Structured Populations

    Science.gov (United States)

    Santos, Marta Daniela de Almeida

    The pervasiveness of cooperation in Nature is not easily explained. If evolution is characterized by competition and survival of the fittest, why should selfish individuals cooperate with each other? Evolutionary Game Theory (EGT) provides a suitable mathematical framework to study this problem, central to many areas of science. Conventionally, interactions between individuals are modeled in terms of one-shot, symmetric 2-Person Dilemmas of Cooperation, but many real-life situations involve decisions within groups with more than 2 individuals, which are best-dealt in the framework of N-Person games. In this Thesis, we investigate the evolutionary dynamics of two paradigmatic collective social dilemmas - the N-Person Prisoner's Dilemma (NPD) and the N-Person Snowdrift Game (NSG) on structured populations, modeled by networks with diverse topological properties. Cooperative strategies are just one example of the many traits that can be transmitted on social networks. Several recent studies based on empirical evidence from a medical database have suggested the existence of a 3 degrees of influence rule, according to which not only our "friends", but also our friends' friends, and our friends' friends' friends, have a non-trivial influence on our decisions. We investigate the degree of peer influence that emerges from the spread of cooperative strategies, opinions and diseases on populations with distinct underlying networks of contacts. Our results show that networks naturally entangle individuals into interactions of many-body nature and that for each network class considered different processes lead to identical degrees of influence. None

  18. SIR dynamics in structured populations with heterogeneous connectivity

    OpenAIRE

    Volz, Erik

    2005-01-01

    Most epidemic models assume equal mixing among members of a population. An alternative approach is to model a population as random network in which individuals may have heterogeneous connectivity. This paper builds on previous research by describing the exact dynamical behavior of epidemics as they occur in random networks. A system of nonlinear differential equations is presented which describes the behavior of epidemics spreading through random networks with arbitrary degree distributions. ...

  19. Effects of demographic structure on key properties of stochastic density-independent population dynamics.

    Science.gov (United States)

    Vindenes, Yngvild; Sæther, Bernt-Erik; Engen, Steinar

    2012-12-01

    The development of stochastic demography has largely been based on age structured populations, although other types of demographic structure, especially permanent and dynamic heterogeneity, are likely common in natural populations. The combination of stochasticity and demographic structure is a challenge for analyses of population dynamics and extinction risk, because the population structure will fluctuate around the stable structure and the population size shows transient fluctuations. However, by using a diffusion approximation for the total reproductive value, density-independent dynamics of structured populations can be described with only three population parameters: the expected population growth rate, the environmental variance and the demographic variance. These parameters depend on population structure via the state-specific vital rates and transition rates. Once they are found, the diffusion approximation represents a substantial reduction in model complexity. Here, we review and compare the key population parameters across a wide range of demographic structure, from the case of no structure to the most general case of dynamic heterogeneity, and for both discrete and continuous types. We focus on the demographic variance, but also show how environmental stochasticity can be included. This study brings together results from recent models, each considering a specific type of population structure, and places them in a general framework for structured populations. Comparison across different types of demographic structure reveals that the reproductive value is an essential concept for understanding how population structure affects stochastic dynamics and extinction risk. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Periodic matrix models for seasonal dynamics of structured populations with application to a seabird population.

    Science.gov (United States)

    Cushing, J M; Henson, Shandelle M

    2018-02-03

    For structured populations with an annual breeding season, life-stage interactions and behavioral tactics may occur on a faster time scale than that of population dynamics. Motivated by recent field studies of the effect of rising sea surface temperature (SST) on within-breeding-season behaviors in colonial seabirds, we formulate and analyze a general class of discrete-time matrix models designed to account for changes in behavioral tactics within the breeding season and their dynamic consequences at the population level across breeding seasons. As a specific example, we focus on egg cannibalism and the daily reproductive synchrony observed in seabirds. Using the model, we investigate circumstances under which these life history tactics can be beneficial or non-beneficial at the population level in light of the expected continued rise in SST. Using bifurcation theoretic techniques, we study the nature of non-extinction, seasonal cycles as a function of environmental resource availability as they are created upon destabilization of the extinction state. Of particular interest are backward bifurcations in that they typically create strong Allee effects in population models which, in turn, lead to the benefit of possible (initial condition dependent) survival in adverse environments. We find that positive density effects (component Allee effects) due to increased adult survival from cannibalism and the propensity of females to synchronize daily egg laying can produce a strong Allee effect due to a backward bifurcation.

  1. Dynamics of a physiologically structured population in a time-varying environment

    DEFF Research Database (Denmark)

    Heilmann, Irene Louise Torpe; Starke, Jens; Andersen, Ken Haste

    2016-01-01

    Physiologically structured population models have become a valuable tool to model the dynamics of populations. In a stationary environment such models can exhibit equilibrium solutions as well as periodic solutions. However, for many organisms the environment is not stationary, but varies more...... or less regularly. In order to understand the interaction between an external environmental forcing and the internal dynamics in a population, we examine the response of a physiologically structured population model to a periodic variation in the food resource. We explore the addition of forcing in two...... cases: (A) where the population dynamics is in equilibrium in a stationary environment, and (B) where the population dynamics exhibits a periodic solution in a stationary environment. When forcing is applied in case A, the solutions are mainly periodic. In case B the forcing signal interacts...

  2. Population dynamics

    Directory of Open Access Journals (Sweden)

    Cooch, E. G.

    2004-06-01

    Full Text Available Increases or decreases in the size of populations over space and time are, arguably, the motivation for much of pure and applied ecological research. The fundamental model for the dynamics of any population is straightforward: the net change over time in the abundance of some population is the simple difference between the number of additions (individuals entering the population minus the number of subtractions (individuals leaving the population. Of course, the precise nature of the pattern and process of these additions and subtractions is often complex, and population biology is often replete with fairly dense mathematical representations of both processes. While there is no doubt that analysis of such abstract descriptions of populations has been of considerable value in advancing our, there has often existed a palpable discomfort when the ‘beautiful math’ is faced with the often ‘ugly realities’ of empirical data. In some cases, this attempted merger is abandoned altogether, because of the paucity of ‘good empirical data’ with which the theoretician can modify and evaluate more conceptually–based models. In some cases, the lack of ‘data’ is more accurately represented as a lack of robust estimates of one or more parameters. It is in this arena that methods developed to analyze multiple encounter data from individually marked organisms has seen perhaps the greatest advances. These methods have rapidly evolved to facilitate not only estimation of one or more vital rates, critical to population modeling and analysis, but also to allow for direct estimation of both the dynamics of populations (e.g., Pradel, 1996, and factors influencing those dynamics (e.g., Nichols et al., 2000. The interconnections between the various vital rates, their estimation, and incorporation into models, was the general subject of our plenary presentation by Hal Caswell (Caswell & Fujiwara, 2004. Caswell notes that although interest has traditionally

  3. The basic approach to age-structured population dynamics models, methods and numerics

    CERN Document Server

    Iannelli, Mimmo

    2017-01-01

    This book provides an introduction to age-structured population modeling which emphasises the connection between mathematical theory and underlying biological assumptions. Through the rigorous development of the linear theory and the nonlinear theory alongside numerics, the authors explore classical equations that describe the dynamics of certain ecological systems. Modeling aspects are discussed to show how relevant problems in the fields of demography, ecology, and epidemiology can be formulated and treated within the theory. In particular, the book presents extensions of age-structured modelling to the spread of diseases and epidemics while also addressing the issue of regularity of solutions, the asymptotic behaviour of solutions, and numerical approximation. With sections on transmission models, non-autonomous models and global dynamics, this book fills a gap in the literature on theoretical population dynamics. The Basic Approach to Age-Structured Population Dynamics will appeal to graduate students an...

  4. Cooperation guided by the coexistence of imitation dynamics and aspiration dynamics in structured populations

    Science.gov (United States)

    Xu, Kuangyi; Li, Kun; Cong, Rui; Wang, Long

    2017-02-01

    In the framework of the evolutionary game theory, two fundamentally different mechanisms, the imitation process and the aspiration-driven dynamics, can be adopted by players to update their strategies. In the former case, individuals imitate the strategy of a more successful peer, while in the latter case individuals change their strategies based on a comparison of payoffs they collect in the game to their own aspiration levels. Here we explore how cooperation evolves for the coexistence of these two dynamics. Intriguingly, cooperation reaches its lowest level when a certain moderate fraction of individuals pick aspiration-level-driven rule while the others choose pairwise comparison rule. Furthermore, when individuals can adjust their update rules besides their strategies, either imitation dynamics or aspiration-driven dynamics will finally take over the entire population, and the stationary cooperation level is determined by the outcome of competition between these two dynamics. We find that appropriate synergetic effects and moderate aspiration level boost the fixation probability of aspiration-driven dynamics most effectively. Our work may be helpful in understanding the cooperative behavior induced by the coexistence of imitation dynamics and aspiration dynamics in the society.

  5. Climate effects and feedback structure determining weed population dynamics in a long-term experiment.

    Science.gov (United States)

    Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis

    2012-01-01

    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements.

  6. Climate Effects and Feedback Structure Determining Weed Population Dynamics in a Long-Term Experiment

    Science.gov (United States)

    Lima, Mauricio; Navarrete, Luis; González-Andujar, José Luis

    2012-01-01

    Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years) on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors). Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements. PMID:22272362

  7. Climate effects and feedback structure determining weed population dynamics in a long-term experiment.

    Directory of Open Access Journals (Sweden)

    Mauricio Lima

    Full Text Available Pest control is one of the areas in which population dynamic theory has been successfully applied to solve practical problems. However, the links between population dynamic theory and model construction have been less emphasized in the management and control of weed populations. Most management models of weed population dynamics have emphasized the role of the endogenous process, but the role of exogenous variables such as climate have been ignored in the study of weed populations and their management. Here, we use long-term data (22 years on two annual weed species from a locality in Central Spain to determine the importance of endogenous and exogenous processes (local and large-scale climate factors. Our modeling study determined two different feedback structures and climate effects in the two weed species analyzed. While Descurainia sophia exhibited a second-order feedback and low climate influence, Veronica hederifolia was characterized by a first-order feedback structure and important effects from temperature and rainfall. Our results strongly suggest the importance of theoretical population dynamics in understanding plant population systems. Moreover, the use of this approach, discerning between the effect of exogenous and endogenous factors, can be fundamental to applying weed management practices in agricultural systems and to controlling invasive weedy species. This is a radical change from most approaches currently used to guide weed and invasive weedy species managements.

  8. Dynamic of age structure and the number of population in Ozersk and affecting factors

    International Nuclear Information System (INIS)

    Panchenko, O.; Rtischeva, M.

    2000-01-01

    The aim of this work was an evaluation of the dynamics of age structure and population for the city of Ozyorsk, based in connection with creation of the nuclear plant Mayak, the 'first-born' of the Russian atomic industry. The obtained results indicate that since 1950 demographic processes in Ozyorsk were more favorable, in spite of fact that it was in this period workers of Mayak nuclear plant and population as a whole, got comparatively greater radiation doses than in the following years. However, dynamics the number of population has an unfavorable trend to reduce, connected with sharp worsening of social-economic situation in the town as a whole, as a result of the economic reforms in the country. Reduction of the number of population in the town is expressed by the negative natural growth and by reducing migration processes, which resulted in sharp decrease of the general growth of population, and in its stopping in 1998. (authors)

  9. Population dynamics of bowfin in a south Georgia reservoir: latitudinal comparisons of population structure, growth, and mortality

    Science.gov (United States)

    Porter, Nicholas J.; Bonvechio, Timothy F.; McCormick, Joshua L.; Quist, Michael

    2014-01-01

    The objectives of this study were to evaluate the population dynamics of bowfin (Amia calva) in Lake Lindsay Grace, Georgia, and to compare those dynamics to other bowfin populations. Relative abundance of bowfin sampled in 2010 in Lake Lindsay Grace was low and variable (mean±SD; 2.7±4.7 fish per hour of electrofishing). Total length (TL) of bowfin collected in Lake Lindsay Grace varied from 233–683 mm. Age of bowfin in Lake Lindsay Grace varied from 0–5 yr. Total annual mortality (A) was estimated at 68%. Both sexes appeared to be fully mature by age 2 with gonadosomatic index values above 8 for females and close to 1 for males. The majority of females were older, longer, and heavier than males. Bowfin in Lake Lindsay Grace had fast growth up to age 4 and higher total annual mortality than the other populations examined in this study. A chi-square test indicated that size structure of bowfin from Lake Lindsay Grace was different than those of a Louisiana population and two bowfin populations from the upper Mississippi River. To further assess bowfin size structure, we proposed standard length (i.e., TL) categories: stock (200 mm, 8 inches), quality (350 mm, 14 inches), preferred (460 mm, 18 inches), memorable (560 mm, 22, inches), and trophy (710 mm, 28 inches). Because our knowledge of bowfin ecology is limited, additional understanding of bowfin population dynamics provides important insight that can be used in management of bowfin across their distribution.

  10. Dynamics of sexual populations structured by a space variable and a phenotypical trait

    KAUST Repository

    Mirrahimi, Sepideh

    2013-03-01

    We study sexual populations structured by a phenotypic trait and a space variable, in a non-homogeneous environment. Departing from an infinitesimal model, we perform an asymptotic limit to derive the system introduced in Kirkpatrick and Barton (1997). We then perform a further simplification to obtain a simple model. Thanks to this simpler equation, we can describe rigorously the dynamics of the population. In particular, we provide an explicit estimate of the invasion speed, or extinction speed of the species. Numerical computations show that this simple model provides a good approximation of the original infinitesimal model, and in particular describes quite well the evolution of the species\\' range. © 2013 Elsevier Inc.

  11. Dynamics of sexual populations structured by a space variable and a phenotypical trait

    KAUST Repository

    Mirrahimi, Sepideh; Raoul, Gaë l

    2013-01-01

    We study sexual populations structured by a phenotypic trait and a space variable, in a non-homogeneous environment. Departing from an infinitesimal model, we perform an asymptotic limit to derive the system introduced in Kirkpatrick and Barton (1997). We then perform a further simplification to obtain a simple model. Thanks to this simpler equation, we can describe rigorously the dynamics of the population. In particular, we provide an explicit estimate of the invasion speed, or extinction speed of the species. Numerical computations show that this simple model provides a good approximation of the original infinitesimal model, and in particular describes quite well the evolution of the species' range. © 2013 Elsevier Inc.

  12. Dynamic of age structure and the number of population in Ozyorsk and affecting factors

    International Nuclear Information System (INIS)

    Panchenko, O.; Rtischeva, M.

    2001-01-01

    In connection with serious social-economic and ecological problems in our country an analysis of demographic processes in cities of atomic industry causes a big of interest. The aim of this work was an evaluation of dynamic of age structure of population of city Ozyorsk, based in connection with creation of nuclear plant 'Mayak' of 'first-born' of atomic industry in Russia. Data received in city's administration, included the information about number of population, its age composition taking into account of natural increase and of migration processes for a period from 1959 to 1997. (authors)

  13. Change in the structures, dynamics and disease-related mortality rates of the population of Qatari nationals: 2007–2011

    OpenAIRE

    Mohamed H. Al-Thani; Eman Sadoun; Al-Anoud Al-Thani; Shamseldin A. Khalifa; Suzan Sayegh; Alaa Badawi

    2014-01-01

    Background: Developing effective public health policies and strategies for interventions necessitates an assessment of the structure, dynamics, disease rates and causes of death in a population. Lately, Qatar has undertaken development resurgence in health and economy that resulted in improving the standard of health services and health status of the entire Qatari population (i.e., Qatari nationals and non-Qatari residents). No study has attempted to evaluate the population structure/dynamics...

  14. Trojan asteroids - Populations, dynamical structure and origin of the L4 and L5 swarms

    International Nuclear Information System (INIS)

    Shoemaker, E.M.; Shoemaker, C.S.; Wolfe, R.F.

    1989-01-01

    The origin of Trojan asteroids, their populations, and dynamical structures are examined. Data available of Trojan asteroids reveal that the total population of Trojans of greater than 15-km diam is roughly half that estimated for the main-belt asteroids. Two-thirds of the known Trojans are in the L4 swarm. Bright Trojans are as numerous in the L5 swarm as in L4 swarm, but faint L5 Trojans are only half as numerous. Similarities of characteristic orbital parameters among certain Trojans indicate the presence of five and possibly as many as eight collisional groups in the L4 swarm. It is suggested that the magnitude distribution of L4 Trojans is probably a result of strong collisional evolution. It is suggested that the present Trojans are chiefly fragments of Jupiter planetesimals that were captured during an episode of heavy flux near Jupiter during the dispersal of the planetesimal swarm. 40 refs

  15. Allee’s dynamics and bifurcation structures in von Bertalanffy’s population size functions

    Science.gov (United States)

    Leonel Rocha, J.; Taha, Abdel-Kaddous; Fournier-Prunaret, D.

    2018-03-01

    The interest and the relevance of the study of the population dynamics and the extinction phenomenon are our main motivation to investigate the induction of Allee Effect in von Bertalanffy’s population size functions. The adjustment or correction factor of rational type introduced allows us to analyze simultaneously strong and weak Allee’s functions and functions with no Allee effect, whose classification is dependent on the stability of the fixed point x = 0. This classification is founded on the concepts of strong and weak Allee’s effects to the population growth rates associated. The transition from strong Allee effect to no Allee effect, passing through the weak Allee effect, is verified with the evolution of the rarefaction critical density or Allee’s limit. The existence of cusp points on a fold bifurcation curve is related to this phenomenon of transition on Allee’s dynamics. Moreover, the “foliated” structure of the parameter plane considered is also explained, with respect to the evolution of the Allee limit. The bifurcation analysis is based on the configurations of fold and flip bifurcation curves. The chaotic semistability and the nonadmissibility bifurcation curves are proposed to this family of 1D maps, which allow us to define and characterize the corresponding Allee effect region.

  16. Structural Dynamics

    International Nuclear Information System (INIS)

    Kim, Du Gi

    2005-08-01

    This book introduces summary of structural dynamics, the reason of learning of structural dynamics, single-degree of freedom system, simple harmonic vibration and application, numerical analysis method, such as time domain and frequency domain and nonlinear system, multi-degree of freedom system random vibration over discrete distribution, continuous distribution and extreme value distribution, circumstance vibration, earth quake vibration, including input earthquake, and earthquake-resistant design and capacity spectrum method, wind oscillation wave vibration, vibration control and maintenance control.

  17. Weed populations and crop rotations: exploring dynamics of a structured periodic system

    NARCIS (Netherlands)

    Mertens, S.K.; Bosch, F. van den; Heesterbeek, J.A.P.

    2002-01-01

    The periodic growing of a certain set of crops in a prescribed order, called a crop rotation, is considered to be an important tool for managing weed populations. Nevertheless, the effects of crop rotations on weed population dynamics are not well understood. Explanations for rotation effects on

  18. Temporal dynamics and population genetic structure of Fusarium graminearum in the upper Midwestern United States.

    Science.gov (United States)

    Liang, J M; Xayamongkhon, H; Broz, K; Dong, Y; McCormick, S P; Abramova, S; Ward, T J; Ma, Z H; Kistler, H C

    2014-12-01

    Fusarium graminearum sensu stricto causes Fusarium head blight (FHB) in wheat and barley, and contaminates grains with several trichothecene mycotoxins, causing destructive yield losses and economic impact in the United States. Recently, a F. graminearum strain collected from Minnesota (MN) was determined to produce a novel trichothecene toxin, called NX-2. In order to determine the spatial and temporal dynamics of NX-2 producing strains in MN, North Dakota (ND) and South Dakota (SD), a total of 463 F. graminearum strains were collected from three sampling periods, 1999-2000, 2006-2007 and 2011-2013. A PCR-RFLP based diagnostic test was developed and validated for NX-2 producing strains based on polymorphisms in the Tri1 gene. Trichothecene biosynthesis gene (Tri gene)-based polymerase chain reaction (PCR) assays and ten PCR-restriction fragment length polymorphism (RFLP) markers were used to genotype all strains. NX-2 strains were detected in each sampling period but with a very low overall frequency (2.8%) and were mainly collected near the borders of MN, ND and SD. Strains with the 3ADON chemotype were relatively infrequent in 1999-2000 (4.5%) but increased to 29.4% in 2006-2007 and 17.2% in 2011-2013. The distribution of 3ADON producing strains also expanded from a few border counties between ND and MN in 1999-2000, southward toward the border between SD and MN in 2006-2007 and westward in 2011-2013. Genetic differentiation between 2006-2007 and 2011-2013 populations (3%) was much lower than that between 1999-2000 and 2006-2007 (22%) or 1999-2000 and 2011-2013 (20%) suggesting that most change to population genetic structure of F. graminearum occurred between 1999-2000 and 2006-2007. This change was associated with the emergence of a new population consisting largely of individuals with a 3ADON chemotype. A Bayesian clustering analysis suggested that NX-2 chemotype strains are part of a previously described Upper Midwestern population. However, these analyses

  19. Structural dynamics

    CERN Document Server

    Strømmen, Einar N

    2014-01-01

    This book introduces to the theory of structural dynamics, with focus on civil engineering structures that may be described by line-like beam or beam-column type of systems, or by a system of rectangular plates. Throughout this book the mathematical presentation contains a classical analytical description as well as a description in a discrete finite element format, covering the mathematical development from basic assumptions to the final equations ready for practical dynamic response predictions. Solutions are presented in time domain as well as in frequency domain. Structural Dynamics starts off at a basic level and step by step brings the reader up to a level where the necessary safety considerations to wind or horizontal ground motion induced dynamic design problems can be performed. The special theory of the tuned mass damper has been given a comprehensive treatment, as this is a theory not fully covered elsewhere. For the same reason a chapter on the problem of moving loads on beams has been included.

  20. Change in the structures, dynamics and disease-related mortality rates of the population of Qatari nationals: 2007-2011.

    Science.gov (United States)

    Al-Thani, Mohamed H; Sadoun, Eman; Al-Thani, Al-Anoud; Khalifa, Shamseldin A; Sayegh, Suzan; Badawi, Alaa

    2014-12-01

    Developing effective public health policies and strategies for interventions necessitates an assessment of the structure, dynamics, disease rates and causes of death in a population. Lately, Qatar has undertaken development resurgence in health and economy that resulted in improving the standard of health services and health status of the entire Qatari population (i.e., Qatari nationals and non-Qatari residents). No study has attempted to evaluate the population structure/dynamics and recent changes in disease-related mortality rates among Qatari nationals. The present study examines the population structure/dynamics and the related changes in the cause-specific mortality rates and disease prevalence in the Qatari nationals. This is a retrospective, analytic descriptive analysis covering a period of 5years (2007-2011) and utilizes a range of data sources from the State of Qatar including the population structure, disease-related mortality rates, and the prevalence of a range of chronic and infectious diseases. Factors reflecting population dynamics such as crude death (CDR), crude birth (CBR), total fertility (TFR) and infant mortality (IMR) rates were also calculated. The Qatari nationals is an expansive population with an annual growth rate of ∼4% and a stable male:female ratio. The CDR declined by 15% within the study period, whereas the CBR was almost stable. The total disease-specific death rate, however, was decreased among the Qatari nationals by 23% due to the decline in mortality rates attributed to diseases of the blood and immune system (43%), nervous system (44%) and cardiovascular system (41%). There was a high prevalence of a range of chronic diseases, whereas very low frequencies of the infectious diseases within the study population. Public health strategies, approaches and programs developed to reduce disease burden and the related death, should be tailored to target the population of Qatari nationals which exhibits characteristics that vary from

  1. Market Squid Population Dynamics

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains population dynamics data on paralarvae, juvenile and adult market squid collected off California and the US Pacific Northwest. These data were...

  2. Fish population dynamics

    National Research Council Canada - National Science Library

    Gulland, J. A

    1977-01-01

    This book describes how the dynamics of fish populations can be analysed in terms of the factors affecting their rates of growth, mortality and reproduction, with particular emphasis on the effects of fishing...

  3. Steady states and outbreaks of two-phase nonlinear age-structured model of population dynamics with discrete time delay.

    Science.gov (United States)

    Akimenko, Vitalii; Anguelov, Roumen

    2017-12-01

    In this paper we study the nonlinear age-structured model of a polycyclic two-phase population dynamics including delayed effect of population density growth on the mortality. Both phases are modelled as a system of initial boundary values problem for semi-linear transport equation with delay and initial problem for nonlinear delay ODE. The obtained system is studied both theoretically and numerically. Three different regimes of population dynamics for asymptotically stable states of autonomous systems are obtained in numerical experiments for the different initial values of population density. The quasi-periodical travelling wave solutions are studied numerically for the autonomous system with the different values of time delays and for the system with oscillating death rate and birth modulus. In both cases it is observed three types of travelling wave solutions: harmonic oscillations, pulse sequence and single pulse.

  4. Producing genome structure populations with the dynamic and automated PGS software.

    Science.gov (United States)

    Hua, Nan; Tjong, Harianto; Shin, Hanjun; Gong, Ke; Zhou, Xianghong Jasmine; Alber, Frank

    2018-05-01

    Chromosome conformation capture technologies such as Hi-C are widely used to investigate the spatial organization of genomes. Because genome structures can vary considerably between individual cells of a population, interpreting ensemble-averaged Hi-C data can be challenging, in particular for long-range and interchromosomal interactions. We pioneered a probabilistic approach for the generation of a population of distinct diploid 3D genome structures consistent with all the chromatin-chromatin interaction probabilities from Hi-C experiments. Each structure in the population is a physical model of the genome in 3D. Analysis of these models yields new insights into the causes and the functional properties of the genome's organization in space and time. We provide a user-friendly software package, called PGS, which runs on local machines (for practice runs) and high-performance computing platforms. PGS takes a genome-wide Hi-C contact frequency matrix, along with information about genome segmentation, and produces an ensemble of 3D genome structures entirely consistent with the input. The software automatically generates an analysis report, and provides tools to extract and analyze the 3D coordinates of specific domains. Basic Linux command-line knowledge is sufficient for using this software. A typical running time of the pipeline is ∼3 d with 300 cores on a computer cluster to generate a population of 1,000 diploid genome structures at topological-associated domain (TAD)-level resolution.

  5. Effects of growth curve plasticity on size-structured population dynamics

    DEFF Research Database (Denmark)

    Zhang, Lai; Lin, Zhigui; Pedersen, Michael

    2011-01-01

    The physiological-structured population models assume that a fixed fraction of energy intake is utilized for individual growth and maintenance while the remaining for adult fertility. The assumption results in two concerns: energy loss for juveniles and a reproduction dilemma for adults. The dile...

  6. OCCURRENCE OF MENTAL DISORDERS IN POPULATION AFFECTED BY RADIATION ACCIDENT: STRUCTURE, DYNAMICS, RISK FACTORS

    Directory of Open Access Journals (Sweden)

    G. M. Rumyantseva

    2013-01-01

    Full Text Available The problem of damage to mental health of individuals born after theChernobylaccident remains of high interest, especially in the regions which have been subjected to significant contamination as a result of the accident. The article analyzes the dynamics of psychiatric morbidity in population of contaminated and non-contaminated areas of theBryanskregion according to state statistics and to files of neuropsychiatric ambulatory institutions. The incidence rates in the contaminated areas are found to be significantly different from those in the non-contaminated areas. Dynamics of mentally handicapped contingents after the radiation accident depends, at different stages of postaccidental situation, on a complex of factors: social, economic, radiation, and general toxic ones, which once again underlines the general social character of such disasters.

  7. [Dynamics of the population structure of the Escherichia coli recombinant strain during continuous culture].

    Science.gov (United States)

    Popova, L Iu; Lutskaia, N I; Bogucharov, A A; Bril'kov, A V; Pechurkin, N S

    1992-01-01

    The populational structure of the Escherichia coli strain Z905 containing the recombinant plasmid with the phenotype AprLux+ was studied in chemostat. It was shown that the stability of the ratio of plasmid containing cells and cells without plasmids depends in the first place on the presence of the selective factor (ampicillin) in the medium and on the sources of carbon and energy limiting growth.

  8. Stochastic and information-thermodynamic structures of population dynamics in a fluctuating environment

    Science.gov (United States)

    Kobayashi, Tetsuya J.; Sughiyama, Yuki

    2017-07-01

    Adaptation in a fluctuating environment is a process of fueling environmental information to gain fitness. Living systems have gradually developed strategies for adaptation from random and passive diversification of the phenotype to more proactive decision making, in which environmental information is sensed and exploited more actively and effectively. Understanding the fundamental relation between fitness and information is therefore crucial to clarify the limits and universal properties of adaptation. In this work, we elucidate the underlying stochastic and information-thermodynamic structure in this process, by deriving causal fluctuation relations (FRs) of fitness and information. Combined with a duality between phenotypic and environmental dynamics, the FRs reveal the limit of fitness gain, the relation of time reversibility with the achievability of the limit, and the possibility and condition for gaining excess fitness due to environmental fluctuation. The loss of fitness due to causal constraints and the limited capacity of real organisms is shown to be the difference between time-forward and time-backward path probabilities of phenotypic and environmental dynamics. Furthermore, the FRs generalize the concept of the evolutionary stable state (ESS) for fluctuating environment by giving the probability that the optimal strategy on average can be invaded by a suboptimal one owing to rare environmental fluctuation. These results clarify the information-thermodynamic structures in adaptation and evolution.

  9. Impact of the HIV epidemic on population and household structure: the dynamics and evidence to date.

    Science.gov (United States)

    Heuveline, Patrick

    2004-06-01

    HIV is contracted most frequently at birth and during early adulthood. The epidemic may thus impact the demographic structure and the household structure of affected populations. This paper reviews earlier evidence of such an impact, uses demographic theory to anticipate its changes over time, and reviews the most recent evidence for indications of these changes. Modest increases in the male : female ratio are beginning to show within certain age groups only (approximately 15% among 25-34 year olds). Similarly sized increases in the proportion of 15-29 year olds relative to 30-54 year olds are observed in some age pyramids. These 'youth bulges' are expected to fade out, whereas an aging effect phases in with the fertility impact of the epidemic. In the longer run, the size of all age groups will be reduced, but relatively less so for middle-aged adults. Proportions of orphans and widows have increased in the most affected countries. Fewer remarriage probabilities for widows were observed. Resulting increases in the proportion of female-headed households should only be temporary, as female mortality is catching up with male mortality. The number of double orphans is beginning to increase, but overall, orphans continue to live predominantly with a family member, most often the grandparents if not with the surviving parent. To date, the epidemic's impact on the population and household structure has been limited by demographic (aging) and social (adaptive movements of kin across households) processes that contribute to diffuse the epidemic throughout the entire population and all households.

  10. The effect of clumped population structure on the variability of spreading dynamics.

    Science.gov (United States)

    Black, Andrew J; House, Thomas; Keeling, Matt J; Ross, Joshua V

    2014-10-21

    Processes that spread through local contact, including outbreaks of infectious diseases, are inherently noisy, and are frequently observed to be far noisier than predicted by standard stochastic models that assume homogeneous mixing. One way to reproduce the observed levels of noise is to introduce significant individual-level heterogeneity with respect to infection processes, such that some individuals are expected to generate more secondary cases than others. Here we consider a population where individuals can be naturally aggregated into clumps (subpopulations) with stronger interaction within clumps than between them. This clumped structure induces significant increases in the noisiness of a spreading process, such as the transmission of infection, despite complete homogeneity at the individual level. Given the ubiquity of such clumped aggregations (such as homes, schools and workplaces for humans or farms for livestock) we suggest this as a plausible explanation for noisiness of many epidemic time series. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. [Population dynamics, urban structure, and production of living space in the metropolitan zone of Mexico City].

    Science.gov (United States)

    Schteingart, M

    1989-01-01

    "In this article, an attempt is made to account for certain trends in the growth and distribution of the population, and in the structuring of living space in the metropolitan zone of Mexico City.... Among the important conclusions of this essay are those having to do with the huge growth of some political-administrative units and the relation of this phenomenon to the practices followed by private realtors, often articulated with the policies and programs set by the State's housing agencies, as well as those that associate urban growth and expansion with the development of habitational spaces within the so-called 'formal' and 'informal' housing sectors." Data are from Mexican censuses and other official sources. (SUMMARY IN ENG) excerpt

  12. Structural Dynamics

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.

    The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering.......The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering....

  13. TYPOLOGY REGARDING THE DYNAMICS OF RELIGIOUS STRUCTURE OF THE POPULATION IN IAȘI COUNTY (1930-2011

    Directory of Open Access Journals (Sweden)

    Alexandra Georgiana PARASCA

    2016-09-01

    Full Text Available The aim of this study is to observe the denominationl structure dynamics of Iași county population and also to highlight areas of concentrations of these religious communities, having as an year range 1930-2011. The research methods are bibliographical study, census results and statistical data processed with Xlstat program, subsequently, the obtained cartographical material was processed with Adobe Illustrator. The research results validate the manifestation, during over eight decades included in the study period, of different processes regarding territorial reorganization of different denominational communities.

  14. Spatial structures in a simple model of population dynamics for parasite-host interactions

    Energy Technology Data Exchange (ETDEWEB)

    Dong, J. J.; Skinner, B.; Breecher, N.; Schmittmann, B.; Zia, R. K. P.

    2015-08-01

    Spatial patterning can be crucially important for understanding the behavior of interacting populations. Here we investigate a simple model of parasite and host populations in which parasites are random walkers that must come into contact with a host in order to reproduce. We focus on the spatial arrangement of parasites around a single host, and we derive using analytics and numerical simulations the necessary conditions placed on the parasite fecundity and lifetime for the populations long-term survival. We also show that the parasite population can be pushed to extinction by a large drift velocity, but, counterintuitively, a small drift velocity generally increases the parasite population.

  15. Giant panda (Ailuropoda melanoleuca) population dynamics and bamboo (subfamily Bambusoideae) life history: a structured population approach to examining carrying capacity when the prey are semelparous

    Science.gov (United States)

    Carter, J.; Ackleh, A.S.; Leonard, B.P.; Wang, Hongfang

    1999-01-01

    The giant panda, Ailuropoda melanoleuca, is a highly specialized Ursid whose diet consists almost entirely of various species of bamboo. Bamboo (Bambusoideae) is a grass subfamily whose species often exhibit a synchronous semelparity. Synchronous semelparity can create local drops in carrying capacity for the panda. We modeled the interaction of pandas and their bamboo food resources with an age structured panda population model linked to a natural history model of bamboo biomass dynamics based on literature values of bamboo biomass, and giant panda life history dynamics. This paper reports the results of our examination of the interaction between pandas and their bamboo food resource and its implications for panda conservation. In the model all panda populations were well below the carrying capacity of the habitat. The giant panda populations growth was most sensitive to changes in birth rates and removal of reproductive aged individuals. Periodic starvation that has been documented in conjunction with bamboo die-offs is probably related to the inability to move to other areas within the region where bamboo is still available. Based on the results of this model, giant panda conservation should concentrate on keeping breeding individuals in the wild, keep corridors to different bamboo species open to pandas, and to concentrate research on bamboo life history.

  16. Population dynamics of rural Ethiopia.

    Science.gov (United States)

    Bariabagar, H

    1978-01-01

    2 rounds of the national sample surveys, conducted by the central statistical office of Ethiopia during 1964-1967 and 1969-1971, provide the only comprehensive demographic data for the country and are the basis for this discussion of rural Ethiopia's population dynamics. The population of Ethiopia is predominantly rural. Agglomerations of 2000 and over inhabitants constitute about 14% of the population, and this indicates that Ethiopia has a low level of urbanization. In rural Ethiopia, international migration was negligent in the 1970's and the age structure can be assumed to be the results of past trends of fertility and mortality conditions. The reported crude birthrate (38.2), crude death rate (12.3) and infant mortality rate (90) of rural Ethiopia fall short of the averages for African countries. Prospects of population growth of rural Ethiopia would be immense. At the rate of natural increase of between 2.4 and 3.0% per annum, the population would double in 24-29 years. Regarding population issues, the programs of the National Democratic Revolution of Ethiopia faces the following main challenging problems: 1) carrying out national population censuses in order to obtain basic information for socialist planning; 2) minimizing or curtailing the existing high urban growth rates; 3) reducing rapidly growing population; and 5) mobilizing Ethiopian women to participate in the social, economic and political life of the country in order to create favorable conditions for future fertility reduction.

  17. Community structure, population dynamics and diversity of fungi in a full-scale membrane bioreactor (MBR) for urban wastewater treatment.

    Science.gov (United States)

    Maza-Márquez, P; Vilchez-Vargas, R; Kerckhof, F M; Aranda, E; González-López, J; Rodelas, B

    2016-11-15

    Community structure, population dynamics and diversity of fungi were monitored in a full-scale membrane bioreactor (MBR) operated throughout four experimental phases (Summer 2009, Autumn 2009, Summer 2010 and Winter, 2012) under different conditions, using the 18S-rRNA gene and the intergenic transcribed spacer (ITS2-region) as molecular markers, and a combination of temperature-gradient gel electrophoresis and 454-pyrosequencing. Both total and metabolically-active fungal populations were fingerprinted, by amplification of molecular markers from community DNA and retrotranscribed RNA, respectively. Fingerprinting and 454-pyrosequencing evidenced that the MBR sheltered a dynamic fungal community composed of a low number of species, in accordance with the knowledge of fungal diversity in freshwater environments, and displaying a medium-high level of functional organization with few numerically dominant phylotypes. Population shifts were experienced in strong correlation with the changes of environmental variables and operation parameters, with pH contributing the highest level of explanation. Phylotypes assigned to nine different fungal Phyla were detected, although the community was mainly composed of Ascomycota, Basidiomycota and Chytridiomycota/Blastocladiomycota. Prevailing fungal phylotypes were affiliated to Saccharomycetes and Chytridiomycetes/Blastocladiomycetes, which displayed antagonistic trends in their relative abundance throughout the experimental period. Fungi identified in the activated sludge were closely related to genera of relevance for the degradation of organic matter and trace-organic contaminants, as well as genera of dimorphic fungi potentially able to produce plant operational issues such as foaming or biofouling. Phylotypes closely related to genera of human and plant pathogenic fungi were also detected. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Fundamentals of structural dynamics

    CERN Document Server

    Craig, Roy R

    2006-01-01

    From theory and fundamentals to the latest advances in computational and experimental modal analysis, this is the definitive, updated reference on structural dynamics.This edition updates Professor Craig's classic introduction to structural dynamics, which has been an invaluable resource for practicing engineers and a textbook for undergraduate and graduate courses in vibrations and/or structural dynamics. Along with comprehensive coverage of structural dynamics fundamentals, finite-element-based computational methods, and dynamic testing methods, this Second Edition includes new and e

  19. Analysis of Researching Dynamics and Structure of Consumer Expenditure of the Russian Population

    OpenAIRE

    Buneeva, Raisa Ilyinichna; Buneeva, Maria Vitalyevna; Toropov, Valery Valeryevich; Khryuchkina, Elena Alekxeevna

    2016-01-01

    The model of consumption, consumer behavior (character of consumption), volume and structure of consumption are determined by the person’s style and lifestyle. In their turn, style and lifestyle are formed on the basis of the consumer’s level of life, i.e., the level of prosperity and benefits consumption defined by the needs, ways and forms to satisfy them based on the real consumer demand. The article shows the results of the analysis related to the researches that prove the influence of th...

  20. The dynamics of the population and peculiarities of the morphometric structure of Melophagus ovinus (Diptera, Hippoboscidae in Ukraine

    Directory of Open Access Journals (Sweden)

    V. A. Yevstafyeva

    2017-07-01

    Full Text Available The indices of the Melophagus ovinus (Linnaeus, 1758 population in Ukraine, and also the peculiarities of morphological and metric structure of the insects’ body at all the stages of their development within the conditions of the surveyed region were investigated. New data on morphometric differential signs of sexually mature males and females of sheep bloodsuckers were obtained. We established that M. ovinus is significantly widespread in Poltava and Zaporizhzhia regions, and parasitizes 26.1% of the examined sheep stock with the infection intensity of 92.7 ± 1.4 specimens and abundance – 24.7 specimens on one animal. The dynamics of M. ovinus population at different stages of development was characterized by the highest abundance of sexually mature males (11.1 specimens on one animal and females (8.9 specimens. The given index concerning pupae and larvae was considerably lower (4.2 and 0.5 specimens on one animal. It was found that post-embryonic and adult development stages of M. ovinus differ in their metric indices.The length and width of the pupae were 17.4% and 13.2% larger than those of the larvae. The sizes of males and females relative to the indices of body length, the length and width of head, thoracic, and abdominal segments, the length of maxillary palpus and the length and width of the proboscis in fact differ in their values. The differential morphological species signs of M. ovinus are the form and location of the oculi, antennae, the structure of the head segment of the body, and the mouthparts, and of sexual dimorphism – the distance from the caudal segment of the copulatory apparatus to the rear of the insect’s last abdominal segment.

  1. Roles of dispersal, stochasticity, and nonlinear dynamics in the spatial structuring of seasonal natural enemy-victim populations

    Science.gov (United States)

    Patrick C. Tobin; Ottar N. Bjornstad

    2005-01-01

    Natural enemy-victim systems may exhibit a range of dynamic space-time patterns. We used a theoretical framework to study spatiotemporal structuring in a transient natural enemy-victim system subject to differential rates of dispersal, stochastic forcing, and nonlinear dynamics. Highly mobile natural enemies that attacked less mobile victims were locally spatially...

  2. Integrating stochastic age-structured population dynamics into complex fisheries economic models for management evaluations: the North Sea saithe fishery as a case study

    NARCIS (Netherlands)

    Simons, S.L.; Bartelings, H.; Hamon, K.G.; Kempf, A.J.; Doring, R.; Temming, A.

    2014-01-01

    There is growing interest in bioeconomic models as tools for understanding pathways of fishery behaviour in order to assess the impact of alternative policies on natural resources. A model system is presented that combines stochastic age-structured population dynamics with complex fisheries

  3. Structure, Reactivity and Dynamics

    Indian Academy of Sciences (India)

    Understanding structure, reactivity and dynamics is the core issue in chemical ... functional theory (DFT) calculations, molecular dynamics (MD) simulations, light- ... between water and protein oxygen atoms, the superionic conductors which ...

  4. Africa population dynamics

    OpenAIRE

    Akinyoade, A.; Damen, J.C.M.; Dietz, A.J.; Kilama, B.B.; Omme, van, G.

    2014-01-01

    Africa's population has grown extremely rapidly over the last fifty years from 289 million inhabitants in 1961 to more than 1 billion today. This is a growth rate of 350% in just half a century and the number of urban residents has increased even more quickly: from 65 million in 1960 to 460 million today, or from 20% to 46% of the population as a whole. Demographers predict that soon more than 50% of all Africans will be living in cities. The average life expectancy, literacy rates and primar...

  5. Africa population dynamics

    NARCIS (Netherlands)

    Akinyoade, A.; Damen, J.C.M.; Dietz, A.J.; Kilama, B.B.; Omme, van G.

    2014-01-01

    Africa's population has grown extremely rapidly over the last fifty years from 289 million inhabitants in 1961 to more than 1 billion today. This is a growth rate of 350% in just half a century and the number of urban residents has increased even more quickly: from 65 million in 1960 to 460 million

  6. Revisiting reproduction and population structure and dynamics of Procambarus clarkii eight years after its introduction into Lake Trasimeno (Central Italy

    Directory of Open Access Journals (Sweden)

    Dörr A.J.M.

    2013-06-01

    Full Text Available Understanding population dynamics and regulation is fundamental for predicting establishment and spread of invasive alien species. In addition, the population biology of invasive alien species offers an opportunity to study basic ecological processes. In this context, we investigated reproductive and growth plasticity in the invasive crayfish Procambarus clarkii in Lake Trasimeno (central Italy. In total, 3153 crayfish were collected monthly from June 2007 to July 2009. The molt status was assessed by evaluating the exoskeleton hardness. To assess the reproductive cycle, the gonado-somatic and wet hepato-somatic indices were calculated for females. The reproductive status of males was appraised as well. We estimated growth and longevity using the von Bertalanffy growth function, and calculated the total, natural and fishing mortality indices. We then compared our present data with those obtained from the same population eight years before. Our results indicate some changes in population dynamics and in both molting and reproductive periods since the initial invasion of the shallow lake investigated. Long-term differences in the life history of the Trasimeno population may be the result of selective pressures different from those of the native range, but may also result from colonization events and human interference caused by professional fishing activities.

  7. Structural Dynamics Laboratory (SDL)

    Data.gov (United States)

    Federal Laboratory Consortium — Structural dynamic testing is performed to verify the survivability of a component or assembly when exposed to vibration stress screening, or a controlled simulation...

  8. Bacterioplankton communities of Crater Lake, OR: Dynamic changes with euphotic zone food web structure and stable deep water populations

    Science.gov (United States)

    Urbach, E.; Vergin, K.L.; Larson, G.L.; Giovannoni, S.J.

    2007-01-01

    The distribution of bacterial and archaeal species in Crater Lake plankton varies dramatically over depth and with time, as assessed by hybridization of group-specific oligonucleotides to RNA extracted from lakewater. Nonmetric, multidimensional scaling (MDS) analysis of relative bacterial phylotype densities revealed complex relationships among assemblages sampled from depth profiles in July, August and September of 1997 through 1999. CL500-11 green nonsulfur bacteria (Phylum Chloroflexi) and marine Group I crenarchaeota are consistently dominant groups in the oxygenated deep waters at 300 and 500 m. Other phylotypes found in the deep waters are similar to surface and mid-depth populations and vary with time. Euphotic zone assemblages are dominated either by ??-proteobacteria or CL120-10 verrucomicrobia, and ACK4 actinomycetes. MDS analyses of euphotic zone populations in relation to environmental variables and phytoplankton and zooplankton population structures reveal apparent links between Daphnia pulicaria zooplankton population densities and microbial community structure. These patterns may reflect food web interactions that link kokanee salmon population densities to community structure of the bacterioplankton, via fish predation on Daphnia with cascading consequences to Daphnia bacterivory and predation on bacterivorous protists. These results demonstrate a stable bottom-water microbial community. They also extend previous observations of food web-driven changes in euphotic zone bacterioplankton community structure to an oligotrophic setting. ?? 2007 Springer Science+Business Media B.V.

  9. Evolutionary dynamics of cooperation in neutral populations

    Science.gov (United States)

    Szolnoki, Attila; Perc, Matjaž

    2018-01-01

    Cooperation is a difficult proposition in the face of Darwinian selection. Those that defect have an evolutionary advantage over cooperators who should therefore die out. However, spatial structure enables cooperators to survive through the formation of homogeneous clusters, which is the hallmark of network reciprocity. Here we go beyond this traditional setup and study the spatiotemporal dynamics of cooperation in a population of populations. We use the prisoner's dilemma game as the mathematical model and show that considering several populations simultaneously gives rise to fascinating spatiotemporal dynamics and pattern formation. Even the simplest assumption that strategies between different populations are payoff-neutral with one another results in the spontaneous emergence of cyclic dominance, where defectors of one population become prey of cooperators in the other population, and vice versa. Moreover, if social interactions within different populations are characterized by significantly different temptations to defect, we observe that defectors in the population with the largest temptation counterintuitively vanish the fastest, while cooperators that hang on eventually take over the whole available space. Our results reveal that considering the simultaneous presence of different populations significantly expands the complexity of evolutionary dynamics in structured populations, and it allows us to understand the stability of cooperation under adverse conditions that could never be bridged by network reciprocity alone.

  10. Basic structural dynamics

    CERN Document Server

    Anderson, James C

    2012-01-01

    A concise introduction to structural dynamics and earthquake engineering Basic Structural Dynamics serves as a fundamental introduction to the topic of structural dynamics. Covering single and multiple-degree-of-freedom systems while providing an introduction to earthquake engineering, the book keeps the coverage succinct and on topic at a level that is appropriate for undergraduate and graduate students. Through dozens of worked examples based on actual structures, it also introduces readers to MATLAB, a powerful software for solving both simple and complex structural d

  11. Dynamical systems in population biology

    CERN Document Server

    Zhao, Xiao-Qiang

    2017-01-01

    This research monograph provides an introduction to the theory of nonautonomous semiflows with applications to population dynamics. It develops dynamical system approaches to various evolutionary equations such as difference, ordinary, functional, and partial differential equations, and pays more attention to periodic and almost periodic phenomena. The presentation includes persistence theory, monotone dynamics, periodic and almost periodic semiflows, basic reproduction ratios, traveling waves, and global analysis of prototypical population models in ecology and epidemiology. Research mathematicians working with nonlinear dynamics, particularly those interested in applications to biology, will find this book useful. It may also be used as a textbook or as supplementary reading for a graduate special topics course on the theory and applications of dynamical systems. Dr. Xiao-Qiang Zhao is a University Research Professor at Memorial University of Newfoundland, Canada. His main research interests involve applied...

  12. Structural Dynamics, Vol. 9

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.

    This book has been prepared for the course on Computational Dynamics given at the 8th semester at the structural program in civil engineering at Aalborg University.......This book has been prepared for the course on Computational Dynamics given at the 8th semester at the structural program in civil engineering at Aalborg University....

  13. Nonlinear dynamics of structures

    CERN Document Server

    Oller, Sergio

    2014-01-01

    This book lays the foundation of knowledge that will allow a better understanding of nonlinear phenomena that occur in structural dynamics.   This work is intended for graduate engineering students who want to expand their knowledge on the dynamic behavior of structures, specifically in the nonlinear field, by presenting the basis of dynamic balance in non‐linear behavior structures due to the material and kinematics mechanical effects.   Particularly, this publication shows the solution of the equation of dynamic equilibrium for structure with nonlinear time‐independent materials (plasticity, damage and frequencies evolution), as well as those time dependent non‐linear behavior materials (viscoelasticity and viscoplasticity). The convergence conditions for the non‐linear dynamic structure solution  are studied, and the theoretical concepts and its programming algorithms are presented.  

  14. Nonlinear Relaxation in Population Dynamics

    Science.gov (United States)

    Cirone, Markus A.; de Pasquale, Ferdinando; Spagnolo, Bernardo

    We analyze the nonlinear relaxation of a complex ecosystem composed of many interacting species. The ecological system is described by generalized Lotka-Volterra equations with a multiplicative noise. The transient dynamics is studied in the framework of the mean field theory and with random interaction between the species. We focus on the statistical properties of the asymptotic behaviour of the time integral of the ith population and on the distribution of the population and of the local field.

  15. Population dynamics, structure and behavior of Anopheles darlingi in a rural settlement in the Amazon rainforest of Acre, Brazil.

    Science.gov (United States)

    Moutinho, Paulo Rufalco; Gil, Luis Herman Soares; Cruz, Rafael Bastos; Ribolla, Paulo Eduardo Martins

    2011-06-24

    Anopheles darlingi is the major vector of malaria in South America, and its behavior and distribution has epidemiological importance to biomedical research. In Brazil, An. darlingi is found in the northern area of the Amazon basin, where 99.5% of the disease is reported. The study area, known as Ramal do Granada, is a rural settlement inside the Amazon basin in the state of Acre. Population variations and density have been analysed by species behaviour, and molecular analysis has been measured by ND4 mitochondrial gene sequencing. The results show higher density in collections near a recent settlement, suggesting that a high level of colonization decreases the vector presence. The biting activity showed higher activity at twilight and major numbers of mosquitos in the remaining hours of the night in months of high density. From a sample of 110 individual mosquitoes, 18 different haplotypes were presented with a diversity index of 0.895, which is higher than that found in other Anopheles studies. An. darlingi depends on forested regions for their larval and adult survival. In months with higher population density, the presence of mosquitoes persisted in the second part of the night, increasing the vector capacity of the species. Despite the intra-population variation in the transition to rainy season, the seasonal distribution of haplotypes shows no change in the structure population of An. darlingi.

  16. Dynamic term structure models

    DEFF Research Database (Denmark)

    Andreasen, Martin Møller; Meldrum, Andrew

    This paper studies whether dynamic term structure models for US nominal bond yields should enforce the zero lower bound by a quadratic policy rate or a shadow rate specification. We address the question by estimating quadratic term structure models (QTSMs) and shadow rate models with at most four...

  17. Population dynamics in variable environments

    CERN Document Server

    Tuljapurkar, Shripad

    1990-01-01

    Demography relates observable facts about individuals to the dynamics of populations. If the dynamics are linear and do not change over time, the classical theory of Lotka (1907) and Leslie (1945) is the central tool of demography. This book addresses the situation when the assumption of constancy is dropped. In many practical situations, a population will display unpredictable variation over time in its vital rates, which must then be described in statistical terms. Most of this book is concerned with the theory of populations which are subject to random temporal changes in their vital rates, although other kinds of variation (e. g. , cyclical) are also dealt with. The central questions are: how does temporal variation work its way into a population's future, and how does it affect our interpretation of a population's past. The results here are directed at demographers of humans and at popula­ tion biologists. The uneven mathematical level is dictated by the material, but the book should be accessible to re...

  18. Structural dynamics in FBR

    International Nuclear Information System (INIS)

    Bhoje, S.B.

    2003-01-01

    In view of thin walled large diameter shell structures with associated fluid effects, structural dynamics problems are very critical in a fast breeder reactor. Structural characteristics and consequent structural dynamics problems in typical pool type Fast Breeder Reactor are highlighted. A few important structural dynamics problems are pump induced as well as flow induced vibrations, seismic excitations, pressure transients in the intermediate heat exchangers and pipings due to a large sodium water reaction in the steam generator, and core disruptive accident loadings. The vibration problems which call for identification of excitation forces, formulation of special governing equations and detailed analysis with fluid structure interaction and sloshing effects, particularly for the components such as PSP, inner vessel, CP, CSRDM and TB are elaborated. Seismic design issues are presented in a comprehensive way. Other transient loadings which are specific to FBR, resulting from sodium-water reaction and core disruptive accident are highlighted. A few important results of theoretical as well as experimental works carried out for 500 MWe Prototype Fast Breeder Reactor (PFBR), in the domain of structural dynamics are presented. (author)

  19. Dynamics of structures

    CERN Document Server

    Paultre, Patrick

    2013-01-01

    This book covers structural dynamics from a theoretical and algorithmic approach. It covers systems with both single and multiple degrees-of-freedom. Numerous case studies are given to provide the reader with a deeper insight into the practicalities of the area, and the solutions to these case studies are given in terms of real-time and frequency in both geometric and modal spaces. Emphasis is also given to the subject of seismic loading. The text is based on many lectures on the subject of structural dynamics given at numerous institutions and thus will be an accessible and practical aid to

  20. The Dynamical Analysis of a Prey-Predator Model with a Refuge-Stage Structure Prey Population

    Directory of Open Access Journals (Sweden)

    Raid Kamel Naji

    2016-01-01

    Full Text Available We proposed and analyzed a mathematical model dealing with two species of prey-predator system. It is assumed that the prey is a stage structure population consisting of two compartments known as immature prey and mature prey. It has a refuge capability as a defensive property against the predation. The existence, uniqueness, and boundedness of the solution of the proposed model are discussed. All the feasible equilibrium points are determined. The local and global stability analysis of them are investigated. The occurrence of local bifurcation (such as saddle node, transcritical, and pitchfork near each of the equilibrium points is studied. Finally, numerical simulations are given to support the analytic results.

  1. Modelling Pseudocalanus elongatus stage-structured population dynamics embedded in a water column ecosystem model for the northern North Sea

    Science.gov (United States)

    Moll, Andreas; Stegert, Christoph

    2007-01-01

    This paper outlines an approach to couple a structured zooplankton population model with state variables for eggs, nauplii, two copepodites stages and adults adapted to Pseudocalanus elongatus into the complex marine ecosystem model ECOHAM2 with 13 state variables resolving the carbon and nitrogen cycle. Different temperature and food scenarios derived from laboratory culture studies were examined to improve the process parameterisation for copepod stage dependent development processes. To study annual cycles under realistic weather and hydrographic conditions, the coupled ecosystem-zooplankton model is applied to a water column in the northern North Sea. The main ecosystem state variables were validated against observed monthly mean values. Then vertical profiles of selected state variables were compared to the physical forcing to study differences between zooplankton as one biomass state variable or partitioned into five population state variables. Simulated generation times are more affected by temperature than food conditions except during the spring phytoplankton bloom. Up to six generations within the annual cycle can be discerned in the simulation.

  2. Day-to-Day Dynamics of Commensal Escherichia coli in Zimbabwean Cows Evidence Temporal Fluctuations within a Host-Specific Population Structure.

    Science.gov (United States)

    Massot, Méril; Couffignal, Camille; Clermont, Olivier; D'Humières, Camille; Chatel, Jérémie; Plault, Nicolas; Andremont, Antoine; Caron, Alexandre; Mentré, France; Denamur, Erick

    2017-07-01

    qualitative aspects of E. coli commensal populations, with a focus on both Shiga toxin-producing E. coli and antibiotic-resistant E. coli strains. We show that the structure of these commensal populations was highly specific to the host, even though the cows ate and roamed together, and was highly dynamic between days. Such data are of importance to understand the ecological forces that drive the dynamics of the emergence of E. coli clones of particular interest within the gastrointestinal tract and their transmission between hosts. Copyright © 2017 American Society for Microbiology.

  3. Nonlinear dynamics of interacting populations

    CERN Document Server

    Bazykin, Alexander D

    1998-01-01

    This book contains a systematic study of ecological communities of two or three interacting populations. Starting from the Lotka-Volterra system, various regulating factors are considered, such as rates of birth and death, predation and competition. The different factors can have a stabilizing or a destabilizing effect on the community, and their interplay leads to increasingly complicated behavior. Studying and understanding this path to greater dynamical complexity of ecological systems constitutes the backbone of this book. On the mathematical side, the tool of choice is the qualitative the

  4. Dynamic Data Structures

    DEFF Research Database (Denmark)

    Kejlberg-Rasmussen, Casper

    statements about our data structure, which are based on the structure of the underlying problem, that we are trying to solve. We can rely on the properties of the invariants when performing queries, and in return we need to ensure that the invariants remain true after we perform updates. When designing data......In this thesis I will address three dynamic data structure problems using the concept of invariants. The first problem is maintaining a dynamically changing set of keys – a dictionary – where the queries we can ask are: does it contain a given key? and what is the preceding (or succeeding) key...... to a given key? The updates we can do are: inserting a new key or deleting a given key. Our dictionary has the working set property, which means that the running time of a query depends on the query distribution. Specifically the time to search for a key depends on when we last searched for it. Our data...

  5. Molecular population dynamics of DNA structures in a bcl-2 promoter sequence is regulated by small molecules and the transcription factor hnRNP LL.

    Science.gov (United States)

    Cui, Yunxi; Koirala, Deepak; Kang, HyunJin; Dhakal, Soma; Yangyuoru, Philip; Hurley, Laurence H; Mao, Hanbin

    2014-05-01

    Minute difference in free energy change of unfolding among structures in an oligonucleotide sequence can lead to a complex population equilibrium, which is rather challenging for ensemble techniques to decipher. Herein, we introduce a new method, molecular population dynamics (MPD), to describe the intricate equilibrium among non-B deoxyribonucleic acid (DNA) structures. Using mechanical unfolding in laser tweezers, we identified six DNA species in a cytosine (C)-rich bcl-2 promoter sequence. Population patterns of these species with and without a small molecule (IMC-76 or IMC-48) or the transcription factor hnRNP LL are compared to reveal the MPD of different species. With a pattern recognition algorithm, we found that IMC-48 and hnRNP LL share 80% similarity in stabilizing i-motifs with 60 s incubation. In contrast, IMC-76 demonstrates an opposite behavior, preferring flexible DNA hairpins. With 120-180 s incubation, IMC-48 and hnRNP LL destabilize i-motifs, which has been previously proposed to activate bcl-2 transcriptions. These results provide strong support, from the population equilibrium perspective, that small molecules and hnRNP LL can modulate bcl-2 transcription through interaction with i-motifs. The excellent agreement with biochemical results firmly validates the MPD analyses, which, we expect, can be widely applicable to investigate complex equilibrium of biomacromolecules. © 2014 The Author(s). Published by Oxford University Press [on behalf of Nucleic Acids Research].

  6. Change in the structures, dynamics and disease-related mortality rates of the population of Qatari nationals: 2007–2011

    Directory of Open Access Journals (Sweden)

    Mohamed H. Al-Thani

    2014-12-01

    Conclusion: Public health strategies, approaches and programs developed to reduce disease burden and the related death, should be tailored to target the population of Qatari nationals which exhibits characteristics that vary from the entire Qatari population.

  7. Perturbation analysis of transient population dynamics using matrix projection models

    DEFF Research Database (Denmark)

    Stott, Iain

    2016-01-01

    Non-stable populations exhibit short-term transient dynamics: size, growth and structure that are unlike predicted long-term asymptotic stable, stationary or equilibrium dynamics. Understanding transient dynamics of non-stable populations is important for designing effective population management...... these methods to know exactly what is being measured. Despite a wealth of existing methods, I identify some areas that would benefit from further development....

  8. Population dynamics and rural poverty.

    Science.gov (United States)

    Fong, M S

    1985-01-01

    An overview of the relationship between demographic factors and rural poverty in developing countries is presented. The author examines both the micro- and macro-level perspectives of this relationship and the determinants and consequences of population growth. The author notes the prospects for a rapid increase in the rural labor force and considers its implications for the agricultural production structure and the need for institutional change. Consideration is also given to the continuing demand for high fertility at the family level and the role of infant and child mortality in the poverty cycle. "The paper concludes by drawing attention to the need for developing the mechanism for reconciliation of social and individual optima with respect to family size and population growth." The need for rural development projects that take demographic factors into account is stressed as is the need for effective population programs. (summary in FRE, ITA) excerpt

  9. Delay differential systems for tick population dynamics.

    Science.gov (United States)

    Fan, Guihong; Thieme, Horst R; Zhu, Huaiping

    2015-11-01

    Ticks play a critical role as vectors in the transmission and spread of Lyme disease, an emerging infectious disease which can cause severe illness in humans or animals. To understand the transmission dynamics of Lyme disease and other tick-borne diseases, it is necessary to investigate the population dynamics of ticks. Here, we formulate a system of delay differential equations which models the stage structure of the tick population. Temperature can alter the length of time delays in each developmental stage, and so the time delays can vary geographically (and seasonally which we do not consider). We define the basic reproduction number [Formula: see text] of stage structured tick populations. The tick population is uniformly persistent if [Formula: see text] and dies out if [Formula: see text]. We present sufficient conditions under which the unique positive equilibrium point is globally asymptotically stable. In general, the positive equilibrium can be unstable and the system show oscillatory behavior. These oscillations are primarily due to negative feedback within the tick system, but can be enhanced by the time delays of the different developmental stages.

  10. Population structure in Argentina.

    Directory of Open Access Journals (Sweden)

    Marina Muzzio

    Full Text Available We analyzed 391 samples from 12 Argentinian populations from the Center-West, East and North-West regions with the Illumina Human Exome Beadchip v1.0 (HumanExome-12v1-A. We did Principal Components analysis to infer patterns of populational divergence and migrations. We identified proportions and patterns of European, African and Native American ancestry and found a correlation between distance to Buenos Aires and proportion of Native American ancestry, where the highest proportion corresponds to the Northernmost populations, which is also the furthest from the Argentinian capital. Most of the European sources are from a South European origin, matching historical records, and we see two different Native American components, one that spreads all over Argentina and another specifically Andean. The highest percentages of African ancestry were in the Center West of Argentina, where the old trade routes took the slaves from Buenos Aires to Chile and Peru. Subcontinentaly, sources of this African component are represented by both West Africa and groups influenced by the Bantu expansion, the second slightly higher than the first, unlike North America and the Caribbean, where the main source is West Africa. This is reasonable, considering that a large proportion of the ships arriving at the Southern Hemisphere came from Mozambique, Loango and Angola.

  11. Analysis of Population Dynamics in World Economy

    OpenAIRE

    Martin, Gress

    2011-01-01

    Population dynamics is an important topic in current world economy. The size and growth of population have an impact on economic growth and development of individual countries and vice versa, economic development influences demographic variables in a country. The aim of the article is to analyze historical development of world population, population stock change and relations between population stock change and economic development.

  12. Allee effects on population dynamics with delay

    International Nuclear Information System (INIS)

    Celik, C.; Merdan, H.; Duman, O.; Akin, O.

    2008-01-01

    In this paper, we study the stability analysis of equilibrium points of population dynamics with delay when the Allee effect occurs at low population density. Mainly, our mathematical results and numerical simulations point to the stabilizing effect of the Allee effects on population dynamics with delay

  13. Structured population models in biology and epidemiology

    CERN Document Server

    Ruan, Shigui

    2008-01-01

    This book consists of six chapters written by leading researchers in mathematical biology. These chapters present recent and important developments in the study of structured population models in biology and epidemiology. Topics include population models structured by age, size, and spatial position; size-structured models for metapopulations, macroparasitc diseases, and prion proliferation; models for transmission of microparasites between host populations living on non-coincident spatial domains; spatiotemporal patterns of disease spread; method of aggregation of variables in population dynamics; and biofilm models. It is suitable as a textbook for a mathematical biology course or a summer school at the advanced undergraduate and graduate level. It can also serve as a reference book for researchers looking for either interesting and specific problems to work on or useful techniques and discussions of some particular problems.

  14. Modeling evolutionary games in populations with demographic structure

    DEFF Research Database (Denmark)

    Li, Xiang-Yi; Giaimo, Stefano; Baudisch, Annette

    2015-01-01

    interactions, but usually omits life history and the demographic structure of the population. Here we show how an integration of both aspects can substantially alter the underlying evolutionary dynamics. We study the replicator dynamics of strategy interactions in life stage structured populations. Individuals...

  15. Population dynamics at high Reynolds number

    NARCIS (Netherlands)

    Perlekar, P.; Benzi, R.; Nelson, D.R.; Toschi, F.

    2010-01-01

    We study the statistical properties of population dynamics evolving in a realistic two-dimensional compressible turbulent velocity field. We show that the interplay between turbulent dynamics and population growth and saturation leads to quasi-localization and a remarkable reduction in the carrying

  16. Population dynamics and population control of Galium aparine L.

    NARCIS (Netherlands)

    Weide, van der R.Y.

    1993-01-01

    The population biology of Galium aparine L. needs to be better understood, in order to be able to rationalize decisions about the short- and long-term control of this weed species for different cropping practices.

    A population dynamics model was developed to

  17. Distributed Dynamic Condition Response Structures

    DEFF Research Database (Denmark)

    Hildebrandt, Thomas; Mukkamala, Raghava Rao

    We present distributed dynamic condition response structures as a declarative process model inspired by the workflow language employed by our industrial partner and conservatively generalizing labelled event structures. The model adds to event structures the possibility to 1) finitely specify...... as a labelled transition system. Exploration of the relationship between dynamic condition response structures and traditional models for concurrency, application to more complex scenarios, and further extensions of the model is left to future work....

  18. provisional analysis of population dynamics

    Indian Academy of Sciences (India)

    Nicholas Mitchison

    2018-01-11

    Jan 11, 2018 ... Western populations covered by OMIM, or are so mediated to a lesser extent. This we attribute ... tlenecks affected southern Asia: a coalescence analysis of ... included comprehensive survey of previous work (Atkin- son et al.

  19. The first phylogeographic population structure and analysis of transmission dynamics of M. africanum West African 1--combining molecular data from Benin, Nigeria and Sierra Leone.

    Directory of Open Access Journals (Sweden)

    Florian Gehre

    Full Text Available Mycobacterium africanum is an important cause of tuberculosis (TB in West Africa. So far, two lineages called M. africanum West African 1 (MAF1 and M. africanum West African 2 (MAF2 have been defined. Although several molecular studies on MAF2 have been conducted to date, little is known about MAF1. As MAF1 is mainly present in countries around the Gulf of Guinea we aimed to estimate its prevalence in Cotonou, the biggest city in Benin. Between 2005-06 we collected strains in Cotonou/Benin and genotyped them using spoligo- and 12-loci-MIRU-VNTR-typing. Analyzing 194 isolates, we found that 31% and 6% were MAF1 and MAF2, respectively. Therefore Benin is one of the countries with the highest prevalence (37% of M. africanum in general and MAF1 in particular. Moreover, we combined our data from Benin with publicly available genotyping information from Nigeria and Sierra Leone, and determined the phylogeographic population structure and genotypic clustering of MAF1. Within the MAF1 lineage, we identified an unexpected great genetic variability with the presence of at least 10 sub-lineages. Interestingly, 8 out of 10 of the discovered sub-lineages not only clustered genetically but also geographically. Besides showing a remarkable local restriction to certain regions in Benin and Nigeria, the sub-lineages differed dramatically in their capacity to transmit within the human host population. While identifying Benin as one of the countries with the highest overall prevalence of M. africanum, this study also contains the first detailed description of the transmission dynamics and phylogenetic composition of the MAF1 lineage.

  20. [Population dynamics and development in the Caribbean].

    Science.gov (United States)

    Boland, B

    1995-12-01

    The impact is examined of socioeconomic factors on Caribbean population dynamics. This work begins by describing the socioeconomic context of the late 1980s and early 1990s, under the influence of the economic changes and crises of the 1980s. The small size, openness, dependency, and lack of diversification of the Caribbean economies have made them vulnerable to external pressures. The Bahamas and Belize had economic growth rates exceeding 5% annually during 1981-90, but most of the countries had low or negative growth. Unemployment, poverty, the structural adjustment measures adopted in the mid-1980s, and declines in social spending exacerbated general economic conditions. In broad terms, the population situation of the Caribbean is marked by diversity of sizes and growth rates. A few countries oriented toward services and tourism had demographic growth rates exceeding 3%, while at least 7 had almost no growth or negative growth. Population growth rates reflected different combinations of natural increase and migration. Crude death rates ranged from around 5/1000 to 11/1000, except in Haiti, and all countries of the region except Haiti had life expectancies of 70 years or higher. Despite fertility decline, the average crude birth rate was still relatively high at 26/1000, and the rate of natural increase was 1.8% annually for the region. Nearly half of the regional population was under 15 or over 65 years old. The body of this work provides greater detail on mortality patterns, variations by sex, infant mortality, causes of death, and implications for policy. The discussion of fertility includes general patterns and trends, age specific fertility rates, contraceptive prevalence, levels of adolescent fertility and age factors in adolescent sexual behavior, characteristics of adolescent unions, contraceptive usage, health and social consequences of adolescent childbearing, and the search for solutions. The final section describes the magnitude and causes of

  1. POPULATION DYNAMICS OF PSEUDO-NITZSCHIA SPECIES ...

    African Journals Online (AJOL)

    nb

    current study aimed at assessing the population dynamics of Pseudo-nitzschia ... and to the developing aquaculture industry ... B. Hotel. Pangani Island. Bongoyo Island. Mbudya Island. Msasani Bay ... Salinity values did not show clear trends.

  2. Structural dynamic modification

    Indian Academy of Sciences (India)

    and stiffness matrices) andaor modal parameters, in order to acquire some ... For the above reasons, another modification approach is presented here ... The data necessary to solve the direct problem are dynamic behaviour of the original.

  3. Dynamic testing of cable structures

    Directory of Open Access Journals (Sweden)

    Caetano Elsa

    2015-01-01

    Full Text Available The paper discusses the role of dynamic testing in the study of cable structures. In this context, the identification of cable force based on vibration measurements is discussed. Vibration and damping assessment are then introduced as the focus of dynamic monitoring systems, and particular aspects of the structural behaviour under environmental loads are analysed. Diverse application results are presented to support the discussion centred on cable-stayed bridges, roof structures, a guyed mast and a transmission line.

  4. Stochastic population dynamic models as probability networks

    Science.gov (United States)

    M.E. and D.C. Lee. Borsuk

    2009-01-01

    The dynamics of a population and its response to environmental change depend on the balance of birth, death and age-at-maturity, and there have been many attempts to mathematically model populations based on these characteristics. Historically, most of these models were deterministic, meaning that the results were strictly determined by the equations of the model and...

  5. Modeling the population dynamics of Pacific yew.

    Science.gov (United States)

    Richard T. Busing; Thomas A. Spies

    1995-01-01

    A study of Pacific yew (Taxus brevifolia Nutt.) population dynamics in the mountains of western Oregon and Washington was based on a combination of long-term population data and computer modeling. Rates of growth and mortality were low in mature and old-growth forest stands. Diameter growth at breast height ranged from 0 to 3 centimeters per decade...

  6. Population dynamical responses to climate change

    DEFF Research Database (Denmark)

    Forchhammer, Mads; Schmidt, Niels Martin; Høye, Toke Thomas

    2008-01-01

    approaches, we analyse concurrently the influence of climatic variability and trophic interactions on the temporal population dynamics of species in the terrestrial vertebrate community at Zackenberg. We describe and contrast the population dynamics of three predator species (arctic fox Alopex lagopus, stoat...... of arctic fox were not significantly related to changes in lemming abundance, both the stoat and the breeding of long-tailed skua were mainly related to lemming dynamics. The predator-prey system at Zackenberg differentiates from previously described systems in high-arctic Greenland, which, we suggest...

  7. Population dynamics on heterogeneous bacterial substrates

    Science.gov (United States)

    Mobius, Wolfram; Murray, Andrew W.; Nelson, David R.

    2012-02-01

    How species invade new territories and how these range expansions influence the population's genotypes are important questions in the field of population genetics. The majority of work addressing these questions focuses on homogeneous environments. Much less is known about the population dynamics and population genetics when the environmental conditions are heterogeneous in space. To better understand range expansions in two-dimensional heterogeneous environments, we employ a system of bacteria and bacteriophage, the viruses of bacteria. Thereby, the bacteria constitute the environment in which a population of bacteriophages expands. The spread of phage constitutes itself in lysis of bacteria and thus formation of clear regions on bacterial lawns, called plaques. We study the population dynamics and genetics of the expanding page for various patterns of environments.

  8. Impact of Commercial Strain Use on Saccharomyces cerevisiae Population Structure and Dynamics in Pinot Noir Vineyards and Spontaneous Fermentations of a Canadian Winery.

    Directory of Open Access Journals (Sweden)

    Jonathan T Martiniuk

    Full Text Available Wine is produced by one of two methods: inoculated fermentation, where a commercially-produced, single Saccharomyces cerevisiae (S. cerevisiae yeast strain is used; or the traditional spontaneous fermentation, where yeast present on grape and winery surfaces carry out the fermentative process. Spontaneous fermentations are characterized by a diverse succession of yeast, ending with one or multiple strains of S. cerevisiae dominating the fermentation. In wineries using both fermentation methods, commercial strains may dominate spontaneous fermentations. We elucidate the impact of the winery environment and commercial strain use on S. cerevisiae population structure in spontaneous fermentations over two vintages by comparing S. cerevisiae populations in aseptically fermented grapes from a Canadian Pinot Noir vineyard to S. cerevisiae populations in winery-conducted fermentations of grapes from the same vineyard. We also characterize the vineyard-associated S. cerevisiae populations in two other geographically separate Pinot Noir vineyards farmed by the same winery. Winery fermentations were not dominated by commercial strains, but by a diverse number of strains with genotypes similar to commercial strains, suggesting that a population of S. cerevisiae derived from commercial strains is resident in the winery. Commercial and commercial-related yeast were also identified in the three vineyards examined, although at a lower frequency. There is low genetic differentiation and S. cerevisiae population structure between vineyards and between the vineyard and winery that persisted over both vintages, indicating commercial yeast are a driver of S. cerevisiae population structure. We also have evidence of distinct and persistent populations of winery and vineyard-associated S. cerevisiae populations unrelated to commercial strains. This study is the first to characterize S. cerevisiae populations in Canadian vineyards.

  9. Impact of Commercial Strain Use on Saccharomyces cerevisiae Population Structure and Dynamics in Pinot Noir Vineyards and Spontaneous Fermentations of a Canadian Winery.

    Science.gov (United States)

    Martiniuk, Jonathan T; Pacheco, Braydon; Russell, Gordon; Tong, Stephanie; Backstrom, Ian; Measday, Vivien

    2016-01-01

    Wine is produced by one of two methods: inoculated fermentation, where a commercially-produced, single Saccharomyces cerevisiae (S. cerevisiae) yeast strain is used; or the traditional spontaneous fermentation, where yeast present on grape and winery surfaces carry out the fermentative process. Spontaneous fermentations are characterized by a diverse succession of yeast, ending with one or multiple strains of S. cerevisiae dominating the fermentation. In wineries using both fermentation methods, commercial strains may dominate spontaneous fermentations. We elucidate the impact of the winery environment and commercial strain use on S. cerevisiae population structure in spontaneous fermentations over two vintages by comparing S. cerevisiae populations in aseptically fermented grapes from a Canadian Pinot Noir vineyard to S. cerevisiae populations in winery-conducted fermentations of grapes from the same vineyard. We also characterize the vineyard-associated S. cerevisiae populations in two other geographically separate Pinot Noir vineyards farmed by the same winery. Winery fermentations were not dominated by commercial strains, but by a diverse number of strains with genotypes similar to commercial strains, suggesting that a population of S. cerevisiae derived from commercial strains is resident in the winery. Commercial and commercial-related yeast were also identified in the three vineyards examined, although at a lower frequency. There is low genetic differentiation and S. cerevisiae population structure between vineyards and between the vineyard and winery that persisted over both vintages, indicating commercial yeast are a driver of S. cerevisiae population structure. We also have evidence of distinct and persistent populations of winery and vineyard-associated S. cerevisiae populations unrelated to commercial strains. This study is the first to characterize S. cerevisiae populations in Canadian vineyards.

  10. How Resource Phenology Affects Consumer Population Dynamics.

    Science.gov (United States)

    Bewick, Sharon; Cantrell, R Stephen; Cosner, Chris; Fagan, William F

    2016-02-01

    Climate change drives uneven phenology shifts across taxa, and this can result in changes to the phenological match between interacting species. Shifts in the relative phenology of partner species are well documented, but few studies have addressed the effects of such changes on population dynamics. To explore this, we develop a phenologically explicit model describing consumer-resource interactions. Focusing on scenarios for univoltine insects, we show how changes in resource phenology can be reinterpreted as transformations in the year-to-year recursion relationships defining consumer population dynamics. This perspective provides a straightforward path for interpreting the long-term population consequences of phenology change. Specifically, by relating the outcome of phenological shifts to species traits governing recursion relationships (e.g., consumer fecundity or competitive scenario), we demonstrate how changes in relative phenology can force systems into different dynamical regimes, with major implications for resource management, conservation, and other areas of applied dynamics.

  11. Population Dynamics and Air Pollution

    DEFF Research Database (Denmark)

    Flachs, Esben Meulengracht; Sørensen, Jan; Bønløkke, Jacob

    2013-01-01

    Objective. To explore how three different assumptions on demographics affect the health impact of Danish emitted air pollution in Denmark from 2005 to 2030, with health impact modeled from 2005 to 2050. Methods. Modeled air pollution from Danish sources was used as exposure in a newly developed......) a static year 2005 population, (2) morbidity and mortality fixed at the year 2005 level, or (3) an expected development. Results. The health impact of air pollution was estimated at 672,000, 290,000, and 280,000 lost life years depending on demographic assumptions and the corresponding social costs at 430.......4 M€, 317.5 M€, and 261.6 M€ through the modeled years 2005–2050. Conclusion. The modeled health impact of air pollution differed widely with the demographic assumptions, and thus demographics and assumptions on demographics played a key role in making health impact assessments on air pollution....

  12. Population dynamics in vasopressin cells.

    Science.gov (United States)

    Leng, Gareth; Brown, Colin; Sabatier, Nancy; Scott, Victoria

    2008-01-01

    Most neurons sense and code change, and when presented with a constant stimulus they adapt, so as to be able to detect a fresh change. However, for some things it is important to know their absolute level; to encode such information, neurons must sustain their response to an unchanging stimulus while remaining able to respond to a change in that stimulus. One system that encodes the absolute level of a stimulus is the vasopressin system, which generates a hormonal signal that is proportional to plasma osmolality. Vasopressin cells sense plasma osmolality and secrete appropriate levels of vasopressin from the neurohypophysis as needed to control water excretion; this requires sustained secretion under basal conditions and the ability to increase (or decrease) secretion should plasma osmolality change. Here we explore the mechanisms that enable vasopressin cells to fulfill this function, and consider how coordination between the cells might distribute the secretory load across the population of vasopressin cells. 2008 S. Karger AG, Basel.

  13. Structural dynamic modifications via models

    Indian Academy of Sciences (India)

    The study shows that as many as half of the matrix ... the dynamicist's analytical modelling skill which would appear both in the numerator as. Figure 2. ..... Brandon J A 1990 Strategies for structural dynamic modification (New York: John Wiley).

  14. Dynamics test on structures

    International Nuclear Information System (INIS)

    De Canio, G.; Ranieri, N.

    2009-01-01

    Shake table tests allow to assess the effectiveness of technologies for structures protection from natural events such as earthquakes. The article summarizes the remarkable results of the most significant projects. [it

  15. Structural Dynamics, Vol. 3

    DEFF Research Database (Denmark)

    Nielsen, Søren R.K.

    The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering.......The present textbook has been written for a course on stochastic vibration theory that is being given on the 9th semester at Aalborg University for M.Sc. students in structural engineering....

  16. Dynamics of genome rearrangement in bacterial populations.

    Directory of Open Access Journals (Sweden)

    Aaron E Darling

    2008-07-01

    represent the first characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes.

  17. Dynamic Data Structures

    DEFF Research Database (Denmark)

    Tsakalidis, Konstantinos

    multi-versioned indexing database. We first present a generic method for making data structures fully persistent in external memory. This method can render any database multi-versioned, as long as its implementation abides by our assumptions. We obtain the result by presenting an implementation of B...

  18. Foams structure and dynamics

    CERN Document Server

    Cantat, Isabelle; Graner, François; Pitois, Olivier; Höhler, Reinard; Elias, Florence; Saint-Jalmes, Arnaud; Rouyer, Florence

    2013-01-01

    This book is the first to provide a thorough description of all aspects of the physico-chemical properties of foams. It sets out what is known about their structure, their stability, and their rheology. Engineers, researchers and students will find descriptions of all the key concepts, illustrated by numerous applications, as well as experiments and exercises for the reader. A solutions manual for lecturers is available via the publisher's web site.

  19. Particle algorithms for population dynamics in flows

    International Nuclear Information System (INIS)

    Perlekar, Prasad; Toschi, Federico; Benzi, Roberto; Pigolotti, Simone

    2011-01-01

    We present and discuss particle based algorithms to numerically study the dynamics of population subjected to an advecting flow condition. We discuss few possible variants of the algorithms and compare them in a model compressible flow. A comparison against appropriate versions of the continuum stochastic Fisher equation (sFKPP) is also presented and discussed. The algorithms can be used to study populations genetics in fluid environments.

  20. Strongly Deterministic Population Dynamics in Closed Microbial Communities

    Directory of Open Access Journals (Sweden)

    Zak Frentz

    2015-10-01

    Full Text Available Biological systems are influenced by random processes at all scales, including molecular, demographic, and behavioral fluctuations, as well as by their interactions with a fluctuating environment. We previously established microbial closed ecosystems (CES as model systems for studying the role of random events and the emergent statistical laws governing population dynamics. Here, we present long-term measurements of population dynamics using replicate digital holographic microscopes that maintain CES under precisely controlled external conditions while automatically measuring abundances of three microbial species via single-cell imaging. With this system, we measure spatiotemporal population dynamics in more than 60 replicate CES over periods of months. In contrast to previous studies, we observe strongly deterministic population dynamics in replicate systems. Furthermore, we show that previously discovered statistical structure in abundance fluctuations across replicate CES is driven by variation in external conditions, such as illumination. In particular, we confirm the existence of stable ecomodes governing the correlations in population abundances of three species. The observation of strongly deterministic dynamics, together with stable structure of correlations in response to external perturbations, points towards a possibility of simple macroscopic laws governing microbial systems despite numerous stochastic events present on microscopic levels.

  1. Pseudomonas aeruginosa Population Structure Revisited

    Science.gov (United States)

    Pirnay, Jean-Paul; Bilocq, Florence; Pot, Bruno; Cornelis, Pierre; Zizi, Martin; Van Eldere, Johan; Deschaght, Pieter; Vaneechoutte, Mario; Jennes, Serge; Pitt, Tyrone; De Vos, Daniel

    2009-01-01

    At present there are strong indications that Pseudomonas aeruginosa exhibits an epidemic population structure; clinical isolates are indistinguishable from environmental isolates, and they do not exhibit a specific (disease) habitat selection. However, some important issues, such as the worldwide emergence of highly transmissible P. aeruginosa clones among cystic fibrosis (CF) patients and the spread and persistence of multidrug resistant (MDR) strains in hospital wards with high antibiotic pressure, remain contentious. To further investigate the population structure of P. aeruginosa, eight parameters were analyzed and combined for 328 unrelated isolates, collected over the last 125 years from 69 localities in 30 countries on five continents, from diverse clinical (human and animal) and environmental habitats. The analysed parameters were: i) O serotype, ii) Fluorescent Amplified-Fragment Length Polymorphism (FALFP) pattern, nucleotide sequences of outer membrane protein genes, iii) oprI, iv) oprL, v) oprD, vi) pyoverdine receptor gene profile (fpvA type and fpvB prevalence), and prevalence of vii) exoenzyme genes exoS and exoU and viii) group I pilin glycosyltransferase gene tfpO. These traits were combined and analysed using biological data analysis software and visualized in the form of a minimum spanning tree (MST). We revealed a network of relationships between all analyzed parameters and non-congruence between experiments. At the same time we observed several conserved clones, characterized by an almost identical data set. These observations confirm the nonclonal epidemic population structure of P. aeruginosa, a superficially clonal structure with frequent recombinations, in which occasionally highly successful epidemic clones arise. One of these clones is the renown and widespread MDR serotype O12 clone. On the other hand, we found no evidence for a widespread CF transmissible clone. All but one of the 43 analysed CF strains belonged to a ubiquitous P

  2. Population dynamics of micromammals methodology for structural study; Metodologie per lo studio della struttura e della dinamica di popolazioni di micromammiferi

    Energy Technology Data Exchange (ETDEWEB)

    Amori, Giovanni; Riga, Francesco [CNR, Rome (Italy). Centro di Genetica Evoluzionistica; Mauro, Francesco [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dipt. Ambiente

    1997-06-01

    Small mammals are very important for the terrestrial ecosystems due to their abundance and their high capacity of adaptation. A peculiar aspect of these animals is represented by the periodic changes in population density. The impact on agriculture, forest, and urban habitats, accompanied with the role in the animal community, makes micro mammals as preferred topics in ecological researches. Studies on their ecologic structure are necessary for management and conservation of their populations. This paper reviews almost all the methodologies usually adopted in this field and has also the aim to facilitate and standardize the collecting of the data.

  3. Towards a Population Dynamics Theory for Evolutionary Computing: Learning from Biological Population Dynamics in Nature

    Science.gov (United States)

    Ma, Zhanshan (Sam)

    In evolutionary computing (EC), population size is one of the critical parameters that a researcher has to deal with. Hence, it was no surprise that the pioneers of EC, such as De Jong (1975) and Holland (1975), had already studied the population sizing from the very beginning of EC. What is perhaps surprising is that more than three decades later, we still largely depend on the experience or ad-hoc trial-and-error approach to set the population size. For example, in a recent monograph, Eiben and Smith (2003) indicated: "In almost all EC applications, the population size is constant and does not change during the evolutionary search." Despite enormous research on this issue in recent years, we still lack a well accepted theory for population sizing. In this paper, I propose to develop a population dynamics theory forEC with the inspiration from the population dynamics theory of biological populations in nature. Essentially, the EC population is considered as a dynamic system over time (generations) and space (search space or fitness landscape), similar to the spatial and temporal dynamics of biological populations in nature. With this conceptual mapping, I propose to 'transplant' the biological population dynamics theory to EC via three steps: (i) experimentally test the feasibility—whether or not emulating natural population dynamics improves the EC performance; (ii) comparatively study the underlying mechanisms—why there are improvements, primarily via statistical modeling analysis; (iii) conduct theoretical analysis with theoretical models such as percolation theory and extended evolutionary game theory that are generally applicable to both EC and natural populations. This article is a summary of a series of studies we have performed to achieve the general goal [27][30]-[32]. In the following, I start with an extremely brief introduction on the theory and models of natural population dynamics (Sections 1 & 2). In Sections 4 to 6, I briefly discuss three

  4. Population dynamics of Pseudo-nitzschia species ...

    African Journals Online (AJOL)

    The genus Pseudo-nitzschia is a chain-forming diatom comprising about 30 species some of which are known to produce domoic acid (DA) that causes amnesic shellfish poisoning (ASP). The current study aimed at assessing the population dynamics of Pseudo-nitzschia in the near shore waters of Dar es Salaam. Samples ...

  5. Direct reciprocity in structured populations.

    Science.gov (United States)

    van Veelen, Matthijs; García, Julián; Rand, David G; Nowak, Martin A

    2012-06-19

    Reciprocity and repeated games have been at the center of attention when studying the evolution of human cooperation. Direct reciprocity is considered to be a powerful mechanism for the evolution of cooperation, and it is generally assumed that it can lead to high levels of cooperation. Here we explore an open-ended, infinite strategy space, where every strategy that can be encoded by a finite state automaton is a possible mutant. Surprisingly, we find that direct reciprocity alone does not lead to high levels of cooperation. Instead we observe perpetual oscillations between cooperation and defection, with defection being substantially more frequent than cooperation. The reason for this is that "indirect invasions" remove equilibrium strategies: every strategy has neutral mutants, which in turn can be invaded by other strategies. However, reciprocity is not the only way to promote cooperation. Another mechanism for the evolution of cooperation, which has received as much attention, is assortment because of population structure. Here we develop a theory that allows us to study the synergistic interaction between direct reciprocity and assortment. This framework is particularly well suited for understanding human interactions, which are typically repeated and occur in relatively fluid but not unstructured populations. We show that if repeated games are combined with only a small amount of assortment, then natural selection favors the behavior typically observed among humans: high levels of cooperation implemented using conditional strategies.

  6. The dynamics of natural populations: feedback structures in fluctuating environments La dinámica de las poblaciones naturales: estructuras de retroalimentación en ambientes fluctuantes

    Directory of Open Access Journals (Sweden)

    MAURICIO LIMA

    2001-06-01

    Full Text Available The fluctuations exhibited by natural populations have fascinated ecologists for the last eighty years. However, a vigorous debate between different schools of population ecologists has hampered reaching a consensus about the causes of such numerical fluctuations. Recent findings and a more synthetic view of population change espoused by ecologists, statisticians, and mathematicians have integrated the role of nonlinear feedback (deterministic and external environmental (deterministic or stochastic processes in the dynamics of natural populations. The new challenge for population ecologists is to understand how these two different forces interact in nature. In this commentary, I review some of the basic principles of population analysis during the last 50 years. Finally, this commentary emphasize that one of the most promising approaches in population ecology will be the analysis and interpretation of time series data from several species in the same place, and the integration of demographic analysis and mathematical modeling. In both cases we need long-term data of biological populations and the factors that effect them. The potential insights gained from such an approach will help ecologists to understand better the dynamics of natural populations and will have large implications for applied issues such as conservation, management, and control of natural populationsLas fluctuaciones exhibidas por las poblaciones naturales han fascinado a los ecólogos durante los últimos ochenta años. Sin embargo, las acaloradas controversias entre las dos escuelas de ecólogos poblacionales han retrasado la explicación de dichas fluctuaciones numéricas. Recientes hallazgos y una visión más sintética del cambio poblacional lograda por los ecólogos, estadísticos y matemáticos han integrado el papel de los procesos no lineales (deterministas y los procesos externos ambientales (deterministas o estocásticos en la dinámica de las poblaciones naturales

  7. Coherent structures and dynamical systems

    Science.gov (United States)

    Jimenez, Javier

    1987-01-01

    Any flow of a viscous fluid has a finite number of degrees of freedom, and can therefore be seen as a dynamical system. A coherent structure can be thought of as a lower dimensional manifold in whose neighborhood the dynamical system spends a substantial fraction of its time. If such a manifold exists, and if its dimensionality is substantially lower that that of the full flow, it is conceivable that the flow could be described in terms of the reduced set of degrees of freedom, and that such a description would be simpler than one in which the existence of structure was not recognized. Several examples are briefly summarized.

  8. Rapid evolution leads to differential population dynamics and top-down control in resurrected Daphnia populations.

    Science.gov (United States)

    Goitom, Eyerusalem; Kilsdonk, Laurens J; Brans, Kristien; Jansen, Mieke; Lemmens, Pieter; De Meester, Luc

    2018-01-01

    There is growing evidence of rapid genetic adaptation of natural populations to environmental change, opening the perspective that evolutionary trait change may subsequently impact ecological processes such as population dynamics, community composition, and ecosystem functioning. To study such eco-evolutionary feedbacks in natural populations, however, requires samples across time. Here, we capitalize on a resurrection ecology study that documented rapid and adaptive evolution in a natural population of the water flea Daphnia magna in response to strong changes in predation pressure by fish, and carry out a follow-up mesocosm experiment to test whether the observed genetic changes influence population dynamics and top-down control of phytoplankton. We inoculated populations of the water flea D. magna derived from three time periods of the same natural population known to have genetically adapted to changes in predation pressure in replicate mesocosms and monitored both Daphnia population densities and phytoplankton biomass in the presence and absence of fish. Our results revealed differences in population dynamics and top-down control of algae between mesocosms harboring populations from the time period before, during, and after a peak in fish predation pressure caused by human fish stocking. The differences, however, deviated from our a priori expectations. An S-map approach on time series revealed that the interactions between adults and juveniles strongly impacted the dynamics of populations and their top-down control on algae in the mesocosms, and that the strength of these interactions was modulated by rapid evolution as it occurred in nature. Our study provides an example of an evolutionary response that fundamentally alters the processes structuring population dynamics and impacts ecosystem features.

  9. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonkers, C.M.; Treur, J.

    2002-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems,

  10. The failure rate dynamics in heterogeneous populations

    International Nuclear Information System (INIS)

    Cha, Ji Hwan; Finkelstein, Maxim

    2013-01-01

    Most populations encountered in real world are heterogeneous. In reliability applications, the mixture (observed) failure rate, obviously, can be considered as a measure of ‘average’ quality in these populations. However, in addition to this average measure, some variability characteristics for failure rates can be very helpful in describing the time-dependent changes in quality of heterogeneous populations. In this paper, we discuss variance and the coefficient of variation of the corresponding random failure rate as variability measures for items in heterogeneous populations. Furthermore, there is often a risk that items of poor quality are selected for important missions. Therefore, along with the ‘average quality’ of a population, more ‘conservative’ quality measures should be also defined and studied. For this purpose, we propose the percentile and the tail-mixture of the failure rates as the corresponding conservative measures. Some illustrative examples are given. -- Highlights: ► This paper provides the insight on the variability measures in heterogeneous populations. ► The conservative quality measures in heterogeneous populations are defined. ► The utility of these measures is illustrated by meaningful examples. ► This paper provides a better understanding of the dynamics in heterogeneous populations

  11. Static and Dynamic Membrane Structures

    Directory of Open Access Journals (Sweden)

    Sergiu Ivanov

    2012-10-01

    Full Text Available While originally P systems were defined to contain multiset rewriting rules, it turned out that considering different types of rules may produce important results, such as increasing the computational power of the rules. This paper focuses on factoring out the concept of a membrane structure out of various P system models with the goal of providing useful formalisations. Both static and dynamic membrane structures are considered.

  12. Structural system identification: Structural dynamics model validation

    Energy Technology Data Exchange (ETDEWEB)

    Red-Horse, J.R.

    1997-04-01

    Structural system identification is concerned with the development of systematic procedures and tools for developing predictive analytical models based on a physical structure`s dynamic response characteristics. It is a multidisciplinary process that involves the ability (1) to define high fidelity physics-based analysis models, (2) to acquire accurate test-derived information for physical specimens using diagnostic experiments, (3) to validate the numerical simulation model by reconciling differences that inevitably exist between the analysis model and the experimental data, and (4) to quantify uncertainties in the final system models and subsequent numerical simulations. The goal of this project was to develop structural system identification techniques and software suitable for both research and production applications in code and model validation.

  13. Analysis of Nonlinear Dynamic Structures

    African Journals Online (AJOL)

    Bheema

    work a two degrees of freedom nonlinear system with zero memory was ... FRF is the most widely used method in structural dynamics which gives information about the ..... 3.6, which is the waterfall diagram of the same response, as well.

  14. Multiscale structure in eco-evolutionary dynamics

    Science.gov (United States)

    Stacey, Blake C.

    In a complex system, the individual components are neither so tightly coupled or correlated that they can all be treated as a single unit, nor so uncorrelated that they can be approximated as independent entities. Instead, patterns of interdependency lead to structure at multiple scales of organization. Evolution excels at producing such complex structures. In turn, the existence of these complex interrelationships within a biological system affects the evolutionary dynamics of that system. I present a mathematical formalism for multiscale structure, grounded in information theory, which makes these intuitions quantitative, and I show how dynamics defined in terms of population genetics or evolutionary game theory can lead to multiscale organization. For complex systems, "more is different," and I address this from several perspectives. Spatial host--consumer models demonstrate the importance of the structures which can arise due to dynamical pattern formation. Evolutionary game theory reveals the novel effects which can result from multiplayer games, nonlinear payoffs and ecological stochasticity. Replicator dynamics in an environment with mesoscale structure relates to generalized conditionalization rules in probability theory. The idea of natural selection "acting at multiple levels" has been mathematized in a variety of ways, not all of which are equivalent. We will face down the confusion, using the experience developed over the course of this thesis to clarify the situation.

  15. Competition in size-structured populations: mechanisms inducing cohort formation and population cycles

    NARCIS (Netherlands)

    de Roos, A.M.; Persson, L.

    2003-01-01

    In this paper we investigate the consequences of size-dependent competition among the individuals of a consumer population by analyzing the dynamic properties of a physiologically structured population model. Only 2 size-classes of individuals are distinguished: juveniles and adults. Juveniles and

  16. Evolutionary Dynamics and Diversity in Microbial Populations

    Science.gov (United States)

    Thompson, Joel; Fisher, Daniel

    2013-03-01

    Diseases such as flu and cancer adapt at an astonishing rate. In large part, viruses and cancers are so difficult to prevent because they are continually evolving. Controlling such ``evolutionary diseases'' requires a better understanding of the underlying evolutionary dynamics. It is conventionally assumed that adaptive mutations are rare and therefore will occur and sweep through the population in succession. Recent experiments using modern sequencing technologies have illuminated the many ways in which real population sequence data does not conform to the predictions of conventional theory. We consider a very simple model of asexual evolution and perform simulations in a range of parameters thought to be relevant for microbes and cancer. Simulation results reveal complex evolutionary dynamics typified by competition between lineages with different sets of adaptive mutations. This dynamical process leads to a distribution of mutant gene frequencies different than expected under the conventional assumption that adaptive mutations are rare. Simulated gene frequencies share several conspicuous features with data collected from laboratory-evolved yeast and the worldwide population of influenza.

  17. [Population dynamics and armed violence in Colombia, 1985-2010].

    Science.gov (United States)

    Salaya, Hernán Eduardo; Rodríguez, Jesús

    2014-09-01

    Describe changes in the population structure of Colombia's municipalities in relation to internal displacement in response to armed violence. A descriptive ecological study was carried out. Secondary sources were consulted, taken from the Consolidated Registry of Displaced Population and from the National Administrative Department of Statistics, to calculate expulsion and reception rates for population displaced by violence from 2002 to 2010. Based on these rates, four groups were created of municipalities in the extreme quartile for each rate during the entire period, which were classified as high expulsion, low expulsion, high reception, and low reception. Subsequently, population pyramids and structure indicators were constructed for each group of municipalities for two comparative reference years (1985 and 2010). Municipalities with high expulsion or reception rates experienced a slower epidemiological transition, with lower mean ages and aging indices. The high expulsion group had the least regression, based on the Sundbärg index. In the high reception group, the masculinity ratio decreased the most, especially among the economically active population, and it had the highest population growth. Population dynamics in Colombia have been affected by armed violence and changes in these dynamics are not uniform across the country, leading to important social, economic, and cultural consequences. This study is useful for decision-making and public policy making.

  18. Dominance and population structure of freshwater crabs ...

    African Journals Online (AJOL)

    To understand how this would affect wild populations we also investigated the population structure (sex ratio, size distribution, density and population growth) of a wild population. Using Landau's index of linearity (h) we found three captive groups of P. perlatus to show moderate linearity, i.e. h = 0.9; 0.81 and 0.83.

  19. Critical dynamics in population vaccinating behavior.

    Science.gov (United States)

    Pananos, A Demetri; Bury, Thomas M; Wang, Clara; Schonfeld, Justin; Mohanty, Sharada P; Nyhan, Brendan; Salathé, Marcel; Bauch, Chris T

    2017-12-26

    Vaccine refusal can lead to renewed outbreaks of previously eliminated diseases and even delay global eradication. Vaccinating decisions exemplify a complex, coupled system where vaccinating behavior and disease dynamics influence one another. Such systems often exhibit critical phenomena-special dynamics close to a tipping point leading to a new dynamical regime. For instance, critical slowing down (declining rate of recovery from small perturbations) may emerge as a tipping point is approached. Here, we collected and geocoded tweets about measles-mumps-rubella vaccine and classified their sentiment using machine-learning algorithms. We also extracted data on measles-related Google searches. We find critical slowing down in the data at the level of California and the United States in the years before and after the 2014-2015 Disneyland, California measles outbreak. Critical slowing down starts growing appreciably several years before the Disneyland outbreak as vaccine uptake declines and the population approaches the tipping point. However, due to the adaptive nature of coupled behavior-disease systems, the population responds to the outbreak by moving away from the tipping point, causing "critical speeding up" whereby resilience to perturbations increases. A mathematical model of measles transmission and vaccine sentiment predicts the same qualitative patterns in the neighborhood of a tipping point to greatly reduced vaccine uptake and large epidemics. These results support the hypothesis that population vaccinating behavior near the disease elimination threshold is a critical phenomenon. Developing new analytical tools to detect these patterns in digital social data might help us identify populations at heightened risk of widespread vaccine refusal. Copyright © 2017 the Author(s). Published by PNAS.

  20. Dynamic Soil-Structure-Interaction

    DEFF Research Database (Denmark)

    Kellezi, Lindita

    1998-01-01

    The aim of this thesis is to investigate and develop alternative methods of analyzing problems in dynamic soil-structure-interaction. The main focus is the major difficulty posed by such an analysis - the phenomenon of waves which radiate outward from the excited structures towards infinity....... In numerical calculations, only a finite region of the foundation metium is analyzed and something is done to prevent the outgoing radiating waves to reflect from the regions's boundary. The prosent work concerns itself with the study of such effects, using the finite element method, and artificial...... transmitting boundary at the edges of the computational mesh. To start with, an investigation of the main effects of the interaction phenomena is carried out employing a widely used model, considering dynamic stiffness of the unbounded soil as frequency independent. Then a complete description...

  1. Aspiration dynamics of multi-player games in finite populations.

    Science.gov (United States)

    Du, Jinming; Wu, Bin; Altrock, Philipp M; Wang, Long

    2014-05-06

    On studying strategy update rules in the framework of evolutionary game theory, one can differentiate between imitation processes and aspiration-driven dynamics. In the former case, individuals imitate the strategy of a more successful peer. In the latter case, individuals adjust their strategies based on a comparison of their pay-offs from the evolutionary game to a value they aspire, called the level of aspiration. Unlike imitation processes of pairwise comparison, aspiration-driven updates do not require additional information about the strategic environment and can thus be interpreted as being more spontaneous. Recent work has mainly focused on understanding how aspiration dynamics alter the evolutionary outcome in structured populations. However, the baseline case for understanding strategy selection is the well-mixed population case, which is still lacking sufficient understanding. We explore how aspiration-driven strategy-update dynamics under imperfect rationality influence the average abundance of a strategy in multi-player evolutionary games with two strategies. We analytically derive a condition under which a strategy is more abundant than the other in the weak selection limiting case. This approach has a long-standing history in evolutionary games and is mostly applied for its mathematical approachability. Hence, we also explore strong selection numerically, which shows that our weak selection condition is a robust predictor of the average abundance of a strategy. The condition turns out to differ from that of a wide class of imitation dynamics, as long as the game is not dyadic. Therefore, a strategy favoured under imitation dynamics can be disfavoured under aspiration dynamics. This does not require any population structure, and thus highlights the intrinsic difference between imitation and aspiration dynamics.

  2. Population Model with a Dynamic Food Supply

    Science.gov (United States)

    Dickman, Ronald; da Silva Nascimento, Jonas

    2009-09-01

    We propose a simple population model including the food supply as a dynamic variable. In the model, survival of an organism depends on a certain minimum rate of food consumption; a higher rate of consumption is required for reproduction. We investigate the stationary behavior under steady food input, and the transient behavior of growth and decay when food is present initially but is not replenished. Under a periodic food supply, the system exhibits period-doubling bifurcations and chaos in certain ranges of the reproduction rate. Bifurcations and chaos are favored by a slow reproduction rate and a long period of food-supply oscillation.

  3. Noise-induced effects in population dynamics

    Science.gov (United States)

    Spagnolo, Bernardo; Cirone, Markus; La Barbera, Antonino; de Pasquale, Ferdinando

    2002-03-01

    We investigate the role of noise in the nonlinear relaxation of two ecosystems described by generalized Lotka-Volterra equations in the presence of multiplicative noise. Specifically we study two cases: (i) an ecosystem with two interacting species in the presence of periodic driving; (ii) an ecosystem with a great number of interacting species with random interaction matrix. We analyse the interplay between noise and periodic modulation for case (i) and the role of the noise in the transient dynamics of the ecosystem in the presence of an absorbing barrier in case (ii). We find that the presence of noise is responsible for the generation of temporal oscillations and for the appearance of spatial patterns in the first case. In the other case we obtain the asymptotic behaviour of the time average of the ith population and discuss the effect of the noise on the probability distributions of the population and of the local field.

  4. Rethinking the logistic approach for population dynamics of mutualistic interactions.

    Science.gov (United States)

    García-Algarra, Javier; Galeano, Javier; Pastor, Juan Manuel; Iriondo, José María; Ramasco, José J

    2014-12-21

    Mutualistic communities have an internal structure that makes them resilient to external perturbations. Late research has focused on their stability and the topology of the relations between the different organisms to explain the reasons of the system robustness. Much less attention has been invested in analyzing the systems dynamics. The main population models in use are modifications of the r-K formulation of logistic equation with additional terms to account for the benefits produced by the interspecific interactions. These models have shortcomings as the so-called r-K formulation diverges under some conditions. In this work, we introduce a model for population dynamics under mutualism that preserves the original logistic formulation. It is mathematically simpler than the widely used type II models, although it shows similar complexity in terms of fixed points and stability of the dynamics. We perform an analytical stability analysis and numerical simulations to study the model behavior in general interaction scenarios including tests of the resilience of its dynamics under external perturbations. Despite its simplicity, our results indicate that the model dynamics shows an important richness that can be used to gain further insights in the dynamics of mutualistic communities. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Dynamics of Quantum Causal Structures

    Science.gov (United States)

    Castro-Ruiz, Esteban; Giacomini, Flaminia; Brukner, Časlav

    2018-01-01

    It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B ). Here, we develop a framework for "dynamics of causal structures," i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B , via superposition of causal orders, to a channel from B to A . We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.

  6. Dynamics of Quantum Causal Structures

    Directory of Open Access Journals (Sweden)

    Esteban Castro-Ruiz

    2018-03-01

    Full Text Available It was recently suggested that causal structures are both dynamical, because of general relativity, and indefinite, because of quantum theory. The process matrix formalism furnishes a framework for quantum mechanics on indefinite causal structures, where the order between operations of local laboratories is not definite (e.g., one cannot say whether operation in laboratory A occurs before or after operation in laboratory B. Here, we develop a framework for “dynamics of causal structures,” i.e., for transformations of process matrices into process matrices. We show that, under continuous and reversible transformations, the causal order between operations is always preserved. However, the causal order between a subset of operations can be changed under continuous yet nonreversible transformations. An explicit example is that of the quantum switch, where a party in the past affects the causal order of operations of future parties, leading to a transition from a channel from A to B, via superposition of causal orders, to a channel from B to A. We generalize our framework to construct a hierarchy of quantum maps based on transformations of process matrices and transformations thereof.

  7. Population Structure of West Greenland Narwhals

    DEFF Research Database (Denmark)

    Riget, F.; Dietz, R.; Møller, P.

    The hypothesis that different populations of narwhals in the West Greenland area exist has been tested by different biomarkers (metal and organochlorine concentrations, stable isotopes and DNA). Samples of muscle, liver, kidney, blubber and skin tissues of narwhals from West Greenland have been...... isotopes could not support the population structure with two West Greenland populations suggested by the genetic study....

  8. Dynamic analysis of a parasite population model

    Science.gov (United States)

    Sibona, G. J.; Condat, C. A.

    2002-03-01

    We study the dynamics of a model that describes the competitive interaction between an invading species (a parasite) and its antibodies in an living being. This model was recently used to examine the dynamical competition between Tripanosoma cruzi and its antibodies during the acute phase of Chagas' disease. Depending on the antibody properties, the model yields three types of outcomes, corresponding, respectively, to healing, chronic disease, and host death. Here, we study the dynamics of the parasite-antibody interaction with the help of simulations, obtaining phase trajectories and phase diagrams for the system. We show that, under certain conditions, the size of the parasite inoculation can be crucial for the infection outcome and that a retardation in the stimulated production of an antibody species may result in the parasite gaining a definitive advantage. We also find a criterion for the relative sizes of the parameters that are required if parasite-generated decoys are indeed to help the invasion. Decoys may also induce a qualitatively different outcome: a limit cycle for the antibody-parasite population phase trajectories.

  9. Structure and dynamics of solutions

    CERN Document Server

    Ohtaki, H

    2013-01-01

    Recent advances in the study of structural and dynamic properties of solutions have provided a molecular picture of solute-solvent interactions. Although the study of thermodynamic as well as electronic properties of solutions have played a role in the development of research on the rate and mechanism of chemical reactions, such macroscopic and microscopic properties are insufficient for a deeper understanding of fast chemical and biological reactions. In order to fill the gap between the two extremes, it is necessary to know how molecules are arranged in solution and how they change their pos

  10. Sierra Structural Dynamics Theory Manual

    Energy Technology Data Exchange (ETDEWEB)

    Reese, Garth M. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-19

    Sierra/SD provides a massively parallel implementation of structural dynamics finite element analysis, required for high fidelity, validated models used in modal, vibration, static and shock analysis of structural systems. This manual describes the theory behind many of the constructs in Sierra/SD. For a more detailed description of how to use Sierra/SD , we refer the reader to Sierra/SD, User's Notes . Many of the constructs in Sierra/SD are pulled directly from published material. Where possible, these materials are referenced herein. However, certain functions in Sierra/SD are specific to our implementation. We try to be far more complete in those areas. The theory manual was developed from several sources including general notes, a programmer notes manual, the user's notes and of course the material in the open literature. This page intentionally left blank.

  11. Effect of temperature on the population dynamics of Aedes aegypti

    Science.gov (United States)

    Yusoff, Nuraini; Tokachil, Mohd Najir

    2015-10-01

    Aedes aegypti is one of the main vectors in the transmission of dengue fever. Its abundance may cause the spread of the disease to be more intense. In the study of its biological life cycle, temperature was found to increase the development rate of each stage of this species and thus, accelerate the process of the development from egg to adult. In this paper, a Lefkovitch matrix model will be used to study the stage-structured population dynamics of Aedes aegypti. In constructing the transition matrix, temperature will be taken into account. As a case study, temperature recorded at the Subang Meteorological Station for year 2006 until 2010 will be used. Population dynamics of Aedes aegypti at maximum, average and minimum temperature for each year will be simulated and compared. It is expected that the higher the temperature, the faster the mosquito will breed. The result will be compared to the number of dengue fever incidences to see their relationship.

  12. Interacting trophic forcing and the population dynamics of herring

    DEFF Research Database (Denmark)

    Lindegren, Martin; Ostman, Orjan; Gardmark, Anna

    2011-01-01

    -up nor top-down, but rather through multiple external and internal drivers. While in many studies single drivers have been identified, potential synergies of multiple factors, as well as their relative importance in regulating population dynamics of small pelagic fish, is a largely unresolved issue....... Using a statistical, age-structured modeling approach, we demonstrate the relative importance and influence of bottom-up (e.g., climate, zooplankton availability) and top-down (i.e., fishing and predation) factors on the population dynamics of Bothnian Sea herring (Clupea harengus) throughout its life...... cycle. Our results indicate significant bottom-up effects of zooplankton and interspecific competition from sprat (Sprattus sprattus), particularly on younger age classes of herring. Although top-down forcing through fishing and predation by grey seals (Halichoerus grypus) and Atlantic cod (Gadus morhua...

  13. Symbolic trephinations and population structure

    Directory of Open Access Journals (Sweden)

    László Szathmáry

    2006-12-01

    Full Text Available The sample examined consists of 19 skulls with symbolic trephinations and 86 skulls without trepanations dated from the X century. Skulls were all excavated in the Great Hungarian Plain in the Carpathian Basin, which was occupied by the Hungarian conquerors at the end of the IX century. The variations of 12 cranial dimensions of the trephined skulls were investigated and compared to the skulls without trepanations after performing a discriminant analysis. The classification results evince that the variability of non-trephined skulls shows a more homogeneous and a more characteristic picture of their own group than the trephined samples, which corresponds to the notion, formed by archaeological evidence and written historical sources, of a both ethnically and socially differing population of the Hungarian conquerors. According to historical research, a part of the population was of Finno-Ugric origin, while the military leading layer of society can be brought into connection with Turkic ethnic groups. All the same, individuals dug up with rich grave furniture and supposed to belong to this upper stratum of society are primarily characterized by the custom of symbolic trephination, and, as our results demonstrate, craniologically they seem to be more heterogeneous.

  14. Population structure and adaptation in fishes

    DEFF Research Database (Denmark)

    Limborg, Morten

    Marine fishes represent a valuable resource for the global economy and food consumption. Accordingly, many species experience high levels of exploitation necessitating effective management plans. However, long term sustainability may be jeopardized from insufficient knowledge about intra-specific......Marine fishes represent a valuable resource for the global economy and food consumption. Accordingly, many species experience high levels of exploitation necessitating effective management plans. However, long term sustainability may be jeopardized from insufficient knowledge about intra......-specific population structure and adaptive divergence. The large population sizes and high migration rates common to most marine fishes impede the differentiating effect of genetic drift, having led to expectations of no population structure and that the occurrence of local adaptation should be rare in these species....... Comprehensive genetic analyses on the small pelagic fish European sprat (Sprattus sprattus) revealed significant population structure throughout its distribution with an overall pattern of reduced connectivity across environmental transition zones. Population structure reflected both historical separations over...

  15. [Genetic structure of natural populations

    International Nuclear Information System (INIS)

    1988-01-01

    Our efforts in the first eight months were concentrated in obtaining a genomic clone of the copper-zinc superoxide dismutase (SOD) in Drosophila melanogaster and other Drosophila species. This we have now successfully accomplished. We seek to understand the role of SOD in radioresistance; how genetic variation in this enzyme is maintained in populations; and relevant aspects of its evolution that may contribute to these goals as well as to an understanding of molecular evolution in general. To accomplish these goals we are undertaking the following experiments: cloning and sequencing of (at least) one F allele, one S allele, and the null allele for SOD; cloning and sequencing SOD from species related to D. melanogaster; and cloning and sequencing the SOD gene from several independently sampled S and F alleles in D. melanogaster. We are also preparing to test the radioprotective effects of SOD. 67 refs

  16. Dynamic analysis of embedded structures

    International Nuclear Information System (INIS)

    Kausel, E.; Whitman, R.V.; Morray, J.P.

    1977-01-01

    The paper presents simplified rules to account for embeddment and soil layering in the soil-structure interaction problem, to be used in dynamic analysis. The relationship between the spring method, and a direct solution (in which both soil and structure are modeled with finite elements and linear members) is first presented. It is shown that for consistency of the results with the two solution methods the spring method should be performed in the following three steps: 1. Determination of the motion of the massless foundation (having the same shape as the actual one) when subjected to the same input motion as the direct solution. 2. Determination of the frequency dependent subgrade stiffness for the relevant degrees of freedom. 3. Computations of the response of the real structure supported on frequency dependent soil springs and subjected at the base of these springs to the motion computed in step 1. The first two steps require, in general, finite element methods, which would make the procedure not attractive. It is shown in the paper, however, that excellent approximations can be obtained, on the basis of 1-dimensional wave propagation theory for the solution of step 1, and correction factors modifying for embeddment the corresponding springs of a surface footing on a layered stratum, for the solution of step 2. (Auth.)

  17. Dynamic buckling of inelastic structures

    International Nuclear Information System (INIS)

    Pegon, P.; Guelin, P.

    1983-01-01

    The aim of this paper is to provide research engineers with a method of approach, qualitative feature and order of magnitude of the relevant parameters in the field of dynamic buckling of structures exhibiting constitutive irreversibility and geometrical, constitutive or loading imperfections. It is difficult to adjust some of the classical analysis of the quasi-static elastic case. There remain also some difficulties in justifying the choice of constitutive schemes and in dealing with general kinematic formulation. Moreover, the interpretation of dynamical experimental data is not an easy matter. Consequently, the attempts described here use a simple symbolic model including all essential physical aspects. This symbolic model, of discrete character, is an n-hinged strut with masses located at each n+1 joint. The constitutive properties of the strut and hinge are defined using the same method: a dash-pot is in parallel with a two fold element (spring and friction-slider in series). The intrinsic restrictions are: the two dimensionality assumption, however no additional hypothesis are made concerning the kinematic of the constitutive elements; the use of simple sources of intrinsic dissipation. The relevant question of the longitudinal-transverse coupling effects is studied. Then, after various validation, we verify that a Lagrange resolution of this n+1 body problem gives physical relevant qualitative results concerning rods and cylindrical shells subjected to impact loading. (orig./RW)

  18. Relating structure and dynamics in organisation models

    NARCIS (Netherlands)

    Jonker, C.M.; Treur, J.

    2003-01-01

    To understand how an organisational structure relates to dynamics is an interesting fundamental challenge in the area of social modelling. Specifications of organisational structure usually have a diagrammatic form that abstracts from more detailed dynamics. Dynamic properties of agent systems, on

  19. Allee effects on population dynamics in continuous (overlapping) case

    International Nuclear Information System (INIS)

    Merdan, H.; Duman, O.; Akin, O.; Celik, C.

    2009-01-01

    This paper presents the stability analysis of equilibrium points of a continuous population dynamics with delay under the Allee effect which occurs at low population density. The mathematical results and numerical simulations show the stabilizing role of the Allee effects on the stability of the equilibrium point of this population dynamics.

  20. Langevin dynamics for ramified structures

    Science.gov (United States)

    Méndez, Vicenç; Iomin, Alexander; Horsthemke, Werner; Campos, Daniel

    2017-06-01

    We propose a generalized Langevin formalism to describe transport in combs and similar ramified structures. Our approach consists of a Langevin equation without drift for the motion along the backbone. The motion along the secondary branches may be described either by a Langevin equation or by other types of random processes. The mean square displacement (MSD) along the backbone characterizes the transport through the ramified structure. We derive a general analytical expression for this observable in terms of the probability distribution function of the motion along the secondary branches. We apply our result to various types of motion along the secondary branches of finite or infinite length, such as subdiffusion, superdiffusion, and Langevin dynamics with colored Gaussian noise and with non-Gaussian white noise. Monte Carlo simulations show excellent agreement with the analytical results. The MSD for the case of Gaussian noise is shown to be independent of the noise color. We conclude by generalizing our analytical expression for the MSD to the case where each secondary branch is n dimensional.

  1. Modeling the dynamics of a non-limited and a self-limited gene drive system in structured Aedes aegypti populations.

    Directory of Open Access Journals (Sweden)

    Mathieu Legros

    Full Text Available Recently there have been significant advances in research on genetic strategies to control populations of disease-vectoring insects. Some of these strategies use the gene drive properties of selfish genetic elements to spread physically linked anti-pathogen genes into local vector populations. Because of the potential of these selfish elements to spread through populations, control approaches based on these strategies must be carefully evaluated to ensure a balance between the desirable spread of the refractoriness-conferring genetic cargo and the avoidance of potentially unwanted outcomes such as spread to non-target populations. There is also a need to develop better estimates of the economics of such releases. We present here an evaluation of two such strategies using a biologically realistic mathematical model that simulates the resident Aedes aegypti mosquito population of Iquitos, Peru. One strategy uses the selfish element Medea, a non-limited element that could permanently spread over a large geographic area; the other strategy relies on Killer-Rescue genetic constructs, and has been predicted to have limited spatial and temporal spread. We simulate various operational approaches for deploying these genetic strategies, and quantify the optimal number of released transgenic mosquitoes needed to achieve definitive spread of Medea-linked genes and/or high frequencies of Killer-Rescue-associated elements. We show that for both strategies the most efficient approach for achieving spread of anti-pathogen genes within three years is generally to release adults of both sexes in multiple releases over time. Even though females in these releases should not transmit disease, there could be public concern over such releases, making the less efficient male-only release more practical. This study provides guidelines for operational approaches to population replacement genetic strategies, as well as illustrates the use of detailed spatial models to

  2. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient.

    Science.gov (United States)

    Vangestel, C; Mergeay, J; Dawson, D A; Callens, T; Vandomme, V; Lens, L

    2012-09-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierarchical way among different urbanization classes. Principal coordinate analyses did not support the hypothesis that urban/suburban and rural populations comprise two distinct genetic clusters. Comparison of FST values at different hierarchical scales revealed drift as an important force of population differentiation. Redundancy analyses revealed that genetic structure was strongly affected by both spatial variation and level of urbanization. The results shown here can be used as baseline information for future genetic monitoring programmes and provide additional insights into contemporary house sparrow dynamics along urbanization gradients.

  3. Passivity analysis of higher order evolutionary dynamics and population games

    KAUST Repository

    Mabrok, Mohamed; Shamma, Jeff S.

    2017-01-01

    Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population

  4. DYNAMICS OF Cercospora zeina POPULATIONS IN MAIZE-BASED ...

    African Journals Online (AJOL)

    ACSS

    DYNAMICS OFCercospora zeina POPULATIONS IN MAIZE-BASED AGRO- ..... Population differentiation of Cercospora zeina in three districts of Uganda based on analysis of molecular variance ..... interactions: The example of the Erysiphe.

  5. Coexistence of competing stage-structured populations.

    KAUST Repository

    Fujiwara, Masami

    2011-10-05

    This paper analyzes the stability of a coexistence equilibrium point of a model for competition between two stage-structured populations. In this model, for each population, competition for resources may affect any one of the following population parameters: reproduction, juvenile survival, maturation rate, or adult survival. The results show that the competitive strength of a population is affected by (1) the ratio of the population parameter influenced by competition under no resource limitation (maximum compensatory capacity) over the same parameter under a resource limitation due to competition (equilibrium rate) and (2) the ratio of interspecific competition over intraspecific competition; this ratio was previously shown to depend on resource-use overlap. The former ratio, which we define as fitness, can be equalized by adjusting organisms\\' life history strategies, thereby promoting coexistence. We conclude that in addition to niche differentiation among populations, the life history strategies of organisms play an important role in coexistence.

  6. Population structure of the Classic period Maya.

    Science.gov (United States)

    Scherer, Andrew K

    2007-03-01

    This study examines the population structure of Classic period (A.D. 250-900) Maya populations through analysis of odontometric variation of 827 skeletons from 12 archaeological sites in Mexico, Guatemala, Belize, and Honduras. The hypothesis that isolation by distance characterized Classic period Maya population structure is tested using Relethford and Blangero's (Hum Biol 62 (1990) 5-25) approach to R matrix analysis for quantitative traits. These results provide important biological data for understanding ancient Maya population history, particularly the effects of the competing Tikal and Calakmul hegemonies on patterns of lowland Maya site interaction. An overall F(ST) of 0.018 is found for the Maya area, indicating little among-group variation for the Classic Maya sites tested. Principal coordinates plots derived from the R matrix analysis show little regional patterning in the data, though the geographic outliers of Kaminaljuyu and a pooled Pacific Coast sample did not cluster with the lowland Maya sites. Mantel tests comparing the biological distance matrix to a geographic distance matrix found no association between genetic and geographic distance. In the Relethford-Blangero analysis, most sites possess negative or near-zero residuals, indicating minimal extraregional gene flow. The exceptions were Barton Ramie, Kaminaljuyu, and Seibal. A scaled R matrix analysis clarifies that genetic drift is a consideration for understanding Classic Maya population structure. All results indicate that isolation by distance does not describe Classic period Maya population structure. (c) 2006 Wiley-Liss, Inc.

  7. Neural Population Dynamics during Reaching Are Better Explained by a Dynamical System than Representational Tuning.

    Science.gov (United States)

    Michaels, Jonathan A; Dann, Benjamin; Scherberger, Hansjörg

    2016-11-01

    Recent models of movement generation in motor cortex have sought to explain neural activity not as a function of movement parameters, known as representational models, but as a dynamical system acting at the level of the population. Despite evidence supporting this framework, the evaluation of representational models and their integration with dynamical systems is incomplete in the literature. Using a representational velocity-tuning based simulation of center-out reaching, we show that incorporating variable latency offsets between neural activity and kinematics is sufficient to generate rotational dynamics at the level of neural populations, a phenomenon observed in motor cortex. However, we developed a covariance-matched permutation test (CMPT) that reassigns neural data between task conditions independently for each neuron while maintaining overall neuron-to-neuron relationships, revealing that rotations based on the representational model did not uniquely depend on the underlying condition structure. In contrast, rotations based on either a dynamical model or motor cortex data depend on this relationship, providing evidence that the dynamical model more readily explains motor cortex activity. Importantly, implementing a recurrent neural network we demonstrate that both representational tuning properties and rotational dynamics emerge, providing evidence that a dynamical system can reproduce previous findings of representational tuning. Finally, using motor cortex data in combination with the CMPT, we show that results based on small numbers of neurons or conditions should be interpreted cautiously, potentially informing future experimental design. Together, our findings reinforce the view that representational models lack the explanatory power to describe complex aspects of single neuron and population level activity.

  8. Alternating event processes during lifetimes: population dynamics and statistical inference.

    Science.gov (United States)

    Shinohara, Russell T; Sun, Yifei; Wang, Mei-Cheng

    2018-01-01

    In the literature studying recurrent event data, a large amount of work has been focused on univariate recurrent event processes where the occurrence of each event is treated as a single point in time. There are many applications, however, in which univariate recurrent events are insufficient to characterize the feature of the process because patients experience nontrivial durations associated with each event. This results in an alternating event process where the disease status of a patient alternates between exacerbations and remissions. In this paper, we consider the dynamics of a chronic disease and its associated exacerbation-remission process over two time scales: calendar time and time-since-onset. In particular, over calendar time, we explore population dynamics and the relationship between incidence, prevalence and duration for such alternating event processes. We provide nonparametric estimation techniques for characteristic quantities of the process. In some settings, exacerbation processes are observed from an onset time until death; to account for the relationship between the survival and alternating event processes, nonparametric approaches are developed for estimating exacerbation process over lifetime. By understanding the population dynamics and within-process structure, the paper provide a new and general way to study alternating event processes.

  9. Dynamic analysis and design of offshore structures

    CERN Document Server

    Chandrasekaran, Srinivasan

    2015-01-01

    This book  attempts to provide readers with an overall idea of various types of offshore platform geometries. It covers the various environmental loads encountered by these structures, a detailed description of the fundamentals of structural dynamics in a class-room style, estimate of damping in offshore structures and their applications in the preliminary analysis and design. Basic concepts of structural dynamics are emphasized through simple illustrative examples and exercises. Design methodologies and guidelines, which are FORM based concepts are explained through a few applied example structures. Each chapter also has tutorials and exercises for self-learning. A dedicated chapter on stochastic dynamics will help the students to extend the basic concepts of structural dynamics to this advanced domain of research. Hydrodynamic response of offshore structures with perforated members is one of the recent research applications, which is found to be one of the effective manner of retrofitting offshore structur...

  10. Optimal growth entails risky localization in population dynamics

    Science.gov (United States)

    Gueudré, Thomas; Martin, David G.

    2018-03-01

    Essential to each other, growth and exploration are jointly observed in alive and inanimate entities, such as animals, cells or goods. But how the environment's structural and temporal properties weights in this balance remains elusive. We analyze a model of stochastic growth with time correlations and diffusive dynamics that sheds light on the way populations grow and spread over general networks. This model suggests natural explanations of empirical facts in econo-physics or ecology, such as the risk-return trade-off and the Zipf law. We conclude that optimal growth leads to a localized population distribution, but such risky position can be mitigated through the space geometry. These results have broad applicability and are subsequently illustrated over an empirical study of financial data.

  11. State-dependent neutral delay equations from population dynamics.

    Science.gov (United States)

    Barbarossa, M V; Hadeler, K P; Kuttler, C

    2014-10-01

    A novel class of state-dependent delay equations is derived from the balance laws of age-structured population dynamics, assuming that birth rates and death rates, as functions of age, are piece-wise constant and that the length of the juvenile phase depends on the total adult population size. The resulting class of equations includes also neutral delay equations. All these equations are very different from the standard delay equations with state-dependent delay since the balance laws require non-linear correction factors. These equations can be written as systems for two variables consisting of an ordinary differential equation (ODE) and a generalized shift, a form suitable for numerical calculations. It is shown that the neutral equation (and the corresponding ODE--shift system) is a limiting case of a system of two standard delay equations.

  12. Structural and dynamical properties of Yukawa balls

    International Nuclear Information System (INIS)

    Block, D; Kroll, M; Arp, O; Piel, A; Kaeding, S; Ivanov, Y; Melzer, A; Henning, C; Baumgartner, H; Ludwig, P; Bonitz, M

    2007-01-01

    To study the structural and dynamical properties of finite 3D dust clouds (Yukawa balls) new diagnostic tools have been developed. This contribution describes the progress towards 3D diagnostics for measuring the particle positions. It is shown that these diagnostics are capable of investigating the structural and dynamical properties of Yukawa balls and gaining insight into their basic construction principles

  13. Effects of an invasive plant on population dynamics in toads.

    Science.gov (United States)

    Greenberg, Daniel A; Green, David M

    2013-10-01

    When populations decline in response to unfavorable environmental change, the dynamics of their population growth shift. In populations that normally exhibit high levels of variation in recruitment and abundance, as do many amphibians, declines may be difficult to identify from natural fluctuations in abundance. However, the onset of declines may be evident from changes in population growth rate in sufficiently long time series of population data. With data from 23 years of study of a population of Fowler's toad (Anaxyrus [ = Bufo] fowleri) at Long Point, Ontario (1989-2011), we sought to identify such a shift in dynamics. We tested for trends in abundance to detect a change point in population dynamics and then tested among competing population models to identify associated intrinsic and extrinsic factors. The most informative models of population growth included terms for toad abundance and the extent of an invasive marsh plant, the common reed (Phragmites australis), throughout the toads' marshland breeding areas. Our results showed density-dependent growth in the toad population from 1989 through 2002. After 2002, however, we found progressive population decline in the toads associated with the spread of common reeds and consequent loss of toad breeding habitat. This resulted in reduced recruitment and population growth despite the lack of significant loss of adult habitat. Our results underscore the value of using long-term time series to identify shifts in population dynamics coincident with the advent of population decline. © 2013 Society for Conservation Biology.

  14. Evolutionary dynamics with fluctuating population sizes and strong mutualism

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R.

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  15. Evolutionary dynamics with fluctuating population sizes and strong mutualism.

    Science.gov (United States)

    Chotibut, Thiparat; Nelson, David R

    2015-08-01

    Game theory ideas provide a useful framework for studying evolutionary dynamics in a well-mixed environment. This approach, however, typically enforces a strictly fixed overall population size, deemphasizing natural growth processes. We study a competitive Lotka-Volterra model, with number fluctuations, that accounts for natural population growth and encompasses interaction scenarios typical of evolutionary games. We show that, in an appropriate limit, the model describes standard evolutionary games with both genetic drift and overall population size fluctuations. However, there are also regimes where a varying population size can strongly influence the evolutionary dynamics. We focus on the strong mutualism scenario and demonstrate that standard evolutionary game theory fails to describe our simulation results. We then analytically and numerically determine fixation probabilities as well as mean fixation times using matched asymptotic expansions, taking into account the population size degree of freedom. These results elucidate the interplay between population dynamics and evolutionary dynamics in well-mixed systems.

  16. Stochastic population dynamics in spatially extended predator-prey systems

    Science.gov (United States)

    Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.

    2018-02-01

    Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex

  17. Structural biology by NMR: structure, dynamics, and interactions.

    Directory of Open Access Journals (Sweden)

    Phineus R L Markwick

    2008-09-01

    Full Text Available The function of bio-macromolecules is determined by both their 3D structure and conformational dynamics. These molecules are inherently flexible systems displaying a broad range of dynamics on time-scales from picoseconds to seconds. Nuclear Magnetic Resonance (NMR spectroscopy has emerged as the method of choice for studying both protein structure and dynamics in solution. Typically, NMR experiments are sensitive both to structural features and to dynamics, and hence the measured data contain information on both. Despite major progress in both experimental approaches and computational methods, obtaining a consistent view of structure and dynamics from experimental NMR data remains a challenge. Molecular dynamics simulations have emerged as an indispensable tool in the analysis of NMR data.

  18. Population structure of Staphylococcus aureus in China

    NARCIS (Netherlands)

    Yan, Xiaomei

    2015-01-01

    The present PhD research was aimed at analysing the population structure of Staphylococcus aureus in China. Between 2000 and 2005 we found that patients from a single Chinese hospital showed increasing trends in antimicrobial resistance. Among methicillin-resistant S. aureus (MRSA), resistance

  19. Social structural consequences of population growth.

    Science.gov (United States)

    Adams, R E

    1981-01-01

    Estimates from archaeological data of the numbers in the elite classes, nonelite occupational specialists, density of population, city size, and size of political units in the ancient Maya civilization suggest that there was a quantum shift in rate of development in the Early Classic period, associated with intensification of agriculture, and that the social structure approximated to a generalized feudal pattern.

  20. Genetic population structure of Shoal Bass within their native range

    Science.gov (United States)

    Taylor, Andrew T.; Tringali, Michael D.; Sammons, Steven M.; Ingram, Travis R.; O'Rouke, Patrick M.; Peterson, Douglas L.; Long, James M.

    2018-01-01

    Endemic to the Apalachicola River basin of the southeastern USA, the Shoal Bass Micropterus cataractae is a fluvial‐specialist sport fish that is imperiled because of anthropogenic habitat alteration. To counter population declines, restorative stocking efforts are becoming an increasingly relevant management strategy. However, population genetic structure within the species is currently unknown, but it could influence management decisions, such as brood source location. Leveraging a collaborative effort to collect and genotype specimens with 16 microsatellite loci, our objective was to characterize hierarchical population structure and genetic differentiation of the Shoal Bass across its native range, including an examination of structuring mechanisms, such as relatedness and inbreeding levels. Specimens identified as Shoal Bass were collected from 13 distinct sites (N ranged from 17 to 209 per location) and were then taxonomically screened to remove nonnative congeners and hybrids (pure Shoal Bass N ranged from 13 to 183 per location). Our results revealed appreciable population structure, with five distinct Shoal Bass populations identifiable at the uppermost hierarchical level that generally corresponded with natural geographic features and anthropogenic barriers. Substructure was recovered within several of these populations, wherein differences appeared related to spatial isolation and local population dynamics. An analysis of molecular variance revealed that 3.6% of the variation in our data set was accounted for among three larger river drainages, but substructure within each river drainage also explained an additional 8.9% of genetic variation, demonstrating that management at a scale lower than the river drainage level would likely best conserve genetic diversity. Results provide a population genetic framework that can inform future management decisions, such as brood source location, so that genetic diversity within and among populations is

  1. Population dynamics model for plasmid bearing and plasmid lacking ...

    African Journals Online (AJOL)

    Streptokinase production in bioreactor is well associated to cell population dynamics. It is an established fact that two types of cell populations are found to emerge from the initial pool of recombinant cell population. This phenomenon leads to an undesired loss in yield of the product. Primary metabolites, like acetic acid etc ...

  2. Familial identification: population structure and relationship distinguishability.

    Science.gov (United States)

    Rohlfs, Rori V; Fullerton, Stephanie Malia; Weir, Bruce S

    2012-02-01

    With the expansion of offender/arrestee DNA profile databases, genetic forensic identification has become commonplace in the United States criminal justice system. Implementation of familial searching has been proposed to extend forensic identification to family members of individuals with profiles in offender/arrestee DNA databases. In familial searching, a partial genetic profile match between a database entrant and a crime scene sample is used to implicate genetic relatives of the database entrant as potential sources of the crime scene sample. In addition to concerns regarding civil liberties, familial searching poses unanswered statistical questions. In this study, we define confidence intervals on estimated likelihood ratios for familial identification. Using these confidence intervals, we consider familial searching in a structured population. We show that relatives and unrelated individuals from population samples with lower gene diversity over the loci considered are less distinguishable. We also consider cases where the most appropriate population sample for individuals considered is unknown. We find that as a less appropriate population sample, and thus allele frequency distribution, is assumed, relatives and unrelated individuals become more difficult to distinguish. In addition, we show that relationship distinguishability increases with the number of markers considered, but decreases for more distant genetic familial relationships. All of these results indicate that caution is warranted in the application of familial searching in structured populations, such as in the United States.

  3. Phytophthora infestans population structure: A worldwide scale

    International Nuclear Information System (INIS)

    Cardenas, Martha; Danies, Giovanna; Tabima, Javier; Bernal, Adriana; Restrepo, Silvia

    2012-01-01

    Phytophthora infestans, the causal agent of late blight disease in potato and other members of the Solanaceae family, is responsible for causing the Irish potato famine and, even today, it causes enormous economic losses all over the world. For the establishment of an adequate pest management strategy, the determination of the pathogen's population structure is required. To characterize P. infestans populations worldwide two allozymes, Gpi (Glucose-6-phospate isomerase) and Pep (Pep tidase), the RG57 DNA RFLP fingerprinting probe, as well as resistance to the fungicide metalaxyl and mating type, have been used as markers. P. infestans populations in Mexico have been one of the main focuses of research in the population biology of this pathogen because this country has been considered as one of the possible centers of origin of this oomycete. In this review we present the population structure of P. infestans in Mexico, Europe, Africa, Asia, North America, and South America, expanding it on the present situation of P. infestans in Colombia. Finally, we will discuss different lines of research that are being carried out today with respect to P. infestans in Colombia, which have shown the importance of continuing the study of this devastating plant pathogen in our country.

  4. Phytophthora infestans population structure: a worldwide scale

    Directory of Open Access Journals (Sweden)

    Martha Cárdenas Toquica

    2012-05-01

    Full Text Available Phytophthora infestans, the causal agent of late blight disease in potato and other members of the Solanaceae family, is responsible for causing the Irish potato famine and, even today, it causes enormous economic losses all over the world. For the establishment of an adequate pest management strategy, the determination of population structure is required. To characterize P. infestans populations worldwide two allozymes, Gpi (Glucose-6-phospate isomerase and Pep (Peptidase, the RG57 DNA RFLP fingerprinting probe, as well as resistance to the fungicide metalaxyl and the mating type, have been used as markers. P. infestans populations in Mexico have been one of the main focuses of research in the population biology of this pathogen because this country has been considered as one of the possible centers of origin of this oomycete. In this review we present the population structure of P. infestans in Mexico, Europe, Africa, Asia, North America, and South America expanding on the present situation of P. infestans in Colombia. Finally, we will discuss different lines of research that are being carried out today with respect to P. infestans in Colombia, which have shown the importance of continuing the study of this devastating plant pathogen in our country.

  5. Familial identification: population structure and relationship distinguishability.

    Directory of Open Access Journals (Sweden)

    Rori V Rohlfs

    2012-02-01

    Full Text Available With the expansion of offender/arrestee DNA profile databases, genetic forensic identification has become commonplace in the United States criminal justice system. Implementation of familial searching has been proposed to extend forensic identification to family members of individuals with profiles in offender/arrestee DNA databases. In familial searching, a partial genetic profile match between a database entrant and a crime scene sample is used to implicate genetic relatives of the database entrant as potential sources of the crime scene sample. In addition to concerns regarding civil liberties, familial searching poses unanswered statistical questions. In this study, we define confidence intervals on estimated likelihood ratios for familial identification. Using these confidence intervals, we consider familial searching in a structured population. We show that relatives and unrelated individuals from population samples with lower gene diversity over the loci considered are less distinguishable. We also consider cases where the most appropriate population sample for individuals considered is unknown. We find that as a less appropriate population sample, and thus allele frequency distribution, is assumed, relatives and unrelated individuals become more difficult to distinguish. In addition, we show that relationship distinguishability increases with the number of markers considered, but decreases for more distant genetic familial relationships. All of these results indicate that caution is warranted in the application of familial searching in structured populations, such as in the United States.

  6. Stochastic population dynamics under resource constraints

    Energy Technology Data Exchange (ETDEWEB)

    Gavane, Ajinkya S., E-mail: ajinkyagavane@gmail.com; Nigam, Rahul, E-mail: rahul.nigam@hyderabad.bits-pilani.ac.in [BITS Pilani Hyderabad Campus, Shameerpet, Hyd - 500078 (India)

    2016-06-02

    This paper investigates the population growth of a certain species in which every generation reproduces thrice over a period of predefined time, under certain constraints of resources needed for survival of population. We study the survival period of a species by randomizing the reproduction probabilities within a window at same predefined ages and the resources are being produced by the working force of the population at a variable rate. This randomness in the reproduction rate makes the population growth stochastic in nature and one cannot predict the exact form of evolution. Hence we study the growth by running simulations for such a population and taking an ensemble averaged over 500 to 5000 such simulations as per the need. While the population reproduces in a stochastic manner, we have implemented a constraint on the amount of resources available for the population. This is important to make the simulations more realistic. The rate of resource production then is tuned to find the rate which suits the survival of the species. We also compute the mean life time of the species corresponding to different resource production rate. Study for these outcomes in the parameter space defined by the reproduction probabilities and rate of resource production is carried out.

  7. POSTER : Identifying dynamic data structures in Malware

    NARCIS (Netherlands)

    Rupprecht, Thomas; Chen, Xi; White, David H.; Mühlberg, Jan Tobias; Bos, Herbert; Lüttgen, Gerald

    2016-01-01

    As the complexity of malware grows, so does the necessity of employing program structuring mechanisms during development. While control ow structuring is often obfuscated, the dynamic data structures employed by the program are typically untouched. We report on work in progress that exploits this

  8. Stochastic dynamics and logistic population growth

    Science.gov (United States)

    Méndez, Vicenç; Assaf, Michael; Campos, Daniel; Horsthemke, Werner

    2015-06-01

    The Verhulst model is probably the best known macroscopic rate equation in population ecology. It depends on two parameters, the intrinsic growth rate and the carrying capacity. These parameters can be estimated for different populations and are related to the reproductive fitness and the competition for limited resources, respectively. We investigate analytically and numerically the simplest possible microscopic scenarios that give rise to the logistic equation in the deterministic mean-field limit. We provide a definition of the two parameters of the Verhulst equation in terms of microscopic parameters. In addition, we derive the conditions for extinction or persistence of the population by employing either the momentum-space spectral theory or the real-space Wentzel-Kramers-Brillouin approximation to determine the probability distribution function and the mean time to extinction of the population. Our analytical results agree well with numerical simulations.

  9. Seasonal population dynamics and energy consumption by ...

    African Journals Online (AJOL)

    Dynamiques saisonnières de population et consommation énergétique par les oiseaux aquatiques d'un petit estuaire tempéré De simples mesures des dynamiques de population et de consommation énergétique peuvent fournir des informations de base sur le rôle des consommateurs au sein des réseaux trophiques, ...

  10. Statistical dynamics of regional populations and economies

    Science.gov (United States)

    Huo, Jie; Wang, Xu-Ming; Hao, Rui; Wang, Peng

    Quantitative analysis of human behavior and social development is becoming a hot spot of some interdisciplinary studies. A statistical analysis on the population and GDP of 150 cities in China from 1990 to 2013 is conducted. The result indicates the cumulative probability distribution of the populations and that of the GDPs obeying the shifted power law, respectively. In order to understand these characteristics, a generalized Langevin equation describing variation of population is proposed, which is based on the correlations between population and GDP as well as the random fluctuations of the related factors. The equation is transformed into the Fokker-Plank equation to express the evolution of population distribution. The general solution demonstrates a transition of the distribution from the normal Gaussian distribution to a shifted power law, which suggests a critical point of time at which the transition takes place. The shifted power law distribution in the supercritical situation is qualitatively in accordance with the practical result. The distribution of the GDPs is derived from the well-known Cobb-Douglas production function. The result presents a change, in supercritical situation, from a shifted power law to the Gaussian distribution. This is a surprising result-the regional GDP distribution of our world will be the Gaussian distribution one day in the future. The discussions based on the changing trend of economic growth suggest it will be true. Therefore, these theoretical attempts may draw a historical picture of our society in the aspects of population and economy.

  11. Trading Stages: Life Expectancies in Structured Populations

    Science.gov (United States)

    Tuljapurkar, Shripad; Coulson, Tim; Horvitz, Carol

    2012-01-01

    Interest in stage-and age structured models has recently increased because they can describe quantitative traits such as size that are left out of age-only demography. Available methods for the analysis of effects of vital rates on lifespan in stage-structured models have not been widely applied because they are hard to use and interpret, and tools for age and stage structured populations are missing. We present easily interpretable expressions for the sensitivities and elasticities of life expectancy to vital rates in age-stage models, and illustrate their application with two biological examples. Much of our approach relies on trading of time and mortality risk in one stage for time and risk in others. Our approach contributes to the new framework of the study of age- and stage-structured biodemography. PMID:22664576

  12. Dynamic analysis program for frame structure

    International Nuclear Information System (INIS)

    Ando, Kozo; Chiba, Toshio

    1975-01-01

    A general purpose computer program named ISTRAN/FD (Isub(HI) STRucture ANalysis/Frame structure, Dynamic analysis) has been developed for dynamic analysis of three-dimensional frame structures. This program has functions of free vibration analysis, seismic response analysis, graphic display by plotter and CRT, etc. This paper introduces ISTRAN/FD; examples of its application are shown with various problems : idealization of the cantilever, dynamic analysis of the main tower of the suspension bridge, three-dimensional vibration in the plate girder bridge, seismic response in the boiler steel structure, and dynamic properties of the underground LNG tank. In this last example, solid elements, in addition to beam elements, are especially used for the analysis. (auth.)

  13. Fairness and Trust in Structured Populations

    Directory of Open Access Journals (Sweden)

    Corina E. Tarnita

    2015-07-01

    Full Text Available Classical economic theory assumes that people are rational and selfish, but behavioral experiments often point to inconsistent behavior, typically attributed to “other regarding preferences.” The Ultimatum Game, used to study fairness, and the Trust Game, used to study trust and trustworthiness, have been two of the most influential and well-studied examples of inconsistent behavior. Recently, evolutionary biologists have attempted to explain the evolution of such preferences using evolutionary game theoretic models. While deterministic evolutionary game theoretic models agree with the classical economics predictions, recent stochastic approaches that include uncertainty and the possibility of mistakes have been successful in accounting for both the evolution of fairness and the evolution of trust. Here I explore the role of population structure by generalizing and expanding these existing results to the case of non-random interactions. This is a natural extension since such interactions do not occur randomly in the daily lives of individuals. I find that, in the limit of weak selection, population structure increases the space of fair strategies that are selected for but it has little-to-no effect on the optimum strategy played in the Ultimatum Game. In the Trust Game, in the limit of weak selection, I find that some amount of trust and trustworthiness can evolve even in a well-mixed population; however, the optimal strategy, although trusting if the return on investment is sufficiently high, is never trustworthy. Population structure biases selection towards strategies that are both trusting and trustworthy trustworthy and reduces the critical return threshold, but, much like in the case of fairness, it does not affect the winning strategy. Further considering the effects of reputation and structure, I find that they act synergistically to promote the evolution of trustworthiness.

  14. Population structure of Staphylococcus aureus in China

    OpenAIRE

    Yan, Xiaomei

    2015-01-01

    The present PhD research was aimed at analysing the population structure of Staphylococcus aureus in China. Between 2000 and 2005 we found that patients from a single Chinese hospital showed increasing trends in antimicrobial resistance. Among methicillin-resistant S. aureus (MRSA), resistance against rifampicin doubled to 68%. Staphylococcal food poisoning (SFP) is frequent in China. Two predominant S. aureus lineages, ST6 and ST943, were identified causing outbreaks of SFP in Southern China...

  15. Structural Dynamic Behavior of Wind Turbines

    Science.gov (United States)

    Thresher, Robert W.; Mirandy, Louis P.; Carne, Thomas G.; Lobitz, Donald W.; James, George H. III

    2009-01-01

    The structural dynamicist s areas of responsibility require interaction with most other members of the wind turbine project team. These responsibilities are to predict structural loads and deflections that will occur over the lifetime of the machine, ensure favorable dynamic responses through appropriate design and operational procedures, evaluate potential design improvements for their impact on dynamic loads and stability, and correlate load and control test data with design predictions. Load prediction has been a major concern in wind turbine designs to date, and it is perhaps the single most important task faced by the structural dynamics engineer. However, even if we were able to predict all loads perfectly, this in itself would not lead to an economic system. Reduction of dynamic loads, not merely a "design to loads" policy, is required to achieve a cost-effective design. The two processes of load prediction and structural design are highly interactive: loads and deflections must be known before designers and stress analysts can perform structural sizing, which in turn influences the loads through changes in stiffness and mass. Structural design identifies "hot spots" (local areas of high stress) that would benefit most from dynamic load alleviation. Convergence of this cycle leads to a turbine structure that is neither under-designed (which may result in structural failure), nor over-designed (which will lead to excessive weight and cost).

  16. Dynamics and acceleration in linear structures

    International Nuclear Information System (INIS)

    Le Duff, J.

    1985-06-01

    Basic methods of linear acceleration are reviewed. Both cases of non relativistic and ultra relativistic particles are considered. Induction linac, radiofrequency quadrupole are mentioned. Fundamental parameters of accelerating structures are recalled; they are transit time factor, shunt impedance, quality factor and stored energy, phase velocity and group velocity, filling time, space harmonics in loaded waveguides. Energy gain in linear accelerating structures is considered through standing wave structures and travelling wave structures. Then particle dynamics in linear accelerators is studied: longitudinal motion, transverse motion and dynamics in RFQ

  17. Missing cycles: Effect of climate change on population dynamics

    Indian Academy of Sciences (India)

    population dynamics of the larch budmoth – an insect pest which causes massive defoliation of entire larch forests ... hypothesized that global warming has led to the collapse of the cycles ... When temperatures increase after winter, and the.

  18. A linear model of population dynamics

    Science.gov (United States)

    Lushnikov, A. A.; Kagan, A. I.

    2016-08-01

    The Malthus process of population growth is reformulated in terms of the probability w(n,t) to find exactly n individuals at time t assuming that both the birth and the death rates are linear functions of the population size. The master equation for w(n,t) is solved exactly. It is shown that w(n,t) strongly deviates from the Poisson distribution and is expressed in terms either of Laguerre’s polynomials or a modified Bessel function. The latter expression allows for considerable simplifications of the asymptotic analysis of w(n,t).

  19. Structure of the New England herring gull population

    Science.gov (United States)

    Kadlec, J.A.; Drury, W.H.

    1968-01-01

    Measurements of the rates of population increase, reproduction, and mortality together with an observed age ratio, were used to analyze the population of the Herring Gull in New England. Data from sporadic censuses prior to this study, aerial censuses by the authors, and National Audubon Society Christmas Bird Count indicated that the New England breeding population has been doubling every 12 to 15 years since the early 1900's. This increase has involved founding new colonies and expanding the breeding range There is evidence that 15 to 30% of the adults do not breed in any given year. Sixty-one productivity measurements on 43 islands from 1963 through 1966, involving almost 13,000 nests, showed that from 0.8 to 1.4 young/breeding pair/year is the usual range of rate of production. The age distribution in the population was determined by classifying Herring Gulls by plumage category on an aerial census of the coast from Tampico, Mexico, to Cape Sable, Nova Scotia. Of the 622,000 gulls observed, 68% were adults, 17% were second- and third-year birds, and 15% were first-year birds. Mortality rates derived from band recovery data were too high to be consistent with the observed rate of population growth, productivity, and age structure. Loss of bands increasing to the rate of about 20%/year 5 years after banding eliminates most of the discrepancy. The age structure and rate of population increase indicate a mortality rate of 4 to 9% for gulls 2 years old or older, compared with the 25 to 30% indicated by band recoveries. The population structure we have developed fits everything we have observed about Herring Gull population dynamics, except mortality based on band recoveries.

  20. POPULATION DYNAMICS OF THE WANDERING ALBATROSS ...

    African Journals Online (AJOL)

    Changes in several demographic parameters that appear to be influenced by both environmental and anthropogenic effects are described. From 1994–2001, the proportion of first-time breeders in the population was positively correlated with the maximum ENSO (Niño 3) index, whereas from 1984–2000 the annual survival ...

  1. Stochastic population dynamics of a montane ground-dwelling squirrel.

    Science.gov (United States)

    Hostetler, Jeffrey A; Kneip, Eva; Van Vuren, Dirk H; Oli, Madan K

    2012-01-01

    Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008) study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis) population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λbounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.

  2. Passivity analysis of higher order evolutionary dynamics and population games

    KAUST Repository

    Mabrok, Mohamed

    2017-01-05

    Evolutionary dynamics describe how the population composition changes in response to the fitness levels, resulting in a closed-loop feedback system. Recent work established a connection between passivity theory and certain classes of population games, namely so-called “stable games”. In particular, it was shown that a combination of stable games and (an analogue of) passive evolutionary dynamics results in stable convergence to Nash equilibrium. This paper considers the converse question of necessary conditions for evolutionary dynamics to exhibit stable behaviors for all generalized stable games. Using methods from robust control analysis, we show that if an evolutionary dynamic does not satisfy a passivity property, then it is possible to construct a generalized stable game that results in instability. The results are illustrated on selected evolutionary dynamics with particular attention to replicator dynamics, which are also shown to be lossless, a special class of passive systems.

  3. 31st IMAC Conference on Structural Dynamics

    CERN Document Server

    Adams, Douglas; Carrella, Alex; Mayes, Randy; Rixen, Daniel; Allen, Matt; Cunha, Alvaro; Catbas, Fikret; Pakzad, Shamim; Racic, Vitomir; Pavic, Aleksandar; Reynolds, Paul; Simmermacher, Todd; Cogan, Scott; Moaveni, Babak; Papadimitriou, Costas; Allemang, Randall; Clerck, James; Niezrecki, Christopher; Wicks, Alfred

    2013-01-01

    Topics in Nonlinear Dynamics, Volume 1: Proceedings of the 31st IMAC, A Conference and Exposition on Structural Dynamics, 2013, the first volume of seven from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on:   Nonlinear Oscillations Nonlinearities In Practice Nonlinear System Identification: Methods Nonlinear System Identification: Friction & Contact Nonlinear Modal Analysis Nonlinear Modeling & Simulation Nonlinear Vibration Absorbers Constructive Utilization of Nonlinearity.

  4. Network structure shapes spontaneous functional connectivity dynamics.

    Science.gov (United States)

    Shen, Kelly; Hutchison, R Matthew; Bezgin, Gleb; Everling, Stefan; McIntosh, Anthony R

    2015-04-08

    The structural organization of the brain constrains the range of interactions between different regions and shapes ongoing information processing. Therefore, it is expected that large-scale dynamic functional connectivity (FC) patterns, a surrogate measure of coordination between brain regions, will be closely tied to the fiber pathways that form the underlying structural network. Here, we empirically examined the influence of network structure on FC dynamics by comparing resting-state FC (rsFC) obtained using BOLD-fMRI in macaques (Macaca fascicularis) to structural connectivity derived from macaque axonal tract tracing studies. Consistent with predictions from simulation studies, the correspondence between rsFC and structural connectivity increased as the sample duration increased. Regions with reciprocal structural connections showed the most stable rsFC across time. The data suggest that the transient nature of FC is in part dependent on direct underlying structural connections, but also that dynamic coordination can occur via polysynaptic pathways. Temporal stability was found to be dependent on structural topology, with functional connections within the rich-club core exhibiting the greatest stability over time. We discuss these findings in light of highly variable functional hubs. The results further elucidate how large-scale dynamic functional coordination exists within a fixed structural architecture. Copyright © 2015 the authors 0270-6474/15/355579-10$15.00/0.

  5. Evolutionary snowdrift game incorporating costly punishment in structured populations

    Science.gov (United States)

    Chan, Nat W. H.; Xu, C.; Tey, Siew Kian; Yap, Yee Jiun; Hui, P. M.

    2013-01-01

    The role of punishment and the effects of a structured population in promoting cooperation are important issues. Within a recent model of snowdrift game (SG) incorporating a costly punishing strategy (P), we study the effects of a population connected through a square lattice. The punishers, who carry basically a cooperative (C) character, are willing to pay a cost α so as to punish a non-cooperative (D) opponent by β. Depending on α, β, the cost-to-benefit ratio r in SG, and the initial conditions, the system evolves into different phases that could be homogeneous or inhomogeneous. The spatial structure imposes geometrical constraint on how one agent is affected by neighboring agents. Results of extensive numerical simulations, both for the steady state and the dynamics, are presented. Possible phases are identified and discussed, and isolated phases in the r-β space are identified as special local structures of strategies that are stable due to the lattice structure. In contrast to a well-mixed population where punishers are suppressed due to the cost of punishment, the altruistic punishing strategy can flourish and prevail for appropriate values of the parameters, implying an enhancement in cooperation by imposing punishments in a structured population. The system could evolve to a phase corresponding to the coexistence of C, D, and P strategies at some particular payoff parameters, and such a phase is absent in a well-mixed population. The pair approximation, a commonly used analytic approach, is extended from a two-strategy system to a three-strategy system. We show that the pair approximation can, at best, capture the numerical results only qualitatively. Due to the improper way of including spatial correlation imposed by the lattice structure, the approximation does not give the frequencies of C, D, and P accurately and fails to give the homogeneous AllD and AllP phases.

  6. Dynamic response of structures with uncertain parameters

    International Nuclear Information System (INIS)

    Cai, Z H; Liu, Y; Yang, Y

    2010-01-01

    In this paper, an interval method for the dynamic response of structures with uncertain parameters is presented. In the presented method, the structural physical and geometric parameters and loads can be considered as interval variables. The structural stiffness matrix, mass matrix and loading vectors are described as the sum of two parts corresponding to the deterministic matrix and the uncertainty of the interval parameters. The interval problem is then transformed into approximate deterministic one. The Laplace transform is used to transform the equations of the dynamic system into linear algebra equations. The Maclaurin series expansion is applied on the modified dynamic equation in order to deal with the linear algebra equations. Numerical examples are studied by the presented interval method for the cases with and without damping. The upper bound and lower bound of the dynamic responses of the examples are compared, and it shows that the presented method is effective.

  7. Population dynamics and distribution of the coffee berry borer ...

    African Journals Online (AJOL)

    Population dynamics and distribution of coffee berry borer, Hypothenemus hampei (Ferrari) (Coleoptera: Scolytidae) were studied on Coffea arabica L. in southwestern region of Ethiopia. Thirty coffee trees were sampled at weekly intervals from 2000 to 2001. Findings of this study showed that coffee berry borer population ...

  8. Ruffed grouse population dynamics in the central and southern Appalachians

    Science.gov (United States)

    John M. Giuliano Tirpak; C. Allan Miller; Thomas J. Allen; Steve Bittner; David A. Buehler; John W. Edwards; Craig A. Harper; William K. Igo; Gary W. Norman; M. Seamster; Dean F. Stauffer

    2006-01-01

    Ruffed grouse (Bonasa urnbellus; hereafter grouse) populations in the central and southern Appalachians are in decline. However, limited information on the dynamics of these populations prevents the development of effective management strategies to reverse these trends. We used radiotelemetry data collected on grouse to parameterize 6 models of...

  9. Design optimization applied in structural dynamics

    NARCIS (Netherlands)

    Akcay-Perdahcioglu, Didem; de Boer, Andries; van der Hoogt, Peter; Tiskarna, T

    2007-01-01

    This paper introduces the design optimization strategies, especially for structures which have dynamic constraints. Design optimization involves first the modeling and then the optimization of the problem. Utilizing the Finite Element (FE) model of a structure directly in an optimization process

  10. Dynamical structure of space and time

    International Nuclear Information System (INIS)

    Sannikov-Proskuryakov, S.S.

    2000-01-01

    A mathematically correct solution of the problem of ultraviolet divergences requires a radical change of our ideas on space and matter. We show that the space is a discontinuum in small which is the carrier of a new dynamical structure. Taking into account this structure, a new theory of elementary particles can be suggested

  11. [The dynamics of heath indicators of population of industrial town].

    Science.gov (United States)

    Kalinkin, D E; Karpov, A B; Takhauov, R M; Samoĭlova, Iu A

    2013-01-01

    The article presents the results of analysis of dynamics of health indicators of population of industrial town (medical demographic indicators, disability, morbidity of social hygienically important diseases) during 1970-2010. The classified administrative territorial municipality of Seversk constructed near the Siberian chemical industrial center, the internationally first-rate complex of nuclear industry enterprises was used as a research base. It is demonstrated that dynamics of health indicators of studied population had such negative tendencies as rapid population ageing, population loss due to decrease of natality and increase of mortality (population of able-bodied age included), prevalence of cardio-vascular diseases, malignant neoplasms and external causes, chronization of diseases. The established tendencies are to be considered in management decision making targeted to support and promote population health in industrial towns.

  12. The Structure and Dynamics of GRB Jets

    Energy Technology Data Exchange (ETDEWEB)

    Granot, Jonathan; /KIPAC, Menlo Park

    2006-10-25

    There are several lines of evidence which suggest that the relativistic outflows in gamma-ray bursts (GRBs) are collimated into narrow jets. The jet structure has important implications for the true energy release and the event rate of GRBs, and can constrain the mechanism responsible for the acceleration and collimation of the jet. Nevertheless, the jet structure and its dynamics as it sweeps up the external medium and decelerates, are not well understood. In this review I discuss our current understanding of GRB jets, stressing their structure and dynamics.

  13. Dynamics of Population on the Verge of Extinction

    OpenAIRE

    Oborny, B.; Meszena, G.; Szabo, G.

    2005-01-01

    Theoretical considerations suggest that extinction in dispersal-limited populations is necessarily a threshold-like process that is analogous to a critical phase transition in physics. We use this analogy to find robust, common features in the dynamics of extinctions, and suggest early warning signals which may indicate that a population is endangered. As the critical threshold of extinction is approached, the population spontaneously fragments into discrete subpopulations and, consequently, ...

  14. Geography, European colonization, and past population dynamics in Africa

    OpenAIRE

    Vaz Silva, Luis

    2005-01-01

    Past population dynamics in Africa have remained largely elusive due to the lack of demographic data. Researchers are understandably deterred from trying to explain what is not known and African historical population estimates suffer from this lack of interest. In this paper I explain present day African population densities using mostly ecological factors as explanatory variables. I find evidence supporting the view that ecological factors deeply affected precolonial patterns of human settle...

  15. Modelling the Dynamics of an Aedes albopictus Population

    Directory of Open Access Journals (Sweden)

    Thomas Anung Basuki

    2010-08-01

    Full Text Available We present a methodology for modelling population dynamics with formal means of computer science. This allows unambiguous description of systems and application of analysis tools such as simulators and model checkers. In particular, the dynamics of a population of Aedes albopictus (a species of mosquito and its modelling with the Stochastic Calculus of Looping Sequences (Stochastic CLS are considered. The use of Stochastic CLS to model population dynamics requires an extension which allows environmental events (such as changes in the temperature and rainfalls to be taken into account. A simulator for the constructed model is developed via translation into the specification language Maude, and used to compare the dynamics obtained from the model with real data.

  16. Coupling population dynamics with earth system models: the POPEM model.

    Science.gov (United States)

    Navarro, Andrés; Moreno, Raúl; Jiménez-Alcázar, Alfonso; Tapiador, Francisco J

    2017-09-16

    Precise modeling of CO 2 emissions is important for environmental research. This paper presents a new model of human population dynamics that can be embedded into ESMs (Earth System Models) to improve climate modeling. Through a system dynamics approach, we develop a cohort-component model that successfully simulates historical population dynamics with fine spatial resolution (about 1°×1°). The population projections are used to improve the estimates of CO 2 emissions, thus transcending the bulk approach of existing models and allowing more realistic non-linear effects to feature in the simulations. The module, dubbed POPEM (from Population Parameterization for Earth Models), is compared with current emission inventories and validated against UN aggregated data. Finally, it is shown that the module can be used to advance toward fully coupling the social and natural components of the Earth system, an emerging research path for environmental science and pollution research.

  17. Modeling and identification in structural dynamics

    OpenAIRE

    Jayakumar, Paramsothy

    1987-01-01

    Analytical modeling of structures subjected to ground motions is an important aspect of fully dynamic earthquake-resistant design. In general, linear models are only sufficient to represent structural responses resulting from earthquake motions of small amplitudes. However, the response of structures during strong ground motions is highly nonlinear and hysteretic. System identification is an effective tool for developing analytical models from experimental data. Testing of full-scale prot...

  18. Dynamic Response of a Floating Bridge Structure

    OpenAIRE

    Viuff, Thomas; Leira, Bernt Johan; Øiseth, Ole; Xiang, Xu

    2016-01-01

    A theoretical overview of the stochastic dynamic analysis of a floating bridge structure is presented. Emphasis is on the wave-induced response and the waves on the sea surface are idealized as a zero mean stationary Gaussian process. The first-order wave load processes are derived using linear potential theory and the structural idealization is based on the Finite Element Method. A frequency response calculation is presented for a simplified floating bridge structure example emphasising the ...

  19. On the stochastic approach to marine population dynamics

    Directory of Open Access Journals (Sweden)

    Eduardo Ferrandis

    2007-03-01

    Full Text Available The purpose of this article is to deepen and structure the statistical basis of marine population dynamics. The starting point is the correspondence between the concepts of mortality, survival and lifetime distribution. This is the kernel of the possibilities that survival analysis techniques offer to marine population dynamics. A rigorous definition of survival and mortality based on their properties and their probabilistic versions is briefly presented. Some well established models for lifetime distribution, which generalise the usual simple exponential distribution, might be used with their corresponding survivals and mortalities. A critical review of some published models is also made, including original models proposed in the way opened by Caddy (1991 and Sparholt (1990, which allow for a continuously decreasing natural mortality. Considering these elements, the pure death process dealt with in the literature is used as a theoretical basis for the evolution of a marine cohort. The elaboration of this process is based on Chiang´s study of the probability distribution of the life table (Chiang, 1960 and provides specific structured models for stock evolution as a Markovian process. These models may introduce new ideas in the line of thinking developed by Gudmundsson (1987 and Sampson (1990 in order to model the evolution of a marine cohort by stochastic processes. The suitable approximation of these processes by means of Gaussian processes may allow theoretical and computational multivariate Gaussian analysis to be applied to the probabilistic treatment of fisheries issues. As a consequence, the necessary catch equation appears as a stochastic integral with respect to the mentioned Markovian process of the stock. The solution of this equation is available when the mortalities are proportional, hence the use of the proportional hazards model (Cox, 1959. The assumption of these proportional mortalities leads naturally to the construction of a

  20. Stand development and population dynamics of curlleaf mountain mahogany (Cercocarpus ledifolius Nutt.) woodlands in Utah's Bear River Mountains

    Science.gov (United States)

    Seth A. Ex; Robert DeRose; James N. Long

    2011-01-01

    Curlleaf mountain mahogany (Cercocarpus ledifolius Nutt.) is a little-studied woodland tree that occurs in pure stands throughout the Intermountain West. Stand development and population dynamics of this species are poorly understood, despite their relevance to management. We describe here the development of stand age structures and population dynamics of mahogany...

  1. Dynamics of epidemics outbreaks in heterogeneous populations

    Science.gov (United States)

    Brockmann, Dirk; Morales-Gallardo, Alejandro; Geisel, Theo

    2007-03-01

    The dynamics of epidemic outbreaks have been investigated in recent years within two alternative theoretical paradigms. The key parameter of mean field type of models such as the SIR model is the basic reproduction number R0, the average number of secondary infections caused by one infected individual. Recently, scale free network models have received much attention as they account for the high variability in the number of social contacts involved. These models predict an infinite basic reproduction number in some cases. We investigate the impact of heterogeneities of contact rates in a generic model for epidemic outbreaks. We present a system in which both the time periods of being infectious and the time periods between transmissions are Poissonian processes. The heterogeneities are introduced by means of strongly variable contact rates. In contrast to scale free network models we observe a finite basic reproduction number and, counterintuitively a smaller overall epidemic outbreak as compared to the homogeneous system. Our study thus reveals that heterogeneities in contact rates do not necessarily facilitate the spread to infectious disease but may well attenuate it.

  2. Mapping population-based structural connectomes.

    Science.gov (United States)

    Zhang, Zhengwu; Descoteaux, Maxime; Zhang, Jingwen; Girard, Gabriel; Chamberland, Maxime; Dunson, David; Srivastava, Anuj; Zhu, Hongtu

    2018-05-15

    Advances in understanding the structural connectomes of human brain require improved approaches for the construction, comparison and integration of high-dimensional whole-brain tractography data from a large number of individuals. This article develops a population-based structural connectome (PSC) mapping framework to address these challenges. PSC simultaneously characterizes a large number of white matter bundles within and across different subjects by registering different subjects' brains based on coarse cortical parcellations, compressing the bundles of each connection, and extracting novel connection weights. A robust tractography algorithm and streamline post-processing techniques, including dilation of gray matter regions, streamline cutting, and outlier streamline removal are applied to improve the robustness of the extracted structural connectomes. The developed PSC framework can be used to reproducibly extract binary networks, weighted networks and streamline-based brain connectomes. We apply the PSC to Human Connectome Project data to illustrate its application in characterizing normal variations and heritability of structural connectomes in healthy subjects. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Computer simulation of population dynamics inside the urban environment

    Science.gov (United States)

    Andreev, A. S.; Inovenkov, I. N.; Echkina, E. Yu.; Nefedov, V. V.; Ponomarenko, L. S.; Tikhomirov, V. V.

    2017-12-01

    In this paper using a mathematical model of the so-called “space-dynamic” approach we investigate the problem of development and temporal dynamics of different urban population groups. For simplicity we consider an interaction of only two population groups inside a single urban area with axial symmetry. This problem can be described qualitatively by a system of two non-stationary nonlinear differential equations of the diffusion type with boundary conditions of the third type. The results of numerical simulations show that with a suitable choice of the diffusion coefficients and interaction functions between different population groups we can receive different scenarios of population dynamics: from complete displacement of one population group by another (originally more “aggressive”) to the “peaceful” situation of co-existence of them together.

  4. Bounds on the dynamics of sink populations with noisy immigration.

    Science.gov (United States)

    Eager, Eric Alan; Guiver, Chris; Hodgson, Dave; Rebarber, Richard; Stott, Iain; Townley, Stuart

    2014-03-01

    Sink populations are doomed to decline to extinction in the absence of immigration. The dynamics of sink populations are not easily modelled using the standard framework of per capita rates of immigration, because numbers of immigrants are determined by extrinsic sources (for example, source populations, or population managers). Here we appeal to a systems and control framework to place upper and lower bounds on both the transient and future dynamics of sink populations that are subject to noisy immigration. Immigration has a number of interpretations and can fit a wide variety of models found in the literature. We apply the results to case studies derived from published models for Chinook salmon (Oncorhynchus tshawytscha) and blowout penstemon (Penstemon haydenii). Copyright © 2013 Elsevier Inc. All rights reserved.

  5. About the dynamics of structural phase transitions

    International Nuclear Information System (INIS)

    Medeiros, J.T.N.

    1975-01-01

    The dynamics of structural phase transitions with a fourth order interaction between the soft phonon fields is studied in the 1/n approximation, using many body methods at finite temperatures. Two limits are considered: high transition temperature T sub(c) (classical limit) and T sub(c) = 0 (quantum limit). The dynamical contribution to the critical coefficient eta of the correlation function is calculated in these limits. It is found that there is no dynamical contribution to eta in the classical limit, whereas in the quantum limit eta is non-zero only for dimensions of the system d [pt

  6. Simultaneous determination of protein structure and dynamics

    DEFF Research Database (Denmark)

    Lindorff-Larsen, Kresten; Best, Robert B.; DePristo, M. A.

    2005-01-01

    at the atomic level about the structural and dynamical features of proteins-with the ability of molecular dynamics simulations to explore a wide range of protein conformations. We illustrate the method for human ubiquitin in solution and find that there is considerable conformational heterogeneity throughout......We present a protocol for the experimental determination of ensembles of protein conformations that represent simultaneously the native structure and its associated dynamics. The procedure combines the strengths of nuclear magnetic resonance spectroscopy-for obtaining experimental information...... the protein structure. The interior atoms of the protein are tightly packed in each individual conformation that contributes to the ensemble but their overall behaviour can be described as having a significant degree of liquid-like character. The protocol is completely general and should lead to significant...

  7. Unifying dynamical and structural stability of equilibria

    Science.gov (United States)

    Arnoldi, Jean-François; Haegeman, Bart

    2016-09-01

    We exhibit a fundamental relationship between measures of dynamical and structural stability of linear dynamical systems-e.g. linearized models in the vicinity of equilibria. We show that dynamical stability, quantified via the response to external perturbations (i.e. perturbation of dynamical variables), coincides with the minimal internal perturbation (i.e. perturbations of interactions between variables) able to render the system unstable. First, by reformulating a result of control theory, we explain that harmonic external perturbations reflect the spectral sensitivity of the Jacobian matrix at the equilibrium, with respect to constant changes of its coefficients. However, for this equivalence to hold, imaginary changes of the Jacobian's coefficients have to be allowed. The connection with dynamical stability is thus lost for real dynamical systems. We show that this issue can be avoided, thus recovering the fundamental link between dynamical and structural stability, by considering stochastic noise as external and internal perturbations. More precisely, we demonstrate that a linear system's response to white-noise perturbations directly reflects the intensity of internal white-noise disturbance that it can accommodate before becoming stochastically unstable.

  8. Feedback between Population and Evolutionary Dynamics Determines the Fate of Social Microbial Populations

    Science.gov (United States)

    Sanchez, Alvaro; Gore, Jeff

    2013-01-01

    The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50–100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators “spiral” to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the demographic fate

  9. feedback between population and evolutionary dynamics determines the fate of social microbial populations.

    Directory of Open Access Journals (Sweden)

    Alvaro Sanchez

    Full Text Available The evolutionary spread of cheater strategies can destabilize populations engaging in social cooperative behaviors, thus demonstrating that evolutionary changes can have profound implications for population dynamics. At the same time, the relative fitness of cooperative traits often depends upon population density, thus leading to the potential for bi-directional coupling between population density and the evolution of a cooperative trait. Despite the potential importance of these eco-evolutionary feedback loops in social species, they have not yet been demonstrated experimentally and their ecological implications are poorly understood. Here, we demonstrate the presence of a strong feedback loop between population dynamics and the evolutionary dynamics of a social microbial gene, SUC2, in laboratory yeast populations whose cooperative growth is mediated by the SUC2 gene. We directly visualize eco-evolutionary trajectories of hundreds of populations over 50-100 generations, allowing us to characterize the phase space describing the interplay of evolution and ecology in this system. Small populations collapse despite continual evolution towards increased cooperative allele frequencies; large populations with a sufficient number of cooperators "spiral" to a stable state of coexistence between cooperator and cheater strategies. The presence of cheaters does not significantly affect the equilibrium population density, but it does reduce the resilience of the population as well as its ability to adapt to a rapidly deteriorating environment. Our results demonstrate the potential ecological importance of coupling between evolutionary dynamics and the population dynamics of cooperatively growing organisms, particularly in microbes. Our study suggests that this interaction may need to be considered in order to explain intraspecific variability in cooperative behaviors, and also that this feedback between evolution and ecology can critically affect the

  10. Population structure of humpback whales in the western and central South Pacific Ocean as determined by vocal exchange among populations.

    Science.gov (United States)

    Garland, Ellen C; Goldizen, Anne W; Lilley, Matthew S; Rekdahl, Melinda L; Garrigue, Claire; Constantine, Rochelle; Hauser, Nan Daeschler; Poole, M Michael; Robbins, Jooke; Noad, Michael J

    2015-08-01

    For cetaceans, population structure is traditionally determined by molecular genetics or photographically identified individuals. Acoustic data, however, has provided information on movement and population structure with less effort and cost than traditional methods in an array of taxa. Male humpback whales (Megaptera novaeangliae) produce a continually evolving vocal sexual display, or song, that is similar among all males in a population. The rapid cultural transmission (the transfer of information or behavior between conspecifics through social learning) of different versions of this display between distinct but interconnected populations in the western and central South Pacific region presents a unique way to investigate population structure based on the movement dynamics of a song (acoustic) display. Using 11 years of data, we investigated an acoustically based population structure for the region by comparing stereotyped song sequences among populations and years. We used the Levenshtein distance technique to group previously defined populations into (vocally based) clusters based on the overall similarity of their song display in space and time. We identified the following distinct vocal clusters: western cluster, 1 population off eastern Australia; central cluster, populations around New Caledonia, Tonga, and American Samoa; and eastern region, either a single cluster or 2 clusters, one around the Cook Islands and the other off French Polynesia. These results are consistent with the hypothesis that each breeding aggregation represents a distinct population (each occupied a single, terminal node) in a metapopulation, similar to the current understanding of population structure based on genetic and photo-identification studies. However, the central vocal cluster had higher levels of song-sharing among populations than the other clusters, indicating that levels of vocal connectivity varied within the region. Our results demonstrate the utility and value of

  11. Structure and Dynamics of Negative Ions

    International Nuclear Information System (INIS)

    None

    2000-01-01

    This report describes progress made during the final three-year grant period 1997-2000. During this period, we experimentally investigated the structure and dynamics of negative ions by detaching the outermost electron in controlled processes induced by photon-, electron- and heavy particle-impact. In this manner we studied, at a fundamental level, the role of electron correlation in the structure and dynamics of simple, few-particle atomic systems. Our measurements have provided sensitive tests of the ability of theory to go beyond the independent electron model

  12. Structural dynamics of electronic and photonic systems

    CERN Document Server

    Suhir, Ephraim; Steinberg, David S

    2011-01-01

    The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.)  In-depth discussion from a mechanical engineer's viewpoint will be conducte

  13. Chemical structure and dynamics: Annual report 1993

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.

    1994-07-01

    The Chemical Structure and Dynamics program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally-important interfaces. The research program is built around the established relationship between structure, thermodynamics, and kinetics. This research effort continues to evolve into a program of rigorous studies of fundamental molecular processes in model systems (e.g., well-characterized surfaces, single-component solutions, clusters, and biological molecules), and studies of complex systems found in the environment. Experimental studies of molecular and supramolecular structures and thermodynamics are key to understanding the nature of matter, and lead to direct comparison with computational results. Kinetic and mechanistic measurements, combined with real-time dynamics measurements of atomic and molecular motions during chemical reactions, provide for a molecular-level description of chemical reactions. The anticipated results of this work are the achievement of a quantitative understanding of chemical processes at complex interfaces, the development of new techniques for the detection and measurement of species at such interfaces, and the interpretation and extrapolation of the observations in terms of models of interfacial chemistry. The Chemical Structure and Dynamics research program includes five areas described in detail in this report: Reaction mechanisms at solid interfaces; Solution and solution interfaces; Structure and dynamics of biological systems; Analytical methods development; and atmospheric chemistry. Extended abstracts are presented for 23 studies.

  14. The cultural implications of growth: Modeling nonlinear interaction of trait selection and population dynamics

    Science.gov (United States)

    Antoci, Angelo; Galeotti, Marcello; Russu, Paolo; Luigi Sacco, Pier

    2018-05-01

    In this paper, we study a nonlinear model of the interaction between trait selection and population dynamics, building on previous work of Ghirlanda et al. [Theor. Popul. Biol. 77, 181-188 (2010)] and Antoci et al. [Commun. Nonlinear Sci. Numer. Simul. 58, 92-106 (2018)]. We establish some basic properties of the model dynamics and present some simulations of the fine-grained structure of alternative dynamic regimes for chosen combinations of parameters. The role of the parameters that govern the reinforcement/corruption of maladaptive vs. adaptive traits is of special importance in determining the model's dynamic evolution. The main implication of this result is the need to pay special attention to the structural forces that may favor the emergence and consolidation of maladaptive traits in contemporary socio-economies, as it is the case, for example, for the stimulation of dysfunctional consumption habits and lifestyles in the pursuit of short-term profits.

  15. The cultural implications of growth: Modeling nonlinear interaction of trait selection and population dynamics.

    Science.gov (United States)

    Antoci, Angelo; Galeotti, Marcello; Russu, Paolo; Luigi Sacco, Pier

    2018-05-01

    In this paper, we study a nonlinear model of the interaction between trait selection and population dynamics, building on previous work of Ghirlanda et al. [Theor. Popul. Biol. 77, 181-188 (2010)] and Antoci et al. [Commun. Nonlinear Sci. Numer. Simul. 58, 92-106 (2018)]. We establish some basic properties of the model dynamics and present some simulations of the fine-grained structure of alternative dynamic regimes for chosen combinations of parameters. The role of the parameters that govern the reinforcement/corruption of maladaptive vs. adaptive traits is of special importance in determining the model's dynamic evolution. The main implication of this result is the need to pay special attention to the structural forces that may favor the emergence and consolidation of maladaptive traits in contemporary socio-economies, as it is the case, for example, for the stimulation of dysfunctional consumption habits and lifestyles in the pursuit of short-term profits.

  16. Interactive diversity promotes the evolution of cooperation in structured populations

    International Nuclear Information System (INIS)

    Su, Qi; Li, Aming; Zhou, Lei; Wang, Long

    2016-01-01

    Evolutionary games on networks traditionally assume that each individual adopts an identical strategy to interact with all its neighbors in each generation. Considering the prevalent diversity of individual interactions in the real society, here we propose the concept of interactive diversity, which allows individuals to adopt different strategies against different neighbors in each generation. We investigate the evolution of cooperation based on the edge dynamics rather than the traditional nodal dynamics in networked systems. The results show that, without invoking any other mechanisms, interactive diversity drives the frequency of cooperation to a high level for a wide range of parameters in both well-mixed and structured populations. Even in highly connected populations, cooperation still thrives. When interactive diversity and large topological heterogeneity are combined together, however, in the relaxed social dilemma, cooperation level is lower than that with just one of them, implying that the combination of many promotive factors may make a worse outcome. By an analytical approximation, we get the condition under which interactive diversity provides more advantages for cooperation than traditional evolutionary dynamics does. Numerical simulations validating the approximation are also presented. Our work provides a new line to explore the latent relation between the ubiquitous cooperation and individuals’ distinct responses in different interactions. The presented results suggest that interactive diversity should receive more attention in pursuing mechanisms fostering cooperation. (paper)

  17. Population structure and recruitment of penaeid shrimps in ...

    African Journals Online (AJOL)

    Population structure and recruitment of penaeid shrimps in mozambique. ... This study characterizes the population structure and identifies nursery areas and recruitment seasons of penaeid shrimps in the ... AJOL African Journals Online.

  18. Network evolution induced by the dynamical rules of two populations

    International Nuclear Information System (INIS)

    Platini, Thierry; Zia, R K P

    2010-01-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (N a and N b ) and preferred degree (κ a and κ b a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees (k bb ) and (k ab ) presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal N a = N b , the ratio of the restricted degree θ 0 = (k ab )/(k bb ) appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t 1 = κ b ) the total number of links presents a linear evolution, where the two populations are indistinguishable and where θ 0 = 1. Interestingly, in the intermediate time regime (defined for t 1 2 ∝κ a and for which θ 0 = 5), the system reaches a transient stationary state, where the number of contacts among introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ 0 = 3

  19. Social Information Links Individual Behavior to Population and Community Dynamics.

    Science.gov (United States)

    Gil, Michael A; Hein, Andrew M; Spiegel, Orr; Baskett, Marissa L; Sih, Andrew

    2018-05-07

    When individual animals make decisions, they routinely use information produced intentionally or unintentionally by other individuals. Despite its prevalence and established fitness consequences, the effects of such social information on ecological dynamics remain poorly understood. Here, we synthesize results from ecology, evolutionary biology, and animal behavior to show how the use of social information can profoundly influence the dynamics of populations and communities. We combine recent theoretical and empirical results and introduce simple population models to illustrate how social information use can drive positive density-dependent growth of populations and communities (Allee effects). Furthermore, social information can shift the nature and strength of species interactions, change the outcome of competition, and potentially increase extinction risk in harvested populations and communities. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Population dynamics of active and total ciliate populations in arable soil amended with wheat

    DEFF Research Database (Denmark)

    Ekelund, F.; Frederiksen, Helle B.; Ronn, R.

    2002-01-01

    of the population may be encysted. The factors governing the dynamics of active and encysted cells in the soil are not well understood. Our objective was to determine the dynamics of active and encysted populations of ciliates during the decomposition of freshly added organic material. We monitored, in soil...... microcosms, the active and total populations of ciliates, their potential prey (bacteria and small protozoa), their potential competitors (amoebae, flagellates, and nematodes), and their potential predators (nematodes). We sampled with short time intervals (2 to 6 days) and generated a data set, suitable...

  1. The application of mass and energy conservation laws in physiologically structured population models of heterotrophic organisms.

    NARCIS (Netherlands)

    Kooijman, S.A.L.M.; Kooi, B.W.; Hallam, T.G.

    1999-01-01

    Rules for energy uptake, and subsequent utilization, form the basis of population dynamics and, therefore, explain the dynamics of the ecosystem structure in terms of changes in standing crops and size distributions of individuals. Mass fluxes are concomitant with energy flows and delineate

  2. Stochastic population dynamics of a montane ground-dwelling squirrel.

    Directory of Open Access Journals (Sweden)

    Jeffrey A Hostetler

    Full Text Available Understanding the causes and consequences of population fluctuations is a central goal of ecology. We used demographic data from a long-term (1990-2008 study and matrix population models to investigate factors and processes influencing the dynamics and persistence of a golden-mantled ground squirrel (Callospermophilus lateralis population, inhabiting a dynamic subalpine habitat in Colorado, USA. The overall deterministic population growth rate λ was 0.94±SE 0.05 but it varied widely over time, ranging from 0.45±0.09 in 2006 to 1.50±0.12 in 2003, and was below replacement (λ<1 for 9 out of 18 years. The stochastic population growth rate λ(s was 0.92, suggesting a declining population; however, the 95% CI on λ(s included 1.0 (0.52-1.60. Stochastic elasticity analysis showed that survival of adult females, followed by survival of juvenile females and litter size, were potentially the most influential vital rates; analysis of life table response experiments revealed that the same three life history variables made the largest contributions to year-to year changes in λ. Population viability analysis revealed that, when the influences of density dependence and immigration were not considered, the population had a high (close to 1.0 in 50 years probability of extinction. However, probability of extinction declined to as low as zero when density dependence and immigration were considered. Destabilizing effects of stochastic forces were counteracted by regulating effects of density dependence and rescue effects of immigration, which allowed our study population to bounce back from low densities and prevented extinction. These results suggest that dynamics and persistence of our study population are determined synergistically by density-dependence, stochastic forces, and immigration.

  3. Structure and dynamics of the solar chromosphere

    NARCIS (Netherlands)

    Krijger, Johannes Mattheus

    2002-01-01

    The thesis "Structure and dynamics of the solar chromosphere" of J.M. Krijger is a study on the behavior of the solar chromosphere, the thin layer just above the solar surface (photosphere) visible in purple red light during a total solar eclipse. The most important result of this thesis is that the

  4. Natural Poisson structures of nonlinear plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1982-01-01

    Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering. (Auth.)

  5. Natural Poisson structures of nonlinear plasma dynamics

    International Nuclear Information System (INIS)

    Kaufman, A.N.

    1982-06-01

    Hamiltonian field theories, for models of nonlinear plasma dynamics, require a Poisson bracket structure for functionals of the field variables. These are presented, applied, and derived for several sets of field variables: coherent waves, incoherent waves, particle distributions, and multifluid electrodynamics. Parametric coupling of waves and plasma yields concise expressions for ponderomotive effects (in kinetic and fluid models) and for induced scattering

  6. Structural dynamic modification using additive damping

    Indian Academy of Sciences (India)

    elements, FEM and perturbation methods for reanalysis or structural dynamic modification ... to a system changes its mass, stiffness and damping. Thus ... due to the phase difference between stress ' and strain or 'a И E1 З iE2 for direct strain.

  7. Fundamental structures of dynamic social networks

    DEFF Research Database (Denmark)

    Sekara, Vedran; Stopczynski, Arkadiusz; Jørgensen, Sune Lehmann

    2016-01-01

    Social systems are in a constant state of flux, with dynamics spanning from minute-by-minute changes to patterns present on the timescale of years. Accurate models of social dynamics are important for understanding the spreading of influence or diseases, formation of friendships...... and their interactions in the network of real-world person-to-person proximity measured via Bluetooth, as well as their telecommunication networks, online social media contacts, geolocation, and demographic data. These high-resolution data allow us to observe social groups directly, rendering community detection......, and the productivity of teams. Although there has been much progress on understanding complex networks over the past decade, little is known about the regularities governing the microdynamics of social networks. Here, we explore the dynamic social network of a densely-connected population of ∼1,000 individuals...

  8. Competition in size-structured populations: mechanisms inducing cohort formation and population cycles.

    Science.gov (United States)

    de Roos, André M; Persson, Lennart

    2003-02-01

    In this paper we investigate the consequences of size-dependent competition among the individuals of a consumer population by analyzing the dynamic properties of a physiologically structured population model. Only 2 size-classes of individuals are distinguished: juveniles and adults. Juveniles and adults both feed on one and the same resource and hence interact by means of exploitative competition. Juvenile individuals allocate all assimilated energy into development and mature on reaching a fixed developmental threshold. The combination of this fixed threshold and the resource-dependent developmental rate, implies that the juvenile delay between birth and the onset of reproduction may vary in time. Adult individuals allocate all assimilated energy to reproduction. Mortality of both juveniles and adults is assumed to be inversely proportional to the amount of energy assimilated. In this setting we study how the dynamics of the population are influenced by the relative foraging capabilities of juveniles and adults. In line with results that we previously obtained in size-structured consumer-resource models with pulsed reproduction, population cycles primarily occur when either juveniles or adults have a distinct competitive advantage. When adults have a larger per capita feeding rate and are hence competitively superior to juveniles, population oscillations occur that are primarily induced by the fact that the duration of the juvenile period changes with changing food conditions. These cycles do not occur when the juvenile delay is a fixed parameter. When juveniles are competitively superior, two different types of population fluctuations can occur: (1) rapid, low-amplitude fluctuations having a period of half the juvenile delay and (2) slow, large-amplitude fluctuations characterized by a period, which is roughly equal to the juvenile delay. The analysis of simplified versions of the structured model indicates that these two types of oscillations also occur if

  9. Proteins with Novel Structure, Function and Dynamics

    Science.gov (United States)

    Pohorille, Andrew

    2014-01-01

    Recently, a small enzyme that ligates two RNA fragments with the rate of 10(exp 6) above background was evolved in vitro (Seelig and Szostak, Nature 448:828-831, 2007). This enzyme does not resemble any contemporary protein (Chao et al., Nature Chem. Biol. 9:81-83, 2013). It consists of a dynamic, catalytic loop, a small, rigid core containing two zinc ions coordinated by neighboring amino acids, and two highly flexible tails that might be unimportant for protein function. In contrast to other proteins, this enzyme does not contain ordered secondary structure elements, such as alpha-helix or beta-sheet. The loop is kept together by just two interactions of a charged residue and a histidine with a zinc ion, which they coordinate on the opposite side of the loop. Such structure appears to be very fragile. Surprisingly, computer simulations indicate otherwise. As the coordinating, charged residue is mutated to alanine, another, nearby charged residue takes its place, thus keeping the structure nearly intact. If this residue is also substituted by alanine a salt bridge involving two other, charged residues on the opposite sides of the loop keeps the loop in place. These adjustments are facilitated by high flexibility of the protein. Computational predictions have been confirmed experimentally, as both mutants retain full activity and overall structure. These results challenge our notions about what is required for protein activity and about the relationship between protein dynamics, stability and robustness. We hypothesize that small, highly dynamic proteins could be both active and fault tolerant in ways that many other proteins are not, i.e. they can adjust to retain their structure and activity even if subjected to mutations in structurally critical regions. This opens the doors for designing proteins with novel functions, structures and dynamics that have not been yet considered.

  10. Estimating Traveler Populations at Airport and Cruise Terminals for Population Distribution and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jochem, Warren C [ORNL; Sims, Kelly M [ORNL; Bright, Eddie A [ORNL; Urban, Marie L [ORNL; Rose, Amy N [ORNL; Coleman, Phil R [ORNL; Bhaduri, Budhendra L [ORNL

    2013-01-01

    In recent years, uses of high-resolution population distribution databases are increasing steadily for environmental, socioeconomic, public health, and disaster-related research and operations. With the development of daytime population distribution, temporal resolution of such databases has been improved. However, the lack of incorporation of transitional population, namely business and leisure travelers, leaves a significant population unaccounted for within the critical infrastructure networks, such as at transportation hubs. This paper presents two general methodologies for estimating passenger populations in airport and cruise port terminals at a high temporal resolution which can be incorporated into existing population distribution models. The methodologies are geographically scalable and are based on, and demonstrate how, two different transportation hubs with disparate temporal population dynamics can be modeled utilizing publicly available databases including novel data sources of flight activity from the Internet which are updated in near-real time. The airport population estimation model shows great potential for rapid implementation for a large collection of airports on a national scale, and the results suggest reasonable accuracy in the estimated passenger traffic. By incorporating population dynamics at high temporal resolutions into population distribution models, we hope to improve the estimates of populations exposed to or at risk to disasters, thereby improving emergency planning and response, and leading to more informed policy decisions.

  11. Component mode synthesis in structural dynamics

    International Nuclear Information System (INIS)

    Reddy, G.R.; Vaze, K.K.; Kushwaha, H.S.

    1993-01-01

    In seismic analysis of Nuclear Reactor Structures and equipments eigen solution requires large computer time. Component mode synthesis is an efficient technique with which one can evaluate dynamic characteristics of a large structure with minimum computer time. Due to this reason it is possible to do a coupled analysis of structure and equipment which takes into account the interaction effects. Basically in this the method large size structure is divided into small substructures and dynamic characteristics of individual substructure are determined. The dynamic characteristics of entire structure are evaluated by synthesising the individual substructure characteristics. Component mode synthesis has been applied in this paper to the analysis of a tall heavy water upgrading tower. Use of fixed interface normal modes, constrained modes, attachment modes in the component mode synthesis using energy principle and using Ritz vectors have been discussed. The validity of this method is established by solving fixed-fixed beam and comparing the results obtained by conventional and classical method. The eigen value problem has been solved using simultaneous iteration method. (author)

  12. The dynamical conductance of graphene tunnelling structures

    International Nuclear Information System (INIS)

    Zhang Huan; Chan, K S; Lin Zijing

    2011-01-01

    The dynamical conductances of graphene tunnelling structures were numerically calculated using the scattering matrix method with the interaction effect included in a phenomenological approach. The overall single-barrier dynamical conductance is capacitative. Transmission resonances in the single-barrier structure lead to dips in the capacitative imaginary part of the response. This is different from the ac responses of typical semiconductor nanostructures, where transmission resonances usually lead to inductive peaks. The features of the dips depend on the Fermi energy. When the Fermi energy is below half of the barrier height, the dips are sharper. When the Fermi energy is higher than half of the barrier height, the dips are broader. Inductive behaviours can be observed in a double-barrier structure due to the resonances formed by reflection between the two barriers.

  13. The dynamical conductance of graphene tunnelling structures.

    Science.gov (United States)

    Zhang, Huan; Chan, K S; Lin, Zijing

    2011-12-16

    The dynamical conductances of graphene tunnelling structures were numerically calculated using the scattering matrix method with the interaction effect included in a phenomenological approach. The overall single-barrier dynamical conductance is capacitative. Transmission resonances in the single-barrier structure lead to dips in the capacitative imaginary part of the response. This is different from the ac responses of typical semiconductor nanostructures, where transmission resonances usually lead to inductive peaks. The features of the dips depend on the Fermi energy. When the Fermi energy is below half of the barrier height, the dips are sharper. When the Fermi energy is higher than half of the barrier height, the dips are broader. Inductive behaviours can be observed in a double-barrier structure due to the resonances formed by reflection between the two barriers.

  14. Stochastic population dynamics in populations of western terrestrial garter snakes with divergent life histories.

    Science.gov (United States)

    Miller, David A; Clark, William R; Arnold, Stevan J; Bronikowski, Anne M

    2011-08-01

    Comparative evaluations of population dynamics in species with temporal and spatial variation in life-history traits are rare because they require long-term demographic time series from multiple populations. We present such an analysis using demographic data collected during the interval 1978-1996 for six populations of western terrestrial garter snakes (Thamnophis elegans) from two evolutionarily divergent ecotypes. Three replicate populations from a slow-living ecotype, found in mountain meadows of northeastern California, were characterized by individuals that develop slowly, mature late, reproduce infrequently with small reproductive effort, and live longer than individuals of three populations of a fast-living ecotype found at lakeshore locales. We constructed matrix population models for each of the populations based on 8-13 years of data per population and analyzed both deterministic dynamics based on mean annual vital rates and stochastic dynamics incorporating annual variation in vital rates. (1) Contributions of highly variable vital rates to fitness (lambda(s)) were buffered against the negative effects of stochastic variation, and this relationship was consistent with differences between the meadow (M-slow) and lakeshore (L-fast) ecotypes. (2) Annual variation in the proportion of gravid females had the greatest negative effect among all vital rates on lambda(s). The magnitude of variation in the proportion of gravid females and its effect on lambda(s) was greater in M-slow than L-fast populations. (3) Variation in the proportion of gravid females, in turn, depended on annual variation in prey availability, and its effect on lambda(s) was 4 23 times greater in M-slow than L-fast populations. In addition to differences in stochastic dynamics between ecotypes, we also found higher mean mortality rates across all age classes in the L-fast populations. Our results suggest that both deterministic and stochastic selective forces have affected the evolution of

  15. Dynamic structural disorder in supported nanoscale catalysts

    International Nuclear Information System (INIS)

    Rehr, J. J.; Vila, F. D.

    2014-01-01

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale

  16. Dynamic structural disorder in supported nanoscale catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Rehr, J. J.; Vila, F. D. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States)

    2014-04-07

    We investigate the origin and physical effects of “dynamic structural disorder” (DSD) in supported nano-scale catalysts. DSD refers to the intrinsic fluctuating, inhomogeneous structure of such nano-scale systems. In contrast to bulk materials, nano-scale systems exhibit substantial fluctuations in structure, charge, temperature, and other quantities, as well as large surface effects. The DSD is driven largely by the stochastic librational motion of the center of mass and fluxional bonding at the nanoparticle surface due to thermal coupling with the substrate. Our approach for calculating and understanding DSD is based on a combination of real-time density functional theory/molecular dynamics simulations, transient coupled-oscillator models, and statistical mechanics. This approach treats thermal and dynamic effects over multiple time-scales, and includes bond-stretching and -bending vibrations, and transient tethering to the substrate at longer ps time-scales. Potential effects on the catalytic properties of these clusters are briefly explored. Model calculations of molecule-cluster interactions and molecular dissociation reaction paths are presented in which the reactant molecules are adsorbed on the surface of dynamically sampled clusters. This model suggests that DSD can affect both the prefactors and distribution of energy barriers in reaction rates, and thus can significantly affect catalytic activity at the nano-scale.

  17. A Malthusian curb on spatial structure in microorganism populations.

    Science.gov (United States)

    Martin, A P

    2004-10-07

    That all organisms are born in the company of a parent but die alone is a fundamental biological asymmetry. It has been suggested that this provides a deep-rooted source of spatial pattern formation for microorganisms even at the scale of the population. Such a theory, however, neglects the strong influence in nature of the limited and spatially variable availability of food. The tendency, first recognized by Thomas Malthus in the 18th century, of a population to out-strip its food resources will eventually lead, through local starvation, to the suppression of a heterogeneity growing within a population. Using a generic model it is demonstrated that including local food limitation of breeding strongly dampens spatial structure otherwise resulting from birth and death. The extent of this damping is shown to be a function of the strength of the coupling between organisms and their food and of the total abundance of organic material. Moreover, this work provides an example of a density-dependent process acting to diminish spatial structure rather than to create it and highlights the rich variety of behaviour that is missed by continuum models which fail to represent such local dynamics.

  18. Population dynamics of light-limited phytoplankton : Microcosm experiments

    NARCIS (Netherlands)

    Huisman, Jef

    This paper investigates the extent to which the predictions of an elementary model for light-limited growth are matched by laboratory experiments with light-limited phytoplankton. The model and experiments link the population dynamics of phytoplankton species with changes in the light gradient

  19. Distribution and population dynamics of Rhizobium sp. introduced into soil

    NARCIS (Netherlands)

    Postma, J.

    1989-01-01

    In this thesis the population dynamics of bacteria introduced into soil was studied. In the introduction, the existence of microhabitats favourable for the survival of indigenous bacteria is discussed. Knowledge about the distribution of introduced bacteria over

  20. seasonal population dynamics of rodents of mount chilalo, arsi ...

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT: A study on seasonal population dynamics of rodents was carried out on Mount. Chilalo from .... vegetation growth, availability of food and water, and ... vegetation (3,300–4,200 masl) (Alemayehu. Mengistu, 1975; APEDO and ABRDP, 2004). The mountain is one of the Afrotropical biodiversity hotspots areas.

  1. Population dynamics of soil microbes and diversity of Bacillus ...

    African Journals Online (AJOL)

    ONOS

    2010-01-25

    Jan 25, 2010 ... Population dynamics of soil microbes and diversity of ... 25.78, 25.78, 86.26, 24.73, 68.0, 26.8 and 26.8 kDa proteins and equivalent to Cyt, Cry5 and Cry2 toxins ..... Molecular weight (kDa) of protein fractions of the BT isolates.

  2. Population dynamics of the invasive fish, Gambusia affinis , in ...

    African Journals Online (AJOL)

    Repeated-measures ANOVA analyses on the catch per unit effort (CPUE) of G. affinis between sampling events and dams revealed significant differences in population dynamics among dams, although an overall trend of rapid increase followed by plateau in summer, with a rapid decline in winter was seen in most dams.

  3. Individual based model of slug population and spatial dynamics

    NARCIS (Netherlands)

    Choi, Y.H.; Bohan, D.A.; Potting, R.P.J.; Semenov, M.A.; Glen, D.M.

    2006-01-01

    The slug, Deroceras reticulatum, is one of the most important pests of agricultural and horticultural crops in UK and Europe. In this paper, a spatially explicit individual based model (IbM) is developed to study the dynamics of a population of D. reticulatum. The IbM establishes a virtual field

  4. Network evolution induced by the dynamical rules of two populations

    Science.gov (United States)

    Platini, Thierry; Zia, R. K. P.

    2010-10-01

    We study the dynamical properties of a finite dynamical network composed of two interacting populations, namely extrovert (a) and introvert (b). In our model, each group is characterized by its size (Na and Nb) and preferred degree (κa and \\kappa_b\\ll \\kappa_a ). The network dynamics is governed by the competing microscopic rules of each population that consist of the creation and destruction of links. Starting from an unconnected network, we give a detailed analysis of the mean field approach which is compared to Monte Carlo simulation data. The time evolution of the restricted degrees langkbbrang and langkabrang presents three time regimes and a non-monotonic behavior well captured by our theory. Surprisingly, when the population sizes are equal Na = Nb, the ratio of the restricted degree θ0 = langkabrang/langkbbrang appears to be an integer in the asymptotic limits of the three time regimes. For early times (defined by t introverts remains constant while the number of connections increases linearly in the extrovert population. Finally, due to the competing dynamics, the network presents a frustrated stationary state characterized by a ratio θ0 = 3.

  5. An individual-based model of Zebrafish population dynamics accounting for energy dynamics

    DEFF Research Database (Denmark)

    Beaudouin, Remy; Goussen, Benoit; Piccini, Benjamin

    2015-01-01

    Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model...

  6. Bridging the Timescales of Single-Cell and Population Dynamics

    Science.gov (United States)

    Jafarpour, Farshid; Wright, Charles S.; Gudjonson, Herman; Riebling, Jedidiah; Dawson, Emma; Lo, Klevin; Fiebig, Aretha; Crosson, Sean; Dinner, Aaron R.; Iyer-Biswas, Srividya

    2018-04-01

    How are granular details of stochastic growth and division of individual cells reflected in smooth deterministic growth of population numbers? We provide an integrated, multiscale perspective of microbial growth dynamics by formulating a data-validated theoretical framework that accounts for observables at both single-cell and population scales. We derive exact analytical complete time-dependent solutions to cell-age distributions and population growth rates as functionals of the underlying interdivision time distributions, for symmetric and asymmetric cell division. These results provide insights into the surprising implications of stochastic single-cell dynamics for population growth. Using our results for asymmetric division, we deduce the time to transition from the reproductively quiescent (swarmer) to the replication-competent (stalked) stage of the Caulobacter crescentus life cycle. Remarkably, population numbers can spontaneously oscillate with time. We elucidate the physics leading to these population oscillations. For C. crescentus cells, we show that a simple measurement of the population growth rate, for a given growth condition, is sufficient to characterize the condition-specific cellular unit of time and, thus, yields the mean (single-cell) growth and division timescales, fluctuations in cell division times, the cell-age distribution, and the quiescence timescale.

  7. Nonequilibrium population dynamics of phenotype conversion of cancer cells.

    Directory of Open Access Journals (Sweden)

    Joseph Xu Zhou

    Full Text Available Tumorigenesis is a dynamic biological process that involves distinct cancer cell subpopulations proliferating at different rates and interconverting between them. In this paper we proposed a mathematical framework of population dynamics that considers both distinctive growth rates and intercellular transitions between cancer cell populations. Our mathematical framework showed that both growth and transition influence the ratio of cancer cell subpopulations but the latter is more significant. We derived the condition that different cancer cell types can maintain distinctive subpopulations and we also explain why there always exists a stable fixed ratio after cell sorting based on putative surface markers. The cell fraction ratio can be shifted by changing either the growth rates of the subpopulations (Darwinism selection or by environment-instructed transitions (Lamarckism induction. This insight can help us to understand the dynamics of the heterogeneity of cancer cells and lead us to new strategies to overcome cancer drug resistance.

  8. Spatial and temporal dynamics of the genetic organization of small mammal populations

    International Nuclear Information System (INIS)

    Smith, M.H.; Manlove, M.N.; Joule, J.

    1978-01-01

    A functional population is a group of organisms and their offspring that contributes to a common gene pool within a certain area and time period. It is also the unit of evolution and should be viewed both in quantitative and qualitative terms. Selection, drift, dispersal, and mutation can alter the composition of populations. Spatial heterogeneity in allele frequencies argues for a conceptual model that has a series of relatively small populations semi-isolated from one another. Because of the relatively high levels of genetic variability characteristic of most mammalian species, significant amounts of gene flow between these spatially subdivided populations must occur when longer time periods are considered. Fluctuations in the genetic structure of populations seem to be important in altering the fitness of the individuals within the populations. The interaction of populations through gene flow is important in changing the levels of intrapopulational genetic variability. Populations can be characterized as existing on a continuum from relatively stable to unstable numbers and by other associated changes in their characteristics. Temporal changes in allele frequency occur in a variety of mammals. Conceptually, a species can be viewed as a series of dynamic populations that vary in numbers and quality in both a spatial and temporal context even over short distances and time periods. Short term changes in the quality of individuals in a population can be important in altering the short term dynamics of a population

  9. Central-marginal population dynamics in species invasions

    Directory of Open Access Journals (Sweden)

    Qinfeng eGuo

    2014-06-01

    Full Text Available The species’ range limits and associated central-marginal (C-M; i.e., from species range center to margin population dynamics continue to draw increasing attention because of their importance for current emerging issues such as biotic invasions and epidemic diseases under global change. Previous studies have mainly focused on species borders and C-M process in natural settings for native species. More recently, growing efforts are devoted to examine the C-M patterns and process for invasive species partly due to their relatively short history, highly dynamic populations, and management implications. Here I examine recent findings and information gaps related to (1 the C-M population dynamics linked to species invasions, and (2 the possible effects of climate change and land use on the C-M patterns and processes. Unlike most native species that are relatively stable (some even having contracting populations or ranges, many invasive species are still spreading fast and form new distribution or abundance centers. Because of the strong nonlinearity of population demographic or vital rates (i.e. birth, death, immigration and emigration across the C-M gradients and the increased complexity of species ranges due to habitat fragmentation, multiple introductions, range-wide C-M comparisons and simulation involving multiple vital rates are needed in the future.

  10. Dynamics and structure of stretched flames

    Energy Technology Data Exchange (ETDEWEB)

    Law, C.K. [Princeton Univ., NJ (United States)

    1993-12-01

    This program aims to gain fundamental understanding on the structure, geometry, and dynamics of laminar premixed flames, and relate these understanding to the practical issues of flame extinction and stabilization. The underlying fundamental interest here is the recent recognition that the response of premixed flames can be profoundly affected by flame stretch, as manifested by flow nonuniformity, flame curvature, and flame/flow unsteadiness. As such, many of the existing understanding on the behavior of premixed flames need to be qualitatively revised. The research program consists of three major thrusts: (1) detailed experimental and computational mapping of the structure of aerodynamically-strained planar flames, with emphasis on the effects of heat loss, nonequidiffusion, and finite residence time on the flame thickness, extent of incomplete reaction, and the state of extinction. (2) Analytical study of the geometry and dynamics of stretch-affected wrinkled flame sheets in simple configurations, as exemplified by the Bunsen flame and the spatially-periodic flame, with emphasis on the effects of nonlinear stretch, the phenomena of flame cusping, smoothing, and tip opening, and their implications on the structure and burning rate of turbulent flames. (3) Stabilization and blowoff of two-dimensional inverted premixed and stabilization and determining the criteria governing flame blowoff. The research is synergistically conducted through the use of laser-based diagnostics, computational simulation of the flame structure with detailed chemistry and transport, and mathematical analysis of the flame dynamics.

  11. Population genetic structure analysis in endangered Hordeum ...

    African Journals Online (AJOL)

    Administrator

    2011-09-07

    Sep 7, 2011 ... populations are grown by few local farmers in low-input farming systems. Based on 117 random ... Triticeae of the Poaceae (Graminae) family found throughout the ... populations and phylogeography is made easy by the.

  12. A spatial ecosystem and populations dynamics model (SEAPODYM) Modeling of tuna and tuna-like populations

    Science.gov (United States)

    Lehodey, Patrick; Senina, Inna; Murtugudde, Raghu

    2008-09-01

    An enhanced version of the spatial ecosystem and population dynamics model SEAPODYM is presented to describe spatial dynamics of tuna and tuna-like species in the Pacific Ocean at monthly resolution over 1° grid-boxes. The simulations are driven by a bio-physical environment predicted from a coupled ocean physical-biogeochemical model. This new version of SEAPODYM includes expanded definitions of habitat indices, movements, and natural mortality based on empirical evidences. A thermal habitat of tuna species is derived from an individual heat budget model. The feeding habitat is computed according to the accessibility of tuna predator cohorts to different vertically migrating and non-migrating micronekton (mid-trophic) functional groups. The spawning habitat is based on temperature and the coincidence of spawning fish with presence or absence of predators and food for larvae. The successful larval recruitment is linked to spawning stock biomass. Larvae drift with currents, while immature and adult tuna can move of their own volition, in addition to being advected by currents. A food requirement index is computed to adjust locally the natural mortality of cohorts based on food demand and accessibility to available forage components. Together these mechanisms induce bottom-up and top-down effects, and intra- (i.e. between cohorts) and inter-species interactions. The model is now fully operational for running multi-species, multi-fisheries simulations, and the structure of the model allows a validation from multiple data sources. An application with two tuna species showing different biological characteristics, skipjack ( Katsuwonus pelamis) and bigeye ( Thunnus obesus), is presented to illustrate the capacity of the model to capture many important features of spatial dynamics of these two different tuna species in the Pacific Ocean. The actual validation is presented in a companion paper describing the approach to have a rigorous mathematical parameter optimization

  13. Boom or bust? A comparative analysis of transient population dynamics in plants

    DEFF Research Database (Denmark)

    Stott, Iain; Franco, Miguel; Carslake, David

    2010-01-01

    researchers as further possible effectors of complicated dynamics. Previously published methods of transient analysis have tended to require knowledge of initial population structure. However, this has been overcome by the recent development of the parametric Kreiss bound (which describes how large...... a population must become before reaching its maximum possible transient amplification following a disturbance) and the extension of this and other transient indices to simultaneously describe both amplified and attenuated transient dynamics. We apply the Kreiss bound and other transient indices to a data base...... worrying artefact of basic model parameterization. Synthesis. Transient indices describe how big or how small plant populations can get, en route to long-term stable rates of increase or decline. The patterns we found in the potential for transient dynamics, across many species of plants, suggest...

  14. Chemical structure and dynamics. Annual report 1995

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.

    1996-05-01

    The Chemical Structure and Dynamics program is a major component of Pacific Northwest National Laboratory`s Environmental Molecular Sciences Laboratory (EMSL), providing a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for the characterization of waste tanks and pollutant distributions, and for detection and monitoring of trace atmospheric species.

  15. Chemical structure and dynamics: Annual report 1996

    International Nuclear Information System (INIS)

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS ampersand D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species

  16. Annual Report 2000. Chemical Structure and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Colson, Steven D.; McDowell, Robin S.

    2001-04-15

    This annual report describes the research and accomplishments of the Chemical Structure and Dynamics Program in the year 2000, one of six research programs at the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) - a multidisciplinary, national scientific user facility and research organization. The Chemical Structure and Dynamics (CS&D) program is meeting the need for a fundamental, molecular-level understanding by 1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; 2) developing a multidisciplinary capability for describing interfacial chemical processes relevant to environmental chemistry; and 3) developing state-of-the-art research and analytical methods for characterizing complex materials of the types found in natural and contaminated systems.

  17. Chemical structure and dynamics: Annual report 1996

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.

    1997-03-01

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL) developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing waste tanks and pollutant distributions, and for detecting and monitoring trace atmospheric species.

  18. Age structure and cooperation in coevolutionary games on dynamic network

    Science.gov (United States)

    Qin, Zilong; Hu, Zhenhua; Zhou, Xiaoping; Yi, Jingzhang

    2015-04-01

    Our proposed model imitates the growth of a population and describes the age structure and the level of cooperation in games on dynamic network with continuous changes of structure and topology. The removal of nodes and links caused by age-dependent attack, together with the nodes addition standing for the newborns of population, badly ruins Matthew effect in this coevolutionary process. Though the network is generated by growth and preferential attachment, it degenerates into random network and it is no longer heterogeneous. When the removal of nodes and links is equal to the addition of nodes and links, the size of dynamic network is maintained in steady-state, so is the low level of cooperation. Severe structure variation, homogeneous topology and continuous invasion of new defection jointly make dynamic network unsuitable for the survival of cooperator even when the probability with which the newborn players initially adopt the strategy cooperation is high, while things change slightly when the connections of newborn players are restricted. Fortunately, moderate interactions in a generation trigger an optimal recovering process to encourage cooperation. The model developed in this paper outlines an explanation of the cohesion changes in the development process of an organization. Some suggestions for cooperative behavior improvement are given in the end.

  19. On R factors for dynamic structure crystallography

    DEFF Research Database (Denmark)

    Coppens, Philip; Kaminski, Radoslaw; Schmøkel, Mette Stokkebro

    2010-01-01

    In studies of dynamic changes in crystals in which induced metastable species may have lifetimes of microseconds or less, refinements are most sensitive if based on the changes induced in the measured intensities. Agreement factors appropriate for such refinements, based on the ratios of the inte...... of the intensities before and after the external perturbation is applied, are discussed and compared with R factors commonly applied in static structure crystallography....

  20. Feature Extraction for Structural Dynamics Model Validation

    Energy Technology Data Exchange (ETDEWEB)

    Farrar, Charles [Los Alamos National Laboratory; Nishio, Mayuko [Yokohama University; Hemez, Francois [Los Alamos National Laboratory; Stull, Chris [Los Alamos National Laboratory; Park, Gyuhae [Chonnam Univesity; Cornwell, Phil [Rose-Hulman Institute of Technology; Figueiredo, Eloi [Universidade Lusófona; Luscher, D. J. [Los Alamos National Laboratory; Worden, Keith [University of Sheffield

    2016-01-13

    As structural dynamics becomes increasingly non-modal, stochastic and nonlinear, finite element model-updating technology must adopt the broader notions of model validation and uncertainty quantification. For example, particular re-sampling procedures must be implemented to propagate uncertainty through a forward calculation, and non-modal features must be defined to analyze nonlinear data sets. The latter topic is the focus of this report, but first, some more general comments regarding the concept of model validation will be discussed.

  1. Handbook on dynamics of jointed structures.

    Energy Technology Data Exchange (ETDEWEB)

    Ames, Nicoli M.; Lauffer, James P.; Jew, Michael D.; Segalman, Daniel Joseph; Gregory, Danny Lynn; Starr, Michael James; Resor, Brian Ray

    2009-07-01

    The problem of understanding and modeling the complicated physics underlying the action and response of the interfaces in typical structures under dynamic loading conditions has occupied researchers for many decades. This handbook presents an integrated approach to the goal of dynamic modeling of typical jointed structures, beginning with a mathematical assessment of experimental or simulation data, development of constitutive models to account for load histories to deformation, establishment of kinematic models coupling to the continuum models, and application of finite element analysis leading to dynamic structural simulation. In addition, formulations are discussed to mitigate the very short simulation time steps that appear to be required in numerical simulation for problems such as this. This handbook satisfies the commitment to DOE that Sandia will develop the technical content and write a Joints Handbook. The content will include: (1) Methods for characterizing the nonlinear stiffness and energy dissipation for typical joints used in mechanical systems and components. (2) The methodology will include practical guidance on experiments, and reduced order models that can be used to characterize joint behavior. (3) Examples for typical bolted and screw joints will be provided.

  2. Structural dynamic analysis of turbine blade

    Science.gov (United States)

    Antony, A. Daniel; Gopalsamy, M.; Viswanadh, Chaparala B. V.; Krishnaraj, R.

    2017-10-01

    In any gas turbine design cycle, blade design is a crucial element which needs maximum attention to meet the aerodynamic performance, structural safety margins, manufacturing feasibility, material availability etc. In present day gas turbine engines, most of the failures occur during engine development test and in-service, in rotor and stator blades due to fatigue and resonance failures. To address this issue, an extensive structural dynamic analysis is carried out to predict the natural frequencies and mode shapes using FE methods. Using the dynamics characteristics, the Campbell diagram is constructed to study the possibility of resonance at various operating speeds. In this work, the feasibility of using composite material in place of titanium alloy from the structural dynamics point of view. This is being attempted in a Low-pressure compressor where the temperatures are relatively low and fixed with the casings. The analysis will be carried out using FE method for different composite material with different lamina orientations chosen through the survey. This study will focus on the sensitivity of blade mode shapes to different laminae orientations, which will be used to alter the natural frequency and tailor the mode shapes. Campbell diagrams of existing titanium alloy are compared with the composite materials with different laminae at all critical operating conditions. The existing manufacturing methods and the proven techniques for blade profiles will also be discussed in this report.

  3. Relationship between ancient bridges and population dynamics in the lower Yangtze River Basin, China.

    Science.gov (United States)

    Zhao, Yang; Jia, Xin; Lee, Harry F; Zhao, Hongqiang; Cai, Shuliang; Huang, Xianjin

    2017-01-01

    It has been suggested that population growth dynamics may be revealed by the geographic distribution and the physical structure of ancient bridges. Yet, this relationship has not been empirically verified. In this study, we applied the archaeological records for ancient bridges to reveal the population growth dynamics in the lower Yangtze River Basin in late imperial China. We investigated 89 ancient bridges in Yixing that were built during the Ming and Qing dynasties (AD1368-1911). Global Position System information and structure (length, width, and span) of those bridges was measured during our field investigations. Their distribution density was calculated by ArcGIS. The historical socio-economic dynamics of Yixing was inferred from the distribution and structure of ancient bridges. Based on the above information, the population growth dynamics in Yixing was projected. Our results show that 77 bridges were built in Yixing during the Qing dynasty, which is 6.41 times more than the number built during the Ming dynasty. In the Ming dynasty, bridges were built on pivotal routes; in the Qing dynasty, bridges were scattered across various places. Over the period, the density distribution of bridges shifted northwestward, while the average length and width of bridges decreased. The increasing number of bridges corresponded to population growth, largely attributable to massive clan migration from northern China during the Little Ice Age. The shift in the density distribution of bridges corresponded to the formation of settlements of large clans and the blossoming of Yixing Teapot handicrafts. The scattering and the reduction in average length and width of bridges was due to the dispersal of population and the associated formation of small settlements in the latter period. Our approach is innovative and robust, and could be employed to recover long-term historical population growth dynamics in other parts of China.

  4. Relationship between ancient bridges and population dynamics in the lower Yangtze River Basin, China.

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    Full Text Available It has been suggested that population growth dynamics may be revealed by the geographic distribution and the physical structure of ancient bridges. Yet, this relationship has not been empirically verified. In this study, we applied the archaeological records for ancient bridges to reveal the population growth dynamics in the lower Yangtze River Basin in late imperial China. We investigated 89 ancient bridges in Yixing that were built during the Ming and Qing dynasties (AD1368-1911. Global Position System information and structure (length, width, and span of those bridges was measured during our field investigations. Their distribution density was calculated by ArcGIS. The historical socio-economic dynamics of Yixing was inferred from the distribution and structure of ancient bridges. Based on the above information, the population growth dynamics in Yixing was projected. Our results show that 77 bridges were built in Yixing during the Qing dynasty, which is 6.41 times more than the number built during the Ming dynasty. In the Ming dynasty, bridges were built on pivotal routes; in the Qing dynasty, bridges were scattered across various places. Over the period, the density distribution of bridges shifted northwestward, while the average length and width of bridges decreased. The increasing number of bridges corresponded to population growth, largely attributable to massive clan migration from northern China during the Little Ice Age. The shift in the density distribution of bridges corresponded to the formation of settlements of large clans and the blossoming of Yixing Teapot handicrafts. The scattering and the reduction in average length and width of bridges was due to the dispersal of population and the associated formation of small settlements in the latter period. Our approach is innovative and robust, and could be employed to recover long-term historical population growth dynamics in other parts of China.

  5. Efficient characterisation of large deviations using population dynamics

    Science.gov (United States)

    Brewer, Tobias; Clark, Stephen R.; Bradford, Russell; Jack, Robert L.

    2018-05-01

    We consider population dynamics as implemented by the cloning algorithm for analysis of large deviations of time-averaged quantities. We use the simple symmetric exclusion process with periodic boundary conditions as a prototypical example and investigate the convergence of the results with respect to the algorithmic parameters, focussing on the dynamical phase transition between homogeneous and inhomogeneous states, where convergence is relatively difficult to achieve. We discuss how the performance of the algorithm can be optimised, and how it can be efficiently exploited on parallel computing platforms.

  6. Changes in Population Dynamics in Mutualistic versus Pathogenic Viruses

    Directory of Open Access Journals (Sweden)

    Marilyn J. Roossinck

    2011-01-01

    Full Text Available Although generally regarded as pathogens, viruses can also be mutualists. A number of examples of extreme mutualism (i.e., symbiogenesis have been well studied. Other examples of mutualism are less common, but this is likely because viruses have rarely been thought of as having any beneficial effects on their hosts. The effect of mutualism on the population dynamics of viruses is a topic that has not been addressed experimentally. However, the potential for understanding mutualism and how a virus might become a mutualist may be elucidated by understanding these dynamics.

  7. DYNAMIC CINEMATIC TO A STRUCTURE 2R

    Directory of Open Access Journals (Sweden)

    Florian Ion Tiberiu Petrescu

    2016-06-01

    Full Text Available Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 Flat structures 2R can solve all the problems posed by all the robotic anthropomorphic structures. The study of the anthropomorphic robots by the use of a flat structure 2R is a much easier method than classical used spatial methods. The paper outlines a method for the determination of dynamic to a robotic structure 2R balanced. 2R plane structures are used in practice only in the form balanced, for which in this paper will be made, initial, the total balance, and then the study cinematico-dynamic will only develop on the model already balanced. Dynamic relations presented then briefly without deduction will be explained and discussed with regard to their application. On the basis of the model presented and following calculations performed can be chosen correctly the two electric motors in the actuator. /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;}

  8. Spatial and population genetic structure of microsatellites in white pine

    Science.gov (United States)

    Paula E. Marquardt; Bryan K. Epperson

    2004-01-01

    We evaluated the population genetic structure of seven microsatellite loci for old growth and second growth populations of eastern white pine (Pinus strobus). From each population, located within Hartwick Pines State Park, Grayling, Michigan, USA, 120-122 contiguous trees were sampled for genetic analysis. Within each population, genetic diversity...

  9. Dynamics of a population of oscillatory and excitable elements.

    Science.gov (United States)

    O'Keeffe, Kevin P; Strogatz, Steven H

    2016-06-01

    We analyze a variant of a model proposed by Kuramoto, Shinomoto, and Sakaguchi for a large population of coupled oscillatory and excitable elements. Using the Ott-Antonsen ansatz, we reduce the behavior of the population to a two-dimensional dynamical system with three parameters. We present the stability diagram and calculate several of its bifurcation curves analytically, for both excitatory and inhibitory coupling. Our main result is that when the coupling function is broad, the system can display bistability between steady states of constant high and low activity, whereas when the coupling function is narrow and inhibitory, one of the states in the bistable regime can show persistent pulsations in activity.

  10. Dynamic Failure of Composite and Sandwich Structures

    CERN Document Server

    Abrate, Serge; Rajapakse, Yapa D S

    2013-01-01

    This book presents a broad view of the current state of the art regarding the dynamic response of composite and sandwich structures subjected to impacts and explosions. Each chapter combines a thorough assessment of the literature with original contributions made by the authors.  The first section deals with fluid-structure interactions in marine structures.  The first chapter focuses on hull slamming and particularly cases in which the deformation of the structure affects the motion of the fluid during the water entry of flexible hulls. Chapter 2 presents an extensive series of tests underwater and in the air to determine the effects of explosions on composite and sandwich structures.  Full-scale structures were subjected to significant explosive charges, and such results are extremely rare in the open literature.  Chapter 3 describes a simple geometrical theory of diffraction for describing the interaction of an underwater blast wave with submerged structures. The second section addresses the problem of...

  11. Dynamic analysis of the BPX machine structure

    International Nuclear Information System (INIS)

    Dahlgen, F.; Citrolo, J.; Knutson, D.; Kalish, M.

    1992-01-01

    A preliminary analysis of the response of the BPX machine structure to a seismic input was performed. MSC/NASTRAN 5 , a general purpose XXX element computer code, has been used. The purpose of this paper is to assess the probable range of seismically induced stresses and deflections in the machine substructure which connects the machine to the test cell floor, with particular emphasis on the shear pins which will be used to attach the TF coil modules to the machine substructure (for a more detailed description of the shear pins and structure see ref. 4 in these proceedings). The model was developed with sufficient detail to be used subsequently to investigate the transient response to various dynamic loading conditions imposed on the structure by the PF, TF, and Vacuum Vessel, during normal and off-normal operations. The model does not include the mass and stiffness of the building or the building-soil interaction and as such can only be considered an interim assessment of the dynamic response of the machine to the S.S.E.(this is the Safe Shutdown Earthquake which is also the Design XXX Earthquake for all major structural components)

  12. Visualising the demographic factors which shape population age structure

    Directory of Open Access Journals (Sweden)

    Tom Wilson

    2016-09-01

    Full Text Available Background: The population pyramid is one of the most popular tools for visualising population age structure. However, it is difficult to discern from the diagram the relative effects of different demographic components on the size of age-specific populations, making it hard to understand exactly how a population's age structure is formed. Objective: The aim of this paper is to introduce a type of population pyramid which shows how births, deaths, and migration have shaped a population's age structure. Methods: Births, deaths, and population data were obtained from the Human Mortality Database and the Australian Bureau of Statistics. A variation on the conventional population pyramid, termed here a components-of-change pyramid, was created. Based on cohort population accounts, it illustrates how births, deaths, and net migration have created the population of each age group. A simple measure which summarises the impact of net migration on age structure is also suggested. Results: Example components-of-change pyramids for several countries and subnational regions are presented, which illustrate how births, deaths, and net migration have fashioned current population age structures. The influence of migration is shown to vary greatly between populations. Conclusions: The new type of pyramid aids interpretation of a population's age structure and helps to understand its demographic history over the last century.

  13. Biology as population dynamics: heuristics for transmission risk.

    Science.gov (United States)

    Keebler, Daniel; Walwyn, David; Welte, Alex

    2013-02-01

    Population-type models, accounting for phenomena such as population lifetimes, mixing patterns, recruitment patterns, genetic evolution and environmental conditions, can be usefully applied to the biology of HIV infection and viral replication. A simple dynamic model can explore the effect of a vaccine-like stimulus on the mortality and infectiousness, which formally looks like fertility, of invading virions; the mortality of freshly infected cells; and the availability of target cells, all of which impact on the probability of infection. Variations on this model could capture the importance of the timing and duration of different key events in viral transmission, and hence be applied to questions of mucosal immunology. The dynamical insights and assumptions of such models are compatible with the continuum of between- and within-individual risks in sexual violence and may be helpful in making sense of the sparse data available on the association between HIV transmission and sexual violence. © 2012 John Wiley & Sons A/S.

  14. Integrating population dynamics into mapping human exposure to seismic hazard

    Directory of Open Access Journals (Sweden)

    S. Freire

    2012-11-01

    Full Text Available Disaster risk is not fully characterized without taking into account vulnerability and population exposure. Assessment of earthquake risk in urban areas would benefit from considering the variation of population distribution at more detailed spatial and temporal scales, and from a more explicit integration of this improved demographic data with existing seismic hazard maps. In the present work, "intelligent" dasymetric mapping is used to model population dynamics at high spatial resolution in order to benefit the analysis of spatio-temporal exposure to earthquake hazard in a metropolitan area. These night- and daytime-specific population densities are then classified and combined with seismic intensity levels to derive new spatially-explicit four-class-composite maps of human exposure. The presented approach enables a more thorough assessment of population exposure to earthquake hazard. Results show that there are significantly more people potentially at risk in the daytime period, demonstrating the shifting nature of population exposure in the daily cycle and the need to move beyond conventional residence-based demographic data sources to improve risk analyses. The proposed fine-scale maps of human exposure to seismic intensity are mainly aimed at benefiting visualization and communication of earthquake risk, but can be valuable in all phases of the disaster management process where knowledge of population densities is relevant for decision-making.

  15. 30th IMAC, A Conference on Structural Dynamics

    CERN Document Server

    Catbas, FN; Mayes, R; Rixen, D; Griffith, DT; Allemang, R; Clerck, J; Klerk, D; Simmermacher, T; Cogan, S; Chauhan, S; Cunha, A; Racic, V; Reynolds, P; Salyards, K; Adams, D; Kerschen, G; Carrella, A; Voormeeren, SN; Allen, MS; Horta, LG; Barthorpe, R; Niezrecki, C; Blough, JR; Vol.1 Topics on the Dynamics of Civil Structures; Vol.2 Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics; Vol.3 Topics in Nonlinear Dynamics; Vol.4 Topics in Model Validation and Uncertainty Quantification; Vol.5 Topics in Modal Analysis I; Vol.6 Topics in Modal Analysis II

    2012-01-01

    Topics on the Dynamics of Civil Structures, Volume 1, Proceedings of the 30th IMAC, A Conference and Exposition on Structural Dynamics, 2012, the first volume of six from the Conference, brings together 45 contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Human Induced Vibrations Bridge Dynamics Operational Modal Analysis Experimental Techniques and Modeling for Civil Structures System Identification for Civil Structures Method and Technologies for Bridge Monitoring Damage Detection for Civil Structures Structural Modeling Vibration Control Method and Approaches for Civil Structures Modal Testing of Civil Structures.

  16. Generation time, net reproductive rate, and growth in stage-age-structured populations

    DEFF Research Database (Denmark)

    Steiner, Uli; Tuljapurkar, Shripad; Coulson, Tim

    2014-01-01

    examples to show how reproductive timing Tc and level R0 are shaped by stage dynamics (individual trait changes), selection on the trait, and parent-offspring phenotypic correlation. We also show how population structure can affect dispersion in reproduction among ages and stages. These macroscopic...... to age-structured populations. Here we generalize this result to populations structured by stage and age by providing a new, unique measure of reproductive timing (Tc) that, along with net reproductive rate (R0), has a direct mathematical relationship to and approximates growth rate (r). We use simple...

  17. Underground population defense structures in China

    Energy Technology Data Exchange (ETDEWEB)

    Wukasch, E.

    The design and construction ofunderground shelters to protect the Chinese population in the event of nuclear war are described. Built in the style of World War II air raid shelters and designed as neighborhood defense facilities, these are not judged to be adequate for nuclear defense needs, particularly the needs of urban populations. However, 80% of China's population is rural and 1/3 of this has lived underground for centuries in cliff dwellings and atrium houses. It is, therefore, concluded that China's rural population has a better chance the the population of any other country for long-term survival from the later consequences, as well as the immediate shock, of an urban nuclear attack. (LCL)

  18. Structural optimization for nonlinear dynamic response

    DEFF Research Database (Denmark)

    Dou, Suguang; Strachan, B. Scott; Shaw, Steven W.

    2015-01-01

    by a single vibrating mode, or by a pair of internally resonant modes. The approach combines techniques from nonlinear dynamics, computational mechanics and optimization, and it allows one to relate the geometric and material properties of structural elements to terms in the normal form for a given resonance......Much is known about the nonlinear resonant response of mechanical systems, but methods for the systematic design of structures that optimize aspects of these responses have received little attention. Progress in this area is particularly important in the area of micro-systems, where nonlinear...... resonant behaviour is being used for a variety of applications in sensing and signal conditioning. In this work, we describe a computational method that provides a systematic means for manipulating and optimizing features of nonlinear resonant responses of mechanical structures that are described...

  19. Dynamics of Correlation Structure in Stock Market

    Directory of Open Access Journals (Sweden)

    Maman Abdurachman Djauhari

    2014-01-01

    Full Text Available In this paper a correction factor for Jennrich’s statistic is introduced in order to be able not only to test the stability of correlation structure, but also to identify the time windows where the instability occurs. If Jennrich’s statistic is only to test the stability of correlation structure along predetermined non-overlapping time windows, the corrected statistic provides us with the history of correlation structure dynamics from time window to time window. A graphical representation will be provided to visualize that history. This information is necessary to make further analysis about, for example, the change of topological properties of minimal spanning tree. An example using NYSE data will illustrate its advantages.

  20. The structural dynamics of social class.

    Science.gov (United States)

    Kraus, Michael W; Park, Jun Won

    2017-12-01

    Individual agency accounts of social class persist in society and even in psychological science despite clear evidence for the role of social structures. This article argues that social class is defined by the structural dynamics of society. Specifically, access to powerful networks, groups, and institutions, and inequalities in wealth and other economic resources shape proximal social environments that influence how individuals express their internal states and motivations. An account of social class that highlights the means by which structures shape and are shaped by individuals guides our understanding of how people move up or down in the social class hierarchy, and provides a framework for interpreting neuroscience studies, experimental paradigms, and approaches that attempt to intervene on social class disparities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. [Population dynamics of oligosporous actinomycetes in Chernozem soil].

    Science.gov (United States)

    Zenova, G M; Mikhaĭlova, N V; Zviagintsev, D G

    2000-01-01

    Investigation of the dynamics of an oligosporous actinomycete population in chernozem soil in the course of succession induced by soil wetting allowed us to reveal the time intervals and conditions optimal for the isolation of particular oligosporous actinomycetes. Saccharopolysporas and microbisporas proved to be best isolated in the early and late stages of succession, whereas actinomycetes of the subgroup Actinomadura and saccharomonosporas could be best isolated in the early and intermediate stages of succession.

  2. Scaling up population dynamic processes in a ladybird–aphid

    Czech Academy of Sciences Publication Activity Database

    Houdková, Kateřina; Kindlmann, Pavel

    2006-01-01

    Roč. 48, - (2006), s. 323-332 ISSN 1438-3896 R&D Projects: GA ČR(CZ) GEDIV/06/E013; GA MŠk(CZ) LC06073; GA AV ČR(CZ) IAA6087301; GA ČR(CZ) GD206/03/H034 Keywords : Aphids * Egg window * Ladybirds * Metapopulation * Model * Population dynamics Subject RIV: EH - Ecology, Behaviour Impact factor: 1.534, year: 2006

  3. Learning to Estimate Dynamical State with Probabilistic Population Codes.

    Directory of Open Access Journals (Sweden)

    Joseph G Makin

    2015-11-01

    Full Text Available Tracking moving objects, including one's own body, is a fundamental ability of higher organisms, playing a central role in many perceptual and motor tasks. While it is unknown how the brain learns to follow and predict the dynamics of objects, it is known that this process of state estimation can be learned purely from the statistics of noisy observations. When the dynamics are simply linear with additive Gaussian noise, the optimal solution is the well known Kalman filter (KF, the parameters of which can be learned via latent-variable density estimation (the EM algorithm. The brain does not, however, directly manipulate matrices and vectors, but instead appears to represent probability distributions with the firing rates of population of neurons, "probabilistic population codes." We show that a recurrent neural network-a modified form of an exponential family harmonium (EFH-that takes a linear probabilistic population code as input can learn, without supervision, to estimate the state of a linear dynamical system. After observing a series of population responses (spike counts to the position of a moving object, the network learns to represent the velocity of the object and forms nearly optimal predictions about the position at the next time-step. This result builds on our previous work showing that a similar network can learn to perform multisensory integration and coordinate transformations for static stimuli. The receptive fields of the trained network also make qualitative predictions about the developing and learning brain: tuning gradually emerges for higher-order dynamical states not explicitly present in the inputs, appearing as delayed tuning for the lower-order states.

  4. Building the bridge between animal movement and population dynamics.

    Science.gov (United States)

    Morales, Juan M; Moorcroft, Paul R; Matthiopoulos, Jason; Frair, Jacqueline L; Kie, John G; Powell, Roger A; Merrill, Evelyn H; Haydon, Daniel T

    2010-07-27

    While the mechanistic links between animal movement and population dynamics are ecologically obvious, it is much less clear when knowledge of animal movement is a prerequisite for understanding and predicting population dynamics. GPS and other technologies enable detailed tracking of animal location concurrently with acquisition of landscape data and information on individual physiology. These tools can be used to refine our understanding of the mechanistic links between behaviour and individual condition through 'spatially informed' movement models where time allocation to different behaviours affects individual survival and reproduction. For some species, socially informed models that address the movements and average fitness of differently sized groups and how they are affected by fission-fusion processes at relevant temporal scales are required. Furthermore, as most animals revisit some places and avoid others based on their previous experiences, we foresee the incorporation of long-term memory and intention in movement models. The way animals move has important consequences for the degree of mixing that we expect to find both within a population and between individuals of different species. The mixing rate dictates the level of detail required by models to capture the influence of heterogeneity and the dynamics of intra- and interspecific interaction.

  5. Experimental design and estimation of growth rate distributions in size-structured shrimp populations

    International Nuclear Information System (INIS)

    Banks, H T; Davis, Jimena L; Ernstberger, Stacey L; Hu, Shuhua; Artimovich, Elena; Dhar, Arun K

    2009-01-01

    We discuss inverse problem results for problems involving the estimation of probability distributions using aggregate data for growth in populations. We begin with a mathematical model describing variability in the early growth process of size-structured shrimp populations and discuss a computational methodology for the design of experiments to validate the model and estimate the growth-rate distributions in shrimp populations. Parameter-estimation findings using experimental data from experiments so designed for shrimp populations cultivated at Advanced BioNutrition Corporation are presented, illustrating the usefulness of mathematical and statistical modeling in understanding the uncertainty in the growth dynamics of such populations

  6. Border Collision Bifurcations in a Generalized Model of Population Dynamics

    Directory of Open Access Journals (Sweden)

    Lilia M. Ladino

    2016-01-01

    Full Text Available We analyze the dynamics of a generalized discrete time population model of a two-stage species with recruitment and capture. This generalization, which is inspired by other approaches and real data that one can find in literature, consists in considering no restriction for the value of the two key parameters appearing in the model, that is, the natural death rate and the mortality rate due to fishing activity. In the more general case the feasibility of the system has been preserved by posing opportune formulas for the piecewise map defining the model. The resulting two-dimensional nonlinear map is not smooth, though continuous, as its definition changes as any border is crossed in the phase plane. Hence, techniques from the mathematical theory of piecewise smooth dynamical systems must be applied to show that, due to the existence of borders, abrupt changes in the dynamic behavior of population sizes and multistability emerge. The main novelty of the present contribution with respect to the previous ones is that, while using real data, richer dynamics are produced, such as fluctuations and multistability. Such new evidences are of great interest in biology since new strategies to preserve the survival of the species can be suggested.

  7. Dynamic sign structures in visual art and music

    DEFF Research Database (Denmark)

    Zeller, Jörg

    2006-01-01

    Seemingly static meaning carriers in visual art are considered as aspects of holistic dynamical sign structures.......Seemingly static meaning carriers in visual art are considered as aspects of holistic dynamical sign structures....

  8. Phylogeographic structure of Canthon cyanellus (Coleoptera: Scarabaeidae), a Neotropical dung beetle in the Mexican Transition Zone: Insights on its origin and the impacts of Pleistocene climatic fluctuations on population dynamics.

    Science.gov (United States)

    Nolasco-Soto, Janet; González-Astorga, Jorge; Espinosa de Los Monteros, Alejandro; Galante-Patiño, Eduardo; Favila, Mario E

    2017-04-01

    Canthon cyanellus is a roller dung beetle with a wide distribution range in the tropical forests of the New World. In Mexico, it inhabits the Pacific and the Gulf coasts, the Yucatan Peninsula and the south mainly in the State of Chiapas. This species shows a wide geographical variation in cuticle color, which has been used as defining trait for subspecies. In this study we analyzed the phylogeographic and demographic history of the Mexican populations of C. cyanellus using DNA sequences of the nuclear ITS2, and the mitochondrial COI and 16S genes. We found that not all the current valid subspecies are supported by the molecular analysis. The populations are genetically and geographically structured in five lineages. The diversification events that gave origin to the main lineages within this species complex occurred during the Pleistocine in a time range of 1.63-0.91Myr. The demographic history of these lineages suggests post-glacial expansions toward the middle and the end of the Pleistocene. The combined data of mitochondrial and nuclear DNA suggest that the phylogeographic structure and demographic history of the C. cyanellus populations are the result of: the geological and volcanic activity that occurred from the end of the Pliocene to the Pleistocene; and the contraction and expansion of tropical forests due to the glacial and inter-glacial cycles during the Pleistocene. Landscape changes derived from historical events have affected the demographic history of the populations of this species. The results presented here point to the need to review the taxonomic status and delimitation of the lineages encompassed in the Canthon cyanellus complex. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Genetic structure of Potentilla acaulis (Rosaceae) populations ...

    African Journals Online (AJOL)

    Jane

    2011-07-18

    Jul 18, 2011 ... populations based on randomly amplified polymorphic. DNA (RAPD) in habitat ..... the correlation between ΦST values and genetic distances was highly ... Propagule recruitment from genets of perennial clonal plants could ...

  10. Estimating population age structure using otolith morphometrics

    DEFF Research Database (Denmark)

    Doering-Arjes, P.; Cardinale, M.; Mosegaard, Henrik

    2008-01-01

    known-age fish individuals. Here we used known-age Atlantic cod (Gadus morhua) from the Faroe Bank and Faroe Plateau stocks. Cod populations usually show quite large variation in growth rates and otolith shape. We showed that including otolith morphometrics into ageing processes has the potential...... populations. The intercalibration method was successful but generalization from one stock to another remains problematic. The development of an otolith growth model is needed for generalization if an operational method for different populations is required in the future....... to make ageing objective, accurate, and fast. Calibration analysis indicated that a known-age sample from the same population and environment is needed to obtain robust calibration; using a sample from a different stock more than doubles the error rate, even in the case of genetically highly related...

  11. Coexistence of competing stage-structured populations.

    KAUST Repository

    Fujiwara, Masami; Pfeiffer, Georgia; Boggess, May; Day, Sarah; Walton, Jay

    2011-01-01

    -use overlap. The former ratio, which we define as fitness, can be equalized by adjusting organisms' life history strategies, thereby promoting coexistence. We conclude that in addition to niche differentiation among populations, the life history strategies

  12. Homogenization techniques for population dynamics in strongly heterogeneous landscapes.

    Science.gov (United States)

    Yurk, Brian P; Cobbold, Christina A

    2018-12-01

    An important problem in spatial ecology is to understand how population-scale patterns emerge from individual-level birth, death, and movement processes. These processes, which depend on local landscape characteristics, vary spatially and may exhibit sharp transitions through behavioural responses to habitat edges, leading to discontinuous population densities. Such systems can be modelled using reaction-diffusion equations with interface conditions that capture local behaviour at patch boundaries. In this work we develop a novel homogenization technique to approximate the large-scale dynamics of the system. We illustrate our approach, which also generalizes to multiple species, with an example of logistic growth within a periodic environment. We find that population persistence and the large-scale population carrying capacity is influenced by patch residence times that depend on patch preference, as well as movement rates in adjacent patches. The forms of the homogenized coefficients yield key theoretical insights into how large-scale dynamics arise from the small-scale features.

  13. Drivers of waterfowl population dynamics: from teal to swans

    Science.gov (United States)

    Koons, David N.; Gunnarsson, Gunnar; Schmutz, Joel A.; Rotella, Jay J.

    2014-01-01

    Waterfowl are among the best studied and most extensively monitored species in the world. Given their global importance for sport and subsistence hunting, viewing and ecosystem functioning, great effort has been devoted since the middle part of the 20th century to understanding both the environmental and demographic mechanisms that influence waterfowl population and community dynamics. Here we use comparative approaches to summarise and contrast our understanding ofwaterfowl population dynamics across species as short-lived as the teal Anas discors and A.crecca to those such as the swans Cygnus sp. which have long life-spans. Specifically, we focus on population responses to vital rate perturbations across life history strategies, discuss bottom-up and top-down responses of waterfowlpopulations to global change, and summarise our current understanding of density dependence across waterfowl species. We close by identifying research needs and highlight ways to overcome the challenges of sustainably managing waterfowl populations in the 21st century.

  14. On the population dynamics of the malaria vector

    International Nuclear Information System (INIS)

    Ngwa, G.A.

    2005-10-01

    A deterministic differential equation model for the population dynamics of the human malaria vector is derived and studied. Conditions for the existence and stability of a non-zero steady state vector population density are derived. These reveal that a threshold parameter, the vectorial basic reproduction number, exist and the vector can establish itself in the community if and only if this parameter exceeds unity. When a non-zero steady state population density exists, it can be stable but it can also be driven to instability via a Hopf Bifurcation to periodic solutions, as a parameter is varied in parameter space. By considering a special case, an asymptotic perturbation analysis is used to derive the amplitude of the oscillating solutions for the full non-linear system. The present modelling exercise and results show that it is possible to study the population dynamics of disease vectors, and hence oscillatory behaviour as it is often observed in most indirectly transmitted infectious diseases of humans, without recourse to external seasonal forcing. (author)

  15. Linking animal population dynamics to alterations in foraging behaviour

    DEFF Research Database (Denmark)

    Nabe-Nielsen, Jacob; Sibly, Richard; Tougaard, Jakob

    Background/Question/Methods The survival of animal populations is strongly influenced by the individuals’ ability to forage efficiently, yet there are few studies of how populations respond when disturbances cause animals to deviate from their natural foraging behavior. Animals that respond...... that are increasingly exposed to noise from ships, wind turbines, etc. In the present study we investigate how the dynamics of the harbor porpoise population (Phocoena phocoena) in the inner Danish waters is influenced by disturbances using an agent- based simulation model. In the model animal movement, and hence...... the animals’ ability to forage efficiently and to sustain their energy intake, is influenced by noise emitted from wind turbines and ships. The energy levels in turn affect their survival. The fine-scale movements of the simulated animals was governed by a spatial memory, which allowed the model to produce...

  16. Studies on population dynamic of diamondback moth in the field

    International Nuclear Information System (INIS)

    Malakrong, A.; Limohpasmanee, W.; Keawchoung, P.; Kodcharint, P.

    1994-01-01

    The population dynamic of diamondback moth larva in the field was studied at Khao Khor High-land Agricultural Research Station during August-October 1993 and February-April 1994. The distribution patterns of diamondback moth larva was clumped when population was low and would change to be random when population was high. The maximun and minimum number of diamondback moth in the field were 71,203 and 2,732 larva/rai during March and September. Temperature, rainfall and age of cabbage were slightly relative with number of larva (r=-0.2891, p=0.30; r=-0.2816, p=0.31 and r=0.2931, p=0.29 respectively) but relative humidity has no effect on number of larva

  17. Mathematical modeling of seed bank dynamics in population genetics

    OpenAIRE

    Martin, Anna

    2017-01-01

    We study the genealogical structure of samples from a population for which any givengeneration is made up of direct descendants from one randomly chosen previousgeneration. These occur in nature when there are seed banks or egg banks allowingan individual to leave offspring several generations in the future. Kaj et al. studied in2001 the case where any given generation is made up of descendants from severalprevious generations and showed how this temporal structure in the reproductionmechanis...

  18. The Dynamics and Structures of Adsorbed Surfaces

    DEFF Research Database (Denmark)

    Nielsen, M; Ellenson, W. D.; McTague, J. P.

    1978-01-01

    . Elastic neutron diffraction measurements, determining the two-dimensional structural ordering of the adsorbed films, have been performed on layers of N2, Ar, H2, D2, O2, Kr, and He. Measurements on layers of larger molecules such as CD4 and ND3 have also been reported. Inelastic neutron scattering...... measurements, studying the dynamics of the adsorbed films are only possible in a few especially favourable cases such as 36Ar and D2 films, where the coherent phonon scattering cross-sections are very large. In other cases incoherent scattering from hydrogen can give information about e.g. the mobility...

  19. Structural dynamics of turbo-machines

    CERN Document Server

    Rangwala, AS

    2009-01-01

    The book presents a detailed and comprehensive treatment of structural vibration evaluation of turbo-machines. Starting with the fundamentals of the theory of vibration as related to various aspects of rotating machines, the dynamic analysis procedures of a broad spectrum of turbo-machines is covered. An in-depth procedure for analyzing the torsional and flexural oscillations of the components and of the rotor-bearing system is presented. The latest trends in design and analysis are presented, chief among them: Blade and coupled disk-blade mod

  20. Dynamical structure of pure Lovelock gravity

    Science.gov (United States)

    Dadhich, Naresh; Durka, Remigiusz; Merino, Nelson; Miskovic, Olivera

    2016-03-01

    We study the dynamical structure of pure Lovelock gravity in spacetime dimensions higher than four using the Hamiltonian formalism. The action consists of a cosmological constant and a single higher-order polynomial in the Riemann tensor. Similarly to the Einstein-Hilbert action, it possesses a unique constant curvature vacuum and charged black hole solutions. We analyze physical degrees of freedom and local symmetries in this theory. In contrast to the Einstein-Hilbert case, the number of degrees of freedom depends on the background and can vary from zero to the maximal value carried by the Lovelock theory.

  1. Population Dynamics of Early Human Migration in Britain.

    Directory of Open Access Journals (Sweden)

    Mayank N Vahia

    Full Text Available Early human migration is largely determined by geography and human needs. These are both deterministic parameters when small populations move into unoccupied areas where conflicts and large group dynamics are not important. The early period of human migration into the British Isles provides such a laboratory which, because of its relative geographical isolation, may allow some insights into the complex dynamics of early human migration and interaction.We developed a simulation code based on human affinity to habitable land, as defined by availability of water sources, altitude, and flatness of land, in choosing the path of migration. Movement of people on the British island over the prehistoric period from their initial entry points was simulated on the basis of data from the megalithic period. Topographical and hydro-shed data from satellite databases was used to define habitability, based on distance from water bodies, flatness of the terrain, and altitude above sea level. We simulated population movement based on assumptions of affinity for more habitable places, with the rate of movement tempered by existing populations. We compared results of our computer simulations with genetic data and show that our simulation can predict fairly accurately the points of contacts between different migratory paths. Such comparison also provides more detailed information about the path of peoples' movement over ~2000 years before the present era.We demonstrate an accurate method to simulate prehistoric movements of people based upon current topographical satellite data. Our findings are validated by recently-available genetic data. Our method may prove useful in determining early human population dynamics even when no genetic information is available.

  2. Environmental influence on population dynamics of the bivalve Anomalocardia brasiliana

    Science.gov (United States)

    Corte, Guilherme Nascimento; Coleman, Ross A.; Amaral, A. Cecília Z.

    2017-03-01

    Understanding how species respond to the environment in terms of population attributes (e.g. abundance, growth, mortality, fecundity, and productivity) is essential to protect ecologically and economically important species. Nevertheless, responses of macrobenthic populations to environmental features are overlooked due to the need of consecutive samplings and time-consuming measurements. We examined the population dynamics of the filter-feeding bivalve Anomalocardia brasiliana on a tidal flat over the course of one year to investigate the hypothesis that, as accepted for macrobenthic communities, populations inhabiting environments with low hydrodynamic conditions such as tidal flat should have higher attributes than populations inhabiting more energetic habitats (i.e. areas more influenced by wave energy such as reflective and intermediate beaches). This would be expected because the harsh conditions of more energetic habitats force organisms to divert more energy towards maintenance, resulting in lower population attributes. We found that A. brasiliana showed moderate growth and secondary production at the study area. Moreover the recruitment period was restricted to a few months. A comparison with previous studies showed that, contrary to expected, A. brasiliana populations from areas with low hydrodynamic conditions have lower abundance, growth, recruitment and turnover rate. It is likely that morphodynamic characteristics recorded in these environments, such as larger periods of air exposure and lower water circulation, may affect food conditions for filter-feeding species and increase competition. In addition, these characteristics may negatively affect macrobenthic species by enhancing eutrophication processes and anoxia. Overall, our results suggest that models accepted and applied at the macrobenthic community level might not be directly extended to A. brasiliana populations.

  3. Considering transient population dynamics in the conservation of slow life-history species: An application to the sandhill crane

    Science.gov (United States)

    Gerber, Brian D.; Kendall, William L.

    2016-01-01

    The importance of transient dynamics of structured populations is increasingly recognized in ecology, yet these implications are not largely considered in conservation practices. We investigate transient and long-term population dynamics to demonstrate the process and utility of incorporating transient dynamics into conservation research and to better understand the population management of slow life-history species; these species can be theoretically highly sensitive to short- and long-term transient effects. We are specifically interested in the effects of anthropogenic removal of individuals from populations, such as caused by harvest, poaching, translocation, or incidental take. We use the sandhill crane (Grus canadensis) as an exemplar species; it is long-lived, has low reproduction, late maturity, and multiple populations are subject to sport harvest. We found sandhill cranes to have extremely high potential, but low likelihood for transient dynamics, even when the population is being harvested. The typically low population growth rate of slow life-history species appears to buffer against many perturbations causing large transient effects. Transient dynamics will dominate population trajectories of these species when stage structures are highly biased towards the younger and non-reproducing individuals, a situation that may be rare in established populations of long-lived animals. However, short-term transient population growth can be highly sensitive to vital rates that are relatively insensitive under equilibrium, suggesting that stage structure should be known if perturbation analysis is used to identify effective conservation strategies. For populations of slow life-history species that are not prone to large perturbations to their most productive individuals, population growth may be approximated by equilibrium dynamics.

  4. Band structure dynamics in indium wires

    Science.gov (United States)

    Chávez-Cervantes, M.; Krause, R.; Aeschlimann, S.; Gierz, I.

    2018-05-01

    One-dimensional indium wires grown on Si(111) substrates, which are metallic at high temperatures, become insulating below ˜100 K due to the formation of a charge density wave (CDW). The physics of this transition is not conventional and involves a multiband Peierls instability with strong interband coupling. This CDW ground state is readily destroyed with femtosecond laser pulses resulting in a light-induced insulator-to-metal phase transition. The current understanding of this transition remains incomplete, requiring measurements of the transient electronic structure to complement previous investigations of the lattice dynamics. Time- and angle-resolved photoemission spectroscopy with extreme ultraviolet radiation is applied to this end. We find that the transition from the insulating to the metallic band structure occurs within ˜660 fs, which is a fraction of the amplitude mode period. The long lifetime of the transient state (>100 ps) is attributed to trapping in a metastable state in accordance with previous work.

  5. Structure and dynamics of molten salts

    International Nuclear Information System (INIS)

    Rovere, M.; Tosi, M.P.

    1986-02-01

    Modern techniques of liquid state physics have been successfully used over the last decade to probe the microscopic structure and dynamics of a variety of multicomponent liquids in which relative ordering of the species is present near freezing. The alkali halides are prototypes for this specific type of short range order in relation to the nature of bonding, but the systems in question include also other monovalent and polyvalent metal-ion halides, alkali-based intermetallic compounds, and chalcogen-based alloys. A viewpoint is taken in this review which gives attention to relations between liquid and solid phase properties across melting for compound systems at stoichiometric composition. In addition, large deviations from stoichiometry can be realized in the liquid phase, to display trends of evolution of structure, bonding and electronic states with composition. (author)

  6. Molecular structures and intramolecular dynamics of pentahalides

    Science.gov (United States)

    Ischenko, A. A.

    2017-03-01

    This paper reviews advances of modern gas electron diffraction (GED) method combined with high-resolution spectroscopy and quantum chemical calculations in studies of the impact of intramolecular dynamics in free molecules of pentahalides. Some recently developed approaches to the electron diffraction data interpretation, based on direct incorporation of the adiabatic potential energy surface parameters to the diffraction intensity are described. In this way, complementary data of different experimental and computational methods can be directly combined for solving problems of the molecular structure and its dynamics. The possibility to evaluate some important parameters of the adiabatic potential energy surface - barriers to pseudorotation and saddle point of intermediate configuration from diffraction intensities in solving the inverse GED problem is demonstrated on several examples. With increasing accuracy of the electron diffraction intensities and the development of the theoretical background of electron scattering and data interpretation, it has become possible to investigate complex nuclear dynamics in fluxional systems by the GED method. Results of other research groups are also included in the discussion.

  7. Structure and dynamics of paramagnetic transients by pulsed EPR and NMR detection of nuclear resonance

    International Nuclear Information System (INIS)

    Trifunac, A.D.

    1981-01-01

    Structure and dynamics of transient radicals in pulse radiolysis can be studied by time resolved EPR and NMR techniques. EPR study of kinetics and relaxation is illustrated. The NMR detection of nuclear resonance in transient radicals is a new method which allows the study of hyperfine coupling, population dynamics, radical kinetics, and reaction mechanism. 9 figures

  8. Structural Dynamics of Tropical Moist Forest Gaps

    Science.gov (United States)

    Hunter, Maria O.; Keller, Michael; Morton, Douglas; Cook, Bruce; Lefsky, Michael; Ducey, Mark; Saleska, Scott; de Oliveira, Raimundo Cosme; Schietti, Juliana

    2015-01-01

    Gap phase dynamics are the dominant mode of forest turnover in tropical forests. However, gap processes are infrequently studied at the landscape scale. Airborne lidar data offer detailed information on three-dimensional forest structure, providing a means to characterize fine-scale (1 m) processes in tropical forests over large areas. Lidar-based estimates of forest structure (top down) differ from traditional field measurements (bottom up), and necessitate clear-cut definitions unencumbered by the wisdom of a field observer. We offer a new definition of a forest gap that is driven by forest dynamics and consistent with precise ranging measurements from airborne lidar data and tall, multi-layered tropical forest structure. We used 1000 ha of multi-temporal lidar data (2008, 2012) at two sites, the Tapajos National Forest and Ducke Reserve, to study gap dynamics in the Brazilian Amazon. Here, we identified dynamic gaps as contiguous areas of significant growth, that correspond to areas > 10 m2, with height gap at Tapajos National Forest (4.8 %) as compared to Ducke Reserve (2.0 %). On average, gaps were smaller at Ducke Reserve and closed slightly more rapidly, with estimated height gains of 1.2 m y-1 versus 1.1 m y-1 at Tapajos. At the Tapajos site, height growth in gap centers was greater than the average height gain in gaps (1.3 m y-1 versus 1.1 m y-1). Rates of height growth between lidar acquisitions reflect the interplay between gap edge mortality, horizontal ingrowth and gap size at the two sites. We estimated that approximately 10 % of gap area closed via horizontal ingrowth at Ducke Reserve as opposed to 6 % at Tapajos National Forest. Height loss (interpreted as repeat damage and/or mortality) and horizontal ingrowth accounted for similar proportions of gap area at Ducke Reserve (13 % and 10 %, respectively). At Tapajos, height loss had a much stronger signal (23 % versus 6 %) within gaps. Both sites demonstrate limited gap contagiousness defined by an

  9. Chemical Structure and Dynamics annual report 1997

    International Nuclear Information System (INIS)

    Colson, S.D.; McDowell, R.S.

    1998-03-01

    The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE's environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous

  10. Modeling Insurgent Network Structure and Dynamics

    Science.gov (United States)

    Gabbay, Michael; Thirkill-Mackelprang, Ashley

    2010-03-01

    We present a methodology for mapping insurgent network structure based on their public rhetoric. Indicators of cooperative links between insurgent groups at both the leadership and rank-and-file levels are used, such as joint policy statements or joint operations claims. In addition, a targeting policy measure is constructed on the basis of insurgent targeting claims. Network diagrams which integrate these measures of insurgent cooperation and ideology are generated for different periods of the Iraqi and Afghan insurgencies. The network diagrams exhibit meaningful changes which track the evolution of the strategic environment faced by insurgent groups. Correlations between targeting policy and network structure indicate that insurgent targeting claims are aimed at establishing a group identity among the spectrum of rank-and-file insurgency supporters. A dynamical systems model of insurgent alliance formation and factionalism is presented which evolves the relationship between insurgent group dyads as a function of their ideological differences and their current relationships. The ability of the model to qualitatively and quantitatively capture insurgent network dynamics observed in the data is discussed.

  11. Chemical Structure and Dynamics annual report 1997

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.; McDowell, R.S.

    1998-03-01

    The Chemical Structure and Dynamics (CS and D) program is a major component of the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of-the-art collaborative facility for studies of chemical structure and dynamics. The authors respond to the need for a fundamental, molecular level understanding of chemistry at a wide variety of environmentally important interfaces by: (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage; and (3) developing state-of-the-art analytical methods for characterizing complex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. The focus of the research is defined primarily by DOE`s environmental problems: fate and transport of contaminants in the subsurface environment, processing and storage of waste materials, cellular effects of chemical and radiological insult, and atmospheric chemistry as it relates to air quality and global change. Twenty-seven projects are described under the following topical sections: Reaction mechanisms at interfaces; High-energy processes at environmental interfaces; Cluster models of the condensed phase; and Miscellaneous.

  12. Population Dynamics of the Mediterranean Fruit Fly in Montenegro

    Directory of Open Access Journals (Sweden)

    Sanja Radonjić

    2013-01-01

    Full Text Available Population dynamics of the Mediterranean fruit fly was studied along Montenegro seacoast. Tephri traps baited with 3 component female-biased attractants were used in 11 different localities to monitor the fruit fly population in commercial citrus orchards, mixed-fruit orchards, and in backyards. From 2008–2010, the earliest captures were recorded no earlier than July. In 2011, the first adult fly was detected in mid-June. Low captures rates were recorded in July and August (below 0.5 flies per trap per day; FTD and peaked from mid-September to the end of October of each year. Our results indicate fluctuation of fly per trap per day depending on dates of inspection and locality, with significant differences in the adult population density. A maximum population was always reached in the area of Budva-Herceg Novi with an FTD of 66.5, 89.5, 71.63, and 24.64 (from 2008–2011 respectively. Fly activity lasts from mid-June/early-July to end December, with distinct seasonal variation in the population.

  13. Extensive population genetic structure in the giraffe

    Directory of Open Access Journals (Sweden)

    Grether Gregory F

    2007-12-01

    Full Text Available Abstract Background A central question in the evolutionary diversification of large, widespread, mobile mammals is how substantial differentiation can arise, particularly in the absence of topographic or habitat barriers to dispersal. All extant giraffes (Giraffa camelopardalis are currently considered to represent a single species classified into multiple subspecies. However, geographic variation in traits such as pelage pattern is clearly evident across the range in sub-Saharan Africa and abrupt transition zones between different pelage types are typically not associated with extrinsic barriers to gene flow, suggesting reproductive isolation. Results By analyzing mitochondrial DNA sequences and nuclear microsatellite loci, we show that there are at least six genealogically distinct lineages of giraffe in Africa, with little evidence of interbreeding between them. Some of these lineages appear to be maintained in the absence of contemporary barriers to gene flow, possibly by differences in reproductive timing or pelage-based assortative mating, suggesting that populations usually recognized as subspecies have a long history of reproductive isolation. Further, five of the six putative lineages also contain genetically discrete populations, yielding at least 11 genetically distinct populations. Conclusion Such extreme genetic subdivision within a large vertebrate with high dispersal capabilities is unprecedented and exceeds that of any other large African mammal. Our results have significant implications for giraffe conservation, and imply separate in situ and ex situ management, not only of pelage morphs, but also of local populations.

  14. Population dynamics of Ascaris suum in trickle-infected pigs.

    Science.gov (United States)

    Nejsum, Peter; Thamsborg, Stig M; Petersen, Heidi H; Kringel, Helene; Fredholm, Merete; Roepstorff, Allan

    2009-10-01

    The population dynamics of Ascaris suum was studied by long-term exposure of pigs to infective eggs. The pigs were experimentally inoculated with 25 A. suum eggs/kg/day, and 7, 8, and 8 pigs were necropsied at weeks 4, 8, and 14 postinoculation (PI), respectively. Despite the fact that the pigs were continuously reinfected, dramatic reductions in numbers of liver lesions (white spots) and migrating lung larvae were observed as a function of time. However, even at the end of the study, a few larvae were able to complete migration, but these larvae seemed unable to mature in the small intestine. Thus, the adult worm population seemed to consist of worms from the first part of the exposure period. The noticeable decrease in number of white spots suggests that the level of exposure is not reflected in the number of white spots in the late phase of a continuous infection. The serum levels of A. suum L3-specific IgG1 and IgA were significantly elevated by week 4 PI, after which the antibody levels declined. The population dynamics and parasite regulating mechanisms are discussed for A. suum in pigs as well as for the closely related species A. lumbricoides in humans.

  15. Population structure and genetic diversity of Sudanese native chickens

    African Journals Online (AJOL)

    The objectives of this study were to analyze genetic diversity and population structure of Sudanese native chicken breeds involved in a conservation program. Five Sudanese native chicken breeds were compared with populations studied previously, which included six purebred lines, six African populations and one ...

  16. Population Genetic Structure and Gene Flow Among Nigerian Goats ...

    African Journals Online (AJOL)

    Population Genetic structure in 200 indigenous goats sampled across four states from the South-Western and South Southern region of Nigeria was assessed using 7 microsatellite DNA markers. Observed Analysis of molecular genetic variation (AMOVA) was higher within populations (3.47) than among populations (1.84) ...

  17. Effects of Peanut-Tobacco Rotations on Population Dynamics of Meloidogyne arenaria in Mixed Race Populations

    OpenAIRE

    Hirunsalee, Anan; Barker, K. R.; Beute, M. K.

    1995-01-01

    A 3-year microplot study was initiated to characterize the population dynamics, reproduction potential, and survivorship of single or mixed populations of Meloidogyne arenaria race 1 (Ma1) and race 2 (Ma2), as affected by crop rotations of peanut 'Florigiant' and M. incognita races 1 and 3-resistant 'McNair 373' and susceptible 'Coker 371-Gold' tobacco. Infection, reproduction, and root damage by Ma2 on peanut and by Ma1 on resistant tobacco were limited in the first year. Infection, reproduc...

  18. Genetic diversity and population structure of sweet cassava using ...

    African Journals Online (AJOL)

    The objective of this study was to evaluate the population structure and genetic diversity among 66 sweet cassava (Manihot esculenta Crantz) traditional accessions collected in Maringa, Parana, Brazil, using microsatellite molecular markers. Population structure was analyzed by means of genetic distances and ...

  19. Genetic diversity and population structure of Chinese honeybees ...

    African Journals Online (AJOL)

    Genetic diversity and population structure of Chinese honeybees (Apis cerana) under microsatellite markers. T Ji, L Yin, G Chen. Abstract. Using 21 microsatellite markers and PCR method, the polymorphisms of 20 Apis cerana honeybee populations across China was investigated and the genetic structure and diversity of ...

  20. A Structure for Population Education: Goals, Generalizations, and Behavioral Objectives.

    Science.gov (United States)

    Lane, Mary Turner; Wileman, Ralph E.

    This book is written to assist anyone who wants to learn about, teach, or plan curricula for population education. A structure is provided that educators can use for first graders or for high school students. Chapter 1 identifies the population phenomenon and the need to study it. Chapter 2 gives the elements of the structure: goals,…

  1. Dynamics of the population quantity of Juglans mandshurica Maxim. in different habitats in Xinjiang, China

    International Nuclear Information System (INIS)

    Yang, Y.; Li, J.; Zhang, W.

    2015-01-01

    Transects were arranged on the shady and sunny slopes, as well as at different elevations of the main, eastern, central, and western gullies in the Wild Walnut Nature Reserve in Xinjiang, China to survey a large sample of Juglans mandshurica. The structures of height class and diameter at breast height (DBH) class were used to represent age structure to compare and analyze the dynamics of the population quantity of J. mandshurica in different habitats. Results showed that J. mandshurica population comprises numerous young seedlings, which develop into young plants with a high death rate. The number of adult plants is stable. J. mandshurica population is r-strategists in the young stage, and k-strategists supplemented by r-strategists in the juvenile and subsequent stages. The structures of height class and DBH class fluctuate at different slope aspects and elevations. The growth of young seedlings into adult plants is discontinuous. Tree height and DBH are relatively uniform in the same age class, and the coefficient of variation is independent of slope aspect and elevation. The maximum numbers of age classes in J. mandshurica population with different height and DBH classes differ at three elevations. Low- and medium-age classes are dominant in all situations. That is, population is mainly composed of juvenile and adult trees, and age structure is classified as a growth type. Without strong external interference, J. mandshurica population will maintain its superior position in the community. (author)

  2. Dynamic Analysis of Partially Embedded Structures Considering Soil-Structure Interaction in Time Domain

    OpenAIRE

    Mahmoudpour, Sanaz; Attarnejad, Reza; Behnia, Cambyse

    2011-01-01

    Analysis and design of structures subjected to arbitrary dynamic loadings especially earthquakes have been studied during past decades. In practice, the effects of soil-structure interaction on the dynamic response of structures are usually neglected. In this study, the effect of soil-structure interaction on the dynamic response of structures has been examined. The substructure method using dynamic stiffness of soil is used to analyze soil-structure system. A coupled model based on finite el...

  3. Exploiting Fast-Variables to Understand Population Dynamics and Evolution

    Science.gov (United States)

    Constable, George W. A.; McKane, Alan J.

    2017-11-01

    We describe a continuous-time modelling framework for biological population dynamics that accounts for demographic noise. In the spirit of the methodology used by statistical physicists, transitions between the states of the system are caused by individual events while the dynamics are described in terms of the time-evolution of a probability density function. In general, the application of the diffusion approximation still leaves a description that is quite complex. However, in many biological applications one or more of the processes happen slowly relative to the system's other processes, and the dynamics can be approximated as occurring within a slow low-dimensional subspace. We review these time-scale separation arguments and analyse the more simple stochastic dynamics that result in a number of cases. We stress that it is important to retain the demographic noise derived in this way, and emphasise this point by showing that it can alter the direction of selection compared to the prediction made from an analysis of the corresponding deterministic model.

  4. Population Dynamics of Patients with Bacterial Resistance in Hospital Environment

    Directory of Open Access Journals (Sweden)

    Leilei Qu

    2016-01-01

    Full Text Available During the past decades, the increase of antibiotic resistance has become a major concern worldwide. The researchers found that superbugs with new type of resistance genes (NDM-1 have two aspects of transmission characteristics; the first is that the antibiotic resistance genes can horizontally transfer among bacteria, and the other is that the superbugs can spread between humans through direct contact. Based on these two transmission mechanisms, we study the dynamics of population in hospital environment where superbugs exist. In this paper, we build three mathematic models to illustrate the dynamics of patients with bacterial resistance in hospital environment. The models are analyzed using stability theory of differential equations. Positive equilibrium points of the system are investigated and their stability analysis is carried out. Moreover, the numerical simulation of the proposed model is also performed which supports the theoretical findings.

  5. Dynamic population gratings in rare-earth-doped optical fibres

    Energy Technology Data Exchange (ETDEWEB)

    Stepanov, Serguei [Optics Department, CICESE, km.107 carr. Tijuana-Ensenada, Ensenada, 22860, BC (Mexico)], E-mail: steps@cicese.mx

    2008-11-21

    Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.

  6. Dynamic population gratings in rare-earth-doped optical fibres

    International Nuclear Information System (INIS)

    Stepanov, Serguei

    2008-01-01

    Dynamic Bragg gratings can be recorded in rare-earth (e.g. Er, Yb) doped optical fibres by two counter-propagating mutually coherent laser waves via local saturation of the fibre optical absorption or gain (in optically pumped fibres). Typical recording cw light power needed for efficient grating formation is of sub-mW-mW scale which results in characteristic recording/erasure times of 10-0.1 ms. This review paper discusses fundamental aspects of the population grating formation, their basic properties, relating wave-mixing processes and also considers different applications of these dynamic gratings in single-frequency fibre lasers, tunable filters, optical fibre sensors and adaptive interferometry.

  7. Population dynamics of minimally cognitive individuals. Part 2: Dynamics of time-dependent knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Schmieder, R.W.

    1995-07-01

    The dynamical principle for a population of interacting individuals with mutual pairwise knowledge, presented by the author in a previous paper for the case of constant knowledge, is extended to include the possibility that the knowledge is time-dependent. Several mechanisms are presented by which the mutual knowledge, represented by a matrix K, can be altered, leading to dynamical equations for K(t). The author presents various examples of the transient and long time asymptotic behavior of K(t) for populations of relatively isolated individuals interacting infrequently in local binary collisions. Among the effects observed in the numerical experiments are knowledge diffusion, learning transients, and fluctuating equilibria. This approach will be most appropriate to small populations of complex individuals such as simple animals, robots, computer networks, agent-mediated traffic, simple ecosystems, and games. Evidence of metastable states and intermittent switching leads them to envision a spectroscopy associated with such transitions that is independent of the specific physical individuals and the population. Such spectra may serve as good lumped descriptors of the collective emergent behavior of large classes of populations in which mutual knowledge is an important part of the dynamics.

  8. Population structure of Han nationality in Central-Southern China.

    Science.gov (United States)

    Liu, Qiu-Ling; Chen, Ye-Fei; He, Xin; Shi, Yan-Wei; Wu, Wei-Wei; Zhao, Hu; Lu, De-Jian

    2017-07-01

    Knowledge of population structure is very important for forensic genetics. However, the population substructure in Central-Southern China Han nationality has still not been fully described. In this study, we investigated the genetic diversity of 15 forensic autosomal STR loci from 6879 individuals in 12 Han populations subdivided by administrative provinces in Central-Southern China. The statistical analysis of genetic variation showed that genetic differentiation among these populations was very small with a F st value of 0.0009. The Discriminant Analysis of Principal Components (DAPC) showed that there were no obvious population clusters in Central-Southern China Han population. In practice, the population structure effect in Central-Southern China Han population can be negligible in forensic identification and paternity testing. Copyright © 2017. Published by Elsevier B.V.

  9. Pulsed adiabatic structure and complete population transfer

    International Nuclear Information System (INIS)

    Shore, B.W.

    1992-10-01

    Population can be transferred between atomic or molecular energy states in a variety of ways. The basic idea of adiabatic transfer, discussed in many textbooks, is as follows. One begins with an atom that is in some single energy state (an eigenstate of an initial Hamiltonian). This energy state is one of many possible states, known variously as the unperturbed states or basis states or diabatic states. Next one begins to change the Hamiltonian very slowly. The changes may occur in either the diagonal elements (the basis state energies) or in the off-diagonal elements (interactions between basis states). If there are off-diagonal elements then the Hamiltonian will no longer commute with the original one. Because the Hamiltonian is no longer the one that was used to define the original basis states, it will cause these states to become mixed. However, if the change is sufficiently slow, the system can remain in a single eigenstate of the changing Hamiltonian -- an adiabatic state, composed of a combination of basis states. Finally, at some later time, one examines the system once again in the original basis. One finds that the population has undergone a change, and now resides in a different unperturbed state. One has produced population transfer. There are many illustrative examples of adiabatic passage, both theory and experiment. The author mentions briefly two common examples, inelastic collisions between atoms, and the static Stark effect in Rydberg atoms, before continuing with the main objective, a discussion of adiabatic passage induced by laser pulses

  10. Do farming practices influence population dynamics of rodents?

    DEFF Research Database (Denmark)

    Massawe, A W; Rwamugira, W; Leirs, Herwig

    2007-01-01

    A capture-mark-recapture study was conducted in crop fields in Morogoro, Tanzania, to investigate how the population dynamics of multimammate field rats, Mastomys natalensis, was influenced by the commonly practised land preparation methods and cropping systems. Two land preparation methods (trac...... practices. In maize fields in Tanzania, the crop is most susceptible to damage by M. natalensis in the first 2 weeks after planting, and therefore, lower densities of rodents will result into lower crop damage in tractor ploughed fields....

  11. Fast stochastic algorithm for simulating evolutionary population dynamics

    Science.gov (United States)

    Tsimring, Lev; Hasty, Jeff; Mather, William

    2012-02-01

    Evolution and co-evolution of ecological communities are stochastic processes often characterized by vastly different rates of reproduction and mutation and a coexistence of very large and very small sub-populations of co-evolving species. This creates serious difficulties for accurate statistical modeling of evolutionary dynamics. In this talk, we introduce a new exact algorithm for fast fully stochastic simulations of birth/death/mutation processes. It produces a significant speedup compared to the direct stochastic simulation algorithm in a typical case when the total population size is large and the mutation rates are much smaller than birth/death rates. We illustrate the performance of the algorithm on several representative examples: evolution on a smooth fitness landscape, NK model, and stochastic predator-prey system.

  12. Outward migration may alter population dynamics and income inequality

    Science.gov (United States)

    Shayegh, Soheil

    2017-11-01

    Climate change impacts may drive affected populations to migrate. However, migration decisions in response to climate change could have broader effects on population dynamics in affected regions. Here, I model the effect of climate change on fertility rates, income inequality, and human capital accumulation in developing countries, focusing on the instrumental role of migration as a key adaptation mechanism. In particular, I investigate how climate-induced migration in developing countries will affect those who do not migrate. I find that holding all else constant, climate change raises the return on acquiring skills, because skilled individuals have greater migration opportunities than unskilled individuals. In response to this change in incentives, parents may choose to invest more in education and have fewer children. This may ultimately reduce local income inequality, partially offsetting some of the damages of climate change for low-income individuals who do not migrate.

  13. Nonparametric inference of network structure and dynamics

    Science.gov (United States)

    Peixoto, Tiago P.

    The network structure of complex systems determine their function and serve as evidence for the evolutionary mechanisms that lie behind them. Despite considerable effort in recent years, it remains an open challenge to formulate general descriptions of the large-scale structure of network systems, and how to reliably extract such information from data. Although many approaches have been proposed, few methods attempt to gauge the statistical significance of the uncovered structures, and hence the majority cannot reliably separate actual structure from stochastic fluctuations. Due to the sheer size and high-dimensionality of many networks, this represents a major limitation that prevents meaningful interpretations of the results obtained with such nonstatistical methods. In this talk, I will show how these issues can be tackled in a principled and efficient fashion by formulating appropriate generative models of network structure that can have their parameters inferred from data. By employing a Bayesian description of such models, the inference can be performed in a nonparametric fashion, that does not require any a priori knowledge or ad hoc assumptions about the data. I will show how this approach can be used to perform model comparison, and how hierarchical models yield the most appropriate trade-off between model complexity and quality of fit based on the statistical evidence present in the data. I will also show how this general approach can be elegantly extended to networks with edge attributes, that are embedded in latent spaces, and that change in time. The latter is obtained via a fully dynamic generative network model, based on arbitrary-order Markov chains, that can also be inferred in a nonparametric fashion. Throughout the talk I will illustrate the application of the methods with many empirical networks such as the internet at the autonomous systems level, the global airport network, the network of actors and films, social networks, citations among

  14. Structure, dynamics, and function of biomolecules

    International Nuclear Information System (INIS)

    Frauenfelder, H.; Berendzen, J.R.; Garcia, A.; Gupta, G.; Olah, G.A.; Terwilliger, T.C.; Trewhella, J.; Wood, C.C.; Woodruff, W.H.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors enhanced Los Alamos' core competency in Bioscience and Biotechnology by building on present strengths in experimental techniques, theory, high-performance computing, modeling, and simulation applied to biomolecular structure, dynamics, and function. Specifically, the authors strengthened their capabilities in neutron/x-ray scattering, x-ray crystallography, NMR, laser, and optical spectroscopies. Initially they focused on supporting the Los alamos Neutron Science Center (LANSCE) in the design and implementation of new neutron scattering instrumentation, they developed new methods for analysis of scattering data, and they developed new projects to study the structures of biomolecular complexes. The authors have also worked to strengthen interactions between theory and experiment, and between the biological and physical sciences. They sponsored regular meetings of members from all interested LANL technical divisions, and supported two lecture series: ''Biology for Physicists'' and ''Issues in Modern Biology''. They also supported the formation of interdisciplinary/inter-divisional teams to develop projects in science-based bioremediation and an integrated structural biology resource. Finally, they successfully worked with a multidisciplinary team to put forward the Laboratory's Genome and Beyond tactical goal

  15. The application of mass and energy conservation laws in physiologically structured population models of heterotrophic organisms

    Science.gov (United States)

    Kooijman; Kooi; Hallam

    1999-04-07

    Rules for energy uptake, and subsequent utilization, form the basis of population dynamics and, therefore, explain the dynamics of the ecosystem structure in terms of changes in standing crops and size distributions of individuals. Mass fluxes are concomitant with energy flows and delineate functional aspects of ecosystems by defining the roles of individuals and populations. The assumption of homeostasis of body components, and an assumption about the general structure of energy budgets, imply that mass fluxes can be written as weighted sums of three organizing energy fluxes with the weight coefficients determined by the conservation law of mass. These energy fluxes are assimilation, maintenance and growth, and provide a theoretical underpinning of the widely applied empirical method of indirect calorimetry, which relates dissipating heat linearly to three mass fluxes: carbon dioxide production, oxygen consumption and N-waste production. A generic approach to the stoichiometry of population energetics from the perspective of the individual organism is proposed and illustrated for heterotrophic organisms. This approach indicates that mass transformations can be identified by accounting for maintenance requirements and overhead costs for the various metabolic processes at the population level. The theoretical background for coupling the dynamics of the structure of communities to nutrient cycles, including the water balance, as well as explicit expressions for the dissipating heat at the population level are obtained based on the conservation law of energy. Specifications of the general theory employ the Dynamic Energy Budget model for individuals. Copyright 1999 Academic Press.

  16. Population structure and genetic diversity of native and invasive populations of Solanum rostratum (Solanaceae.

    Directory of Open Access Journals (Sweden)

    Jiali Zhao

    Full Text Available We investigate native and introduced populations of Solanum rostratum, an annual, self-compatible plant that has been introduced around the globe. This study is the first to compare the genetic diversity of Solanum rostratum between native and introduced populations. We aim to (1 determine the level of genetic diversity across the studied regions; (2 explore the likely origins of invasive populations in China; and (3 investigate whether there is the evidence of multiple introductions into China.We genotyped 329 individuals at 10 microsatellite loci to determine the levels of genetic diversity and to investigate population structure of native and introduced populations of S. rostratum. We studied five populations in each of three regions across two continents: Mexico, the U.S.A. and China.We found the highest genetic diversity among Mexican populations of S. rostratum. Genetic diversity was significantly lower in Chinese and U.S.A. populations, but we found no regional difference in inbreeding coefficients (F IS or population differentiation (F ST. Population structure analyses indicate that Chinese and U.S.A. populations are more closely related to each other than to sampled Mexican populations, revealing that introduced populations in China share an origin with the sampled U.S.A. populations. The distinctiveness between some introduced populations indicates multiple introductions of S. rostratum into China.

  17. Plasma and current structures in dynamical pinches

    International Nuclear Information System (INIS)

    Butov, I.Ya.; Matveev, Yu.V.

    1981-01-01

    Dynamics of plasma layers and current structure in aZ-pinch device has been experimentally investigated. It is found that shaping of a main current envelope is ended with its explosion-like expansion, the pinch decaying after compression to separated current filaments. It is also shown that filling of a region outside the pinch with plasma and currents alternating in directions occurs owing to interaction of current loops (inductions) formed in a magnetic piston during its compression with reflected shock wave. Current circulating in the loops sometimes exceeds 1.5-2 times the current of discharge circuit. The phenomena noted appear during development of superheat instability and can be realized, for example, in theta-pinches, plasma focuses, tokamaks. The experiments were carried out at the Dynamic Zeta-pinch device at an energy reserse of up to 15 kJ (V 0 =24 kV) in a capacitor bank. Half-period of the discharge current is 9 μs; Isub(max)=3.5x10sup(5) A. Back current guide surrounding a china chamber of 28 cm diameter and 50 cm length is made in the form of a hollow cylinder. Initial chamber vacuum is 10 -6 torr [ru

  18. Wheat yield dynamics: a structural econometric analysis.

    Science.gov (United States)

    Sahin, Afsin; Akdi, Yilmaz; Arslan, Fahrettin

    2007-10-15

    In this study we initially have tried to explore the wheat situation in Turkey, which has a small-open economy and in the member countries of European Union (EU). We have observed that increasing the wheat yield is fundamental to obtain comparative advantage among countries by depressing domestic prices. Also the changing structure of supporting schemes in Turkey makes it necessary to increase its wheat yield level. For this purpose, we have used available data to determine the dynamics of wheat yield by Ordinary Least Square Regression methods. In order to find out whether there is a linear relationship among these series we have checked each series whether they are integrated at the same order or not. Consequently, we have pointed out that fertilizer usage and precipitation level are substantial inputs for producing high wheat yield. Furthermore, in respect for our model, fertilizer usage affects wheat yield more than precipitation level.

  19. Chemical structure and dynamics. Annual report 1994

    Energy Technology Data Exchange (ETDEWEB)

    Colson, S.D.

    1995-07-01

    The Chemical Structure and Dynamics program was organized as a major component of Pacific Northwest Laboratory`s Environmental and Molecular Sciences Laboratory (EMSL), a state-of-the-art collaborative facility for studies of chemical structure and dynamics. Our program responds to the need for a fundamental, molecular-level understanding of chemistry at the wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces, and (2) developing a multidisciplinary capability for describing interfacial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in environmental chemistry and in nuclear waste processing and storage. This research effort was initiated in 1989 and will continue to evolve over the next few years into a program of rigorous studies of fundamental molecular processes in model systems, such as well-characterized surfaces, single-component solutions, clusters, and biological molecules; and studies of complex systems found in the environment (multispecies, multiphase solutions; solid/liquid, liquid/liquid, and gas/surface interfaces; colloidal dispersions; ultrafine aerosols; and functioning biological systems). The success of this program will result in the achievement of a quantitative understanding of chemical reactions at interfaces, and more generally in condensed media, that is comparable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for predictions of macroscopic chemical behavior in condensed and heterogeneous media, adding significantly to the value of field-scale environmental models, the prediction of short- and long-term nuclear waste storage stabilities, and other problems related to the primary missions of the DOE.

  20. MULTISCALE DYNAMICS OF SOLAR MAGNETIC STRUCTURES

    International Nuclear Information System (INIS)

    Uritsky, Vadim M.; Davila, Joseph M.

    2012-01-01

    Multiscale topological complexity of the solar magnetic field is among the primary factors controlling energy release in the corona, including associated processes in the photospheric and chromospheric boundaries. We present a new approach for analyzing multiscale behavior of the photospheric magnetic flux underlying these dynamics as depicted by a sequence of high-resolution solar magnetograms. The approach involves two basic processing steps: (1) identification of timing and location of magnetic flux origin and demise events (as defined by DeForest et al.) by tracking spatiotemporal evolution of unipolar and bipolar photospheric regions, and (2) analysis of collective behavior of the detected magnetic events using a generalized version of the Grassberger-Procaccia correlation integral algorithm. The scale-free nature of the developed algorithms makes it possible to characterize the dynamics of the photospheric network across a wide range of distances and relaxation times. Three types of photospheric conditions are considered to test the method: a quiet photosphere, a solar active region (NOAA 10365) in a quiescent non-flaring state, and the same active region during a period of M-class flares. The results obtained show (1) the presence of a topologically complex asymmetrically fragmented magnetic network in the quiet photosphere driven by meso- and supergranulation, (2) the formation of non-potential magnetic structures with complex polarity separation lines inside the active region, and (3) statistical signatures of canceling bipolar magnetic structures coinciding with flaring activity in the active region. Each of these effects can represent an unstable magnetic configuration acting as an energy source for coronal dissipation and heating.

  1. Annual Report 1998: Chemical Structure and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    SD Colson; RS McDowell

    1999-05-10

    The Chemical Structure and Dynamics (CS&D) program is a major component of the William R. Wiley Environmental Molecular Sciences Labo- ratory (EMSL), developed by Pacific Northwest National Laboratory (PNNL) to provide a state-of- the-art collaborative facility for studies of chemical structure and dynamics. We respond to the need for a fundamental, molecular-level understanding of chemistry at a wide variety of environmentally important interfaces by (1) extending the experimental characterization and theoretical description of chemical reactions to encompass the effects of condensed media and interfaces; (2) developing a multidisciplinary capability for describing interracial chemical processes within which the new knowledge generated can be brought to bear on complex phenomena in envi- ronmental chemistry and in nuclear waste proc- essing and storage; and (3) developing state-of- the-art analytical methods for characterizing com- plex materials of the types found in stored wastes and contaminated soils, and for detecting and monitoring trace atmospheric species. Our program aims at achieving a quantitative understanding of chemical reactions at interfaces and, more generally, in condensed media, compa- rable to that currently available for gas-phase reactions. This understanding will form the basis for the development of a priori theories for pre- dicting macroscopic chemical behavior in con- densed and heterogeneous media, which will add significantly to the value of field-scale envi- ronmental models, predictions of short- and long- term nuclear waste storage stabilities, and other areas related to the primary missions of the U.S. Department of Energy (DOE).

  2. Using dynamic stochastic modelling to estimate population risk factors in infectious disease: the example of FIV in 15 cat populations.

    Directory of Open Access Journals (Sweden)

    David Fouchet

    Full Text Available BACKGROUND: In natural cat populations, Feline Immunodeficiency Virus (FIV is transmitted through bites between individuals. Factors such as the density of cats within the population or the sex-ratio can have potentially strong effects on the frequency of fight between individuals and hence appear as important population risk factors for FIV. METHODOLOGY/PRINCIPAL FINDINGS: To study such population risk factors, we present data on FIV prevalence in 15 cat populations in northeastern France. We investigate five key social factors of cat populations; the density of cats, the sex-ratio, the number of males and the mean age of males and females within the population. We overcome the problem of dependence in the infective status data using sexually-structured dynamic stochastic models. Only the age of males and females had an effect (p = 0.043 and p = 0.02, respectively on the male-to-female transmission rate. Due to multiple tests, it is even likely that these effects are, in reality, not significant. Finally we show that, in our study area, the data can be explained by a very simple model that does not invoke any risk factor. CONCLUSION: Our conclusion is that, in host-parasite systems in general, fluctuations due to stochasticity in the transmission process are naturally very large and may alone explain a larger part of the variability in observed disease prevalence between populations than previously expected. Finally, we determined confidence intervals for the simple model parameters that can be used to further aid in management of the disease.

  3. Effects of Peanut-Tobacco Rotations on Population Dynamics of Meloidogyne arenaria in Mixed Race Populations.

    Science.gov (United States)

    Hirunsalee, A; Barker, K R; Beute, M K

    1995-06-01

    A 3-year microplot study was initiated to characterize the population dynamics, reproduction potential, and survivorship of single or mixed populations of Meloidogyne arenaria race 1 (Ma1) and race 2 (Ma2), as affected by crop rotations of peanut 'Florigiant' and M. incognita races 1 and 3-resistant 'McNair 373' and susceptible 'Coker 371-Gold' tobacco. Infection, reproduction, and root damage by Ma2 on peanut and by Ma1 on resistant tobacco were limited in the first year. Infection, reproduction, and root-damage potentials on susceptible tobacco were similar for Ma1 and Ma2. In the mixed (1:1) population, Ma1 was dominant on peanut and Ma2 was dominant on both tobacco cultivars. Crop rotation affected the population dynamics of different nematode races. For years 2 and 3, the low numbers of Ma1 and Ma2 from a previous-year poor host increased rapidly on suitable hosts. Ma1 had greater reproduction factors ([RF] = population density at harvest/population density at preplandng) than did Ma2 and Ma1 + Ma2 in second-year peanut plots following first-year resistant tobacco, and in third-year peanut plots following second-year tobacco. In mixed infestations, Ma1 predominated over Ma2 in previous-year peanut plots, whereas Ma2 predominated over Ma1 in previous-year tobacco plots. Moderate damage on resistant tobacco was induced by Ma1 in the second year. In the third year, moderate damage on peanut was associated with 'Ma2' from previous-year peanut plots. The resistant tobacco supported sufficient reproduction of Ma1 over 2 years to effect moderate damage and yield suppression to peanut in year 3.

  4. Application of System Dynamics Methodology in Population Analysis

    Directory of Open Access Journals (Sweden)

    August Turina

    2009-09-01

    Full Text Available The goal of this work is to present the application of system dynamics and system thinking, as well as the advantages and possible defects of this analytic approach, in order to improve the analysis of complex systems such as population and, thereby, to monitor more effectively the underlying causes of migrations. This methodology has long been present in interdisciplinary scientific circles, but its scientific contribution has not been sufficiently applied in analysis practice in Croatia. Namely, the major part of system analysis is focused on detailed complexity rather than on dynamic complexity. Generally, the science of complexity deals with emergence, innovation, learning and adaptation. Complexity is viewed according to the number of system components, or through a number of combinations that must be continually analyzed in order to understand and consequently provide adequate decisions. Simulations containing thousands of variables and complex arrays of details distract overall attention from the basic cause patterns and key inter-relations emerging and prevailing within an analyzed population. Systems thinking offers a holistic and integral perspective for observation of the world.

  5. Representation of dynamical stimuli in populations of threshold neurons.

    Directory of Open Access Journals (Sweden)

    Tatjana Tchumatchenko

    2011-10-01

    Full Text Available Many sensory or cognitive events are associated with dynamic current modulations in cortical neurons. This raises an urgent demand for tractable model approaches addressing the merits and limits of potential encoding strategies. Yet, current theoretical approaches addressing the response to mean- and variance-encoded stimuli rarely provide complete response functions for both modes of encoding in the presence of correlated noise. Here, we investigate the neuronal population response to dynamical modifications of the mean or variance of the synaptic bombardment using an alternative threshold model framework. In the variance and mean channel, we provide explicit expressions for the linear and non-linear frequency response functions in the presence of correlated noise and use them to derive population rate response to step-like stimuli. For mean-encoded signals, we find that the complete response function depends only on the temporal width of the input correlation function, but not on other functional specifics. Furthermore, we show that both mean- and variance-encoded signals can relay high-frequency inputs, and in both schemes step-like changes can be detected instantaneously. Finally, we obtain the pairwise spike correlation function and the spike triggered average from the linear mean-evoked response function. These results provide a maximally tractable limiting case that complements and extends previous results obtained in the integrate and fire framework.

  6. Population dynamics of Trichuris suis in trickle-infected pigs.

    Science.gov (United States)

    Nejsum, P; Thamsborg, S M; Petersen, H H; Kringel, H; Fredholm, M; Roepstorff, A

    2009-05-01

    The population dynamics of Trichuris suis in pigs was studied during long-term experimental infections. Twenty-three 10-week-old pigs were inoculated with 5 T. suis eggs/kg/day. Seven, 8, and 8 pigs were necropsied at weeks 4, 8, and 14 post-start of infection (p.i.), respectively. The median numbers of worms in the colon were 538 (min-max: 277-618), 332 (14-1140) and 0 (0-4) at 4, 8, and 14 weeks p.i. respectively, suggesting an increased aggregation of the worms with time and acquisition of nearly sterile immunity. The serum levels of T. suis specific antibodies (IgG1, IgG2 and IgA) peaked at week 8 p.i. By week 14 p.i. the IgG2 and IgA antibody levels remained significantly elevated above the level of week 0. The population dynamics of T. suis trickle infections in pigs is discussed with focus on interpretation of diagnostic and epidemiological data of pigs, the use of pigs as a model for human Trichuris trichiura infections and the novel approach of using T. suis eggs in the treatment of patients with inflammatory bowel disease.

  7. Stability patterns for a size-structured population model and its stage-structured counterpart

    DEFF Research Database (Denmark)

    Zhang, Lai; Pedersen, Michael; Lin, Zhigui

    2015-01-01

    In this paper we compare a general size-structured population model, where a size-structured consumer feeds upon an unstructured resource, to its simplified stage-structured counterpart in terms of equilibrium stability. Stability of the size-structured model is understood in terms of an equivale...... to the population level....

  8. The impact of natural transformation on adaptation in spatially structured bacterial populations.

    Science.gov (United States)

    Moradigaravand, Danesh; Engelstädter, Jan

    2014-06-20

    Recent studies have demonstrated that natural transformation and the formation of highly structured populations in bacteria are interconnected. In spite of growing evidence about this connection, little is known about the dynamics of natural transformation in spatially structured bacterial populations. In this work, we model the interdependency between the dynamics of the bacterial gene pool and those of environmental DNA in space to dissect the effect of transformation on adaptation. Our model reveals that even with only a single locus under consideration, transformation with a free DNA fragment pool results in complex adaptation dynamics that do not emerge in previous models focusing only on the gene shuffling effect of transformation at multiple loci. We demonstrate how spatial restriction on population growth and DNA diffusion in the environment affect the impact of transformation on adaptation. We found that in structured bacterial populations intermediate DNA diffusion rates predominantly cause transformation to impede adaptation by spreading deleterious alleles in the population. Overall, our model highlights distinctive evolutionary consequences of bacterial transformation in spatially restricted compared to planktonic bacterial populations.

  9. Population structure analysis using rare and common functional variants

    Directory of Open Access Journals (Sweden)

    Ding Lili

    2011-11-01

    Full Text Available Abstract Next-generation sequencing technologies now make it possible to genotype and measure hundreds of thousands of rare genetic variations in individuals across the genome. Characterization of high-density genetic variation facilitates control of population genetic structure on a finer scale before large-scale genotyping in disease genetics studies. Population structure is a well-known, prevalent, and important factor in common variant genetic studies, but its relevance in rare variants is unclear. We perform an extensive population structure analysis using common and rare functional variants from the Genetic Analysis Workshop 17 mini-exome sequence. The analysis based on common functional variants required 388 principal components to account for 90% of the variation in population structure. However, an analysis based on rare variants required 532 significant principal components to account for similar levels of variation. Using rare variants, we detected fine-scale substructure beyond the population structure identified using common functional variants. Our results show that the level of population structure embedded in rare variant data is different from the level embedded in common variant data and that correcting for population structure is only as good as the level one wishes to correct.

  10. Statistical characteristics of dynamics for population migration driven by the economic interests

    Science.gov (United States)

    Huo, Jie; Wang, Xu-Ming; Zhao, Ning; Hao, Rui

    2016-06-01

    Population migration typically occurs under some constraints, which can deeply affect the structure of a society and some other related aspects. Therefore, it is critical to investigate the characteristics of population migration. Data from the China Statistical Yearbook indicate that the regional gross domestic product per capita relates to the population size via a linear or power-law relation. In addition, the distribution of population migration sizes or relative migration strength introduced here is dominated by a shifted power-law relation. To reveal the mechanism that creates the aforementioned distributions, a dynamic model is proposed based on the population migration rule that migration is facilitated by higher financial gains and abated by fewer employment opportunities at the destination, considering the migration cost as a function of the migration distance. The calculated results indicate that the distribution of the relative migration strength is governed by a shifted power-law relation, and that the distribution of migration distances is dominated by a truncated power-law relation. These results suggest the use of a power-law to fit a distribution may be not always suitable. Additionally, from the modeling framework, one can infer that it is the randomness and determinacy that jointly create the scaling characteristics of the distributions. The calculation also demonstrates that the network formed by active nodes, representing the immigration and emigration regions, usually evolves from an ordered state with a non-uniform structure to a disordered state with a uniform structure, which is evidenced by the increasing structural entropy.

  11. Population dynamics and evolutionary history of the weedy vine Ipomoea hederacea in North America.

    Science.gov (United States)

    Campitelli, Brandon E; Stinchcombe, John R

    2014-06-03

    Disentangling the historical evolutionary processes that contribute to patterns of phenotypic and genetic variation is important for understanding contemporary patterns of both traits of interest and genetic diversity of a species. Ipomoea hederacea is a self-compatible species whose geographic origin is contested, and previous work suggests that although there are signals of adaptation (significant leaf shape and flowering time clines), no population structure or neutral genetic differentiation of I. hederacea populations was detected. Here, we use DNA sequence data to characterize patterns of genetic variation to establish a more detailed understanding of the current and historical processes that may have generated the patterns of genetic variation in this species. We resequenced ca. 5000 bp across 7 genes for 192 individuals taken from 24 populations in North America. Our results indicate that North American I. hederacea populations are ubiquitously genetically depauperate, and patterns of nucleotide diversity are consistent with population expansion. Contrary to previous findings, we discovered significant population subdivision and isolation-by-distance, but genetic structure was spatially discontinuous, potentially implicating long-distance dispersal. We further found significant genetic differentiation at sequenced loci but nearly fourfold stronger differentiation at the leaf shape locus, strengthening evidence that the leaf shape locus is under divergent selection. We propose that North American I. hederacea has experienced a recent founder event, and/or population dynamics are best described by a metapopulation model (high turnover and dispersal), leading to low genetic diversity and a patchy genetic distribution. Copyright © 2014 Campitelli and Stinchcombe.

  12. Random and non-random mating populations: Evolutionary dynamics in meiotic drive.

    Science.gov (United States)

    Sarkar, Bijan

    2016-01-01

    Game theoretic tools are utilized to analyze a one-locus continuous selection model of sex-specific meiotic drive by considering nonequivalence of the viabilities of reciprocal heterozygotes that might be noticed at an imprinted locus. The model draws attention to the role of viability selections of different types to examine the stable nature of polymorphic equilibrium. A bridge between population genetics and evolutionary game theory has been built up by applying the concept of the Fundamental Theorem of Natural Selection. In addition to pointing out the influences of male and female segregation ratios on selection, configuration structure reveals some noted results, e.g., Hardy-Weinberg frequencies hold in replicator dynamics, occurrence of faster evolution at the maximized variance fitness, existence of mixed Evolutionarily Stable Strategy (ESS) in asymmetric games, the tending evolution to follow not only a 1:1 sex ratio but also a 1:1 different alleles ratio at particular gene locus. Through construction of replicator dynamics in the group selection framework, our selection model introduces a redefining bases of game theory to incorporate non-random mating where a mating parameter associated with population structure is dependent on the social structure. Also, the model exposes the fact that the number of polymorphic equilibria will depend on the algebraic expression of population structure. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Phylodynamics with Migration: A Computational Framework to Quantify Population Structure from Genomic Data.

    Science.gov (United States)

    Kühnert, Denise; Stadler, Tanja; Vaughan, Timothy G; Drummond, Alexei J

    2016-08-01

    When viruses spread, outbreaks can be spawned in previously unaffected regions. Depending on the time and mode of introduction, each regional outbreak can have its own epidemic dynamics. The migration and phylodynamic processes are often intertwined and need to be taken into account when analyzing temporally and spatially structured virus data. In this article, we present a fully probabilistic approach for the joint reconstruction of phylodynamic history in structured populations (such as geographic structure) based on a multitype birth-death process. This approach can be used to quantify the spread of a pathogen in a structured population. Changes in epidemic dynamics through time within subpopulations are incorporated through piecewise constant changes in transmission parameters.We analyze a global human influenza H3N2 virus data set from a geographically structured host population to demonstrate how seasonal dynamics can be inferred simultaneously with the phylogeny and migration process. Our results suggest that the main migration path among the northern, tropical, and southern region represented in the sample analyzed here is the one leading from the tropics to the northern region. Furthermore, the time-dependent transmission dynamics between and within two HIV risk groups, heterosexuals and injecting drug users, in the Latvian HIV epidemic are investigated. Our analyses confirm that the Latvian HIV epidemic peaking around 2001 was mainly driven by the injecting drug user risk group. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  14. Indoor footstep localization from structural dynamics instrumentation

    Science.gov (United States)

    Poston, Jeffrey D.; Buehrer, R. Michael; Tarazaga, Pablo A.

    2017-05-01

    Measurements from accelerometers originally deployed to measure a building's structural dynamics can serve a new role: locating individuals moving within a building. Specifically, this paper proposes measurements of footstep-generated vibrations as a novel source of information for localization. The complexity of wave propagation in a building (e.g., dispersion and reflection) limits the utility of existing algorithms designed to locate, for example, the source of sound in a room or radio waves in free space. This paper develops enhancements for arrival time determination and time difference of arrival localization in order to address the complexities posed by wave propagation within a building's structure. Experiments with actual measurements from an instrumented public building demonstrate the potential of locating footsteps to sub-meter accuracy. Furthermore, this paper explains how to forecast performance in other buildings with different sensor configurations. This localization capability holds the potential to assist public safety agencies in building evacuation and incidence response, to facilitate occupancy-based optimization of heating or cooling and to inform facility security.

  15. Modeling population dynamics of mitochondria in mammalian cells

    Science.gov (United States)

    Kornick, Kellianne; Das, Moumita

    Mitochondria are organelles located inside eukaryotic cells and are essential for several key cellular processes such as energy (ATP) production, cell signaling, differentiation, and apoptosis. All organisms are believed to have low levels of variation in mitochondrial DNA (mtDNA), and alterations in mtDNA are connected to a range of human health conditions, including epilepsy, heart failure, Parkinsons disease, diabetes, and multiple sclerosis. Therefore, understanding how changes in mtDNA accumulate over time and are correlated to changes in mitochondrial function and cell properties can have a profound impact on our understanding of cell physiology and the origins of some diseases. Motivated by this, we develop and study a mathematical model to determine which cellular parameters have the largest impact on mtDNA population dynamics. The model consists of coupled ODEs to describe subpopulations of healthy and dysfunctional mitochondria subject to mitochondrial fission, fusion, autophagy, and mutation. We study the time evolution and stability of each sub-population under specific selection biases and pressures by tuning specific terms in our model. Our results may provide insights into how sub-populations of mitochondria survive and evolve under different selection pressures. This work was supported by a Grant from the Moore Foundation.

  16. Earthworm ecology affects the population structure of their Verminephrobacter symbionts

    DEFF Research Database (Denmark)

    Macedo Viana, Flavia Daniela; Jensen, Christopher Erik; Macey, Michael

    2016-01-01

    from two contrasting ecological types of earthworm hosts: the high population density, fast reproducing compost worms, Eisenia andrei and E. fetida, and the low-density, slow reproducing Aporrectodea tuberculata, commonly found in garden soils; for both types, three distinct populations were...... across host individuals from the same population. Thus, host ecology shapes the population structure of the Verminephrobacter symbionts. The homogeneous symbiont populations in the compost worms indicate that Verminephrobacter can be transferred bi-parentally or via leaky horizontal transmission in high...

  17. Population activity structure of excitatory and inhibitory neurons.

    Directory of Open Access Journals (Sweden)

    Sean R Bittner

    Full Text Available Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  18. Population activity structure of excitatory and inhibitory neurons.

    Science.gov (United States)

    Bittner, Sean R; Williamson, Ryan C; Snyder, Adam C; Litwin-Kumar, Ashok; Doiron, Brent; Chase, Steven M; Smith, Matthew A; Yu, Byron M

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure.

  19. Training set optimization under population structure in genomic selection.

    Science.gov (United States)

    Isidro, Julio; Jannink, Jean-Luc; Akdemir, Deniz; Poland, Jesse; Heslot, Nicolas; Sorrells, Mark E

    2015-01-01

    Population structure must be evaluated before optimization of the training set population. Maximizing the phenotypic variance captured by the training set is important for optimal performance. The optimization of the training set (TRS) in genomic selection has received much interest in both animal and plant breeding, because it is critical to the accuracy of the prediction models. In this study, five different TRS sampling algorithms, stratified sampling, mean of the coefficient of determination (CDmean), mean of predictor error variance (PEVmean), stratified CDmean (StratCDmean) and random sampling, were evaluated for prediction accuracy in the presence of different levels of population structure. In the presence of population structure, the most phenotypic variation captured by a sampling method in the TRS is desirable. The wheat dataset showed mild population structure, and CDmean and stratified CDmean methods showed the highest accuracies for all the traits except for test weight and heading date. The rice dataset had strong population structure and the approach based on stratified sampling showed the highest accuracies for all traits. In general, CDmean minimized the relationship between genotypes in the TRS, maximizing the relationship between TRS and the test set. This makes it suitable as an optimization criterion for long-term selection. Our results indicated that the best selection criterion used to optimize the TRS seems to depend on the interaction of trait architecture and population structure.

  20. Population activity structure of excitatory and inhibitory neurons

    Science.gov (United States)

    Doiron, Brent

    2017-01-01

    Many studies use population analysis approaches, such as dimensionality reduction, to characterize the activity of large groups of neurons. To date, these methods have treated each neuron equally, without taking into account whether neurons are excitatory or inhibitory. We studied population activity structure as a function of neuron type by applying factor analysis to spontaneous activity from spiking networks with balanced excitation and inhibition. Throughout the study, we characterized population activity structure by measuring its dimensionality and the percentage of overall activity variance that is shared among neurons. First, by sampling only excitatory or only inhibitory neurons, we found that the activity structures of these two populations in balanced networks are measurably different. We also found that the population activity structure is dependent on the ratio of excitatory to inhibitory neurons sampled. Finally we classified neurons from extracellular recordings in the primary visual cortex of anesthetized macaques as putative excitatory or inhibitory using waveform classification, and found similarities with the neuron type-specific population activity structure of a balanced network with excitatory clustering. These results imply that knowledge of neuron type is important, and allows for stronger statistical tests, when interpreting population activity structure. PMID:28817581

  1. Population genetic structure in wild and aquaculture populations of Hemibarbus maculates inferred from microsatellites markers

    Directory of Open Access Journals (Sweden)

    Linlin Li

    2017-03-01

    Full Text Available The objective of this study was to investigate 4 aquaculture populations Shanghai (SH, Hangzhou (HZ, Kaihua (KH and Xianju (XJ and one wild population Yingshan (YS of spotted barbell (Hemibarbus maculates to assess their genetic diversity level and investigate the genetic structure of the populations. The dendrogram and STRUCTURE revealed that the populations XJ, KH, and HZ jointly formed one cluster, to which the populations SH and YS were sequentially adhered. The genetic diversity of the cultured populations maintained better, possible due to favourable hatchery conditions that decreased the effect of environmental selection present in wild populations. The results of the present study will contribute to the management of spotted barbell genetic resources, but also demonstrates how the genetic diversity of freshwater species is vulnerable to human activity.

  2. Human population structure detection via multilocus genotype clustering

    Directory of Open Access Journals (Sweden)

    Starmer Joshua

    2007-06-01

    Full Text Available Abstract Background We describe a hierarchical clustering algorithm for using Single Nucleotide Polymorphism (SNP genetic data to assign individuals to populations. The method does not assume Hardy-Weinberg equilibrium and linkage equilibrium among loci in sample population individuals. Results We show that the algorithm can assign sample individuals highly accurately to their corresponding ethnic groups in our tests using HapMap SNP data and it is also robust to admixed populations when tested with Perlegen SNP data. Moreover, it can detect fine-scale population structure as subtle as that between Chinese and Japanese by using genome-wide high-diversity SNP loci. Conclusion The algorithm provides an alternative approach to the popular STRUCTURE program, especially for fine-scale population structure detection in genome-wide association studies. This is the first successful separation of Chinese and Japanese samples using random SNP loci with high statistical support.

  3. Structure-preserving integrators in nonlinear structural dynamics and flexible multibody dynamics

    CERN Document Server

    2016-01-01

    This book focuses on structure-preserving numerical methods for flexible multibody dynamics, including nonlinear elastodynamics and geometrically exact models for beams and shells. It also deals with the newly emerging class of variational integrators as well as Lie-group integrators. It discusses two alternative approaches to the discretization in space of nonlinear beams and shells. Firstly, geometrically exact formulations, which are typically used in the finite element community and, secondly, the absolute nodal coordinate formulation, which is popular in the multibody dynamics community. Concerning the discretization in time, the energy-momentum method and its energy-decaying variants are discussed. It also addresses a number of issues that have arisen in the wake of the structure-preserving discretization in space. Among them are the parameterization of finite rotations, the incorporation of algebraic constraints and the computer implementation of the various numerical methods. The practical application...

  4. Temporal dynamics of genetic variability in a mountain goat (Oreamnos americanus) population.

    Science.gov (United States)

    Ortego, Joaquín; Yannic, Glenn; Shafer, Aaron B A; Mainguy, Julien; Festa-Bianchet, Marco; Coltman, David W; Côté, Steeve D

    2011-04-01

    The association between population dynamics and genetic variability is of fundamental importance for both evolutionary and conservation biology. We combined long-term population monitoring and molecular genetic data from 123 offspring and their parents at 28 microsatellite loci to investigate changes in genetic diversity over 14 cohorts in a small and relatively isolated population of mountain goats (Oreamnos americanus) during a period of demographic increase. Offspring heterozygosity decreased while parental genetic similarity and inbreeding coefficients (F(IS) ) increased over the study period (1995-2008). Immigrants introduced three novel alleles into the population and matings between residents and immigrants produced more heterozygous offspring than local crosses, suggesting that immigration can increase population genetic variability. The population experienced genetic drift over the study period, reflected by a reduced allelic richness over time and an 'isolation-by-time' pattern of genetic structure. The temporal decline of individual genetic diversity despite increasing population size probably resulted from a combination of genetic drift due to small effective population size, inbreeding and insufficient counterbalancing by immigration. This study highlights the importance of long-term genetic monitoring to understand how demographic processes influence temporal changes of genetic diversity in long-lived organisms. © 2011 Blackwell Publishing Ltd.

  5. Matrix of transmission in structural dynamics

    International Nuclear Information System (INIS)

    Mukherjee, S.

    1975-01-01

    Within the last few years numerous papers have been published on the subject of matrix method in elasto-mechanics. 'Matrix of Transmission' is one of the methods in this field which has gained considerable attention in recent years. The basic philosophy adopted in this method is based on the idea of breaking up a complicated system into component parts with simple elastic and dynamic properties which can be readily expressed in matrix form. These component matrices are considered as building blocks, which are fitted together according to a set of predetermined rules which then provide the static and dynamic properties of the entire system. A common type of system occuring in engineering practice consists of a number of elements linked together end to end in the form of a chain. The 'Transfer Matrix' is ideally suited for such a system, because only successive multiplication is necessary to connect these elements together. The number of degrees of freedom and intermediate conditions present no difficulty. Although the 'Transfer Matrix' method is suitable for the treatment of branched and coupled systems its application to systems which do not have predominant chain topology is not effective. Apart from the requirement that the system be linearely elastic, no other restrictions are made. In this paper, it is intended to give a general outline and theoretical formulation of 'Transfer Matrix' and then its application to actual problems in structural dynamics related to seismic analysis. The natural frequencies of a freely vibrating elastic system can be found by applying proper end conditions. The end conditions will yield the frequency determinate to zero. By using a suitable numerical method, the natural frequencies and mode shapes are determined by making a frequency sweep within the range of interest. Results of an analysis of a typical nuclear building by this method show very close agreement with the results obtained by using ASKA and SAP IV program. Therefore

  6. Successional changes in trophic interactions support a mechanistic model of post-fire population dynamics.

    Science.gov (United States)

    Smith, Annabel L

    2018-01-01

    Models based on functional traits have limited power in predicting how animal populations respond to disturbance because they do not capture the range of demographic and biological factors that drive population dynamics, including variation in trophic interactions. I tested the hypothesis that successional changes in vegetation structure, which affected invertebrate abundance, would influence growth rates and body condition in the early-successional, insectivorous gecko Nephrurus stellatus. I captured geckos at 17 woodland sites spanning a succession gradient from 2 to 48 years post-fire. Body condition and growth rates were analysed as a function of the best-fitting fire-related predictor (invertebrate abundance or time since fire) with different combinations of the co-variates age, sex and location. Body condition in the whole population was positively affected by increasing invertebrate abundance and, in the adult population, this effect was most pronounced for females. There was strong support for a decline in growth rates in weight with time since fire. The results suggest that increased early-successional invertebrate abundance has filtered through to a higher trophic level with physiological benefits for insectivorous geckos. I integrated the new findings about trophic interactions into a general conceptual model of mechanisms underlying post-fire population dynamics based on a long-term research programme. The model highlights how greater food availability during early succession could drive rapid population growth by contributing to previously reported enhanced reproduction and dispersal. This study provides a framework to understand links between ecological and physiological traits underlying post-fire population dynamics.

  7. Study on Human-structure Dynamic Interaction in Civil Engineering

    Science.gov (United States)

    Gao, Feng; Cao, Li Lin; Li, Xing Hua

    2018-06-01

    The research of human-structure dynamic interaction are reviewed. Firstly, the influence of the crowd load on structural dynamic characteristics is introduced and the advantages and disadvantages of different crowd load models are analyzed. Then, discussing the influence of structural vibration on the human-induced load, especially the influence of different stiffness structures on the crowd load. Finally, questions about human-structure interaction that require further study are presented.

  8. Analysis of genetic diversity and population structure in upland ...

    Indian Academy of Sciences (India)

    Mulugeta Seyoum

    2018-06-09

    Jun 9, 2018 ... diversity and population structure at DNA level, 302 elite upland cotton germplasm accessions ...... conservation of cotton germplasm in China (English abstract). ... and Alishah O. 2011 Inter simple sequence repeats (ISSR).

  9. Genetic diversity and population structure of endangered Aquilaria ...

    Indian Academy of Sciences (India)

    2015-12-03

    Dec 3, 2015 ... ... Aromatic and Economic Plants, CSIR - North-East Institute of Science and Technology ... and population structure is receiving tremendous attention for effective .... unreliable detection and to increase the quality of data. The.

  10. Should I stay or should I go? Dispersal and population structure in small, isolated desert populations of West African crocodiles.

    Directory of Open Access Journals (Sweden)

    Guillermo Velo-Antón

    Full Text Available The maintenance of both spatial and genetic connectivity is paramount to the long-term persistence of small, isolated populations living in environments with extreme climates. We aim to identify the distribution of genetic diversity and assess population sub-structuring and dispersal across dwarfed desert populations of Crocodylus suchus, which occur in isolated groups, usually less than five individuals, along the mountains of Mauritania (West Africa. We used both invasive and non-invasive sampling methods and a combination of mitochondrial DNA (12 S and ND4 and microsatellite markers (32 loci and a subset of 12 loci. Our results showed high genetic differentiation and geographic structure in Mauritanian populations of C. suchus. We identified a metapopulation system acting within four river sub-basins (high gene flow and absence of genetic structure and considerable genetic differentiation between sub-basins (FST range: 0.12-0.24 with rare dispersal events. Effective population sizes tend to be low within sub-basins while genetic diversity is maintained. Our study suggests that hydrographic networks (temporal connections along seasonal rivers during rainy periods allow C. suchus to disperse and maintain metapopulation dynamics within sub-basins, which attenuate the loss of genetic diversity and the risk of extinction. We highlight the need of hydrographic conservation to protect vulnerable crocodiles isolated in small water bodies. We propose C. suchus as an umbrella species in Mauritania based on ecological affinities shared with other water-dependent species in desert environments.

  11. A stage-based model of manatee population dynamics

    Science.gov (United States)

    Runge, M.C.; Langtimm, C.A.; Kendall, W.L.

    2004-01-01

    A stage-structured population model for the Florida manatee (Trichechus manatus latirostris) was developed that explicitly incorporates uncertainty in parameter estimates. The growth rates calculated with this model reflect the status of the regional populations over the most recent 10-yr period. The Northwest and Upper St. Johns River regions have growth rates (8) of 1.037 (95% interval, 1.016?1.056) and 1.062 (1.037?1.081), respectively. The Southwest region has a growth rate of 0.989 (0.946?1.024), suggesting this population has been declining at about 1.1% per year. The estimated growth rate in the Atlantic region is 1.010 (0.988?1.029), but there is some uncertainty about whether adult survival rates have been constant over the last 10 yr; using the mean survival rates from the most recent 5-yr period, the estimated growth rate in this region is 0.970 (0.938?0.998). Elasticity analysis indicates that the most effective management actions should seek to increase adult survival rates. Decomposition of the uncertainty in the growth rates indicates that uncertainty about population status can best be reduced through increased monitoring of adult survival rate.

  12. The population genomics of begomoviruses: global scale population structure and gene flow

    Directory of Open Access Journals (Sweden)

    Prasanna HC

    2010-09-01

    Full Text Available Abstract Background The rapidly growing availability of diverse full genome sequences from across the world is increasing the feasibility of studying the large-scale population processes that underly observable pattern of virus diversity. In particular, characterizing the genetic structure of virus populations could potentially reveal much about how factors such as geographical distributions, host ranges and gene flow between populations combine to produce the discontinuous patterns of genetic diversity that we perceive as distinct virus species. Among the richest and most diverse full genome datasets that are available is that for the dicotyledonous plant infecting genus, Begomovirus, in the Family Geminiviridae. The begomoviruses all share the same whitefly vector, are highly recombinogenic and are distributed throughout tropical and subtropical regions where they seriously threaten the food security of the world's poorest people. Results We focus here on using a model-based population genetic approach to identify the genetically distinct sub-populations within the global begomovirus meta-population. We demonstrate the existence of at least seven major sub-populations that can further be sub-divided into as many as thirty four significantly differentiated and genetically cohesive minor sub-populations. Using the population structure framework revealed in the present study, we further explored the extent of gene flow and recombination between genetic populations. Conclusions Although geographical barriers are apparently the most significant underlying cause of the seven major population sub-divisions, within the framework of these sub-divisions, we explore patterns of gene flow to reveal that both host range differences and genetic barriers to recombination have probably been major contributors to the minor population sub-divisions that we have identified. We believe that the global Begomovirus population structure revealed here could

  13. Genetic diversity and population structure of leaf-nosed bat ...

    African Journals Online (AJOL)

    Genetic variation and population structure of the leaf-nosed bat Hipposideros speoris were estimated using 16S rRNA sequence and microsatellite analysis. Twenty seven distinct mitochondrial haplotypes were identified from 186 individuals, sampled from eleven populations. FST test revealed significant variations ...

  14. Structured populations with distributed recruitment : from PDE to delay formulation

    NARCIS (Netherlands)

    Calsina, Àngel; Diekmann, Odo; Farkas, József Z.

    2016-01-01

    In this work, first, we consider a physiologically structured population model with a distributed recruitment process. That is, our model allows newly recruited individuals to enter the population at all possible individual states, in principle. The model can be naturally formulated as a first-order

  15. Genetic structure of populations and differentiation in forest trees

    Science.gov (United States)

    Raymond P. Guries; F. Thomas Ledig

    1981-01-01

    Electrophoretic techniques permit population biologists to analyze genetic structure of natural populations by using large numbers of allozyme loci. Several methods of analysis have been applied to allozyme data, including chi-square contingency tests, F-statistics, and genetic distance. This paper compares such statistics for pitch pine (Pinus rigida...

  16. Population structure and expansion of kuruma shrimp ( Penaeus ...

    African Journals Online (AJOL)

    Sequence analyses on the specific intron from the elongation factor-1α gene were conducted to examine the population genetic structure and expansion of kuruma shrimp (Penaeus japonicus) off Taiwan. Five populations including 119 individuals were separately sampled from the north of East China Sea (ECS), west of ...

  17. Genetic structure of West Greenland populations of lumpfish Cyclopterus lumpus

    DEFF Research Database (Denmark)

    Mayoral, Elsa Garcia; Olsen, M.; Hedeholm, R.

    2016-01-01

    In this study, 11 microsatellite markers were used to determine the structure of West Greenlandic lumpfish Cyclopterus lumpus populations across six spawning locations spanning >1500 km and compared with neighbouring populations in Canada and Iceland. To evaluate whether data allow for identifica...

  18. Bacterial population dynamics during the ensiling of Medicago sativa (alfalfa) and subsequent exposure to air.

    Science.gov (United States)

    McGarvey, J A; Franco, R B; Palumbo, J D; Hnasko, R; Stanker, L; Mitloehner, F M

    2013-06-01

    To describe, at high resolution, the bacterial population dynamics and chemical transformations during the ensiling of alfalfa and subsequent exposure to air. Samples of alfalfa, ensiled alfalfa and silage exposed to air were collected and their bacterial population structures compared using 16S rRNA gene libraries containing approximately 1900 sequences each. Cultural and chemical analyses were also performed to complement the 16S gene sequence data. Sequence analysis revealed significant differences (P alfalfa-derived library contained mostly sequences associated with the Gammaproteobacteria (including the genera: Enterobacter, Erwinia and Pantoea); the ensiled material contained mostly sequences associated with the lactic acid bacteria (LAB) (including the genera: Lactobacillus, Pediococcus and Lactococcus). Exposure to air resulted in even greater percentages of LAB, especially among the genus Lactobacillus, and a significant drop in bacterial diversity. In-depth 16S rRNA gene sequence analysis revealed significant bacterial population structure changes during ensiling and again during exposure to air. This in-depth description of the bacterial population dynamics that occurred during ensiling and simulated feed out expands our knowledge of these processes. © 2013 The Society for Applied Microbiology No claim to US Government works.

  19. Population structure and growth of polydorid polychaetes that infest ...

    African Journals Online (AJOL)

    Polydorid polychaetes can infest cultured abalone thereby reducing productivity. In order to effectively control these pests, their reproductive biology must be understood. The population dynamics and reproduction of polydorids infesting abalone Haliotis midae from two farms in South Africa is described using a ...

  20. Simulating CubeSat Structure Deployment Dynamics, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — There is high value in simulating the nonlinear dynamics of stowing, deploying, and performance of deployable space structures, especially given the profound...

  1. Stochastic models for structured populations scaling limits and long time behavior

    CERN Document Server

    Meleard, Sylvie

    2015-01-01

    In this contribution, several probabilistic tools to study population dynamics are developed. The focus is on scaling limits of qualitatively different stochastic individual based models and the long time behavior of some classes of limiting processes. Structured population dynamics are modeled by measure-valued processes describing the individual behaviors and taking into account the demographic and mutational parameters, and possible interactions between individuals. Many quantitative parameters appear in these models and several relevant normalizations are considered, leading  to infinite-dimensional deterministic or stochastic large-population approximations. Biologically relevant questions are considered, such as extinction criteria, the effect of large birth events, the impact of  environmental catastrophes, the mutation-selection trade-off, recovery criteria in parasite infections, genealogical properties of a sample of individuals. These notes originated from a lecture series on Structured P...

  2. Mean-field games with logistic population dynamics

    KAUST Repository

    Gomes, Diogo A.

    2013-12-01

    In its standard form, a mean-field game can be defined by coupled system of equations, a Hamilton-Jacobi equation for the value function of agents and a Fokker-Planck equation for the density of agents. Traditionally, the latter equation is adjoint to the linearization of the former. Since the Fokker-Planck equation models a population dynamic, we introduce natural features such as seeding and birth, and nonlinear death rates. In this paper we analyze a stationary meanfield game in one dimension, illustrating various techniques to obtain regularity of solutions in this class of systems. In particular we consider a logistic-type model for birth and death of the agents which is natural in problems where crowding affects the death rate of the agents. The introduction of these new terms requires a number of new ideas to obtain wellposedness. In a forthcoming publication we will address higher dimensional models. ©2013 IEEE.

  3. Mean-field games with logistic population dynamics

    KAUST Repository

    Gomes, Diogo A.; De Lima Ribeiro, Ricardo

    2013-01-01

    In its standard form, a mean-field game can be defined by coupled system of equations, a Hamilton-Jacobi equation for the value function of agents and a Fokker-Planck equation for the density of agents. Traditionally, the latter equation is adjoint to the linearization of the former. Since the Fokker-Planck equation models a population dynamic, we introduce natural features such as seeding and birth, and nonlinear death rates. In this paper we analyze a stationary meanfield game in one dimension, illustrating various techniques to obtain regularity of solutions in this class of systems. In particular we consider a logistic-type model for birth and death of the agents which is natural in problems where crowding affects the death rate of the agents. The introduction of these new terms requires a number of new ideas to obtain wellposedness. In a forthcoming publication we will address higher dimensional models. ©2013 IEEE.

  4. Richards-like two species population dynamics model.

    Science.gov (United States)

    Ribeiro, Fabiano; Cabella, Brenno Caetano Troca; Martinez, Alexandre Souto

    2014-12-01

    The two-species population dynamics model is the simplest paradigm of inter- and intra-species interaction. Here, we present a generalized Lotka-Volterra model with intraspecific competition, which retrieves as particular cases, some well-known models. The generalization parameter is related to the species habitat dimensionality and their interaction range. Contrary to standard models, the species coupling parameters are general, not restricted to non-negative values. Therefore, they may represent different ecological regimes, which are derived from the asymptotic solution stability analysis and are represented in a phase diagram. In this diagram, we have identified a forbidden region in the mutualism regime, and a survival/extinction transition with dependence on initial conditions for the competition regime. Also, we shed light on two types of predation and competition: weak, if there are species coexistence, or strong, if at least one species is extinguished.

  5. Artificial bee colony algorithm with dynamic multi-population

    Science.gov (United States)

    Zhang, Ming; Ji, Zhicheng; Wang, Yan

    2017-07-01

    To improve the convergence rate and make a balance between the global search and local turning abilities, this paper proposes a decentralized form of artificial bee colony (ABC) algorithm with dynamic multi-populations by means of fuzzy C-means (FCM) clustering. Each subpopulation periodically enlarges with the same size during the search process, and the overlapping individuals among different subareas work for delivering information acting as exploring the search space with diffusion of solutions. Moreover, a Gaussian-based search equation with redefined local attractor is proposed to further accelerate the diffusion of the best solution and guide the search towards potential areas. Experimental results on a set of benchmarks demonstrate the competitive performance of our proposed approach.

  6. Living in the branches: population dynamics and ecological processes in dendritic networks

    Science.gov (United States)

    Grant, E.H.C.; Lowe, W.H.; Fagan, W.F.

    2007-01-01

    Spatial structure regulates and modifies processes at several levels of ecological organization (e.g. individual/genetic, population and community) and is thus a key component of complex systems, where knowledge at a small scale can be insufficient for understanding system behaviour at a larger scale. Recent syntheses outline potential applications of network theory to ecological systems, but do not address the implications of physical structure for network dynamics. There is a specific need to examine how dendritic habitat structure, such as that found in stream, hedgerow and cave networks, influences ecological processes. Although dendritic networks are one type of ecological network, they are distinguished by two fundamental characteristics: (1) both the branches and the nodes serve as habitat, and (2) the specific spatial arrangement and hierarchical organization of these elements interacts with a species' movement behaviour to alter patterns of population distribution and abundance, and community interactions. Here, we summarize existing theory relating to ecological dynamics in dendritic networks, review empirical studies examining the population- and community-level consequences of these networks, and suggest future research integrating spatial pattern and processes in dendritic systems.

  7. Structural dynamics in fast reactor accident analysis

    International Nuclear Information System (INIS)

    Fistedis, S.H.

    1975-01-01

    Analyses and codes are under development combining the hydrodynamics and solid mechanics (and more recently the bubble dynamics) phenomena to gage the stresses, strains, and deformations of important primary components, as well as the overall adequacy of primary and secondary containments. An arbitrary partition of the structural components treated evolves into (1) a core mechanics effort; and (2) a primary system and containment program. The primary system and containment program treats the structural response of components beyond the core, starting with the core barrel. Combined hydrodynamics-solid mechanics codes provide transient stresses and strains and final deformations for components such as the reactor vessel, reactor cover, cover holddown bolts, as well as the pulses for which the primary piping system is to be analyzed. Both, Lagrangian and Eulerian two-dimensional codes are under development, which provide greater accuracy and longer durations for the treatment of HCDA. The codes are being augmented with bubble migration capability pertaining to the latter stages of the HCDA, after slug impact. Recent developments involve the adaptation of the 2-D Eulerian primary system code to the 2-D elastic-plastic treatment of primary piping. Pulses are provided at the vessel-primary piping interfaces of the inlet and outlet nozzles, calculation includes the elbows and pressure drops along the components of the primary piping system. Recent improvements to the primary containment codes include introduction of bending strength in materials, Langrangian mesh regularization techniques, and treatment of energy absorbing materials for the slug impact. Another development involves the combination of a 2-D finite element code for the reactor cover with the hydrodynamic containment code

  8. Dynamical evolution of a fictitious population of binary Neptune Trojans

    Science.gov (United States)

    Brunini, Adrián

    2018-03-01

    We present numerical simulations of the evolution of a synthetic population of Binary Neptune Trojans, under the influence of the solar perturbations and tidal friction (the so-called Kozai cycles and tidal friction evolution). Our model includes the dynamical influence of the four giant planets on the heliocentric orbit of the binary centre of mass. In this paper, we explore the evolution of initially tight binaries around the Neptune L4 Lagrange point. We found that the variation of the heliocentric orbital elements due to the libration around the Lagrange point introduces significant changes in the orbital evolution of the binaries. Collisional processes would not play a significant role in the dynamical evolution of Neptune Trojans. After 4.5 × 109 yr of evolution, ˜50 per cent of the synthetic systems end up separated as single objects, most of them with slow diurnal rotation rate. The final orbital distribution of the surviving binary systems is statistically similar to the one found for Kuiper Belt Binaries when collisional evolution is not included in the model. Systems composed by a primary and a small satellite are more fragile than the ones composed by components of similar sizes.

  9. Dynamical structure of hadron emission sources

    CERN Document Server

    Zhao Xi; Zhao Shu Song

    2000-01-01

    NA22 experimental data of the triplet seagull effects show that the Doppler effects of hadron emission sources exist exactly in hadron- hadron collisions. Every source possesses the same average energy (CMS) approximately. The collective seagull effects can be also explained by the (aQ)/sup nu /K/sub nu / (aQ) distributions (generalized functions). The dynamical structure of a hadron emission source is described by the (aQ)/sup nu /K/sub nu / (aQ) distributions. The anomalous dimensions of the pionic quantum fields are gamma /sub B/(g/sub R/)=-0.045+or-0.012, which control the singularities of the production amplitude in quantum field theory. The mathematical parameter epsilon =4-D (the dimension D of space time) in the Feynman integrals can be replaced by the anomalous gamma /sub B/(g/sub R/) of the quantum fields for the regularization. (-2 gamma /sub B/(g/sub R/) to or from epsilon /2=1/ln( Lambda /sup 2//m /sup 2/) Lambda to infinity ). (26 refs).

  10. Dynamical structure of hadron emission sources

    International Nuclear Information System (INIS)

    Zhao Xi; Huang Bangrong; Zhao Shusong

    2000-01-01

    NA22 experimental data of the triplet seagull effects show that the Doppler effects of the hadron emission sources exist exactly in the hadron-hadron collisions. Every source possesses the same average energy (CMS) approximately. The collective seagull effects can be also explained by the (aQ) ν K ν (aQ) distributions (Generalized functions). The dynamical structure of a hadron emission source is described by the (aQ) ν K ν (aQ) distributions. The anomalous dimensions of the pionic quantum fields are γ B (g R ) = - 0.045 +- 0.012, which control the singularities of the production amplitude in quantum field theory. The mathematical parameter ε = 4-D (the dimension D of space time) in the Feynman integrals can be replaced by the anomalous γ B (g R ) of the quantum fields for the regularization. (-2γ B (g R )↔ε/2 1/ln(Λ 2 /m 2 )Λ→∞)

  11. Dynamical structure of linearized GL(4) gravities

    International Nuclear Information System (INIS)

    Aragone, C.; Restuccia, A.

    1978-01-01

    The physical content of the three more natural models of GL(4) gravity is analyzed, for the case of weak fields. It is shown that the first model is the linearized version of Yang's one-tensor-field gravity and is a scalar-tensor theory, with its scalar part contained in a symmetric tensor. The second and the third linearized models, which can both be derived from the fourth-order action postulated by Yang, are two-tensor decoupled systems. In both cases one of the tensors is the symmetric weak metric gravity tensor field. the second tensor appearing in these two models, representing the GL(4)-gauge field, is either a linearized symmetric affinity (in the second model) or a linearized but nonsymmetric affinity (for the third model). It is shown that in these last two cases the affinity contains a helicity-3 propagating field. Owing to the presence of helicity-3 fields it is shown that it is better to regard Yang's action as an action for a two-tensor system instead of trying to recover from a pure gravity (one-tensor-field) action. Finally, it is shown what is the dynamical structure of the second and third linearized two-tensor models which can be derived from Yang's action. (author)

  12. Flexible joints in structural and multibody dynamics

    Directory of Open Access Journals (Sweden)

    O. A. Bauchau

    2013-02-01

    Full Text Available Flexible joints, sometimes called bushing elements or force elements, are found in all structural and multibody dynamics codes. In their simplest form, flexible joints simply consist of sets of three linear and three torsional springs placed between two nodes of the model. For infinitesimal deformations, the selection of the lumped spring constants is an easy task, which can be based on a numerical simulation of the joint or on experimental measurements. If the joint undergoes finite deformations, identification of its stiffness characteristics is not so simple, specially if the joint is itself a complex system. When finite deformations occur, the definition of deformation measures becomes a critical issue. This paper proposes a family of tensorial deformation measures suitable for elastic bodies of finite dimension. These families are generated by two parameters that can be used to modify the constitutive behavior of the joint, while maintaining the tensorial nature of the deformation measures. Numerical results demonstrate the objectivity of the deformations measures, a feature that is not shared by the deformations measures presently used in the literature. The impact of the choice of the two parameters on the constitutive behavior of the flexible joint is also investigated.

  13. Plasmodium vivax Diversity and Population Structure across Four Continents.

    Science.gov (United States)

    Koepfli, Cristian; Rodrigues, Priscila T; Antao, Tiago; Orjuela-Sánchez, Pamela; Van den Eede, Peter; Gamboa, Dionicia; van Hong, Nguyen; Bendezu, Jorge; Erhart, Annette; Barnadas, Céline; Ratsimbasoa, Arsène; Menard, Didier; Severini, Carlo; Menegon, Michela; Nour, Bakri Y M; Karunaweera, Nadira; Mueller, Ivo; Ferreira, Marcelo U; Felger, Ingrid

    2015-01-01

    Plasmodium vivax is the geographically most widespread human malaria parasite. To analyze patterns of microsatellite diversity and population structure across countries of different transmission intensity, genotyping data from 11 microsatellite markers was either generated or compiled from 841 isolates from four continents collected in 1999-2008. Diversity was highest in South-East Asia (mean allelic richness 10.0-12.8), intermediate in the South Pacific (8.1-9.9) Madagascar and Sudan (7.9-8.4), and lowest in South America and Central Asia (5.5-7.2). A reduced panel of only 3 markers was sufficient to identify approx. 90% of all haplotypes in South Pacific, African and SE-Asian populations, but only 60-80% in Latin American populations, suggesting that typing of 2-6 markers, depending on the level of endemicity, is sufficient for epidemiological studies. Clustering analysis showed distinct clusters in Peru and Brazil, but little sub-structuring was observed within Africa, SE-Asia or the South Pacific. Isolates from Uzbekistan were exceptional, as a near-clonal parasite population was observed that was clearly separated from all other populations (FST>0.2). Outside Central Asia FST values were highest (0.11-0.16) between South American and all other populations, and lowest (0.04-0.07) between populations from South-East Asia and the South Pacific. These comparisons between P. vivax populations from four continents indicated that not only transmission intensity, but also geographical isolation affect diversity and population structure. However, the high effective population size results in slow changes of these parameters. This persistency must be taken into account when assessing the impact of control programs on the genetic structure of parasite populations.

  14. Scaling of the mean and variance of population dynamics under fluctuating regimes.

    Science.gov (United States)

    Pertoldi, Cino; Faurby, S; Reed, D H; Knape, J; Björklund, M; Lundberg, P; Kaitala, V; Loeschcke, V; Bach, L A

    2014-12-01

    Theoretical ecologists have long sought to understand how the persistence of populations depends on the interactions between exogenous (biotic and abiotic) and endogenous (e.g., demographic and genetic) drivers of population dynamics. Recent work focuses on the autocorrelation structure of environmental perturbations and its effects on the persistence of populations. Accurate estimation of extinction times and especially determination of the mechanisms affecting extinction times is important for biodiversity conservation. Here we examine the interaction between environmental fluctuations and the scaling effect of the mean population size with its variance. We investigate how interactions between environmental and demographic stochasticity can affect the mean time to extinction, change optimal patch size dynamics, and how it can alter the often-assumed linear relationship between the census size and the effective population size. The importance of the correlation between environmental and demographic variation depends on the relative importance of the two types of variation. We found the correlation to be important when the two types of variation were approximately equal; however, the importance of the correlation diminishes as one source of variation dominates. The implications of these findings are discussed from a conservation and eco-evolutionary point of view.

  15. Alleles versus genotypes: Genetic interactions and the dynamics of selection in sexual populations

    Science.gov (United States)

    Neher, Richard

    2010-03-01

    Physical interactions between amino-acids are essential for protein structure and activity, while protein-protein interactions and regulatory interactions are central to cellular function. As a consequence of these interactions, the combined effect of two mutations can differ from the sum of the individual effects of the mutations. This phenomenon of genetic interaction is known as epistasis. However, the importance of epistasis and its effects on evolutionary dynamics are poorly understood, especially in sexual populations where recombination breaks up existing combinations of alleles to produce new ones. Here, we present a computational model of selection dynamics involving many epistatic loci in a recombining population. We demonstrate that a large number of polymorphic interacting loci can, despite frequent recombination, exhibit cooperative behavior that locks alleles into favorable genotypes leading to a population consisting of a set of competing clones. As the recombination rate exceeds a certain critical value this ``genotype selection'' phase disappears in an abrupt transition giving way to ``allele selection'' - the phase where different loci are only weakly correlated as expected in sexually reproducing populations. Clustering of interacting sets of genes on a chromosome leads to the emergence of an intermediate regime, where localized blocks of cooperating alleles lock into genetic modules. Large populations attain highest fitness at a recombination rate just below critical, suggesting that natural selection might tune recombination rates to balance the beneficial aspect of exploration of genotype space with the breaking up of synergistic allele combinations.

  16. Estimating demographic contributions to effective population size in an age-structured wild population experiencing environmental and demographic stochasticity.

    Science.gov (United States)

    Trask, Amanda E; Bignal, Eric M; McCracken, Davy I; Piertney, Stuart B; Reid, Jane M

    2017-09-01

    A population's effective size (N e ) is a key parameter that shapes rates of inbreeding and loss of genetic diversity, thereby influencing evolutionary processes and population viability. However, estimating N e , and identifying key demographic mechanisms that underlie the N e to census population size (N) ratio, remains challenging, especially for small populations with overlapping generations and substantial environmental and demographic stochasticity and hence dynamic age-structure. A sophisticated demographic method of estimating N e /N, which uses Fisher's reproductive value to account for dynamic age-structure, has been formulated. However, this method requires detailed individual- and population-level data on sex- and age-specific reproduction and survival, and has rarely been implemented. Here, we use the reproductive value method and detailed demographic data to estimate N e /N for a small and apparently isolated red-billed chough (Pyrrhocorax pyrrhocorax) population of high conservation concern. We additionally calculated two single-sample molecular genetic estimates of N e to corroborate the demographic estimate and examine evidence for unobserved immigration and gene flow. The demographic estimate of N e /N was 0.21, reflecting a high total demographic variance (σ2dg) of 0.71. Females and males made similar overall contributions to σ2dg. However, contributions varied among sex-age classes, with greater contributions from 3 year-old females than males, but greater contributions from ≥5 year-old males than females. The demographic estimate of N e was ~30, suggesting that rates of increase of inbreeding and loss of genetic variation per generation will be relatively high. Molecular genetic estimates of N e computed from linkage disequilibrium and approximate Bayesian computation were approximately 50 and 30, respectively, providing no evidence of substantial unobserved immigration which could bias demographic estimates of N e . Our analyses identify

  17. Population dynamics of Vibrio fischeri during infection of Euprymna scolopes.

    Science.gov (United States)

    McCann, Jessica; Stabb, Eric V; Millikan, Deborah S; Ruby, Edward G

    2003-10-01

    The luminous bacterium Vibrio fischeri colonizes a specialized light-emitting organ within its squid host, Euprymna scolopes. Newly hatched juvenile squid must acquire their symbiont from ambient seawater, where the bacteria are present at low concentrations. To understand the population dynamics of V. fischeri during colonization more fully, we used mini-Tn7 transposons to mark bacteria with antibiotic resistance so that the growth of their progeny could be monitored. When grown in culture, there was no detectable metabolic burden on V. fischeri cells carrying the transposon, which inserts in single copy in a specific intergenic region of the V. fischeri genome. Strains marked with mini-Tn7 also appeared to be equivalent to the wild type in their ability to infect and multiply within the host during coinoculation experiments. Studies of the early stages of colonization suggested that only a few bacteria became associated with symbiotic tissue when animals were exposed for a discrete period (3 h) to an inoculum of V. fischeri cells equivalent to natural population levels; nevertheless, all these hosts became infected. When three differentially marked strains of V. fischeri were coincubated with juvenile squid, the number of strains recovered from an individual symbiotic organ was directly dependent on the size of the inoculum. Further, these results indicated that, when exposed to low numbers of V. fischeri, the host may become colonized by only one or a few bacterial cells, suggesting that symbiotic infection is highly efficient.

  18. Knottin cyclization: impact on structure and dynamics

    Directory of Open Access Journals (Sweden)

    Gracy Jérôme

    2008-12-01

    Full Text Available Abstract Background Present in various species, the knottins (also referred to as inhibitor cystine knots constitute a group of extremely stable miniproteins with a plethora of biological activities. Owing to their small size and their high stability, knottins are considered as excellent leads or scaffolds in drug design. Two knottin families contain macrocyclic compounds, namely the cyclotides and the squash inhibitors. The cyclotide family nearly exclusively contains head-to-tail cyclized members. On the other hand, the squash family predominantly contains linear members. Head-to-tail cyclization is intuitively expected to improve bioactivities by increasing stability and lowering flexibility as well as sensitivity to proteolytic attack. Results In this paper, we report data on solution structure, thermal stability, and flexibility as inferred from NMR experiments and molecular dynamics simulations of a linear squash inhibitor EETI-II, a circular squash inhibitor MCoTI-II, and a linear analog lin-MCoTI. Strikingly, the head-to-tail linker in cyclic MCoTI-II is by far the most flexible region of all three compounds. Moreover, we show that cyclic and linear squash inhibitors do not display large differences in structure or flexibility in standard conditions, raising the question as to why few squash inhibitors have evolved into cyclic compounds. The simulations revealed however that the cyclization increases resistance to high temperatures by limiting structure unfolding. Conclusion In this work, we show that, in contrast to what could have been intuitively expected, cyclization of squash inhibitors does not provide clear stability or flexibility modification. Overall, our results suggest that, for squash inhibitors in standard conditions, the circularization impact might come from incorporation of an additional loop sequence, that can contribute to the miniprotein specificity and affinity, rather than from an increase in conformational rigidity

  19. Genetic diversity and population structure in contemporary house sparrow populations along an urbanization gradient

    OpenAIRE

    Vangestel, C; Mergeay, Joachim; Dawson, D. A; Callens, T; Vandomme, V; Lens, L

    2012-01-01

    House sparrow (Passer domesticus) populations have suffered major declines in urban as well as rural areas, while remaining relatively stable in suburban ones. Yet, to date no exhaustive attempt has been made to examine how, and to what extent, spatial variation in population demography is reflected in genetic population structuring along contemporary urbanization gradients. Here we use putatively neutral microsatellite loci to study if and how genetic variation can be partitioned in a hierar...

  20. Effects of constant immigration on the dynamics and persistence of stable and unstable Drosophila populations

    Science.gov (United States)

    Dey, Snigdhadip; Joshi, Amitabh

    2013-01-01

    Constant immigration can stabilize population size fluctuations but its effects on extinction remain unexplored. We show that constant immigration significantly reduced extinction in fruitfly populations with relatively stable or unstable dynamics. In unstable populations with oscillations of amplitude around 1.5 times the mean population size, persistence and constancy were unrelated. Low immigration enhanced persistence without affecting constancy whereas high immigration increased constancy without enhancing persistence. In relatively stable populations with erratic fluctuations of amplitude close to the mean population size, both low and high immigration enhanced persistence. In these populations, the amplitude of fluctuations relative to mean population size went down due to immigration, and their dynamics were altered to low-period cycles. The effects of immigration on the population size distribution and intrinsic dynamics of stable versus unstable populations differed considerably, suggesting that the mechanisms by which immigration reduced extinction risk depended on underlying dynamics in complex ways. PMID:23470546

  1. Population dynamics of caribou herds in southwestern Alaska

    Directory of Open Access Journals (Sweden)

    Patrick Valkenburg

    2003-04-01

    Full Text Available The five naturally occurring and one transplanted caribou (Rangifer tarandus granti herd in southwestern Alaska composed about 20% of Alaska's caribou population in 2001. All five of the naturally occurring herds fluctuated considerably in size between the late 1800s and 2001 and for some herds the data provide an indication of long-term periodic (40-50 year fluctuations. At the present time, the Unimak (UCH and Southern Alaska Peninsula (SAP are recovering from population declines, the Northern Alaska Peninsula Herd (NAP appears to be nearing the end of a protracted decline, and the Mulchatna Herd (MCH appears to now be declining after 20 years of rapid growth. The remaining naturally occurring herd (Kilbuck has virtually disappeared. Nutrition had a significant effect on the size of 4-month-old and 10-month-old calves in the NAP and the Nushagak Peninsula Herd (NPCH and probably also on population growth in at least 4 (SAP, NAP, NPCH, and MCH of the six caribou herds in southwestern Alaska. Predation does not appear to be sufficient to keep caribou herds in southwestern Alaska from expanding, probably because rabies is endemic in red foxes (Vulpes vulpes and is periodically transferred to wolves (Canis lupus and other canids. However, we found evidence that pneumonia and hoof rot may result in significant mortality of caribou in southwestern Alaska, whereas there is no evidence that disease is important in the dynamics of Interior herds. Cooperative conservation programs, such as the Kilbuck Caribou Management Plan, can be successful in restraining traditional harvest and promoting growth in caribou herds. In southwestern Alaska we also found evidence that small caribou herds can be swamped and assimilated by large herds, and fidelity to traditional calving areas can be lost.

  2. Modelling multi-pulse population dynamics from ultrafast spectroscopy.

    Directory of Open Access Journals (Sweden)

    Luuk J G W van Wilderen

    2011-03-01

    Full Text Available Current advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio- physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose. The toolbox has a graphical user interface which facilitates the application of different reaction models to the data to generate the coupled differential equations. Any time-dependent dataset can be analysed to extract time-independent correlations of the observables by using gradient or direct search methods. Specific capabilities (i.e. chirp and instrument response function for the analysis of ultrafast pump-probe spectroscopic data are included. The inclusion of an extra pulse that interacts with a transient phase can help to disentangle complex interdependent pathways. The modelling of pathways is therefore extended by new theory (which is included in the toolbox that describes the finite bleach (orientation effect of single and multiple intense polarised femtosecond pulses on an ensemble of randomly oriented particles in the presence of population decay. For instance, the generally assumed flat-top multimode beam profile is adapted to a more realistic Gaussian shape, exposing the need for several corrections for accurate anisotropy measurements. In addition, the (selective excitation (photoselection and anisotropy of populations that interact with single or multiple intense polarised laser pulses is demonstrated as function of power density and beam profile. Using example values of real world experiments it is calculated to what extent this effectively orients the ensemble of particles. Finally, the implementation includes the interaction with multiple pulses in addition to depth averaging in optically dense samples. In summary, we show that mathematical

  3. Modelling multi-pulse population dynamics from ultrafast spectroscopy.

    Science.gov (United States)

    van Wilderen, Luuk J G W; Lincoln, Craig N; van Thor, Jasper J

    2011-03-21

    Current advanced laser, optics and electronics technology allows sensitive recording of molecular dynamics, from single resonance to multi-colour and multi-pulse experiments. Extracting the occurring (bio-) physical relevant pathways via global analysis of experimental data requires a systematic investigation of connectivity schemes. Here we present a Matlab-based toolbox for this purpose. The toolbox has a graphical user interface which facilitates the application of different reaction models to the data to generate the coupled differential equations. Any time-dependent dataset can be analysed to extract time-independent correlations of the observables by using gradient or direct search methods. Specific capabilities (i.e. chirp and instrument response function) for the analysis of ultrafast pump-probe spectroscopic data are included. The inclusion of an extra pulse that interacts with a transient phase can help to disentangle complex interdependent pathways. The modelling of pathways is therefore extended by new theory (which is included in the toolbox) that describes the finite bleach (orientation) effect of single and multiple intense polarised femtosecond pulses on an ensemble of randomly oriented particles in the presence of population decay. For instance, the generally assumed flat-top multimode beam profile is adapted to a more realistic Gaussian shape, exposing the need for several corrections for accurate anisotropy measurements. In addition, the (selective) excitation (photoselection) and anisotropy of populations that interact with single or multiple intense polarised laser pulses is demonstrated as function of power density and beam profile. Using example values of real world experiments it is calculated to what extent this effectively orients the ensemble of particles. Finally, the implementation includes the interaction with multiple pulses in addition to depth averaging in optically dense samples. In summary, we show that mathematical modelling is

  4. Early animal farming and zoonotic disease dynamics: modelling brucellosis transmission in Neolithic goat populations.

    Science.gov (United States)

    Fournié, Guillaume; Pfeiffer, Dirk U; Bendrey, Robin

    2017-02-01

    Zoonotic pathogens are frequently hypothesized as emerging with the origins of farming, but evidence of this is elusive in the archaeological records. To explore the potential impact of animal domestication on zoonotic disease dynamics and human infection risk, we developed a model simulating the transmission of Brucella melitensis within early domestic goat populations. The model was informed by archaeological data describing goat populations in Neolithic settlements in the Fertile Crescent, and used to assess the potential of these populations to sustain the circulation of Brucella . Results show that the pathogen could have been sustained even at low levels of transmission within these domestic goat populations. This resulted from the creation of dense populations and major changes in demographic characteristics. The selective harvesting of young male goats, likely aimed at improving the efficiency of food production, modified the age and sex structure of these populations, increasing the transmission potential of the pathogen within these populations. Probable interactions between Neolithic settlements would have further promoted pathogen maintenance. By fostering conditions suitable for allowing domestic goats to become reservoirs of Brucella melitensis , the early stages of agricultural development were likely to promote the exposure of humans to this pathogen.

  5. Gradient-based optimization in nonlinear structural dynamics

    DEFF Research Database (Denmark)

    Dou, Suguang

    The intrinsic nonlinearity of mechanical structures can give rise to rich nonlinear dynamics. Recently, nonlinear dynamics of micro-mechanical structures have contributed to developing new Micro-Electro-Mechanical Systems (MEMS), for example, atomic force microscope, passive frequency divider......, frequency stabilization, and disk resonator gyroscope. For advanced design of these structures, it is of considerable value to extend current optimization in linear structural dynamics into nonlinear structural dynamics. In this thesis, we present a framework for modelling, analysis, characterization......, and optimization of nonlinear structural dynamics. In the modelling, nonlinear finite elements are used. In the analysis, nonlinear frequency response and nonlinear normal modes are calculated based on a harmonic balance method with higher-order harmonics. In the characterization, nonlinear modal coupling...

  6. A necessary condition for dispersal driven growth of populations with discrete patch dynamics.

    Science.gov (United States)

    Guiver, Chris; Packman, David; Townley, Stuart

    2017-07-07

    We revisit the question of when can dispersal-induced coupling between discrete sink populations cause overall population growth? Such a phenomenon is called dispersal driven growth and provides a simple explanation of how dispersal can allow populations to persist across discrete, spatially heterogeneous, environments even when individual patches are adverse or unfavourable. For two classes of mathematical models, one linear and one non-linear, we provide necessary conditions for dispersal driven growth in terms of the non-existence of a common linear Lyapunov function, which we describe. Our approach draws heavily upon the underlying positive dynamical systems structure. Our results apply to both discrete- and continuous-time models. The theory is illustrated with examples and both biological and mathematical conclusions are drawn. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Modal analysis application for dynamic characterization of simple structures

    International Nuclear Information System (INIS)

    Pastorini, A.J.; Belinco, C.G.

    1987-01-01

    The knowledge of the dynamic characteristics of a structure helps to foresee the vibrating behaviour under operating conditions. The modal analysis techniques offer a method to perform the dynamic characterization of a studied structure from the vibration modes of such structure. A hammer provided with a loaded cell to excite a wide frequency band and accelerometer and, on the basis of a measurement of the transfer function at different points, various simple structures were given with a dynamic structures analysis (of the type of Fourier's rapidly transformation) and the results were compared with those obtained by other methods. Different fields where these techniques are applied, are also enumerated. (Author)

  8. Degeneracy-driven self-structuring dynamics in selective repertoires.

    Science.gov (United States)

    Atamas, Sergei P; Bell, Jonathan

    2009-08-01

    Numerous biological interactions, such as interactions between T cell receptors or antibodies with antigens, interactions between enzymes and substrates, or interactions between predators and prey are often not strictly specific. In such less specific, or "sloppy," systems, referred to here as degenerate systems, a given unit of a diverse resource (antigens, enzymatic substrates, prey) is at risk of being recognized and consumed by multiple consumers (lymphocytes, enzymes, predators). In this study, we model generalized degenerate consumer-resource systems of Lotka-Volterra and Verhulst types. In the degenerate systems of Lotka-Volterra, there is a continuum of types of consumer and resource based on variation of a single trait (characteristic, or preference). The consumers experience competition for a continuum of resource types. This non-local interaction system is modeled with partial differential-integral equations and shows spontaneous self-structuring of the consumer population that depends on the degree of interaction degeneracy between resource and consumer, but does not mirror the distribution of resource. We also show that the classical Verhulst (i.e. logistic) single population model can be generalized to a degenerate model, which shows qualitative behavior similar to that in the degenerate Lotka-Volterra model. These results provide better insight into the dynamics of selective systems in biology, suggesting that adaptation of degenerate repertoires is not a simple "mirroring" of the environment by the "fittest" elements of population.

  9. Population dynamics and habitat sharing of natural populations of Caenorhabditis elegans and C. briggsae

    Directory of Open Access Journals (Sweden)

    Félix Marie-Anne

    2012-06-01

    Full Text Available Abstract Background The nematode Caenorhabditis elegans is a major model organism in laboratory biology. Very little is known, however, about its ecology, including where it proliferates. In the past, C. elegans was mainly isolated from human-made compost heaps, where it was overwhelmingly found in the non-feeding dauer diapause stage. Results C. elegans and C. briggsae were found in large, proliferating populations in rotting plant material (fruits and stems in several locations in mainland France. Both species were found to co-occur in samples isolated from a given plant species. Population counts spanned a range from one to more than 10,000 Caenorhabditis individuals on a single fruit or stem. Some populations with an intermediate census size (10 to 1,000 contained no dauer larvae at all, whereas larger populations always included some larvae in the pre-dauer or dauer stages. We report on associated micro-organisms, including pathogens. We systematically sampled a spatio-temporally structured set of rotting apples in an apple orchard in Orsay over four years. C. elegans and C. briggsae were abundantly found every year, but their temporal distributions did not coincide. C. briggsae was found alone in summer, whereas both species co-occurred in early fall and C. elegans was found alone in late fall. Competition experiments in the laboratory at different temperatures show that C. briggsae out-competes C. elegans at high temperatures, whereas C. elegans out-competes C. briggsae at lower temperatures. Conclusions C. elegans and C. briggsae proliferate in the same rotting vegetal substrates. In contrast to previous surveys of populations in compost heaps, we found fully proliferating populations with no dauer larvae. The temporal sharing of the habitat by the two species coincides with their temperature preference in the laboratory, with C. briggsae populations growing faster than C. elegans at higher temperatures, and vice at lower temperatures.

  10. An Investigation of dynamic characteristics of structures subjected to dynamic load from the viewpoint of design

    International Nuclear Information System (INIS)

    Lee, Hyun Ah; Kim, Yong Il; Park, Gyung Jin; Kang, Byung Soo; Kim, Joo Sung

    2006-01-01

    All the loads in the real world are dynamic loads and structural optimization under dynamic loads is very difficult. Thus the dynamic loads are often transformed to static loads by dynamic factors, which are believed equivalent to the dynamic loads. However, due to the difference of load characteristics, there can be considerable differences between the results from static and dynamic analyses. When the natural frequency of a structure is high, the dynamic analysis result is similar to that of static analysis due to the small inertia effect on the behavior of the structure. However, if the natural frequency of the structure is low, the inertia effect should not be ignored. then, the behavior of the dynamic system is different from that of the static system. The difference of the two cases can be explained from the relationship between the homogeneous and the particular solutions of the differential equation that governs the behavior of the structure. Through various examples, the difference between the dynamic analysis and the static analysis are shown. Also dynamic response optimization results are compared with the results with static loads transformed from dynamic loads by dynamic factors, which show the necessity of the design considering dynamic loads

  11. Phase control of light amplification with dynamically irreversible pathways of population transfer in a Λ system

    International Nuclear Information System (INIS)

    Yuan Shi; Wu Jinhui; Gao Jinyue; Pan Chunliu

    2002-01-01

    We use the relative phase of two coherent fields for the control of light amplification with dynamically irreversible pathways of population transfer in a Λ system. The population inversion and gain with dynamically irreversible pathways of population transfer are shown as the relative phase is varied. We support our results by numerical calculation and analytical explanation

  12. Dynamics and structure of ignition process in plasma. Ignition dynamics and structure of laboratory plasmas

    International Nuclear Information System (INIS)

    Nagasaki, Kazunobu; Takamura, Shuichi; Razzak, Md. Abdur; Uesugi, Yoshihiko; Yoshimura, Yasuo; Cappa, Alvaro

    2008-01-01

    The dynamics and structure of plasma production are stated by the results of two experiments such as the radio frequency thermal plasmas produced by inductively coupled plasma technique at atmospheric pressure and the second harmonic ECH. The first experiment results explained transition from the electrostatic discharge mode of forming streamer to the induced discharge mode after forming the discharge channel that the streamer connected to in the azimuth direction. The other experiment explained the dynamics which the initial plasma produced at the ECH resonance point spread in the direction of radius. The divergence and transition related to the nonlinear process were observed independently existing the magnetic field or incident power. The experiment devices, conditions, results, and modeling are reported. (S.Y.)

  13. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission.

    Directory of Open Access Journals (Sweden)

    Lindsay M Beck-Johnson

    Full Text Available The parasites that cause malaria depend on Anopheles mosquitoes for transmission; because of this, mosquito population dynamics are a key determinant of malaria risk. Development and survival rates of both the Anopheles mosquitoes and the Plasmodium parasites that cause malaria depend on temperature, making this a potential driver of mosquito population dynamics and malaria transmission. We developed a temperature-dependent, stage-structured delayed differential equation model to better understand how climate determines risk. Including the full mosquito life cycle in the model reveals that the mosquito population abundance is more sensitive to temperature than previously thought because it is strongly influenced by the dynamics of the juvenile mosquito stages whose vital rates are also temperature-dependent. Additionally, the model predicts a peak in abundance of mosquitoes old enough to vector malaria at more accurate temperatures than previous models. Our results point to the importance of incorporating detailed vector biology into models for predicting the risk for vector borne diseases.

  14. Structure and dynamics of the magnetopause

    International Nuclear Information System (INIS)

    Wang, Z.

    1992-01-01

    This thesis addresses several topics concerning the structure and dynamics of the magnetopause. These topics include the role of the magnetopause in global convection, the Kelvin-Helmholtz (K-H) instability, which accounts for momentum transport at the magnetopause, the formation of flux ropes by the tearing and twisting modes and particle diffusion across the magnetopause resulting from the destruction of magnetic surfaces. The author establishs an analytic electric field model for an open magnetosphere and introduce a magnetopause to control the reconnection rate and momentum transport. A realistic magnetospheric configuration is realized by 'stretch transformation'. The role of magnetic nulls in the electric field is approached with a technique for direct calculation of electric fields along field lines. Results indicate that electric fields associated with A-type or B-type nulls are generally singular. Then the author considers kinetic effects on the K-H instability. Contrary to the logical assumption that Landau damping damps the instability, it can instead enhance the growth and increase the spatial extent of the instability because the heating of resonance particles enhances the pressure perturbation. A gravitational analogy is used to determine the effect of curvature on K-H instability and it is found that the critical Richardson number for stability increases from 1/4 for incompressible fluids to 1/2 for compressible fluids. The flux rope, which accounts for flux transfer events (FTE), can be formed by a tearing or twisting mode. The tearing mode is self excited by the free energy associated with the magnetic configuration, while the twisting mode must be externally driven. The shear flow generates the twisting mode and reduces the growth rate of the tearing mode. The flux ropes resulting from the twisting mode closely resemble FTE's which have a longer pitch length than that from tearing mode

  15. Nonlinear dynamics in a business-cycle model with logistic population growth

    International Nuclear Information System (INIS)

    Brianzoni, Serena; Mammana, Cristiana; Michetti, Elisabetta

    2009-01-01

    We consider a discrete-time growth model of the Solow type where workers and shareholders have different but constant saving rates and the population growth dynamics is described by the logistic equation able to exhibit complicated dynamics. We show conditions for the resulting system having a compact global attractor and we describe its structure. We also perform a mainly numerical analysis using the critical lines method able to describe the strange attractor and the absorbing area, in order to show how cyclical or complex fluctuations may be produced in a business-cycle model. We study the dynamic behaviour of the model under different ranges of the main parameters, i.e. the elasticity of substitution between the two production factors and the one in the logistic equation (namely μ). We prove the existence of complex dynamics when the elasticity of substitution between production factors drops below one (so that capital income declines) or μ increases (so that the amplitude of movements in the population growth rate increases).

  16. Effect of Population Structure Change on Carbon Emission in China

    Directory of Open Access Journals (Sweden)

    Wen Guo

    2016-03-01

    Full Text Available This paper expanded the Logarithmic Mean Divisia Index (LMDI model through the introduction of urbanization, residents’ consumption, and other factors, and decomposed carbon emission changes in China into carbon emission factor effect, energy intensity effect, consumption inhibitory factor effect, urbanization effect, residents’ consumption effect, and population scale effect, and then explored contribution rates and action mechanisms of the above six factors on change in carbon emissions in China. Then, the effect of population structure change on carbon emission was analyzed by taking 2003–2012 as a sample period, and combining this with the panel data of 30 provinces in China. Results showed that in 2003–2012, total carbon emission increased by 4.2117 billion tons in China. The consumption inhibitory factor effect, urbanization effect, residents’ consumption effect, and population scale effect promoted the increase in carbon emissions, and their contribution ratios were 27.44%, 12.700%, 74.96%, and 5.90%, respectively. However, the influence of carbon emission factor effect (−2.54% and energy intensity effect (−18.46% on carbon emissions were negative. Population urbanization has become the main population factor which affects carbon emission in China. The “Eastern aggregation” phenomenon caused the population scale effect in the eastern area to be significantly higher than in the central and western regions, but the contribution rate of its energy intensity effect (−11.10 million tons was significantly smaller than in the central (−21.61 million tons and western regions (−13.29 million tons, and the carbon emission factor effect in the central area (−3.33 million tons was significantly higher than that in the eastern (−2.00 million tons and western regions (−1.08 million tons. During the sample period, the change in population age structure, population education structure, and population occupation structure

  17. Visualizing Structure and Dynamics of Disaccharide Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, J. F.; Beckham, G. T.; Himmel, M. E.; Crowley, M. F.

    2012-01-01

    We examine the effect of several solvent models on the conformational properties and dynamics of disaccharides such as cellobiose and lactose. Significant variation in timescale for large scale conformational transformations are observed. Molecular dynamics simulation provides enough detail to enable insight through visualization of multidimensional data sets. We present a new way to visualize conformational space for disaccharides with Ramachandran plots.

  18. Comparative population structure of cavity-nesting sea ducks

    Science.gov (United States)

    Pearce, John M.; Eadie, John M.; Savard, Jean-Pierre L.; Christensen, Thomas K.; Berdeen, James; Taylor, Eric J.; Boyd, Sean; Einarsson, Árni

    2014-01-01

    A growing collection of mtDNA genetic information from waterfowl species across North America suggests that larger-bodied cavity-nesting species exhibit greater levels of population differentiation than smaller-bodied congeners. Although little is known about nest-cavity availability for these species, one hypothesis to explain differences in population structure is reduced dispersal tendency of larger-bodied cavity-nesting species due to limited abundance of large cavities. To investigate this hypothesis, we examined population structure of three cavity-nesting waterfowl species distributed across much of North America: Barrow's Goldeneye (Bucephala islandica), Common Goldeneye (B. clangula), and Bufflehead (B. albeola). We compared patterns of population structure using both variation in mtDNA control-region sequences and band-recovery data for the same species and geographic regions. Results were highly congruent between data types, showing structured population patterns for Barrow's and Common Goldeneye but not for Bufflehead. Consistent with our prediction, the smallest cavity-nesting species, the Bufflehead, exhibited the lowest level of population differentiation due to increased dispersal and gene flow. Results provide evidence for discrete Old and New World populations of Common Goldeneye and for differentiation of regional groups of both goldeneye species in Alaska, the Pacific Northwest, and the eastern coast of North America. Results presented here will aid management objectives that require an understanding of population delineation and migratory connectivity between breeding and wintering areas. Comparative studies such as this one highlight factors that may drive patterns of genetic diversity and population trends.

  19. Using satellite telemetry to define spatial population structure in polar bears in the Norwegian and western Russian Arctic

    Science.gov (United States)

    Mauritzen, Mette; Derocher, Andrew E.; Wiig, Øystein; Belikov, Stanislav; Boltunov, Andrei N.; Garner, Gerald W.

    2002-01-01

    1. Animal populations, defined by geographical areas within a species’ distribution where population dynamics are largely regulated by births and deaths rather than by migration from surrounding areas, may be the correct unit for wildlife management. However, in heterogeneous landscapes varying habitat quality may yield subpopulations with distinct patterns in resource use and demography significant to the dynamics of populations.2. To define the spatial population structure of polar bears Ursus maritimus in the Norwegian and western Russian Arctic, and to assess the existence of a shared population between the two countries, we analysed satellite telemetry data obtained from 105 female polar bears over 12 years.3. Using both cluster analyses and home-range estimation methods, we identified five population units inhabiting areas with different sea-ice characteristics and prey availability.4. The continuous distribution of polar bear positions indicated that the different subpopulations formed one continuous polar bear population in the Norwegian and western Russian Arctic. Hence, Norway and Russia have a shared management responsibility.5. The spatial population structure identified will provide a guide for evaluating geographical patterns in polar bear ecology, the dynamics of polar bear–seal relationships and the effects of habitat alteration due to climate change. The work illustrates the importance of defining population borders and subpopulation structure in understanding the dynamics and management of larger animals.

  20. Genetic population structure of the vulnerable bog fritillary butterfly.

    Science.gov (United States)

    Vandewoestijne, S; Baguette, M

    2004-01-01

    Populations of the bog fritillary butterfly Proclossiana eunomia (Lepidoptera, Nymphalidae) occur in patchy habitat in central and western Europe. P. eunomia is a vulnerable species in the Belgian Ardennes and the number of occupied sites has significantly decreased in this region since the 1960s. RAPD (random amplified polymorphic DNA) markers were used to study the consequences of habitat loss and fragmentation on the genetic population structure of this species. Gene diversity was lower in populations with smaller population sizes. Genetic subdivision was high (Fst=0.0887) considering the small spatial scale of this study (150 km2). The most geographically isolated population was also the most genetically differentiated one. The genetic population structure and genetic differentiation detected in this study were explained by (1) differences in altitude of the sampled locations and, (2) lower dispersal propensity and dispersal rate in fragmented landscapes versus continuous landscapes. Results from the RAPD analyses were compared with a previous allozyme based study on the same populations. The results of this study suggest that increased fragmentation has lead to a greater genetic differentiation between remaining P. eunomia populations.

  1. Assessing population genetic structure via the maximisation of genetic distance

    Directory of Open Access Journals (Sweden)

    Toro Miguel A

    2009-11-01

    Full Text Available Abstract Background The inference of the hidden structure of a population is an essential issue in population genetics. Recently, several methods have been proposed to infer population structure in population genetics. Methods In this study, a new method to infer the number of clusters and to assign individuals to the inferred populations is proposed. This approach does not make any assumption on Hardy-Weinberg and linkage equilibrium. The implemented criterion is the maximisation (via a simulated annealing algorithm of the averaged genetic distance between a predefined number of clusters. The performance of this method is compared with two Bayesian approaches: STRUCTURE and BAPS, using simulated data and also a real human data set. Results The simulations show that with a reduced number of markers, BAPS overestimates the number of clusters and presents a reduced proportion of correct groupings. The accuracy of the new method is approximately the same as for STRUCTURE. Also, in Hardy-Weinberg and linkage disequilibrium cases, BAPS performs incorrectly. In these situations, STRUCTURE and the new method show an equivalent behaviour with respect to the number of inferred clusters, although the proportion of correct groupings is slightly better with the new method. Re-establishing equilibrium with the randomisation procedures improves the precision of the Bayesian approaches. All methods have a good precision for FST ≥ 0.03, but only STRUCTURE estimates the correct number of clusters for FST as low as 0.01. In situations with a high number of clusters or a more complex population structure, MGD performs better than STRUCTURE and BAPS. The results for a human data set analysed with the new method are congruent with the geographical regions previously found. Conclusion This new method used to infer the hidden structure in a population, based on the maximisation of the genetic distance and not taking into consideration any assumption about Hardy

  2. Patterns of admixture and population structure in native populations of Northwest North America.

    Directory of Open Access Journals (Sweden)

    Paul Verdu

    2014-08-01

    Full Text Available The initial contact of European populations with indigenous populations of the Americas produced diverse admixture processes across North, Central, and South America. Recent studies have examined the genetic structure of indigenous populations of Latin America and the Caribbean and their admixed descendants, reporting on the genomic impact of the history of admixture with colonizing populations of European and African ancestry. However, relatively little genomic research has been conducted on admixture in indigenous North American populations. In this study, we analyze genomic data at 475,109 single-nucleotide polymorphisms sampled in indigenous peoples of the Pacific Northwest in British Columbia and Southeast Alaska, populations with a well-documented history of contact with European and Asian traders, fishermen, and contract laborers. We find that the indigenous populations of the Pacific Northwest have higher gene diversity than Latin American indigenous populations. Among the Pacific Northwest populations, interior groups provide more evidence for East Asian admixture, whereas coastal groups have higher levels of European admixture. In contrast with many Latin American indigenous populations, the variance of admixture is high in each of the Pacific Northwest indigenous populations, as expected for recent and ongoing admixture processes. The results reveal some similarities but notable differences between admixture patterns in the Pacific Northwest and those in Latin America, contributing to a more detailed understanding of the genomic consequences of European colonization events throughout the Americas.

  3. Population genetic structure in natural and reintroduced beaver (Castor fiber populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Kautenburger, R.

    2008-12-01

    Full Text Available Castor fiber Linnaeus, 1758 is the only indigenous species of the genus Castor in Europe and Asia. Due to extensive hunting until the beginning of the 20th century, the distribution of the formerly widespread Eurasian beaver was dramatically reduced. Only a few populations remained and these were in isolated locations, such as the region of the German Elbe River. The loss of genetic diversity in small or captive populations throughgenetic drift and inbreeding is a severe conservation problem. However, the reintroduction of beaver populations from several regions in Europe has shown high viability and populations today are growing fast. In the present study we analysed the population genetic structure of a natural and two reintroduced beaver populations in Germany and Austria. Furthermore, we studied the genetic differentiation between two beaver species, C. fiber and the American beaver (C. canadensis, using RAPD (Random Amplified Polymorphic DNA as a genetic marker. The reintroduced beaver populations of different origins and the autochthonous population of the Elbe River showed a similar low genetic heterogeneity. There was an overall high genetic similarity in the species C. fiber, and no evidence was found for a clear subspecific structure in the populations studied.

  4. Population dynamics in the high Arctic: Climate variations in time and space

    DEFF Research Database (Denmark)

    Hendrichsen, Ditte Katrine

    Climatic factors profoundly influence the population dynamics, species interactions and demography of Arctic species. Analyses of the spatio-temporal dynamics within and across species are therefore necessary to understand and predict the responses of Arctic ecosystems to climatic variability...

  5. Population dynamics of Borrelia burgdorferi in Lyme disease

    Directory of Open Access Journals (Sweden)

    Sebastian Christoph Binder

    2012-03-01

    Full Text Available Many chronic inflammatory diseases are known to be caused by persistent bacterial or viral infections. A well-studied example is the tick-borne infection by the gram-negative Spirochaetes of the genus Borrelia in humans and other mammals, causing severe symptoms of chronic inflammation and subsequent tissue damage (Lyme Disease, particularly in large joints and the central nervous system, but also in the heart and other tissues of untreated patients. Although killed efficiently by human phagocytic cells in vitro, Borrelia exhibits a remarkably high infectivity in mice and men. In experimentally infected mice, the first immune response almost clears the infection. However, approximately one week post infection, the bacterial population recovers and reaches an even larger size before entering the chronic phase. We developed a mathematical model describing the bacterial growth and the immune response against Borrelia burgdorferi in the C3H mouse strain that has been established as an experimental model for Lyme disease. The peculiar dynamics of the infection exclude two possible mechanistic explanations for the regrowth of the almost cleared bacteria. Neither the hypothesis of bacterial dissemination to different tissue nor a limitation of phagocytic capacity were compatible with experiment. The mathematical model predicts that Borrelia recovers from the strong initial immune response by the regrowth of an immune-resistant sub-population of the bacteria. The chronic phase appears as an equilibration of bacterial growth and adaptive immunity. This result has major implications for the development of the chronic phase of Borrelia infections as well as on potential protective clinical interventions.

  6. Impact of climate change on fish population dynamics in the baltic sea: a dynamical downscaling investigation

    DEFF Research Database (Denmark)

    Mackenzie, Brian R; Meier, H E Markus; Lindegren, Martin

    2012-01-01

    Understanding how climate change, exploitation and eutrophication will affect populations and ecosystems of the Baltic Sea can be facilitated with models which realistically combine these forcings into common frameworks. Here, we evaluate sensitivity of fish recruitment and population dynamics...... and the temperature have influenced recruitment for at least 50 years. The three Baltic Sea models estimate relatively similar developments (increases) in biomass and fishery yield during twenty-first century climate change (ca. 28 % range among models). However, this uncertainty is exceeded by the one associated...... to past and future environmental forcings provided by three ocean-biogeochemical models of the Baltic Sea. Modeled temperature explained nearly as much variability in reproductive success of sprat (Sprattus sprattus; Clupeidae) as measured temperatures during 1973-2005, and both the spawner biomass...

  7. CONTRIBUTIONS OF SEXUAL AND ASEXUAL REPRODUCTION TO POPULATION STRUCTURE IN THE CLONAL SOFT CORAL, ALCYONIUM RUDYI.

    Science.gov (United States)

    McFadden, Catherine S

    1997-02-01

    Numerous studies of population structure in sessile clonal marine invertebrates have demonstrated low genotypic diversity and nonequilibrium genotype frequencies within local populations that are monopolized by relatively few, highly replicated genets. All of the species studied to date produce planktonic sexual propagules capable of dispersing long distances; despite local genotypic disequilibria, populations are often panmictic over large geographic areas. The population structure paradigm these species represent may not be typical of the majority of clonal invertebrate groups, however, which are believed to produce highly philopatric sexual propagules. I used allozyme variation to examine the population structure of the temperate soft coral, Alcyonium rudyi, a typical clonal species whose sexually produced larvae and asexually produced ramets both have very low dispersal capabilities. Like other clonal plants and invertebrates, the local population dynamics of A. rudyi are dominated by asexual reproduction, and recruitment of new sexually produced genets occurs infrequently. As expected from its philopatric larval stage, estimates of genetic differentiation among populations of A. rudyi were highly significant at all spatial scales examined (mean θ = 0.300 among 20 populations spanning a 1100-km range), suggesting that genetic exchange seldom occurs among populations separated by as little as a few hundred meters. Mapping of multilocus allozyme genotypes within a dense aggregation of A. rudyi ramets confirmed that dispersal of asexual propagules is also very limited: members of the same genet usually remain within invertebrates, populations of A. rudyi do not appear to be dominated by a few widespread genets: estimates of genotypic diversity (G o ) within 20 geographically distinct populations did not differ from expectations for outcrossing, sexual populations. Despite theoretical suggestions that philopatric dispersal combined with typically small effective

  8. Population dynamics and monitoring applied to decision-making

    Directory of Open Access Journals (Sweden)

    Conroy, M. J.

    2004-06-01

    influence diagrams to capture the stochastic, temporal processes of managing cheetah population in Kenya. The model predicts likely anagement decisions made by various actors within these countries, (e.g., the President, the Environmental Protection Agency, and rural residents and the resulting probability of cheetah extinction following these decisions. By approaching the problem in both its political and ecological contexts one avoids consideration of decisions that, while beneficial from a purely conservation point of view, are unlikely to be implemented because of conflicting political objectives. Haas’s analysis demonstrates both the promise and challenges of this type of modeling, and he offers suggestions for overcoming inherent technical difficulties such as model calibration. The second paper, by Simon Hoyle and Mark Maunder (Hoyle & Maunder, 2004, uses a Bayesian approach to model population dynamics and the effects of commercial fishing bycatch for the eastern Pacific Ocean spotted dolphin (Stenella attenuata. Their paper provides a good example of why Bayesian analysis is particularly suited to many management problems. Namely, because it allows the integration of disparate pieces of monitoring data in the simultaneous estimation of population parameters; allows forincorporation of expert judgment and data from other systems and species; and provides for explicit consideration of uncertainty in decision–making. Alternative management scenarios can then be explored via forward simulations. In the third paper, Chris Fonnesbeck and Mike Conroy (Fonnesbeck & Conroy, 2004 present an integrated approach for estimating parameters and predicting abundance of American black duck (Anas rubripes populations. They also employ a ayesian approach and overcome some of the computational challenges by using Markov chain–Monte Carlo methods. Ring–recovery and harvest data are used to estimate fall age ratios under alternative reproductive models. These in turn are used to

  9. Structures in dynamics finite dimensional deterministic studies

    CERN Document Server

    Broer, HW; van Strien, SJ; Takens, F

    1991-01-01

    The study of non-linear dynamical systems nowadays is an intricate mixture of analysis, geometry, algebra and measure theory and this book takes all aspects into account. Presenting the contents of its authors' graduate courses in non-linear dynamical systems, this volume aims at researchers who wish to be acquainted with the more theoretical and fundamental subjects in non-linear dynamics and is designed to link the popular literature with research papers and monographs. All of the subjects covered in this book are extensively dealt with and presented in a pedagogic

  10. Ergodic Theory, Open Dynamics, and Coherent Structures

    CERN Document Server

    Bose, Christopher; Froyland, Gary

    2014-01-01

    This book is comprised of selected research articles developed from a workshop on Ergodic Theory, Probabilistic Methods and Applications, held in April 2012 at the Banff International Research Station. It contains contributions from world leading experts in ergodic theory, dynamical systems, numerical analysis, fluid dynamics, and networks. The volume will serve as a valuable reference for mathematicians, physicists, engineers, physical oceanographers, atmospheric scientists, biologists, and climate scientists, who currently use, or wish to learn how to use, probabilistic techniques to cope with dynamical models that display open, coherent, or non-equilibrium behavior.

  11. Stochastic Nonlinear Evolutional Model of the Large-Scaled Neuronal Population and Dynamic Neural Coding Subject to Stimulation

    International Nuclear Information System (INIS)

    Wang Rubin; Yu Wei

    2005-01-01

    In this paper, we investigate how the population of neuronal oscillators deals with information and the dynamic evolution of neural coding when the external stimulation acts on it. Numerically computing method is used to describe the evolution process of neural coding in three-dimensioned space. The numerical result proves that only the suitable stimulation can change the coupling structure and plasticity of neurons

  12. Optimal superadiabatic population transfer and gates by dynamical phase corrections

    Science.gov (United States)

    Vepsäläinen, A.; Danilin, S.; Paraoanu, G. S.

    2018-04-01

    In many quantum technologies adiabatic processes are used for coherent quantum state operations, offering inherent robustness to errors in the control parameters. The main limitation is the long operation time resulting from the requirement of adiabaticity. The superadiabatic method allows for faster operation, by applying counterdiabatic driving that corrects for excitations resulting from the violation of the adiabatic condition. In this article we show how to construct the counterdiabatic Hamiltonian in a system with forbidden transitions by using two-photon processes and how to correct for the resulting time-dependent ac-Stark shifts in order to enable population transfer with unit fidelity. We further demonstrate that superadiabatic stimulated Raman passage can realize a robust unitary NOT-gate between the ground state and the second excited state of a three-level system. The results can be readily applied to a three-level transmon with the ladder energy level structure.

  13. Model reduction tools for nonlinear structural dynamics

    NARCIS (Netherlands)

    Slaats, P.M.A.; Jongh, de J.; Sauren, A.A.H.J.

    1995-01-01

    Three mode types are proposed for reducing nonlinear dynamical system equations, resulting from finite element discretizations: tangent modes, modal derivatives, and newly added static modes. Tangent modes are obtained from an eigenvalue problem with a momentary tangent stiffness matrix. Their

  14. Molecular characterization of microbial population dynamics during sildenafil citrate degradation.

    Science.gov (United States)

    De Felice, Bruna; Argenziano, Carolina; Guida, Marco; Trifuoggi, Marco; Russo, Francesca; Condorelli, Valerio; Inglese, Mafalda

    2009-02-01

    Little is known about pharmaceutical and personal care products pollutants (PPCPs), but there is a growing interest in how they might impact the environment and microbial communities. The widespread use of Viagra (sildenafil citrate) has attracted great attention because of the high usage rate, the unpredictable disposal and the unknown potential effects on wildlife and the environment. Until now information regarding the impact of Viagra on microbial community in water environment has not been reported. In this research, for the first time, the genetic profile of the microbial community, developing in a Viagra polluted water environment, was evaluated by means of the 16S and 18S rRNA genes, for bacteria and fungi, respectively, amplified by polymerase chain reaction (PCR) and separated using the denaturing gradient gel electrophoresis (DGGE) technique. The DGGE results revealed a complex microbial community structure with most of the population persisting throughout the experimental period. DNA sequences from bands observed in the different denaturing gradient gel electrophoresis profiles exhibited the highest degree of identity to uncultured bacteria and fungi found previously mainly in polluted environmental and treating bioreactors. Biotransformation ability of sildenafil citrate by the microbial pool was studied and the capability of these microorganisms to detoxify a polluted water ecosystem was assessed. The bacterial and fungal population was able to degrade sildenafil citrate entirely. Additionally, assays conducted on Daphnia magna, algal growth inhibition assay and cell viability determination on HepG2 human cells showed that biotransformation products obtained from the bacterial growth was not toxic. The higher removal efficiency for sildenafil citrate and the lack of toxicity by the biotransformation products obtained showed that the microbial community identified here represented a composite population that might have biotechnological relevance to

  15. Intertidal population genetic dynamics at a microgeographic seascape scale.

    Science.gov (United States)

    Hu, Zi-Min

    2013-06-01

    The intertidal community is among the most physically harsh niches on earth, with highly heterogeneous environmental and biological factors that impose strong habitat selection on population abundance, genetic connectivity and ecological adaptation of organisms in nature. However, most genetic studies to date have concentrated on the influence of basin-wide or regional marine environments (e.g. habitat discontinuities, oceanic currents and fronts, and geographic barriers) on spatiotemporal distribution and composition of intertidal invertebrates having planktonic stages or long-distance dispersal capability. Little is known about sessile marine organisms (e.g. seaweeds) in the context of topographic tidal gradients and reproductive traits at the microgeographic scale. In this issue of Molecular Ecology, Krueger-Hadfield et al. () implemented an elaborate sampling strategy with red seaweed (Chondrus crispus) from a 90-m transect stand near Roscoff and comprehensively detected genome-scale genetic differentiation and biases in ploidy level. This study not only revealed that tidal height resulted in genetic differentiation between high- and low-shore stands and restricted the genetic exchange within the high-shore habitat, but also demonstrated that intergametophytic nonrandom fertilization in C. crispus can cause significant deviation from Hardy-Weinberg equilibrium. Such new genetic insights highlight the importance of microgeographic genetic dynamics and life history characteristics for better understanding the evolutionary processes of speciation and diversification of intertidal marine organisms. © 2013 John Wiley & Sons Ltd.

  16. 4th International Conference on Structural Nonlinear Dynamics and Diagnosis

    CERN Document Server

    2018-01-01

    This book presents contributions on the most active lines of recent advanced research in the field of nonlinear mechanics and physics selected from the 4th International Conference on Structural Nonlinear Dynamics and Diagnosis. It includes fifteen chapters by outstanding scientists, covering various aspects of applications, including road tanker dynamics and stability, simulation of abrasive wear, energy harvesting, modeling and analysis of flexoelectric nanoactuator, periodic Fermi–Pasta–Ulam problems, nonlinear stability in Hamiltonian systems, nonlinear dynamics of rotating composites, nonlinear vibrations of a shallow arch, extreme pulse dynamics in mode-locked lasers, localized structures in a photonic crystal fiber resonator, nonlinear stochastic dynamics, linearization of nonlinear resonances, treatment of a linear delay differential equation, and fractional nonlinear damping. It appeals to a wide range of experts in the field of structural nonlinear dynamics and offers researchers and engineers a...

  17. The scale of population structure in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Alexander Platt

    2010-02-01

    Full Text Available The population structure of an organism reflects its evolutionary history and influences its evolutionary trajectory. It constrains the combination of genetic diversity and reveals patterns of past gene flow. Understanding it is a prerequisite for detecting genomic regions under selection, predicting the effect of population disturbances, or modeling gene flow. This paper examines the detailed global population structure of Arabidopsis thaliana. Using a set of 5,707 plants collected from around the globe and genotyped at 149 SNPs, we show that while A. thaliana as a species self-fertilizes 97% of the time, there is considerable variation among local groups. This level of outcrossing greatly limits observed heterozygosity but is sufficient to generate considerable local haplotypic diversity. We also find that in its native Eurasian range A. thaliana exhibits continuous isolation by distance at every geographic scale without natural breaks corresponding to classical notions of populations. By contrast, in North America, where it exists as an exotic species, A. thaliana exhibits little or no population structure at a continental scale but local isolation by distance that extends hundreds of km. This suggests a pattern for the development of isolation by distance that can establish itself shortly after an organism fills a new habitat range. It also raises questions about the general applicability of many standard population genetics models. Any model based on discrete clusters of interchangeable individuals will be an uneasy fit to organisms like A. thaliana which exhibit continuous isolation by distance on many scales.

  18. Population structure of larch forests in the Urals

    Energy Technology Data Exchange (ETDEWEB)

    Putenikhin, V.P.; Farukshina, G.G. [Russian Academy of Sciences, Ufa (Russian Federation). Botanical Garden Inst.

    1995-12-31

    The variability and population structure of larch (Larix sukaczewii Dyl.) naturally growing in the Urals was studied on the basis of biometric analysis of generative organs. The obtained results point to the existence of 11 phenotypically different local populations of Larix sukaczewii in the Urals. Four populations are identified in the South Urals: Marginal, central, high-mountainous, south-uralian and Bashkircis-uralian. Middle-uralian, Perm cis-uralian, central north-uralian and high-mountainous north-uralian populations are determined in the Middle and the North Urals. Three populations of Larix sukaczewii are identified in the Sub-Polar and the Polar Urals: Subpolar-uralian, Pechora-Thiman cisuralian and polar-uralian. 8 refs, 2 tabs

  19. Population structure of larch forests in the Urals

    Energy Technology Data Exchange (ETDEWEB)

    Putenikhin, V P; Farukshina, G G [Russian Academy of Sciences, Ufa (Russian Federation). Botanical Garden Inst.

    1996-12-31

    The variability and population structure of larch (Larix sukaczewii Dyl.) naturally growing in the Urals was studied on the basis of biometric analysis of generative organs. The obtained results point to the existence of 11 phenotypically different local populations of Larix sukaczewii in the Urals. Four populations are identified in the South Urals: Marginal, central, high-mountainous, south-uralian and Bashkircis-uralian. Middle-uralian, Perm cis-uralian, central north-uralian and high-mountainous north-uralian populations are determined in the Middle and the North Urals. Three populations of Larix sukaczewii are identified in the Sub-Polar and the Polar Urals: Subpolar-uralian, Pechora-Thiman cisuralian and polar-uralian. 8 refs, 2 tabs

  20. Correlations in the population structure of music, genes and language

    Science.gov (United States)

    Brown, Steven; Savage, Patrick E.; Ko, Albert Min-Shan; Stoneking, Mark; Ko, Ying-Chin; Loo, Jun-Hun; Trejaut, Jean A.

    2014-01-01

    We present, to our knowledge, the first quantitative evidence that music and genes may have coevolved by demonstrating significant correlations between traditional group-level folk songs and mitochondrial DNA variation among nine indigenous populations of Taiwan. These correlations were of comparable magnitude to those between language and genes for the same populations, although music and language were not significantly correlated with one another. An examination of population structure for genetics showed stronger parallels to music than to language. Overall, the results suggest that music might have a sufficient time-depth to retrace ancient population movements and, additionally, that it might be capturing different aspects of population history than language. Music may therefore have the potential to serve as a novel marker of human migrations to complement genes, language and other markers. PMID:24225453

  1. Age structure changes and extraordinary lifespan in wild medfly populations.

    Science.gov (United States)

    Carey, James R; Papadopoulos, Nikos T; Müller, Hans-Georg; Katsoyannos, Byron I; Kouloussis, Nikos A; Wang, Jane-Ling; Wachter, Kenneth; Yu, Wei; Liedo, Pablo

    2008-06-01

    The main purpose of this study was to test the hypotheses that major changes in age structure occur in wild populations of the Mediterranean fruit fly (medfly) and that a substantial fraction of individuals survive to middle age and beyond (> 3-4 weeks). We thus brought reference life tables and deconvolution models to bear on medfly mortality data gathered from a 3-year study of field-captured individuals that were monitored in the laboratory. The average time-to-death of captured females differed between sampling dates by 23.9, 22.7, and 37.0 days in the 2003, 2004, and 2005 field seasons, respectively. These shifts in average times-to-death provided evidence of changes in population age structure. Estimates indicated that middle-aged medflies (> 30 days) were common in the population. A surprise in the study was the extraordinary longevity observed in field-captured medflies. For example, 19 captured females but no reference females survived in the laboratory for 140 days or more, and 6 captured but no reference males survived in the laboratory for 170 days or more. This paper advances the study of aging in the wild by introducing a new method for estimating age structure in insect populations, demonstrating that major changes in age structure occur in field populations of insects, showing that middle-aged individuals are common in the wild, and revealing the extraordinary lifespans of wild-caught individuals due to their early life experience in the field.

  2. Population dynamics of potato cyst nematodes and associated damage to potato

    NARCIS (Netherlands)

    Schans, J.

    1993-01-01

    Population dynamics of potato cyst nematodes (PCN; Globoderarostochiensis (Woll.) Skarbilovich and G. pallida Stone) and their interactions with potato plants are insufficiently understood to explain variations of population

  3. Complex-Dynamic Cosmology and Emergent World Structure

    OpenAIRE

    Kirilyuk, Andrei P.

    2004-01-01

    Universe structure emerges in the unreduced, complex-dynamic interaction process with the simplest initial configuration (two attracting homogeneous fields, quant-ph/9902015). The unreduced interaction analysis gives intrinsically creative cosmology, describing the real, explicitly emerging world structure with dynamic randomness on each scale. Without imposing any postulates or entities, we obtain physically real space, time, elementary particles with their detailed structure and intrinsic p...

  4. Discretization model for nonlinear dynamic analysis of three dimensional structures

    International Nuclear Information System (INIS)

    Hayashi, Y.

    1982-12-01

    A discretization model for nonlinear dynamic analysis of three dimensional structures is presented. The discretization is achieved through a three dimensional spring-mass system and the dynamic response obtained by direct integration of the equations of motion using central diferences. First the viability of the model is verified through the analysis of homogeneous linear structures and then its performance in the analysis of structures subjected to impulsive or impact loads, taking into account both geometrical and physical nonlinearities is evaluated. (Author) [pt

  5. Chronic irradiation as an ecological factor affecting genetic population structure

    International Nuclear Information System (INIS)

    Kal'chenko, V.A.; Kalabushkin, B.A.; Rubanovich, A.V.

    1991-01-01

    Genetic structure of two Centaurea scabiosa L. populations was studied by frequency distribution of leucine aminopeptidase (LAP) locus genotypes. The experimental population has been growing under conditions of chronic irradiation, with the dose per generation amounting to 1.2 to 25.5 Gy. In it, mutational variants are observed with a frequency of 5.4.10(-3)-4.5.10(-2) per generation (as compared to control population frequency at 5.4.10(-4)). Indexes for heterozygosity, mean number of genotypes, and effective number of alleles were higher in the experimental population. Segregation analysis revealed no differences in viability in the control population, and all genotypic combinations were found to be nearly neutral. In the experimental population, however, significant differences in relative viability of the genotypes were disclosed. The relative viability of heterozygotes for mutant allele C' was nearly maximum, while heterozygotes for other mutant alleles showed minimum viability. We reach the conclusion that the differences in genetic structure of the populations under investigation can be explained by the chronic irradiation factor that brought out differences in adaptability of both normal and mutant genotypes. The suggestion is that intra-locus interactions of the C' allele with normal alleles determine plant resistance to a wide range of unfavorable environmental conditions

  6. Detailed genetic structure of European bitterling populations in Central Europe

    Directory of Open Access Journals (Sweden)

    Veronika Bartáková

    2015-11-01

    Full Text Available The European bitterling (Rhodeus amarus is a small cyprinid fish whose populations declined markedly between 1950 and 1980. However, its range currently expands, partly due to human-assisted introductions. We determined the genetic variability and detailed spatial structure among bitterling populations in Central Europe and tested alternative hypotheses about colonization of this area. Twelve polymorphic microsatellite loci on a large sample of 688 individuals had been used to analyse genetic variability and population structure. Samples originated from 27 localities with emphasis on area of the Czech Republic where three major sea drainages (Black, Baltic, and Northern Sea meet. Highly variable level of intrapopulation genetic variability had generally been detected and a recent decrease in numbers (“bottleneck” had been indicated by genetic data among six populations. High level of interpopulation differentiation was identified even within the basins. There was a significant role of genetic drift and indications of low dispersal ability of R. amarus. Surprisingly, the Odra River was inhabited by two distinct populations without any genetic signatures of a secondary contact. Czech part of the Odra (Baltic basin was colonized from the Danubian refugium (similarly to adjacent Danubian basin rivers including the Morava, while Polish part of the Odra was genetically similar to the populations in the Vistula River (Baltic basin, that has been colonized by a different (Eastern phylogeographic lineage of R. amarus. Most Czech R. amarus populations were colonized from the Danubian refugium, suggesting potential for a human-mediated colonization of the Odra or Elbe Rivers by R. amarus. One Elbe basin population was genetically mixed from the two (Danubian and Eastern phylogeographic lineages. In general the Czech populations of R. amarus were genetically stable except for a single population which has probably been recently introduced. This research

  7. Dynamics and management of stage-structured fish stocks.

    Science.gov (United States)

    Meng, Xinzhu; Lundström, Niklas L P; Bodin, Mats; Brännström, Åke

    2013-01-01

    With increasing fishing pressures having brought several stocks to the brink of collapse, there is a need for developing efficient harvesting methods that account for factors beyond merely yield or profit. We consider the dynamics and management of a stage-structured fish stock. Our work is based on a consumer-resource model which De Roos et al. (in Theor. Popul. Biol. 73, 47-62, 2008) have derived as an approximation of a physiologically-structured counterpart. First, we rigorously prove the existence of steady states in both models, that the models share the same steady states, and that there exists at most one positive steady state. Furthermore, we carry out numerical investigations which suggest that a steady state is globally stable if it is locally stable. Second, we consider multiobjective harvesting strategies which account for yield, profit, and the recovery potential of the fish stock. The recovery potential is a measure of how quickly a fish stock can recover from a major disturbance and serves as an indication of the extinction risk associated with a harvesting strategy. Our analysis reveals that a small reduction in yield or profit allows for a disproportional increase in recovery potential. We also show that there exists a harvesting strategy with yield close to the maximum sustainable yield (MSY) and profit close to that associated with the maximum economic yield (MEY). In offering a good compromise between MSY and MEY, we believe that this harvesting strategy is preferable in most instances. Third, we consider the impact of harvesting on population size structure and analytically determine the most and least harmful harvesting strategies. We conclude that the most harmful harvesting strategy consists of harvesting both adults and juveniles, while harvesting only adults is the least harmful strategy. Finally, we find that a high percentage of juvenile biomass indicates elevated extinction risk and might therefore serve as an early-warning signal of

  8. Investigating the Genetic Diversity, Population Differentiation and Population Dynamics of Cycas segmentifida (Cycadaceae Endemic to Southwest China by Multiple Molecular Markers

    Directory of Open Access Journals (Sweden)

    Xiuyan Feng

    2017-05-01

    Full Text Available Climate change, species dispersal ability and habitat fragmentation are major factors influencing species distribution and genetic diversity, especially for the range-restricted and threatened taxa. Here, using four sequences of chloroplast DNAs (cpDNAs, three nuclear genes (nDNAs and 12 nuclear microsatellites (SSRs, we investigated the genetic diversity, genetic structure, divergence time and population dynamics of Cycas segmentifida D. Y. Wang and C. Y. Deng, a threatened cycad species endemic to Southwest China. High levels of genetic diversity and genetic differentiation were revealed in C. segmentifida. Haplotypes of networks showed two evolutionary units in C. segmentifida, with the exception of the nuclear gene GTP network. Meanwhile, the UPGMA tree, structure and PCoA analyses suggested that 14 populations of C. segmentifida were divided into two clades. There was significant effect of isolation by distance (IBD in this species. However, this species did not display a significant phylogeographic structure. The divergence time estimation suggested that its haplotypes diverged during the Middle Pleistocene. Additionally, the population dynamics inferred from different DNA sequences analyses were discordant. Bottleneck analysis showed that populations of C. segmentifida did not experience any recent bottleneck effect, but rather pointed to a contraction of its effective population size over time. Furthermore, our results suggested that the population BM which held an intact population structure and occupied undisturbed habitat was at the Hardy–Weinberg equilibrium, implying that this population is a free-mating system. These genetic features provide important information for the sustainable management of C. segmentifida.

  9. Ethnicity and Population Structure in Personal Naming Networks

    Science.gov (United States)

    Mateos, Pablo; Longley, Paul A.; O'Sullivan, David

    2011-01-01

    Personal naming practices exist in all human groups and are far from random. Rather, they continue to reflect social norms and ethno-cultural customs that have developed over generations. As a consequence, contemporary name frequency distributions retain distinct geographic, social and ethno-cultural patterning that can be exploited to understand population structure in human biology, public health and social science. Previous attempts to detect and delineate such structure in large populations have entailed extensive empirical analysis of naming conventions in different parts of the world without seeking any general or automated methods of population classification by ethno-cultural origin. Here we show how ‘naming networks’, constructed from forename-surname pairs of a large sample of the contemporary human population in 17 countries, provide a valuable representation of cultural, ethnic and linguistic population structure around the world. This innovative approach enriches and adds value to automated population classification through conventional national data sources such as telephone directories and electoral registers. The method identifies clear social and ethno-cultural clusters in such naming networks that extend far beyond the geographic areas in which particular names originated, and that are preserved even after international migration. Moreover, one of the most striking findings of this approach is that these clusters simply ‘emerge’ from the aggregation of millions of individual decisions on parental naming practices for their children, without any prior knowledge introduced by the researcher. Our probabilistic approach to community assignment, both at city level as well as at a global scale, helps to reveal the degree of isolation, integration or overlap between human populations in our rapidly globalising world. As such, this work has important implications for research in population genetics, public health, and social science adding new

  10. Diversity and population structure of red rice germplasm in Bangladesh.

    Directory of Open Access Journals (Sweden)

    M Z Islam

    Full Text Available While the functionality and healthy food value of red rice have increased its popularity, such that market demand for it is expected to rise, most strains suffer from low grain yield. To perform diversity and population structure analyses of red rice germplasm, therefore, becomes essential for improving yields for commercial production. In this study, fifty red rice germplasm from the Bangladesh Rice Research Institute (BRRI genebank were characterized both morphologically and genetically using fifty simple sequence repeat (SSR markers. Overall, 162 alleles were detected by the markers with the detected allele number varying from two to seven. Additionally, 22 unique alleles were identified for use as a germplasm diagnostic tool. The highest and lowest polymorphic information content (PIC indices were 0.75 and 0.04 found in markers RM282 and RM304, respectively, and genetic diversity was moderate, varying from 0.05 to 0.78 (average: 0.35. While phylogenetic cluster analysis of the fifteen distance-based agro-morphological traits divided the germplasm into five clusters (I, II, III, IV and V, a similar SSR analysis yielded only three major groups (I, II, and III, and a model-based population structure analysis yielded four (A, B, C and D. Both principal component and neighbors joining tree analysis from the population structure method showed the tested germplasm as highly diverse in structure. Moreover, an analysis of molecular variance (AMOVA, as well as a pairwise FST analysis, both indicated significant differentiation (ranging from 0.108 to 0.207 among all pairs of populations, suggesting that all four population structure groups differed significantly. Populations A and D were the most differentiated from each other by FST. Findings from this study suggest that the diverse germplasm and polymorphic trait-linked SSR markers of red rice are suitable for the detection of economically desirable trait loci/genes for use in future molecular

  11. Diversity and population structure of red rice germplasm in Bangladesh.

    Science.gov (United States)

    Islam, M Z; Khalequzzaman, M; Prince, M F R K; Siddique, M A; Rashid, E S M H; Ahmed, M S U; Pittendrigh, B R; Ali, M P

    2018-01-01

    While the functionality and healthy food value of red rice have increased its popularity, such that market demand for it is expected to rise, most strains suffer from low grain yield. To perform diversity and population structure analyses of red rice germplasm, therefore, becomes essential for improving yields for commercial production. In this study, fifty red rice germplasm from the Bangladesh Rice Research Institute (BRRI) genebank were characterized both morphologically and genetically using fifty simple sequence repeat (SSR) markers. Overall, 162 alleles were detected by the markers with the detected allele number varying from two to seven. Additionally, 22 unique alleles were identified for use as a germplasm diagnostic tool. The highest and lowest polymorphic information content (PIC) indices were 0.75 and 0.04 found in markers RM282 and RM304, respectively, and genetic diversity was moderate, varying from 0.05 to 0.78 (average: 0.35). While phylogenetic cluster analysis of the fifteen distance-based agro-morphological traits divided the germplasm into five clusters (I, II, III, IV and V), a similar SSR analysis yielded only three major groups (I, II, and III), and a model-based population structure analysis yielded four (A, B, C and D). Both principal component and neighbors joining tree analysis from the population structure method showed the tested germplasm as highly diverse in structure. Moreover, an analysis of molecular variance (AMOVA), as well as a pairwise FST analysis, both indicated significant differentiation (ranging from 0.108 to 0.207) among all pairs of populations, suggesting that all four population structure groups differed significantly. Populations A and D were the most differentiated from each other by FST. Findings from this study suggest that the diverse germplasm and polymorphic trait-linked SSR markers of red rice are suitable for the detection of economically desirable trait loci/genes for use in future molecular breeding programs.

  12. Real-Time Probing of Structural Dynamics by Interaction between Chromophores

    DEFF Research Database (Denmark)

    Brogaard, Rasmus Y.; Møller, Klaus Braagaard; Sølling, Theis Ivan

    2011-01-01

    We present an investigation of structural dynamics in excited-state cations probed in real-time by femtosecond timeresolved ion photofragmentation spectroscopy. From photoelectron spectroscopy data on 1,3-dibromopropane we conclude that the pump pulse ionizes the molecule, populating an excited...

  13. Dynamical load factor of impact loaded shell structures

    International Nuclear Information System (INIS)

    Hammel, J.

    1977-01-01

    Dynamical loaded structures can be analysed by spectral representations, which usually lead to an enormous computational effort. If it is possible to find a fitting dynamical load factor, the dynamical problem can be reduced to a statical one. The computation of this statical problem is much simpler. The disadvantage is that the dynamical load factor usually leads to a very rough approximation. In this paper it will be shown, that by combination of these two methods, the approximation of the dynamical load factor can be improved and the consumption of computation time can be enormously reduced. (Auth.)

  14. Structural and economic dynamics in diversified Italian farms

    Directory of Open Access Journals (Sweden)

    Cristina Salvioni

    2013-12-01

    Full Text Available Objective of this work is to investigate the structural change and economic dynamics of farms pursuing diversification and differentiation strategies in Italy. The analysis was performed on a panel of data built on the basis of information collected by the Italian FADN between 2003-2009. For the purpose of the analysis, we divided the population of commercial Italian farms into a five-fold farm typology based on size and the extent of diversification and differentiation strategies adopted by the farms. In detail, farms are defined as differentiated when they make use of a system of quality certification, while they are defined as diversified when they take up non farming activities (agritourism, social farms etc.. The findings show that conventional farms remain by far the largest category within the population of Italian commercial farms, while only 13% of the total commercial farms are classified as differentiated and/or diversified. Farms adopting product differentiation strategies are found to have an income growth path similar to that of conventional farms. Yet the category of diversified farms is the only one showing an upward trend with regard to income per worker in the observed years, while farms relying entirely on agricultural products appear to perform poorly in terms of labour productivity.

  15. THE DYNAMICS OF THE MATRICS STRUCTURE

    Directory of Open Access Journals (Sweden)

    Dumitru CONSTANTINESCU

    2007-01-01

    Full Text Available The relationships organization-suppliers-customers have recently known major changes in the structure of services and have made the organization develop its managerial and professional competencies in order to do projects. The qualified organization is the most trust-worthy in the process of doing a project. The participation of an organization in doing projects depends on a multitude of factors. Out of these factors, the structural organization comes forth, as it represents the variable with the most important impact on a project’s quality, costs and lead time. From the organizational point of view, the matrix structure is frequently chosen for projects. The matrix structure generally coexists with the line structure. The two structures are contrastive. The line structure is based on the unity of command principle and is not open to cooperation and dialogue. The matrix structure encourages cooperation and communication, favours conflict, which is considered here a healthy and essential process. The matrix structure and the line structure claim their right to initiative. Conflict and the multidimensional integration of multiple hierarchies can be negotiated through the concept charisma – mediation, sustained by the matrix structure.

  16. Nonlinear structural mechanics theory, dynamical phenomena and modeling

    CERN Document Server

    Lacarbonara, Walter

    2013-01-01

    Nonlinear Structural Mechanics: Theory, Dynamical Phenomena and Modeling offers a concise, coherent presentation of the theoretical framework of nonlinear structural mechanics, computational methods, applications, parametric investigations of nonlinear phenomena and their mechanical interpretation towards design. The theoretical and computational tools that enable the formulation, solution, and interpretation of nonlinear structures are presented in a systematic fashion so as to gradually attain an increasing level of complexity of structural behaviors, under the prevailing assumptions on the geometry of deformation, the constitutive aspects and the loading scenarios. Readers will find a treatment of the foundations of nonlinear structural mechanics towards advanced reduced models, unified with modern computational tools in the framework of the prominent nonlinear structural dynamic phenomena while tackling both the mathematical and applied sciences. Nonlinear Structural Mechanics: Theory, Dynamical Phenomena...

  17. Dynamic Capital Structure: Dynamics, Determinants and Speed of Adjustment

    NARCIS (Netherlands)

    Tamirat, A.S.; Trujillo Barrera, A.A.; Pennings, J.M.E.

    2017-01-01

    The corporate finance literature has focused on explaining the determinants of firms target capital structure and speed of adjustment using the well-established theories such as pecking order, signaling and trade-off theories. However, less attention has been paid to understanding the financing

  18. Bipartite Graphs as Models of Population Structures in Evolutionary Multiplayer Games

    Science.gov (United States)

    Peña, Jorge; Rochat, Yannick

    2012-01-01

    By combining evolutionary game theory and graph theory, “games on graphs” study the evolutionary dynamics of frequency-dependent selection in population structures modeled as geographical or social networks. Networks are usually represented by means of unipartite graphs, and social interactions by two-person games such as the famous prisoner’s dilemma. Unipartite graphs have also been used for modeling interactions going beyond pairwise interactions. In this paper, we argue that bipartite graphs are a better alternative to unipartite graphs for describing population structures in evolutionary multiplayer games. To illustrate this point, we make use of bipartite graphs to investigate, by means of computer simulations, the evolution of cooperation under the conventional and the distributed N-person prisoner’s dilemma. We show that several implicit assumptions arising from the standard approach based on unipartite graphs (such as the definition of replacement neighborhoods, the intertwining of individual and group diversity, and the large overlap of interaction neighborhoods) can have a large impact on the resulting evolutionary dynamics. Our work provides a clear example of the importance of construction procedures in games on graphs, of the suitability of bigraphs and hypergraphs for computational modeling, and of the importance of concepts from social network analysis such as centrality, centralization and bipartite clustering for the understanding of dynamical processes occurring on networked population structures. PMID:22970237

  19. Recent Progress in Heliogyro Solar Sail Structural Dynamics

    Science.gov (United States)

    Wilkie, William K.; Warren, Jerry E.; Horta, Lucas G.; Juang, Jer-Nan; Gibbs, Samuel C.; Dowell, E.; Guerrant, Daniel; Lawrence Dale

    2014-01-01

    Results from recent National Aeronautics and Space Administration (NASA) research on the structural dynamics and control characteristics of heliogyro solar sails are summarized. Specific areas under investigation include coupled nonlinear finite element analysis of heliogyro membrane blade with solar radiation pressure effects, system identification of spinning membrane structures, solarelastic stability analysis of heliogyro solar sails, including stability during blade deployment, and results from small-scale in vacuo dynamics experiments with spinning high-aspect ratio membranes. A low-cost, rideshare payload heliogyro technology demonstration mission concept, used as a mission context for these heliogyro structural dynamics and solarelasticity investigations, is also described.

  20. Modeling the impacts of hunting on the population dynamics of red howler monkeys (Alouatta seniculus)

    Science.gov (United States)

    Wiederholt, Ruscena; Fernandez-Duque, Eduardo; Diefenbach, Duane R.; Rudran, Rasanayagam

    2010-01-01

    Overexploitation of wildlife populations occurs across the humid tropics and is a significant threat to the long-term survival of large-bodied primates. To investigate the impacts of hunting on primates and ways to mitigate them, we developed a spatially explicit, individual-based model for a landscape that included hunted and un-hunted areas. We used the large-bodied neotropical red howler monkey (Alouatta seniculus) as our case study species because its life history characteristics make it vulnerable to hunting. We modeled the influence of different rates of harvest and proportions of landscape dedicated to un-hunted reserves on population persistence, population size, social dynamics, and hunting yields of red howler monkeys. In most scenarios, the un-hunted populations maintained a constant density regardless of hunting pressure elsewhere, and allowed the overall population to persist. Therefore, the overall population was quite resilient to extinction; only in scenarios without any un-hunted areas did the population go extinct. However, the total and hunted populations did experience large declines over 100 years under moderate and high hunting pressure. In addition, when reserve area decreased, population losses and losses per unit area increased disproportionately. Furthermore, hunting disrupted the social structure of troops. The number of male turnovers and infanticides increased in hunted populations, while birth rates decreased and exacerbated population losses due to hunting. Finally, our results indicated that when more than 55% of the landscape was harvested at high (30%) rates, hunting yields, as measured by kilograms of biomass, were less than those obtained from moderate harvest rates. Additionally, hunting yields, expressed as the number of individuals hunted/year/km2, increased in proximity to un-hunted areas, and suggested that dispersal from un-hunted areas may have contributed to hunting sustainability. These results indicate that un

  1. Population genetic structure and demographic history of small ...

    African Journals Online (AJOL)

    Population genetic structure and demographic history of small yellow croaker, ... diversity (0.0112 ± 0.0061 to 0.0141 ± 0.0075) were detected in the species. ... into two closely related clades, but did not appear to have any geographic ...

  2. Changes in population structures of the major species in selected ...

    African Journals Online (AJOL)

    The study was carried out in six satellite lakes by making investigations on fish collected from experimental and artisanal fisheries. The fishes were analysed for length frequencies, weight and numbers caught to determine the population structure of the fishes. Indiscriminate fishing by deploying illegal gears and increased ...

  3. Review: Genetic diversity and population structure of cotton ...

    African Journals Online (AJOL)

    Cotton (Gossypium spp.) is the world's leading natural fiber crop and is cultivated in diverse temperate and tropical areas. In this sense, molecular markers are important tools for polymorphism identification in genetic diversity analyses. The objective of this study was to evaluate genetic diversity and population structure in ...

  4. Molecular epidemiology and population structure of bovine Streptococcus uberis

    DEFF Research Database (Denmark)

    Rato, M G; Bexiga, R; Nunes, S F

    2008-01-01

    The molecular epidemiology and population structure of 30 bovine subclinical mastitis field isolates of Streptococcus uberis, collected from 6 Portuguese herds (among 12 farms screened) during 2002 and 2003, were examined by using pulsed-field gel electrophoresis (PFGE) for clustering of the isol...

  5. Genetic structure and diversity within and among six populations of ...

    African Journals Online (AJOL)

    Yomi

    2010-04-24

    Apr 24, 2010 ... Genetic structure and diversity within and among six populations of .... Lyopholized samples were ground to a fine powder. DNA extraction ..... 22(3): 287-292. Pei YL, Zou, YP, Yin Z, Wang XQ, Zhang ZX, Hong DY (1995).

  6. Population genetic structure of coral reef species Plectorhinchus ...

    African Journals Online (AJOL)

    The population genetic structure and the dispersal ability of Plectorhinchus flavomaculatus from South China Sea were examined with a 464 bp segment of mtDNA control region. A total of 116 individuals were collected from 12 coral reefs in Xisha, Zhongsha and Nansha archipelagos and 22 haplotypes were obtained.

  7. Population structure and genetic trends for indigenous African beef ...

    African Journals Online (AJOL)

    The aim of this study was to investigate population structure and genetic trends based on pedigree and performance records of five indigenous African beef cattle breeds (Afrikaner, Boran, Drakensberger, Nguni and Tuli) in South Africa. Pedigree completeness over six generations was higher than 88.5% in the first ...

  8. Genetic diversity, population structure and marker trait associations ...

    Indian Academy of Sciences (India)

    Supplementary data: Genetic diversity, population structure and marker trait associations for seed quality traits in cotton (Gossypium hirsutum). Ashok Badigannavar and Gerald O. Myers. J. Genet. 94, 87–94. Table 1. List of cotton germplasm lines used in this study. Germplasm no. Cultivar. Region. Germplasm no. Cultivar.

  9. Dynamique de structuration spatio-temporelle des populations de ...

    African Journals Online (AJOL)

    Dynamique de structuration spatio-temporelle des populations de familles de macroinvertébrés dans un continuum lac de barrage-effluent-fleuve issu de périmètre irrigué. Bassin de la Volta (Burkina Faso)

  10. Genetic diversity and population structure of maize landraces from ...

    African Journals Online (AJOL)

    Genetic diversity and population structure of maize landraces from Côte ... However, no study on the genetic diversity of the species has been performed to date. ... The cross between two individuals from different groups might help exploit the ...

  11. Comparison of the population structure and life-history parameters ...

    African Journals Online (AJOL)

    Blacktail seabream Diplodus capensis were sampled from proximate (10 km apart) exploited and unexploited areas in southern Angola to compare their population structures and life-history parameters. Females dominated the larger size and older age classes in the unexploited area. In the exploited area the length and ...

  12. Ecotypic variation in population dynamics of reintroduced bighorn sheep

    Science.gov (United States)

    Bleich, Vernon C.; Sargeant, Glen A.; Wiedmann, Brett P.

    2018-01-01

    Selection of bighorn sheep (Ovis canadensis) for translocation historically has been motivated by preservation of subspecific purity rather than by adaptation of source stocks to similar environments. Our objective was to estimate cause‐specific, annual, and age‐specific mortality of introduced bighorn sheep that originated at low elevations in southern British Columbia, Canada (BC ecotype), or in the Missouri River Breaks region of central Montana, USA (MT ecotype). In North Dakota, USA, mortality was similar and typically low for adult female bighorn sheep from Montana (0.09 ± 0.029 [SE]) and British Columbia (0.08 ± 0.017) during 2000–2016. Median life expectancy was 11 years for females that reached adulthood (2 yrs old); however, mortality accelerated with age and reached 86% by age 16. Mortalities resulted primarily from low rates of predation, disease, accidents, and unknown natural causes (<0.04 [upper 90% CI]). Similar survival rates of female bighorn sheep from female bighorn sheep from British Columbia and Montana, coupled with greater recruitment of bighorn sheep from Montana, resulted in a greater projected rate of increase for the MT ecotype (λ = 1.21) than for the BC ecotype (1.02), and a more youthful age structure. These results support translocation of bighorn sheep from areas that are environmentally similar to areas that will be stocked. Potential benefits include more rapid population growth, greater resilience to and more rapid recovery from density‐independent losses, an increased possibility that rapidly growing populations will expand into adjacent habitat, increased hunter opportunity, increased connectivity among herds, and a more complete restoration of ecosystem processes.

  13. Ecotypic variation in population dynamics of reintroduced bighorn sheep

    Science.gov (United States)

    Bleich, Vernon C.; Sargeant, Glen A.; Wiedmann, Brett P.

    2018-01-01

    Selection of bighorn sheep (Ovis canadensis) for translocation historically has been motivated by preservation of subspecific purity rather than by adaptation of source stocks to similar environments. Our objective was to estimate cause‐specific, annual, and age‐specific mortality of introduced bighorn sheep that originated at low elevations in southern British Columbia, Canada (BC ecotype), or in the Missouri River Breaks region of central Montana, USA (MT ecotype). In North Dakota, USA, mortality was similar and typically low for adult female bighorn sheep from Montana (0.09 ± 0.029 [SE]) and British Columbia (0.08 ± 0.017) during 2000–2016. Median life expectancy was 11 years for females that reached adulthood (2 yrs old); however, mortality accelerated with age and reached 86% by age 16. Mortalities resulted primarily from low rates of predation, disease, accidents, and unknown natural causes (recruitment of bighorn sheep from Montana, resulted in a greater projected rate of increase for the MT ecotype (λ = 1.21) than for the BC ecotype (1.02), and a more youthful age structure. These results support translocation of bighorn sheep from areas that are environmentally similar to areas that will be stocked. Potential benefits include more rapid population growth, greater resilience to and more rapid recovery from density‐independent losses, an increased possibility that rapidly growing populations will expand into adjacent habitat, increased hunter opportunity, increased connectivity among herds, and a more complete restoration of ecosystem processes.

  14. Friends and foes : The dynamics of dual social structures

    NARCIS (Netherlands)

    Sytch, M.; Tatarynowicz, A.

    2014-01-01

    This paper investigates the evolutionary dynamics of a dual social structure encompassing collaboration and conflict among corporate actors. We apply and advance structural balance theory to examine the formation of balanced and unbalanced dyadic and triadic structures, and to explore how these

  15. DSIbin : Identifying dynamic data structures in C/C++ binaries

    NARCIS (Netherlands)

    Rupprecht, Thomas; Chen, Xi; White, David H.; Boockmann, Jan H.; Luttgen, Gerald; Bos, Herbert

    2017-01-01

    Reverse engineering binary code is notoriously difficult and, especially, understanding a binary's dynamic data structures. Existing data structure analyzers are limited wrt. program comprehension: they do not detect complex structures such as skip lists, or lists running through nodes of different

  16. Dynamic fracture toughness testing of structural steels

    International Nuclear Information System (INIS)

    Debel, C.P.

    1978-01-01

    Two candidate test methods aimed at producing materials properties of interest in connection with crack arrest assessments are currently under evaluation. These methods and the significance of the results are described. The quasi-static as well as the dynamic fracture toughness of a plain C-Mn steel in the as-quenched and tempered condition have been examined at temperatures between -115 0 C and the ambient temperature. Wedge-loaded duplex DCB-specimens were used in dynamic tests. The crack extension velocity was measured using a surface deposited grid and a registration circuit based on TTL-electronics. The toughness transition-temperature at quasi-static loading rate is found to be low; but during dynamic crack-extension a substantial shift of the transition-region to higher temperatures is produced, and fast fracture was obtained even at ambient temperature. Even though the dynamic fracture toughness Ksub(ID) increases with temperature, it decreases with increasing crack-extension velocity at a given temperature and the rate of decrease with respect to crack-extension velocity seems to be independent of temperature. Ksub(ID) appears to be insensitive to heat treatments. Test results indicate insufficient load-train stiffness, and problems due to crack branching were encountered. (author)

  17. Population Dynamics and Cost-Benefit Analysis. An Attempt to Relate Population Dynamics via Lifetime Reproductive Success to Short-Term Decisions

    NARCIS (Netherlands)

    Tinbergen, J.M.; Balen, J.H. van; Drent, P.J.; Cavé, A.J.; Mertens, J.A.L.; Boer-Hazewinkel, J. den

    1987-01-01

    1. The aim of this article is to explore whether cost-benefit analysis of behaviour may help to understand the population dynamics of a species. The Great Tit is taken as an example. 2. The lifetime reproductive success in different populations of Great Tits amounts from 0.7 (Hoge Veluwe, Wytham) to

  18. Gene flow and genetic structure in the Galician population (NW Spain according to Alu insertions

    Directory of Open Access Journals (Sweden)

    Diéguez Lois

    2008-12-01

    Full Text Available Abstract Background The most recent Alu insertions reveal different degrees of polymorphism in human populations, and a series of characteristics that make them particularly suitable genetic markers for Human Biology studies. This has led these polymorphisms to be used to analyse the origin and phylogenetic relationships between contemporary human groups. This study analyses twelve Alu sequences in a sample of 216 individuals from the autochthonous population of Galicia (NW Spain, with the aim of studying their genetic structure and phylogenetic position with respect to the populations of Western and Central Europe and North Africa, research that is of special interest in revealing European population dynamics, given the peculiarities of the Galician population due to its geographical situation in western Europe, and its historical vicissitudes. Results The insertion frequencies of eleven of the Alu elements analysed were within the variability range of European populations, while Yb8NBC125 proved to be the lowest so far recorded to date in Europe. Taking the twelve polymorphisms into account, the GD value for the Galician population was 0.268. The comparative analyses carried out using the MDS, NJ and AMOVA methods reveal the existence of spatial heterogeneity, and identify three population groups that correspond to the geographic areas of Western-Central Europe, Eastern Mediterranean Europe and North Africa. Galicia is shown to be included in the Western-Central European cluster, together with other Spanish populations. When only considering populations from Mediterranean Europe, the Galician population revealed a degree of genetic flow similar to that of the majority of the populations from this geographic area. Conclusion The results of this study reveal that the Galician population, despite its geographic situation in the western edge of the European continent, occupies an intermediate position in relation to other European populations in

  19. Full scale dynamic testing of Kozloduy NPP unit 5 structures

    International Nuclear Information System (INIS)

    Da Rin, E.M.

    1999-01-01

    As described in this report, the Kozloduy NPP western site has been subjected to low level earthquake-like ground shaking - through appropriately devised underground explosions - and the resulting dynamic response of the NPP reactor Unit 5 important structures appropriately measured and digitally recorded. In-situ free-field response was measured concurrently more than 100 m aside the main structures of interest. The collected experimental data provide reference information on the actual dynamic characteristics of the Kozloduy NPPs main structures, as well as give some useful indications on the dynamic soil-structure interaction effects for the case of low level excitation. Performing the present full-scale dynamic structural testing activities took advantage of the experience gained by ISMES during similar tests, lately performed in Italy and abroad (in particular, at the Paks NPP in 1994). The IAEA promoted dynamic testing of the Kozloduy NPP Unit 5 by means of pertinently designed buried explosion-induced ground motions which has provided a large amount of data on the dynamic structural response of its major structures. In the present report, the conducted investigation is described and the acquired digital data presented. A series of preliminary analyses were undertaken for examining in detail the ground excitation levels that were produced by these weak earthquake simulation experiments, as well as for inferring some structural characteristics and behaviour information from the collected data. These analyses ascertained the high quality of the collected digital data. Presumably due to soil-structure dynamic interaction effects, reduced excitation levels were observed at the reactor building foundation raft level with respect to the concurrent free-field ground motions. measured at a 140 m distance from the reactor building centre. Further more detailed and systematic analyses are worthwhile to be performed for extracting more complete information about the

  20. The influence of climatic variability on local population dynamics of Cercidium microphyllum (foothill paloverde)

    Science.gov (United States)

    Bowers, Janice E.; Turner, R.M.

    2002-01-01

    This study investigated correlations among climatic variability, population age structure, and seedling survival of a dominant Sonoran Desert tree, Cercidium microphyllum (foothill paloverde), at Tucson, Arizona, USA. A major goal was to determine whether wet years promote seedling establishment and thereby determine population structure. Plant age was estimated from basal circumference for a sample of 980 living and dead trees in twelve 0.5-ha plots. Ages ranged from 1 to 181 years. Age frequency distribution showed that the population is in decline. Most (51.2%) of the 814 living trees were 40-80 years old; only 6.5% were younger than 20 years. The average age of the 166 dead trees was 78 years. Fifty-nine percent of dead trees were aged 60-100 years. Survival of newly emerged seedlings was monitored for 7 years in a 557-m2 permanent plot. Mean survival in the 1st year of life was 1.7%. Only 2 of 1,008 seedlings lived longer than 1 year. Length of survival was not correlated with rainfall. Residual regeneration, an index of the difference between predicted and observed cohort size, showed that regeneration was high during the first half of the twentieth century and poor after the mid-1950s. Trends in regeneration did not reflect interannual variation in seasonal temperature or rain before 1950, that is, in the years before urban warming. Taken together, the seedling study and the regeneration analysis suggest that local population dynamics reflect biotic factors to such an extent that population age structure might not always be a reliable clue to past climatic influences.