WorldWideScience

Sample records for poplar populus leaves

  1. Efficient Agrobacterium-Mediated Transformation of Hybrid Poplar Populus davidiana Dode × Populus bollena Lauche

    Directory of Open Access Journals (Sweden)

    Xue Han

    2013-01-01

    Full Text Available Poplar is a model organism for high in vitro regeneration in woody plants. We have chosen a hybrid poplar Populus davidiana Dode × Populus bollena Lauche. By optimizing the Murashige and Skoog medium with (0.3 mg/L 6-benzylaminopurine and (0.08 mg/L naphthaleneacetic acid, we have achieved the highest frequency (90% for shoot regeneration from poplar leaves. It was also important to improve the transformation efficiency of poplar for genetic breeding and other applications. In this study, we found a significant improvement of the transformation frequency by controlling the leaf age. Transformation efficiency was enhanced by optimizing the Agrobacterium concentration (OD600 = 0.8–1.0 and an infection time (20–30 min. According to transmission electron microscopy observations, there were more Agrobacterium invasions in the 30-day-old leaf explants than in 60-day-old and 90-day-old explants. Using the green fluorescent protein (GFP marker, the expression of MD–GFP fusion proteins in the leaf, shoot, and root of hybrid poplar P. davidiana Dode × P. bollena Lauche was visualized for confirmation of transgene integration. Southern and Northern blot analysis also showed the integration of T-DNA into the genome and gene expression of transgenic plants. Our results suggest that younger leaves had higher transformation efficiency (~30% than older leaves (10%.

  2. Geochemical peculiarities of black poplar leaves (Populus nigra L.) in the sites with heavy metals intensive fallouts

    Science.gov (United States)

    Yalaltdinova, Albina; Baranovskaya, Natalya; Rikhvanov, Leonid; Matveenko, Irina

    2013-04-01

    The article deals with the content of 28 chemical elements in the leaves ash of black poplar (Populus nigra L.) growing in Ust-Kamenogorsk city area. It is the major industrial center of Kazakhstan Republic on the territory where the industrial giants of non-ferrous metallurgy and nuclear energy are situated. Comparative analysis with the similar data obtained from leaves ash of Populus nigra L. in Tomsk, Ekibastuz, and Pavlodar cities has revealed that in comparison with other urban areas, leaves ash of black poplar (Populus nigra L.) from Ust-Kamenogorsk city is characterized by elevated concentration rates of Ta, U, Zn, Ag, As, Sb, Br, Sr and Na. Within the city, the sites and areas with abnormal contents of typomorphic pollutants have been revealed. In the central part of the city, in the vicinity of lead-zinc plant and Ulba metallurgical plant, the highest concentrations of Ta, U, Zn, Ag, Au, As, Sb, Cr and Fe were marked. In the northeast, where the titanium-magnesium plant is located, elevated concentrations of Br and Sr were stated. Thus, the impact of major city enterprises which are the main sources of heavy metals is reflected in the element composition. Zn, As, Sb, Ag and Au comes from lead-zinc plant and its refinery plants, while Ulba metallurgical plant can be considered source of Ta and U in the environment, producing tantalum and fuel pellets for nuclear power plants. These companies, due to the current objective circumstances, are located in the central part of the city, have a significant negative effect on the environment and form the risk factors for human health.

  3. Gaseous NO2 effects on stomatal behavior, photosynthesis and respiration of hybrid poplar leaves

    Science.gov (United States)

    In this study, we used poplar as a model plant and investigated the effects of gaseous nitrogen dioxide (NO2, 4 microliter per liter) on stomatal conductance, photosynthesis, dark- and photorespiration of Populus alba x Populus berolinensis hybrid leaves using the photosynthesis system and scanning...

  4. Biochemical and Physiological Studies on the Effects of Senescence Leaves of Populus deltoides on Triticum vulgare

    Directory of Open Access Journals (Sweden)

    Tejinder Pal Khaket

    2014-01-01

    Full Text Available Triticum vulgare (Wheat based products are the major dietary source of food in developing countries. In India, it grows in association with boundary plantations of Populus deltoids (poplar. During winter, poplar enters in dormancy which cause a heavy leaf fall at the time of wheat seed germination. Large number of poplar senescence leaves may adversely affect the wheat. Therefore, the present study was performed to examine the effect of senescence poplar leaves on wheat germ and some other biochemical parameters. Seed’s germination rate was determined by measuring root and shoot lengths, percent germination, germination index, and inhibition percentage. Biochemical parameters, namely, pigment, carbohydrate, protein, and phenol content, were estimated. Activities of catalase and polyphenol oxidase which are stress marker enzymes were also measured. Results revealed that germination and other biochemical parameters of wheat were severely affected by senescence poplar leaves even at very low concentration. So, intercropping of poplar along with wheat may be chosen carefully as wheat is the major dietary staple.

  5. Boron accumulation and toxicity in hybrid poplar (Populus nigra × euramericana).

    Science.gov (United States)

    Rees, Rainer; Robinson, Brett H; Menon, Manoj; Lehmann, Eberhard; Günthardt-Goerg, Madeleine S; Schulin, Rainer

    2011-12-15

    Poplars accumulate high B concentrations and are thus used for the phytomanagement of B contaminated soils. Here, we performed pot experiments in which Populus nigra × euramericana were grown on a substrate with B concentrations ranging from 13 to 280 mg kg(-1) as H(3)BO(3). Salix viminalis, Brassica juncea, and Lupinus albus were grown under some growing conditions for comparison. Poplar growth was unaffected at soil B treatment levels up to 93 mg kg(-1). Growth was progressively reduced at levels of 168 and 280 mg kg(-1). None of the other species survived at these substrate B levels. At leaf B concentrations toxicity. Neutron radiography revealed that chlorotic leaf tissues had B concentrations of 1000-2000 mg kg(-1), while necrotic tissues had >2000 mg kg(-1). Average B concentrations of up to 3500 mg kg(-1) were found in leaves, while spots within leaves had concentrations >7000 mg kg(-1), showing that B accumulation in leaf tissue continued even after the onset of necrosis. The B accumulation ability of P. nigra × euramericana is associated with B hypertolerance in the living tissue and storage of B in dead leaf tissue.

  6. Repeated unidirectional introgression towards Populus balsamifera in contact zones of exotic and native poplars

    NARCIS (Netherlands)

    Thompson, S.L.; Lamothe, M.; Meirmans, P.G.; Périnet, P.; Isabel, N.

    2010-01-01

    As the evolutionary significance of hybridization is largely dictated by its extent beyond the first generation, we broadly surveyed patterns of introgression across a sympatric zone of two native poplars (Populus balsamifera, Populus deltoides) in Quebec, Canada within which European exotic Populus

  7. Cadmium accumulation and growth responses of a poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil

    Energy Technology Data Exchange (ETDEWEB)

    Wu Fuzhong [Faculty of Forestry, Sichuan Agricultural University, 625014, Ya' an (China); Yang Wanqin, E-mail: scyangwq@163.com [Faculty of Forestry, Sichuan Agricultural University, 625014, Ya' an (China); Zhang Jian; Zhou Liqiang [Faculty of Forestry, Sichuan Agricultural University, 625014, Ya' an (China)

    2010-05-15

    To characterize the phytoextraction efficiency of a hybrid poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil, a pot experiment in field was carried out in Sichuan basin, western China. After one growing period, the poplar accumulated the highest of 541.98 {+-} 19.22 and 576.75 {+-} 40.55 {mu}g cadmium per plant with 110.77 {+-} 12.68 and 202.54 {+-} 19.12 g dry mass in these contaminated purple soil and alluvial soil, respectively. Higher phytoextraction efficiency with higher cadmium concentration in tissues was observed in poplar growing in purple soil than that in alluvial soil at relative lower soil cadmium concentration. The poplar growing in alluvial soil had relative higher tolerance ability with lower reduction rates of morphological and growth characters than that in purple soil, suggesting that the poplar growing in alluvial soil might display the higher phytoextraction ability when cadmium contamination level increased. Even so, the poplars exhibited obvious cadmium transport from root to shoot in both soils regardless of cadmium contamination levels. It implies that this examined poplar can extract more cadmium than some hyperaccumulators. The results indicated that metal phytoextraction using the poplar can be applied to clean up soils moderately contaminated by cadmium in these purple soil and alluvial soil.

  8. Trinucleotide repeat microsatellite markers for Black Poplar (Populus nigra L.)

    NARCIS (Netherlands)

    Smulders, M.J.M.; Schoot, van der J.; Arens, P.; Vosman, B.

    2001-01-01

    Using an enrichment procedure, we have cloned microsatellite repeats from black poplar (Populus nigra L.) and developed primers for microsatellite marker analysis. Ten primer pairs, mostly for trinucleotide repeats, produced polymorphic fragments in P. nigra. Some of them also showed amplification

  9. Cadmium accumulation and growth responses of a poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil

    International Nuclear Information System (INIS)

    Wu Fuzhong; Yang Wanqin; Zhang Jian; Zhou Liqiang

    2010-01-01

    To characterize the phytoextraction efficiency of a hybrid poplar (Populus deltoids x Populus nigra) in cadmium contaminated purple soil and alluvial soil, a pot experiment in field was carried out in Sichuan basin, western China. After one growing period, the poplar accumulated the highest of 541.98 ± 19.22 and 576.75 ± 40.55 μg cadmium per plant with 110.77 ± 12.68 and 202.54 ± 19.12 g dry mass in these contaminated purple soil and alluvial soil, respectively. Higher phytoextraction efficiency with higher cadmium concentration in tissues was observed in poplar growing in purple soil than that in alluvial soil at relative lower soil cadmium concentration. The poplar growing in alluvial soil had relative higher tolerance ability with lower reduction rates of morphological and growth characters than that in purple soil, suggesting that the poplar growing in alluvial soil might display the higher phytoextraction ability when cadmium contamination level increased. Even so, the poplars exhibited obvious cadmium transport from root to shoot in both soils regardless of cadmium contamination levels. It implies that this examined poplar can extract more cadmium than some hyperaccumulators. The results indicated that metal phytoextraction using the poplar can be applied to clean up soils moderately contaminated by cadmium in these purple soil and alluvial soil.

  10. Early Events in Populus Hybrid and Fagus sylvatica Leaves Exposed to Ozone

    Directory of Open Access Journals (Sweden)

    R. Desotgiu

    2010-01-01

    Full Text Available This paper aims to investigate early responses to ozone in leaves of Fagus sylvatica (beech and Populus maximowiczii x Populus berolinensis (poplar. The experimental setup consisted of four open-air (OA plots, four charcoal-filtered (CF open-top chambers (OTCs, and four nonfiltered (NF OTCs. Qualitative and quantitative analyses were carried out on nonsymptomatic (CF and symptomatic (NF and OA leaves of both species. Qualitative analyses were performed applying microscopic techniques: Evans blue staining for detection of cell viability, CeCl3 staining of transmission electron microscope (TEM samples to detect the accumulation of H2O2, and multispectral fluorescence microimaging and microspectrofluorometry to investigate the accumulation of fluorescent phenolic compounds in the walls of the damaged cells. Quantitative analyses consisted of the analysis of the chlorophyll a fluorescence transients (fast kinetics. The early responses to ozone were demonstrated by the Evans blue and CeCl3 staining techniques that provided evidence of plant responses in both species 1 month before foliar symptoms became visible. The fluorescence transients analysis, too, demonstrated the breakdown of the oxygen evolving system and the inactivation of the end receptors of electrons at a very early stage, both in poplar and in beech. The accumulation of phenolic compounds in the cell walls, on the other hand, was a species-specific response detected in poplar, but not in beech. Evans blue and CeCl3 staining, as well as the multispectral fluorescence microimaging and microspectrofluorometry, can be used to support the field diagnosis of ozone injury, whereas the fast kinetics of chlorophyll fluorescence provides evidence of early physiological responses.

  11. Phytoextraction potential of poplar (Populus alba L. var. pyramidalis Bunge) from calcareous agricultural soils contaminated by cadmium.

    Science.gov (United States)

    Hu, Yahu; Nan, Zhongren; Jin, Cheng; Wang, Ning; Luo, Huanzhang

    2014-01-01

    To investigate the phytoextraction potential of Populus alba L. var. pyramidalis Bunge for cadmium (Cd) contaminated calcareous soils, a concentration gradient experiment and a field sampling experiment (involving poplars of different ages) were conducted. The translocation factors for all experiments and treatments were greater than 1. The bioconcentration factor decreased from 2.37 to 0.25 with increasing soil Cd concentration in the concentration gradient experiment and generally decreased with stand age under field conditions. The Cd concentrations in P. pyramidalis organs decreased in the order of leaves > stems > roots. The shoot biomass production in the concentration gradient experiment was not significantly reduced with soil Cd concentrations up to or slightly over 50 mg kg(-1). The results show that the phytoextraction efficiency of P. pyramidalis depends on both the soil Cd concentration and the tree age. Populus pyramidalis is most suitable for remediation of slightly Cd contaminated calcareous soils through the combined harvest of stems and leaves under actual field conditions.

  12. The use of the white poplar (Populus alba L.) biomass as fuel

    Institute of Scientific and Technical Information of China (English)

    Tatiana Griu; Aurel Lunguleasa

    2016-01-01

    We determined the calorific value of white poplar (Populus alba L.) woody biomass to use it as fire-wood. The value of 19.133 MJ kg-1 obtained experimen-tally shows that the white poplar can be quite successfully used as firewood. Being of a lower quality in comparison with usual beech firewood, the white poplar has similar calorific value. The white poplar has a calorific density of 30.7%lower than that of current firewood. That is why the price of this firewood from white poplar is lower accord-ingly. Also, the prognosis of calorific value on the basis of the main chemical elements, being very close to the experimental value (?2.6%), indicates an appropriate value can be achieved to be used for investigation with the chemical element analysis.

  13. Molecular genetic analysis of black poplar (Populus nigra L.) along Dutch rivers

    NARCIS (Netherlands)

    Arens, P.; Coops, H.; Jansen, J.; Vosman, B.

    1998-01-01

    The genetic structure of remaining black poplar (Populus nigra) trees on the banks of the Dutch Rhine branches was investigated using the AFLP technique. In total, 143 trees, including one P. deltoides and some P. x euramericana, were analysed using six AFLP primer combinations which generated 319

  14. Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones

    International Nuclear Information System (INIS)

    Lingua, Guido; Franchin, Cinzia; Todeschini, Valeria; Castiglione, Stefano; Biondi, Stefania; Burlando, Bruno; Parravicini, Valerio; Torrigiani, Patrizia; Berta, Graziella

    2008-01-01

    The effects of a high concentration of zinc on two registered clones of poplar (Populus alba Villafranca and Populus nigra Jean Pourtet), inoculated or not with two arbuscular mycorrhizal fungi (Glomus mosseae or Glomus intraradices) before transplanting them into polluted soil, were investigated, with special regard to the extent of root colonization by the fungi, plant growth, metal accumulation in the different plant organs, and leaf polyamine concentration. Zinc accumulation was lower in Jean Pourtet than in Villafranca poplars, and it was mainly translocated to the leaves; the metal inhibited mycorrhizal colonization, compromised plant growth, and, in Villafranca, altered the putrescine profile in the leaves. Most of these effects were reversed or reduced in plants pre-inoculated with G. mosseae. Results indicate that poplars are suitable for phytoremediation purposes, confirming that mycorrhizal fungi can be useful for phytoremediation, and underscore the importance of appropriate combinations of plant genotypes and fungal symbionts. - Inoculation with arbuscular mycorrhizal fungi can improve poplar tolerance to heavy metals in phytoremediation programmes

  15. Differentiation of Populus species using chloroplast single nucleotide polymorphism (SNP) markers--essential for comprehensible and reliable poplar breeding.

    Science.gov (United States)

    Schroeder, H; Hoeltken, A M; Fladung, M

    2012-03-01

    Within the genus Populus several species belonging to different sections are cross-compatible. Hence, high numbers of interspecies hybrids occur naturally and, additionally, have been artificially produced in huge breeding programmes during the last 100 years. Therefore, determination of a single poplar species, used for the production of 'multi-species hybrids' is often difficult, and represents a great challenge for the use of molecular markers in species identification. Within this study, over 20 chloroplast regions, both intergenic spacers and coding regions, have been tested for their ability to differentiate different poplar species using 23 already published barcoding primer combinations and 17 newly designed primer combinations. About half of the published barcoding primers yielded amplification products, whereas the new primers designed on the basis of the total sequenced cpDNA genome of Populus trichocarpa Torr. & Gray yielded much higher amplification success. Intergenic spacers were found to be more variable than coding regions within the genus Populus. The highest discrimination power of Populus species was found in the combination of two intergenic spacers (trnG-psbK, psbK-psbl) and the coding region rpoC. In barcoding projects, the coding regions matK and rbcL are often recommended, but within the genus Populus they only show moderate variability and are not efficient in species discrimination. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  16. Laboratory-scale measurements of N2O and CH4 emissions from hybrid poplars (Populus deltoides x Populus nigra).

    Science.gov (United States)

    McBain, M C; Warland, J S; McBride, R A; Wagner-Riddle, C

    2004-12-01

    The purpose of this study was to determine whether or not young hybrid poplar (Populus deltoides x Populus nigra) could transport landfill biogas internally from the root zone to the atmosphere, thereby acting as conduits for landfill gas release. Fluxes of methane (CH4) and nitrous oxide (N2O) from the seedlings to the atmosphere were measured under controlled conditions using dynamic flux chambers and a tunable diode laser trace gas analyser (TDLTGA). Nitrous oxide was emitted from the seedlings, but only when extremely high soil N2O concentrations were applied to the root zone. In contrast, no detectable emissions of CH4 were measured in a similar experimental trial. Visible plant morphological responses, characteristic of flood-tolerant trees attempting to cope with the negative effects of soil hypoxia, were observed during the CH4 experiments. Leaf chlorosis, leaf abscission and adventitious roots were all visible plant responses. In addition, seedling survival was observed to be highest in the biogas 'hot spot' areas of a local municipal solid waste landfill involved in this study. Based on the available literature, these observations suggest that CH4 can be transported internally by Populus deltoides x Populus nigra seedlings in trace amounts, although future research is required to fully test this hypothesis.

  17. Genetic Modification of Lignin in Hybrid Poplar (Populus alba × Populus tremula) Does Not Substantially Alter Plant Defense or Arthropod Communities.

    Science.gov (United States)

    Buhl, Christine; Meilan, Richard; Lindroth, Richard L

    2017-05-01

    Lignin impedes access to cellulose during biofuel production and pulping but trees can be genetically modified to improve processing efficiency. Modification of lignin may have nontarget effects on mechanical and chemical resistance and subsequent arthropod community responses with respect to pest susceptibility and arthropod biodiversity. We quantified foliar mechanical and chemical resistance traits in lignin-modified and wild-type (WT) poplar (Populus alba × Populus tremula) grown in a plantation and censused arthropods present on these trees to determine total abundance, as well as species richness, diversity and community composition. Our results indicate that mechanical resistance was not affected by lignin modification and only one genetic construct resulted in a (modest) change in chemical resistance. Arthropod abundance and community composition were consistent across modified and WT trees, but transgenics produced using one construct exhibited higher species richness and diversity relative to the WT. Our findings indicate that modification of lignin in poplar does not negatively affect herbivore resistance traits or arthropod community response, and may even result in a source of increased genetic diversity in trees and arthropod communities. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  18. A survey of poplar (populus nigra rust and identification of fungal agent species with conventional and molecular approaches in Maragheh area of Iran.

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Damadi

    2014-12-01

    Full Text Available In a survey for rust diseases in Maragheh area rust symptoms were observed on poplars (Populus nigra in Maragheh city parks and orchards near the city. Uredinia and urediniospores typical of Melampsora were present on the underside of leaves. Paraphyses were clavate with walls evenly thick and Telia, formed on the leaves early in the autumn, were epiphyllous and subepidermal. DNA was extracted from urediniospores and the primers ITS1 and ITS4 were used to amplify the internal transcribed spacer region of the ribosomal DNA. Based on the key provided by Bagyanarayana and the species description by Pei and Shang, and the result of sequencing, the causal agent was identified as Melampsora allii-populina Kelb. Melampsora species are mainly determined based on their morphology, alternate hosts and telial host range. However, in most cases, only one or two spore stages could be found at the time of observation and there is no information of the alternate hosts. This is the first study of poplar rust disease to the species level in the area. Rust disease is likely to be the most important disease on poplar in this area. As poplar rust can cause severe damages to nursery plants and young trees, there must be further research to understand the epidemiology of the rust disease. A key question to be answered is whether the rust goes through a full life-cycle, possible via known alternate host Allium spp. or only uredinial and telial stages are present in the studied area.

  19. Thidiazuron: A potent cytokinin for efficient plant regeneration in Himalayan poplar (Populus ciliata Wall. using leaf explants

    Directory of Open Access Journals (Sweden)

    Gaurav Aggarwal

    2012-11-01

    Full Text Available Populus species are important resource for certain branches of industry and have special roles for scientific study on biological and agricultural systems. The present investigation was undertaken with an objective of enhancing the frequency of plant regeneration in Himalayan poplar (Populus ciliata Wall.. The effect of Thiadizuron (TDZ alone and in combination with adenine and α-Naphthalene acetic acid (NAA were studied on the regeneration potential of leaf explants. A high efficiency of shoot regeneration was observed in leaf (80.00% explants on MS basal medium supplemented with 0.024 mg/l TDZ and 79.7 mg/l adenine. Elongation and multiplication of shoots were obtained on Murashige and Skoog (MS basal medium, containing 0.5 mg/l 6. Benzyl aminopurine (BAP + 0.2mg/l Indole 3-acetic acid (IAA + 0.3 mg/l Gibberellic acid (GA3. High frequency root regeneration from in vitro developed shoots was observed on MS basal medium supplemented with 0.10 mg/l Indole 3-butyric acid(IBA. Maximum of the in vitro rooted plantlets were well accomplished to the mixture of sand: soil (1:1 and exhibited similar morphology with the field plants. A high efficiency plant regeneration protocol has been developedfrom leaf explants in Himalayan poplar (Populus ciliata Wall..

  20. The Populus superoxide dismutase gene family and its responses to drought stress in transgenic poplar overexpressing a pine cytosolic glutamine synthetase (GS1a.

    Directory of Open Access Journals (Sweden)

    Juan Jesús Molina-Rueda

    Full Text Available BACKGROUND: Glutamine synthetase (GS plays a central role in plant nitrogen assimilation, a process intimately linked to soil water availability. We previously showed that hybrid poplar (Populus tremula X alba, INRA 717-1B4 expressing ectopically a pine cytosolic glutamine synthetase gene (GS1a display enhanced tolerance to drought. Preliminary transcriptome profiling revealed that during drought, members of the superoxide dismutase (SOD family were reciprocally regulated in GS poplar when compared with the wild-type control, in all tissues examined. SOD was the only gene family found to exhibit such patterns. RESULTS: In silico analysis of the Populus genome identified 12 SOD genes and two genes encoding copper chaperones for SOD (CCSs. The poplar SODs form three phylogenetic clusters in accordance with their distinct metal co-factor requirements and gene structure. Nearly all poplar SODs and CCSs are present in duplicate derived from whole genome duplication, in sharp contrast to their predominantly single-copy Arabidopsis orthologs. Drought stress triggered plant-wide down-regulation of the plastidic copper SODs (CSDs, with concomitant up-regulation of plastidic iron SODs (FSDs in GS poplar relative to the wild type; this was confirmed at the activity level. We also found evidence for coordinated down-regulation of other copper proteins, including plastidic CCSs and polyphenol oxidases, in GS poplar under drought conditions. CONCLUSIONS: Both gene duplication and expression divergence have contributed to the expansion and transcriptional diversity of the Populus SOD/CCS families. Coordinated down-regulation of major copper proteins in drought-tolerant GS poplars supports the copper cofactor economy model where copper supply is preferentially allocated for plastocyanins to sustain photosynthesis during drought. Our results also extend previous findings on the compensatory regulation between chloroplastic CSDs and FSDs, and suggest that this

  1. Cadmium phytoextraction potential of poplar clones (Populus spp.)

    Energy Technology Data Exchange (ETDEWEB)

    Pilipovic, A.; Orlovic, S.; Petrovic, N. [Faculty of Agriculture, Inst. of Lowland Forestry and Environment, Novi Sad (Czechoslovakia); Nikolic, N.; Krstic, B. [Faculty of Natural Sciences, Dept. of Biology and Ecology, Novi Sad (Czechoslovakia)

    2005-04-01

    Biomass production, leaf number and area, photosynthetic and dark respiration rates, leaf concentration of photosynthetic pigments, nitrate reductase activity, as well as cadmium concentrations in leaves, stem, and roots were measured in poplar clones PE 4/68, B-229, 665, and 45/51. Plants were grown hydroponically under controlled conditions and treated with two different cadmium (Cd) concentrations (10{sup -5} and 10{sup -7} M) in the same background solution (Hoagland's solution). The presence of Cd did not cause serious disturbance of growth and physiological parameters in the studied poplar clones. Cd concentrations in plant tissues reflected external concentrations. In treated plants, root contents increased from 38.57 to 511.51 ppm, leaf contents from 0.91 to 7.50, while stem contents ranged from 1.37 to 9.50 ppm. (orig.)

  2. Phytoextraction of risk elements by willow and poplar trees.

    Science.gov (United States)

    Kacálková, Lada; Tlustoš, Pavel; Száková, Jiřina

    2015-01-01

    To characterize the phytoextraction efficiency of two clones of willow trees (Salix x smithiana Willd., Salix rubens) and two clones of poplar trees (Populus nigra x maximowiczii, Populus nigra Wolterson) were planted in contaminated soil (0.4-2.0 mg Cd.kg(-1), 78-313 mg Zn.kg(-1), 21.3-118 mg Cu.kg(-1)). Field experiment was carried out in Czech Republic. The study investigated their ability to accumulate heavy metals (Cd, Zn, and Cu) in harvestable plant parts. The poplars produced higher amount of biomass than willows. Both Salix clones accumulated higher amount of Cd, Zn and Cu in their biomass (maximum 6.8 mg Cd.kg(-1), 909 mg Zn.kg(-1), and 17.7 mg Cu.kg(-1)) compared to Populus clones (maximum 2.06 mg Cd.kg(-1), 463 mg Zn.kg(-1), and 11.8 mg Cu.kg(-1)). There were no significant differences between clones of individual species. BCs for Cd and Zn were greater than 1 (the highest in willow leaves). BCs values of Cu were very low. These results indicate that Salix is more suitable plant for phytoextraction of Cd and Zn than Populus. The Cu phytoextraction potential of Salix and Populus trees was not confirmed in this experiment due to low soil availability of this element.

  3. Genetic origin and composition of a natural hybrid poplar Populus???jrtyschensis from two distantly related species

    OpenAIRE

    Jiang, Dechun; Feng, Jianju; Dong, Miao; Wu, Guili; Mao, Kangshan; Liu, Jianquan

    2016-01-01

    Background The factors that contribute to and maintain hybrid zones between distinct species are highly variable, depending on hybrid origins, frequencies and fitness. In this study, we aimed to examine genetic origins, compositions and possible maintenance of Populus???jrtyschensis, an assumed natural hybrid between two distantly related species. This hybrid poplar occurs mainly on the floodplains along the river valleys between the overlapping distributions of the two putative parents. Resu...

  4. Determination of As in tree-rings of poplar (Populus alba L.) by U-shaped DC arc.

    Science.gov (United States)

    Marković, D M; Novović, I; Vilotić, D; Ignjatović, Lj

    2009-04-01

    An argon-stabilized U-shaped DC arc with a system for aerosol introduction was used for determination of As in poplar (Populus alba L.) tree-rings. After optimization of the operating parameters and selection of the most appropriate signal integration time (30 s), the limit of detection for As was reduced to 15.0 ng/mL. This detection limit obtained with the optimal integration time was compared with those for other methods: inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasma-atomic emission spectrometry (DCP-AES), microwave induced plasma-atomic emission spectrometry (MIP-AES) and improved thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS). Arsenic is toxic trace element which can adversely affect plant, animal and human health. As an indicator of environment pollution we collected poplar tree-rings from two locations. The first area was close to the "Nikola Tesla" (TENT-A) power plant, Obrenovac, while the other was in the urban area of Novi Sad. In all cases elevated average concentrations of As were registered in poplar tree-rings from the Obrenovac location.

  5. Black poplar-tree (Populus nigra L.) bark as an alternative indicator of urban air pollution by chemical elements

    International Nuclear Information System (INIS)

    Berlizov, A.N.; Malyuk, I.A.; Tryshyn, V.V.

    2008-01-01

    Capabilities of black poplar-tree (Populus nigra L.) bark as a biomonitor of atmospheric air pollution by chemical elements were tested against epiphytic lichens Xanthoria parietina (L.) and Physcia adscendens (Fr.). Concentrations of 40 macro and trace elements were determined using epicadmium and instrumental NAA. The data obtained were processed using non-parametric tests. A good correlation was found between concentrations of majority of elements in bark and lichens. On the accumulation capability bark turned out to be competitive with both lichens examined. The main inorganic components of black poplar-tree bark were revealed. A substrate influence on the concentrations of some elements in epiphytic lichens was established. An optimized procedure of bark pre-irradiation treatment was suggested. (author)

  6. Isolation and characterization of cDNAs encoding leucoanthocyanidin reductase and anthocyanidin reductase from Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Lijun Wang

    Full Text Available Proanthocyanidins (PAs contribute to poplar defense mechanisms against biotic and abiotic stresses. Transcripts of PA biosynthetic genes accumulated rapidly in response to infection by the fungus Marssonina brunnea f.sp. multigermtubi, treatments of salicylic acid (SA and wounding, resulting in PA accumulation in poplar leaves. Anthocyanidin reductase (ANR and leucoanthocyanidin reductase (LAR are two key enzymes of the PA biosynthesis that produce the main subunits: (+-catechin and (--epicatechin required for formation of PA polymers. In Populus, ANR and LAR are encoded by at least two and three highly related genes, respectively. In this study, we isolated and functionally characterized genes PtrANR1 and PtrLAR1 from P. trichocarpa. Phylogenetic analysis shows that Populus ANR1 and LAR1 occurr in two distinct phylogenetic lineages, but both genes have little difference in their tissue distribution, preferentially expressed in roots. Overexpression of PtrANR1 in poplar resulted in a significant increase in PA levels but no impact on catechin levels. Antisense down-regulation of PtrANR1 showed reduced PA accumulation in transgenic lines, but increased levels of anthocyanin content. Ectopic expression of PtrLAR1 in poplar positively regulated the biosynthesis of PAs, whereas the accumulation of anthocyanin and flavonol was significantly reduced (P<0.05 in all transgenic plants compared to the control plants. These results suggest that both PtrANR1 and PtrLAR1 contribute to PA biosynthesis in Populus.

  7. Isoprene emission by poplar is not important for the feeding behaviour of poplar leaf beetles

    OpenAIRE

    M?ller, Anna; Kaling, Moritz; Faubert, Patrick; Gort, Gerrit; Smid, Hans M; Van Loon, Joop JA; Dicke, Marcel; Kanawati, Basem; Schmitt-Kopplin, Philippe; Polle, Andrea; Schnitzler, J?rg-Peter; Rosenkranz, Maaria

    2015-01-01

    Background Chrysomela populi (poplar leaf beetle) is a common herbivore in poplar plantations whose infestation causes major economic losses. Because plant volatiles act as infochemicals, we tested whether isoprene, the main volatile organic compound (VOC) produced by poplars (Populus x canescens), affects the performance of C. populi employing isoprene emitting (IE) and transgenic isoprene non-emitting (NE) plants. Our hypothesis was that isoprene is sensed and affects beetle orientation or ...

  8. Transcriptome Analysis of Poplar during Leaf Spot Infection with Sphaerulina spp.

    Directory of Open Access Journals (Sweden)

    Adam J Foster

    Full Text Available Diseases of poplar caused by the native fungal pathogen Sphaerulina musiva and related species are of growing concern, particularly with the increasing interest in intensive poplar plantations to meet growing energy demands. Sphaerulina musiva is able to cause infection on leaves, resulting in defoliation and canker formation on stems. To gain a greater understanding of the different responses of poplar species to infection caused by the naturally co-evolved Sphaerulina species, RNA-seq was conducted on leaves of Populus deltoides, P. balsamifera and P. tremuloides infected with S. musiva, S. populicola and a new undescribed species, Ston1, respectively. The experiment was designed to contain the pathogen in a laboratory environment, while replicating disease development in commercial plantations. Following inoculation, trees were monitored for disease symptoms, pathogen growth and host responses. Genes involved in phenylpropanoid, terpenoid and flavonoid biosynthesis were generally upregulated in P. balsamifera and P. tremuloides, while cell wall modification appears to play an important role in the defense of P. deltoides. Poplar defensive genes were expressed early in P. balsamifera and P. tremuloides, but their expression was delayed in P. deltoides, which correlated with the rate of disease symptoms development. Also, severe infection in P. balsamifera led to leaf abscission. This data gives an insight into the large differences in timing and expression of genes between poplar species being attacked by their associated Sphaerulina pathogen.

  9. Subcellular localization of cadmium in hyperaccumulator Populus ...

    African Journals Online (AJOL)

    In this study, subcellular localization of cadmium in hyperaccumulator grey poplar (Populus × canescens) was investigated by the transmission electron microscopy (TEM) method. Young Populus × canescens were grown and hydroponic experiments were conducted under four Cd2+ concentrations (10, 30, 50, and 70 μM) ...

  10. Expression and molecular evolution of two DREB1 genes in black poplar (Populus nigra.

    Directory of Open Access Journals (Sweden)

    Yanguang Chu

    Full Text Available Environmental stresses such as low temperature, drought, and high salinity significantly affect plant growth and yield. As selective forces, these adverse factors play essential roles in shaping phenotypic variation in plant populations. Black poplar (Populus nigra is an economically and ecologically important forest tree species with widely distributed populations and is thus suitable for experiments detecting evolutionary footprints left by stress. Here, we performed expression and evolutionary analysis of two duplicated DREB A1-subgroup (DREB1 genes, PnDREB68 and PnDREB69, encoding transcription factors that are involved in stress responses. The two genes showed partially overlapping but distinct expression patterns in response to stresses. These genes were strongly and rapidly induced by cold stress in leaves, stems, and roots. In leaf tissue, dehydration stress induced the expression of PnDREB68 but not PnDREB69. PnDREB69 displayed more rapid responses and longer expression durations than PnDREB68 under salt and ABA stress, respectively. Based on single nucleotide polymorphism (SNP analysis, we found significant population genetic differentiation, with a greater FST value (0.09189 for PnDREB69 than for PnDREB68 (0.07743. Nucleotide diversity analysis revealed a two-fold higher πT for PnDREB68 than for PnDREB69 (0.00563 vs. 0.00243, reflecting strong purifying selection acting on the former. The results suggest that positive selection acted on PnDREB69, as evidenced by neutral testing using Tajima's D statistic. The distinct selective forces to which each of the genes was subjected may be associated with expression divergence. Linkage disequilibrium (LD was low for the sequenced region, with a higher level for PnDREB68 than for PnDREB69. Additionally, analysis of the relationship among carbon isotope ratios, SNP classes and gene expression, together with motif and domain analysis, suggested that 14 polymorphisms within the two genes may be

  11. Lignin engineering in field-grown poplar trees affects the endosphere bacterial microbiome.

    Science.gov (United States)

    Beckers, Bram; Op De Beeck, Michiel; Weyens, Nele; Van Acker, Rebecca; Van Montagu, Marc; Boerjan, Wout; Vangronsveld, Jaco

    2016-02-23

    Cinnamoyl-CoA reductase (CCR), an enzyme central to the lignin biosynthetic pathway, represents a promising biotechnological target to reduce lignin levels and to improve the commercial viability of lignocellulosic biomass. However, silencing of the CCR gene results in considerable flux changes of the general and monolignol-specific lignin pathways, ultimately leading to the accumulation of various extractable phenolic compounds in the xylem. Here, we evaluated host genotype-dependent effects of field-grown, CCR-down-regulated poplar trees (Populus tremula × Populus alba) on the bacterial rhizosphere microbiome and the endosphere microbiome, namely the microbiota present in roots, stems, and leaves. Plant-associated bacteria were isolated from all plant compartments by selective isolation and enrichment techniques with specific phenolic carbon sources (such as ferulic acid) that are up-regulated in CCR-deficient poplar trees. The bacterial microbiomes present in the endosphere were highly responsive to the CCR-deficient poplar genotype with remarkably different metabolic capacities and associated community structures compared with the WT trees. In contrast, the rhizosphere microbiome of CCR-deficient and WT poplar trees featured highly overlapping bacterial community structures and metabolic capacities. We demonstrate the host genotype modulation of the plant microbiome by minute genetic variations in the plant genome. Hence, these interactions need to be taken into consideration to understand the full consequences of plant metabolic pathway engineering and its relation with the environment and the intended genetic improvement.

  12. The poplar basic helix-loop-helix transcription factor BEE3 – Like gene affects biomass production by enhancing proliferation of xylem cells in poplar

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Seol Ah, E-mail: s6022029@korea.ac.kr; Choi, Young-Im, E-mail: yichoi99@forest.go.kr; Cho, Jin-Seong, E-mail: jinsung3932@gmail.com; Lee, Hyoshin, E-mail: hslee@forest.go.kr

    2015-06-19

    Brassinosteroids (BRs) play important roles in many aspects of plant growth and development, including regulation of vascular cambium activities and cell elongation. BR-induced BEE3 (brassinosteroid enhanced expression 3) is required for a proper BR response. Here, we identified a poplar (Populus alba × Populus glandulosa) BEE3-like gene, PagBEE3L, encoding a putative basic helix-loop-helix (bHLH)-type transcription factor. Expression of PagBEE3L was induced by brassinolide (BL). Transcripts of PagBEE3L were mainly detected in stems, with the internode having a low level of transcription and the node having a relatively higher level. The function of the PagBEE3L gene was investigated through phenotypic analyses with PagBEE3L-overexpressing (ox) transgenic lines. This work particularly focused on a potential role of PagBEE3L in stem growth and development of polar. The PagBEE3L-ox poplar showed thicker and longer stems than wild-type plants. The xylem cells from the stems of PagBEE3L-ox plants revealed remarkably enhanced proliferation, resulting in an earlier thickening growth than wild-type plants. Therefore, this work suggests that xylem development of poplar is accelerated in PagBEE3L-ox plants and PagBEE3L plays a role in stem growth by increasing the proliferation of xylem cells to promote the initial thickening growth of poplar stems. - Highlights: • We identify the BEE3-like gene form hybrid poplar (Populus alba × Populus glandulosa). • We examine effects of overexpression of PagBEE3L on growth in poplar. • We found that 35S:BEE3L transgenic plants showed more rapid growth than wild-type plants. • BEE3L protein plays an important role in the development of plant stem.

  13. The poplar basic helix-loop-helix transcription factor BEE3 – Like gene affects biomass production by enhancing proliferation of xylem cells in poplar

    International Nuclear Information System (INIS)

    Noh, Seol Ah; Choi, Young-Im; Cho, Jin-Seong; Lee, Hyoshin

    2015-01-01

    Brassinosteroids (BRs) play important roles in many aspects of plant growth and development, including regulation of vascular cambium activities and cell elongation. BR-induced BEE3 (brassinosteroid enhanced expression 3) is required for a proper BR response. Here, we identified a poplar (Populus alba × Populus glandulosa) BEE3-like gene, PagBEE3L, encoding a putative basic helix-loop-helix (bHLH)-type transcription factor. Expression of PagBEE3L was induced by brassinolide (BL). Transcripts of PagBEE3L were mainly detected in stems, with the internode having a low level of transcription and the node having a relatively higher level. The function of the PagBEE3L gene was investigated through phenotypic analyses with PagBEE3L-overexpressing (ox) transgenic lines. This work particularly focused on a potential role of PagBEE3L in stem growth and development of polar. The PagBEE3L-ox poplar showed thicker and longer stems than wild-type plants. The xylem cells from the stems of PagBEE3L-ox plants revealed remarkably enhanced proliferation, resulting in an earlier thickening growth than wild-type plants. Therefore, this work suggests that xylem development of poplar is accelerated in PagBEE3L-ox plants and PagBEE3L plays a role in stem growth by increasing the proliferation of xylem cells to promote the initial thickening growth of poplar stems. - Highlights: • We identify the BEE3-like gene form hybrid poplar (Populus alba × Populus glandulosa). • We examine effects of overexpression of PagBEE3L on growth in poplar. • We found that 35S:BEE3L transgenic plants showed more rapid growth than wild-type plants. • BEE3L protein plays an important role in the development of plant stem

  14. Changes in photosynthesis, mesophyll conductance to CO2, and isoprenoid emissions in Populus nigra plants exposed to excess nickel

    International Nuclear Information System (INIS)

    Velikova, Violeta; Tsonev, Tsonko; Loreto, Francesco; Centritto, Mauro

    2011-01-01

    Poplar (Populus nigra) plants were grown hydroponically with 30 and 200 μM Ni (Ni 30 and Ni 200 ). Photosynthesis limitations and isoprenoid emissions were investigated in two leaf types (mature and developing). Ni stress significantly decreased photosynthesis, and this effect depended on the leaf Ni content, which was lower in mature than in developing leaves. The main limitations to photosynthesis were attributed to mesophyll conductance and metabolism impairment. In Ni-stressed developing leaves, isoprene emission was significantly stimulated. We attribute such stimulation to the lower chloroplastic [CO 2 ] than in control leaves. However chloroplastic [CO 2 ] did not control isoprene emission in mature leaves. Ni stress induced the emission of cis-β-ocimene in mature leaves, and of linalool in both leaf types. Induced biosynthesis and emission of isoprenoids reveal the onset of antioxidant processes that may also contribute to reduce Ni stress, especially in mature poplar leaves. - Graphical abstract: Visible damage caused by Ni treatment. 1 - Ni 0 (control plants); 2 - Ni 200 ; M = mature and D = developing Populus nigra leaves. Display Omitted Highlights: → We study the effect of Ni pollution on photosynthesis and isoprenoid emissions. → Ni stress significantly decreases photosynthesis. The main limitations are attributed to mesophyll conductance and metabolism impairment. → Constitutive isoprene emission was significantly stimulated in Ni-stressed leaves. Exposure to enhanced Ni concentration induces cis-beta-ocimene and linalool emissions. - The study reveals consequences of Ni stress on plant physiology, namely increasing diffusional limitation to photosynthesis and isoprenoid emissions.

  15. Genotypic variations in the dynamics of metal concentrations in poplar leaves: A field study with a perspective on phytoremediation

    International Nuclear Information System (INIS)

    Pottier, Mathieu; García de la Torre, Vanesa S.; Victor, Cindy; David, Laure C.; Chalot, Michel; Thomine, Sébastien

    2015-01-01

    Poplar is commonly used for phytoremediation of metal polluted soils. However, the high concentrations of trace elements present in leaves may return to soil upon leaf abscission. To investigate the mechanisms controlling leaf metal content, metal concentrations and expression levels of genes involved in metal transport were monitored at different developmental stages on leaves from different poplar genotypes growing on a contaminated field. Large differences in leaf metal concentrations were observed among genotypes. Whereas Mg was remobilized during senescence, Zn and Cd accumulation continued until leaf abscission in all genotypes. A positive correlation between Natural Resistance Associated Macrophage Protein 1 (NRAMP1) expression levels and Zn bio-concentration factors was observed. Principal component analyses of metal concentrations and gene expression levels clearly discriminated poplar genotypes. This study highlights a general absence of trace element remobilization from poplar leaves despite genotype specificities in the control of leaf metal homeostasis. - Highlights: • Poplar genotypes display large variations in leaf metal concentrations. • Trace elements are not remobilized during poplar leaf senescence. • Distinct transporter genes control metal homeostasis at different leaf stages. • Poplar genotypes use distinct mechanisms to control leaf metal homeostasis. • NRAMP1 metal transporter could contribute to Zn and Cd accumulation in poplar leaves. - In order to improve metal phytoextraction using poplars, this work provides new insights on the control of leaf metal concentrations through principal component and correlative analyses

  16. Changes in photosynthesis, mesophyll conductance to CO{sub 2}, and isoprenoid emissions in Populus nigra plants exposed to excess nickel

    Energy Technology Data Exchange (ETDEWEB)

    Velikova, Violeta, E-mail: violet@obzor.bio21.bas.bg [Bulgarian Academy of Sciences, Acad. M. Popov Institute of Plant Physiology, Acad. G. Bonchev, Bl. 21, 1113 Sofia (Bulgaria); Tsonev, Tsonko [Bulgarian Academy of Sciences, Acad. M. Popov Institute of Plant Physiology, Acad. G. Bonchev, Bl. 21, 1113 Sofia (Bulgaria); Loreto, Francesco [Consiglio Nazionale delle Ricerche, Istituto per la Protezione delle Piante, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze (Italy); Centritto, Mauro [Consiglio Nazionale delle Ricerche, Istituto di Biologia Agroambientale e Forestale, 00015 Monterotondo Scalo (RM) (Italy)

    2011-05-15

    Poplar (Populus nigra) plants were grown hydroponically with 30 and 200 {mu}M Ni (Ni{sub 30} and Ni{sub 200}). Photosynthesis limitations and isoprenoid emissions were investigated in two leaf types (mature and developing). Ni stress significantly decreased photosynthesis, and this effect depended on the leaf Ni content, which was lower in mature than in developing leaves. The main limitations to photosynthesis were attributed to mesophyll conductance and metabolism impairment. In Ni-stressed developing leaves, isoprene emission was significantly stimulated. We attribute such stimulation to the lower chloroplastic [CO{sub 2}] than in control leaves. However chloroplastic [CO{sub 2}] did not control isoprene emission in mature leaves. Ni stress induced the emission of cis-{beta}-ocimene in mature leaves, and of linalool in both leaf types. Induced biosynthesis and emission of isoprenoids reveal the onset of antioxidant processes that may also contribute to reduce Ni stress, especially in mature poplar leaves. - Graphical abstract: Visible damage caused by Ni treatment. 1 - Ni{sub 0} (control plants); 2 - Ni{sub 200}; M = mature and D = developing Populus nigra leaves. Display Omitted Highlights: > We study the effect of Ni pollution on photosynthesis and isoprenoid emissions. > Ni stress significantly decreases photosynthesis. The main limitations are attributed to mesophyll conductance and metabolism impairment. > Constitutive isoprene emission was significantly stimulated in Ni-stressed leaves. Exposure to enhanced Ni concentration induces cis-beta-ocimene and linalool emissions. - The study reveals consequences of Ni stress on plant physiology, namely increasing diffusional limitation to photosynthesis and isoprenoid emissions.

  17. Lead uptake increases drought tolerance of wild type and transgenic poplar (Populus tremula x P. alba) overexpressing gsh 1.

    Science.gov (United States)

    Samuilov, Sladjana; Lang, Friedericke; Djukic, Matilda; Djunisijevic-Bojovic, Danijela; Rennenberg, Heinz

    2016-09-01

    Growth and development of plants largely depends on their adaptation ability in a changing climate. This is particularly true on heavy metal contaminated soils, but the interaction of heavy metal stress and climate on plant performance has not been intensively investigated. The aim of the present study was to elucidate if transgenic poplars (Populus tremula x P. alba) with enhanced glutathione content possess an enhanced tolerance to drought and lead (Pb) exposure (single and in combination) and if they are good candidates for phytoremediation of Pb contaminated soil. Lead exposure reduced growth and biomass accumulation only in above-ground tissue of wild type poplar, although most of lead accumulated in the roots. Drought caused a decline of the water content rather than reduced biomass production, while Pb counteracted this decline in the combined exposure. Apparently, metals such as Pb possess a protective function against drought, because they interact with abscisic acid dependent stomatal closure. Lead exposure decreased while drought increased glutathione content in leaves of both plant types. Lead accumulation was higher in the roots of transgenic plants, presumably as a result of chelation by glutathione. Water deprivation enhanced Pb accumulation in the roots, but Pb was subject to leakage out of the roots after re-watering. Transgenic plants showed better adaptation under mild drought plus Pb exposure partially due to improved glutathione synthesis. However, the transgenic plants cannot be considered as a good candidate for phytoremediation of Pb, due to its small translocation to the shoots and its leakage out of the roots upon re-watering. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. ADVANCING PROTOCOLS FOR POPLARS in vitro PROPAGATION, REGENERATION AND SELECTION OF TRANSFORMANTS

    Directory of Open Access Journals (Sweden)

    Nataliia Kutsokon

    2013-02-01

    Full Text Available Poplars (genus Populus have emerged as a model organism for forest biotechnology, and genetic modification is more advanced for this genus than for any other tree. So far several protocols for microclonal propagation and regeneration for Populus species have been developed. However it is well known that these protocols differ for various species and need to be adapted even for different clones of the same species. This work was focused on developing of protocols for propagation, regeneration and putative transformant´s selection of aspen Populus tremula L. and other two fast-growing Populus species (P. nigra L., P. x canadensis Moench. The regeneration ability for black poplar explants was demonstrated to be three times higher compared to those for aspen and hybrid poplar. It was found that concentration 1 mg/L of phosphinothricin and 25 mg/L of kanamycin is toxic for non- transgenic plant tissues of P. x canadensis and can be applied in transformation experiments when genes of resistance to the corresponding selective agents into the plant genome are introduced.

  19. The Atlantic-Mediterranean watershed, river basins and glacial history shape the genetic structure of Iberian poplars.

    Science.gov (United States)

    Macaya-Sanz, D; Heuertz, M; López-de-Heredia, U; De-Lucas, A I; Hidalgo, E; Maestro, C; Prada, A; Alía, R; González-Martínez, S C

    2012-07-01

    Recent phylogeographic studies have elucidated the effects of Pleistocene glaciations and of Pre-Pleistocene events on populations from glacial refuge areas. This study investigates those effects in riparian trees (Populus spp.), whose particular features may convey enhanced resistance to climate fluctuations. We analysed the phylogeographic structure of 44 white (Populus alba), 13 black (Populus nigra) and two grey (Populus x canescens) poplar populations in the Iberian Peninsula using plastid DNA microsatellites and sequences. We also assessed fine-scale spatial genetic structure and the extent of clonality in four white and one grey poplar populations using nuclear microsatellites and we determined quantitative genetic differentiation (Q(ST) ) for growth traits in white poplar. Black poplar displayed higher regional diversity and lower differentiation than white poplar, reflecting its higher cold-tolerance. The dependence of white poplar on phreatic water was evidenced by strong differentiation between the Atlantic and Mediterranean drainage basins and among river basins, and by weaker isolation by distance within than among river basins. Our results suggest confinement to the lower river courses during glacial periods and moderate interglacial gene exchange along coastlines. In northern Iberian river basins, white poplar had lower diversity, fewer private haplotypes and larger clonal assemblies than in southern basins, indicating a stronger effect of glaciations in the north. Despite strong genetic structure and frequent asexual propagation in white poplar, some growth traits displayed adaptive divergence between drainage and river basins (Q(ST) >F(ST)), highlighting the remarkable capacity of riparian tree populations to adapt to regional environmental conditions. © 2012 Blackwell Publishing Ltd.

  20. Poplar physiology and short-term biomass production

    Energy Technology Data Exchange (ETDEWEB)

    Reimer, P.; Lannoye, R. (Universite Libre de Bruxelles (Belgium). Lab. de Physiologie Vegetale)

    1990-01-01

    This program comprised the establishment, on biochemical and physiological basis, of specific screening tests for the rapid evaluation of poplar adaptation to environmental conditions. The resistance of chloroplasts to several major environmental stresses affecting biomass production (light, heat, cold and water stress) has been assessed in leaves of five poplar (Populus sp.) clones by in vivo chlorophyll fluorescence and oxygen production measurements. These two chloroplastic activities are correlated to the photosynthetic activity of the plant and respond immediately to any changes affecting the organization and the functioning of the photosynthetic apparatus, including regulatory mechanisms. Test clones were grown as cuttings in a .80 {times} .80m planting pattern. In addition, some plants were grown hydroponically in containers under a plastic roof in controlled conditions to test their behavior toward hydric (drought), light (shadow and overlight) and temperature (cold and warm) stresses. A specific data capture system has been developed to analyze clone resistance to environmental stresses. The results indicated considerable genetic variation in tolerance of poplar clones toward environmental stresses. The application of the in vivo fluorescence method and of the photoacoustic method appears to be an easy and rapid method to estimate the reaction of poplar clones against some stresses and thus for detecting plant species adapted to environmental stresses. 59 refs., 27 figs., 5 tabs.

  1. Elimination behaviour and soil mineral nitrogen load in an organic system with lactating sows – comparing pasture based systems with and without access to poplar (Populus sp.) trees

    DEFF Research Database (Denmark)

    Jakobsen, Malene; Hermansen, John Erik; Andersen, Heidi Mai-Lis

    2017-01-01

    There is an urgent need to introduce innovative strategies in the current free-range pig production to improve the environmental performance. Based on previous experiences, inclusion of a zone with poplar (Populus sp.) trees in individual sow paddocks was hypothesized to improve the system’s nitr...

  2. Growth and biomass of Populus irrigated with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; David R. Coyle; Richard B. Hall

    2007-01-01

    Resource managers are challenged with waste disposal and leachate produced from its degradation. Poplar (Populus spp.) trees offer an opportunity for ecological leachate disposal as an irrigation source for managed tree systems. Our objective was to irrigate Populus trees with municipal solid waste landfill leachate or fertilized well water (control...

  3. Determination of Fe, Hg, Mn, and Pb in three-rings of poplar (Populus alba L.) by U-shaped DC arc

    Science.gov (United States)

    Marković, D. M.; Novović, I.; Vilotić, D.; Ignjatović, Lj.

    2007-09-01

    The U-shaped DC arc with aerosol supply was applied for the determination of Fe, Hg, Mn, and Pb in poplar (Populus alba L.) tree-rings. By optimization of the operating parameters and by selection of the most appropriate signal integration time (20 s for Fe, Mn, and Pb and 30 s for Hg), the obtained limits of detection for Fe, Hg, Mn, and Pb are 5.8, 2.6, 1.6, and 2.0 ng/ml, respectively. The detection limits achieved by this method for Fe, Hg, Mn, and Pb are comparable with the detection limits obtained for these elements by such methods as inductively coupled plasma-atomic emission spectrometry (ICP-AES), direct coupled plasmatomic emission spectrometry (DCP-AES), and microwave-induced plasma-atomic emission spectrometry (MIP-AES). We used the tree-rings of poplar from two different locations. The first one is in the area close to the power plant “Nikola Tesla” TENT A, Obrenovac, while the other one is in the urban area of Novi Sad. In almost all cases, samples from the location at Obrenovac registered elevated average concentrations of Fe, Hg, Mn, and Pb in the tree-rings of poplar.

  4. Barcoding poplars (Populus L. from western China.

    Directory of Open Access Journals (Sweden)

    Jianju Feng

    Full Text Available BACKGROUND: Populus is an ecologically and economically important genus of trees, but distinguishing between wild species is relatively difficult due to extensive interspecific hybridization and introgression, and the high level of intraspecific morphological variation. The DNA barcoding approach is a potential solution to this problem. METHODOLOGY/PRINCIPAL FINDINGS: Here, we tested the discrimination power of five chloroplast barcodes and one nuclear barcode (ITS among 95 trees that represent 21 Populus species from western China. Among all single barcode candidates, the discrimination power is highest for the nuclear ITS, progressively lower for chloroplast barcodes matK (M, trnG-psbK (G and psbK-psbI (P, and trnH-psbA (H and rbcL (R; the discrimination efficiency of the nuclear ITS (I is also higher than any two-, three-, or even the five-locus combination of chloroplast barcodes. Among the five combinations of a single chloroplast barcode plus the nuclear ITS, H+I and P+I differentiated the highest and lowest portion of species, respectively. The highest discrimination rate for the barcodes or barcode combinations examined here is 55.0% (H+I, and usually discrimination failures occurred among species from sympatric or parapatric areas. CONCLUSIONS/SIGNIFICANCE: In this case study, we showed that when discriminating Populus species from western China, the nuclear ITS region represents a more promising barcode than any maternally inherited chloroplast region or combination of chloroplast regions. Meanwhile, combining the ITS region with chloroplast regions may improve the barcoding success rate and assist in detecting recent interspecific hybridizations. Failure to discriminate among several groups of Populus species from sympatric or parapatric areas may have been the result of incomplete lineage sorting, frequent interspecific hybridizations and introgressions. We agree with a previous proposal for constructing a tiered barcoding system in

  5. Initial spacing of poplars and willows grown as arable coppice

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, A.; Johns, C.

    1997-11-01

    Two clones of poplar and two clones of willow were grown at two sites, on a three year cutting cycle, at six different square spacings, between 0.8 metres and 1.5 metres. The two willow clones 'Bowles hybrid' and 'Dasyclados' were planted at both sites. The poplar clones Populus interamericana 'Beaupre' and Populus trichocarpa 'Columbia River'' were planted at Wishanger in Hampshire. The poplar clones Populus interamericana 'Boelare' and Populus trichocarpa 'Trichobel' were planted at Downham Market in Norfolk. The highest yield of 17.55 oven dry tonnes per hectare (odt/ha/annum) was obtained from 'Bowles hybrid', at the closest spacing, grown on a water meadow adjacent to the River Wey at Wishanger. The highest yield for all clones at both sites was achieved at the closest spacing (in this first rotation). There was a significant linear effect. One of the most interesting observations was that when comparing the gradient of the linear relationship, within species, the gradient was steeper for the higher yielding clone. This was particularly so for the willows. This would suggest that higher yielding clones are more tolerant of crowding, or, that upright Salix viminalis make better use of close space than the more spreading Salix dasyclados. The new Salix x Salix schwerinnii hybrids should therefore also be responsive to closer spacing. The same effect was observed for the poplars at Wishanger only, but the difference was not as dramatic. There was a suggestion from the highest yielding poplar plots that optimum yield may still be obtained at the currently recommended spacing of 1.0 metre x 1.0 metre. (author)

  6. Biochemical response of hybrid black poplar tissue culture (Populus × canadensis) on water stress.

    Science.gov (United States)

    Popović, B M; Štajner, D; Ždero-Pavlović, R; Tari, I; Csiszár, J; Gallé, Á; Poór, P; Galović, V; Trudić, B; Orlović, S

    2017-05-01

    In this study, poplar tissue culture (hybrid black poplar, M1 genotype) was subjected to water stress influenced by polyethyleneglycol 6000 (100 and 200 mOsm PEG 6000). The aim of the research was to investigate the biochemical response of poplar tissue culture on water deficit regime. Antioxidant status was analyzed including antioxidant enzymes, superoxide-dismutase (SOD), catalase (CAT), guiacol-peroxidase (GPx), glutathione-peroxidase (GSH-Px), glutathione-reductase, reduced glutathione, total phenol content, Ferric reducing antioxidant power and DPPH radical antioxidant power. Polyphenol oxidase and phenylalanine-ammonium-lyase were determined as enzymatic markers of polyphenol metabolism. Among oxidative stress parameters lipid peroxidation, carbonyl-proteins, hydrogen-peroxide, reactive oxygen species, nitric-oxide and peroxynitrite were determined. Proline, proline-dehydrogenase and glycinebetaine were measured also as parameters of water stress. Cell viability is finally determined as a biological indicator of osmotic stress. It was found that water stress induced reactive oxygen and nitrogen species and lipid peroxidation in leaves of hybrid black poplar and reduced cell viability. Antioxidant enzymes including SOD, GPx, CAT and GSH-Px were induced but total phenol content and antioxidant capacity were reduced by PEG 6000 mediated osmotic stress. The highest biochemical response and adaptive reaction was the increase of proline and GB especially by 200 mOsm PEG. While long term molecular analysis will be necessary to fully address the poplar potentials for water stress adaptation, our results on hybrid black poplar suggest that glycine-betaine, proline and PDH enzyme might be the most important markers of poplar on water stress and that future efforts should be focused on these markers and strategies to enhance their concentration in poplar.

  7. Expression of multiple resistance genes enhances tolerance to environmental stressors in transgenic poplar (Populus × euramericana 'Guariento'.

    Directory of Open Access Journals (Sweden)

    Xiaohua Su

    Full Text Available Commercial and non-commercial plants face a variety of environmental stressors that often cannot be controlled. In this study, transgenic hybrid poplar (Populus × euramericana 'Guariento' harboring five effector genes (vgb, SacB, JERF36, BtCry3A and OC-I were subjected to drought, salinity, waterlogging and insect stressors in greenhouse or laboratory conditions. Field trials were also conducted to investigate long-term effects of transgenic trees on insects and salt tolerance in the transformants. In greenhouse studies, two transgenic lines D5-20 and D5-21 showed improved growth, as evidenced by greater height and basal diameter increments and total biomass relative to the control plants after drought or salt stress treatments. The improved tolerance to drought and salt was primarily attributed to greater instantaneous water use efficiency (WUEi in the transgenic trees. The chlorophyll concentrations tended to be higher in the transgenic lines under drought or saline conditions. Transformed trees in drought conditions accumulated more fructan and proline and had increased Fv/Fm ratios (maximum quantum yield of photosystem II under waterlogging stress. Insect-feeding assays in the laboratory revealed a higher total mortality rate and lower exuviation index of leaf beetle [Plagiodera versicolora (Laicharting] larvae fed with D5-21 leaves, suggesting enhanced insect resistance in the transgenic poplar. In field trials, the dominance of targeted insects on 2-year-old D5-21 transgenic trees was substantially lower than that of the controls, indicating enhanced resistance to Coleoptera. The average height and DBH (diameter at breast height of 2.5-year-old transgenic trees growing in naturally saline soil were 3.80% and 4.12% greater than those of the control trees, but these increases were not significant. These results suggested that multiple stress-resistance properties in important crop tree species could be simultaneously improved, although

  8. Leaf, woody, and root biomass of Populus irrigated with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; D.R. Coyle; R.B. Hall

    2007-01-01

    Poplar (Populus spp.) trees can be utilized for ecological leachate disposal when applied as an irrigation source for managed tree systems. Our objective was to evaluate differences in tree height, diameter, volume, and biomass of leaf, stem, branch, and root tissues of Populus trees after two seasons of irrigation with municipal...

  9. Selection of black poplars for water use efficiency

    OpenAIRE

    Orlović Saša S.; Pajević Slobodanka P.; Krstić Borivoj Đ.

    2002-01-01

    Photosynthesis, transpiration, water use efficiency (WUE) and biomass production have been investigated in nine black poplar clones (section Aigeiros) in three field experiments. Eastern cottonwood clones (Populus deltoides) had the highest net photosynthesis and water use efficiency. European black poplar clones had the highest transpiration intensity. Correlation analysis showed that net photosynthesis was in a high positive correlation with biomass. Medium negative correlations existed bet...

  10. Comparative genomic analysis of the WRKY III gene family in populus, grape, arabidopsis and rice.

    Science.gov (United States)

    Wang, Yiyi; Feng, Lin; Zhu, Yuxin; Li, Yuan; Yan, Hanwei; Xiang, Yan

    2015-09-08

    WRKY III genes have significant functions in regulating plant development and resistance. In plant, WRKY gene family has been studied in many species, however, there still lack a comprehensive analysis of WRKY III genes in the woody plant species poplar, three representative lineages of flowering plant species are incorporated in most analyses: Arabidopsis (a model plant for annual herbaceous dicots), grape (one model plant for perennial dicots) and Oryza sativa (a model plant for monocots). In this study, we identified 10, 6, 13 and 28 WRKY III genes in the genomes of Populus trichocarpa, grape (Vitis vinifera), Arabidopsis thaliana and rice (Oryza sativa), respectively. Phylogenetic analysis revealed that the WRKY III proteins could be divided into four clades. By microsynteny analysis, we found that the duplicated regions were more conserved between poplar and grape than Arabidopsis or rice. We dated their duplications by Ks analysis of Populus WRKY III genes and demonstrated that all the blocks were formed after the divergence of monocots and dicots. Strong purifying selection has played a key role in the maintenance of WRKY III genes in Populus. Tissue expression analysis of the WRKY III genes in Populus revealed that five were most highly expressed in the xylem. We also performed quantitative real-time reverse transcription PCR analysis of WRKY III genes in Populus treated with salicylic acid, abscisic acid and polyethylene glycol to explore their stress-related expression patterns. This study highlighted the duplication and diversification of the WRKY III gene family in Populus and provided a comprehensive analysis of this gene family in the Populus genome. Our results indicated that the majority of WRKY III genes of Populus was expanded by large-scale gene duplication. The expression pattern of PtrWRKYIII gene identified that these genes play important roles in the xylem during poplar growth and development, and may play crucial role in defense to drought

  11. Genome Enabled Discovery of Carbon Sequestration Genes in Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Filichkin, Sergei; Etherington, Elizabeth; Ma, Caiping; Strauss, Steve

    2007-02-22

    The goals of the S.H. Strauss laboratory portion of 'Genome-enabled discovery of carbon sequestration genes in poplar' are (1) to explore the functions of candidate genes using Populus transformation by inserting genes provided by Oakridge National Laboratory (ORNL) and the University of Florida (UF) into poplar; (2) to expand the poplar transformation toolkit by developing transformation methods for important genotypes; and (3) to allow induced expression, and efficient gene suppression, in roots and other tissues. As part of the transformation improvement effort, OSU developed transformation protocols for Populus trichocarpa 'Nisqually-1' clone and an early flowering P. alba clone, 6K10. Complete descriptions of the transformation systems were published (Ma et. al. 2004, Meilan et. al 2004). Twenty-one 'Nisqually-1' and 622 6K10 transgenic plants were generated. To identify root predominant promoters, a set of three promoters were tested for their tissue-specific expression patterns in poplar and in Arabidopsis as a model system. A novel gene, ET304, was identified by analyzing a collection of poplar enhancer trap lines generated at OSU (Filichkin et. al 2006a, 2006b). Other promoters include the pGgMT1 root-predominant promoter from Casuarina glauca and the pAtPIN2 promoter from Arabidopsis root specific PIN2 gene. OSU tested two induction systems, alcohol- and estrogen-inducible, in multiple poplar transgenics. Ethanol proved to be the more efficient when tested in tissue culture and greenhouse conditions. Two estrogen-inducible systems were evaluated in transgenic Populus, neither of which functioned reliably in tissue culture conditions. GATEWAY-compatible plant binary vectors were designed to compare the silencing efficiency of homologous (direct) RNAi vs. heterologous (transitive) RNAi inverted repeats. A set of genes was targeted for post transcriptional silencing in the model Arabidopsis system; these include the floral

  12. Canopy profiles of photosynthetic parameters under elevated CO2 and N fertilization in a poplar plantation

    International Nuclear Information System (INIS)

    Calfapietra, Carlo; Tulva, Ingmar; Eensalu, Eve; Perez, Marta; De Angelis, Paolo; Scarascia-Mugnozza, Giuseppe; Kull, Olevi

    2005-01-01

    A poplar plantation has been exposed to an elevated CO 2 concentration for 5 years using the free air CO 2 enrichment (FACE) technique. Even after such a long period of exposure, leaves of Populus x euramericana have not shown clear signs of photosynthetic acclimation. Only at the end of the growing season for shade leaves was a decrease of maximum velocity of carboxylation (V cmax ) observed. Maximum electron transport rate (J max ) was increased by FACE treatment in July. Assimilation rates at CO 2 partial pressure of 400 (A 400 ) and 600 (A 600 ) μmol mol -1 were not significantly different under FACE treatment. Most notably FACE significantly decreased stomatal conductance (g s ) both on upper and lower canopy leaves. N fertilization increased N content in the leaves on mass basis (N m ) and specific leaf area (SLA) in both CO 2 treatments but did not influence the photosynthetic parameters. These data show that in poplar plantations the long-term effects of elevated CO 2 on photosynthesis do not differ considerably from the short-term ones even with N deposition. - Photosynthetic acclimation occurred only marginally

  13. Exploiting the transcriptome of Euphrates Poplar, Populus euphratica (Salicaceae to develop and characterize new EST-SSR markers and construct an EST-SSR database.

    Directory of Open Access Journals (Sweden)

    Fang K Du

    Full Text Available BACKGROUND: Microsatellite markers or Simple Sequence Repeats (SSRs are the most popular markers in population/conservation genetics. However, the development of novel microsatellite markers has been impeded by high costs, a lack of available sequence data and technical difficulties. New species-specific microsatellite markers were required to investigate the evolutionary history of the Euphratica tree, Populus euphratica, the only tree species found in the desert regions of Western China and adjacent Central Asian countries. METHODOLOGY/PRINCIPAL FINDINGS: A total of 94,090 non-redundant Expressed Sequence Tags (ESTs from P. euphratica comprising around 63 Mb of sequence data were searched for SSRs. 4,202 SSRs were found in 3,839 ESTs, with 311 ESTs containing multiple SSRs. The most common motif types were trinucleotides (37% and hexanucleotides (33% repeats. We developed primer pairs for all of the identified EST-SSRs (eSSRs and selected 673 of these pairs at random for further validation. 575 pairs (85% gave successful amplification, of which, 464 (80.7% were polymorphic in six to 24 individuals from natural populations across Northern China. We also tested the transferability of the polymorphic eSSRs to nine other Populus species. In addition, to facilitate the use of these new eSSR markers by other researchers, we mapped them onto Populus trichocarpa scaffolds in silico and compiled our data into a web-based database (http://202.205.131.253:8080/poplar/resources/static_page/index.html. CONCLUSIONS: The large set of validated eSSRs identified in this work will have many potential applications in studies on P. euphratica and other poplar species, in fields such as population genetics, comparative genomics, linkage mapping, QTL, and marker-assisted breeding. Their use will be facilitated by their incorporation into a user-friendly web-based database.

  14. Expression Patterns of ERF Genes Underlying Abiotic Stresses in Di-Haploid Populus simonii × P. nigra

    Directory of Open Access Journals (Sweden)

    Shengji Wang

    2014-01-01

    Full Text Available 176 ERF genes from Populus were identified by bioinformatics analysis, 13 of these in di-haploid Populus simonii × P. nigra were investigate by real-time RT-PCR, the results demonstrated that 13 ERF genes were highly responsive to salt stress, drought stress and ABA treatment, and all were expressed in root, stem, and leaf tissues, whereas their expression levels were markedly different in the various tissues. In roots, PthERF99, 110, 119, and 168 were primarily downregulated under drought and ABA treatment but were specifically upregulated under high salt condition. Interestingly, in poplar stems, all ERF genes showed the similar trends in expression in response to NaCl stress, drought stress, and ABA treatment, indicating that they may not play either specific or unique roles in stems in abiotic stress responses. In poplar leaves, PthERF168 was highly induced by ABA treatment, but was suppressed by high salinity and drought stresses, implying that PthERF168 participated in the ABA signaling pathway. The results of this study indicated that ERF genes could play essential but distinct roles in various plant tissues in response to different environment cues and hormonal treatment.

  15. The effects of gamma irradiation on growth and expression of genes encoding DNA repair-related proteins in Lombardy poplar (Populus nigra var. italica).

    Science.gov (United States)

    Nishiguchi, Mitsuru; Nanjo, Tokihiko; Yoshida, Kazumasa

    2012-07-01

    In this study, to elucidate the mechanisms of adaptation and tolerance to ionizing radiation in woody plants, we investigated the various biological effects of γ-rays on the Lombardy poplar (Populus nigra L. var. italica Du Roi). We detected abnormal leaf shape and color, fusion, distorted venation, shortened internode, fasciation and increased axillary shoots in γ-irradiated poplar plants. Acute γ-irradiation with a dose of 100Gy greatly reduced the height, stem diameter and biomass of poplar plantlets. After receiving doses of 200 and 300Gy, all the plantlets stopped growing, and then most of them withered after 4-10 weeks of γ-irradiation. Comet assays showed that nuclear DNA in suspension-cultured poplar cells had been damaged by γ-rays. To determine whether DNA repair-related proteins are involved in the response to γ-rays in Lombardy poplars, we cloned the PnRAD51, PnLIG4, PnKU70, PnXRCC4, PnPCNA and PnOGG1 cDNAs and investigated their mRNA expression. The PnRAD51, PnLIG4, PnKU70, PnXRCC4 and PnPCNA mRNAs were increased by γ-rays, but the PnOGG1 mRNA was decreased. Moreover, the expression of PnLIG4, PnKU70 and PnRAD51 was also up-regulated by Zeocin known as a DNA cleavage agent. These observations suggest that the morphogenesis, growth and protective gene expression in Lombardy poplars are severely affected by the DNA damage and unknown cellular events caused by γ-irradiation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Cloning and characterization of an AUX/IAA gene in Populus davidiana x P. alba var. Pyramidalis and the correlation between its time-course expression and the levels of indole-3-acetic in saplings inoculated with Trichoderma

    International Nuclear Information System (INIS)

    Yao, Z.; Baloch, A.M.; Zhai, T.; Jiang, C.; Liu, Z.; Zhang, R.

    2018-01-01

    Poda AUX/IAA gene, encoding an early-stage responsive protein to auxin in Populus davidiana x P. alba var. pyramidalis (Shanxin poplar), was cloned. The length of mRNA transcript of Poda AUX/IAA was 741bp, encoding a 248-amino-acid protein product, Poda AUX/IAA ORF analysis suggested that Poda AUX/IAA contained one conserved domain (pfam02309). Predicted molecular weight of Poda AUX/IAA was found to be 27kDa and its theoretical isoelectric point was determined as 8.21. Poda AUX/IAA was predicted to be a hydrophilic nucleoprotein and its multi-sequence alignment analysis showed that it shares high identity in four conserved domains with eight AUX/IAA proteins in other Populus species and these sequences of Poda AUX/IAA shared highest similarity with Pt-IAA14.1 in P. trichocarpa. In this study, we found that Poda AUX/IAA was expressed in both leaves and roots of Shanxin poplar. Three strains of Trichoderma asperellum were used to inoculate Shanxin poplar saplings. Inoculated saplings were cultured for 72 h. It was then found that IAA levels in both leaves and roots of inoculated saplings gradually increased and time-course expression patterns of PodaAUX/IAA was changed along with IAA levels. Results of Pearson correlation analysis demonstrated a negative correlation between expression levels of Poda AUX/IAA and IAA levels in both leaves and roots of Shanxin poplar saplings when compared with control. Negative correlation in inoculated saplings were less significant, probably as a result of Trichoderma inducing. (author)

  17. Biochemical, physiological and climatic influence on the emission of isoprenoides from Grey Poplar (Populus x canescens (Aiton) Sm.) and Holm Oak (Quercus ilex L.); Biochemische, physiologische und klimatische Einfluesse auf die Isoprenoidemission der Graupappel (Populus x canescens (Aiton) Sm.) und der Steineiche (Quercus ilex L.)

    Energy Technology Data Exchange (ETDEWEB)

    Mayrhofer, S.

    2007-05-15

    Because of their important role for the atmospheric chemistry, global daily and seasonal emission rates of isoprene and monoterpenes have to be estimated with accuracy. Therefore, detailed knowledge of biochemical and physiological processes within the plant metabolism has to be gathered. Afterwards the gained cognitions are used as information for process-based model calculations. The major scope of the work was therefore to enlarge basic knowledge of the regulation of isoprenoid emission, which is known to be dependent on several environmental factors, especially light and temperature. Measurements of diurnal isoprene emission have been performed in parallel on physiological, translational and transcriptional level on leaves of Grey Poplar (Populus x canescens), a strong isoprene emitting species. Additionally, examinations of diurnal monoterpene emission in connection to physiologic and enzymatic processes was conducted in leaves of Holm Oak (Quercus ilex), which emits a large spectrum of monoterpenes. Furthermore a hypothesis was tested, whether isoprene emission may serve the plant as antioxidative protection mechanism in order to overcome oxidative stress. In main parts, the following results have been reached: 1. In the first part of this work, isolation of PcDXR (DXR of Grey Poplar) from a cDNA-Genbank and heterologous expression of the isolated gene was accomplished. 2. Daytime variation of physiological and biochemical parameters of the isoprene emission of Grey Poplar was measured twice on 2 following days in 2 years. All together, measurements have been performed on 8 representative plants. 3. Quantitative RT-PCR elucidated the gene expression pattern of PcDXR and PcISPS in parallel to diurnal gas exchange measurements. Gene expression of PcISPS showed distinct diurnal courses with maximum values on the late morning, whereas PcDXR transcript levels stayed consistent over the day. No short-term influence of PPFD and leaf temperature has been observed on

  18. Seasonal N changes in alnus orientalis and populus nigra and N2 fixation by exotic alder species in Syria

    International Nuclear Information System (INIS)

    Kurdali, F.

    2002-01-01

    Two experiments were conducted.The first was to study nodulation and N 2 fixation of several introduced alder species (Alnus glutinosa, A. incana, A. rubra and A. viridis) grown in soil from beneath Alnus orientalis. The second was to determine pattern of N changes in leaves and bark of Alnus orientalis and populus nigra natural stands during two successive years. Results showed that frankia in soil from underneath Alnus orientalis nodulated and fixed nitrogen on roots of local alder as well as on roots of introduced alder species from distant and ecologically diverse localities. However, differences were found among species in the number of nodules formed and amount of nitrogen fixed. Percentages of nitrogen derived from atmosphere (%Ndfa) ranged from 5% in A.viridis to 66% in A. orientalis. Microscopic study of Alnus orientalis nodules showed the presence of vesicles, and frankia belonging to Sp-type. Foliar N concentration was higher in alder than in poplar. Total N concentration in alder leaves remained relatively constant at about 3% during summer, whereas N concentration in poplar decreased sharply in leaves and increased in bark. No substantial increase in N concentration was found in alder bark, and the fallen leaves were rich in nitrogen. During autumn, leaf N concentration in poplar decreased by 43% and 51% for the first and the second year, respectively, whereas N concentrations in bark increased by 71% and 100%. Total N concentrations in alder leaves decreased only by 8-16% while, values in the adjacent bark remained stable. In contrast to poplar, it seems that Alnus orientalis does not exhibit net leaf retranslocation to bark tissues.(author)

  19. A comprehensive database of poplar research in North America from 1980 - 2010

    Science.gov (United States)

    David R. Coyle; Jill A. Zalesny; Ronald S. Jr. Zalesny

    2010-01-01

    Short rotation woody crops such as Populus species and hybrids (hereafter referred to as poplars) are renewable energy feedstocks that can potentially be used to offset electricity generation and natural gas use in many temperature regions. Highly productive poplars grown primarily on marginal agricultural sites are an important component of the...

  20. Thaumatin-like proteins are differentially expressed and localized in phloem tissues of hybrid poplar

    Directory of Open Access Journals (Sweden)

    Dafoe Nicole J

    2010-08-01

    Full Text Available Abstract Background Two thaumatin-like proteins (TLPs were previously identified in phloem exudate of hybrid poplar (Populus trichocarpa × P. deltoides using proteomics methods, and their sieve element localization confirmed by immunofluorescence. In the current study, we analyzed different tissues to further understand TLP expression and localization in poplar, and used immunogold labelling to determine intracellular localization. Results Immunofluorescence using a TLP antiserum confirmed the presence of TLP in punctate, organelle-like structures within sieve elements. On western blots, the antiserum labeled two constitutively expressed proteins with distinct expression patterns. Immunogold labelling suggested that TLPs are associated with starch granules and starch-containing plastids in sieve elements and phloem parenchyma cells. In addition, the antiserum recognized TLPs in the inner cell wall and sieve plate region of sieve elements. Conclusions TLP localization in poplar cells and tissues is complex. TLP1 is expressed predominantly in tissues with a prominent vascular system such as midveins, petioles and stems, whereas the second TLP is primarily expressed in starch-storing plastids found in young leaves and the shoot apex.

  1. Het geslacht Populus in verband met zijn beteekenis voor de houtteelt = The genus populus and its significance in silviculture

    NARCIS (Netherlands)

    Houtzagers, G.

    1937-01-01

    The genus Populus L. can be divided into 5 sections. This study deals with the classification and description of the species and varieties of the section Aigeiros Duby (black poplars), which contains almost all the important cultivated types in the Netherlands. The botanical information was

  2. Microstructural and Topochemical Characterization of Thermally Modified Poplar (Populus cathayaha Cell Wall

    Directory of Open Access Journals (Sweden)

    Zhe Ling

    2015-11-01

    Full Text Available Although many studies have been conducted on the wood property and chemical changes caused by thermal modification, little has been reported on the microstructural and topochemical changes occurring in the cell wall during heat treatment. In this study, poplar (Populus cathayaha was treated within a temperature range from 180 to 220 °C for 4 h. Chemical analyses by Fourier transform infrared spectroscopy (FTIR and nuclear magnetic resonance (NMR indicated that heat treatment resulted in deacetylation of hemicelluloses and cleavage of lignin chains, thus generating new carbonyl and phenolic linkages. Transformation of matrix substances contributed to microstructural changes that appeared in clearly distorted and collapsed fiber and vessel walls along with the delamination of compound middle lamella (CML and secondary walls (S, which showed a reduced capability to resist deformation. It was also observed by fluorescence microscopy (FM and scanning electron microscope coupled with energy dispersive X-ray analysis (SEM-EDXA that the concentration of lignin increased, probably because of the degradation of hemicelluloses and the generation of new carbonyl groups. These results on cell wall microstructure and topochemistry can help explain the altered wood properties revealed by dynamic mechanical analysis (DMA and equilibrium moisture content (EMC testing after heat treatment.

  3. Poplar response to cadmium and lead soil contamination.

    Science.gov (United States)

    Radojčić Redovniković, Ivana; De Marco, Alessandra; Proietti, Chiara; Hanousek, Karla; Sedak, Marija; Bilandžić, Nina; Jakovljević, Tamara

    2017-10-01

    An outdoor pot experiment was designed to study the potential of poplar (Populus nigra 'Italica') in phytoremediation of cadmium (Cd) and lead (Pb). Poplar was treated with a combination of different concentrations of Cd (w = 10, 25, 50mgkg -1 soil) and Pb (400, 800, 1200mgkg -1 soil) and several physiological and biochemical parameters were monitored including the accumulation and distribution of metals in different plant parts (leaf, stem, root). Simultaneously, the changes in the antioxidant system in roots and leaves were monitored to be able to follow synergistic effects of both heavy metals. Moreover, a statistical analysis based on the Random Forests Analysis (RFA) was performed in order to determine the most important predictors affecting growth and antioxidative machinery activities of poplar under heavy metal stress. The study demonstrated that tested poplar could be a good candidate for phytoextraction processes of Cd in moderately contaminated soils, while in heavily contaminated soil it could be only considered as a phytostabilisator. For Pb remediation only phytostabilisation process could be considered. By using RFA we pointed out that it is important to conduct the experiments in an outdoor space and include environmental conditions in order to study more realistic changes of growth parameters and accumulation and distribution of heavy metals. Also, to be able to better understand the interactions among previously mentioned parameters, it is important to conduct the experiments during prolonged time exposure., This is especially important for the long life cycle woody species. Copyright © 2017. Published by Elsevier Inc.

  4. Genome-wide Identification of WRKY Genes in the Desert Poplar Populus euphratica and Adaptive Evolution of the Genes in Response to Salt Stress.

    Science.gov (United States)

    Ma, Jianchao; Lu, Jing; Xu, Jianmei; Duan, Bingbing; He, Xiaodong; Liu, Jianquan

    2015-01-01

    WRKY transcription factors play important roles in plant development and responses to various stresses in plants. However, little is known about the evolution of the WRKY genes in the desert poplar species Populus euphratica, which is highly tolerant of salt stress. In this study, we identified 107 PeWRKY genes from the P. euphratica genome and examined their evolutionary relationships with the WRKY genes of the salt-sensitive congener Populus trichocarpa. Ten PeWRKY genes are specific to P. euphratica, and five of these showed altered expression under salt stress. Furthermore, we found that two pairs of orthologs between the two species showed evidence of positive evolution, with dN/dS ratios>1 (nonsynonymous/synonymous substitutions), and both of them altered their expression in response to salinity stress. These findings suggested that both the development of new genes and positive evolution in some orthologs of the WRKY gene family may have played an important role in the acquisition of high salt tolerance by P. euphratica.

  5. Epigenetic Diversity of Clonal White Poplar (Populus alba L. Populations: Could Methylation Support the Success of Vegetative Reproduction Strategy?

    Directory of Open Access Journals (Sweden)

    Francesco Guarino

    Full Text Available The widespread poplar populations of Sardinia are vegetatively propagated and live in different natural environments forming large monoclonal stands. The main goals of the present study were: i to investigate/measure the epigenetic diversity of the poplar populations by determining their DNA methylation status; ii to assess if and how methylation status influences population clustering; iii to shed light on the changes that occur in the epigenome of ramets of the same poplar clone. To these purposes, 83 white poplar trees were sampled at different locations on the island of Sardinia. Methylation sensitive amplified polymorphism analysis was carried out on the genomic DNA extracted from leaves at the same juvenile stage. The study showed that the genetic biodiversity of poplars is quite limited but it is counterbalanced by epigenetic inter-population molecular variability. The comparison between MspI and HpaII DNA fragmentation profiles revealed that environmental conditions strongly influence hemi-methylation of the inner cytosine. The variable epigenetic status of Sardinian white poplars revealed a decreased number of population clusters. Landscape genetics analyses clearly demonstrated that ramets of the same clone were differentially methylated in relation to their geographic position. Therefore, our data support the notion that studies on plant biodiversity should no longer be restricted to genetic aspects, especially in the case of vegetatively propagated plant species.

  6. In vitro and in vivo effect of poplar bud (Populi gemma Extracts on late blight (Phytophthora infestans

    Directory of Open Access Journals (Sweden)

    Bálint János

    2014-11-01

    Full Text Available The effect of populin extract from black poplar (Populus nigra on late blight was assessed under laboratory and field conditions. The growth rate of hyphae was found to be significantly lower after 1v/v% populin application, and no hyphae growth was detected under 3 and 6v/v% populin application. Populin also reduced the light blight severity on potato leaves under field conditions. From our results, we have concluded that populin extract can be considered as a new and environmentally-friendly alternative for the control of late blight under field conditions.

  7. Overexpression of PtrMYB119, a R2R3-MYB transcription factor from Populus trichocarpa, promotes anthocyanin production in hybrid poplar.

    Science.gov (United States)

    Cho, Jin-Seong; Nguyen, Van Phap; Jeon, Hyung-Woo; Kim, Min-Ha; Eom, Seok Hyun; Lim, You Jin; Kim, Won-Chan; Park, Eung-Jun; Choi, Young-Im; Ko, Jae-Heung

    2016-09-01

    Anthocyanins are a group of colorful and bioactive natural pigments with important physiological and ecological functions in plants. We found an MYB transcription factor (PtrMYB119) from Populus trichocarpa that positively regulates anthocyanin production when expressed under the control of the CaMV 35S promoter in transgenic Arabidopsis Amino acid sequence analysis revealed that PtrMYB119 is highly homologous to Arabidopsis PAP1 (PRODUCTION OF ANTHOCYANIN PIGMENT1), a well-known transcriptional activator of anthocyanin biosynthesis. Independently produced transgenic poplars overexpressing PtrMYB119 or PtrMYB120 (a paralogous gene to PtrMYB119) (i.e., 35S::PtrMYB119 and 35S::PtrMYB120, respectively) showed elevated accumulation of anthocyanins in the whole plants, including leaf, stem and even root tissues. Using a reverse-phase high-performance liquid chromatography, we confirmed that the majority of the accumulated anthocyanin in our transgenic poplar is cyanidin-3-O-glucoside. Gene expression analyses revealed that most of the genes involved in the anthocyanin biosynthetic pathway were highly upregulated in 35S::PtrMYB119 poplars compared with the nontransformed control poplar. Among these genes, expression of PtrCHS1 (Chalcone Synthase1) and PtrANS2 (Anthocyanin Synthase2), which catalyze the initial and last steps of anthocyanin biosynthesis, respectively, was upregulated by up to 350-fold. Subsequent transient activation assays confirmed that PtrMYB119 activated the transcription of both PtrCHS1 and PtrANS2 Interestingly, expression of MYB182, a repressor of both anthocyanin and proanthocyanidin (PA) biosynthesis, was largely suppressed in 35S::PtrMYB119 poplars, while expression of MYB134, an activator of PA biosynthesis, was not changed significantly. More interestingly, high-level accumulation of anthocyanins in 35S::PtrMYB119 poplars did not have an adverse effect on plant growth. Taken together, our results demonstrate that PtrMYB119 and PtrMYB120

  8. Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-utilizing bacterium isolated from poplar trees (Populus deltoides x nigra DN34).

    Science.gov (United States)

    Van Aken, Benoit; Peres, Caroline M; Doty, Sharon Lafferty; Yoon, Jong Moon; Schnoor, Jerald L

    2004-07-01

    A pink-pigmented, aerobic, facultatively methylotrophic bacterium, strain BJ001T, was isolated from internal poplar tissues (Populus deltoidesxnigra DN34) and identified as a member of the genus Methylobacterium. Phylogenetic analyses showed that strain BJ001T is related to Methylobacterium thiocyanatum, Methylobacterium extorquens, Methylobacterium zatmanii and Methylobacterium rhodesianum. However, strain BJ001T differed from these species in its carbon-source utilization pattern, particularly its use of methane as the sole source of carbon and energy, an ability that is shared with only one other member of the genus, Methylobacterium organophilum. In addition, strain BJ001T is the only member of the genus Methylobacterium to be described as an endophyte of poplar trees. On the basis of its physiological, genotypic and ecological properties, the isolate is proposed as a member of a novel species of the genus Methylobacterium, Methylobacterium populi sp. nov. (type strain, BJ001T=ATCC BAA-705T=NCIMB 13946T).

  9. Evaluation of Internal Cracks and Collapse in Poplar Wood (Populus nigra during a Conventional Drying Process with Ultrasonic Inspection

    Directory of Open Access Journals (Sweden)

    Saeid ESHAGHI

    2012-05-01

    Full Text Available In this research, internal cracks and collapse of wood, formed during drying process, were measured using ultrasonic inspection. For this purpose, seven poplar (Populus nigra small blocks were dried, according to a time-based schedule. Ultrasonic waves� propagation velocity was measured at both parallel and perpendicular to grain directions, using Sylvatest ultrasound device, during kiln drying process. Results showed that in all dried blocks, waves� propagation velocity in the parallel direction was higher than in the perpendicular direction to grain. Ultrasonic waves� propagation test for non-destructive identification of internal cracks, which occurs in wood during drying process in the parallel direction, was more successful compared to the perpendicular direction. Using ultrasonic waves� propagation test for detection of collapse that occurs in wood during drying process was not useful.

  10. Evaluation of Internal Cracks and Collapse in Poplar Wood (Populus nigra during a Conventional Drying Process with Ultrasonic Inspection

    Directory of Open Access Journals (Sweden)

    Saeid ESHAGHI

    2012-05-01

    Full Text Available In this research, internal cracks and collapse of wood, formed during drying process, were measured using ultrasonic inspection. For this purpose, seven poplar (Populus nigra small blocks were dried, according to a time-based schedule. Ultrasonic waves propagation velocity was measured at both parallel and perpendicular to grain directions, using Sylvatest ultrasound device, during kiln drying process. Results showed that in all dried blocks, waves propagation velocity in the parallel direction was higher than in the perpendicular direction to grain. Ultrasonic waves propagation test for non-destructive identification of internal cracks, which occurs in wood during drying process in the parallel direction, was more successful compared to the perpendicular direction. Using ultrasonic waves propagation test for detection of collapse that occurs in wood during drying process was not useful.

  11. Sex-Specific Response to Stress in Populus

    Directory of Open Access Journals (Sweden)

    Nataliya V. Melnikova

    2017-10-01

    Full Text Available Populus is an effective model for genetic studies in trees. The genus Populus includes dioecious species, and the differences exhibited in males and females have been intensively studied. This review focused on the distinctions between male and female poplar and aspen plants under stress conditions, such as drought, salinity, heavy metals, and nutrient deficiency on morphological, physiological, proteome, and gene expression levels. In most studies, males of Populus species were more adaptive to the majority of the stress conditions and showed less damage, better growth, and higher photosynthetic capacity and antioxidant activity than that of the females. However, in two recent studies, no differences in non-reproductive traits were revealed for male and female trees. This discrepancy of the results could be associated with experimental design: different species and genotypes, stress conditions, types of plant materials, sampling sizes. Knowledge of sex-specific differences is crucial for basic and applied research in Populus species.

  12. Biochar as a substitute for vermiculite in potting mix for hybrid poplar

    Science.gov (United States)

    William L. Headlee; Catherine E. Brewer; Richard B. Hall

    2014-01-01

    The purpose of this study was to evaluate biochar as a substitute for vermiculite in potting mixes for unrooted vegetative cuttings of hybrid poplar as represented by the clone ‘NM6’ (Populus nigra L. × Populus suaveolens Fischer subsp. maximowiczii A. Henry). We compared three treatments (peat moss (control), peat moss mixed with vermiculite, and peat moss mixed with...

  13. An approach for siting poplar energy production systems to increase productivity and associated ecosystem services

    Science.gov (United States)

    R.S. Jr. Zalesny; D.M. Donner; D.R. Coyle; W.L. Headlee; R.B. Hall

    2010-01-01

    Short rotation woody crops (SRWC) such as Populus species and hybrids (i.e., poplars) are renewable energy feedstocks that are vital to reducing our dependence on non-renewable and foreign sources of energy used for heat, power, and transportation fuels. Highly productive poplars grown primarily on marginal agricultural sites are an important...

  14. An Efficient Agrobacterium-Mediated Transformation System for Poplar

    Science.gov (United States)

    Movahedi, Ali; Zhang, Jiaxin; Amirian, Rasoul; Zhuge, Qiang

    2014-01-01

    Poplar is a model system for the regeneration and genetic transformation of woody plants. To shorten the time required for studies of transgenic poplar, efforts have been made to optimize transformation methods that use Agrobacterium tumefaciens. In this study, an Agrobacterium infective suspension was treated at 4 °C for at least 10 h before infecting explants. By transforming the Populus hybrid clone “Nanlin895” (Populus deltoides × P. euramericana) with Agrobacterium harboring the PBI121:CarNAC6 binary vector, we showed that the transformation efficiency was improved significantly by multiple independent factors, including an Agrobacterium infective suspension with an OD600 of 0.7, an Agrobacterium infection for 120 min, an Agrobacterium infective suspension at a pH of 5.0, an acetosyringone concentration of 200 µM, a cocultivation at 28 °C, a cocultivation for 72 h and a sucrose concentration of 30 g/L in the cocultivation medium. We also showed that preculture of wounded leaf explants for two days increased the regeneration rate. The integration of the desired gene into transgenic poplars was detected using selective medium containing kanamycin, followed by southern blot analysis. The expression of the transgene in the transgenic lines was confirmed by northern blot analysis. PMID:24933641

  15. Seasonal variation in the structure of red reflectance of leaves from yellow poplar, red oak, and red maple

    Science.gov (United States)

    Brakke, Thomas W.; Wergin, William P.; Erbe, Eric F.; Harnden, Joann M.

    1993-01-01

    The light scattered from leaves was measured as a function of view angle in the principal plane for yellow poplar, red oak, and red maple. The source was a parallel-polarized helium-neon laser. Yellow poplar leaves had the highest reflectance of the three species, which may have been due to its shorter palisade cells and more extensive spongy mesophyll. Prior to senescence, there was a significant decrease, but not total extinction, in the reflectance of the beam incident at 60 deg from nadir on the adaxial side of the leaves of all three species. Low-temperature SEM observations showed differences in the surface wax patterns among the three species but did not indicate a cause of the reflectance changes other than possibly the accumulation and aging of the wax.

  16. Cavitation vulnerability in roots and shoots: does Populus euphratica Oliv., a poplar from arid areas of Central Asia, differ from other poplar species?

    Science.gov (United States)

    Hukin, D; Cochard, H; Dreyer, E; Le Thiec, D; Bogeat-Triboulot, M B

    2005-08-01

    Populus euphratica is a poplar species growing in arid regions of Central Asia, where its distribution remains nevertheless restricted to river-banks or to areas with an access to deep water tables. To test whether the hydraulic architecture of this species differs from that of other poplars with respect to this ecological distribution, the vulnerability to cavitation of P. euphratica was compared with that of P. alba and of P. trichocarpa x koreana. The occurrence of a potential hydraulic segmentation through cavitation was also investigated by assessing the vulnerability of roots, stems, and leaf mid-rib veins. Cryo-scanning electron microscopy (cryo-SEM) was used to assess the level of embolism in fine roots and leaf mid-ribs and a low pressure flowmeter (LPFM) was used for stems and main roots. The cryo-SEM technique was validated against LPFM measurements on paired samples. In P. alba and P. trichocarpa x koreana, leaf mid-ribs were more vulnerable to cavitation than stems and roots. In P. euphratica, leaf mid-ribs and stems were equally vulnerable and, contrary to what has been observed in other species, roots were significantly less vulnerable than shoots. P. euphratica was by far the most vulnerable. The water potential inducing 50% loss of conductivity in stems was close to -0.7 MPa, against approximately -1.45 MPa for the two others species. Such a large vulnerability was confirmed by recording losses of conductivity during a gradual drought. Moreover, significant stem embolism was recorded before stomatal closure, indicating the lack of an efficient safety margin for hydraulic functions in this species. Embolism was not reversed by rewatering. These observations are discussed with respect to the ecology of P. euphratica.

  17. Some new and noteworthy diseases of poplars in India. [Botryodiplodia sett-rot; Alternaria tip blight; Cladosporium leaf spot; Fusarium pink incrustation

    Energy Technology Data Exchange (ETDEWEB)

    Singh, S.

    1983-09-01

    Four new diseases of poplars namely Botryodiplodia sett-rott, Alternaria tip blight, Cladosporium leaf spot and Fusarium pink incrustation are described in this paper. Botryodiplodia palmarum causes sett-rott of poplars both at pre-sprouting and post-sprouting stage. The pathogen also causes mortality of poplar plants in the field within 4-6 weeks after planting. Alternaria stage of Pleuspora infectoria has been found as the cause of blackening and dying of growing tips and young leaves of a Populus sp. and P. deltoides in nurseries. Cladosporium humile has been recorded as the cause of brown spot followed by crumpling and premature shedding of leaves in P. ciliata, P. nigra and P. alba. The cause of Fusarium incrustation disease on P. cilata has been identified as Fusarium sp. of Gibbosum group. Pathogenicity of Botryodiplodia palmarum and Alternaria stage of Pleospora infectoria was confirmed by artificial inoculations. Brief descriptions of Alternaria, Cladosporium and Fusarium are also given. The paper also gives a short account of some noteworthy diseases recorded on poplars namely Ganoderma root rot, foliage ruts and stem cankers. Ganoderma root-rot is found to reach alarming proportions in closely spaced poplar plantations. Melampsora ciliata, an indigenous rust, is found to attack mainly clones of P. deltoides, P. yunnanensis, P. trichocarpa, P. alba and some cultivars of P. x euramericana in nurseries. A brief account of three types of stem cankers i.e. cankers due to pink disease fungus, Corticium salmonicolor, sun-scaled cankers and cankers associated with slime flux on various clones of P. deltoides is also given.

  18. Sulfate Metabolites of 4-Monochlorobiphenyl in Whole Poplar Plants

    OpenAIRE

    Zhai, Guangshu; Lehmler, Hans-Joachim; Schnoor, Jerald L.

    2012-01-01

    4-Monochlorobiphenyl (PCB3) has been proven to be transformed into hydroxylated metabolites of PCB3 (OH-PCB3s) in whole poplar plants in our previous work. However, hydroxylated metabolites of PCBs, including OH-PCB3s, as the substrates of sulfotransferases have not been studied in many organisms including plants in vivo. Poplar (Populus deltoides × nigra, DN34) was used to investigate the further metabolism from OH-PCB3s to PCB3 sulfates because it is a model plant and one that is frequently...

  19. Biomass and volume yield after 6 years in multiclonal hybrid poplar riparian buffer strips

    Energy Technology Data Exchange (ETDEWEB)

    Fortier, Julien [Centre d' etude de la foret (CEF), Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Institut des sciences de l' environnement, Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Gagnon, Daniel [Centre d' etude de la foret (CEF), Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Institut des sciences de l' environnement, Universite du Quebec a Montreal, C.P. 8888, succursale Centre-ville, Montreal, Quebec (Canada); Fiducie de recherche sur la foret des Cantons-de-l' Est, 1 rue Principale, St-Benoit-du-Lac, Quebec (Canada); Truax, Benoit; Lambert, France [Fiducie de recherche sur la foret des Cantons-de-l' Est, 1 rue Principale, St-Benoit-du-Lac, Quebec (Canada)

    2010-07-15

    In this paper the potential of five hybrid poplar clones (Populus spp.) to provide biomass and wood volume in the riparian zone is assessed in four agroecosystems of southern Quebec (Canada). For all variables measured, significant Site effects were detected. Survival, biomass yield and volume yield were highest at the Bromptonville site. After 6 years of growth, total aboveground biomass production (stems + branches + leaves) reached 112.8 tDM/ha and total leafless biomass production (stems + branches) reached 101.1 tDM/ha at this site, while stem wood volume attained 237.5 m{sup 3}/ha. Yields as low as 14.2 tDM/ha for total biomass and 24.8 m{sup 3}/ha for total stem volume were also observed at the Magog site. Highest yields were obtained on the most fertile sites, particularly in terms of NO{sub 3} supply rate. Mean stem volume per tree was highly correlated with NO{sub 3} supply rate in soils (R{sup 2} = 0.58, p < 0.001). Clone effects were also detected for most of the variables measured. Total aboveground biomass and total stem volume production were high for clone 3729 (Populus nigra x P. maximowiczii) (73.1 tDM/ha and 134.2 m{sup 3}/ha), although not statistically different from clone 915311 (P. maximowiczii x P. balsamifera). However, mean whole-tree biomass (including leaves) was significantly higher for clone 3729 (38.8 kgDM/tree). Multifunctional agroforestry systems such as hybrid poplar riparian buffer strips are among the most sustainable ways to produce a high amount of biomass and wood in a short time period, while contributing to alleviate environmental problems such as agricultural non-point source pollution. (author)

  20. The optimization of sewage sludge and effluent disposal on energy crops of short rotation hybrid poplar

    Energy Technology Data Exchange (ETDEWEB)

    Moffat, A.J.; Armstrong, A.T. [Forest Research, Farnham (United Kingdom); Ockleston, J. [Thames Water Utilities Ltd., Reading (United Kingdom)

    2001-07-01

    An experiment was set up to test the effect of sewage sludge application and waste water irrigation on the biomass production of two poplar varieties, Populus trichocarpa x P. deltoides ''Beaupre'', and Populus trichocarpa ''Trichobel''. Three sludge applications were examined factorially with two irrigation regimes (with and without), over the two final years of a three-year rotation. The effects of treatment on soil and soil water were monitored, and the amount of heavy metals removed in the biomass was quantified. Irrigation had a significant effect on biomass of both poplar varieties, with Beaupre yielding more than Trichobel. Sludge application was not effective in increasing biomass yield, but the experiment was valuable in identifying that modest amounts of sludge (approximately 100 m{sup 3} ha{sup -1} yr{sup -1}) were acceptable environmentally and did not compromise biomass production. Cadmium uptake was detected in the poplar biomass, but the amounts were small and insufficient for poplar to be used in phytoremediation of metal-contaminated land. (author)

  1. The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Komarek, Michael [Department of Agrochemistry and Plant Nutrition, Czech University of Agriculture in Prague, Kamycka 129, 165 21, Prague 6 (Czech Republic)], E-mail: komarek@af.czu.cz; Tlustos, Pavel [Department of Agrochemistry and Plant Nutrition, Czech University of Agriculture in Prague, Kamycka 129, 165 21, Prague 6 (Czech Republic)], E-mail: tlustos@af.czu.cz; Szakova, Jirina [Department of Agrochemistry and Plant Nutrition, Czech University of Agriculture in Prague, Kamycka 129, 165 21, Prague 6 (Czech Republic)], E-mail: szakova@af.czu.cz; Chrastny, Vladislav [Department of Applied Chemistry and Chemistry Teaching, University of South Bohemia, Studentska 13, 370 05, Ceske Budejovice (Czech Republic)], E-mail: vladislavchrastny@seznam.cz

    2008-01-15

    The efficiency of poplar (Populus nigra L. x Populus maximowiczii Henry.) was assessed during a two-year chemically enhanced phytoextraction of metals from contaminated soils. The tested metal mobilizing agents were EDTA (ethylenediaminetetraacetic acid) and NH{sub 4}Cl. EDTA was more efficient than chlorides in solubilizing metals (especially Pb) from the soil matrix. The application of chlorides only increased the solubility of Cd and Zn. However, the increased uptake of metals after the application of higher concentrations of mobilizing agents was associated with low biomass yields of the poplar plants and the extraction efficiencies after the two vegetation periods were thus comparable to the untreated plants. Additionally, the application of mobilizing agents led to phytotoxicity effects and increased mobility of metals. Higher phytoextraction efficiencies were observed for Cd and Zn compared to Pb and Cu. Poplars are therefore not suitable for chemically enhanced phytoextraction of metals from severely contaminated agricultural soils. - Application of mobilizing agents is not optimal during a two-year phytoextraction of metals from severely contaminated soils using poplars.

  2. The use of poplar during a two-year induced phytoextraction of metals from contaminated agricultural soils

    International Nuclear Information System (INIS)

    Komarek, Michael; Tlustos, Pavel; Szakova, Jirina; Chrastny, Vladislav

    2008-01-01

    The efficiency of poplar (Populus nigra L. x Populus maximowiczii Henry.) was assessed during a two-year chemically enhanced phytoextraction of metals from contaminated soils. The tested metal mobilizing agents were EDTA (ethylenediaminetetraacetic acid) and NH 4 Cl. EDTA was more efficient than chlorides in solubilizing metals (especially Pb) from the soil matrix. The application of chlorides only increased the solubility of Cd and Zn. However, the increased uptake of metals after the application of higher concentrations of mobilizing agents was associated with low biomass yields of the poplar plants and the extraction efficiencies after the two vegetation periods were thus comparable to the untreated plants. Additionally, the application of mobilizing agents led to phytotoxicity effects and increased mobility of metals. Higher phytoextraction efficiencies were observed for Cd and Zn compared to Pb and Cu. Poplars are therefore not suitable for chemically enhanced phytoextraction of metals from severely contaminated agricultural soils. - Application of mobilizing agents is not optimal during a two-year phytoextraction of metals from severely contaminated soils using poplars

  3. Testing applicability of black poplar (Populus nigra L.) bark to heavy metal air pollution monitoring in urban and industrial regions

    International Nuclear Information System (INIS)

    Berlizov, A.N.; Blum, O.B.; Filby, R.H.; Malyuk, I.A.; Tryshyn, V.V.

    2007-01-01

    A comparative study of the capabilities of black poplar-tree (Populus nigra L.) bark as a biomonitor of atmospheric heavy-metal pollution is reported. Performance indicators (concentrations and enrichment factors) of heavy metal bioaccumulation of bark were compared to the corresponding indicators of epiphytic lichens Xanthoria parietina (L.) Th. Fr. and Physcia adscendens (Fr.) H. Oliver, collected simultaneously with bark samples within the Kiev urban-industrial conurbation. The concentrations of 40 minor and trace elements in the samples were measured by a combination of epithermal and instrumental neutron activation analysis (NAA) using a 10 MW nuclear research reactor WWR-M as the neutron source. Statistical analysis of the data was carried out using non-parametric tests. It was shown that for the majority of the elements determined a good correlation exists between their concentrations in bark and in the lichen species. The accumulation capability of the bark was found to be as effective as, and in some cases better, for both types of lichens. Based on the background levels and variations of the elemental concentration in black poplar-tree bark, threshold values for the enrichment factors were established. For a number of elements (As, Au, Ce, Co, Cr, Cu, La, Mn, Mo, Ni, Sb, Sm, Ti, Th, U, V, W) an interspecies calibration was performed. An optimized pre-irradiation treatment of the bark sample was employed which efficiently separated the most informative external layer from the deeper layers of the bark and thus minimized variations of the element concentrations. Results of this study support black poplar-tree bark as an alternative to epiphytic lichens for heavy metal air pollution monitoring in urban and industrial regions, where severe environmental conditions may result in scarcity or even lack of the indicator species

  4. Combining proteomics and metabolite analyses to unravel cadmium stress-response in poplar leaves.

    Science.gov (United States)

    Kieffer, Pol; Planchon, Sébastien; Oufir, Mouhssin; Ziebel, Johanna; Dommes, Jacques; Hoffmann, Lucien; Hausman, Jean-François; Renaut, Jenny

    2009-01-01

    A proteomic analysis of poplar leaves exposed to cadmium, combined with biochemical analysis of pigments and carbohydrates revealed changes in primary carbon metabolism. Proteomic results suggested that photosynthesis was slightly affected. Together with a growth inhibition, photoassimilates were less needed for developmental processes and could be stored in the form of hexoses or complex sugars, acting also as osmoprotectants. Simultaneously, mitochondrial respiration was upregulated, providing energy needs of cadmium-exposed plants.

  5. Successful grafting in poplar species (Populus spp.) breeding

    Science.gov (United States)

    A. Assibi Mahama; Brian Sparks; Ronald S., Zalesny; Richard B. Hall

    2006-01-01

    Poor rooting of Populus deltoides Bartr. ex Marsh hardwood cuttings often has contributed to delays in breeding progress as a result of failures of scion wood before and/or after pollination. Seventeen clones were used, and the study was conducted in the greenhouse to test an "intervenous feeding" (IV) method, along with three different...

  6. PHYTOREMEDIATION OF CHLORPYRIFOS BY POPULUS AND SALIX

    OpenAIRE

    Young Lee, Keum; Strand, Stuart E.; Doty, Sharon L.

    2012-01-01

    Chlorpyrifos is one of the commonly used organophosphorus insecticides that are implicated in serious environmental and human health problems. To evaluate plant potential for uptake of chlorpyrifos, several plant species of poplar (Populus sp.) and willow (Salix sp.) were investigated. Chlorpyrifos was taken up from nutrient solution by all seven plant species. Significant amounts of chlorpyrifos accumulated in plant tissues, and roots accumulated higher concentrations of chlorpyrifos than di...

  7. Forest biorefinery: Potential of poplar phytochemicals as value-added co-products.

    Science.gov (United States)

    Devappa, Rakshit K; Rakshit, Sudip K; Dekker, Robert F H

    2015-11-01

    The global forestry industry after experiencing a market downturn during the past decade has now aimed its vision towards the integrated biorefinery. New business models and strategies are constantly being explored to re-invent the global wood and pulp/paper industry through sustainable resource exploitation. The goal is to produce diversified, innovative and revenue generating product lines using on-site bioresources (wood and tree residues). The most popular product lines are generally produced from wood fibers (biofuels, pulp/paper, biomaterials, and bio/chemicals). However, the bark and other tree residues like foliage that constitute forest wastes, still remain largely an underexploited resource from which extractives and phytochemicals can be harnessed as by-products (biopharmaceuticals, food additives and nutraceuticals, biopesticides, cosmetics). Commercially, Populus (poplar) tree species including hybrid varieties are cultivated as a fast growing bioenergy crop, but can also be utilized to produce bio-based chemicals. This review identifies and underlines the potential of natural products (phytochemicals) from Populus species that could lead to new business ventures in biorefineries and contribute to the bioeconomy. In brief, this review highlights the importance of by-products/co-products in forest industries, methods that can be employed to extract and purify poplar phytochemicals, the potential pharmaceutical and other uses of >160 phytochemicals identified from poplar species - their chemical structures, properties and bioactivities, the challenges and limitations of utilizing poplar phytochemicals, and potential commercial opportunities. Finally, the overall discussion and conclusion are made considering the recent biotechnological advances in phytochemical research to indicate the areas for future commercial applications from poplar tree species. Crown Copyright © 2015. Published by Elsevier Inc. All rights reserved.

  8. Plant-pathogen interactions: leaf physiology alterations in poplars infected with rust (Melampsora medusae).

    Science.gov (United States)

    Gortari, Fermín; Guiamet, Juan José; Graciano, Corina

    2018-01-23

    Rust produced by Melampsora sp. is considered one of the most relevant diseases in poplar plantations. Growth reduction in poplar plantations takes place because rust, like other pathogens, alters leaf physiology. There is not a complete evaluation of several of the physiological traits that can be affected by rust at leaf level. Therefore, the aim of this work was to evaluate, in an integrative way and in the same pathosystem, which physiological processes are affected when Populus deltoides Bartr. ex Marsh. leaves are infected by rust (Melampsora medusae Thümen). Leaves of two clones with different susceptibility to rust were analyzed. Field and pot experiments were performed, and several physiological traits were measured in healthy and infected leaves. We conclude that rust affects leaf mesophyll integrity, and so water movement in the leaf in liquid phase is affected. As a consequence, gas exchange is reduced, affecting both carbon fixation and transpiration. However, there is an increase in respiration rate, probably due to plant and fungal respiration. The increase in respiration rate is important in the reduction of net photosynthetic rate, but also some damage in the photosynthetic apparatus limits leaf capacity to fix carbon. The decrease in chlorophyll content would start later and seems not to explain the reduction in net photosynthetic rate. Both clones, although they have different susceptibility to rust, are affected in the same physiological mechanisms. © The Author(s) 2018. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Sapflow of hybrid poplar (Populus nigra L.xP. maximowiczii A. Henry 'NM6') during phytoremediation of landfill leachate

    Energy Technology Data Exchange (ETDEWEB)

    Zalesny, Ronald S.; Wiese, Adam H.; Bauer, Edmund O.; Riemenschneider, Don E. [USDA Forest Service, North Central Research Station, Forestry Sciences Laboratory, 5985 Highway K, Rhinelander, WI 54501 (United States)

    2006-08-15

    Poplars are ideal for phytoremediation because of their high water usage, fast growth, and deep root systems. We measured in 2002 and 2003 the sapflow of hybrid poplars (Populus nigra L.xP. maximowiczii A. Henry 'NM6') planted in 1999 for phytoremediation of a landfill in Rhinelander, WI, USA (45.6{sup o}N, 89.4{sup o}W). Mean sap velocity per tree was 100+/-10 and 120+/-10{mu}ms{sup -1} for 2002 and 2003, respectively. Mean sapflow per tree was 1.4000+/-0.1698 and 5.6760+/-0.2997kgh{sup -1} for 2002 and 2003, respectively. Sapflow was negatively correlated with temperature, wind speed, precipitation, and vapor pressure deficit for both years (0.002poplar genotypes exhibit great potential for phytoremediation applications where elevated water usage is critical. (author)

  10. [Phosphorus transfer between mixed poplar and black locust seedlings].

    Science.gov (United States)

    He, Wei; Jia, Liming; Hao, Baogang; Wen, Xuejun; Zhai, Mingpu

    2003-04-01

    In this paper, the 32P radio-tracer technique was applied to study the ways of phosphorus transfer between poplar (Populus euramericana cv. 'I-214') and black locust (Robinia pseudoacacia). A five compartment root box (18 cm x 18 cm x 26 cm) was used for testing the existence of the hyphal links between the roots of two tree species when inoculated with vesicular-arbuscular (VA) mycorrhizal fungus (Glomus mosseae). Populus I-214 (donor) and Robinia pseudoacacia (receiver) were grown in two terminal compartments, separated by a 2 cm root-free soil layer. The root compartments were lined with bags of nylon mesh (38 microns) that allowed the passage of hyphae but not roots. The top soil of a mixed stand of poplar and black locust, autoclaved at 121 degrees C for one hour, was used for growing seedlings for testing. In 5 compartment root box, mycorrhizal root colonization of poplar was 34%, in which VA mycorrhizal fungus was inoculated, whereas 26% mycorrhizal root colonization was observed in black locust, the other terminal compartment, 20 weeks after planting. No root colonization was observed in non-inoculated plant pairs. This indicated that the mycorrhizal root colonization of black locust was caused by hyphal spreading from the poplar. Test of tracer isotope of 32P showed that the radioactivity of the treatment significantly higher than that of the control (P mycorrhizal fungus was inoculated in poplar root. Furthermore, mycorrhizal interconnections between the roots of poplar and black locust seedlings was observed in situ by binocular in root box. All these experiments showed that the hyphal links was formed between the roots of two species of trees inoculated by VA mycorrhizal fungus. Four treatments were designed according to if there were two nets (mesh 38 microns), 2 cm apart, between the poplar and black locust, and if the soil in root box was pasteurized. Most significant differences of radioactivity among four treatments appeared 44 days after feeding

  11. Tyloses and phenolic deposits in xylem vessels impede water transport in low-lignin transgenic poplars: a study by cryo-fluorescence microscopy

    Science.gov (United States)

    Peter Kitin; Steven L. Voelker; Frederick C. Meinzer; Hans Beekman; Steven H. Strauss; Barbara. Lachenbruch

    2010-01-01

    Of 14 transgenic poplar genotypes (Populus tremula x Populus alba) with antisense 4-coumarate:coenzynle A ligase that were grown in the field for 2 years, five that had substantial lignin reductions also had greatly reduced xylem-specific conductivity compared with that of control trees and those transgenic events with small...

  12. Barrier to gene flow between two ecologically divergent Populus species, P. alba (white poplar) and P. tremula (European aspen): the role of ecology and life history in gene introgression.

    Science.gov (United States)

    Lexer, C; Fay, M F; Joseph, J A; Nica, M-S; Heinze, B

    2005-04-01

    The renewed interest in the use of hybrid zones for studying speciation calls for the identification and study of hybrid zones across a wide range of organisms, especially in long-lived taxa for which it is often difficult to generate interpopulation variation through controlled crosses. Here, we report on the extent and direction of introgression between two members of the "model tree" genus Populus: Populus alba (white poplar) and Populus tremula (European aspen), across a large zone of sympatry located in the Danube valley. We genotyped 93 hybrid morphotypes and samples from four parental reference populations from within and outside the zone of sympatry for a genome-wide set of 20 nuclear microsatellites and eight plastid DNA restriction site polymorphisms. Our results indicate that introgression occurs preferentially from P. tremula to P. alba via P. tremula pollen. This unidirectional pattern is facilitated by high levels of pollen vs. seed dispersal in P. tremula (pollen/seed flow = 23.9) and by great ecological opportunity in the lowland floodplain forest in proximity to P. alba seed parents, which maintains gene flow in the direction of P. alba despite smaller effective population sizes (N(e)) in this species (P. alba N(e)c. 500-550; P. tremula N(e)c. 550-700). Our results indicate that hybrid zones will be valuable tools for studying the genetic architecture of the barrier to gene flow between these two ecologically divergent Populus species.

  13. Effects of root pruning on the growth and rhizosphere soil characteristics of short-rotation closed-canopy poplar

    Energy Technology Data Exchange (ETDEWEB)

    Du, Z. Y.; Xing, S. J.; Ma, B. Y.; Liu, F. C.; Ma, H. L.; Wang, Q. H.

    2012-11-01

    When poplar trees planted at a high density are canopy-closed in plantation after 4-5 years of growth, the roots of adjacent trees will inevitably intermingle together, which possibly restricts the nutrient uptake by root system. Root pruning might stimulate the emergence of fine roots and benefit the tree growth of short-rotation poplar at the stage of canopy closing. The aim of this study is to evaluate the effects of root pruning on DBH (diameter at breast height, 1.3 m), tree height, nutrients (N, P and K) and hormones (indoleacetic acid and cytokinin) in poplar leaves, gas exchange variables (photosynthetic rate and stomatal conductance), and rhizosphere soil characteristics. Field experiment was carried out with four-yearold poplar (Populus × euramericana cv. ‘Neva’) planted in a fluvo-aquic loam soil in Shandong province, China in early April, 2008. Three root pruning treatments (severe, moderate and light degree) were conducted at the distances of 6, 8 and 10 times DBH on both inter-row sides of the trees to the depth of 30 cm, respectively. The results showed that the growth performance was obtained in the following order of treatments: moderate > light = control > severe. In the rhizophere soil, moderate and light pruning increased the microbial populations, enzymatic activities, and the concentrations of available N, P, K and organic matter. Generally, root pruning to improve tree growth and rhizosphere soil fertility can be recommended in canopy-closed poplar plantation. The appropriate selection of root pruning intensity is a pivotal factor for the effectiveness of this technique. (Author) 35 refs.

  14. Clonal variation in survival and growth of hybrid poplar and willow in an in situ trial on soils heavily contaminated with petroleum hydrocarbons

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Edmund O. Bauer; Richard B. Hall; Jill A. Zalesny; Joshua Kunzman; Chris J. Rog; Don E. Riemenschneider

    2005-01-01

    Species and hybrids between species belonging to the genera Populus (poplar) and Salix (willow) have been used successfully for phytoremediation of contaminated soils. Our objectives were to: 1) evaluate the potential for establishing genotypes of poplar and willow on soils heavily contaminated with petroleum hydrocarbons and 2)...

  15. Natural hybridization between Populus nigra L. and P. x canadensis Moench. Hybrid offspring competes for niches along the Rhine river in the Netherlands

    NARCIS (Netherlands)

    Smulders, M.J.M.; Beringen, R.; Volosyanchuk, R.; Vanden Broeck, A.; Schoot, van der J.; Arens, P.F.P.; Vosman, B.

    2008-01-01

    Black poplar (Populus nigra L.) is a major species for European riparian forests but its abundance has decreased over the decades due to human influences. For restoration of floodplain woodlands, the remaining black poplar stands may act as source population. A potential problem is that P. nigra and

  16. A role for stomata in regulating water use efficiency in Populus x ...

    African Journals Online (AJOL)

    A role for stomata in regulating water use efficiency in Populus x euramericana and characterization of a related gene, PdERECTA. P Guo, X Xia, WL Yin. Abstract. The physiological mechanism of water use efficiency (WUE) remains elucidated, especially in poplar. We studied WUEi (instantaneous leaf transpiration ...

  17. An Empirical Assessment of Transgene Flow from a Bt Transgenic Poplar Plantation.

    Directory of Open Access Journals (Sweden)

    Jianjun Hu

    Full Text Available To assess the possible impact of transgenic poplar plantations on the ecosystem, we analyzed the frequency and distance of gene flow from a mature male transgenic Populus nigra plantation carrying the Bacillus thuringiensis toxin gene (Bt poplar and the survival of Bt poplar seeds. The resultant Bt poplar seeds occurred at a frequency of ~0.15% at 0 m to ~0.02% at 500 m from the Bt poplar plantation. The germination of Bt poplar seeds diminished within three weeks in the field (germination rate from 68% to 0% compared to 48% after three weeks of storage at 4°C. The survival rate of seedlings in the field was 0% without any treatment but increased to 1.7% under the addition of four treatments (cleaning and trimming, watering, weeding, and covering with plastic film to maintain moisture after being seeded in the field for eight weeks. The results of this study indicate that gene flow originating from the Bt poplar plantation occurred at an extremely low level through pollen or seeds under natural conditions. This study provides first-hand field data on the extent of transgene flow in poplar plantations and offers guidance for the risk assessment of transgenic poplar plantations.

  18. Allelopathic potential of populus euphratica olivier

    International Nuclear Information System (INIS)

    Sher, Z.; Hussain, F.; Ahmad, B.; Wahab, M.

    2011-01-01

    Populus euphratica Olivier is frequently cultivated deciduous tree in Pakistan on agricultural land for its shade, fodder, timber and fuel wood. A relatively reduced under storey is often observed below it. Therefore the present study was conducted to assess the allelopathic potential of Populus euphratica against some crop species. Plant material of Populus euphratica were collected from the agriculture fields of Lahor, District Swabi in 2008 and were dried at room temperature (258 deg. C-308 deg. C). Allelopathic studies conducted by using aqueous extracts from various parts including young leaves, mature leaves, bark, litter and mulching in various experiments invariably retarded the germination, plumule, radical growth, fresh and dry weight of Sorghum vulgare Perse, Setaria italica (L.) P. Beauv and Triticum aestivum L., in laboratory experiments. The aqueous extracts obtained after 48 h were more inhibitory than 24 h. Leaves were more toxic than bark. Litter and mulching experiments also proved to be inhibitory. It is suggested that the various assayed parts of Populus euphratica have strong allelopathic potential at least against the tested species. Further investigation is required to see its allelopathic behavior under field condition against its associated species and to identify the toxic principles. (author)

  19. Gamma radiation effect on Populus nigra assimilatory pigments

    International Nuclear Information System (INIS)

    Creanga, I. A.; Tudorie, Marcela; Mocanasu, C.; Creanga, Dorina

    2002-01-01

    The influence of low intensity gamma radiation on the photosynthesis in young poplar saplings was studied. Black poplar (Populus nigra) was chosen due to its ecological importance, as fast growing tree species with many hybrids, in the frame of a polluted environment. Assimilatory pigments in the leaves of irradiated saplings were assayed using standard spectrophotometric method in acetone extract. Series of five saplings formed the experimental samples. Chlorophyll a and chlorophyll b levels appeared as diminished in exposed samples in comparison to the controls. Linear regression was established in every case, the line slope showing the higher effect in chlorophyll b. Carotene pigments presented a slight increasing tendency in the exposed samples. Assimilatory pigment sum was shown to be affected by the same decreasing tendency. Student t-test was applied (two tailed, pair type) to reveal statistical significance of observed modifications. Though not very deep, the modifications induced by exposure to gamma radiation of low intensity (comparable to the local atmospheric variations, caused by both natural and artificial sources) represent putative inhibitory factors in young plant photosynthesis. The main mechanism of radiation action seems to be water radiolysis, triggering peroxide cascade, generally producing toxic products for the cell metabolism. Nevertheless, living cell ability to repair some damages caused by external stress could be revealed in the present case by the enhancing tendency of the carotenes which sustain photosynthesis as secondary pigments. (authors)

  20. Peroxidase Activity in Poplar Inoculated with Compatible and Incompetent Isolates of Paxillus involutus

    Directory of Open Access Journals (Sweden)

    ABDUL GAFUR

    2007-06-01

    Full Text Available Peroxidase activity of the hybrid poplar Populus×canescens (Ait. Sm. (= P. tremula L. × P. alba L. inoculated with compatible and incompetent isolates of Paxillus involutus (Batsch Fr. was investigated. Screening of the ectomycorrhizal fungal isolates was initiated with exploration of mycelial growth characteristics and mycorrhizal ability in vitro with poplar. Both traits varied within the fungus although they did not seem to be genetically correlated. While isolates SCO1, NAU, and 031 grew faster than others, only isolates MAJ, SCO1, and 031 were able to form ectomycorrhiza with poplar. Isolates MAJ (compatible and NAU (incompetent were subsequently selected for further experiments. Activity of peroxidase, one of the defense-related enzymes, was examined in pure culture and short root components of compatible and incompetent interactions between poplar and P. involutus. Peroxidase activities increased significantly in poplar inoculated with incompetent isolate of the fungus compared to control, while induction of the same enzyme was not detected in compatible associations.

  1. Genome-wide transcriptome profiling of black poplar (Populus nigra L.) under boron toxicity revealed candidate genes responsible in boron uptake, transport and detoxification.

    Science.gov (United States)

    Yıldırım, Kubilay; Uylaş, Senem

    2016-12-01

    Boron (B) is an essential nutrient for normal growth of plants. Despite its low abundance in soils, it could be highly toxic to plants in especially arid and semi-arid environments. Poplars are known to be tolerant species to B toxicity and accumulation. However, physiological and gene regulation responses of these trees to B toxicity have not been investigated yet. Here, B accumulation and tolerance level of black poplar clones were firstly tested in the current study. Rooted cutting of these clones were treated with elevated B toxicity to select the most B accumulator and tolerant genotype. Then we carried out a microarray based transcriptome experiment on the leaves and roots of this genotype to find out transcriptional networks, genes and molecular mechanisms behind B toxicity tolerance. The results of the study indicated that black poplar is quite suitable for phytoremediation of B pollution. It could resist 15 ppm soil B content and >1500 ppm B accumulation in leaves, which are highly toxic concentrations for almost all agricultural plants. Transcriptomics results of study revealed totally 1625 and 1419 altered probe sets under 15 ppm B toxicity in leaf and root tissues, respectively. The highest induction were recorded for the probes sets annotated to tyrosine aminotransferase, ATP binding cassette transporters, glutathione S transferases and metallochaperone proteins. Strong up regulation of these genes attributed to internal excretion of B into the cell vacuole and existence of B detoxification processes in black poplar. Many other candidate genes functional in signalling, gene regulation, antioxidation, B uptake and transport processes were also identified in this hyper B accumulator plant for the first time with the current study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  2. Shoot position affects root initiation and growth of dormant unrooted cuttings of Populus

    Science.gov (United States)

    R.S., Jr. Zalesny; R.B. Hall; E.O. Bauer; D.E. Riemenschneider

    2003-01-01

    Rooting of dormant unrooted cuttings is crucial to the commercial deployment of intensively cultured poplar (Populus spp.) plantations because it is the first biological prerequisite to stand establishment. Rooting can be genetically controlled and subject to selection. Thus, our objective was to test for differences in rooting ability among cuttings...

  3. Putrescine overproduction negatively impacts the oxidative state of poplar cells in culture

    Science.gov (United States)

    Sridev Mohapatra; Rakesh Minocha; Stephanie Long

    2009-01-01

    While polyamines (PAs) have been suggested to protect cells against Reactive Oxygen Species (ROS), their catabolism is known to generate ROS. We compared the activities of several enzymes and cellular metabolites involved in the ROS scavenging pathways in two isogenic cell lines of poplar (Populus nigra × maximowiczii) differing in their PA...

  4. Influence of Populus Genotype on Gene Expression by the Wood Decay Fungus Phanerochaete chrysosporium

    Science.gov (United States)

    Jill Gaskell; Amber Marty; Michael Mozuch; Philip J. Kersten; Sandra Splinter Bondurant; Grzegorz Sabat; Ali Azarpira; John Ralph; Oleksandr Skyba; Shawn D. Mansfield; Robert A. Blanchette; Dan Cullen

    2014-01-01

    We examined gene expression patterns in the lignin-degrading fungus Phanerochaete chrysosporium when it colonizes hybrid poplar (Populus alba tremula) and syringyl (S)-rich transgenic derivatives. Acombination ofmicroarrays and liquid chromatography- tandem mass spectrometry (LC-MS/MS) allowed detection of a total of 9,959 transcripts and 793...

  5. Analysis of genetic and environmental effects on hybrid poplar rooting in Central and Northern Minnesota, USA

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Don Riemenschneider; Edmund Bauer

    2000-01-01

    We studied genetic and environmental effects on adventitious root initiation and growth because rooting is biologically prerequisite to the establishment of hybrid poplar plantations. Six clones from two pedigrees (pure Populus deltoides "cottonwoods" and P. deltoides x P. maximowiczii hybrids) were...

  6. Bud removal affects shoot, root, and callus development of hardwood Populus cuttings

    Science.gov (United States)

    A.H. Wiese; J.A. Zalesny; D.M. Donner; Ronald S., Jr. Zalesny

    2006-01-01

    The inadvertent removal and/or damage of buds during processing and planting of hardwood poplar (Populus spp.) cuttings are a concern because of their potential impact on shoot and root development during establishment. The objective of the current study was to test for differences in shoot dry mass, root dry mass, number of roots, length of the...

  7. Energy partitioning and surface resistance of a poplar plantation in northern China

    Science.gov (United States)

    M. Kang; Z. Zhang; A. Noormets; X. Fang; T. Zha; J. Zhou; G. Sun; S. G. McNulty; J. Chen

    2015-01-01

    Poplar (Populus sp.) plantations have been, on the one hand, broadly used in northern China for urban greening, combating desertification, as well as for paper and wood production. On the other hand, such plantations have been questioned occasionally for their possible negative impacts on water availability due to the higher water-use nature of...

  8. Linking the salt transcriptome with physiological responses of a salt-resistant Populus species as a strategy to identify genes important for stress acclimation.

    Science.gov (United States)

    Brinker, Monika; Brosché, Mikael; Vinocur, Basia; Abo-Ogiala, Atef; Fayyaz, Payam; Janz, Dennis; Ottow, Eric A; Cullmann, Andreas D; Saborowski, Joachim; Kangasjärvi, Jaakko; Altman, Arie; Polle, Andrea

    2010-12-01

    To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified.

  9. Comparative Physiological and Proteomic Analysis Reveals the Leaf Response to Cadmium-Induced Stress in Poplar (Populus yunnanensis.

    Directory of Open Access Journals (Sweden)

    Yunqiang Yang

    Full Text Available Excess amounts of heavy metals are important environmental pollutants with significant ecological and nutritional effects. Cdmium (Cd is of particular concern because of its widespread occurrence and high toxicity. We conducted physiological and proteomic analyses to improve our understanding of the responses of Populus yunnanensis to Cd stress. The plantlets experienced two apparent stages in their response to Cd stress. During the first stage, transiently induced defense-response molecules, photosynthesis- and energy-associated proteins, antioxidant enzymes and heat shock proteins (HSPs accumulated to enhance protein stability and establish a new cellular homeostasis. This activity explains why plant photosynthetic capability during this period barely changed. During the second stage, a decline of ribulose-1, 5-bisphosphate carboxylase (RuBisCO and HSP levels led to imbalance of the plant photosynthetic system. Additionally, the expression of Mitogen-activated protein kinase 3 (MPK3, Mitogen-activated protein kinase 6 (MPK6 and a homeobox-leucine zipper protein was higher in the second stage. Higher expression of caffeoyl-CoA O-methyltransferase (CCoAOMT may regulate plant cell wall synthesis for greater Cd storage. These genes may be candidates for further research and use in genetic manipulation of poplar tolerance to Cd stress.

  10. A genomics investigation of partitioning into and among flavonoid-derived condensed tannins for carbon sequestration in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Harding, Scott, A; Tsai, Chung-jui; Lindroth, Richard, L

    2013-03-24

    The project set out to use comparative (genotype and treatment) and transgenic approaches to investigate the determinants of condensed tannin (CT) accrual and chemical variability in Populus. CT type and amount are thought to effect the decomposition of plant detritus in the soil, and thereby the sequestering of carbon in the soil. The stated objectives were: 1. Genome-wide transcriptome profiling (microarrays) to analyze structural gene, transcription factor and metabolite control of CT partitioning; 2. Transcriptomic (microarray) and chemical analysis of ontogenetic effects on CT and PG partitioning; and 3. Transgenic manipulation of flavonoid biosynthetic pathway genes to modify the control of CT composition. Objective 1: A number of approaches for perturbing CT content and chemistry were tested in Objective 1, and those included nitrogen deficit, leaf wounding, drought, and salicylic acid spraying. Drought had little effect on CTs in the genotypes we used. Plants exhibited unpredictability in their response to salicylic acid spraying, leading us to abandon its use. Reduced plant nitrogen status and leaf wounding caused reproducible and magnitudinally striking increases in leaf CT content. Microarray submissions to NCBI from those experiments are the following: GSE ID 14515: Comparative transcriptomics analysis of Populus leaves under nitrogen limitation: clone 1979. Public on Jan 04, 2010; Contributor(s) Harding SA, Tsai C GSE ID 14893: Comparative transcriptomics analysis of Populus leaves under nitrogen limitation: clone 3200. Public on Feb 19, 2009; Contributor(s) Harding SA, Tsai C GSE ID 16783 Wound-induced gene expression changes in Populus: 1 week; clone RM5. Status Public on Dec 01, 2009; Contributor(s) Harding SA, Tsai C GSE ID 16785 Wound-induced gene expression changes in Populus: 90 hours; clone RM5 Status Public on Dec 01, 2009; Contributor(s) Harding SA, Tsai C Although CT amount changed in response to treatments, CT composition was essentially

  11. Transgenic poplars with reduced lignin show impaired xylem conductivity, growth efficiency and survival

    Science.gov (United States)

    Steven L. Voelker; Barbara Lachenbruch; Frederick C. Meinzer; Peter Kitin; Steven H. Strauss

    2011-01-01

    We studied xylem anatomy and hydraulic architecture in 14 transgenic insertion events and a control line of hybrid poplar (Populus spp.) that varied in lignin content. Transgenic events had different levels of down-regulation of two genes encoding 4-coumarate:coenzyme A ligase (4CL). Two-year-old trees were characterized after...

  12. Field performance of Populus in short-rotation intensive culture plantations in the north-central U.S.

    Science.gov (United States)

    Edward A. Hansen; Michael E. Ostry; Wendell D. Johnson; David N. Tolsted; Daniel A. Netzer; William E. Berguson; Richard B. Hall

    1994-01-01

    Describes a network of short-rotation, Populus research and demonstration plantations that has been established across a 5-state region in the north-central U.S. to identify suitable hybrid poplar clones for large-scale biomass plantations in the region. Reports 6-year results.

  13. Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra.

    Directory of Open Access Journals (Sweden)

    Weidong Gao

    Full Text Available Late embryogenesis abundant (LEA genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarixandrossowii (named TaLEA was transformed into Xiaohei poplar (Populussimonii × P. nigra via Agrobacterium. Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR and ribonucleic acid (RNA gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11 showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.

  14. Overexpression of TaLEA gene from Tamarix androssowii improves salt and drought tolerance in transgenic poplar (Populus simonii × P. nigra).

    Science.gov (United States)

    Gao, Weidong; Bai, Shuang; Li, Qingmei; Gao, Caiqiu; Liu, Guifeng; Li, Guangde; Tan, Feili

    2013-01-01

    Late embryogenesis abundant (LEA) genes were confirmed to confer resistance to drought and water deficiency. An LEA gene from Tamarixandrossowii (named TaLEA) was transformed into Xiaohei poplar (Populussimonii × P. nigra) via Agrobacterium. Twenty-five independent transgenic lines were obtained that were resistant to kanamycin, and 11 transgenic lines were randomly selected for further analysis. The polymerase chain reaction (PCR) and ribonucleic acid (RNA) gel blot indicated that the TaLEA gene had been integrated into the poplar genome. The height growth rate, malondialdehyde (MDA) content, relative electrolyte leakage and damages due to salt or drought to transgenic and non-transgenic plants were compared under salt and drought stress conditions. The results showed that the constitutive expression of the TaLEA gene in transgenic poplars could induce an increase in height growth rate and a decrease in number and severity of wilted leaves under the salt and drought stresses. The MDA content and relative electrolyte leakage in transgenic lines under salt and drought stresses were significantly lower compared to those in non-transgenic plants, indicating that the TaLEA gene may enhance salt and drought tolerance by protecting cell membranes from damage. Moreover, amongst the lines analyzed for stress tolerance, the transgenic line 11 (T11) showed the highest tolerance levels under both salinity and drought stress conditions. These results indicated that the TaLEA gene could be a salt and drought tolerance candidate gene and could confer a broad spectrum of tolerance under abiotic stresses in poplars.

  15. Production potential of 36 poplar clones grown at medium length rotation in Denmark

    DEFF Research Database (Denmark)

    Nielsen, Ulrik Brauner; Madsen, Palle; Hansen, Jon Kehlet

    2014-01-01

    years. The estimated mean annual increment of above ground biomass ranged from 1 to 9 Mg ha−1 yr−1 at age 13 years. A hybrid clone O.P. 42 (synonyms Hybrid 275, NE 42) Populus maximowiczii × trichocarpa, performed best, but also clones of the species Populus trichocarpa had a high biomass production....... In general the hybrids using P. maximowiczii as a parent were well performing. Lowest production had pure species Populus nigra and Populus deltoides as well as their hybrids. The choice of species hybrid combination had a very strong impact on biomass production, but less influence on quality and health......The importance of choosing suitable clones for production of timber and biomass has long been recognized. The aims of this study were to describe the genetic variation and production potential among 36 poplar clones grown in a rotation of 5–13 years and evaluate the different species and hybrid...

  16. Red Xylem and Higher Lignin Extractability by Down-Regulating a Cinnamyl Alcohol Dehydrogenase in Poplar.

    Science.gov (United States)

    Baucher, M.; Chabbert, B.; Pilate, G.; Van Doorsselaere, J.; Tollier, M. T.; Petit-Conil, M.; Cornu, D.; Monties, B.; Van Montagu, M.; Inze, D.; Jouanin, L.; Boerjan, W.

    1996-12-01

    Cinnamyl alcohol dehydrogenase (CAD) catalyzes the last step in the biosynthesis of the lignin precursors, the monolignols. We have down-regulated CAD in transgenic poplar (Populus tremula X Populus alba) by both antisense and co-suppression strategies. Several antisense and sense CAD transgenic poplars had an approximately 70% reduced CAD activity that was associated with a red coloration of the xylem tissue. Neither the lignin amount nor the lignin monomeric composition (syringyl/guaiacyl) were significantly modified. However, phloroglucinol-HCl staining was different in the down-regulated CAD plants, suggesting changes in the number of aldehyde units in the lignin. Furthermore, the reactivity of the cell wall toward alkali treatment was altered: a lower amount of lignin was found in the insoluble, saponified residue and more lignin could be precipitated from the soluble alkali fraction. Moreover, large amounts of phenolic compounds, vanillin and especially syringaldehyde, were detected in the soluble alkali fraction of the CAD down-regulated poplars. Alkaline pulping experiments on 3-month-old trees showed a reduction of the kappa number without affecting the degree of cellulose degradation. These results indicate that reducing the CAD activity in trees might be a valuable strategy to optimize certain processes of the wood industry, especially those of the pulp and paper industry.

  17. Isoprene biosynthesis in hybrid poplar impacts ozone tolerance

    Science.gov (United States)

    Behnke, K.; Kleist, E.; Uerlings, R.; Wildt, J.; Rennenberg, H.; Schnitzler, J. P.

    2009-04-01

    Isoprene is the most abundant volatile compound emitted by vegetation. It influences air chemistry and is thought to take part in plant defense reactions against abiotic stress such as high temperature or ozone. However, whether or not isoprene emission interacts with ozone tolerance of plants is still in discussion. We exploited transgenic non-isoprene emitting Grey poplar (Populus x canescens) in a biochemical and physiological model study to investigate the effect of acute ozone stress on the elicitation of defense-related emissions of plant volatiles, photosynthesis and the antioxidative system. We recorded that non-isoprene emitting poplars are more resistant to ozone as indicated by less damaged leaf area and higher assimilation rates compared to ozone-exposed wild type plants. The integral of green leaf volatile (GLV) emissions was different between the two poplar phenotypes and a reliable early marker for subsequent leaf damage. For other stress-induced volatiles like mono-, homo-, and sesquiterpenes, and methyl salicylate similar time profiles, pattern and emission intensities were observed in both transgenic and wild type plants. However, un-stressed non-isoprene emitting poplars are characterized by elevated levels of ascorbate and α-tocopherol as well as a more effective de-epoxidation ratio of xanthophylls than in wild type plants. Since ozone quenching properties of ascorbate are much higher than those of isoprene and furthermore α-tocopherol also is an essential antioxidant, non-isoprene emitting poplars might benefit from changes within the antioxidative system by providing them with enhanced ozone tolerance.

  18. Putrescine overproduction does not affect the catabolism of spermidine and spermine in poplar and Arabidopsis

    Science.gov (United States)

    Lin Shao; Pratiksha Bhatnagar; Rajtilak Majumdar; Rakesh Minocha; Subhash C. Minocha

    2014-01-01

    The effect of up-regulation of putrescine (Put) production by genetic manipulation on the turnover of spermidine (Spd) and spermine (Spm) was investigated in transgenic cells of poplar (Populus nigra x maximowiczii) and seedlings of Arabidopsis thaliana. Several-fold increase in Put production was achieved by expressing a mouse...

  19. Linking the Salt Transcriptome with Physiological Responses of a Salt-Resistant Populus Species as a Strategy to Identify Genes Important for Stress Acclimation1[W][OA

    Science.gov (United States)

    Brinker, Monika; Brosché, Mikael; Vinocur, Basia; Abo-Ogiala, Atef; Fayyaz, Payam; Janz, Dennis; Ottow, Eric A.; Cullmann, Andreas D.; Saborowski, Joachim; Kangasjärvi, Jaakko; Altman, Arie; Polle, Andrea

    2010-01-01

    To investigate early salt acclimation mechanisms in a salt-tolerant poplar species (Populus euphratica), the kinetics of molecular, metabolic, and physiological changes during a 24-h salt exposure were measured. Three distinct phases of salt stress were identified by analyses of the osmotic pressure and the shoot water potential: dehydration, salt accumulation, and osmotic restoration associated with ionic stress. The duration and intensity of these phases differed between leaves and roots. Transcriptome analysis using P. euphratica-specific microarrays revealed clusters of coexpressed genes in these phases, with only 3% overlapping salt-responsive genes in leaves and roots. Acclimation of cellular metabolism to high salt concentrations involved remodeling of amino acid and protein biosynthesis and increased expression of molecular chaperones (dehydrins, osmotin). Leaves suffered initially from dehydration, which resulted in changes in transcript levels of mitochondrial and photosynthetic genes, indicating adjustment of energy metabolism. Initially, decreases in stress-related genes were found, whereas increases occurred only when leaves had restored the osmotic balance by salt accumulation. Comparative in silico analysis of the poplar stress regulon with Arabidopsis (Arabidopsis thaliana) orthologs was used as a strategy to reduce the number of candidate genes for functional analysis. Analysis of Arabidopsis knockout lines identified a lipocalin-like gene (AtTIL) and a gene encoding a protein with previously unknown functions (AtSIS) to play roles in salt tolerance. In conclusion, by dissecting the stress transcriptome of tolerant species, novel genes important for salt endurance can be identified. PMID:20959419

  20. Effects of irrigating poplar energy crops with landfill leachate on soil micro- and meso-fauna

    Science.gov (United States)

    Jill A. Zalesny; David R. Coyle; Ronald S. Jr. Zalesny; Adam H. Wiese

    2009-01-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization for the trees. Populus species and hybrids (i.e., poplars) are ideal for such systems given their fast...

  1. Root proteome response to growth on tannery waste in three different poplar species with various adaptation abilities

    Directory of Open Access Journals (Sweden)

    Zemleduch-Barylska A.

    2013-04-01

    Full Text Available In our study we compared growth of three poplar clones (Populus tremula ×alba, P. alba ‘Villafranca” and P. nigra on chromium-containing solid tannery waste. Tolerance index of saplings ranged from only 25% for P. nigra up to 80% for P. tremula x alba. Standard morphological, chemical and biochemical analyses also confirmed significant differences in reaction of all tested clones to such growth conditions. Preliminary proteomic study showed an unequal level of changes in protein profiles from roots in different poplars.

  2. Dense genetic linkage maps of three Populus species (Populus deltoides, P. nigra and P. trichocarpa) based on AFLP and microsatellite markers.

    Science.gov (United States)

    Cervera, M T; Storme, V; Ivens, B; Gusmão, J; Liu, B H; Hostyn, V; Van Slycken, J; Van Montagu, M; Boerjan, W

    2001-06-01

    Populus deltoides, P. nigra, and P. trichocarpa are the most important species for poplar breeding programs worldwide. In addition, Populus has become a model for fundamental research on trees. Linkage maps were constructed for these three species by analyzing progeny of two controlled crosses sharing the same female parent, Populus deltoides cv. S9-2 x P. nigra cv. Ghoy and P. deltoides cv. S9-2 x P. trichocarpa cv. V24. The two-way pseudotestcross mapping strategy was used to construct the maps. Amplified fragment length polymorphism (AFLP) markers that segregated 1:1 were used to form the four parental maps. Microsatellites and sequence-tagged sites were used to align homoeologous groups between the maps and to merge linkage groups within the individual maps. Linkage analysis and alignment of the homoeologous groups resulted in 566 markers distributed over 19 groups for P. deltoides covering 86% of the genome, 339 markers distributed over 19 groups for P. trichocarpa covering 73%, and 369 markers distributed over 28 groups for P. nigra covering 61%. Several tests for randomness showed that the AFLP markers were randomly distributed over the genome.

  3. Physiological aspects of short-rotation culture of the poplar. Fertilization of soils by sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, G

    1988-01-01

    This study, on the poplar (Populus Trichocarpa x Populus deltoides, c.v. Raspalje) concerned two different problems. The first is a physiological study on the tree treated in short rotation; the second deals with a fertilization by sewage sludge and the consequences on the environment. We have carried out in the laboratory two complementary experiments, the one, on the culture of the poplar in hydroponic medium with a pollutant element (Hg), and the other in the potentialities of soil retention. In the first part, we have showed that: - the best period for coppicing is between Mid August and May, as soon as the stumps were four or five years-old, - the coppicing has a stimulating effect on the growth of the coppice shoots, - the mean number of dominant coppice shoots, after several coppicing, is two, - the productivity is about 20 to 30 tonnes of dry matter per hectare and per year. The second part of this study has showed that: - using 3.2 tonnes of dehydrated sewage sludge per hectare and per year to fertilize, has the same effects on productivity of poplars as a classical fertilization (every 5 years) by chemical manure (N, P, K), - there were no differences in the concentration of heavy metals (Cd, Cu, Pb and Hg), in the different parts of the poplars, between the different plots fertilized with sewage sludge, chemical manure and controlled. Moreover, the experiments performed, in the laboratory showed that: - pollutant elements (Cd, Cu) were fixed in the top of the column soil, - using a hydroponic solution containing a mercuric chloride, labelled ({sup 203}Hg), the poplars absorb very little of the pollutant element. Only 10% of the mercury in the solution was to be found in the plant and 99% of this in the root-system, more precisely, at the level epidermic barrier.

  4. A heterogeneous boron distribution in soil influences the poplar root system architecture development

    Science.gov (United States)

    Rees, R.; Robinson, B. H.; Hartmann, S.; Lehmann, E.; Schulin, R.

    2009-04-01

    Poplars are well suited for the phytomanagement of boron (B)-contaminated sites, due to their high transpiration rate and tolerance to elevated soil B concentrations. However, the uptake and the fate of B in poplar stands are not well understood. This information is crucial to improve the design of phytomanagement systems, where the primary role of poplars is to reduce B leaching by reducing the water flux through the contaminated material. Like other trace elements, B occurs heterogeneously in soils. Concentrations can differ up to an order of magnitude within centimetres. These gradients affect plant root growth and thus via preferential flow along the roots water and mass transport in soils to ground and surface waters. Generally there are three possible reactions of plant roots to patches with elevated trace element concentrations in soils: indifference, avoidance, or foraging. While avoidance or indifference might seem to be the most obvious strategies, foraging cannot be excluded a priori, because of the high demand of poplars for B compared to other tree species. We aimed to determine the rooting strategies of poplars in soils where B is either homo- or heterogeneously distributed. We planted 5 cm cuttings of Populus tremula var. Birmensdorf clones in aluminum (Al) containers with internal dimensions of 64 x 67 x 1.2 cm. The soil used was subsoil from northern Switzerland with a naturally low B and organic C concentration. We setup two treatments and a control with three replicates each. We spiked a bigger and a smaller portion of the soil with the same amount of B(OH)3-salt, in order to obtain soil concentrations of 7.5 mg B kg-1 and 20 mg B kg-1. We filled the containers with (a) un-spiked soil, (b) the 7.5 mg B kg-1 soil and (c) heterogeneously. The heterogeneous treatment consisted of one third 20 mg B kg-1 soil and two thirds control soil. We grew the poplars in a small greenhouse over 2 months and from then on in a climate chamber for another 3 months

  5. Roles of gibberellin catabolism and signaling in growth and physiological response to drought and short-day photoperiods in Populus trees.

    Directory of Open Access Journals (Sweden)

    Christine Zawaski

    Full Text Available Survival and productivity of perennial plants in temperate zones are dependent on robust responses to prolonged and seasonal cycles of unfavorable conditions. Here we report whole-genome microarray, expression, physiological, and transgenic evidence in hybrid poplar (Populus tremula × Populus alba showing that gibberellin (GA catabolism and repressive signaling mediates shoot growth inhibition and physiological adaptation in response to drought and short-day (SD induced bud dormancy. Both water deprivation and SDs elicited activation of a suite of poplar GA2ox and DELLA encoding genes. Poplar transgenics with up-regulated GA 2-oxidase (GA2ox and DELLA domain proteins showed hypersensitive growth inhibition in response to both drought and SDs. In addition, the transgenic plants displayed greater drought resistance as evidenced by increased pigment concentrations (chlorophyll and carotenoid and reductions in electrolyte leakage (EL. Comparative transcriptome analysis using whole-genome microarray showed that the GA-deficiency and GA-insensitivity, SD-induced dormancy, and drought response in poplar share a common regulon of 684 differentially-expressed genes, which suggest GA metabolism and signaling plays a role in plant physiological adaptations in response to alterations in environmental factors. Our results demonstrate that GA catabolism and repressive signaling represents a major route for control of growth and physiological adaptation in response to immediate or imminent adverse conditions.

  6. Proteome analysis reveals an energy-dependent central process for Populus×canadensis seed germination.

    Science.gov (United States)

    Zhang, Hong; Zhou, Ke-Xin; Wang, Wei-Qing; Liu, Shu-Jun; Song, Song-Quan

    2017-06-01

    Poplar (Populus×canadensis) seeds rapidly germinated in darkness at 10, 15, and 20°C and reached 50% seed germination after about 22, 4.5, and 3.5h, respectively. Germination of poplar seeds was markedly inhibited by abscisic acid (ABA) at 50μM and cycloheximide (CHX) at 100μM, and these inhibitive roles were temperature-dependent. In the present study, mature poplar seeds were used to investigate the differentially changed proteome of seeds germinating in water, ABA, and CHX. A total of 130 protein spots showed a significant change (1.5-fold increase/decrease, Pgermination of poplar seeds is closely related with the increase in those proteins involved in amino acid and lipid metabolism, the tricarboxylic acid cycle and pentose phosphate pathway, protein synthesis and destination, cell defense and rescue, and degradation of storage proteins. ABA and CHX inhibit the germination of poplar seeds by decreasing the protein abundance associated with protein proteolysis, protein folding, and storage proteins. We conclude that poplar seed germination is an energy-dependent active process, and is accompanied by increasing amino acid activation, protein synthesis and destination, as well as cell defense and rescue, and degradation of storage proteins. Copyright © 2017 Elsevier GmbH. All rights reserved.

  7. The MYB182 protein down-regulates proanthocyanidin and anthocyanin biosynthesis in poplar by repressing both structural and regulatory flavonoid genes.

    Science.gov (United States)

    Yoshida, Kazuko; Ma, Dawei; Constabel, C Peter

    2015-03-01

    Trees in the genus Populus (poplar) contain phenolic secondary metabolites including the proanthocyanidins (PAs), which help to adapt these widespread trees to diverse environments. The transcriptional activation of PA biosynthesis in response to herbivory and ultraviolet light stress has been documented in poplar leaves, and a regulator of this process, the R2R3-MYB transcription factor MYB134, has been identified. MYB134-overexpressing transgenic plants show a strong high-PA phenotype. Analysis of these transgenic plants suggested the involvement of additional MYB transcription factors, including repressor-like MYB factors. Here, MYB182, a subgroup 4 MYB factor, was found to act as a negative regulator of the flavonoid pathway. Overexpression of MYB182 in hairy root culture and whole poplar plants led to reduced PA and anthocyanin levels as well as a reduction in the expression of key flavonoid genes. Similarly, a reduced accumulation of transcripts of a MYB PA activator and a basic helix-loop-helix cofactor was observed in MYB182-overexpressing hairy roots. Transient promoter activation assays in poplar cell culture demonstrated that MYB182 can disrupt transcriptional activation by MYB134 and that the basic helix-loop-helix-binding motif of MYB182 was essential for repression. Microarray analysis of transgenic plants demonstrated that down-regulated targets of MYB182 also include shikimate pathway genes. This work shows that MYB182 plays an important role in the fine-tuning of MYB134-mediated flavonoid metabolism. © 2015 American Society of Plant Biologists. All Rights Reserved.

  8. Factors Influencing the Tissue Culture and the Agrobacterium tumefaciens-Mediated Transformation of Hybrid Aspen and Poplar Clones.

    Science.gov (United States)

    De Block, M

    1990-07-01

    Tissue culture conditions and transformation have been established for both aspen and poplar. The use of previously described culture conditions resulted in shoot tip necrosis in the shoot cultures and necrosis of stem and leaf explants. Shoot tip necrosis could be overcome by buffering the medium with 2-(N-morpholino)ethanesulfonic acid and Ca-gluconate and by growing the shoots below 25 degrees C. Necrosis of the explants was probably due to an accumulation of ammonium in the explants and could be overcome by adapting the NO(3) (-)/NH(4) (+) ratio of the media. Stem explants of established shoot cultures of the aspen hybrid Populus alba x P. tremula and of the poplar hybrid Populus trichocarpa x P. deltoides were cocultivated with Agrobacterium strains having chimeric bar and neo genes on their disarmed tDNAs. Transformed aspen shoots were obtained from 30 to 40% of the explants, while transformed poplar shoots were obtained from 10% of the explants. Extracts from the transformed trees contained high phosphinotricin acetyltransferase and neomycin phosphotransferase activities, and the trees contained one to three copies of the chimeric genes. The transformed trees were completely resistant to the commercial preparations of the herbicide phosphinotricin (glufosinate), while control trees were not.

  9. Metal-induced changes in photosynthetic electron transport in poplar Ieaves

    International Nuclear Information System (INIS)

    Kralova, K.; Gaplovsky, A.; Masarovicova, E.; Havranek, E.

    2001-01-01

    This study reports the effect of different toxic metals (Cu, Hg and Cd) on dark-induced changes in the photochemical activity of detached poplar leaves that were submersed in solutions of tested metals at different pH level, on the metal accumulation in poplar leaves as well as on fluorescence quenching ability of the tested metals. Cu and Hg inhibited the photosynthetic electron transport (PET) in chloroplast prepared from the leaves of P. nigra and the corresponding IC 50 values were 32.7 and 512.7 μmol dm -3 , respectively. We could not determine the IC 50 value for CdCl 2 due to its very low PET-inhibiting activity. These results are in agreement with previous findings concerning PET inhibition by the studied metals in spinach chloroplasts. The accumulated metal amounts in poplar leaves were determined using radionuclide X-ray fluorescence analysis. The accumulated metal amount increased with the increasing metal concentration and with the decreasing pH value of the applied metal solution. (authors)

  10. Functional analyses of PtRDM1 gene overexpression in poplars and evaluation of its effect on DNA methylation and response to salt stress.

    Science.gov (United States)

    Movahedi, Ali; Zhang, Jiaxin; Sun, Weibo; Mohammadi, Kourosh; Almasi Zadeh Yaghuti, Amir; Wei, Hui; Wu, Xiaolong; Yin, Tongming; Zhuge, Qiang

    2018-06-01

    Epigenetic modification by DNA methylation is necessary for all cellular processes, including genetic expression events, DNA repair, genomic imprinting and regulation of tissue development. It occurs almost exclusively at the C5 position of symmetric CpG and asymmetric CpHpG and CpHpH sites in genomic DNA. The RNA-directed DNA methylation (RDM1) gene is crucial for heterochromatin and DNA methylation. We overexpressed PtRDM1 gene from Populus trichocarpa to amplify transcripts of orthologous RDM1 in 'Nanlin895' (P. deltoides × P. euramericana 'Nanlin895'). This overexpression resulted in increasing RDM1 transcript levels: by ∼150% at 0 mM NaCl treatment and by ∼300% at 60 mM NaCl treatment compared to WT (control) poplars. Genomic cytosine methylation was monitored within 5.8S rDNA and histone H3 loci by bisulfite sequencing. In total, transgenic poplars revealed more DNA methylation than WT plants. In our results, roots revealed more methylated CG contexts than stems and leaves whereas, histone H3 presented more DNA methylation than 5.8S rDNA in both WT and transgenic poplars. The NaCl stresses enhanced more DNA methylation in transgenic poplars than WT plants through histone H3 and 5.8 rDNA loci. Also, the overexpression of PtRDM1 resulted in hyper-methylation, which affected plant phenotype. Transgenic poplars revealed significantly more regeneration of roots than WT poplars via NaCl treatments. Our results proved that RDM1 protein enhanced the DNA methylation by chromatin remodeling (e.g. histone H3) more than repetitive DNA sequences (e.g. 5.8S rDNA). Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. N-fertilization has different effects on the growth, carbon and nitrogen physiology, and wood properties of slow- and fast-growing Populus species.

    Science.gov (United States)

    Li, Hong; Li, Mengchun; Luo, Jie; Cao, Xu; Qu, Long; Gai, Ying; Jiang, Xiangning; Liu, Tongxian; Bai, Hua; Janz, Dennis; Polle, Andrea; Peng, Changhui; Luo, Zhi-Bin

    2012-10-01

    To investigate how N-fertilization affects the growth, carbon and nitrogen (N) physiology, and wood properties of poplars with contrasting growth characteristics, slow-growing (Populus popularis, Pp) and fast-growing (P. alba×P. glandulosa, Pg) poplar saplings were exposed to different N levels. Above-ground biomass, leaf area, photosynthetic rates (A), instantaneous photosynthetic nitrogen use efficiency (PNUE (i)), chlorophyll and foliar sugar concentrations were higher in Pg than in Pp. Foliar nitrate reductase (NR) activities and root glutamate synthase (GOGAT) activities were higher in Pg than in Pp as were the N amount and NUE of new shoots. Lignin contents and calorific values of Pg wood were less than that of Pp wood. N-fertilization reduced root biomass of Pg more than of Pp, but increased leaf biomass, leaf area, A, and PNUE(i) of Pg more than of Pp. Among 13 genes involved in the transport of ammonium or nitrate or in N assimilation, transcripts showed more pronounced changes to N-fertilization in Pg than in Pp. Increases in NR activities and N contents due to N-fertilization were larger in Pg than in Pp. In both species, N-fertilization resulted in lower calorific values as well as shorter and wider vessel elements/fibres. These results suggest that growth, carbon and N physiology, and wood properties are more sensitive to increasing N availability in fast-growing poplars than in slow-growing ones, which is probably due to prioritized resource allocation to the leaves and accelerated N physiological processes in fast-growing poplars under higher N levels.

  12. Effects of two iron sources on iron and cadmium allocation in poplar (populus alba) plants exposed to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Fodor, F.; Gaspar, L.; Cseh, E.; Sarvari, E. [Eotvos Univ., Budapest (Hungary). Dept. of Plant Physiology; Morales, F.; Gogorcena, Y.; Abadia, J. [Consejo Superior de Investigaciones Cientificas, Zaragoza (Spain). Dept. de Nutricion Vegetal; Lucena, J.J. [Madrid Univ., Madrid (Spain). Dept. de Quimica Agricola; Kropfl, K. [Eotvos Univ., Budapest (Hungary). Dept. of Technology and Environmental Chemistry

    2005-09-01

    The phytotoxicity of heavy metals is often manifested as inhibition of plant growth, nitrate assimilation and photosynthesis, as well as disturbances in plant ion and water balances. Many of these plant responses are a result of inhibition of enzyme activity caused by the binding of heavy metal ions to sulfhydryl groups in the active sites of enzymes and by substitution of essential metals. This study investigated the effects of cadmium (Cd) nitrate on the utilization and allocation of iron (Fe) in poplar plants grown in a nutrient solution with Fe(III)-EDTA or Fe(III)-citrate as the Fe source. The effects of Cd were also compared with those of Fe deprivation. Results indicated that the accumulation of Fe in roots was 10-fold higher in plants grown with Fe-citrate than with Fe-ETDA. In addition, cadmium increased leaf chlorophyll concentrations and photosynthetic rates, and these decreases were more marked in plants grown with Fe-citrate than with Fe-EDTA. In both treatments, addition of Cd caused large increases in root and shoot apoplasmic and non-apoplasmic Cd contents and increases in root Fe content. However, Cd decreased shoot Fe content, especially in plants grown with Fe-citrate. New leaves of plants grown with Fe-citrate had small cellular Fe pools, whereas these pools were large in new leaves of plants grown with Fe-EDTA. Non-apoplasmic Cd pools in new leaves were smaller in plants grown with Fe-citrate than with Fe-EDTA, which indicated that inactivation of non-apoplasmic Cd pools is facilitated more by Fe-EDTA than by Fe-citrate. In the presence of Cd, Fe-EDTA was also superior to Fe-citrate in maintaining an adequate Fe supply to poplar shoots. It was concluded that because the amount of non-apoplasmic root Fe was higher in plants grown with Fe-citrate than with Fe-EDTA, the observed differences in plant responses to Fe-EDTA and Fe-citrate may reflect distances in long-distance transport of Fe rather than its acquisition of Fe by roots. 42 refs., 6

  13. Identification of proteins from cambium tissues of the chinese white poplar (populus tomentosa) sampled during the growing season

    International Nuclear Information System (INIS)

    Xie, J.; Liu, S.; Qi, Q.; Hou, Y.

    2014-01-01

    Various protein extraction methods have been used to investigate Chinese white poplar (Populus tomentosa) proteomics. However, extracting and characterizing proteins from woody plants remains a challenge. Two-dimensional gel electrophoresis is a powerful, widely used method for the analysis of complex protein mixtures extracted from biological samples. The technique separates mixtures of proteins along two dimensions, by isoelectric point and molecular weight, and can resolve thousands of different proteins. Here, we report a new application of two-dimensional gel electrophoresis to investigate the proteomics of P. tomentosa cambium tissues over the course of a growing season. Of three protein extraction methods that we compared (the Tris-phenol method, trichloroacetic acid-acetone method, and trichloroacetic acid-acetone-phenol method), trichloroacetic acid-acetone was the most efficient approach for protein extraction from cambium tissues of P. tomentosa. After extraction, the proteins were separated using two-dimensional gel electrophoresis. The protein quantities of six spots changed over the course of the growing season from February to July. Five spots were identified using matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry, and the sixth spot was identified by liquid chromatography-mass spectrometry. The proteins included enolase, class Ia chitinase, and four unnamed proteins. Our results show the best approach to proteomics in P. tomentosa and reveal trends in protein activities during a growing season in this tree species. (author)

  14. Investment appraisal of a poplar plantation aged 42 years

    Directory of Open Access Journals (Sweden)

    Keča Ljiljana

    2013-01-01

    Full Text Available Commercial profitability of poplar cultivation was analyzed in an artificial poplar plantation in Serbia. The aim of this study was to validate the invested financial means in the artificial poplar plantation, on the basis of the analysis of costs and receipts during a 42-year rotation, on alluvial semigley, at a discount rate of 12%. Methods of dynamic investment calculation (net present value - NPV, internal rate of return - IRR, benefit-cost method - B/C and payback period - PBP were used. The investigated plantations were established from Populus x euramericana cl. I-214, with a planting spacing of 6 x 3 m. At the calculation discount rate of 12%, the project for the production cycle of 42 years was not cost-effective from the economic aspect. The discount rate of 6% can be accepted in the studied plot because of the better site (alluvial semigley, but the oldness of the stand is unfavourable. For the studied sample plot, IRR was 5.51 %. B/C at r=12% in the study compartment was 0.24. The analysis shows that PBP is practically unacceptable for the investor at the discount rate of 6%. In practice, it is necessary to improve the position of producers in getting financial means for investment in poplar cultivation, so as to stimulate the establishment of artificial poplar plantations, especially in the private sector (on private land. [Projekat Ministarstva nauke Republike Srbije, br. TR 37008, TR 31041 and Value chain of non-wood forest products and its role in development of forestry sector in Serbia

  15. Antisense down-regulation of 4CL expression alters lignification, tree growth, and saccharification potential of field-grown poplar

    Science.gov (United States)

    Steven L. Voelker; Barbara Lachenbruch; Frederick C. Meinzer; Michael Jourdes; Chanyoung Ki; Ann M. Patten; Laurence B. Davin; Norman G. Lewis; Gerald A. Tuskan; Lee Gunter; Stephen R. Decker; Michael J. Selig; Robert Sykes; Michael E. Himmel; Peter Kitin; Olga Shevchenko; Steven H. Strauss

    2010-01-01

    Transgenic down-regulation of the Pt4CL1 gene family encoding 4-coumarate:coenzyme A ligase (4CL) has been reported as a means for reducing lignin content in cell walls and increasing overall growth rates, thereby improving feedstock quality for paper and bioethanol production. Using hybrid poplar (Populus tremula...

  16. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses.

    Science.gov (United States)

    Zhang, Jin; Liu, Bobin; Li, Jianbo; Zhang, Li; Wang, Yan; Zheng, Huanquan; Lu, Mengzhu; Chen, Jun

    2015-03-14

    Heat shock proteins (Hsps) are molecular chaperones that are involved in many normal cellular processes and stress responses, and heat shock factors (Hsfs) are the transcriptional activators of Hsps. Hsfs and Hsps are widely coordinated in various biological processes. Although the roles of Hsfs and Hsps in stress responses have been well characterized in Arabidopsis, their roles in perennial woody species undergoing various environmental stresses remain unclear. Here, a comprehensive identification and analysis of Hsf and Hsp families in poplars is presented. In Populus trichocarpa, we identified 42 paralogous pairs, 66.7% resulting from a whole genome duplication. The gene structure and motif composition are relatively conserved in each subfamily. Microarray and quantitative real-time RT-PCR analyses showed that most of the Populus Hsf and Hsp genes are differentially expressed upon exposure to various stresses. A coexpression network between Populus Hsf and Hsp genes was generated based on their expression. Coordinated relationships were validated by transient overexpression and subsequent qPCR analyses. The comprehensive analysis indicates that different sets of PtHsps are downstream of particular PtHsfs and provides a basis for functional studies aimed at revealing the roles of these families in poplar development and stress responses.

  17. Microsatellite DNA fingerprinting, differentiation, and genetic relationships of clones, cultivars, and varieties of six poplar species from three sections of the genus Populus.

    Science.gov (United States)

    Rahman, Muhammad H; Rajora, Om P

    2002-12-01

    Accurate identification of Populus clones and cultivars is essential for effective selection, breeding, and genetic resource management programs. The unit of cultivation and breeding in poplars is a clone, and individual cultivars are normally represented by a single clone. Microsatellite DNA markers of 10 simple sequence repeat loci were used for genetic fingerprinting and differentiation of 96 clones/cultivars and varieties belonging to six Populus species (P. deltoides, P. nigra, P. balsamifera, P. trichocarpa, P. grandidentata, and P maximowiczii) from three sections of the genus. All 96 clones/cultivars could be uniquely fingerprinted based on their single- or multilocus microsatellite genotypes. The five P. grandidentata clones could be differentiated based on their single-locus genotypes, while six clones of P. trichocarpa and 11 clones of P. maximowiczii could be identified by their two-locus genotypes. Twenty clones of P. deltoides and 25 clones of P. nigra could be differentiated by their multilocus genotypes employing three loci, and 29 clones of P. balsamifera required the use of multilocus genotypes at five loci for their genetic fingerprinting and differentiation. The loci PTR3, PTR5, and PTR7 were found to be the most informative for genetic fingerprinting and differentiation of the clones. The mean number of alleles per locus ranged from 2.9 in P. trichocarpa or P. grandidentata to 6.0 in P. balsamifera and 11.2 in 96 clones of the six species. The mean number of observed genotypes per locus ranged from 2.4 in P. grandidentata to 7.4 in P. balsamifera and 19.6 in 96 clones of the six species. The mean number of unique genotypes per locus ranged from 1.3 in P. grandidentata to 3.9 in P. deltoides and 8.8 in 96 clones of the six species. The power of discrimination of the microsatellite DNA markers in the 96 clones ranged from 0.726 for PTR4 to 0.939 for PTR7, with a mean of 0.832 over the 10 simple sequence repeat loci. Clones/cultivars from the same

  18. The genetic architecture of shoot-root covariation during seedling emergence of a desert tree, Populus euphratica.

    Science.gov (United States)

    Zhang, Miaomiao; Bo, Wenhao; Xu, Fang; Li, Huan; Ye, Meixia; Jiang, Libo; Shi, Chaozhong; Fu, Yaru; Zhao, Guomiao; Huang, Yuejiao; Gosik, Kirk; Liang, Dan; Wu, Rongling

    2017-06-01

    The coordination of shoots and roots is critical for plants to adapt to changing environments by fine-tuning energy production in leaves and the availability of water and nutrients from roots. To understand the genetic architecture of how these two organs covary during developmental ontogeny, we conducted a mapping experiment using Euphrates poplar (Populus euphratica), a so-called hero tree able to grow in the desert. We geminated intraspecific F 1 seeds of Euphrates Poplar individually in a tube to obtain a total of 370 seedlings, whose shoot and taproot lengths were measured repeatedly during the early stage of growth. By fitting a growth equation, we estimated asymptotic growth, relative growth rate, the timing of inflection point and duration of linear growth for both shoot and taproot growth. Treating these heterochronic parameters as phenotypes, a univariate mapping model detected 19 heterochronic quantitative trait loci (hQTLs), of which 15 mediate the forms of shoot growth and four mediate taproot growth. A bivariate mapping model identified 11 pleiotropic hQTLs that determine the covariation of shoot and taproot growth. Most QTLs detected reside within the region of candidate genes with various functions, thus confirming their roles in the biochemical processes underlying plant growth. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  19. Structural Alterations of Lignins in Transgenic Poplars with Depressed Cinnamyl Alcohol Dehydrogenase or Caffeic Acid O-Methyltransferase Activity Have an Opposite Impact on the Efficiency of Industrial Kraft Pulping1

    Science.gov (United States)

    Lapierre, Catherine; Pollet, Brigitte; Petit-Conil, Michel; Toval, Gabriel; Romero, Javier; Pilate, Gilles; Leplé, Jean-Charles; Boerjan, Wout; Ferret, Valérie; De Nadai, Véronique; Jouanin, Lise

    1999-01-01

    We evaluated lignin profiles and pulping performances of 2-year-old transgenic poplar (Populus tremula × Populus alba) lines severely altered in the expression of caffeic acid/5-hydroxyferulic acid O-methyltransferase (COMT) or cinnamyl alcohol dehydrogenase (CAD). Transgenic poplars with CAD or COMT antisense constructs showed growth similar to control trees. CAD down-regulated poplars displayed a red coloration mainly in the outer xylem. A 90% lower COMT activity did not change lignin content but dramatically increased the frequency of guaiacyl units and resistant biphenyl linkages in lignin. This alteration severely lowered the efficiency of kraft pulping. The Klason lignin level of CAD-transformed poplars was slightly lower than that of the control. Whereas CAD down-regulation did not change the frequency of labile ether bonds or guaiacyl units in lignin, it increased the proportion of syringaldehyde and diarylpropane structures and, more importantly with regard to kraft pulping, of free phenolic groups in lignin. In the most depressed line, ASCAD21, a substantially higher content in free phenolic units facilitated lignin solubilization and fragmentation during kraft pulping. These results point the way to genetic modification of lignin structure to improve wood quality for the pulp industry. PMID:9880356

  20. Herbivore-induced poplar cytochrome P450 enzymes of the CYP71 family convert aldoximes to nitriles which repel a generalist caterpillar.

    Science.gov (United States)

    Irmisch, Sandra; Clavijo McCormick, Andrea; Günther, Jan; Schmidt, Axel; Boeckler, Gerhard Andreas; Gershenzon, Jonathan; Unsicker, Sybille B; Köllner, Tobias G

    2014-12-01

    Numerous plant species emit volatile nitriles upon herbivory, but the biosynthesis as well as the relevance of these nitrogenous compounds in plant-insect interactions remains unknown. Populus trichocarpa has been shown to produce a complex blend of nitrogenous volatiles, including aldoximes and nitriles, after herbivore attack. The aldoximes were previously reported to be derived from amino acids by the action of cytochrome P450 enzymes of the CYP79 family. Here we show that nitriles are derived from aldoximes by another type of P450 enzyme in P. trichocarpa. First, feeding of deuterium-labeled phenylacetaldoxime to poplar leaves resulted in incorporation of the label into benzyl cyanide, demonstrating that poplar volatile nitriles are derived from aldoximes. Then two P450 enzymes, CYP71B40v3 and CYP71B41v2, were characterized that produce aliphatic and aromatic nitriles from their respective aldoxime precursors. Both possess typical P450 sequence motifs but do not require added NADPH or cytochrome P450 reductase for catalysis. Since both enzymes are expressed after feeding by gypsy moth caterpillars, they are likely to be involved in herbivore-induced volatile nitrile emission in P. trichocarpa. Olfactometer experiments showed that these volatile nitriles have a strong repellent activity against gypsy moth caterpillars, suggesting they play a role in induced direct defense against poplar herbivores. © 2014 The Authors The Plant Journal © 2014 John Wiley & Sons Ltd.

  1. Fly Ash and Composted Biosolids as a Source of Fe for Hybrid Poplar: A Greenhouse Study

    Directory of Open Access Journals (Sweden)

    Kevin Lombard

    2011-01-01

    Full Text Available Soils of northwest New Mexico have an elevated pH and CaCO3 content that reduces Fe solubility, causes chlorosis, and reduces crop yields. Could biosolids and fly ash, enriched with Fe, provide safe alternatives to expensive Fe EDDHA (sodium ferric ethylenediamine di-(o-hydroxyphenyl-acetate fertilizers applied to Populus hybrid plots? Hybrid OP-367 was cultivated on a Doak sandy loam soil amended with composted biosolids or fly ash at three agricultural rates. Fly ash and Fe EDDHA treatments received urea ammonium nitrate (UAN, biosolids, enriched with N, did not. Both amendments improved soil and plant Fe. Heavy metals were below EPA regulations, but high B levels were noted in leaves of trees treated at the highest fly ash rate. pH increased in fly ash soil while salinity increased in biosolids-treated soil. Chlorosis rankings improved in poplars amended with both byproducts, although composted biosolids offered the most potential at improving Fe/tree growth cheaply without the need for synthetic inputs.

  2. Performance of Salix viminalis and Populus nigra x Populus maximowiczii in short rotation intensive culture under high irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Fillion, Maud; Brisson, Jacques [Departement de Sciences biologiques, Universite de Montreal, C.P. 6128, succ. Centre-ville, Montreal, Quebec (Canada); Institut de recherche en biologie vegetale, 4101 Sherbrooke East, Montreal, Quebec (Canada); Teodorescu, Traian I.; Labrecque, Michel [Institut de recherche en biologie vegetale, 4101 Sherbrooke East, Montreal, Quebec (Canada); Sauve, Sebastien [Departement de chimie, Universite de Montreal, C.P. 6128, succursale Centre-ville, Montreal, Quebec (Canada)

    2009-09-15

    On a plantation established in 2004 from stem cuttings at a density of 20,000 trees per hectare, we investigated growth and nutritional plant response to a high hydraulic regime for two species (Salix viminalis and Populus nigra x Populus maximowiczii), using a comparative approach with measurements from irrigated and control plots. The plantation was irrigated from June to September 2005 with about 140 mm per day. The equivalent of 120 Kg NO{sub 3}-N, 40 Kg P{sub 2}O{sub 5}-P and 85 Kg K{sub 2}O-K per hectare per year was applied by means of irrigation with wastewater. No mortality occurred and stem biomass production of both poplar and willow species were not statistically different on irrigated and control areas. However, S. viminalis revealed to be more tolerant to flooded conditions since these corresponded more closely to its nutritional requirements (foliar concentration of 20 mgN g{sup -1}). The capacity of S. viminalis to withstand waterlogged conditions could play an important role in the sustainability of a plantation for the filtration of effluent at low pollutant concentration. (author)

  3. TLC determination of some flavanones in the buds of different genus Populus species and hybrids

    Directory of Open Access Journals (Sweden)

    Pobłocka-Olech Loretta

    2018-06-01

    Full Text Available Flavonoids in the buds of eight Populus species and hybrids were detected and compared with the aid of an optimized TLC method. Separation of 17 flavonoid aglycones belonging to different groups, namely, flavones, flavonols, flavanones and flavanonols, previously described as constituents of poplar buds, was performed on silica gel plates using a hexane/ethyl acetate/formic acid (60:40:1.3, V/V/V mixture as the mobile phase. Pinocembrin and pinostrobin were found in the majority of analyzed poplar buds. For quantitative analysis of both compounds, two TLC evaluation modes, densitometric and videodensitometric, were compared and the established methods were validated. Concentrations of flavanones in some extracts differed slightly or significantly due to the analyzed plant matrix complexity and the TLC evaluation mode applied. Poplar buds rich in flavanones originated from P. × canadensis ‘Robusta’ (1.82 and 2.23 g per 100 g, resp. and P. balsamifera (1.17 and 2.24 g per 100 g, resp..

  4. Significance of stigma receptivity in intergeneric cross-pollination of Salix × Populus

    Directory of Open Access Journals (Sweden)

    Elżbieta Zenkteler

    2016-09-01

    Full Text Available The pollen–stigma interaction plays an important role in reproductive process and has been continuously studied in many interspecific and intergeneric crossing experiments. The aim of this study was to investigate stigma receptivity (SR of willow in order to determine the most suitable period for its pollination with poplar pollen and improve the effectiveness of Salix × Populus crosses. Tissue samples were examined histologically using light, epifluorescent, scanning, and transmission electron microscopy. Willow SR was determined by stigma morphological traits, test of pollen germination rate, Peroxtesmo test of peroxidase and esterase activity on stigma surface as well as papilla ultrastructure at anthesis. We have ascertained that the SR duration in willow is short, lasting from 1 to 2 DA. The poplar pollen germination rate on willow stigmas on 1 DA ranged from 26.3 to 11.2%.

  5. Cytospora species from Populus and Salix in China with C. davidiana sp. nov.

    Science.gov (United States)

    Wang, Yan-Li; Lu, Quan; Decock, Cony; Li, Yong-Xia; Zhang, Xing-Yao

    2015-05-01

    Poplar and willow plantations have become widespread in China, in order to meet national economic and environmental needs. The emergence of several pathogens is enhanced by climatic change and associated human factors. Species of Cytospora are well-known pathogens on poplar and willow, and cause stem cankers and diebacks. In the present study, we conducted a survey of Cytospora species occurring on Populus spp. and Salix spp. in China. We used morphological examination and phylogenetic inferences, based on the DNA sequence data from the internal transcribed spacer regions (ITS1, 5.8S rDNA, and ITS2) and partial β-tubulin gene, to identify six Cytospora species occurring on poplar and willow. Five of these species belonged to known taxa, viz. Cytospora chrysosperma (asexual state of Valsa sordida), Cytospora translucens (asexual state of Leucostoma translucens), Cytospora fugax (asexual state of Valsa salicina), Cytospora atrocirrhata, and Cytospora kantschavelii. Our study yielded a new species, Cytospora davidiana sp. nov., on poplar. The new species is characterized by typical torsellioid conidiomata. An additional Cytospora sp. 1, which formed a distinct clade in the phylogenetic inferences, remains unnamed; the paucity of available materials prevented phenotypical characterization. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  6. Vulnerability to drought-induced cavitation in poplars: synthesis and future opportunities.

    Science.gov (United States)

    Fichot, Régis; Brignolas, Franck; Cochard, Hervé; Ceulemans, Reinhart

    2015-07-01

    Vulnerability to drought-induced cavitation is a key trait of plant water relations. Here, we summarize the available literature on vulnerability to drought-induced cavitation in poplars (Populus spp.), a genus of agronomic, ecological and scientific importance. Vulnerability curves and vulnerability parameters (including the water potential inducing 50% loss in hydraulic conductivity, P50) were collected from 37 studies published between 1991 and 2014, covering a range of 10 species and 12 interspecific hybrid crosses. Results of our meta-analysis confirm that poplars are among the most vulnerable woody species to drought-induced cavitation (mean P50  = -1.44 and -1.55 MPa across pure species and hybrids, respectively). Yet, significant variation occurs among species (P50 range: 1.43 MPa) and among hybrid crosses (P50 range: 1.12 MPa), within species and hybrid crosses (max. P50 range reported: 0.8 MPa) as well as in response to environmental factors including nitrogen fertilization, irradiance, temperature and drought (max. P50 range reported: 0.75 MPa). Potential implications and gaps in knowledge are discussed in the context of poplar cultivation, species adaptation and climate modifications. We suggest that poplars represent a valuable model for studies on drought-induced cavitation, especially to elucidate the genetic and molecular basis of cavitation resistance in Angiosperms. © 2014 John Wiley & Sons Ltd.

  7. Mitochondrial DNA variation and genetic relationships of Populus species.

    Science.gov (United States)

    Barrett, J W; Rajora, O P; Yeh, F C; Dancik, B P; Strobeck, C

    1993-02-01

    We examined variation in and around the region coding for the cytochrome c oxidase I (coxI) and ATPase 6 (atp6) genes in the mitochondrial genomes of four Populus species (P. nigra, P. deltoides, P. maximowiczii, and P. tremuloides) and the natural hybrid P. x canadensis (P. deltoides x P. nigra). Total cellular DNAs of these poplars were digested with 16 restriction endonucleases and probed with maize mtDNA-specific probes (CoxI and Atp6). The only variant observed for Atp6 was interspecific, with P. maximowiczii separated from the other species as revealed by EcoRI digestions. No intraspecific mtDNA variation was observed among individuals of P. nigra, P. maximowiczii, P. x canadensis, or P. tremuloides for the CoxI probe. However, two varieties of P. deltoides were distinct because of a single site change in the KpnI digestions, demonstrating that P. deltoides var. deltoides (eastern cottonwood) and var. occidentalis (plains cottonwood) have distinct mitochondrial genomes in the region of the coxI gene. Populus x canadensis shared the same restriction fragment patterns as its suspected maternal parent P. deltoides. Nucleotide substitutions per base in and around the coxI and atp6 genes among the Populus species and the hybrid ranged from 0.0017 to 0.0077. The interspecific estimates of nucleotide substitution per base suggested that P. tremuloides was furthest removed from P. deltoides and P. x canadensis and least diverged from P. nigra. Populus maximowiczii was placed between these two clusters.

  8. Fly Ash and Composted Bio solids as a Source of Fe for Hybrid Poplar: A Greenhouse Study

    International Nuclear Information System (INIS)

    Lombard, K.; O'Neill, M.; Ulery, A.; Mexal, J.; Sammis, T.; Onken, B.; Forster-Cox, S.

    2011-01-01

    Soils of northwest New Mexico have an elevated ph and CaCo 3 content that reduces Fe solubility, causes chlorosis, and reduces crop yields. Could bio solids and fly ash, enriched with Fe, provide safe alternatives to expensive Fe EDDHA (sodium ferric ethylenediamine di-(o-hydroxyphenyl-acetate)) fertilizers applied to Populus hybrid plots? Hybrid OP-367 was cultivated on a Doak sandy loam soil amended with composted bio solids or fly ash at three agricultural rates. Fly ash and Fe EDDHA treatments received urea ammonium nitrate (UAN), bio solids, enriched with N, did not. Both amendments improved soil and plant Fe. Heavy metals were below EPA regulations, but high B levels were noted in leaves of trees treated at the highest fly ash rate. ph increased in fly ash soil while salinity increased in bio solids-treated soil. Chlorosis rankings improved in poplars amended with both byproducts, although composted bio solids offered the most potential at improving Fe/tree growth cheaply without the need for synthetic inputs.

  9. A DIGE analysis of developing poplar leaves subjected to ozone reveals major changes in carbon metabolism.

    Science.gov (United States)

    Bohler, Sacha; Bagard, Matthieu; Oufir, Mouhssin; Planchon, Sébastien; Hoffmann, Lucien; Jolivet, Yves; Hausman, Jean-François; Dizengremel, Pierre; Renaut, Jenny

    2007-05-01

    Tropospheric ozone pollution is described as having major negative effects on plants, compromising plant survival. Carbon metabolism is especially affected. In the present work, the effects of chronic ozone exposure were evaluated at the proteomic level in developing leaves of young poplar plants exposed to 120 ppb of ozone for 35 days. Soluble proteins (excluding intrinsic membrane proteins) were extracted from leaves after 3, 14 and 35 days of ozone exposure, as well as 10 days after a recovery period. Proteins (pI 4 to 7) were analyzed by 2-D DIGE experiments, followed by MALDI-TOF-TOF identification. Additional observations were obtained on growth, lesion formation, and leaf pigments analysis. Although treated plants showed large necrotic spots and chlorosis in mature leaves, growth decreased only slightly and plant height was not affected. The number of abscised leaves was higher in treated plants, but new leaf formation was not affected. A decrease in chlorophylls and lutein contents was recorded. A large number of proteins involved in carbon metabolism were identified. In particular, proteins associated with the Calvin cycle and electron transport in the chloroplast were down-regulated. In contrast, proteins associated with glucose catabolism increased in response to ozone exposure. Other identified enzymes are associated with protein folding, nitrogen metabolism and oxidoreductase activity.

  10. The poplar phi class glutathione transferase: expression, activity and structure of GSTF1

    Directory of Open Access Journals (Sweden)

    Henri ePégeot

    2014-12-01

    Full Text Available Glutathione transferases (GSTs constitute a superfamily of enzymes with essential roles in cellular detoxification and secondary metabolism in plants as in other organisms. Several plant GSTs, including those of the Phi class (GSTFs, require a conserved catalytic serine residue to perform glutathione (GSH-conjugation reactions. Genomic analyses revealed that terrestrial plants have around 10 GSTFs, 8 in the Populus trichocarpa genome, but their physiological functions and substrates are mostly unknown. Transcript expression analyses showed a predominant expression of all genes both in reproductive (female flowers, fruits, floral buds and vegetative organs (leaves, petioles. Here, we show that the recombinant poplar GSTF1 (PttGSTF1 possesses peroxidase activity towards cumene hydroperoxide and GSH-conjugation activity towards model substrates such as 2,4-dinitrochlorobenzene, benzyl and phenetyl isothiocyanate, 4-nitrophenyl butyrate and 4-hydroxy-2-nonenal but interestingly not on previously identified GSTF-class substrates. In accordance to analytical gel filtration data, crystal structure of PttGSTF1 showed a canonical dimeric organization with bound GSH or MES molecules. The structure of these protein-substrate complexes allowed delineating the residues contributing to both the G and H sites that form the active site cavity. In sum, the presence of GSTF1 transcripts and proteins in most poplar organs especially those rich in secondary metabolites such as flowers and fruits, together with its GSH-conjugation activity and its documented stress-responsive expression suggest that its function is associated with the catalytic transformation of metabolites and/or peroxide removal rather than with ligandin properties as previously reported for other GSTFs.

  11. Study on adsorption and remediation of heavy metals by poplar and larch in contaminated soil.

    Science.gov (United States)

    Wang, Xin; Jia, Youngfeng

    2010-08-01

    Field experiments at the Shenyang Experimental Station of Ecology were conducted to study the adsorption, accumulation, and remediation of heavy metals by poplar and larch grown in artificially contaminated soil. The soil was spiked with a combination of Cd, Cu, and Zn at concentrations of 1.5, 100, and 200 mg.kg(-1), respectively. The results showed that the biomass of poplar (Populus canadensis Moench) was lower by 26.0% in the soil spiked with a mixture of Cd, Cu, and Zn, compared with the control. Concentrations of Cd in poplar leaf and Cu in poplar roots in the treated soil were 4.11 and 14.55 mg kg(-1), respectively, which are much greater than in corresponding controls. The migration of heavy metals in woody plant body was in the order Cd > Zn > Cu. Poplar had higher metal concentrations in aboveground tissues and a higher biomass compared with larch of the same age and therefore is potentially more suitable for remediation. In the heavy metal-polluted soil of this study, phytoremediation by poplar may take 56 and 245 years for Cd and Cu, respectively, for meeting the soil standards of heavy metals, and the corresponding phytoremediation times by larch would take 211 and 438 years. The research findings could be used as a basis to develop ecological engineering technologies for environmental control and remediation of pollution caused by heavy metals in soils.

  12. Correlating laser-induced breakdown spectroscopy with neutron activation analysis to determine the elemental concentration in the ionome of the Populus trichocarpa leaf

    Science.gov (United States)

    Martin, Madhavi Z.; Glasgow, David C.; Tschaplinski, Timothy J.; Tuskan, Gerald A.; Gunter, Lee E.; Engle, Nancy L.; Wymore, Ann M.; Weston, David J.

    2017-12-01

    The black cottonwood poplar (Populus trichocarpa) leaf ionome (inorganic trace elements and mineral nutrients) is an important aspect for determining the physiological and developmental processes contributing to biomass production. A number of techniques are used to measure the ionome, yet characterizing the leaf spatial heterogeneity remains a challenge, especially in solid samples. Laser-induced breakdown spectroscopy (LIBS) has been used to determine the elemental composition of leaves and is able to raster across solid matrixes at 10 μm resolution. Here, we evaluate the use of LIBS for solid sample leaf elemental characterization in relation to neutron activation. In fact, neutron activation analysis is a laboratory-based technique which is used by the National Institute of Standards and Technology (NIST) to certify trace elements in candidate reference materials including plant leaf matrices. Introduction to the techniques used in this research has been presented in this manuscript. Neutron activation analysis (NAA) data has been correlated to the LIBS spectra to achieve quantification of the elements or ions present within poplar leaves. The regression coefficients of calibration and validation using multivariate analysis (MVA) methodology for six out of seven elements have been determined and vary between 0.810 and 0.998. LIBS and NAA data has been presented for the elements such as, calcium, magnesium, manganese, aluminum, copper, and potassium. Chlorine was also detected but it did not show good correlation between the LIBS and NAA techniques. This research shows that LIBS can be used as a fast, high-spatial resolution technique to quantify elements as part of large-scale field phenotyping projects.

  13. PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. × tremuloides).

    Science.gov (United States)

    Ślesak, Ireneusz; Szechyńska-Hebda, Magdalena; Fedak, Halina; Sidoruk, Natalia; Dąbrowska-Bronk, Joanna; Witoń, Damian; Rusaczonek, Anna; Antczak, Andrzej; Drożdżek, Michał; Karpińska, Barbara; Karpiński, Stanisław

    2015-07-01

    The phytoalexin deficient 4 (PAD4) gene in Arabidopsis thaliana (AtPAD4) is involved in the regulation of plant--pathogen interactions. The role of PAD4 in woody plants is not known; therefore, we characterized its function in hybrid aspen and its role in reactive oxygen species (ROS)-dependent signalling and wood development. Three independent transgenic lines with different suppression levels of poplar PAD expression were generated. All these lines displayed deregulated ROS metabolism, which was manifested by an increased H2O2 level in the leaves and shoots, and higher activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) in the leaves in comparison to the wild-type plants. However, no changes in non-photochemical quenching (NPQ) between the transgenic lines and wild type were observed in the leaves. Moreover, changes in the ROS metabolism in the pad4 transgenic lines positively correlated with wood formation. A higher rate of cell division, decreased tracheid average size and numbers, and increased cell wall thickness were observed. The results presented here suggest that the Populus tremula × tremuloides PAD gene might be involved in the regulation of cellular ROS homeostasis and in the cell division--cell death balance that is associated with wood development. © 2014 John Wiley & Sons Ltd.

  14. Developmental and environmental regulation of Aquaporin gene expression across Populus species: divergence or redundancy?

    Science.gov (United States)

    Cohen, David; Bogeat-Triboulot, Marie-Béatrice; Vialet-Chabrand, Silvère; Merret, Rémy; Courty, Pierre-Emmanuel; Moretti, Sébastien; Bizet, François; Guilliot, Agnès; Hummel, Irène

    2013-01-01

    Aquaporins (AQPs) are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants). The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of functional redundancy

  15. Developmental and environmental regulation of Aquaporin gene expression across Populus species: divergence or redundancy?

    Directory of Open Access Journals (Sweden)

    David Cohen

    Full Text Available Aquaporins (AQPs are membrane channels belonging to the major intrinsic proteins family and are known for their ability to facilitate water movement. While in Populus trichocarpa, AQP proteins form a large family encompassing fifty-five genes, most of the experimental work focused on a few genes or subfamilies. The current work was undertaken to develop a comprehensive picture of the whole AQP gene family in Populus species by delineating gene expression domain and distinguishing responsiveness to developmental and environmental cues. Since duplication events amplified the poplar AQP family, we addressed the question of expression redundancy between gene duplicates. On these purposes, we carried a meta-analysis of all publicly available Affymetrix experiments. Our in-silico strategy controlled for previously identified biases in cross-species transcriptomics, a necessary step for any comparative transcriptomics based on multispecies design chips. Three poplar AQPs were not supported by any expression data, even in a large collection of situations (abiotic and biotic constraints, temporal oscillations and mutants. The expression of 11 AQPs was never or poorly regulated whatever the wideness of their expression domain and their expression level. Our work highlighted that PtTIP1;4 was the most responsive gene of the AQP family. A high functional divergence between gene duplicates was detected across species and in response to tested cues, except for the root-expressed PtTIP2;3/PtTIP2;4 pair exhibiting 80% convergent responses. Our meta-analysis assessed key features of aquaporin expression which had remained hidden in single experiments, such as expression wideness, response specificity and genotype and environment interactions. By consolidating expression profiles using independent experimental series, we showed that the large expansion of AQP family in poplar was accompanied with a strong divergence of gene expression, even if some cases of

  16. Overexpression of PtABCC1 contributes to mercury tolerance and accumulation in Arabidopsis and poplar.

    Science.gov (United States)

    Sun, Liping; Ma, Yifeng; Wang, Huihong; Huang, Weipeng; Wang, Xiaozhu; Han, Li; Sun, Wanmei; Han, Erqin; Wang, Bangjun

    2018-03-18

    Mercury (Hg) is a highly biotoxic heavy metal that contaminates the environment. Phytoremediation is a green technology for environmental remediation and is used to clean up Hg contaminated soil in recent years. In this study, we isolated an ATP-binding cassette (ABC) transporter gene PtABCC1 from Populus trichocarpa and overexpressed it in Arabidopsis and poplar. The transgenic plants conferred higher Hg tolerance than wild type (WT) plants, and overexpression of PtABCC1 could lead to 26-72% or 7-160% increase of Hg accumulation in Arabidopsis or poplar plants, respectively. These results demonstrated that PtABCC1 plays a crucial role in enhancing tolerance and accumulation to Hg in plants, which provides a promising way for phytoremediation of Hg contamination. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. [Water utilization characteristics of the degraded poplar shelterbelts in Zhangbei, Hebei, China.

    Science.gov (United States)

    Zhang, Huan; Cao, Jun; Wang, Hua Bing; Song, Bo; Jia, Guo Dong; Liu, Zi Qiang; Yu, Xin Xiao; Zeng, Jia

    2018-05-01

    In Zhangbei County, Hebei Province, poplar-dominated shelterbelts are degraded to different extents. Water availability is the main limiting factor for plant survival in arid areas. The purpose of this study was to reveal the relationship between water availability and poplar degradation. Based on the hydrogen and oxygen stable isotope techniques, we explored the water sources of Populus simonii under different degradation degrees by comparing the isotopic values of P. simonii xylem water with that in potential water source, and calculated the utilization ratio of each water source. The results showed that the water sources of poplar trees varied with degradation degree. The water sources of P. simonii gradually transferred from the deep layer to the surface layer with the increases of degradation. P. simonii with no degradation mainly absorbed soil water in the range of 320-400 cm, with the utilization rate being 25.1%. P. simonii with slight degradation mainly used soil water at depth of 120-180, 180-240 and 240-320 cm. The total utilization rate of three layers was close to 50.0%, with less utilization of water from other layers. The moderately degraded P. simonii mainly used soil water at depth of 20-40, 40-60 and 60-80 cm. The utilization rate of each layer was 17.5%-20.9%, and the contribution rate of soil water under 120 cm was less than 10.0%. The severely degraded P. simonii mainly used water from surface soil layer (0-20 cm), with the utilization rate being 30.4%, which was significantly higher than that of other water sources. The water sources of poplar shelter forests were gradually shallower during the process of degradation. However, the low soil water content in the shallow layer could not meet the normal water demand of poplar, which would accelerate the degradation and even decline of poplar.

  18. Production and ecological aspects of short rotation poplars in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Karacic, Almir

    2005-02-01

    Poplars (Populus sp.) are widely used in short rotation forestry for production of biomass for bioenergy, fibre and environmental services. Swedish short rotation forestry is based on Salix sp., and little is known about the production potential of poplar plantations and their effects on the environment. This thesis focuses on four aspects of intensive short rotation forestry with poplars: 1) Biomass production and partitioning at several initial densities and a range of latitudes and growing conditions in Sweden, 2) the effects of poplar plantation on floristic diversity in the Swedish agricultural landscape, 3) the pattern of wind damage and its effects on production in poplar plantations in southern Sweden, and 4) ecological characterisation of poplar varieties in short-term experiments with pot-grown plants. Annual biomass production in poplar plots and plantations over a rotation period of 9-14 years ranges between 3.3 and 9.2 Mg/ha/yr. These high production figures are achieved on relatively fertile, non-fertilised and non-irrigated agricultural land. The production assessments for commercial poplar plantations established at lower initial densities (1000 trees/ha) in southern Sweden indicate a similar production potential as in closely spaced cultures (5000 trees/ha), though at 3-5 years longer rotations. Lower initial densities enable higher pulpwood yields along with the production of biomass for bioenergy. A comparison among 21 poplar plots, 0.1-13 ha large and adjacent arable fields, indicates that small poplar plantations may increase floristic diversity on a landscape scale, mainly by providing a different type of habitat that may favour shade-tolerant and draught-sensitive species. This is reflected by a relatively low number of species shared by both types of habitat. Wind damage in two poplar plantations, 15 and 33 ha large, was assessed using wind damage classes based on leaning angle of individual trees on plots established before wind damage

  19. Modelling the growth of Populus species using Ecosystem Demography (ED) model

    Science.gov (United States)

    Wang, D.; Lebauer, D. S.; Feng, X.; Dietze, M. C.

    2010-12-01

    Hybrid poplar plantations are an important source being evaluated for biomass production. Effective management of such plantations requires adequate growth and yield models. The Ecosystem Demography model (ED) makes predictions about the large scales of interest in above- and belowground ecosystem structure and the fluxes of carbon and water from a description of the fine-scale physiological processes. In this study, we used a workflow management tool, the Predictive Ecophysiological Carbon flux Analyzer (PECAn), to integrate literature data, field measurement and the ED model to provide predictions of ecosystem functioning. Parameters for the ED ensemble runs were sampled from the posterior distribution of ecophysiological traits of Populus species compiled from the literature using a Bayesian meta-analysis approach. Sensitivity analysis was performed to identify the parameters which contribute the most to the uncertainties of the ED model output. Model emulation techniques were used to update parameter posterior distributions using field-observed data in northern Wisconsin hybrid poplar plantations. Model results were evaluated with 5-year field-observed data in a hybrid poplar plantation at New Franklin, MO. ED was then used to predict the spatial variability of poplar yield in the coterminous United States (United States minus Alaska and Hawaii). Sensitivity analysis showed that root respiration, dark respiration, growth respiration, stomatal slope and specific leaf area contribute the most to the uncertainty, which suggests that our field measurements and data collection should focus on these parameters. The ED model successfully captured the inter-annual and spatial variability of the yield of poplar. Analyses in progress with the ED model focus on evaluating the ecosystem services of short-rotation woody plantations, such as impacts on soil carbon storage, water use, and nutrient retention.

  20. Comparative physiological and proteomic responses to drought stress in two poplar species originating from different altitudes.

    Science.gov (United States)

    Yang, Fan; Wang, Yong; Miao, Ling-Feng

    2010-08-01

    Cuttings of Populus kangdingensis C. Wang et Tung and Populus cathayana Rehder were examined during a single growing season in a greenhouse for comparative analysis of their physiological and proteomic responses to drought stress. The said species originate from high and low altitudes, respectively, of the eastern Himalaya. Results revealed that the adaptive responses to drought stress vary between the two poplar species. As a consequence of drought stress, the stem height increment and leaf number increment are more significantly inhibited in P. cathayana compared with P. kangdingensis. On the other hand, in response to drought stress, more significant cellular damages such as reduction in leaf relative water content and CO(2) assimilation rate, increments in the contents of malondialdehyde and hydrogen peroxide and downregulation or degradation of proteins related to photosynthesis occur in P. cathayana compared with P. kangdingensis. On the other hand, P. kangdingensis can cope better with the negative impact on the entire regulatory network. This includes more efficient increases in content of solute sugar, soluble protein and free proline and activities of antioxidant enzymes, as well as specific expressions of certain proteins related to protein processing, redox homeostasis and sugar metabolism. Morphological consequences as well as physiological and proteomic responses to drought stress between species revealed that P. kangdingensis originating from a high altitude manifest stronger drought adaptation than did P. cathayana originating from a low altitude. Functions of various proteins identified by proteomic experiment are related with physiological phenomena. Physiological and proteomic responses to drought stress in poplar may work cooperatively to establish a new cellular homeostasis, allowing poplar to develop a certain level of drought tolerance.

  1. Flavan-3-ols Are an Effective Chemical Defense against Rust Infection1[OPEN

    Science.gov (United States)

    Unsicker, Sybille B.; Fellenberg, Christin; Schmidt, Axel

    2017-01-01

    Phenolic secondary metabolites are often thought to protect plants against attack by microbes, but their role in defense against pathogen infection in woody plants has not been investigated comprehensively. We studied the biosynthesis, occurrence, and antifungal activity of flavan-3-ols in black poplar (Populus nigra), which include both monomers, such as catechin, and oligomers, known as proanthocyanidins (PAs). We identified and biochemically characterized three leucoanthocyanidin reductases and two anthocyanidin reductases from P. nigra involved in catalyzing the last steps of flavan-3-ol biosynthesis, leading to the formation of catechin [2,3-trans-(+)-flavan-3-ol] and epicatechin [2,3-cis-(−)-flavan-3-ol], respectively. Poplar trees that were inoculated with the biotrophic rust fungus (Melampsora larici-populina) accumulated higher amounts of catechin and PAs than uninfected trees. The de novo-synthesized catechin and PAs in the rust-infected poplar leaves accumulated significantly at the site of fungal infection in the lower epidermis. In planta concentrations of these compounds strongly inhibited rust spore germination and reduced hyphal growth. Poplar genotypes with constitutively higher levels of catechin and PAs as well as hybrid aspen (Populus tremula × Populus alba) overexpressing the MYB134 transcription factor were more resistant to rust infection. Silencing PnMYB134, on the other hand, decreased flavan-3-ol biosynthesis and increased susceptibility to rust infection. Taken together, our data indicate that catechin and PAs are effective antifungal defenses in poplar against foliar rust infection. PMID:29070515

  2. The nitrate transporter (NRT gene family in poplar.

    Directory of Open Access Journals (Sweden)

    Hua Bai

    Full Text Available Nitrate is an important nutrient required for plant growth. It also acts as a signal regulating plant development. Nitrate is actively taken up and transported by nitrate transporters (NRT, which form a large family with many members and distinct functions. In contrast to Arabidopsis and rice there is little information about the NRT family in woody plants such as Populus. In this study, a comprehensive analysis of the Populus NRT family was performed. Sixty-eight PtNRT1/PTR, 6 PtNRT2, and 5 PtNRT3 genes were identified in the P. trichocarpa genome. Phylogenetic analysis confirmed that the genes of the NRT family are divided into three clades: NRT1/PTR with four subclades, NRT2, and NRT3. Topological analysis indicated that all members of PtNRT1/PTR and PtNRT2 have 8 to 12 trans-membrane domains, whereas the PtNRT3 proteins have no or up to two trans-membrane domains. Four PtNRT3 members were predicted as secreted proteins. Microarray analyses revealed tissue-specific expression patterns of PtNRT genes with distinct clusters of NRTs for roots, for the elongation zone of the apical stem segment and the developing xylem and a further cluster for leaves, bark and wood. A comparison of different poplar species (P. trichocarpa, P. tremula, P. euphratica, P. fremontii x P. angustifolia, and P. x canescens showed that the tissue-specific patterns of the NRT genes varied to some extent with species. Bioinformatic analysis of putative cis-regulatory elements in the promoter regions of PtNRT family retrieved motifs suggesting the regulation of the NRT genes by N metabolism, by energy and carbon metabolism, and by phytohormones and stress. Multivariate analysis suggested that the combination and abundance of motifs in distinct promoters may lead to tissue-specificity. Our genome wide analysis of the PtNRT genes provides a valuable basis for functional analysis towards understanding the role of nitrate transporters for tree growth.

  3. Phytoremediation capacity of poplar (Populus spp. and willow (Salix spp. clonesin relation to photosynthesis

    Directory of Open Access Journals (Sweden)

    Pajević Slobodanka

    2009-01-01

    Full Text Available Good photosynthetic features and a favorable water regimes of woody plants improve their survival and remediation potential under unfavorable ecological conditions. Accordingly, we here present results of testing plant tolerance of Pb, Cd, Ni, and diesel fuel based on gas exchange parameters and WUE of four poplar and two willow clones grown in a greenhouse on soil culture. Photosynthesis and transpiration of plants grown on soils with individually applied heavy metals decreased significantly, but this was less obvious in the case of Cd treatment. A heavy metal mixture in the soil induced significant reduction in photosynthesis (by more than 50%. Diesel fuel as the only pollutant in soil caused very strong and significant inhibition of photosynthesis and transpiration of willow clones. The results indicate genotypic specificity of all investigated physiological parameters and mark poplar clones as very useful in phytoextraction technology for the bio-cleaning of chemically polluted soils.

  4. Investigation on the Effect of Kenaf Core and Stalk Fiber on the Medium Density Fiber Board Properties Made of Poplar Fibers

    Directory of Open Access Journals (Sweden)

    Fahimeh SH.Alizadeh

    2012-01-01

    Full Text Available In order to optimize the use of material non-forest resources, in this study the possibility of using the kenaf stalk fibers mixed with poplar fibers in producing medium density fiber board was considered. Variable factors such as density at two levels (0.55, 0.75 g/cm3 and the percentage incorporation of fiber (%50 poplar fibers, - %50 kenaf core fiber, %50 poplar fiber, -% 50 kenaf stalk fiber and %100 poplar fibers were considered. Steaming time and temperature (175°C, 10min, press time and temperature (5 min, 175°C, Pressing pressure (30 kg/cm3, fiber cake moisture (%12 and urea-formaldehyde resin with Concentration of %50 of the study factors were fixed. Results show that adding kenaf core fibers to the poplar fibers increases modulus of elasticity and water absorption but thickness swelling reduces. Increased density in board made with kenaf core has caused increase in bending strength, modulus of elasticity and internal bond strength and their water absorption and thickness swelling after 2 and 24 hours were competitive with poplar (MDF. On the other hand Populus fiber– kenaf stalk board mechanical and physical properties were competitive with (MDF board made of %100 poplar fibers. Finally we can say that according to the statistical analysis, the best treatment in this study was using kenaf core fibers, in making poplar (MDF with 0.75 g/cm3 density.

  5. Evaluation of Populus and Salix continuously irrigated with landfill leachate I. Genotype-specific elemental phytoremediation.

    Science.gov (United States)

    Zalesny, Ronald S; Bauer, Edmund O

    2007-01-01

    There is a need for the identification and selection of specific tree genotypes that can sequester elements from contaminated soils, with elevated rates of uptake. We irrigated Populus (DN17, DN182, DN34, NM2, NM6) and Salix (94003, 94012, S287, S566, SX61) genotypes planted in large soil-filled containers with landfill leachate or municipal water and tested for differences in inorganic element concentrations (P, K, Ca, Mg, S, Zn, B, Mn, Fe, Cu, Al, Na, and Cl) in the leaves, stems, and roots. Trees were irrigated with leachate or water during the final 12 wk of the 18-wk study. Genotype-specific uptake existed. For genera, tissue concentrations exhibited four responses. First, Populus had the greatest uptake of P, K, S, Cu, and Cl. Second, Salix exhibited the greatest uptake of Zn, B, Fe, and Al. Third, Salix had greater concentrations of Ca and Mg in leaves, while Populus had greater concentrations in stems and roots. Fourth, Populus had greater concentrations of Mn and Na in leaves and stems, while Salix had greater concentrations in roots. Populus deltoides x P. nigra clones exhibited better overall phytoremediation than the P. nigra x P. maximowiczii genotypes tested. Phytoremediation for S. purpurea clones 94003 and 94012 was generally less than for other Salix genotypes. Overall, concentrations of elements in the leaves, stems, and roots corroborated those in the plant-sciences literature. Uptake was dependent upon the specific genotype for most elements. Our results corroborated the need for further testing and selecting of specific clones for various phytoremediation needs, while providing a baseline for future researchers developing additional studies and resource managers conducting on-site remediation.

  6. Genome-Wide Analysis of a TaLEA-Introduced Transgenic Populus simonii × Populus nigra Dwarf Mutant

    Directory of Open Access Journals (Sweden)

    Jing Jiang

    2012-03-01

    Full Text Available A dwarf mutant (dwf1 was obtained among 15 transgenic lines, when TaLEA (Tamarix androssowii late embryogenesis abundant gene was introduced into Populus simonii × Populus nigra by Agrobacterium tumefaciens-mediated transformation. Under the same growth conditions, dwf1 height was significantly reduced compared with the wild type and the other transgenic lines. Because only one transgenic line (dwf1 displayed the dwarf phenotype, we considered that T-DNA insertion sites may play a role in the mutant formation. The mechanisms underlying this effect were investigated using TAIL-PCR (thermal asymmetric interlaced PCR and microarrays methods. According to the TAIL-PCR results, two flanking sequences located on chromosome IV and VIII respectively, were cloned. The results indicated the integration of two independent T-DNA copies. We searched for the potential genes near to the T-DNA insertions. The nearest gene was a putative poplar AP2 transcription factor (GI: 224073210. Expression analysis showed that AP2 was up-regulated in dwf1 compared with the wild type and the other transgenic lines. According to the microarrays results, a total of 537 genes involved in hydrolase, kinase and transcription factor activities, as well as protein and nucleotide binding, showed significant alterations in gene expression. These genes were expressed in more than 60 metabolic pathways, including starch, sucrose, galactose and glycerolipid metabolism and phenylpropanoids and flavonoid biosyntheses. Our transcriptome and T-DNA insertion sites analyses might provide some useful insights into the dwarf mutant formation.

  7. Genetic analysis of post-mating reproductive barriers in hybridizing European Populus species.

    Science.gov (United States)

    Macaya-Sanz, D; Suter, L; Joseph, J; Barbará, T; Alba, N; González-Martínez, S C; Widmer, A; Lexer, C

    2011-10-01

    Molecular genetic analyses of experimental crosses provide important information on the strength and nature of post-mating barriers to gene exchange between divergent populations, which are topics of great interest to evolutionary geneticists and breeders. Although not a trivial task in long-lived organisms such as trees, experimental interspecific recombinants can sometimes be created through controlled crosses involving natural F(1)'s. Here, we used this approach to understand the genetics of post-mating isolation and barriers to introgression in Populus alba and Populus tremula, two ecologically divergent, hybridizing forest trees. We studied 86 interspecific backcross (BC(1)) progeny and >350 individuals from natural populations of these species for up to 98 nuclear genetic markers, including microsatellites, indels and single nucleotide polymorphisms, and inferred the origin of the cytoplasm of the cross with plastid DNA. Genetic analysis of the BC(1) revealed extensive segregation distortions on six chromosomes, and >90% of these (12 out of 13) favored P. tremula donor alleles in the heterospecific genomic background. Since selection was documented during early diploid stages of the progeny, this surprising result was attributed to epistasis, cyto-nuclear coadaptation, heterozygote advantage at nuclear loci experiencing introgression or a combination of these. Our results indicate that gene flow across 'porous' species barriers affects these poplars and aspens beyond neutral, Mendelian expectations and suggests the mechanisms responsible. Contrary to expectations, the Populus sex determination region is not protected from introgression. Understanding the population dynamics of the Populus sex determination region will require tests based on natural interspecific hybrid zones.

  8. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias [Univ. of Florida, Gainesville, FL (United States)

    2014-04-14

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  9. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias [Univ. of Florida, Gainesville, FL (United States)

    2015-04-15

    Poplars trees are well suited for biofuel production due to their fast growing habit, favorable wood composition and adaptation to a broad range of environments. The availability of a reference genome sequence, ease of vegetative propagation and availability of transformation methods also make poplar an ideal model for the study of wood formation and biomass growth in woody, perennial plants. The objective of this project was to conduct a genome-wide association genetics study to identify genes that regulate bioenergy traits in Populus deltoides (eastern cottonwood). Populus deltoides is a genetically diverse keystone forest species in North America and an important short rotation woody crop for the bioenergy industry. We searched for associations between eight growth and wood composition traits and common and low-frequency single-nucleotide polymorphisms (SNPs) detected by targeted resequencing of 18,153 genes in a population of 391 unrelated individuals. To increase power to detect associations with low-frequency variants, multiple-marker association tests were used in combination with single-marker association tests. Significant associations were discovered for all phenotypes and are indicative that low-frequency polymorphisms contribute to phenotypic variance of several bioenergy traits. These polymorphism are critical tools for the development of specialized plant feedstocks for bioenergy.

  10. Evaluation of two hybrid poplar clones as constructed wetland plant species for treating saline water high in boron and selenium, or waters only high in boron

    Science.gov (United States)

    Wetland mesocosms were constructed to assess two salt- and B-tolerant hybrid poplar clones (Populus trichocarpa ×P. deltoides×P. nigra '345-1' and '347-14') for treating saline water high in boron (B) and selenium (Se). In addition, a hydroponic experiment was performed to test the B tolerance and B...

  11. Plantation forestry under global warming: hybrid poplars with improved thermotolerance provide new insights on the in vivo function of small heat shock protein chaperones.

    Science.gov (United States)

    Merino, Irene; Contreras, Angela; Jing, Zhong-Ping; Gallardo, Fernando; Cánovas, Francisco M; Gómez, Luis

    2014-02-01

    Climate-driven heat stress is a key factor affecting forest plantation yields. While its effects are expected to worsen during this century, breeding more tolerant genotypes has proven elusive. We report here a substantial and durable increase in the thermotolerance of hybrid poplar (Populus tremula×Populus alba) through overexpression of a major small heat shock protein (sHSP) with convenient features. Experimental evidence was obtained linking protective effects in the transgenic events with the unique chaperone activity of sHSPs. In addition, significant positive correlations were observed between phenotype strength and heterologous sHSP accumulation. The remarkable baseline levels of transgene product (up to 1.8% of total leaf protein) have not been reported in analogous studies with herbaceous species. As judged by protein analyses, such an accumulation is not matched either by endogenous sHSPs in both heat-stressed poplar plants and field-grown adult trees. Quantitative real time-polymerase chain reaction analyses supported these observations and allowed us to identify the poplar members most responsive to heat stress. Interestingly, sHSP overaccumulation was not associated with pleiotropic effects that might decrease yields. The poplar lines developed here also outperformed controls under in vitro and ex vitro culture conditions (callus biomass, shoot production, and ex vitro survival), even in the absence of thermal stress. These results reinforce the feasibility of improving valuable genotypes for plantation forestry, a field where in vitro recalcitrance, long breeding cycles, and other practical factors constrain conventional genetic approaches. They also provide new insights into the biological functions of the least understood family of heat shock protein chaperones.

  12. Variable Nitrogen Fixation in Wild Populus.

    Directory of Open Access Journals (Sweden)

    Sharon L Doty

    Full Text Available The microbiome of plants is diverse, and like that of animals, is important for overall health and nutrient acquisition. In legumes and actinorhizal plants, a portion of essential nitrogen (N is obtained through symbiosis with nodule-inhabiting, N2-fixing microorganisms. However, a variety of non-nodulating plant species can also thrive in natural, low-N settings. Some of these species may rely on endophytes, microorganisms that live within plants, to fix N2 gas into usable forms. Here we report the first direct evidence of N2 fixation in the early successional wild tree, Populus trichocarpa, a non-leguminous tree, from its native riparian habitat. In order to measure N2 fixation, surface-sterilized cuttings of wild poplar were assayed using both 15N2 incorporation and the commonly used acetylene reduction assay. The 15N label was incorporated at high levels in a subset of cuttings, suggesting a high level of N-fixation. Similarly, acetylene was reduced to ethylene in some samples. The microbiota of the cuttings was highly variable, both in numbers of cultured bacteria and in genetic diversity. Our results indicated that associative N2-fixation occurred within wild poplar and that a non-uniformity in the distribution of endophytic bacteria may explain the variability in N-fixation activity. These results point to the need for molecular studies to decipher the required microbial consortia and conditions for effective endophytic N2-fixation in trees.

  13. Resprout and survival of willows (Salix purpurea and S. incana), Poplars (Populus nigra) and Tamaris (Tamarix gallica) cuttings in marly gullies with Southern aspect in a mountainous and Mediterranean climate (Southern Alps, France)

    Science.gov (United States)

    Rey, Freddy; Labonne, Sophie; Dangla, Laure; Lavandier, Géraud

    2014-05-01

    In the Southern French Alps under a mountainous and Mediterranean climate, a current strategy of bioengineering is developed for trapping sediment in marly gullies with surface area less than 1 ha. It is based on the use of structures in the form of brush layers and brush mats of cuttings on deadwood microdams. Purple and white Willows (Salix purpurea and S. incana) are recommended here as they proved their efficiency to resprout and survive in such environment. However, these species installed in Southern gullies did not survive in previous experiments, due to the too harsh conditions of solar radiation and drought. We thus decided to test other species, namely black Poplar (Populus nigra) and Tamaris (Tamarix gallica), which proved their resistance to drought conditions in other experiments. To this view, bioengineering structures have been built in 2010 in eroded marly gullies in the Roubines and Fontaugier catchments (Southern Alps, France). We tested two installation modalities: one in spring and a second in autumn. Seventy-eight bioengineering structures (50 in spring and 28 in autumn), among which 32 made with Poplar cuttings and 28 with Tamaris cuttings, as well as 11 structures with purple Willow and 7 with white Willow as controls, were built in 6 experimental gullies. After 3 observation years for each modality (2010 to 2012, and 2011 to 2013, respectively), results first revealed that Willow species succeeded in surviving in gullies in Southern aspect (76 % for the cuttings installed in spring and 52 % for those installed in autumn), which is in contradiction with previous results. Second, Poplar showed a good ability to survive (62 % for the cuttings installed in spring and 33 % for those installed in autumn). Tamaris obtained the worst score with 26 % and 38 % of survival for the cuttings installed in spring and autumn, respectively. Globally, excepted for Tamaris, survival rates were better for the cuttings installed in spring. The bioengineering

  14. Phylogeographic patterns of the desert poplar in Northwest China shaped by both geology and climatic oscillations.

    Science.gov (United States)

    Zeng, Yan-Fei; Zhang, Jian-Guo; Abuduhamiti, Bawerjan; Wang, Wen-Ting; Jia, Zhi-Qing

    2018-05-25

    The effects of historical geology and climatic events on the evolution of plants around the Qinghai-Tibetan Plateau region have been at the center of debate for years. To identify the influence of the uplift of the Tianshan Mountains and/or climatic oscillations on the evolution of plants in arid northwest China, we investigated the phylogeography of the Euphrates poplar (Populus euphratica) using chloroplast DNA (cpDNA) sequences and nuclear microsatellites, and estimated its historical distribution using Ecological Niche Modeling (ENM). We found that the Euphrates poplar differed from another desert poplar, P. pruinosa, in both nuclear and chloroplast DNA. The low clonal diversity in both populations reflected the low regeneration rate by seed/seedlings in many locations. Both cpDNA and nuclear markers demonstrated a clear divergence between the Euphrates poplar populations from northern and southern Xinjiang regions. The divergence time was estimated to be early Pleistocene based on cpDNA, and late Pleistocene using an Approximate Bayesian Computation analysis based on microsatellites. Estimated gene flow was low between these two regions, and the limited gene flow occurred mainly via dispersal from eastern regions. ENM analysis supported a wider distribution of the Euphrates poplar at 3 Ma, but a more constricted distribution during both the glacial period and the interglacial period. These results indicate that the deformation of the Tianshan Mountains has impeded gene flow of the Euphrates poplar populations from northern and southern Xinjiang, and the distribution constriction due to climatic oscillations further accelerated the divergence of populations from these regions. To protect the desert poplars, more effort is needed to encourage seed germination and seedling establishment, and to conserve endemic gene resources in the northern Xinjiang region.

  15. Tissue- and Cell-Specific Cytokinin Activity in Populus × canescens Monitored by ARR5::GUS Reporter Lines in Summer and Winter.

    Science.gov (United States)

    Paul, Shanty; Wildhagen, Henning; Janz, Dennis; Teichmann, Thomas; Hänsch, Robert; Polle, Andrea

    2016-01-01

    Cytokinins play an important role in vascular development. But knowledge on the cellular localization of this growth hormone in the stem and other organs of woody plants is lacking. The main focus of this study was to investigate the occurrence and cellular localization of active cytokinins in leaves, roots, and along the stem of Populus × canescens and to find out how the pattern is changed between summer and winter. An ARR5::GUS reporter construct was used to monitor distribution of active cytokinins in different tissues of transgenic poplar lines. Three transgenic lines tested under outdoor conditions showed no influence of ARR5::GUS reporter construct on the growth performance compared with the wild-type, but one line lost the reporter activity. ARR5::GUS activity indicated changes in the tissue- and cell type-specific pattern of cytokinin activity during dormancy compared with the growth phase. ARR5::GUS activity, which was present in the root tips in the growing season, disappeared in winter. In the stem apex ground tissue, ARR5::GUS activity was higher in winter than in summer. Immature leaves from tissue-culture grown plants showed inducible ARR5::GUS activity. Leaf primordia in summer showed ARR5::GUS activity, but not the expanded leaves of outdoor plants or leaf primordia in winter. In stem cross sections, the most prominent ARR5::GUS activity was detected in the cortex region and in the rays of bark in summer and in winter. In the cambial zone the ARR5::GUS activity was more pronounced in the dormant than in growth phase. The pith and the ray cells adjacent to the vessels also displayed ARR5::GUS activity. In silico analyses of the tissue-specific expression patterns of the whole PtRR type-A family of poplar showed that PtRR10, the closest ortholog to the Arabidopsis ARR5 gene, was usually the most highly expressed gene in all tissues. In conclusion, gene expression and tissue-localization indicate high activity of cytokinins not only in summer, but

  16. Growth of shredders on leaf litter biofilms: the effect of light intensity

    NARCIS (Netherlands)

    Franken, R.J.M.; Waluto, B.; Peeters, E.T.H.M.; Gardeniers, J.J.P.; Beijer, J.A.J.; Scheffer, M.

    2005-01-01

    1. The effect of light intensity on the decomposition of poplar (Populus nigra) leaves and growth of the shredders, Asellus aquaticus and Gammarus pulex, was studied in a laboratory experiment. The response was studied along a gradient of six light intensities of 0, 5, 23, 54, 97 and 156 ¿mol m -2

  17. Flavan-3-ols Are an Effective Chemical Defense against Rust Infection.

    Science.gov (United States)

    Ullah, Chhana; Unsicker, Sybille B; Fellenberg, Christin; Constabel, C Peter; Schmidt, Axel; Gershenzon, Jonathan; Hammerbacher, Almuth

    2017-12-01

    Phenolic secondary metabolites are often thought to protect plants against attack by microbes, but their role in defense against pathogen infection in woody plants has not been investigated comprehensively. We studied the biosynthesis, occurrence, and antifungal activity of flavan-3-ols in black poplar ( Populus nigra ), which include both monomers, such as catechin, and oligomers, known as proanthocyanidins (PAs). We identified and biochemically characterized three leucoanthocyanidin reductases and two anthocyanidin reductases from P. nigra involved in catalyzing the last steps of flavan-3-ol biosynthesis, leading to the formation of catechin [2,3-trans-(+)-flavan-3-ol] and epicatechin [2,3-cis-(-)-flavan-3-ol], respectively. Poplar trees that were inoculated with the biotrophic rust fungus ( Melampsora larici-populina ) accumulated higher amounts of catechin and PAs than uninfected trees. The de novo-synthesized catechin and PAs in the rust-infected poplar leaves accumulated significantly at the site of fungal infection in the lower epidermis. In planta concentrations of these compounds strongly inhibited rust spore germination and reduced hyphal growth. Poplar genotypes with constitutively higher levels of catechin and PAs as well as hybrid aspen ( Populus tremula × Populus alba ) overexpressing the MYB134 transcription factor were more resistant to rust infection. Silencing PnMYB134 , on the other hand, decreased flavan-3-ol biosynthesis and increased susceptibility to rust infection. Taken together, our data indicate that catechin and PAs are effective antifungal defenses in poplar against foliar rust infection. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Heavy metal accumulation by poplar in calcareous soil with various degrees of multi-metal contamination: implications for phytoextraction and phytostabilization.

    Science.gov (United States)

    Hu, Yahu; Nan, Zhongren; Su, Jieqiong; Wang, Ning

    2013-10-01

    The object of this study was to assess the capacity of Populus alba L. var. pyramidalis Bunge for phytoremediation of heavy metals on calcareous soils contaminated with multiple metals. In a pot culture experiment, a multi-metal-contaminated calcareous soil was mixed at different ratios with an uncontaminated, but otherwise similar soil, to establish a gradient of soil metal contamination levels. In a field experiment, poplars with different stand ages (3, 5, and 7 years) were sampled randomly in a wastewater-irrigated field. The concentrations of cadmium (Cd), Cu, lead (Pb), and zinc (Zn) in the poplar tissues and soil were determined. The accumulation of Cd and Zn was greatest in the leaves of P. pyramidalis, while Cu and Pb mainly accumulated in the roots. In the pot experiment, the highest tissue concentrations of Cd (40.76 mg kg(-1)), Cu (8.21 mg kg(-1)), Pb (41.62 mg kg(-1)), and Zn (696 mg kg(-1)) were all noted in the multi-metal-contaminated soil. Although extremely high levels of Cd and Zn accumulated in the leaves, phytoextraction using P. pyramidalis may take at least 24 and 16 years for Cd and Zn, respectively. The foliar concentrations of Cu and Pb were always within the normal ranges and were never higher than 8 and 5 mg kg(-1), respectively. The field experiment also revealed that the concentrations of all four metals in the bark were significantly higher than that in the wood. In addition, the tissue metal concentrations, together with the NH4NO3-extractable concentrations of metals in the root zone, decreased as the stand age increased. P. pyramidalis is suitable for phytostabilization of calcareous soils contaminated with multiple metals, but collection of the litter fall would be necessary due to the relatively high foliar concentrations of Cd and Zn.

  19. Investigation on effect of Populus alba stands distance on density of pests and their natural enemies population under poplar/alfalfa agroforestry system.

    Science.gov (United States)

    Khabir, Z H; Sadeghi, S E; Hanifeh, S; Eivazi, A

    2009-01-15

    This study was carried out in order to distinguish the effect of agroforestry system (combination of agriculture and forestry) on pests and natural enemy's population in poplar research station. Wood is one of the first substances that naturally was used for a long period of time. Forage is an important production of natural resources too. Some factors such as proper lands deficit, lack of economy, pest and disease attacks and faced production of these materials with serious challenges. Agroforestry is a method for decrease of the mentioned problems. The stands of poplar had have planted by complete randomized design with 4 treatments (stand distance) of poplar/alfalfa include 3x4, 3x6.7, 3x8, 3x10 m and 2 control treatments, alfalfa and poplar. The results showed that Chaitophorus populeti had the highest density in poplar and 3x10 m treatments. Monosteira unicostata is another insect pest that had most density in 3x10 m treatment. And alfalfa had high density of Chrysoperla carnea. The density of Coccinella septempunctata, were almost equal in all treatments.

  20. Overexpression of Pyrabactin Resistance-Like Abscisic Acid Receptors Enhances Drought, Osmotic, and Cold Tolerance in Transgenic Poplars

    Directory of Open Access Journals (Sweden)

    Jingling Yu

    2017-10-01

    Full Text Available Abscisic acid (ABA has been known participate in a wider range of adaptive responses to diverse environmental abiotic stresses such as drought, osmosis, and low temperatures. ABA signaling is initiated by its receptors PYR/PYL/RCARs, a type of soluble proteins with a conserved START domain which can bind ABA and trigger the downstream pathway. Previously, we discovered that poplar (Populus trichocarpa genome encodes 14 PYR/PYL/RCAR orthologs (PtPYRLs, and two of them, PtPYRL1 and PtPYRL5 have been functionally characterized to positively regulate drought tolerance. However, the physiological function of these ABA receptors in poplar remains uncharacterized. Here, we generated transgenic poplar plants overexpressing PtPYRL1 and PtPYRL5 and found that they exhibited more vigorous growth and produced greater biomass when exposed to drought stress. The improved drought tolerance was positively correlated with the key physiological responses dictated by the ABA signaling pathway, including increase in stomatal closure and decrease in leaf water loss. Further analyses revealed that overexpression lines showed improved capacity in scavenging reactive oxygen species and enhanced the activation of antioxidant enzymes under drought stress. Moreover, overexpression of PtPYRL1 or PtPYRL5 significantly increased the poplar resistance to osmotic and cold stresses. In summary, our results suggest that constitutive expression of PtPYRL1 and PtPYRL5 significantly enhances the resistance to drought, osmotic and cold stresses by positively regulating ABA signaling in poplar.

  1. Dechlorination of PCBs in the rhizosphere of switchgrass and poplar

    International Nuclear Information System (INIS)

    Meggo, Richard E.; Schnoor, Jerald L.; Hu, Dingfei

    2013-01-01

    Polychlorinated biphenyl (PCB) congeners (PCB 52, 77, and 153) singly and in mixture were spiked and aged in soil microcosms and subsequently planted with switchgrass (Panicum virgatum) or poplar (Populus deltoids x nigra DN34). The planted reactors showed significantly greater reductions in PCB parent compounds when compared to unplanted systems after 32 weeks. There was evidence of reductive dechlorination in both planted and unplanted systems, but the planted microcosms with fully developed roots and rhizospheres showed greater biotransformation than the unplanted reactors. These dechlorination products accounted for approximately all of the molar mass of parent compound lost. Based on the transformation products, reductive dechlorination pathways are proposed for rhizospheric biotransformation of PCB 52, 77, and 153. This is the first report of rhizosphere biotransformation pathways for reductive dechlorination in marginally aerobic, intermittently flooded soil as evidenced by a mass balance on transformation products. -- Highlights: •Soil was spiked and aged and then planted with poplar and switchgrass. •Planted microcosms showed significant reductive dechlorination and greater biotransformation than unplanted reactor. •Rhizospheric reductive dechlorination pathways are proposed. -- This study provides insight into rhizospheric transformation of PCBs

  2. Fiber length and pulping characteristics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses.

    Science.gov (United States)

    Ai, Jun; Tschirner, Ulrike

    2010-01-01

    Switchgrass (Panicum virgatum), alfalfa stems (Medicago sativa), second year growth hybrid poplar (Populus) and willow (Salix spp.) were examined to determine fiber characteristics, pulping behavior and paper properties. Alfalfa stems and switchgrass both showed length weighted average fiber length (LWW) of 0.78 mm, a very narrow fiber length distribution and high fines content. Willow and hybrid poplar have lower fines content but a very low average fiber length (0.42 and 0.48 mm LWW). In addition, the four biomass species showed distinctly different chemical compositions. Switchgrass was defibered successfully using Soda and Soda Anthraquinone (AQ) pulping and demonstrated good paper properties. Both fast-growing wood species pulped well using the Kraft process, and showed acceptable tensile strength, but low tear strength. Alfalfa stems reacted very poorly to Soda and Soda AQ pulping but responded well to Kraft and Kraft AQ. Pulps with tensile and tear strength considerably higher than those found for commercial aspen pulps were observed for alfalfa. All four biomass species examined demonstrated low pulp yield. The highest yields were obtained with poplar and switchgrass (around 43%). Considering the short fibers and low yields, all four biomass types will likely only be used in paper manufacturing if they offer considerable economic advantage over traditional pulp wood.

  3. Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05-17.

    Science.gov (United States)

    Wang, Q; Xiong, D; Zhao, P; Yu, X; Tu, B; Wang, G

    2011-11-01

    Bioremediation of highly arsenic (As)-contaminated soil is difficult because As is very toxic for plants and micro-organisms. The aim of this study was to investigate soil arsenic removal effects using poplar in combination with the inoculation of a plant growth-promoting rhizobacterium (PGPR). A rhizobacterium D14 was isolated and identified within Agrobacterium radiobacter. This strain was highly resistant to arsenic and produced indole acetic acid and siderophore. Greenhouse pot bioremediation experiments were performed for 5 months using poplar (Populus deltoides LH05-17) grown on As-amended soils, inoculated with strain D14. The results showed that P. deltoides was an efficient arsenic accumulator; however, high As concentrations (150 and 300 mg kg(-1)) inhibited its growth. With the bacterial inoculation, in the 300 mg kg(-1) As-amended soils, 54% As in the soil was removed, which was higher than the uninoculated treatments (43%), and As concentrations in roots, stems and leaves were significantly increased by 229, 113 and 291%, respectively. In addition, the As translocation ratio [(stems + leaves)/roots = 0·8] was significantly higher than the uninoculated treatments (0·5). About 45% As was translocated from roots to the above-ground tissues. The plant height and dry weight of roots, stems and leaves were all enhanced; the contents of chlorophyll and soluble sugar, and the activities of superoxide dismutase and catalase were all increased; and the content of a toxic compound malondialdehyde was decreased. The results indicated that the inoculation of strain D14 could contribute to the increase in the As tolerance of P. deltoides, promotion of the growth, increase in the uptake efficiency and enhancement of As translocation. The use of P. deltoides in combination with the inoculation of strain D14 provides a potential application for efficient soil arsenic bioremediation. © 2011 The Authors. Journal of Applied Microbiology ©2011 The Society for Applied

  4. Genomics Mechanisms of Carbon Allocation and Partitioning in Poplar

    Energy Technology Data Exchange (ETDEWEB)

    Kirst, Matias; Peter, Gary; Martin, Timothy

    2009-07-30

    The genetic control of carbon allocation and partitioning in woody perennial plants is poorly understood despite its importance for carbon sequestration. It is also unclear how environmental cues such as nitrogen availability impact the genes that regulate growth, and biomass allocation and wood composition in trees. To address these questions we phenotyped 396 clonally replicated genotypes of an interspecific pseudo-backcross pedigree of Populus for wood composition and biomass traits in above and below ground organs. The loci that regulate growth, carbon allocation and partitioning under two nitrogen conditions were identified, defining the contribution of environmental cues to their genetic control. Fifty-seven quantitative trait loci (QTL) were identified for twenty traits analyzed. The majority of QTL are specific to one of the two nitrogen treatments, demonstrating significant nitrogen-dependent genetic control. A highly significant genetic correlation was observed between plant growth and lignin/cellulose composition, and QTL co-localization identified the genomic position of potential pleiotropic regulators. Gene expression analysis of all poplar genes was also characterized in differentiating xylem, whole-roots and developing leaves of 192 of the segregating population. By integrating the QTL and gene expression information we identified genes that regulate carbon partitioning and several biomass growth related properties. The work developed in this project resulted in the publication of three book chapters, four scientific articles (three others currently in preparation), 17 presentations in international conferences and two provisional patent applications.

  5. PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance in Arabidopsis thaliana.

    Science.gov (United States)

    Duan, Yanjiao; Jiang, Yuanzhong; Ye, Shenglong; Karim, Abdul; Ling, Zhengyi; He, Yunqiu; Yang, Siqi; Luo, Keming

    2015-05-01

    A salicylic acid-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa , was isolated and characterized. Overexpression of PtrWRKY73 in Arabidopsis thaliana increased resistance to biotrophic pathogens but reduced resistance against necrotrophic pathogens. WRKY transcription factors are commonly involved in plant defense responses. However, limited information is available about the roles of the WRKY genes in poplar defense. In this study, we isolated a salicylic acid (SA)-inducible WRKY gene, PtrWRKY73, from Populus trichocarpa, belonging to group I family and containing two WRKY domains, a D domain and an SP cluster. PtrWRKY73 was expressed predominantly in roots, old leaves, sprouts and stems, especially in phloem and its expression was induced in response to treatment with exogenous SA. PtrWRKY73 was localized to the nucleus of plant cells and exhibited transcriptional activation. Overexpression of PtrWRKY73 in Arabidopsis thaliana resulted in increased resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae (PstDC3000), but more sensitivity to the necrotrophic fungal pathogen Botrytis cinerea. The SA-mediated defense-associated genes, such as PR1, PR2 and PAD4, were markedly up-regulated in transgenic plants overexpressing PtrWRKY73. Arabidopsis non-expressor of PR1 (NPR1) was not affected, whereas a defense-related gene PAL4 had reduced in PtrWRKY73 overexpressor plants. Together, these results indicated that PtrWRKY73 plays a positive role in plant resistance to biotrophic pathogens but a negative effect on resistance against necrotrophic pathogens.

  6. Cuticle lipids on heteromorphic leaves of Populus euphratica Oliv. growing in riparian habitats differing in available soil moisture.

    Science.gov (United States)

    Xu, Xiaojing; Xiao, Lei; Feng, Jinchao; Chen, Ningmei; Chen, Yue; Song, Buerbatu; Xue, Kun; Shi, Sha; Zhou, Yijun; Jenks, Matthew A

    2016-11-01

    Populus euphratica is an important native tree found in arid regions from North Africa and South Europe to China, and is known to tolerate many forms of environmental stress, including drought. We describe cuticle waxes, cutin and cuticle permeability for the heteromorphic leaves of P. euphratica growing in two riparian habitats that differ in available soil moisture. Scanning electron microscopy revealed variation in epicuticular wax crystallization associated with leaf type and site. P. euphratica leaves are dominated by cuticular wax alkanes, primary-alcohols and fatty acids. The major cutin monomers were 10,16-diOH C 16 :0 acids. Broad-ovate leaves (associated with adult phase growth) produced 1.3- and 1.6-fold more waxes, and 2.1- and 0.9-fold more cutin monomers, than lanceolate leaves (associated with juvenile phase growth) at the wetter site and drier site, respectively. The alkane-synthesis-associated ECERIFERUM1 (CER1), as well as ABC transporter- and elongase-associated genes, were expressed at much higher levels at the drier than wetter sites, indicating their potential function in elevating leaf cuticle lipids in the dry site conditions. Higher cuticle lipid amounts were closely associated with lower cuticle permeability (both chlorophyll efflux and water loss). Our results implicate cuticle lipids as among the xeromorphic traits associated with P. euphratica adult-phase broad-ovate leaves. Results here provide useful information for protecting natural populations of P. euphratica and their associated ecosystems, and shed new light on the functional interaction of cuticle and leaf heterophylly in adaptation to more arid, limited-moisture environments. © 2016 Scandinavian Plant Physiology Society.

  7. The response of high and low polyamine producing cell lines to aluminum and calcium stress

    Science.gov (United States)

    Sridev Mohapatra; Smita Cherry; Rakesh Minocha; Rajtilak Majumdar; Palaniswamy Thangavel; Stephanie Long; Subhash C. Minocha

    2010-01-01

    The diamine putrescine (Put) has been shown to accumulate in tree leaves in response to high Al and low Ca in the soil, leading to the suggestion that this response may provide a physiological advantage to leaf cells under conditions of Al stress. The increase in Put is reversed by Ca supplementation in the soil. Using two cell lines of poplar (Populus nigra...

  8. Isolation and Pathogenicity of Phytophthora Species from Poplar Plantations in Serbia

    Directory of Open Access Journals (Sweden)

    Ivan Milenković

    2018-06-01

    Full Text Available During a survey in three declining and three healthy poplar plantations in Serbia, six different Phytophthora species were obtained. Phytophthora plurivora was the most common, followed by P. pini, P. polonica, P. lacustris, P. cactorum, and P. gonapodyides. Pathogenicity of all isolated species to four-month and one-year-old cuttings of Populus hybrid clones I-214 and Pánnonia, respectively, was tested using both a soil infestation and stem inoculation test. Isolates of P. polonica, P. × cambivora, P. cryptogea, and P. × serendipita from other host plants were included as a comparison. In the soil infestation test, the most aggressive species to clone I-214 were P. plurivora, P. × serendipita, and P. pini. On clone Pánnonia, P. gonapodyides and P. pini were the most aggressive, both causing 100% mortality, followed by P. cactorum, P. × cambivora, and P. polonica. In the underbark inoculation test, the susceptibility of both poplar clones to the different Phytophthora species was largely similar, as in the soil infestation test, with the exception of P. polonica, which proved to be only weakly pathogenic to poplar bark. The most aggressive species to clone I-214 was P. pini, while on clone Pánnonia, the longest lesions and highest disease incidence were caused by P. gonapodyides. Phytophthora cactorum and P. plurivora were pathogenic to both clones, whereas P. × cambivora showed only weak pathogenicity. The implications of these findings and possible pathways of dispersion of the pathogens are discussed.

  9. Epigenomics of Development in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, Steve; Freitag, Michael; Mockler, Todd

    2013-01-10

    We conducted research to determine the role of epigenetic modifications during tree development using poplar (Populus trichocarpa), a model woody feedstock species. Using methylated DNA immunoprecipitation (MeDIP) or chromatin immunoprecipitation (ChIP), followed by high-throughput sequencing, we are analyzed DNA and histone methylation patterns in the P. trichocarpa genome in relation to four biological processes: bud dormancy and release, mature organ maintenance, in vitro organogenesis, and methylation suppression. Our project is now completed. We have 1) produced 22 transgenic events for a gene involved in DNA methylation suppression and studied its phenotypic consequences; 2) completed sequencing of methylated DNA from eleven target tissues in wildtype P. trichocarpa; 3) updated our customized poplar genome browser using the open-source software tools (2.13) and (V2.2) of the P. trichocarpa genome; 4) produced summary data for genome methylation in P. trichocarpa, including distribution of methylation across chromosomes and in and around genes; 5) employed bioinformatic and statistical methods to analyze differences in methylation patterns among tissue types; and 6) used bisulfite sequencing of selected target genes to confirm bioinformatics and sequencing results, and gain a higher-resolution view of methylation at selected genes 7) compared methylation patterns to expression using available microarray data. Our main findings of biological significance are the identification of extensive regions of the genome that display developmental variation in DNA methylation; highly distinctive gene-associated methylation profiles in reproductive tissues, particularly male catkins; a strong whole genome/all tissue inverse association of methylation at gene bodies and promoters with gene expression; a lack of evidence that tissue specificity of gene expression is associated with gene methylation; and evidence that genome methylation is a significant impediment to tissue

  10. Overexpression of Poplar Pyrabactin Resistance-Like Abscisic Acid Receptors Promotes Abscisic Acid Sensitivity and Drought Resistance in Transgenic Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jingling Yu

    Full Text Available Drought stress is an important environmental factor limiting productivity of plants, especially fast growing species with high water consumption like poplar. Abscisic acid (ABA is a phytohormone that positively regulates seed dormancy and drought resistance. The PYR1 (Pyrabactin Resistance 1/ PYRL (PYR-Like/ RCAR (Regulatory Component of ABA Receptor (PYR/PYL/RCAR ABA receptor family has been identified and widely characterized in Arabidopsis thaliana. However, their functions in poplars remain unknown. Here, we report that 2 of 14 PYR/PYL/RCAR orthologues in poplar (Populus trichocarpa (PtPYRLs function as a positive regulator of the ABA signal transduction pathway. The Arabidopsis transient expression and yeast two-hybrid assays showed the interaction among PtPYRL1 and PtPYRL5, a clade A protein phosphatase 2C, and a SnRK2, suggesting that a core signalling complex for ABA signaling pathway exists in poplars. Phenotypic analysis of PtPYRL1 and PtPYRL5 transgenic Arabidopsis showed that these two genes positively regulated the ABA responses during the seed germination. More importantly, the overexpression of PtPYRL1 and PtPYRL5 substantially improved ABA sensitivity and drought stress tolerance in transgenic plants. In summary, we comprehensively uncovered the properties of PtPYRL1 and PtPYRL5, which might be good target genes to genetically engineer drought-Resistant plants.

  11. Observations on the Early Establishment of Foliar Endophytic Fungi in Leaf Discs and Living Leaves of a Model Woody Angiosperm, Populus trichocarpa (Salicaceae

    Directory of Open Access Journals (Sweden)

    Yu-Ling Huang

    2018-05-01

    Full Text Available Fungal endophytes are diverse and widespread symbionts that occur in the living tissues of all lineages of plants without causing evidence of disease. Culture-based and culture-free studies indicate that they often are abundant in the leaves of woody angiosperms, but only a few studies have visualized endophytic fungi in leaf tissues, and the process through which most endophytes colonize leaves has not been studied thoroughly. We inoculated leaf discs and the living leaves of a model woody angiosperm, Populus trichocarpa, which has endophytes that represent three distantly-related genera (Cladosporium, Penicillium, and Trichoderma. We used scanning electron microscopy and light microscopy to evaluate the timeline and processes by which they colonize leaf tissue. Under laboratory conditions with high humidity, conidia germinated on leaf discs to yield hyphae that grew epiphytically and incidentally entered stomata, but did not grow in a directed fashion toward stomatal openings. No cuticular penetration was observed. The endophytes readily colonized the interiors of leaf discs that were detached from living leaves, and could be visualized within discs with light microscopy. Although they were difficult to visualize within the interior of living leaves following in vivo inoculations, standard methods for isolating foliar endophytes confirmed their presence.

  12. Water relations and gas exchange in poplar and willow under water stress and elevated atmospheric CO2.

    Science.gov (United States)

    Johnson, Jon D; Tognetti, Roberto; Paris, Piero

    2002-05-01

    Predictions of shifts in rainfall patterns as atmospheric [CO2] increases could impact the growth of fast growing trees such as Populus spp. and Salix spp. and the interaction between elevated CO2 and water stress in these species is unknown. The objectives of this study were to characterize the responses to elevated CO2 and water stress in these two species, and to determine if elevated CO2 mitigated drought stress effects. Gas exchange, water potential components, whole plant transpiration and growth response to soil drying and recovery were assessed in hybrid poplar (clone 53-246) and willow (Salix sagitta) rooted cuttings growing in either ambient (350 &mgr;mol mol-1) or elevated (700 &mgr;mol mol-1) atmospheric CO2 concentration ([CO2]). Predawn water potential decreased with increasing water stress while midday water potentials remained unchanged (isohydric response). Turgor potentials at both predawn and midday increased in elevated [CO2], indicative of osmotic adjustment. Gas exchange was reduced by water stress while elevated [CO2] increased photosynthetic rates, reduced leaf conductance and nearly doubled instantaneous transpiration efficiency in both species. Dark respiration decreased in elevated [CO2] and water stress reduced Rd in the trees growing in ambient [CO2]. Willow had 56% lower whole plant hydraulic conductivity than poplar, and showed a 14% increase in elevated [CO2] while poplar was unresponsive. The physiological responses exhibited by poplar and willow to elevated [CO2] and water stress, singly, suggest that these species respond like other tree species. The interaction of [CO2] and water stress suggests that elevated [CO2] did mitigate the effects of water stress in willow, but not in poplar.

  13. Over-expression of bacterial gamma-glutamylcysteine synthetase (GSH1) in plastids affects photosynthesis, growth and sulphur metabolism in poplar (Populus tremula x Populus alba) dependent on the resulting gamma-glutamylcysteine and glutathione levels.

    Science.gov (United States)

    Herschbach, Cornelia; Rizzini, Luca; Mult, Susanne; Hartmann, Tanja; Busch, Florian; Peuke, Andreas D; Kopriva, Stanislav; Ensminger, Ingo

    2010-07-01

    We compared three transgenic poplar lines over-expressing the bacterial gamma-glutamylcysteine synthetase (GSH1) targeted to plastids. Lines Lggs6 and Lggs12 have two copies, while line Lggs20 has three copies of the transgene. The three lines differ in their expression levels of the transgene and in the accumulation of gamma-glutamylcysteine (gamma-EC) and glutathione (GSH) in leaves, roots and phloem exudates. The lowest transgene expression level was observed in line Lggs6 which showed an increased growth, an enhanced rate of photosynthesis and a decreased excitation pressure (1-qP). The latter typically represents a lower reduction state of the plastoquinone pool, and thereby facilitates electron flow along the electron transport chain. Line Lggs12 showed the highest transgene expression level, highest gamma-EC accumulation in leaves and highest GSH enrichment in phloem exudates and roots. This line also exhibited a reduced growth, and after a prolonged growth of 4.5 months, symptoms of leaf injury. Decreased maximum quantum yield (F(v)/F(m)) indicated down-regulation of photosystem II reaction centre (PSII RC), which correlates with decreased PSII RC protein D1 (PsbA) and diminished light-harvesting complex (Lhcb1). Potential effects of changes in chloroplastic and cytosolic GSH contents on photosynthesis, growth and the whole-plant sulphur nutrition are discussed for each line.

  14. Degradation of exogenous caffeine by Populus alba and its effects on endogenous caffeine metabolism.

    Science.gov (United States)

    Pierattini, Erika C; Francini, Alessandra; Raffaelli, Andrea; Sebastiani, Luca

    2016-04-01

    This is the first study reporting the presence of endogenous caffeine, theobromine, and theophylline in all organs of poplar plants. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) was used in order to evaluate the uptake, translocation, and metabolism of caffeine-(trimethyl-(13)C) in Populus alba L. Villafranca clone grown in hydroponic conditions. We investigated the remediation of caffeine since it is one of the most widely consumed drugs and it is frequently detected in wastewater treatment plant effluents, surface water, and groundwater worldwide. Our results demonstrated that poplar can absorb and degrade exogenous caffeine without negative effects on plant health. Data showed that concentrations of all endogenous compounds varied depending on caffeine-(trimethyl-(13)C) treatments. In particular, in control conditions, endogenous caffeine, theobromine, and theophylline were mainly distributed in roots. On the other hand, once caffeine-(trimethyl-(13)C) was provided, this compound and its dimethy-(13)C metabolites are mainly localized at leaf level. In conclusion, our results support the possible use of Villafranca clone in association with other water treatment systems in order to complete the process of caffeine remediation.

  15. Gain-of-function analysis of poplar CLE genes in Arabidopsis by exogenous application and over-expression assays.

    Science.gov (United States)

    Liu, Yisen; Yang, Shaohui; Song, Yingjin; Men, Shuzhen; Wang, Jiehua

    2016-04-01

    Among 50 CLE gene family members in the Populus trichocarpa genome, three and six PtCLE genes encode a CLE motif sequence highly homologous to Arabidopsis CLV3 and TDIF peptides, respectively, which potentially make them functional equivalents. To test and compare their biological activity, we first chemically synthesized each dodecapeptide and analysed itsi n vitro bioactivity on Arabidopsis seedlings. Similarly, but to a different extent, three types of poplar CLV3-related peptides caused root meristem consumption, phyllotaxis disorder, anthocyanin accumulation and failure to enter the bolting stage. In comparison, application of two poplar TDIF-related peptides led to root length promotion in a dose-dependent manner with an even stronger effect observed for poplar TDIF-like peptide than TDIF. Next, we constructed CaMV35S:PtCLE transgenic plants for each of the nine PtCLE genes. Phenotypic abnormalities exemplified by arrested shoot apical meristem and abnormal flower structure were found to be more dominant and severe in 35S:PtCLV3 and 35S:PtCLV3-like2 lines than in the 35S:PtCLV3-like line. Disordered vasculature was detected in both stem and hypocotyl cross-sections in Arabidopsis plants over-expressing poplar TDIF-related genes with the most defective vascular patterning observed for TDIF2 and two TDIF-like genes. Phenotypic difference consistently observed in peptide application assay and transgenic analysis indicated the functional diversity of nine poplar PtCLE genes under investigation. This work represents the first report on the functional analysis of CLE genes in a tree species and constitutes a basis for further study of the CLE peptide signalling pathway in tree development. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Greater efficiency of water use in poplar clones having a delayed response of mesophyll conductance to drought.

    Science.gov (United States)

    Théroux Rancourt, Guillaume; Éthier, Gilbert; Pepin, Steeve

    2015-02-01

    Improvement of water use efficiency is a key objective to improve the sustainability of cultivated plants, especially fast growing species with high water consumption like poplar. It is well known that water use efficiency (WUE) varies considerably among poplar genotypes, and it was recently suggested that the use of the mesophyll-to-stomatal conductance ratio (gm/gs) would be an appropriate trait to improve WUE. The responses of 7-week-old cuttings of four hybrid poplar clones and one native Balsam poplar (Populus balsamifera L.) to a water stress-recovery cycle were examined to evaluate the relation between the gm/gs ratio and transpiration efficiency (TE), a leaf-level component of WUE. A contrasting gs response to water stress was observed among the five clones, from stomatal closure early on during soil drying up to limited closure in Balsam poplar. However in the hybrids, the decline in gm was consistently delayed by a few days compared with gs. Moreover, in the most water use-efficient hybrids, the recovery following rehydration occurred faster for gm than for gs. Thus, the delay in the response of gm to drought and its faster recovery upon rewatering increased the gm/gs of the hybrids and this ratio scaled positively with TE. Our results support the use of the gm/gs ratio to select genotypes with improved WUE, and the notion that breeding strategies focusing mainly on stomatal responses to soil drying should also look for a strong curvilinearity between net carbon assimilation rate and gs, the indication of a significant increase in gm/gs in the earlier stages of stomatal closure. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Poplar Interactome: Project Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jaiswal, Pankaj [Oregon State Univ., Corvallis, OR (United States)

    2018-03-21

    The feedstock plant Poplar has many advantages over traditional crop plants. Not only Poplar needs low energy input and off season storage as compared to feedstocks such as corn, in the winter season Poplar biomass is stored on the stem/trunk, and Poplar plantations serve as large carbon sink. A key constraint to the expansion of cellulosic bioenergy sources such as in Poplar however, is the negative consequence of converting land use from food crops to energy crops. Therefore in order for Poplar to become a viable energy crop it needs to be grown mostly on marginal land unsuitable agricultural crops. For this we need a better understanding of abiotic stress and adaptation response in poplar. In the process we expected to find new and existing poplar genes and their function that respond to sustain abiotic stress. We carried out an extensive gene expression study on the control untreated and stress (drought, salinity, cold and heat) treated poplar plants. The samples were collected from the stem, leaf and root tissues. The RNA of protein coding genes and regulatory smallRNA genes were sequenced generating more than a billion reads. This is the first such known study in Poplar plants. These were used for quantification and genomic analysis to identify stress responsive genes in poplar. Based on the quantification and genomic analysis, a select set of genes were studied for gene-gene interactions to find their association to stress response. The data was also used to find novel stress responsive genes in poplar that were previously not identified in the Poplar reference genome. The data is made available to the public through the national and international genomic data archives.

  18. With willows and poplars against the heavy metals

    International Nuclear Information System (INIS)

    Jaros, M.

    2002-01-01

    Special kinds of trees take out cadmium, lead and zinc from the soil, helping its rehabilitation in contaminated regions. A new method for soil rehabilitation (phytoremediation) based on plants is described. Special willows and poplars have the capability to extract as a sponge heavy metals from the soils and store them in their leaves. For example, they can uptake 700 times the amount of cadmium than the normal plants do. (nevyjel)

  19. [SSR analysis on stress effect of transgenic hybrid poplar 741 on Clostera anachoreta (Fabricius) (Lepidoptera: Notodontidae)].

    Science.gov (United States)

    Liu, Jun Xia; Song, Xiao Ying; Jiang, Wen Hu; Zhou, Guo Na; Gao, Bao Jia

    2016-12-01

    The genetic differentiation of the experimental population of Clostera anachoreta fed on different resistant transgenic 741 poplar leaves was analyzed by SSR molecular marker technique to investigate stress effect of transgenic poplar Bt gene as food on target insect. The experimental population of C. anachoreta fed on transgenic 741 poplar high resistant strains 'Pb29', medium resis-tant strains 'Pb17' and non-transgenic poplar (CK), and the screened ten pairs of SSR primers were used. The results showed that 76 alleles were observed in ten pairs of primers. The average allele was 7.6, the average effective number of alleles was 2.2, the average observed heterozygosity was 0.5167, the average expected heterozygosity was 0.5167, and the average percentage of polymorphic loci was 96.7%. The genetic diversity level of C. anachoreta experimental population fed on transgenic poplar 741 was significantly higher than that fed on non-transgenic populations, and C. anachoreta fed on high resistance had the lowest genetic similarity with CK samples, which showed an increasing trend of the genetic diversity of the experimental population fed on transgenic Bt poplar. It was thus clear that transgenic hybrid poplar 741 had stress effects on genetic differentiation of C. anachoreta experimental population by SSR.

  20. Transport and use of CO2 in the xylem sap of Populus deltoides

    International Nuclear Information System (INIS)

    Stringer, J.W.; Kimmerer, T.W.

    1990-01-01

    Results of recent experiments indicate an internal cycling of respiratory CO 2 in woody plants. The CO 2 concentration of xylem sap expressed from the twigs of field grown Populus deltoides ranged from .14 to .50 mM. The pH of the xylem sap was 5.7 to 6.7, providing a significant bicarbonate concentration in many samples. Total dissolved inorganic carbon (DIC = CO 2 + H 2 CO 3 + HCO 3 - ) was 0.5 mM to 1.3 mM. Results from the analysis of xylem sap of 10 other species of woody plants were similar. To determine the fate of DIC delivered to the leaves of Populus deltoides, excised leaves were fed 1mM NaHCO 3 (2 μCi NaH 14 CO 3 ml -1 ). Less than 0.4% of the label escaped from the leaves, and ≥93% was fixed. Of the carbon fixed 56% of the 14 C was found in the petiole and midrib, and 14% was in the major veins, with the remaining 30% in the minor veins and lamina. Shading of the peptiole and midrib of leaves decreased the amount of fixed carbon in these tissues to 38% and increased the amount in the lamina to 55%

  1. Remetabolism of transpired ethanol by Populus deltoides

    International Nuclear Information System (INIS)

    MacDonald, R.C.; Kimmerer, T.W.

    1990-01-01

    Ethanol is present in the transpiration stream of flooded and unflooded trees in concentrations up to 0.5mM. Transpired ethanol does not evaporate but is remetabolized by foliage and upper stems in Populus deltoides. 14 C-ethanol was supplied in the transpiration stream to excised leaves and shoots; more than 98% was incorporated. Less than 1% was respired as CO 2 . Organic and amino acids were labelled initially, with eventual accumulations in water- and chloroform-soluble fractions and into protein. Much of the label was incorporated into stem tissue, with little reaching the lamina. These experiments suggest that ethanol is not lost transpirationally through the leaves, but is efficiently recycled in a manner resembling lactate recycling in mammals

  2. Effect of temperature on postillumination isoprene emission in oak and poplar.

    Science.gov (United States)

    Li, Ziru; Ratliff, Ellen A; Sharkey, Thomas D

    2011-02-01

    Isoprene emission from broadleaf trees is highly temperature dependent, accounts for much of the hydrocarbon emission from plants, and has a profound effect on atmospheric chemistry. We studied the temperature response of postillumination isoprene emission in oak (Quercus robur) and poplar (Populus deltoides) leaves in order to understand the regulation of isoprene emission. Upon darkening a leaf, isoprene emission fell nearly to zero but then increased for several minutes before falling back to nearly zero. Time of appearance of this burst of isoprene was highly temperature dependent, occurring sooner at higher temperatures. We hypothesize that this burst represents an intermediate pool of metabolites, probably early metabolites in the methylerythritol 4-phosphate pathway, accumulated upstream of dimethylallyl diphosphate (DMADP). The amount of this early metabolite(s) averaged 2.9 times the amount of plastidic DMADP. DMADP increased with temperature up to 35°C before starting to decrease; in contrast, the isoprene synthase rate constant increased up to 40°C, the highest temperature at which it could be assessed. During a rapid temperature switch from 30°C to 40°C, isoprene emission increased transiently. It was found that an increase in isoprene synthase activity is primarily responsible for this transient increase in emission levels, while DMADP level stayed constant during the switch. One hour after switching to 40°C, the amount of DMADP fell but the rate constant for isoprene synthase remained constant, indicating that the high temperature falloff in isoprene emission results from a reduction in the supply of DMADP rather than from changes in isoprene synthase activity.

  3. Seasonal dynamics of the photosynthetic pigments content in Populus tremula L. leaves at the adaptation on an open-pit coal mine revegetating dump

    Directory of Open Access Journals (Sweden)

    Yu. V. Zagurskaya

    2017-02-01

    Full Text Available Seasonal dynamics of the basic photosynthetic pigments (a and b chlorophylls, carotenoids content in the samples of aspen Populus tremula during natural regeneration on a revegetating pit dump of a worked-out coal pit has been studied. The studies were conducted every ten days during the vegetation period in 2015 (June–September on the territory of «Yuzhniy» dump of «Kedrovskiy» open-pit coal mine (Kemerovo region. The pigment content was identified by the means of spectrophotometric detection. The content of photosynthetic pigments in aspen leaves was calculated on oven-dry weight of the leaves, as moisture aspen leaves can greatly vary, and the determination of accuracy of dry matter content higher than the for specific gravity of the sheet. No changes in visible absorption spectrum of acetone extracts indicating pheophytin formation in chlorophylls have been identified. For all variants the larger amount of b chlorophyll was contained in control samples. The largest differences in a/b chlorophylls and chlorophylls/carotenoids ratio were observed in the end of vegetation period. The ratio between a and b chlorophylls of aspen leaves in both cases by the end of the season was considerably lower. The adaptation of aspen photosynthetic system to the revegetating dump conditions was performed due to decrease in the total pigment content and the percent of b chlorophyll in their composition.

  4. Contribution of various carbon sources toward isoprene biosynthesis in poplar leaves mediated by altered atmospheric CO2 concentrations.

    Directory of Open Access Journals (Sweden)

    Amy M Trowbridge

    Full Text Available Biogenically released isoprene plays important roles in both tropospheric photochemistry and plant metabolism. We performed a (13CO(2-labeling study using proton-transfer-reaction mass spectrometry (PTR-MS to examine the kinetics of recently assimilated photosynthate into isoprene emitted from poplar (Populus × canescens trees grown and measured at different atmospheric CO(2 concentrations. This is the first study to explicitly consider the effects of altered atmospheric CO(2 concentration on carbon partitioning to isoprene biosynthesis. We studied changes in the proportion of labeled carbon as a function of time in two mass fragments, M41(+, which represents, in part, substrate derived from pyruvate, and M69(+, which represents the whole unlabeled isoprene molecule. We observed a trend of slower (13C incorporation into isoprene carbon derived from pyruvate, consistent with the previously hypothesized origin of chloroplastic pyruvate from cytosolic phosphenolpyruvate (PEP. Trees grown under sub-ambient CO(2 (190 ppmv had rates of isoprene emission and rates of labeling of M41(+ and M69(+ that were nearly twice those observed in trees grown under elevated CO(2 (590 ppmv. However, they also demonstrated the lowest proportion of completely labeled isoprene molecules. These results suggest that under reduced atmospheric CO(2 availability, more carbon from stored/older carbon sources is involved in isoprene biosynthesis, and this carbon most likely enters the isoprene biosynthesis pathway through the pyruvate substrate. We offer direct evidence that extra-chloroplastic rather than chloroplastic carbon sources are mobilized to increase the availability of pyruvate required to up-regulate the isoprene biosynthesis pathway when trees are grown under sub-ambient CO(2.

  5. Histone Acetylation Modifications Affect Tissue-Dependent Expression of Poplar Homologs of C4 Photosynthetic Enzyme Genes

    Directory of Open Access Journals (Sweden)

    Yuan Li

    2017-06-01

    Full Text Available Histone modifications play important roles in regulating the expression of C4 photosynthetic genes. Given that all enzymes required for the C4 photosynthesis pathway are present in C3 plants, it has been hypothesized that this expression regulatory mechanism has been conserved. However, the relationship between histone modification and the expression of homologs of C4 photosynthetic enzyme genes has not been well determined in C3 plants. In the present study, we cloned nine hybrid poplar (Populus simonii × Populus nigra homologs of maize (Zea mays C4 photosynthetic enzyme genes, carbonic anhydrase (CA, pyruvate orthophosphate dikinase (PPDK, phosphoenolpyruvate carboxykinase (PCK, and phosphoenolpyruvate carboxylase (PEPC, and investigated the correlation between the expression levels of these genes and the levels of promoter histone acetylation modifications in four vegetative tissues. We found that poplar homologs of C4 homologous genes had tissue-dependent expression patterns that were mostly well-correlated with the level of histone acetylation modification (H3K9ac and H4K5ac determined by chromatin immunoprecipitation assays. Treatment with the histone deacetylase inhibitor trichostatin A further confirmed the role of histone acetylation in the regulation of the nine target genes. Collectively, these results suggest that both H3K9ac and H4K5ac positively regulate the tissue-dependent expression pattern of the PsnCAs, PsnPPDKs, PsnPCKs, and PsnPEPCs genes and that this regulatory mechanism seems to be conserved among the C3 and C4 species. Our findings provide new insight that will aid efforts to modify the expression pattern of these homologs of C4 genes to engineer C4 plants from C3 plants.

  6. Ozone uptake (flux) as it relates to ozone-induced foliar symptoms of Prunus serotina and Populus maximowizii x trichocarpa

    International Nuclear Information System (INIS)

    Orendovici-Best, T.; Skelly, J.M.; Davis, D.D.; Ferdinand, J.A.; Savage, J.E.; Stevenson, R.E.

    2008-01-01

    Field studies were conducted during 2003 and 2004 from early June to the end of August, at 20 sites of lower or higher elevation within north-central Pennsylvania, using seedlings of black cherry (Prunus serotina, Ehrh.) and ramets of hybrid poplar (Populus maximowizii x trichocarpa). A linear model was developed to estimate the influence of local environmental conditions on stomatal conductance. The most significant factors explaining stomatal variance were tree species, air temperature, leaf vapor pressure deficit, elevation, and time of day. Overall, environmental factors explained less than 35% of the variation in stomatal conductance. Ozone did not affect gas exchange rates in either poplar or cherry. Ozone-induced foliar injury was positively correlated with cumulative ozone exposures, expressed as SUM40. Overall, the amount of foliar injury was better correlated to a flux-based approach rather than to an exposure-based approach. More severe foliar injuries were observed on plants growing at higher elevations. - Within heterogeneous environments, ozone flux does not completely explain the variation observed in ozone-induced visible injury

  7. Clone-Specific Response in Leaf Nitrate Reductase Activity among Unrelated Hybrid Poplars in relation to Soil Nitrate Availability

    Directory of Open Access Journals (Sweden)

    Julien Fortier

    2012-01-01

    Full Text Available In this field study, we used in vivo NRA activity in hybrid poplar leaves as an indicator of NO3- assimilation for five unrelated hybrid poplar clones. We also examined if leaf NRA of these clones is influenced to the same extent by different levels of soil NO3- availability in two riparian agroforestry systems located in pastures. Leaf NRA differences of more than one order of magnitude were observed between the clones, clearly showing their different abilities to reduce NO3- in leaves. Clone DxN-3570, a P. deltoides x P. nigra hybrid (Aigeiros intrasectional hybrid, always had the highest leaf NRA during the field assays. This clone was also the only one to increase its leaf NRA with increasing NO3- soil availability, which resulted in a significant Site x Clone interaction and a positive relationship between soil NO3- concentration and NRA. All of the four other clones studied had one or both parental species from the Tacamahaca section. They had relatively low leaf NRA and they did not increase their leaf NRA when grown on the NO3- rich site. These results provide evidence that NO3- assimilation in leaves varies widely among hybrid poplars of different parentages, suggesting potential preferences for N forms.

  8. Water stress mitigates the negative effects of ozone on photosynthesis and biomass in poplar plants.

    Science.gov (United States)

    Gao, Feng; Catalayud, Vicent; Paoletti, Elena; Hoshika, Yasutomo; Feng, Zhaozhong

    2017-11-01

    Tropospheric ozone (O 3 ) pollution frequently overlaps with drought episodes but the combined effects are not yet understood. We investigated the physiological and biomass responses of an O 3 sensitive hybrid poplar clone ('546') under three O 3 levels (charcoal-filtered ambient air, non-filtered ambient air (NF), and NF plus 40 ppb) and two watering regimes (well-watered (WW) and reduced watering (RW), i.e. 40% irrigation) for one growing season. Water stress increased chlorophyll and carotenoid contents, protecting leaves from pigment degradation by O 3 . Impairment of photosynthesis by O 3 was also reduced by stomatal closure due to water stress, which preserved light-saturated CO 2 assimilation rate, and the maximum carboxylation efficiency. Water stress increased water use efficiency of the leaves while O 3 decreased it, showing significant interactions. Effects were more evident in older leaves than in younger leaves. Water stress reduced biomass production, but the negative effects of O 3 were less in RW than in WW for total biomass per plant. A stomatal O 3 flux-based dose-response relationship was parameterized considering water stress effects, which explained biomass losses much better than a concentration-based approach. The O 3 critical level of Phytotoxic Ozone Dose over a threshold of 7 nmol O 3 .m -2 .s -1 (POD 7 ) for a 4% biomass loss in this poplar clone under different water regimes was 4.1 mmol m -2 . Our results suggest that current O 3 levels in most parts of China threaten poplar growth and that interaction with water availability is a key factor for O 3 risk assessment. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Production physiology and morphology of Populus species and their hybrids grown under short rotation. III. Seasonal carbon allocation patterns from branches

    Energy Technology Data Exchange (ETDEWEB)

    Scarascia-Mugnozza, G.E.; Hinckley, T.M.; Stettler, R.F. [Washington Univ., College of Forest Resources, Seattle, WA (United States)

    1999-09-01

    A study was carried out to compare highly productive cones, in the Pacific Northwest, in terms of contrasting growth and morphology. The objective of the study was to determine seasonal differences in carbon allocation patterns among 1- and 2-year old trees of Populus deltoides Bartr, and 2 of their interspecific hybrids. The study examined if there are different patterns of carbon allocation associated with the more productive poplar clones, how these patterns vary over the course of the growing season and from the first and the second year, if sylleptic branches vary from proleptic branches in their carbon allocation patterns, if there are the translocation patterns within branches and the degree of branch autonomy that exists with sylleptic and proleptic branches and if these patterns vary during the growing season. Previous findings on general patterns of carbon allocation in poplar clones were confirmed, and new dimensions were introduced regarding differences among branch types and clones. In the first year, carbon export from sylleptic branches increased over the growing season, and they export primarily toward the lower stem and roots. In the second year, important differences in translocation efficiency occurred among branch types with the sylleptic branches contributing more than proleptic branches, on a per unit mass basis, to the growth of the tree. Transport patterns, within branches and among branches of different order, were similar to those in the main stem, with phenology playing an important role in controlling the sink activity of the apical portion of the growing axis. Exchange of photosynthates between adjacent branches of the same order or between branches and main stem leaves are minimal, supporting an hypothesis of branch autonomy. 29 refs., 5 tabs., 4 figs.

  10. Chemical Profiles of Wood Components of Poplar Clones for Their Energy Utilization

    Directory of Open Access Journals (Sweden)

    Danica Kačíková

    2012-12-01

    Full Text Available Selected and tested poplar clones are very suitable biomass resources for various applications such as biofuels, the pulp and paper industry as well as chemicals production. In this study, we determined the content of lignin, cellulose, holocellulose, and extractives, syringyl to guaiacyl (S/G ratio in lignin, and also calculated higher heating values (HHV among eight examined clones of Populus grown on three different experimental sites. The highest lignin content for all the examined sites was determined in ‘I-214’ and ‘Baka 5’ clones, whereas the highest content of extractives was found in ‘Villafranca’ and ‘Baka 5’ clones. The highest S/G ratio for all the examined sites was determined in ‘Villafranca’ and ‘Agathe F’ clones. The chemical profiles of main wood components, extractives, and the S/G ratio in lignin were also influenced by both the experimental site and the clone × site interaction. Higher heating values, derived from calculations based on the contents of lignin and extractives (or lignin only, were in close agreement with the previously published data. The highest heating values were found for ‘Baka 5’ and ‘I-214’ clones. The optimal method of poplar biomass utilization can be chosen on basis of the lignocellulosics chemical composition and the S/G ratio in lignin.

  11. Development of Multiplexed Marker Sets to Identify the Most Relevant Poplar Species for Breeding

    Directory of Open Access Journals (Sweden)

    Hilke Schroeder

    2017-12-01

    Full Text Available Within the genus Populus, about 30 species are classified into six sections, of which some are cross-compatible. Besides naturally occurring hybrids, huge breeding programs have led to a high number of artificially produced hybrids, for which the determination of genetically involved species by morphological characteristics is often difficult. This necessitates the use of molecular markers for the identification of both maternal as well as paternal species, and in the case of complex hybrids, the genealogy. For this reason, we developed new chloroplast and nuclear markers for the differentiation of up to 19 poplar species, with one to 32 individuals per species regularly used in breeding programs based on already known barcoding, other chloroplast regions, and nuclear genes of interest. We developed methods to identify species by either species-specific nucleotide variations or, when no initial information for the species was given, by using a set of markers either in a procedure of exclusion or in a multiplexed marker set. The developed markers can all be used with low-cost equipment, and some can additionally be applied using a genetic analyzer. We combined these markers in multiplexes for a very fast and easy-to-use application for the identification of poplar species and their hybrids.

  12. RNA sequencing of Populus x canadensis roots identifies key molecular mechanisms underlying physiological adaption to excess zinc.

    Directory of Open Access Journals (Sweden)

    Andrea Ariani

    Full Text Available Populus x canadensis clone I-214 exhibits a general indicator phenotype in response to excess Zn, and a higher metal uptake in roots than in shoots with a reduced translocation to aerial parts under hydroponic conditions. This physiological adaptation seems mainly regulated by roots, although the molecular mechanisms that underlie these processes are still poorly understood. Here, differential expression analysis using RNA-sequencing technology was used to identify the molecular mechanisms involved in the response to excess Zn in root. In order to maximize specificity of detection of differentially expressed (DE genes, we consider the intersection of genes identified by three distinct statistical approaches (61 up- and 19 down-regulated and validate them by RT-qPCR, yielding an agreement of 93% between the two experimental techniques. Gene Ontology (GO terms related to oxidation-reduction processes, transport and cellular iron ion homeostasis were enriched among DE genes, highlighting the importance of metal homeostasis in adaptation to excess Zn by P. x canadensis clone I-214. We identified the up-regulation of two Populus metal transporters (ZIP2 and NRAMP1 probably involved in metal uptake, and the down-regulation of a NAS4 gene involved in metal translocation. We identified also four Fe-homeostasis transcription factors (two bHLH38 genes, FIT and BTS that were differentially expressed, probably for reducing Zn-induced Fe-deficiency. In particular, we suggest that the down-regulation of FIT transcription factor could be a mechanism to cope with Zn-induced Fe-deficiency in Populus. These results provide insight into the molecular mechanisms involved in adaption to excess Zn in Populus spp., but could also constitute a starting point for the identification and characterization of molecular markers or biotechnological targets for possible improvement of phytoremediation performances of poplar trees.

  13. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance.

    Science.gov (United States)

    Li, Yiliang; Su, Xiaohua; Zhang, Bingyu; Huang, Qinjun; Zhang, Xianghua; Huang, Rongfeng

    2009-02-01

    The stress resistance of plants can be enhanced by regulating the expression of multiple downstream genes associated with stress resistance. We used the Agrobacterium method to transfer the tomato jasmonic ethylene responsive factors (JERFs) gene that encodes the ethylene response factor (ERF) like transcription factor to the genome of a hybrid poplar (Populus alba x Populus berolinensis). Eighteen resistant plants were obtained, of which 13 were identified by polymerase chain reaction (PCR), reverse transcriptase PCR and Southern blot analyses as having incorporated the JERFs gene and able to express it at the transcriptional level. Salinity tests were conducted in a greenhouse with 0, 100, 200 and 300 mM NaCl. In the absence of NaCl, the transgenic plants were significantly taller than the control plants, but no statistically significant differences in the concentrations of proline and chlorophyll were observed. With increasing salinity, the extent of damage was significantly less in transgenic plants than that in control plants, and the reductions in height, basal diameter and biomass were less in transgenic plants than those in control plants. At 200 and 300 mM NaCl concentrations, transgenic plants were 128.9% and 98.8% taller, respectively, and had 199.8% and 113.0% more dry biomass, respectively, than control plants. The saline-induced reduction in leaf water content and increase in root/crown ratio were less in transgenic plants than in control plants. Foliar proline concentration increased more in response to salt treatment in transgenic plants than in control plants. Foliar Na(+) concentration was higher in transgenic plants than in control plants. In the coastal area in Panjin of Liaoning where the total soil salt concentration is 0.3%, a salt tolerance trial of transgenic plants indicated that 3-year-old transgenic plants were 14.5% and 33.6% taller than the control plants at two field sites. The transgenic plants at the two field sites were growing

  14. Differential expression of poplar sucrose nonfermenting1-related protein kinase 2 genes in response to abiotic stress and abscisic acid.

    Science.gov (United States)

    Yu, Xiang; Takebayashi, Arika; Demura, Taku; Ohtani, Misato

    2017-09-01

    Knowledge on the responses of woody plants to abiotic stress can inform strategies to breed improved tree varieties and to manage tree species for environmental conservation and the production of lignocellulosic biomass. In this study, we examined the expression patterns of poplar (Populus trichocarpa) genes encoding members of the sucrose nonfermenting1-related protein kinase 2 (SnRK2) family, which are core components of the abiotic stress response. The P. trichocarpa genome contains twelve SnRK2 genes (PtSnRK2.1- PtSnRK2.12) that can be divided into three subclasses (I-III) based on the structures of their encoded kinase domains. We found that PtSnRK2s are differentially expressed in various organs. In MS medium-grown plants, all of the PtSnRK2 genes were significantly upregulated in response to abscisic acid (ABA) treatment, whereas osmotic and salt stress treatments induced only some (four and seven, respectively) of the PtSnRK2 genes. By contrast, soil-grown plants showed increased expression of most PtSnRK2 genes under drought and salt treatments, but not under ABA treatment. In soil-grown plants, drought stress induced SnRK2 subclass II genes in all tested organs (leaves, stems, and roots), whereas subclass III genes tended to be upregulated in leaves only. These results suggest that the PtSnRK2 genes are involved in abiotic stress responses, are at least partially activated by ABA, and show organ-specific responses.

  15. Genome-wide analysis of eukaryote thaumatin-like proteins (TLPs with an emphasis on poplar

    Directory of Open Access Journals (Sweden)

    Duplessis Sébastien

    2011-02-01

    Full Text Available Abstract Background Plant inducible immunity includes the accumulation of a set of defense proteins during infection called pathogenesis-related (PR proteins, which are grouped into families termed PR-1 to PR-17. The PR-5 family is composed of thaumatin-like proteins (TLPs, which are responsive to biotic and abiotic stress and are widely studied in plants. TLPs were also recently discovered in fungi and animals. In the poplar genome, TLPs are over-represented compared with annual species and their transcripts strongly accumulate during stress conditions. Results Our analysis of the poplar TLP family suggests that the expansion of this gene family was followed by diversification, as differences in expression patterns and predicted properties correlate with phylogeny. In particular, we identified a clade of poplar TLPs that cluster to a single 350 kb locus of chromosome I and that are up-regulated by poplar leaf rust infection. A wider phylogenetic analysis of eukaryote TLPs - including plant, animal and fungi sequences - shows that TLP gene content and diversity increased markedly during land plant evolution. Mapping the reported functions of characterized TLPs to the eukaryote phylogenetic tree showed that antifungal or glycan-lytic properties are widespread across eukaryote phylogeny, suggesting that these properties are shared by most TLPs and are likely associated with the presence of a conserved acidic cleft in their 3D structure. Also, we established an exhaustive catalog of TLPs with atypical architectures such as small-TLPs, TLP-kinases and small-TLP-kinases, which have potentially developed alternative functions (such as putative receptor kinases for pathogen sensing and signaling. Conclusion Our study, based on the most recent plant genome sequences, provides evidence for TLP gene family diversification during land plant evolution. We have shown that the diverse functions described for TLPs are not restricted to specific clades but seem

  16. Phenolic profiling of caffeic acid O-methyltransferase-deficient poplar reveals novel benzodioxane oligolignols.

    Science.gov (United States)

    Morreel, Kris; Ralph, John; Lu, Fachuang; Goeminne, Geert; Busson, Roger; Herdewijn, Piet; Goeman, Jan L; Van der Eycken, Johan; Boerjan, Wout; Messens, Eric

    2004-12-01

    Caffeic acid O-methyltransferase (COMT) catalyzes preferentially the methylation of 5-hydroxyconiferaldehyde to sinapaldehyde in monolignol biosynthesis. Here, we have compared HPLC profiles of the methanol-soluble phenolics fraction of xylem tissue from COMT-deficient and control poplars (Populus spp.), using statistical analysis of the peak heights. COMT down-regulation results in significant concentration differences for 25 of the 91 analyzed peaks. Eight peaks were exclusively detected in COMT-deficient poplar, of which four could be purified for further identification using mass spectrometry/mass spectrometry, nuclear magnetic resonance, and spiking of synthesized reference compounds. These new compounds were derived from 5-hydroxyconiferyl alcohol or 5-hydroxyconiferaldehyde and were characterized by benzodioxane moieties, a structural type that is also increased in the lignins of COMT-deficient plants. One of these four benzodioxanes amounted to the most abundant oligolignol in the HPLC profile. Furthermore, all of the differentially accumulating oligolignols involving sinapyl units were either reduced in abundance or undetectable. The concentration levels of all identified oligolignols were in agreement with the relative supply of monolignols and with their chemical coupling propensities, which supports the random coupling hypothesis. Chiral HPLC analysis of the most abundant benzodioxane dimer revealed the presence of both enantiomers in equal amounts, indicating that they were formed by radical coupling reactions under simple chemical control rather than guided by dirigent proteins.

  17. Effect of different concentrations of fluoride on the chloroplast pigments of poplar, elder and lilac occurring in the field

    Energy Technology Data Exchange (ETDEWEB)

    Gronebaum-Turck, K; Mathe, P

    1975-01-01

    The concentrations of the chlorophylls a and b and of the carotinoids in leaves of Populus canadensis Moe., Sambucus nigra L., and Syringa vulgaris were measured. When affected by fluoride-ions the leaves of P. canadensis show significant loss of the three pigments. The two other species seem to be more resistant. 7 references.

  18. Biogenic volatile organic compound and respiratory CO2 emissions after 13C-labeling: online tracing of C translocation dynamics in poplar plants.

    Science.gov (United States)

    Ghirardo, Andrea; Gutknecht, Jessica; Zimmer, Ina; Brüggemann, Nicolas; Schnitzler, Jörg-Peter

    2011-02-28

    Globally plants are the primary sink of atmospheric CO(2), but are also the major contributor of a large spectrum of atmospheric reactive hydrocarbons such as terpenes (e.g. isoprene) and other biogenic volatile organic compounds (BVOC). The prediction of plant carbon (C) uptake and atmospheric oxidation capacity are crucial to define the trajectory and consequences of global environmental changes. To achieve this, the biosynthesis of BVOC and the dynamics of C allocation and translocation in both plants and ecosystems are important. We combined tunable diode laser absorption spectrometry (TDLAS) and proton transfer reaction mass spectrometry (PTR-MS) for studying isoprene biosynthesis and following C fluxes within grey poplar (Populus x canescens) saplings. This was achieved by feeding either (13)CO(2) to leaves or (13)C-glucose to shoots via xylem uptake. The translocation of (13)CO(2) from the source to other plant parts could be traced by (13)C-labeled isoprene and respiratory (13)CO(2) emission. In intact plants, assimilated (13)CO(2) was rapidly translocated via the phloem to the roots within 1 hour, with an average phloem transport velocity of 20.3±2.5 cm h(-1). (13)C label was stored in the roots and partially reallocated to the plants' apical part one day after labeling, particularly in the absence of photosynthesis. The daily C loss as BVOC ranged between 1.6% in mature leaves and 7.0% in young leaves. Non-isoprene BVOC accounted under light conditions for half of the BVOC C loss in young leaves and one-third in mature leaves. The C loss as isoprene originated mainly (76-78%) from recently fixed CO(2), to a minor extent from xylem-transported sugars (7-11%) and from photosynthetic intermediates with slower turnover rates (8-11%). We quantified the plants' C loss as respiratory CO(2) and BVOC emissions, allowing in tandem with metabolic analysis to deepen our understanding of ecosystem C flux.

  19. Differential transcriptome analysis between Populus and its synthesized allotriploids driven by second-division restitution.

    Science.gov (United States)

    Cheng, Shiping; Huang, Zhen; Li, Yun; Liao, Ting; Suo, Yujing; Zhang, Pingdong; Wang, Jun; Kang, Xiangyang

    2015-12-01

    In this report, we compared transcriptomic differences between a synthetic Populus section Tacamahaca triploid driven by second-division restitution and its parents using a high-throughput RNA-seq method. A total of 4,080 genes were differentially expressed between the high-growth vigor allotriploids (SDR-H) and their parents, and 719 genes were non-additively expressed in SDR-H. Differences in gene expression between the allotriploid and male parent were more significant than those between the allotriploid and female parent, which may be caused by maternal effects. We observed 3,559 differentially expressed genes (DEGs) between the SDR-H and male parent. Notably, the genes were mainly involved in metabolic process, cell proliferation, DNA methylation, cell division, and meristem and developmental growth. Among the 1,056 DEGs between SDR-H and female parent, many genes were associated with metabolic process and carbon utilization. In addition, 1,789 DEGs between high- and low-growth vigor allotriploid were mainly associated with metabolic process, auxin poplar transport, and regulation of meristem growth. Our results indicated that the higher poplar ploidy level can generate extensive transcriptomic diversity compared with its parents. Overall, these results increased our understanding of the driving force for phenotypic variation and adaptation in allopolyploids driven by second-division restitution. © 2015 Institute of Botany, Chinese Academy of Sciences.

  20. Environmental benefits of poplar culture

    Science.gov (United States)

    J. G. Isebrands; D.F. Karnosky.

    2001-01-01

    Poplars have important values above and beyond wood or fiber production. Poplars have been planted for environmental purposes for centuries. There are reports of poplar plantings dating back to early Chinese history and biblical times in the Middle East, When immigrants came to North America in the 18th and 19th century, they often brought cuttings of their favorite...

  1. Evaluation of Appropriate Reference Genes for Reverse Transcription-Quantitative PCR Studies in Different Tissues of a Desert Poplar via Comparision of Different Algorithms

    Directory of Open Access Journals (Sweden)

    Hou-Ling Wang

    2015-08-01

    Full Text Available Despite the unshakable status of reverse transcription-quantitative PCR in gene expression analysis, it has certain disadvantages, including that the results are highly dependent on the reference genes selected for data normalization. Since inappropriate endogenous control genes will lead to inaccurate target gene expression profiles, the validation of suitable internal reference genes is essential. Given the increasing interest in functional genes and genomics of Populus euphratica, a desert poplar showing extraordinary adaptation to salt stress, we evaluated the expression stability of ten candidate reference genes in P. euphratica roots, stems, and leaves under salt stress conditions. We used five algorithms, namely, ΔCt, NormFinder, geNorm, GrayNorm, and a rank aggregation method (RankAggreg to identify suitable normalizers. To support the suitability of the identified reference genes and to compare the relative merits of these different algorithms, we analyzed and compared the relative expression levels of nine P. euphratica functional genes in different tissues. Our results indicate that a combination of multiple reference genes recommended by GrayNorm algorithm (e.g., a combination of Actin, EF1α, GAPDH, RP, UBQ in root should be used instead of a single reference gene. These results are valuable for research of gene identification in different P. euphratica tissues.

  2. Phenolic Profiling of Caffeic Acid O-Methyltransferase-Deficient Poplar Reveals Novel Benzodioxane Oligolignols1

    Science.gov (United States)

    Morreel, Kris; Ralph, John; Lu, Fachuang; Goeminne, Geert; Busson, Roger; Herdewijn, Piet; Goeman, Jan L.; Van der Eycken, Johan; Boerjan, Wout; Messens, Eric

    2004-01-01

    Caffeic acid O-methyltransferase (COMT) catalyzes preferentially the methylation of 5-hydroxyconiferaldehyde to sinapaldehyde in monolignol biosynthesis. Here, we have compared HPLC profiles of the methanol-soluble phenolics fraction of xylem tissue from COMT-deficient and control poplars (Populus spp.), using statistical analysis of the peak heights. COMT down-regulation results in significant concentration differences for 25 of the 91 analyzed peaks. Eight peaks were exclusively detected in COMT-deficient poplar, of which four could be purified for further identification using mass spectrometry/mass spectrometry, nuclear magnetic resonance, and spiking of synthesized reference compounds. These new compounds were derived from 5-hydroxyconiferyl alcohol or 5-hydroxyconiferaldehyde and were characterized by benzodioxane moieties, a structural type that is also increased in the lignins of COMT-deficient plants. One of these four benzodioxanes amounted to the most abundant oligolignol in the HPLC profile. Furthermore, all of the differentially accumulating oligolignols involving sinapyl units were either reduced in abundance or undetectable. The concentration levels of all identified oligolignols were in agreement with the relative supply of monolignols and with their chemical coupling propensities, which supports the random coupling hypothesis. Chiral HPLC analysis of the most abundant benzodioxane dimer revealed the presence of both enantiomers in equal amounts, indicating that they were formed by radical coupling reactions under simple chemical control rather than guided by dirigent proteins. PMID:15563622

  3. Overexpression of Populus trichocarpa CYP85A3 promotes growth and biomass production in transgenic trees.

    Science.gov (United States)

    Jin, Yan-Li; Tang, Ren-Jie; Wang, Hai-Hai; Jiang, Chun-Mei; Bao, Yan; Yang, Yang; Liang, Mei-Xia; Sun, Zhen-Cang; Kong, Fan-Jing; Li, Bei; Zhang, Hong-Xia

    2017-10-01

    Brassinosteroids (BRs) are essential hormones that play crucial roles in plant growth, reproduction and response to abiotic and biotic stress. In Arabidopsis, AtCYP85A2 works as a bifunctional cytochrome P450 monooxygenase to catalyse the conversion of castasterone to brassinolide, a final rate-limiting step in the BR-biosynthetic pathway. Here, we report the functional characterizations of PtCYP85A3, one of the three AtCYP85A2 homologous genes from Populus trichocarpa. PtCYP85A3 shares the highest similarity with AtCYP85A2 and can rescue the retarded-growth phenotype of the Arabidopsis cyp85a2-2 and tomato d x mutants. Constitutive expression of PtCYP85A3, driven by the cauliflower mosaic virus 35S promoter, increased the endogenous BR levels and significantly promoted the growth and biomass production in both transgenic tomato and poplar. Compared to the wild type, plant height, shoot fresh weight and fruit yield increased 50%, 56% and 43%, respectively, in transgenic tomato plants. Similarly, plant height and stem diameter increased 15% and 25%, respectively, in transgenic poplar plants. Further study revealed that overexpression of PtCYP85A3 enhanced xylem formation without affecting the composition of cellulose and lignin, as well as the cell wall thickness in transgenic poplar. Our finding suggests that PtCYP85A3 could be used as a potential candidate gene for engineering fast-growing trees with improved wood production. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  4. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars

    International Nuclear Information System (INIS)

    Santos Utmazian, Maria Noel dos; Wieshammer, Gerlinde; Vega, Rosa; Wenzel, Walter W.

    2007-01-01

    We screened 20 different clones of willow and poplar species in hydroponic experiments for their metal resistance and accumulation properties. Plants were exposed for 4 weeks either to single additions of (μM) 4.45 Cd or 76.5 Zn, or a metal cocktail containing the same amounts of Cd and Zn along with 7.87 Cu and 24.1 Pb. Plant biomass, metal tolerance and metal accumulation pattern in roots and leaves varied greatly between clones. The leaf:root ratio of metal concentrations was clearly underestimated compared to soil experiments. The largest metal concentrations in leaves were detected in Salix dasyclados (315 mg Cd kg -1 d.m.) and a Salix smithiana clone (3180 mg Zn kg -1 d.m.) but these species showed low metal tolerance. In spite of smaller Cd and Zn concentrations, the metal-tolerant clones Salix matsudana, Salix fragilis-1, and Salix purpurea-1 hold promise for phytoextraction as they produced large biomass and metal contents in leaves. - Hydroponically grown willows and poplar clones accumulate up to (mg kg -1 d.w.) 315 Cd and 3180 Zn in leaves

  5. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars

    Energy Technology Data Exchange (ETDEWEB)

    Santos Utmazian, Maria Noel dos [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria); Wieshammer, Gerlinde [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria); Vega, Rosa [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria); Wenzel, Walter W. [Department of Forest- and Soil Sciences, University of Natural Resources and Applied Life Sciences, Vienna, Peter-Jordan-Strasse 82, A-1190 Vienna (Austria)]. E-mail: walter.wenzel@boku.ac.at

    2007-07-15

    We screened 20 different clones of willow and poplar species in hydroponic experiments for their metal resistance and accumulation properties. Plants were exposed for 4 weeks either to single additions of ({mu}M) 4.45 Cd or 76.5 Zn, or a metal cocktail containing the same amounts of Cd and Zn along with 7.87 Cu and 24.1 Pb. Plant biomass, metal tolerance and metal accumulation pattern in roots and leaves varied greatly between clones. The leaf:root ratio of metal concentrations was clearly underestimated compared to soil experiments. The largest metal concentrations in leaves were detected in Salix dasyclados (315 mg Cd kg{sup -1} d.m.) and a Salix smithiana clone (3180 mg Zn kg{sup -1} d.m.) but these species showed low metal tolerance. In spite of smaller Cd and Zn concentrations, the metal-tolerant clones Salix matsudana, Salix fragilis-1, and Salix purpurea-1 hold promise for phytoextraction as they produced large biomass and metal contents in leaves. - Hydroponically grown willows and poplar clones accumulate up to (mg kg{sup -1} d.w.) 315 Cd and 3180 Zn in leaves.

  6. Energy dynamics in Populus deltoides G3 Marsh agroforestry systems in eastern India

    International Nuclear Information System (INIS)

    Chaturvedi, O.P.; Das, D.K.

    2005-01-01

    Energy efficiency of Populus deltoides G 3 Marsh agroforestry of a 3-year-old system with intercropping of maize-wheat in crop I and pigeonpea in crop II and of a 9-year-old system with turmeric, a shade loving crop was studied at Pusa, Bihar in eastern India. Energy fixation, storage, net allocation in agronomic yield and energy released and exit from the 9-year-old system was 1.53, 4.30, 0.43 and 3.37 times in crop I and 1.67, 4.60, 0.53 and 3.30 times in crop II of the 3-year-old agroforestry system. The energy conservation efficiency in the 9-year-old system was higher (1.91%) as compared to crop I (1.24%) and crop II (1.15%) of the 3-year-old agroforestry system. The energy accumulation ratio in the 9-year-old system was 2.82 and 2.77 times higher in crop I and crop II, respectively, of the 3-year-old agroforestry system. The 3-year-old agroforestry system showed lower energy accumulation ratio resulting from less energy accumulation in perennial turnover in the from of leaf of tree and agricultural crops. The crop II system of the 3-year-old poplar agroforestry was more efficient system of management due to higher quanta of energy and higher cash return but one has to opt for shade loving intercrop turmeric with increase in age of the poplar plantation and more canopy closure

  7. EFFECTS OF IMPREGNATION WITH STYRENE AND NANO-ZINC OXIDE ON FIRE-RETARDING, PHYSICAL, AND MECHANICAL PROPERTIES OF POPLAR WOOD

    Directory of Open Access Journals (Sweden)

    Siroos Habibzade

    2016-12-01

    Full Text Available Nanoparticles have been vastly applied in wood polymer composites (WPCs in the recent years to improve some of the drawbacks of solid wood species. In the present study, the effects of ZnO nanoparticles on fire retarding, physical, and mechanical properties of polymerized poplar wood were investigated. Poplar specimens were impregnated with styrene monomer, containing four different contents of nano-zinc oxide (ZnO (0, 0.5, 1 and 1.5%, based on the dry weight of monomer. Results of the scanning electron microscopy (SEM showed homogeneous dispersion of ZnO nanoparticles in the WPC matrix. Nano-zinc oxide improved physical properties such as dimensional stability and water absorption. Moreover, mechanical properties increased in comparison to the control specimens. The impregnation process also significantly improved some of the fire-retarding properties, including the ignition time; however, the flammability nature of styrene aggravated some others, such as carbonized area. It was concluded that, although most of the properties were improved, the final application of WPC should be taken in to consideration before making decision on whether or not to impregnate populus wood with styrene.

  8. Exploring the Role of Plant Genetics to Enhance Soil Carbon Sequestration in Hybrid Poplar Plantations

    Science.gov (United States)

    Wullschleger, S. D.; Garten, C. T.; Classen, A. T.

    2008-12-01

    Atmospheric CO2 concentrations have increased in recent decades and are projected to increase even further during the coming century. These projections have prompted scientists and policy-makers to consider how plants and soils can be used to stabilize CO2 concentrations. Although storing carbon in terrestrial ecosystems represents an attractive near-term option for mitigating rising atmospheric CO2 concentrations, enhancing the sequestration potential of managed systems will require advancements in understanding the fundamental mechanisms that control rates of carbon transfer and turnover in plants and soils. To address this challenge, a mathematical model was constructed to evaluate how changes in particular plant traits and management practices could affect soil carbon storage beneath hybrid poplar (Populus) plantations. The model was built from four sub-models that describe aboveground biomass, root biomass, soil carbon dynamics, and soil nitrogen transformations for trees growing throughout a user-defined rotation. Simulations could be run over one or multiple rotations. A sensitivity analysis of the model indicated changes in soil carbon storage were affected by variables that could be linked to hybrid poplar traits like rates of aboveground production, partitioning of carbon to coarse and fine roots, and rates of root decomposition. A higher ratio of belowground to aboveground production was especially important and correlated directly with increased soil carbon storage. Faster decomposition rates for coarse and fine dead roots resulted in a greater loss of carbon to the atmosphere as CO2 and less residual organic carbon for transfer to the fast soil carbon pool. Hence, changes in root chemistry that prolonged dead root decomposition rates, a trait that is under potential genetic control, were predicted to increase soil carbon storage via higher soil carbon inputs. Nitrogen limitation of both aboveground biomass production and soil carbon sequestration was

  9. Influence of brick air scrubber by-product on growth and development of corn and hybrid poplar.

    Science.gov (United States)

    Thomas, Carla N; Bauerle, William L; Owino, Tom O; Chastain, John P; Klaine, Stephen J

    2007-03-01

    Studies were conducted to determine the effects of spent reagent from air pollution control scrubbers used at a brick manufacturing facility on emergence, growth, and physiological responses of corn and hybrid poplar plants. Scrubber by-product was obtained from General Shale Brick, Louisville, KY. Potting substrate was weighed and quantities of scrubber by-product were added to the substrate to obtain treatments of 0%, 6.25%, 12.5%, 25%, 50%, 75%, and 100% scrubber by-product (w:w) for the corn study. Each treatment mix was potted into nine replicate polyethylene pots and four corn seeds were sown per pot. The pots were randomized in a greenhouse at Clemson University and the number of seedlings emerging from each treatment, dark-adapted leaf chlorophyll a fluorescence, and shoot heights were measured at the end of a 21-day growth period. Then, dry shoot biomass was determined for plants from each treatment and plant tissues were analyzed for selected constituents. For the poplar study, nine-inch cuttings of hybrid poplar clone 15-29 (Populus trichocarpa x P. deltoides) and clone OP367 (P. deltoides x P. nigra) were planted in treatments of scrubber by-product-potting soil mixes of 0% , 5% , 10% , and 25% w:w. Leaf chlorophyll a fluorescence was measured over six weeks and cumulative leaf area, dry biomass, and nutrient content of tissues were determined upon harvest. Results of these studies indicate that percent seedling emergence for corn plants decreased with increasing scrubber by-product application rates. Application rates up to 12.5% scrubber by-product w:w had no adverse effect on corn seedling emergence. Shoot elongation, biomass production, and the status of the photosynthetic apparatus of the seedlings were also not severely impaired at applications below this level. A critical value of 58.2% w:w scrubber by-product was estimated to cause 25% inhibition of seedling emergence. Biomass production, cumulative leaf area, and chlorophyll a fluorescence of

  10. Investigations on the nutrient demands of different balsam poplar clones (Populus trichocarpa Torr. et Grey) based on growth, nutrient uptake, and vapor exchange. Untersuchungen ueber die Naehrstoffansprueche verschiedener Balsam-Pappelklone (Populus trichocarpa Torr. et Grey) in Hinsicht auf das Wachstum, die Naehrstoffaufnahme und den Gaswechsel

    Energy Technology Data Exchange (ETDEWEB)

    Griese, C.

    1991-01-01

    This work tries to describe the nutrient demands of six different, very fast-growing clones of the species Populus trichocarpa Torr. Et. Grey. Relevant are the capability for taking up different nutrients, and the plants' efficiency in using these nutrients for vapour exchange of the leaves (photosynthesis, respiration in the dark, transpiration) as well as for increasing biomass. A further aim pursued with these measurements is the attempt to explain the different growth of these six popular clones. Here, field experiments have shown a gradiation of the clones' growth performance. From the first to the sixth clone, growth performance declines steadily. Should there be differences among the clones as to the physiological, biometric and phenological variables to be investigated, then this work might lead to the identification of growth-determining factors suitable for postulating of the investigated clones. (orig.).

  11. Impact of two iron(III) chelators on the iron, cadmium, lead and nickel accumulation in poplar grown under heavy metal stress in hydroponics.

    Science.gov (United States)

    Mihucz, Victor G; Csog, Árpád; Fodor, Ferenc; Tatár, Enikő; Szoboszlai, Norbert; Silaghi-Dumitrescu, Luminiţa; Záray, Gyula

    2012-04-15

    Poplar (Populus jacquemontiana var. glauca cv. Kopeczkii) was grown in hydroponics containing 10 μM Cd(II), Ni(II) or Pb(II), and Fe as Fe(III) EDTA or Fe(III) citrate in identical concentrations. The present study was designed to compare the accumulation and distribution of Fe, Cd, Ni and Pb within the different plant compartments. Generally, Fe and heavy-metal accumulation were higher by factor 2-7 and 1.6-3.3, respectively, when Fe(III) citrate was used. Iron transport towards the shoot depended on the Fe(III) chelate and, generally, on the heavy metal used. Lead was accumulated only in the root. The amounts of Fe and heavy metals accumulated by poplar were very similar to those of cucumber grown in an identical way, indicating strong Fe uptake regulation of these two Strategy I plants: a cultivar and a woody plant. The Strategy I Fe uptake mechanism (i.e. reducing Fe(III) followed by Fe(II) uptake), together with the Fe(III) chelate form in the nutrient solution had significant effects on Fe and heavy metal uptake. Poplar appears to show phytoremediation potential for Cd and Ni, as their transport towards the shoot was characterized by 51-54% and 26-48% depending on the Fe(III) supply in the nutrient solution. Copyright © 2012 Elsevier GmbH. All rights reserved.

  12. Genetic Modification of Short Rotation Poplar Biomass Feedstock for Efficient Conversion to Ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Dinus, R.J.

    2000-08-30

    The Bioenergy Feedstock Development Program, Environmental Sciences Division, Oak Ridge National Laboratory is developing poplars (Populus species and hybrids) as sources of renewable energy, i.e., ethanol. Notable increases in adaptability, volume productivity, and pest/stress resistance have been achieved via classical selection and breeding and intensified cultural practices. Significant advances have also been made in the efficiencies of harvesting and handling systems. Given these and anticipated accomplishments, program leaders are considering shifting some attention to genetically modifying feedstock physical and chemical properties, so as to improve the efficiency with which feedstocks can be converted to ethanol. This report provides an in-depth review and synthesis of opportunities for and feasibilities of genetically modifying feedstock qualities via classical selection and breeding, marker-aided selection and breeding, and genetic transformation. Information was collected by analysis of the literature, with emphasis on that published since 1995, and interviews with prominent scientists, breeders, and growers. Poplar research is well advanced, and literature is abundant. The report therefore primarily reflects advances in poplars, but data from other species, particularly other shortrotation hardwoods, are incorporated to fill gaps. An executive summary and recommendations for research, development, and technology transfer are provided immediately after the table of contents. The first major section of the report describes processes most likely to be used for conversion of poplar biomass to ethanol, the various physical and chemical properties of poplar feedstocks, and how such properties are expected to affect process efficiency. The need is stressed for improved understanding of the impact of change on both overall process and individual process step efficiencies. The second part documents advances in trait measurement instrumentation and methodology

  13. Analysis of the impact of biomechanical traits of European black Poplar on riverbank flow resistance

    Science.gov (United States)

    Battista Chirico, Giovanni; Saulino, Luigi; Pasquino, Vittorio; Villani, Paolo; Rita, Angelo; Todaro, Luigi; Saracino, Antonio

    2016-04-01

    Predicting the effects of riparian plants on river flow dynamics is fundamental for an appropriate river management. Riparian woody vegetation enhances bank cohesion and provides ecosystem services by mitigating nutrient and sediment loads to the river flow and enhancing biodiversity. However riparian trees also contribute to river flow resistance and thus can have a significant impact on flow dynamics during flood events. The flow-plant interaction mainly depends on plant morphological characters (e.g. diameter, height, canopy size, foliage density) and biomechanical properties, such as its flexural rigidity. This study aims at testing the hypothesis that the hydrodynamic behaviour of the European black Poplar (∖textit{Populus nigra} L.), a common woody riparian plant, is influenced by specific biomechanical traits developed as result of its adaptation to different river ecosystems. We examine the morphological and biomechanical properties of living stems of black Poplar sampled in two different riverine environments in Southern Italy located only a few kilometres apart. The two sample sets of living stems exhibit similar morphological traits but significantly different Young module of elasticity. We compared the drag forces that the flow would exert on these two different sets of plants for a wide range of flow velocities, by employing a numerical model that accounts for the bending behaviour of the woody plant due to the hydrodynamic load, under the hypothesis of complete submergence. A Monte Carlo approach was applied in order to account for the stochastic variability of the morphological and mechanical parameters affecting plant biomechanical behaviour. We identified a threshold value of the plant diameter, above which the two sets of European black Poplars are subjected to drag forces that differ by more than 25{∖%} on average, for flow velocities larger than 1 m/s.

  14. Identification and characterization of nuclear genes involved in photosynthesis in Populus

    Science.gov (United States)

    2014-01-01

    Background The gap between the real and potential photosynthetic rate under field conditions suggests that photosynthesis could potentially be improved. Nuclear genes provide possible targets for improving photosynthetic efficiency. Hence, genome-wide identification and characterization of the nuclear genes affecting photosynthetic traits in woody plants would provide key insights on genetic regulation of photosynthesis and identify candidate processes for improvement of photosynthesis. Results Using microarray and bulked segregant analysis strategies, we identified differentially expressed nuclear genes for photosynthesis traits in a segregating population of poplar. We identified 515 differentially expressed genes in this population (FC ≥ 2 or FC ≤ 0.5, P photosynthesis by the nuclear genome mainly involves transport, metabolism and response to stimulus functions. Conclusions This study provides new genome-scale strategies for the discovery of potential candidate genes affecting photosynthesis in Populus, and for identification of the functions of genes involved in regulation of photosynthesis. This work also suggests that improving photosynthetic efficiency under field conditions will require the consideration of multiple factors, such as stress responses. PMID:24673936

  15. Cell wall integrity, genotoxic injury and PCD dynamics in alfalfa saponin-treated white poplar cells highlight a complex link between molecule structure and activity.

    Science.gov (United States)

    Paparella, Stefania; Tava, Aldo; Avato, Pinarosa; Biazzi, Elisa; Macovei, Anca; Biggiogera, Marco; Carbonera, Daniela; Balestrazzi, Alma

    2015-03-01

    In the present work, eleven saponins and three sapogenins purified from Medicago sativa were tested for their cytotoxicity against highly proliferating white poplar (Populus alba L.) cell suspension cultures. After preliminary screening, four saponins with different structural features in terms of aglycone moieties and sugar chains (saponin 3, a bidesmoside of hederagenin; saponins 4 and 5, monodesmoside and bidesmoside of medicagenic acid respectively, and saponin 10, a bidesmoside of zanhic acid) and different cytotoxicity were selected and used for further investigation on their structure-activity relationship. Transmission Electron Microscopy (TEM) analyses provided for the first time evidence of the effects exerted by saponins on plant cell wall integrity. Exposure to saponin 3 and saponin 10 resulted into disorganization of the outer wall layer and the effect was even more pronounced in white poplar cells treated with the two medicagenic acid derivatives, saponins 4 and 5. Oxidative burst and nitric oxide accumulation were common hallmarks of the response of white poplar cells to saponins. When DNA damage accumulation and DNA repair profiles were evaluated by Single Cell Gel Electrophoresis, induction of single and double strand breaks followed by effective repair was observed within 24h. The reported data are discussed in view of the current issues dealing with saponin structure-activity relationship. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Expression patterns of WRKY genes in di-haploid Populus simonii × P. nigra in response to salinity stress revealed by quantitative real-time PCR and RNA sequencing.

    Science.gov (United States)

    Wang, Shengji; Wang, Jiying; Yao, Wenjing; Zhou, Boru; Li, Renhua; Jiang, Tingbo

    2014-10-01

    Spatio-temporal expression patterns of 13 out of 119 poplar WRKY genes indicated dynamic and tissue-specific roles of WRKY family proteins in salinity stress tolerance. To understand the expression patterns of poplar WRKY genes under salinity stress, 51 of the 119 WRKY genes were selected from di-haploid Populus simonii × P. nigra by quantitative real-time PCR (qRT-PCR). We used qRT-PCR to profile the expression of the top 13 genes under salinity stress across seven time points, and employed RNA-Seq platforms to cross-validate it. Results demonstrated that all the 13 WRKY genes were expressed in root, stem, and leaf tissues, but their expression levels and overall patterns varied notably in these tissues. Regarding overall gene expression in roots, the 13 genes were significantly highly expressed at all six time points after the treatment, reaching the plateau of expression at hour 9. In leaves, the 13 genes were similarly up-regulated from 3 to 12 h in response to NaCl treatment. In stems, however, expression levels of the 13 genes did not show significant changes after the NaCl treatment. Regarding individual gene expression across the time points and the three tissues, the 13 genes can be classified into three clusters: the lowly expressed Cluster 1 containing PthWRKY28, 45 and 105; intermediately expressed Clusters 2 including PthWRKY56, 88 and 116; and highly expressed Cluster 3 consisting of PthWRKY41, 44, 51, 61, 62, 75 and 106. In general, genes in Cluster 2 and 3 displayed a dynamic pattern of "induced amplification-recovering", suggesting that these WRKY genes and corresponding pathways may play a critical role in mediating salt response and tolerance in a dynamic and tissue-specific manner.

  17. Transcriptomic analysis reveals importance of ROS and phytohormones in response to short-term salinity stress in Populus tomentosa

    Directory of Open Access Journals (Sweden)

    Lingyu eZheng

    2015-09-01

    Full Text Available Populus tomentosa (Chinese white poplar is well adapted to various extreme environments, and is considered an important species to study the effects of salinity stress on poplar trees. To decipher the mechanism of poplar’s rapid response to short-term salinity stress, we firstly detected the changes in H2O2 and hormone, and then profiled the gene expression pattern of ten-week-old seedling roots treated with 200 mM NaCl for 0, 6, 12 and 24 hours (h by RNA-seq on the Illumina-Solexa platform. Physiological determination showed that the significant increase in H2O2 began at 6 h, while that in hormone ABA was at 24 h, under salt stress. Compared with controls (0 h, 3991, 4603 and 4903 genes were up regulated, and 1408, 2206 and 3461 genes were down regulated (adjusted P-value ≤ 0.05 and |log2Ratio|≥1 at 6, 12, and 24 h time points, respectively. The Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG pathway annotation revealed that the differentially expressed genes (DEGs were highly enriched in hormone- and reactive oxygen species-related biological processes, including ‘response to oxidative stress or abiotic stimulus’, ‘peroxidase activity’, ‘regulation of transcription’, ‘hormone synthetic and metabolic process’, ‘hormone signal transduction’, ‘antioxidant activity’ and ‘transcription factor activity’. Moreover, K-means clustering demonstrated that DEGs (total RPKM value>12 from four time points could be categorized into four kinds of expression trends: quick up/down over 6 h or 12 h, and slow up/down over 24 h. Of these, DEGs involved in H2O2- and hormone- producing and signal-related genes were further enriched in this analysis, which indicated that the two kinds of small molecules, hormones and H2O2, play pivotal roles in the short-term salt stress response in poplar. This study provides a basis for future studies of the molecular adaptation of poplar and other tree species to salinity

  18. Wood property variation in Populus

    Science.gov (United States)

    Dean W. Einspahr; Miles K. Benson; John R. Peckham

    1968-01-01

    The use of bigtooth aspen (Populus grandidentata Michx.), quaking aspen (P. tremuloides Michx.), and cottonwood (P. deltoides Bartr.) by the pulp and paper industry has increased greatly during the past decade. This expanded use has stimulated research on the genetic improvement of Populus. For the past 12 years...

  19. Cloning of the cryptochrome-encoding PeCRY1 gene from Populus euphratica and functional analysis in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Ke Mao

    Full Text Available Cryptochromes are photolyase-like blue/UV-A light receptors that evolved from photolyases. In plants, cryptochromes regulate various aspects of plant growth and development. Despite of their involvement in the control of important plant traits, however, most studies on cryptochromes have focused on lower plants and herbaceous crops, and no data on cryptochrome function are available for forest trees. In this study, we isolated a cryptochrome gene, PeCRY1, from Euphrates poplar (Populus euphratica, and analyzed its structure and function in detail. The deduced PeCRY1 amino acid sequence contained a conserved N-terminal photolyase-homologous region (PHR domain as well as a C-terminal DQXVP-acidic-STAES (DAS domain. Secondary and tertiary structure analysis showed that PeCRY1 shares high similarity with AtCRY1 from Arabidopsis thaliana. PeCRY1 expression was upregulated at the mRNA level by light. Using heterologous expression in Arabidopsis, we showed that PeCRY1 overexpression rescued the cry1 mutant phenotype. In addition, PeCRY1 overexpression inhibited hypocotyl elongation, promoted root growth, and enhanced anthocyanin accumulation in wild-type background seedlings grown under blue light. Furthermore, we examined the interaction between PeCRY1 and AtCOP1 using a bimolecular fluorescence complementation (BiFc assay. Our data provide evidence for the involvement of PeCRY1 in the control of photomorphogenesis in poplar.

  20. Diversity of arthropod community in transgenic poplar-cotton ecosystems.

    Science.gov (United States)

    Zhang, D J; Lu, Z Y; Liu, J X; Li, C L; Yang, M S

    2015-12-02

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of plain cotton fields in China. Here, we performed a systematic survey of the diversity and population of arthropod communities in four different combination of poplar-cotton eco-systems, including I) non-transgenic poplar and non-transgenic cotton fields; II) non-transgenic poplar and transgenic cotton fields [Bacillus thuringiensis (Bt) cotton]; III) Bt transgenic poplar (high insect resistant strain Pb29) and non-transgenic cotton; and IV) transgenic poplar and transgenic cotton fields, over a period of 3 years. Based on the statistical methods used to investigate community ecology, the effects of transgenic ecosystems on the whole structure of the arthropod community, on the structure of arthropods in the nutritive layer, and on the similarity of arthropod communities were evaluated. The main results were as follows: the transgenic poplar-cotton ecosystem has a stronger inhibitory effect on insect pests and has no impact on the structure of the arthropod community, and therefore, maintains the diversity of the arthropod community. The character index of the community indicated that the structure of the arthropod community of the transgenic poplar-cotton ecosystem was better than that of the poplar-cotton ecosystem, and that system IV had the best structure. As for the abundance of nutritional classes, the transgenic poplar-cotton ecosystem was also better than that of the non-transgenic poplar-cotton ecosystem. The cluster analysis and similarity of arthropod communities between the four different transgenic poplar-cotton ecosystems illustrated that the structure of the arthropod community excelled in the small sample of the transgenic poplar-cotton ecosystems.

  1. The Relationship between Insect Resistance and Tree Age of Transgenic Triploid Populus tomentosa Plants.

    Science.gov (United States)

    Ren, Yachao; Zhang, Jun; Wang, Guiying; Liu, Xiaojie; Li, Li; Wang, Jinmao; Yang, Minsheng

    2018-01-01

    To explore the stability of insect resistance during the development of transgenic insect-resistant trees, this study investigated how insect resistance changes as transgenic trees age. We selected 19 transgenic insect-resistant triploid Populus tomentosa lines as plant material. The presence of exogenous genes and Cry1Ac protein expression were verified using polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA) analyses. The toxicity for Clostera anachoreta and Lymantria dispar was evaluated by feeding fresh leaves to first instar larvae after the trees were planted in the field for 2 years and after the sixth year. Results of PCR showed that the exogenous genes had a long-term presence in the poplar genome. ELISA analyses showed significant differences existed on the 6-year-old transgenic lines. The insect-feeding experiment demonstrated significant differences in the mortality rates of C. anachoreta and L. dispar among different transgenic lines. The average corrected mortality rates of C. anachoreta and L. dispar ranged from 5.6-98.7% to 35.4-7.2% respectively. The larval mortality rates differed significantly between the lines at different ages. Up to 52.6% of 1-year-old transgenic lines and 42.1% of 2-year-old transgenic lines caused C. anachoreta larval mortality rates to exceed 80%, whereas only 26.3% of the 6-year-old transgenic lines. The mortality rates of L. dispar exhibited the same trend: 89.5% of 1-year-old transgenic lines and 84.2% of 2-year-old transgenic lines caused L. dispar larval mortality rates to exceed 80%; this number decreased to 63.2% for the 6-year-old plants. The proportion of 6-year-old trees with over 80% larval mortality rates was clearly lower than that of the younger trees. The death distribution of C. anachoreta in different developmental stages also showed the larvae that fed on the leaves of 1-year-old trees were killed mostly during L 1 and L 2 stages, whereas the proportion of larvae that died in L 3

  2. Energy dynamics in Populus deltoides G{sub 3} Marsh agroforestry systems in eastern India

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, O.P. [National Research Centre for Agroforestry, Jhansi (India); Das, D.K. [Rajendra Agricultural Univ., Dept. of Forestry, Bihar (India)

    2005-08-01

    Energy efficiency of Populus deltoides G{sub 3} Marsh agroforestry of a 3-year-old system with intercropping of maize-wheat in crop I and pigeonpea in crop II and of a 9-year-old system with turmeric, a shade loving crop was studied at Pusa, Bihar in eastern India. Energy fixation, storage, net allocation in agronomic yield and energy released and exit from the 9-year-old system was 1.53, 4.30, 0.43 and 3.37 times in crop I and 1.67, 4.60, 0.53 and 3.30 times in crop II of the 3-year-old agroforestry system. The energy conservation efficiency in the 9-year-old system was higher (1.91%) as compared to crop I (1.24%) and crop II (1.15%) of the 3-year-old agroforestry system. The energy accumulation ratio in the 9-year-old system was 2.82 and 2.77 times higher in crop I and crop II, respectively, of the 3-year-old agroforestry system. The 3-year-old agroforestry system showed lower energy accumulation ratio resulting from less energy accumulation in perennial turnover in the form of leaf of tree and agricultural crops. The crop II system of the 3-year-old poplar agroforestry was more efficient system of management due to higher quanta of energy and higher cash return but one has to opt for shade loving intercrop turmeric with increase in age of the poplar plantation and more canopy closure. (Author)

  3. Impact of elevated CO2 and nitrogen fertilization on foliar elemental composition in a short rotation poplar plantation

    International Nuclear Information System (INIS)

    Marinari, Sara; Calfapietra, Carlo; De Angelis, Paolo; Mugnozza, Giuseppe Scarascia; Grego, Stefano

    2007-01-01

    The experiment was carried out on a short rotation coppice culture of poplars (POP-EUROFACE, Central Italy), growing in a free air carbon dioxide enriched atmosphere (FACE). The specific objective of this work was to study whether elevated CO 2 and fertilization (two CO 2 treatments, elevated CO 2 and control, two N fertilization treatments, fertilized and unfertilized), as well as the interaction between treatments caused an unbalanced nutritional status of leaves in three poplar species (P. x euramericana, P. nigra and P. alba). Finally, we discuss the ecological implications of a possible change in foliar nutrients concentration. CO 2 enrichment reduced foliar nitrogen and increased the concentration of magnesium; whereas nitrogen fertilization had opposite effects on leaf nitrogen and magnesium concentrations. Moreover, the interaction between elevated CO 2 and N fertilization amplified some element unbalances such as the K/N-ratio. - CO 2 enrichment reduced foliar nitrogen and increased the magnesium concentration in poplar

  4. Distribution of P, K, Ca, Mg, Cd, Cu, Fe, Mn, Pb and Zn in wood and bark age classes of willows and poplars used for phytoextraction on soils contaminated by risk elements.

    Science.gov (United States)

    Zárubová, Pavla; Hejcman, Michal; Vondráčková, Stanislava; Mrnka, Libor; Száková, Jiřina; Tlustoš, Pavel

    2015-12-01

    Fast-growing clones of Salix and Populus have been studied for remediation of soils contaminated by risk elements (RE) using short-rotation coppice plantations. Our aim was to assess biomass yield and distributions of elements in wood and bark of highly productive willow (S1--[Salix schwerinii × Salix viminalis] × S. viminalis, S2--Salix × smithiana clone S-218) and poplar (P1--Populus maximowiczii × Populus nigra, P2--P. nigra) clones with respect to aging. The field experiment was established in April 2008 on moderately Cd-, Pb- and Zn- contaminated soil. Shoots were harvested after four seasons (February 2012) and separated into annual classes of wood and bark. All tested clones grew on contaminated soils, with highest biomass production and lowest mortality exhibited by P1 and S2. Concentrations of elements, with exception of Ca and Pb, decreased with age and were higher in bark than in wood. The Salix clones were characterised by higher removal of Cd, Mn and Zn compared to the Populus clones. Despite generally higher RE content in young shoots, partly due to lower wood/bark ratios and higher RE concentrations in bark, the overall removal of RE was higher in older wood classes due to higher biomass yield. Thus, longer rotations seem to be more effective when phytoextraction strategy is considered. Of the four selected clones, S1 exhibited the best removal of Cd and Zn and is a good candidate for phytoextraction.

  5. Poplar trees for phytoremediation of high levels of nitrate and applications in bioenergy.

    Science.gov (United States)

    Castro-Rodríguez, Vanessa; García-Gutiérrez, Angel; Canales, Javier; Cañas, Rafael A; Kirby, Edward G; Avila, Concepción; Cánovas, Francisco M

    2016-01-01

    The utilization of high amounts of nitrate fertilizers for crop yield leads to nitrate pollution of ground and surface waters. In this study, we report the assimilation and utilization of nitrate luxuriant levels, 20 times more than the highest N fertilizer application in Europe, by transgenic poplars overexpressing a cytosolic glutamine synthetase (GS1). In comparison with the wild-type controls, transgenic plants grown under high N levels exhibited increased biomass (171.6%) and accumulated higher levels of proteins, chlorophylls and total sugars such as glucose, fructose and sucrose. These plants also exhibited greater nitrogen-use efficiency particularly in young leaves, suggesting that they are able to translocate most of the resources to the above-ground part of the plant to produce biomass. The transgenic poplar transcriptome was greatly affected in response to N availability with 1237 genes differentially regulated in high N, while only 632 genes were differentially expressed in untransformed plants. Many of these genes are essential in the adaptation and response against N excess and include those involved in photosynthesis, cell wall formation and phenylpropanoid biosynthesis. Cellulose production in the transgenic plants was fivefold higher than in control plants, indicating that transgenic poplars represent a potential feedstock for applications in bioenergy. In conclusion, our results show that GS transgenic poplars can be used not only for improving growth and biomass production but also as an important resource for potential phytoremediation of nitrate pollution. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  6. Sodium and chloride accumulation in leaf, woody, and root tissue of Populus after irrigation with landfill leachate

    International Nuclear Information System (INIS)

    Zalesny, Jill A.; Zalesny, Ronald S.; Wiese, Adam H.; Sexton, Bart; Hall, Richard B.

    2008-01-01

    The response of Populus to irrigation sources containing elevated levels of sodium (Na + ) and chloride (Cl - ) is poorly understood. We irrigated eight Populus clones with fertilized well water (control) (N, P, K) or municipal solid waste landfill leachate weekly during 2005 and 2006 in Rhinelander, Wisconsin, USA (45.6 deg. N, 89.4 deg. W). During August 2006, we tested for differences in total Na + and Cl - concentration in preplanting and harvest soils, and in leaf, woody (stems + branches), and root tissue. The leachate-irrigated soils at harvest had the greatest Na + and Cl - levels. Genotypes exhibited elevated total tree Cl - concentration and increased biomass (clones NC14104, NM2, NM6), elevated Cl - and decreased biomass (NC14018, NC14106, DM115), or mid levels of Cl - and biomass (NC13460, DN5). Leachate tissue concentrations were 17 (Na + ) and four (Cl - ) times greater than water. Sodium and Cl - levels were greatest in roots and leaves, respectively. - Sodium and chloride supplied via landfill leachate irrigation is accumulated at high concentrations in tissues of Populus

  7. Growth of Populus and Salix Species under Compost Leachate Irrigation

    OpenAIRE

    Tooba Abedi; Shamim Moghaddami; Ebrahim Lashkar Bolouki

    2014-01-01

    According to the known broad variation in remediation capacity, three plant species were used in the experiment: two fast growing poplar’s clones - Populus deltoides, Populus euramericana, and willows Salix alba. Populus and Salix cuttings were collected from the nursery of the Populus Research Center of Safrabasteh in the eastern part of Guilan province at north of Iran. The Populus clones were chosen because of their high biomass production capacity and willow- because it is native in Iran....

  8. AFLP analysis and improved phytoextraction capacity of transgenic gshI-poplar clones (Populus x canescens L.) for copper in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Gyulai, G. [St. Stephanus Univ., Dept. of Genetics and PB (Hungary); HAS-SIU Research Group for Molecular Plant Breeding (Hungary); IGER, Plas Gogerddan, Aberystwyth (United Kingdom); Humphreys, M.; Skoet, K.; Skoet, L.; Heywood, S.; Lovatt, A.; Roderick, H.; Abberton, M. [IGER, Plas Gogerddan, Aberystwyth (United Kingdom); Bittsanszky, A.; Kiss, J.; Szabo, Z. [St. Stephanus Univ., Dept. of Genetics and PB (Hungary); Gullner, G.; Koemives, T. [Plant Protection Inst., Hungarian Academy of Sciences, Budapest (Hungary); Radimszky, L. [Soil Science Inst., Hungarian Academy of Sciences, Budapest (Hungary); Rennenberg, H. [Albert-Ludwigs-Univ., Inst. fuer Forstbotanik und Baumphysiologie, Freiburg (Germany); Heszky, L. [St. Stephanus Univ., Dept. of Genetics and PB (Hungary); HAS-SIU Research Group for Molecular Plant Breeding (Hungary)

    2005-04-01

    Clone stability and in vitro phytoextraction capacity of vegetative clones of P. x canescens (2n = 4x = 38) including two transgenic clones (ggs11 and lgl6) were studied as in vitro leaf disc cultures. Presence of the gshI-transgene in the transformed clones was detected in PCR reactions using gshI-specific primers. Clone stability was determined by fAFLP (fluorescent amplified DNA fragment length polymorphism) analysis. In total, 682 AFLP fragments were identified generated by twelve selective primer pairs after EcoRI-MseI digestion. Four fragments generated by EcoAGT-MseCCC were different (99.4% genetic similarity) which proves an unexpectedly low bud mutation frequency in P. x canescens. For the study of phytoextraction capacity leaf discs (8 mm) were exposed to a concentration series of ZnSO{sub 4} (10{sup -1} to 10{sup -5} M) incubated for 21 days on aseptic tissue culture media WPM containing 1 {mu}M Cu. ZN{sup 2+} caused phytotoxicity only at high concentrations (10{sup -1} to 10{sup -2} M). The transgenic poplar cyt-ECS (ggs11) clone, as stimulated by the presence of Zn, showed elevated heavy metal (Cu) uptake as compared to the non-transformed clone. These results suggest that gshI-transgenic poplars may be suitable for phytoremediation of soils contaminated with zinc and copper. (orig.)

  9. Spatial variability of soil carbon and nitrogen in two hybrid poplar-hay crop systems in southern Quebec, Canada

    Science.gov (United States)

    Winans, K. S.

    2013-12-01

    Canadian agricultural operations contribute approximately 8% of national GHG emissions each year, mainly from fertilizers, enteric fermentation, and manure management (Environment Canada, 2010). With improved management of cropland and forests, it is possible to mitigate GHG emissions through carbon (C) sequestration while enhancing soil and crop productivity. Tree-based intercropped (TBI) systems, consisting of a fast-growing woody species such as poplar (Populus spp.) planted in widely-spaced rows with crops cultivated between tree rows, were one of the technologies prioritized for investigation by the Agreement for the Agricultural Greenhouse Gases Program (AAGGP), because fast growing trees can be a sink for atmospheric carbon-dioxide (CO2) as well as a long-term source of farm income (Montagnini and Nair, 2004). However, there are relatively few estimates of the C sequestration in the trees or due to tree inputs (e.g., fine root turnover, litterfall that gets incorporated into SOC), and hybrid poplars grow exponentially in the first 8-10 years after planting. With the current study, our objectives were (1) to evaluate spatial variation in soil C and nitrogen (N) storage, CO2 and nitrogen oxide (N20), and tree and crop productivity for two hybrid poplar-hay intercrop systems at year 9, comparing TBI vs. non-TBI systems, and (2) to evaluate TBI systems in the current context of C trading markets, which value C sequestration in trees, unharvested crop components, and soils of TBI systems. The study results will provide meaningful measures that indicate changes due to TBI systems in the short-term and in the long-term, in terms of GHG mitigation, enhanced soil and crop productivity, as well as the expected economic returns in TBI systems.

  10. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings

    International Nuclear Information System (INIS)

    Weyens, Nele; Truyens, Sascha; Dupae, Joke; Newman, Lee; Taghavi, Safiyh; Lelie, Daniel van der; Carleer, Robert; Vangronsveld, Jaco

    2010-01-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l -1 TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l -1 TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. - The endophyte P. putida W619-TCE degrades TCE during its transport through the xylem, leading to reduced TCE concentrations in poplar, and decreased TCE evapotranspiration.

  11. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings

    Energy Technology Data Exchange (ETDEWEB)

    Weyens, N.; van der Lelie, D.; Truyens, S.; Dupae, J.; Newman, L.; Taghavi, S.; Carleer, R.; Vangronsveld, J.

    2010-09-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l{sup -1} TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l{sup -1} TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. The endophyte P. putida W619-TCE degrades TCE during its transport through the xylem, leading to reduced TCE concentrations in poplar, and decreased TCE evapotranspiration.

  12. Production costs for SRIC Populus biomass

    International Nuclear Information System (INIS)

    Strauss, C.H.

    1991-01-01

    Production costs for short rotation, intensive culture (SRIC) Populus biomass were developed from commercial-sized plantations under investigation throughout the US. Populus hybrid planted on good quality agricultural sites at a density of 850 cuttings/acre was projected to yield an average of 7 ovendry (OD) tons/acre/year. Discounted cash-flow analysis of multiple rotations showed preharvest production costs of $14/ton (OD). Harvesting and transportation expenses would increase the delivered cost to $35/ton (OD). Although this total cost compared favorably with the regional market price for aspen (Populus tremuloides), future investments in SRIC systems will require the development of biomass energy markets

  13. Boron accumulation and tolerance of hybrid poplars grown on a B-laden mixed paper mill waste landfill

    International Nuclear Information System (INIS)

    Rees, Rainer; Robinson, Brett H.; Rog, Christopher J.; Papritz, Andreas; Schulin, Rainer

    2013-01-01

    Paper mill wastes are a mixture of by-products from pulp production and on-site energy production, consisting of paper mill sludge, ash and cinders. Landfilling of these highly boron (B) and heavy metal laden waste products carries environmental risks. Poplars have been successfully employed in the phytomanagement and hydraulic control of B contaminated sites. Here, we assess the performance of hybrid poplars on a paper-mill waste landfill, investigate the accumulation of B by the trees and explore the relationship between local-scale root growth and substrate properties. Leaf and root tissue samples were collected on three plots and analyzed for their chemical properties and root traits. Additionally, we sampled four soil cores in the vicinity of each of the trees and determined chemical and physical properties. Using a principal component analysis followed by a cluster analysis, we identified three substrate types. This method delineated the soil effects on tree survival and growth, although correlations with individual soil element concentrations were weak. Despite signs of B toxicity in some leaves, B was not the key limiting factor for poplar growth. Instead, Ca deficiency caused by a Mg:Ca imbalance was the primary reason for the poor performance of some trees. Root growth was not limited by toxicity effects of soil contaminants. Our results show that hybrid poplars perform well under the harsh growing conditions on a multi-contaminated, B-laden substrate in a hemiboreal climate. Exploiting the differences in the performance of the four clones in relation to the soil types, could increase the success of revegetation on this and other landfills. - Highlights: ► We studied four hybrid poplar clones grown on a B-laden paper mill waste landfill. ► Poplar growth, trace element accumulation and root traits were investigated. ► Survival and growth were comparable to commercial plantations. ► Root growth was nearly unaffected by the contaminants. ► Adaption

  14. Boron accumulation and tolerance of hybrid poplars grown on a B-laden mixed paper mill waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Rees, Rainer, E-mail: rainer.rees@env.ethz.ch [Institute of Terrestrial Ecosystems, ETH Zürich, Universitätsstrasse 16, 8092 Zürich (Switzerland); Robinson, Brett H., E-mail: Brett.Robinson@lincoln.ac.nz [Soil and Physical Sciences, Burns 222, P. O. Box 84, Lincoln University, Lincoln 7647, Christchurch (New Zealand); Rog, Christopher J., E-mail: cjrog@sand-creek.com [Sand Creek Consultants, Inc., P.O. Box 1512, 16 Randall Ave., Rhinelander, WI 54501 (United States); Papritz, Andreas, E-mail: andreas.papritz@env.ethz.ch [Institute of Terrestrial Ecosystems, ETH Zürich, Universitätsstrasse 16, 8092 Zürich (Switzerland); Schulin, Rainer, E-mail: rainer.schulin@env.ethz.ch [Institute of Terrestrial Ecosystems, ETH Zürich, Universitätsstrasse 16, 8092 Zürich (Switzerland)

    2013-03-01

    Paper mill wastes are a mixture of by-products from pulp production and on-site energy production, consisting of paper mill sludge, ash and cinders. Landfilling of these highly boron (B) and heavy metal laden waste products carries environmental risks. Poplars have been successfully employed in the phytomanagement and hydraulic control of B contaminated sites. Here, we assess the performance of hybrid poplars on a paper-mill waste landfill, investigate the accumulation of B by the trees and explore the relationship between local-scale root growth and substrate properties. Leaf and root tissue samples were collected on three plots and analyzed for their chemical properties and root traits. Additionally, we sampled four soil cores in the vicinity of each of the trees and determined chemical and physical properties. Using a principal component analysis followed by a cluster analysis, we identified three substrate types. This method delineated the soil effects on tree survival and growth, although correlations with individual soil element concentrations were weak. Despite signs of B toxicity in some leaves, B was not the key limiting factor for poplar growth. Instead, Ca deficiency caused by a Mg:Ca imbalance was the primary reason for the poor performance of some trees. Root growth was not limited by toxicity effects of soil contaminants. Our results show that hybrid poplars perform well under the harsh growing conditions on a multi-contaminated, B-laden substrate in a hemiboreal climate. Exploiting the differences in the performance of the four clones in relation to the soil types, could increase the success of revegetation on this and other landfills. - Highlights: ► We studied four hybrid poplar clones grown on a B-laden paper mill waste landfill. ► Poplar growth, trace element accumulation and root traits were investigated. ► Survival and growth were comparable to commercial plantations. ► Root growth was nearly unaffected by the contaminants. ► Adaption

  15. Ex situ growth and biomass of Populus bioenergy crops irrigated and fertilized with landfill leachate

    International Nuclear Information System (INIS)

    Zalesny, Ronald S.; Wiese, Adam H.; Bauer, Edmund O.; Riemenschneider, Donald E.

    2009-01-01

    Merging traditional intensive forestry with waste management offers dual goals of fiber and bioenergy production, along with environmental benefits such as soil/water remediation and carbon sequestration. As part of an ongoing effort to acquire data about initial genotypic performance, we evaluated: (1) the early aboveground growth of trees belonging to currently utilized Populus genotypes subjected to irrigation with municipal solid waste landfill leachate or non-fertilized well water (control), and (2) the above- and below-ground biomass of the trees after 70 days of growth. We determined height, diameter, and number of leaves at 28, 42, 56, and 70 days after planting (DAP), along with stem, leaf, and root dry mass by testing six Populus clones (DN34, DN5, I4551, NC14104, NM2, NM6) grown in a greenhouse in a split-split plot, repeated measures design with two blocks, two treatments (whole-plots), six clones (sub-plots), and four sampling dates (sub-sub-plots, repeated measure). Treatments (leachate, water) were applied every other day beginning 42 DAP. The leachate-treated trees exhibited greater height, diameter, and number of leaves at 56 and 70 DAP (P 0.05). Overall, genotypic responses to the leachate treatment were clone-specific for all traits

  16. Biology and natural enemies of Agrilus fleischeri (Coleoptera:Buprestidae), a newly emerging destructive buprestid pest in Northeast China

    Science.gov (United States)

    The jewel beetle Agrilus fleischeri Obenberger (Coleoptera: Buprestidae) is a newly emerging major pest of poplar trees (Populus spp.) in northeast China and is responsible for the poplar mortality throughout its distribution range. In order to determine how to manage this pest effectively, we stud...

  17. Observations on a hybrid poplar test planting in West Virginia

    Science.gov (United States)

    Arthur R. Eschner

    1960-01-01

    Hybrid poplars, crosses between European and American Aigeiros poplars, have been grown in Europe for about 200 years. The rapid growth and high productivity of some of these hybrids on sites to which they are adapted has stimulated interest in poplar growing in this country. And demand for these poplars is developing in many parts of the United States.

  18. Effects of hybridization and evolutionary constraints on secondary metabolites: the genetic architecture of phenylpropanoids in European populus species.

    Science.gov (United States)

    Caseys, Celine; Stritt, Christoph; Glauser, Gaetan; Blanchard, Thierry; Lexer, Christian

    2015-01-01

    The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar) and P. tremula (European aspen) and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS). We detected 41 quantitative trait loci (QTL) for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus.

  19. Effects of hybridization and evolutionary constraints on secondary metabolites: the genetic architecture of phenylpropanoids in European populus species.

    Directory of Open Access Journals (Sweden)

    Celine Caseys

    Full Text Available The mechanisms responsible for the origin, maintenance and evolution of plant secondary metabolite diversity remain largely unknown. Decades of phenotypic studies suggest hybridization as a key player in generating chemical diversity in plants. Knowledge of the genetic architecture and selective constraints of phytochemical traits is key to understanding the effects of hybridization on plant chemical diversity and ecological interactions. Using the European Populus species P. alba (White poplar and P. tremula (European aspen and their hybrids as a model, we examined levels of inter- and intraspecific variation, heritabilities, phenotypic correlations, and the genetic architecture of 38 compounds of the phenylpropanoid pathway measured by liquid chromatography and mass spectrometry (UHPLC-MS. We detected 41 quantitative trait loci (QTL for chlorogenic acids, salicinoids and flavonoids by genetic mapping in natural hybrid crosses. We show that these three branches of the phenylpropanoid pathway exhibit different geographic patterns of variation, heritabilities, and genetic architectures, and that they are affected differently by hybridization and evolutionary constraints. Flavonoid abundances present high species specificity, clear geographic structure, and strong genetic determination, contrary to salicinoids and chlorogenic acids. Salicinoids, which represent important defence compounds in Salicaceae, exhibited pronounced genetic correlations on the QTL map. Our results suggest that interspecific phytochemical differentiation is concentrated in downstream sections of the phenylpropanoid pathway. In particular, our data point to glycosyltransferase enzymes as likely targets of rapid evolution and interspecific differentiation in the 'model forest tree' Populus.

  20. VEGETATIVNO RAZMNOŽEVANJE TOPOLOV (Populus spp.) S POTAKNJENCI

    OpenAIRE

    Sternad, Rebeka

    2010-01-01

    Raziskava je bila opravljena na treh vrstah topolov: črnem topolu (Populus nigra L.), belem topolu (Populus alba L.) in trepetliki (Populus tremula L.). Namen diplomskega dela je bil proučiti ukoreninjenje potaknjencev topolov glede na okolje koreninjenja, termin potikanja in vrsto uporabljenega substrata. Zeleni in pololeseneli potaknjenci so bili večinoma nabrani v okolici celjske regije in Žalca. Koreninjeni so bili v šestih terminih (od junija do septembra) v okolju meglenja in neposredne...

  1. Towards a map of the Populus biomass protein-protein interaction network

    Energy Technology Data Exchange (ETDEWEB)

    Beers, Eric [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Brunner, Amy [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Helm, Richard [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Dickerman, Allan [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2015-07-31

    Biofuels can be produced from a variety of plant feedstocks. The value of a particular feedstock for biofuels production depends in part on the degree of difficulty associated with the extraction of fermentable sugars from the plant biomass. The wood of trees is potentially a rich source fermentable sugars. However, the sugars in wood exist in a tightly cross-linked matrix of cellulose, hemicellulose, and lignin, making them largely recalcitrant to release and fermentation for biofuels production. Before breeders and genetic engineers can effectively develop plants with reduced recalcitrance to fermentation, it is necessary to gain a better understanding of the fundamental biology of the mechanisms responsible for wood formation. Regulatory, structural, and enzymatic proteins are required for the complicated process of wood formation. To function properly, proteins must interact with other proteins. Yet, very few of the protein-protein interactions necessary for wood formation are known. The main objectives of this project were to 1) identify new protein-protein interactions relevant to wood formation, and 2) perform in-depth characterizations of selected protein-protein interactions. To identify relevant protein-protein interactions, we cloned a set of approximately 400 genes that were highly expressed in the wood-forming tissue (known as secondary xylem) of poplar (Populus trichocarpa). We tested whether the proteins encoded by these biomass genes interacted with each other in a binary matrix design using the yeast two-hybrid (Y2H) method for protein-protein interaction discovery. We also tested a subset of the 400 biomass proteins for interactions with all proteins present in wood-forming tissue of poplar in a biomass library screen design using Y2H. Together, these two Y2H screens yielded over 270 interactions involving over 75 biomass proteins. For the second main objective we selected several interacting pairs or groups of interacting proteins for in

  2. Dimension yields from yellow-poplar lumber

    Science.gov (United States)

    R. C. Gilmore; J. D. Danielson

    1984-01-01

    The available supply of yellow poplar (Liriodendron tulipifera L.), its potential for new uses, and its continuing importance to the furniture industry have created a need to accumulate additional information about this species. As an aid to better utilization of this species, charts for determining cutting stock yields from yellow poplar lumber are presented for each...

  3. Assessment of both environmental cytotoxicity and trace metal pollution using Populus simonii Carr. as a bioindicator.

    Science.gov (United States)

    Sluchyk, Victor; Sluchyk, Iryna; Shyichuk, Alexander

    2014-10-01

    The level of environmental pollution in the city of Ivano-Frankivsk (Western Ukraine) has been assessed by means of roadside poplar trees as bioindicators. Dividable apical meristem cells of rudimentary leaves were quantitatively analysed for mitotic activity and distribution. Anaphases were further examined for chromosomal aberrations. Male catkins were also examined for sterile pollens. Accumulation of trace elements in vegetative buds was also evaluated in order to reveal source(s) of environmental pollution. Poplar trees growing in the urban environment proved to have increased chromosomal aberrations (up to 4-fold) and increased pollen sterility (up to 4-fold) as well as decreased mitotic activity (by factor 1.5) as compared to control sampling site. The biomarker data correlate moderately with increased (up to 4-fold) concentrations of Ni, Zn, Pb, Cd and Cu in vegetative tissues suggesting that probable cause of the environmental cytotoxicity may be vehicle emissions. The maximum increase in chromosomal aberrations (7-fold) and the minimum mitotic activity (half of the control one) were recorded in poplar trees growing in industrial suburb in vicinity of large cement production plant. Taking in mind insignificant bioaccumulation of trace elements in the industrial suburb, the high environmental toxicity has been ascribed to contamination in cement and asbestos particulates.

  4. Functional Gene Discovery and Characterization of Genes and Alleles Affecting Wood Biomass Yield and Quality in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Busov, Victor [Michigan Technological Univ., Houghton, MI (United States)

    2017-02-12

    Adoption of biofuels as economically and environmentally viable alternative to fossil fuels would require development of specialized bioenergy varieties. A major goal in the breeding of such varieties is the improvement of lignocellulosic biomass yield and quality. These are complex traits and understanding the underpinning molecular mechanism can assist and accelerate their improvement. This is particularly important for tree bioenergy crops like poplars (species and hybrids from the genus Populus), for which breeding progress is extremely slow due to long generation cycles. A variety of approaches have been already undertaken to better understand the molecular bases of biomass yield and quality in poplar. An obvious void in these undertakings has been the application of mutagenesis. Mutagenesis has been instrumental in the discovery and characterization of many plant traits including such that affect biomass yield and quality. In this proposal we use activation tagging to discover genes that can significantly affect biomass associated traits directly in poplar, a premier bioenergy crop. We screened a population of 5,000 independent poplar activation tagging lines under greenhouse conditions for a battery of biomass yield traits. These same plants were then analyzed for changes in wood chemistry using pyMBMS. As a result of these screens we have identified nearly 800 mutants, which are significantly (P<0.05) different when compared to wild type. Of these majority (~700) are affected in one of ten different biomass yield traits and 100 in biomass quality traits (e.g., lignin, S/G ration and C6/C5 sugars). We successfully recovered the position of the tag in approximately 130 lines, showed activation in nearly half of them and performed recapitulation experiments with 20 genes prioritized by the significance of the phenotype. Recapitulation experiments are still ongoing for many of the genes but the results are encouraging. For example, we have shown successful

  5. Choosing tree genotypes for phytoremediation of landfill leachate using phyto-recurrent selection

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Richard B. Hall

    2007-01-01

    Information about the response of poplar (Populus spp.) genotypes to landfill leachate irrigation is needed, along with efficient methods for choosing genotypes based on leachate composition. Poplar clones were irrigated during three cycles of phyto-recurrent selection to test whether genotypes responded differently to leachate and water, and to test...

  6. Environmental applications of poplars and willows

    Science.gov (United States)

    J.G. Isebrands; P. Aronsson; M. Carlson; R. Ceulemans; M. Coleman; N. Dickinson; J. Dimitriou; S. Doty; E. Gardiner; K. Heinsoo; J.D. Johnson; Y.B. Koo; J. Kort; J. Kuzovkina; L. Licht; A.R. McCracken; I. McIvor; P. Mertens; K. Perttu; D. Riddell-Black; B. Robins; G. Scarascia-Mugnozza; W.R. Schroeder; John Stanturf; T.A. Volk; M. Weih

    2014-01-01

    Poplars and willows have been planted for environmental purposes for millennia. There are reports that poplars were planted to improve the human environment 4000 years ago in the third dynasty of Ur, for streamside stabilization 2000 years ago in what is now the south-western USA by native North Americans and for urban amenities by the early Chinese dynasties (see...

  7. Physiological, vascular and nanomechanical assessment of hybrid poplar leaf traits in micropropagated plants and plants propagated from root cuttings: A contribution to breeding programs.

    Science.gov (United States)

    Ďurkovič, Jaroslav; Husárová, Hana; Javoříková, Lucia; Čaňová, Ingrid; Šuleková, Miriama; Kardošová, Monika; Lukáčik, Ivan; Mamoňová, Miroslava; Lagaňa, Rastislav

    2017-09-01

    Micropropagated plants experience significant stress from rapid water loss when they are transferred from an in vitro culture to either greenhouse or field conditions. This is caused both by inefficient stomatal control of transpiration and the change to a higher light intensity and lower humidity. Understanding the physiological, vascular and biomechanical processes that allow micropropagated plants to modify their phenotype in response to environmental conditions can help to improve both field performance and plant survival. To identify changes between the hybrid poplar [Populus tremula × (Populus × canescens)] plants propagated from in vitro tissue culture and those from root cuttings, we assessed leaf performance for any differences in leaf growth, photosynthetic and vascular traits, and also nanomechanical properties of the tracheary element cell walls. The micropropagated plants showed significantly higher values for leaf area, leaf length, leaf width and leaf dry mass. The greater leaf area and leaf size dimensions resulted from the higher transpiration rate recorded for this stock type. Also, the micropropagated plants reached higher values for chlorophyll a fluorescence parameters and for the nanomechanical dissipation energy of tracheary element cell walls which may indicate a higher damping capacity within the primary xylem tissue under abiotic stress conditions. The performance of the plants propagated from root cuttings was superior for instantaneous water-use efficiency which signifies a higher acclimation capacity to stressful conditions during a severe drought particularly for this stock type. Similarities were found among the majority of the examined leaf traits for both vegetative plant origins including leaf mass per area, stomatal conductance, net photosynthetic rate, hydraulic axial conductivity, indicators of leaf midrib vascular architecture, as well as for the majority of cell wall nanomechanical traits. This research revealed that

  8. Overexpression of the PtSOS2 gene improves tolerance to salt stress in transgenic poplar plants.

    Science.gov (United States)

    Yang, Yang; Tang, Ren-Jie; Jiang, Chun-Mei; Li, Bei; Kang, Tao; Liu, Hua; Zhao, Nan; Ma, Xu-Jun; Yang, Lei; Chen, Shao-Liang; Zhang, Hong-Xia

    2015-09-01

    In higher plants, the salt overly sensitive (SOS) signalling pathway plays a crucial role in maintaining ion homoeostasis and conferring salt tolerance under salinity condition. Previously, we functionally characterized the conserved SOS pathway in the woody plant Populus trichocarpa. In this study, we demonstrate that overexpression of the constitutively active form of PtSOS2 (PtSOS2TD), one of the key components of this pathway, significantly increased salt tolerance in aspen hybrid clone Shanxin Yang (Populus davidiana × Populus bolleana). Compared to the wild-type control, transgenic plants constitutively expressing PtSOS2TD exhibited more vigorous growth and produced greater biomass in the presence of high concentrations of NaCl. The improved salt tolerance was associated with a decreased Na(+) accumulation in the leaves of transgenic plants. Further analyses revealed that plasma membrane Na(+) /H(+) exchange activity and Na(+) efflux in transgenic plants were significantly higher than those in the wild-type plants. Moreover, transgenic plants showed improved capacity in scavenging reactive oxygen species (ROS) generated by salt stress. Taken together, our results suggest that PtSOS2 could serve as an ideal target gene to genetically engineer salt-tolerant trees. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  9. High titer ethanol and lignosulfonate production from SPORL pretreated poplar at pilot-scale

    Directory of Open Access Journals (Sweden)

    Junyong (J.Y. eZhu

    2015-04-01

    Full Text Available Poplar NE222 (Populus deltoides Bartr. ex Marsh × P. nigra L. wood chips were pretreated in a 390 L pilot-scale rotating wood-pulping digester using a dilute sulfite solution of approximately pH  1.8 at 160°C for 40 min for bioconversion to ethanol and lignosulfonate (LS. An estimated combined hydrolysis factor (CHF of 3.3 was used to scale the pretreatment temperature and time from laboratory bench scale experiments, which balanced sugar yield and inhibitor formation to facilitate high titer ethanol production through fermentation using S. cerevisiae YRH400 without detoxification. A terminal ethanol titer of 43.6 g L-1 with a yield of 247 L tonne wood-1 was achieved at total solids loading of 20%. The relatively low ethanol yield compared with yield from SPORL-pretreated softwoods was due to inefficient utilization of xylose. The LS from SPORL has a substantially higher phenolic group (Ph-OH content although it is less sulfonated and has a lower molecular weight than a purified commercial softwood LS, and therefore has potential for certain commercial markets and future novel applications through further processing.

  10. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought

    Directory of Open Access Journals (Sweden)

    Riccardo Ludovisi

    2017-09-01

    Full Text Available Poplars are fast-growing, high-yielding forest tree species, whose cultivation as second-generation biofuel crops is of increasing interest and can efficiently meet emission reduction goals. Yet, breeding elite poplar trees for drought resistance remains a major challenge. Worldwide breeding programs are largely focused on intra/interspecific hybridization, whereby Populus nigra L. is a fundamental parental pool. While high-throughput genotyping has resulted in unprecedented capabilities to rapidly decode complex genetic architecture of plant stress resistance, linking genomics to phenomics is hindered by technically challenging phenotyping. Relying on unmanned aerial vehicle (UAV-based remote sensing and imaging techniques, high-throughput field phenotyping (HTFP aims at enabling highly precise and efficient, non-destructive screening of genotype performance in large populations. To efficiently support forest-tree breeding programs, ground-truthing observations should be complemented with standardized HTFP. In this study, we develop a high-resolution (leaf level HTFP approach to investigate the response to drought of a full-sib F2 partially inbred population (termed here ‘POP6’, whose F1 was obtained from an intraspecific P. nigra controlled cross between genotypes with highly divergent phenotypes. We assessed the effects of two water treatments (well-watered and moderate drought on a population of 4603 trees (503 genotypes hosted in two adjacent experimental plots (1.67 ha by conducting low-elevation (25 m flights with an aerial drone and capturing 7836 thermal infrared (TIR images. TIR images were undistorted, georeferenced, and orthorectified to obtain radiometric mosaics. Canopy temperature (Tc was extracted using two independent semi-automated segmentation techniques, eCognition- and Matlab-based, to avoid the mixed-pixel problem. Overall, results showed that the UAV platform-based thermal imaging enables to effectively assess genotype

  11. UAV-Based Thermal Imaging for High-Throughput Field Phenotyping of Black Poplar Response to Drought.

    Science.gov (United States)

    Ludovisi, Riccardo; Tauro, Flavia; Salvati, Riccardo; Khoury, Sacha; Mugnozza Scarascia, Giuseppe; Harfouche, Antoine

    2017-01-01

    Poplars are fast-growing, high-yielding forest tree species, whose cultivation as second-generation biofuel crops is of increasing interest and can efficiently meet emission reduction goals. Yet, breeding elite poplar trees for drought resistance remains a major challenge. Worldwide breeding programs are largely focused on intra/interspecific hybridization, whereby Populus nigra L. is a fundamental parental pool. While high-throughput genotyping has resulted in unprecedented capabilities to rapidly decode complex genetic architecture of plant stress resistance, linking genomics to phenomics is hindered by technically challenging phenotyping. Relying on unmanned aerial vehicle (UAV)-based remote sensing and imaging techniques, high-throughput field phenotyping (HTFP) aims at enabling highly precise and efficient, non-destructive screening of genotype performance in large populations. To efficiently support forest-tree breeding programs, ground-truthing observations should be complemented with standardized HTFP. In this study, we develop a high-resolution (leaf level) HTFP approach to investigate the response to drought of a full-sib F 2 partially inbred population (termed here 'POP6'), whose F 1 was obtained from an intraspecific P. nigra controlled cross between genotypes with highly divergent phenotypes. We assessed the effects of two water treatments (well-watered and moderate drought) on a population of 4603 trees (503 genotypes) hosted in two adjacent experimental plots (1.67 ha) by conducting low-elevation (25 m) flights with an aerial drone and capturing 7836 thermal infrared (TIR) images. TIR images were undistorted, georeferenced, and orthorectified to obtain radiometric mosaics. Canopy temperature ( T c ) was extracted using two independent semi-automated segmentation techniques, eCognition- and Matlab-based, to avoid the mixed-pixel problem. Overall, results showed that the UAV platform-based thermal imaging enables to effectively assess genotype

  12. Evaluation of drought response of two poplar clones (Populus x canadensis Monch 'I-214' and P. deltoides Marsh. 'Dvina') through high resolution analysis of stem growth.

    Science.gov (United States)

    Giovannelli, Alessio; Deslauriers, Annie; Fragnelli, Giuseppe; Scaletti, Luciano; Castro, Gaetano; Rossi, Sergio; Crivellaro, Alan

    2007-01-01

    Different irrigation effects on stem radius variation (DeltaR) and maximum daily shrinkage (MDS) in Populus deltoides 'Dvina' and Populusxcanadensis 'I-214' were studied to assess differences in drought tolerance between clones. One-year-old trees growing in concrete tanks were submitted to two irrigation regimes (natural rainfall and irrigation) from 24 June to 10 August, and DeltaR was monitored by automatic point dendrometers. Independently of the irrigation regime, 'Dvina' showed a higher stem radial increment than 'I-214'. In both clones, the first response to changed soil water content was a significant increase in MDS, whilst DeltaR decreased about 20 d later when pre-dawn leaf water potential (Psipd) dropped below -0.4 MPa. However, they displayed different strategies to overcome drought. 'Dvina' maintained a positive DeltaR for longer than 'I-214', which had lower leaf Psipd and greater leaf abscission at the end of the drought period. After irrigation resumed, 'Dvina' showed a higher capacity to restore stem growth. 'I-214' was probably unable to recover secondary growth because of higher leaf abscission during drought stress and the production of newly expanded leaves during recovery. It is concluded that the larger radial growth of 'Dvina' derived from a better water use (carbon uptake versus water loss) than 'I-214' under limited water availability.

  13. Leaf ontogeny dominates the seasonal exchange of volatile organic compounds (VOC) in a SRC-poplar plantation during an entire growing season

    Science.gov (United States)

    Brilli, Federico; Gioli, Beniamino; Fares, Silvano; Zenone, Terenzio; Zona, Donatella; Gielen, Bert; Loreto, Francesco; Janssens, Ivan; Ceulemans, Reinhart

    2015-04-01

    The declining cost of many renewable energy technologies and changes in the prices of fossil fuels have recently encouraged governments policies to subsidize the use of biomass as a sustainable source of energy. Deciduous poplars (Populus spp.) trees are often selected for biomass production in short rotation coppiced (SRC) for their high CO2 photosynthetic assimilation rates and their capacity to develop dense canopies with high values of leaf area index (LAI). So far, observations and projections of seasonal variations of many VOC fluxes has been limited to strong isoprenoids emitting evergreen ecosystems such tropical and Mediterranean forests as well as Citrus and oil palm plantation, all having constant values of LAI. We run a long-term field campaign where the exchange of VOC, together with CO2 and water vapor was monitored during an entire growing season (June - November, 2012) above a SRC-based poplar plantation. Our results confirmed that isoprene and methanol were the most abundant fluxes emitted, accounting for more than 90% of the total carbon released in form of VOC. However, Northern climates characterized by fresh summertime temperatures and recurring precipitations favored poplar growth while inhibiting the development of isoprene emission that resulted in only 0.7% of the net ecosystem carbon exchange (NEE). Besides, measurements of a multitude of VOC fluxes by PTR-TOF-MS showed bi-directional exchange of oxygenated-VOC (OVOC) such as: formaldehyde, acetaldehyde, acetone, isoprene oxidation products (iox, namely MVK, MAC and MEK) as well as ethanol and formic acid. The application of Self Organizing Maps to visualize the relationship between the full time-series of many VOC fluxes and the observed seasonal variations of environmental, physiological and structural parameters proved the most abundant isoprene ad methanol fluxes to occur mainly on the hottest days under mid-high light intensities when also NEE and evapotraspiration reached the highest

  14. Water use of a multigenotype poplar short-rotation coppice from tree to stand scale.

    Science.gov (United States)

    Bloemen, Jasper; Fichot, Régis; Horemans, Joanna A; Broeckx, Laura S; Verlinden, Melanie S; Zenone, Terenzio; Ceulemans, Reinhart

    2017-02-01

    Short-rotation coppice (SRC) has great potential for supplying biomass-based heat and energy, but little is known about SRC's ecological footprint, particularly its impact on the water cycle. To this end, we quantified the water use of a commercial scale poplar ( Populus ) SRC plantation in East Flanders (Belgium) at tree and stand level, focusing primarily on the transpiration component. First, we used the AquaCrop model and eddy covariance flux data to analyse the different components of the stand-level water balance for one entire growing season. Transpiration represented 59% of evapotranspiration (ET) at stand scale over the whole year. Measured ET and modelled ET were lower as compared to the ET of reference grassland, suggesting that the SRC only used a limited amount of water. Secondly, we compared leaf area scaled and sapwood area scaled sap flow ( F s ) measurements on individual plants vs. stand scale eddy covariance flux data during a 39-day intensive field campaign in late summer 2011. Daily stem diameter variation (∆ D ) was monitored simultaneously with F s to understand water use strategies for three poplar genotypes. Canopy transpiration based on sapwood area or leaf area scaling was 43.5 and 50.3 mm, respectively, and accounted for 74%, respectively, 86%, of total ecosystem ET measured during the intensive field campaign. Besides differences in growth, the significant intergenotypic differences in daily ∆ D (due to stem shrinkage and swelling) suggested different water use strategies among the three genotypes which were confirmed by the sap flow measurements. Future studies on the prediction of SRC water use, or efforts to enhance the biomass yield of SRC genotypes, should consider intergenotypic differences in transpiration water losses at tree level as well as the SRC water balance at stand level.

  15. Increasing the productivity of short-rotation Populus plantations. Final report

    Energy Technology Data Exchange (ETDEWEB)

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W.; Radwan, M.A.; Zasada, J.C. [Forest Service, Olympia, WA (United States). Pacific Northwest Research Station

    1997-12-31

    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. Seven research papers are included which provide detailed methods, results, and interpretations on these topics.

  16. Analysis of a Farquhar-von Caemmerer-Berry leaf-level photosynthetic rate model for Populus tremuloides in the context of modeling and measurement limitations

    Science.gov (United States)

    K.E. Lenz; G.E. Host; K. Roskoski; A. Noormets; A. Sober; D.F. Karnosky

    2010-01-01

    The balance of mechanistic detail with mathematical simplicity contributes to the broad use of the Farquhar, von Caemmerer and Berry (FvCB) photosynthetic rate model. Here the FvCB model was coupled with a stomatal conductance model to form an [A,gs] model, and parameterized for mature Populus tremuloides leaves under varying CO2...

  17. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    Science.gov (United States)

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. Copyright © 2015. Published by Elsevier B.V.

  18. Genotype differences in 13C discrimination between atmosphere and leaf matter match differences in transpiration efficiency at leaf and whole-plant levels in hybrid Populus deltoides x nigra.

    Science.gov (United States)

    Rasheed, Fahad; Dreyer, Erwin; Richard, Béatrice; Brignolas, Franck; Montpied, Pierre; Le Thiec, Didier

    2013-01-01

    (13) C discrimination between atmosphere and bulk leaf matter (Δ(13) C(lb) ) is frequently used as a proxy for transpiration efficiency (TE). Nevertheless, its relevance is challenged due to: (1) potential deviations from the theoretical discrimination model, and (2) complex time integration and upscaling from leaf to whole plant. Six hybrid genotypes of Populus deltoides×nigra genotypes were grown in climate chambers and tested for whole-plant TE (i.e. accumulated biomass/water transpired). Net CO(2) assimilation rates (A) and stomatal conductance (g(s) ) were recorded in parallel to: (1) (13) C in leaf bulk material (δ(13) C(lb) ) and in soluble sugars (δ(13) C(ss) ) and (2) (18) O in leaf water and bulk leaf material. Genotypic means of δ(13) C(lb) and δ(13) C(ss) were tightly correlated. Discrimination between atmosphere and soluble sugars was correlated with daily intrinsic TE at leaf level (daily mean A/g(s) ), and with whole-plant TE. Finally, g(s) was positively correlated to (18) O enrichment of bulk matter or water of leaves at individual level, but not at genotype level. We conclude that Δ(13) C(lb) captures efficiently the genetic variability of whole-plant TE in poplar. Nevertheless, scaling from leaf level to whole-plant TE requires to take into account water losses and respiration independent of photosynthesis, which remain poorly documented. © 2012 Blackwell Publishing Ltd.

  19. Practical breeding of cottonwood in the north-central region

    Science.gov (United States)

    Carl A. Mohn

    1973-01-01

    More than 20 years ago Scott Pauley (1949) designated the genus Populus as the "guinea pig of forest-tree breeding. This designation is still appropriate as evidenced by the steady, almost overwhelming, stream of publications related to the genetics and breeding of poplars. A good indication of the scope and depth of genetic work with poplars...

  20. Analysis of Location Quotient index of poplar wood processing value chain in Iran

    OpenAIRE

    omid hosseinzadeh; Marzieh Hajjarian; Samira Porbar

    2016-01-01

    Value added in the poplar wood value chain has great economic effects for poplar farmers and have a fundamental role in sustainable supplying of required cellulosic materials of industries in long-term. The purpose of this study was to analyze the value chain of poplar and use the results to improve it. In order to determine the poplar value chain, Porter's value chain analysis framework was used. The statistical society consists of 76 experts to identify poplar wood value who were active in ...

  1. Comparative physiological and proteomic analyses of poplar (Populus yunnanensis plantlets exposed to high temperature and drought.

    Directory of Open Access Journals (Sweden)

    Xiong Li

    Full Text Available Plantlets of Populus yunnanensis Dode were examined in a greenhouse for 48 h to analyze their physiological and proteomic responses to sustained heat, drought, and combined heat and drought. Compared with the application of a single stress, simultaneous treatment with both stresses damaged the plantlets more heavily. The plantlets experienced two apparent response stages under sustained heat and drought. During the first stage, malondialdehyde and reactive oxygen species (ROS contents were induced by heat, but many protective substances, including antioxidant enzymes, proline, abscisic acid (ABA, dehydrin, and small heat shock proteins (sHSPs, were also stimulated. The plants thus actively defended themselves against stress and exhibited few pathological morphological features, most likely because a new cellular homeostasis was established through the collaborative operation of physiological and proteomic responses. During the second stage, ROS homeostasis was overwhelmed by substantial ROS production and a sharp decline in antioxidant enzyme activities, while the synthesis of some protective elements, such as proline and ABA, was suppressed. As a result, photosynthetic levels in P. yunnanensis decreased sharply and buds began to die, despite continued accumulation of sHSPs and dehydrin. This study supplies important information about the effects of extreme abiotic environments on woody plants.

  2. Signatures of cinnamyl alcohol dehydrogenase deficiency in poplar lignins.

    Science.gov (United States)

    Lapierre, Catherine; Pilate, Gilles; Pollet, Brigitte; Mila, Isabelle; Leplé, Jean-Charles; Jouanin, Lise; Kim, Hoon; Ralph, John

    2004-02-01

    A series of transgenic poplars down-regulated for cinnamyl alcohol dehydrogenase (CAD) was analyzed by thioacidolysis. Among the lignin-derived monomers, the indene compounds that were recently shown to originate from sinapaldehyde incorporated into lignins through 8-O-4-cross-coupling, were found to increase as a function of CAD deficiency level. While these syringyl markers were recovered in substantial amounts in the most severely depressed lines, the markers for coniferaldehyde incorporation were recovered in only low amounts. In conjunction with these additional sinapaldehyde units and relative to the control samples, lignins in CAD-deficient poplar lines had less conventional syringyl-units and beta-O-4-bonds and more free phenolic groups. We found that almost half of the polymers in the most deficient lines could be solubilized in alkali and at room temperature. This unusual behavior suggests that lignins in CAD-deficient poplars occur as small, alkali-leachable lignin domains. That mainly sinapaldehyde incorporates into the lignins of CAD-deficient poplars suggests that the recently identified sinapyl alcohol dehydrogenase (SAD), which is structurally distinct from the CAD enzyme targeted herein, does not play any substantial role in constitutive lignification in poplar.

  3. Boron accumulation and tolerance of hybrid poplars grown on a B-laden mixed paper mill waste landfill.

    Science.gov (United States)

    Rees, Rainer; Robinson, Brett H; Rog, Christopher J; Papritz, Andreas; Schulin, Rainer

    2013-03-01

    Paper mill wastes are a mixture of by-products from pulp production and on-site energy production, consisting of paper mill sludge, ash and cinders. Landfilling of these highly boron (B) and heavy metal laden waste products carries environmental risks. Poplars have been successfully employed in the phytomanagement and hydraulic control of B contaminated sites. Here, we assess the performance of hybrid poplars on a paper-mill waste landfill, investigate the accumulation of B by the trees and explore the relationship between local-scale root growth and substrate properties. Leaf and root tissue samples were collected on three plots and analyzed for their chemical properties and root traits. Additionally, we sampled four soil cores in the vicinity of each of the trees and determined chemical and physical properties. Using a principal component analysis followed by a cluster analysis, we identified three substrate types. This method delineated the soil effects on tree survival and growth, although correlations with individual soil element concentrations were weak. Despite signs of B toxicity in some leaves, B was not the key limiting factor for poplar growth. Instead, Ca deficiency caused by a Mg:Ca imbalance was the primary reason for the poor performance of some trees. Root growth was not limited by toxicity effects of soil contaminants. Our results show that hybrid poplars perform well under the harsh growing conditions on a multi-contaminated, B-laden substrate in a hemiboreal climate. Exploiting the differences in the performance of the four clones in relation to the soil types, could increase the success of revegetation on this and other landfills. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Establishment and early management of Populus species in southern Sweden

    OpenAIRE

    Mc Carthy, Rebecka

    2016-01-01

    Populus species are among the most productive tree species in Sweden. Interest in growing them has increased during the 21st century due to political goals to increase the share of renewable energy and to increase the proportion of hardwood species in forests. Populus species have been shown to be potentially profitable, but currently they are mostly planted on abandoned agricultural land. There is a lack of knowledge about the establishment of Populus species on forest sites. There is also a...

  5. Potential of the TCE-degrading endophyte Pseudomonas putida W619-TCE to improve plant growth and reduce TCE phytotoxicity and evapotranspiration in poplar cuttings.

    Science.gov (United States)

    Weyens, Nele; Truyens, Sascha; Dupae, Joke; Newman, Lee; Taghavi, Safiyh; van der Lelie, Daniel; Carleer, Robert; Vangronsveld, Jaco

    2010-09-01

    The TCE-degrading poplar endophyte Pseudomonas putida W619-TCE was inoculated in poplar cuttings, exposed to 0, 200 and 400 mg l(-1) TCE, that were grown in two different experimental setups. During a short-term experiment, plants were grown hydroponically in half strength Hoagland nutrient solution and exposed to TCE for 3 days. Inoculation with P. putida W619-TCE promoted plant growth, reduced TCE phytotoxicity and reduced the amount of TCE present in the leaves. During a mid-term experiment, plants were grown in potting soil and exposed to TCE for 3 weeks. Here, inoculation with P. putida W619-TCE had a less pronounced positive effect on plant growth and TCE phytotoxicity, but resulted in strongly reduced amounts of TCE in leaves and roots of plants exposed to 400 mg l(-1) TCE, accompanied by a lowered evapotranspiration of TCE. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), which are known intermediates of TCE degradation, were not detected. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  6. A difference gel electrophoresis study on thylakoids isolated from poplar leaves reveals a negative impact of ozone exposure on membrane proteins.

    Science.gov (United States)

    Bohler, Sacha; Sergeant, Kjell; Hoffmann, Lucien; Dizengremel, Pierre; Hausman, Jean-Francois; Renaut, Jenny; Jolivet, Yves

    2011-07-01

    Populus tremula L. x P. alba L. (Populus x canescens (Aiton) Smith), clone INRA 717-1-B4, saplings were subjected to 120 ppb ozone exposure for 28 days. Chloroplasts were isolated, and the membrane proteins, solubilized using the detergent 1,2-diheptanoyl-sn-glycero-3-phosphocholine (DHPC), were analyzed in a difference gel electrophoresis (DiGE) experiment comparing control versus ozone-exposed plants. Extrinsic photosystem (PS) proteins and adenosine triphosphatase (ATPase) subunits were detected to vary in abundance. The general trend was a decrease in abundance, except for ferredoxin-NADP(+) oxidoreductase (FNR), which increased after the first 7 days of exposure. The up-regulation of FNR would increase NAPDH production for reducing power and detoxification inside and outside of the chloroplast. Later on, FNR and a number of PS and ATPase subunits decrease in abundance. This could be the result of oxidative processes on chloroplast proteins but could also be a way to down-regulate photochemical reactions in response to an inhibition in Calvin cycle activity.

  7. Enhanced salt tolerance of transgenic poplar plants expressing a manganese superoxide dismutase from Tamarix androssowii.

    Science.gov (United States)

    Wang, Yu Cheng; Qu, Guan Zheng; Li, Hong Yan; Wu, Ying Jie; Wang, Chao; Liu, Gui Feng; Yang, Chuan Ping

    2010-02-01

    Superoxide dismutases (SODs) play important role in stress tolerance of plants. In this study, an MnSOD gene (TaMnSOD) from Tamarix androssowii, under the control of the CaMV35S promoter, was introduced into poplar (Populus davidiana x P. bolleana). The physiological parameters, including SOD activity, malondialdehyde (MDA) content, relative electrical conductivity (REC) and relative weight gain, of transgenic lines and wild type (WT) plants, were measured and compared. The results showed that SOD activity was enhanced in transgenic plants, and the MDA content and REC were significantly decreased compared to WT plants when exposed to NaCl stress. In addition, the relative weight gains of the transgenic plants were 8- to 23-fold of those observed for WT plants after NaCl stress for 30 days. The data showed that the SOD activities that increased in transgenic lines are 1.3-4-folds of that increased in the WT plant when exposed to NaCl stress. Our analysis showed that increases in SOD activities as low as 0.15-fold can also significantly enhance salt tolerance in transgenic plants, suggesting an important role of increased SOD activity in plant salt tolerance

  8. Dynamics and sources of soil organic C following afforestation of croplands with poplar in a semi-arid region in northeast China.

    Directory of Open Access Journals (Sweden)

    Ya-Lin Hu

    Full Text Available Afforestation of former croplands has been proposed as a promising way to mitigate rising atmospheric CO2 concentration in view of the commitment to the Kyoto Protocol. Central to this C sequestration is the dynamics of soil organic C (SOC storage and stability with the development of afforested plantations. Our previous study showed that SOC storage was not changed after afforestation except for the 0-10 cm layer in a semi-arid region of Keerqin Sandy Lands, northeast China. In this study, soil organic C was further separated into light and heavy fractions using the density fractionation method, and their organic C concentration and (13C signature were analyzed to investigate the turnover of old vs. new SOC in the afforested soils. Surface layer (0-10 cm soil samples were collected from 14 paired plots of poplar (Populus × xiaozhuanica W. Y. Hsu & Liang plantations with different stand basal areas (the sum of the cross-sectional area of all live trees in a stand, ranging from 0.2 to 32.6 m(2 ha(-1, and reference maize (Zea mays L. croplands at the same sites as our previous study. Soil ΔC stocks (ΔC refers to the difference in SOC content between a poplar plantation and the paired cropland in bulk soil and light fraction were positively correlated with stand basal area (R (2 = 0.48, p<0.01 and R (2 = 0.40, p = 0.02, respectively, but not for the heavy fraction. SOCcrop (SOC derived from crops contents in the light and heavy fractions in poplar plantations were significantly lower as compared with SOC contents in croplands, but tree-derived C in bulk soil, light and heavy fraction pools increased gradually with increasing stand basal area after afforestation. Our study indicated that cropland afforestation could sequester new C derived from trees into surface mineral soil, but did not enhance the stability of SOC due to a fast turnover of SOC in this semi-arid region.

  9. One-step pretreatment of yellow poplar biomass using peracetic acid to enhance enzymatic digestibility.

    Science.gov (United States)

    Lee, Hyeong Rae; Kazlauskas, Romas J; Park, Tai Hyun

    2017-09-22

    Pretreatment of biomass with dilute acid requires high temperatures of >160 °C to remove xylan and does not remove lignin. Here we report that the addition of peracetic acid, a strong oxidant, to mild dilute acid pretreatment reduces the temperature requirement to only 120 °C. Pretreatment of yellow poplar with peracetic acid (300 mM, 2.3 wt%) and dilute sulfuric acid (100 mM, 1.0 wt%) at 120 °C for 5 min removed 85.7% of the xylan and 90.4% of the lignin leaving a solid consisting of 75.6% glucan, 6.0% xylan and 4.7% lignin. Low enzyme loadings of 5 FPU/g glucan and 10 pNPGU/g glucan converted this solid to glucose with an 84.0% yield. This amount of glucose was 2.5 times higher than with dilute acid-pretreated solid and 13.8 times higher than with untreated yellow poplar. Thus, the addition of peracetic acid, easily generated from acetic acid and hydrogen peroxide, dramatically increases the effectiveness of dilute acid pretreatment of biomass.

  10. Characterization of surface water contaminants in the Clinch River and Poplar Creek

    International Nuclear Information System (INIS)

    Ford, C.; Madix, S.; Rash, C.

    1995-01-01

    Surface waters in the Clinch River and Poplar Creek have been contaminated by activities on the DOE's Oak Ridge Reservation throughout the more than 50 year history of Oak Ridge. Though the Clinch River and Poplar Creek drainage areas are contaminated with heavy metals, organics and radionuclides, public access to these sites is not restricted. The investigation, divided into discrete studies, was tailored to provide a statistically sound picture of contaminants and aqueous toxicity in Poplar Creek, investigate contaminant remobilization from sediments, and determine contaminant levels during a series of ''worst-case'' events. Results for Poplar Creek indicate that average contaminant values were below levels of concern for human health and ecological risk, though contaminant distributions suggest that episodic events contribute sufficiently to system contaminant levels to be of concern. Additionally, water column contaminant levels were significantly higher in particle deposition areas rather than at known contaminant sources. Levels of organic compounds in reference areas to Poplar Creek exceeded those in the Poplar Creek study area. In the Clinch River and Poplar Creek, statistical differences in metal and radionuclide levels from known contaminated areas confirmed previous results, and were used to independently distinguish between sites. Contaminant concentrations were elevated in association with sediments, though no distinction between deposition and remobilization could be made. Due to elevated contaminant levels, and some unexpected contaminant distributions, sites in Poplar Creek and off-channel embayments of the Clinch River were identified that will require additional characterization

  11. Bedding Improves Yellow-Poplar Growth on Fragipan Soils

    Science.gov (United States)

    John K. Francis

    1979-01-01

    Yellow-poplar can be grown on soils that have a shallow fragipan--but unless such sites are bedded, growth is likely to be extremely poor. In a Tennessee study, bedding increased height of planted yellow-poplar over 5 years, but fertilizer did not. Because of the cost of bedding and the availability of nonfragipan sites, it would ordinarily be better not to plant...

  12. Evaluation of interspecific DNA variability in poplars using AFLP and ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-10-19

    Oct 19, 2009 ... Both markers crearly separated two distinct clusters, one included Populus nigra and the other ... Species of Populus used to test SSR and AFLP primer pair utility. ..... cluster NS001 and NS002 were closely related to 0.273.

  13. Rate of Contamination Removal of Two Phyto-remediation Sites at the DOE Portsmouth Gaseous Diffusion Plant

    International Nuclear Information System (INIS)

    Lewis, A.C.; Baird, D.R.

    2006-01-01

    This paper describes applications of phyto-remediation at the Portsmouth Gaseous Diffusion Plant (PORTS), a Department of Energy (DOE) Facility that enriched uranium from the early 1950's until 2000. Phyto-remediation has been implemented to assist in the removal of TCE (trichloroethylene) in the groundwater at two locations at the PORTS facility: the X-740 area and the X-749/X-120 area. Phyto-remediation technology is based on the ability of certain plants species (in this case hybrid poplar trees) and their associated rhizo-spheric microorganisms to remove, degrade, or contain chemical contaminants located in the soil, sediment, surface water, groundwater, and possibly even the atmosphere. Phyto-remediation technology is a promising clean-up solution for a wide variety of pollutants and sites. Mature trees, such as the hybrid poplar, can consume up to 3,000 gallons of groundwater per acre per day. Organic compounds are captured in the trees' root systems. These organic compounds are degraded by ultraviolet light as they are transpired along with the water vapor through the leaves of the trees. The phyto-remediation system at the X-740 area encompasses 766 one-year old hybrid poplar trees (Populus nigra x nigra, Populus nigra x maximowiczii, and Populus deltoides x nigra) that were planted 10 feet apart in rows 10 feet to 20 feet apart, over an area of 2.6 acres. The system was installed to manage the VOC contaminant plume. At the X749/X-120 area, a phyto-remediation system of 2,640 hybrid poplar trees (Populus nigra x maximowiczii) was planted in seven areas/zones to manage the VOC contaminant plume. The objectives of these systems are to remove contamination from the groundwater and to prevent further migration of contaminants. The goal of these remediation procedures is to achieve completely mature and functional phyto-remediation systems within two years of the initial planting of the hybrid poplar trees at each planting location. There is a direct

  14. Productivitatea clonelor de plop hibrid instalate în culturi intensive în nord-estul României [ Poplar clones productivity managed for biomass production in North-Eastern Romania

    Directory of Open Access Journals (Sweden)

    Dănilă I.C.

    2016-08-01

    Full Text Available Poplar (Populus spp. is a fast-growing species in temperate conditions, with potential to substitute fossil fuels by obtaining energy from biomass. The aim of this work was to study the productivity of 6 hybrid poplar clone from a hilly region of NE Romania, after a growing season of 4 and, respectively, 5 years. Rods were used as planting material, planted at a density of 2667 trees per ha, with between-row spacing of 3 m and interior-row distances of 1.25 m. Generally, significant differences appear between clones, for all analysed biometric characteristics (p≤0.05. Results show that, in the fifth growing season, diameter increases on average with 15.1%, reaching 11.89 cm, height increases in average with 13.9%, reaching 11.89 m, and volume increases with 33.3%, reaching 0.172 m3. The total biomass after 4 years vegetation varies from 32.8 t/ha to 39.4 t/ha, and after 5 years from 47.7 t/ha to 60.2 t/ha, having an average increase in the latest growing season of 35% and an average yield of 11.3 t/ha/year. The most productive clones in the given growing conditions and crop characteristics are the clone Pannonia after 4 growing seasons and the clone AF6 after 5 years.

  15. Sex-specific responses to winter flooding, spring waterlogging and post-flooding recovery in Populus deltoides.

    Science.gov (United States)

    Miao, Ling-Feng; Yang, Fan; Han, Chun-Yu; Pu, Yu-Jin; Ding, Yang; Zhang, Li-Jia

    2017-05-31

    Winter flooding events are common in some rivers and streams due to dam constructions, and flooding and waterlogging inhibit the growth of trees in riparian zones. This study investigated sex-specific morphological, physiological and ultrastructural responses to various durations of winter flooding and spring waterlogging stresses, and post-flooding recovery characteristics in Populus deltoides. There were no significant differences in the morphological, ultrastructural and the majority of physiological traits in trees subjected to medium and severe winter flooding stresses, suggesting that males and females of P. deltoides were winter flooding tolerant, and insensitive to winter flooding duration. Males were more tolerant to winter flooding stress in terms of photosynthesis and chlorophyll fluorescence than females. Females displayed greater oxidative damage due to flooding stress than males. Males developed more efficient antioxidant enzymatic systems to control reactive oxygen species. Both sexes had similarly strong post-flooding recovery capabilities in terms of plant growth, and physiological and ultrastructural parameters. However, Males had better recovery capabilities in terms of pigment content. These results increase the understanding of poplars's adaptation to winter flooding stress. They also elucidate sex-specific differences in response to flooding stress during the dormant season, and during post-flooding recovery periods.

  16. Growth of Populus and Salix Species under Compost Leachate Irrigation

    Directory of Open Access Journals (Sweden)

    Tooba Abedi

    2014-12-01

    Full Text Available According to the known broad variation in remediation capacity, three plant species were used in the experiment: two fast growing poplar’s clones - Populus deltoides, Populus euramericana, and willows Salix alba. Populus and Salix cuttings were collected from the nursery of the Populus Research Center of Safrabasteh in the eastern part of Guilan province at north of Iran. The Populus clones were chosen because of their high biomass production capacity and willow- because it is native in Iran. The highest diameter growth rate was exhibited for all three plant species by the 1:1 treatment with an average of 0.26, 0.22 and 0.16 cm in eight months period for P. euroamericana, P. deltoides and S. alba, respectively. Over a period of eight months a higher growth rate of height was observed in (P and (1:1 treatment for S. alba (33.70 and 15.77 cm, respectively and in (C treatment for P. deltoides (16.51 cm. P. deltoides and S. alba produced significantly (p<0.05 smaller aboveground biomass in (P treatment compared to all species. P. deltoides exhibited greater mean aboveground biomass in the (1:1 treatment compared to other species. There were significant differences (p<0.05 in the growth of roots between P. deltoides, P. euramericana and S. alba in all of the treatments.

  17. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.

    Science.gov (United States)

    Grimberg, Åsa; Carlsson, Anders S; Marttila, Salla; Bhalerao, Rishikesh; Hofvander, Per

    2015-08-08

    Carbon accumulation and remobilization are essential mechanisms in plants to ensure energy transfer between plant tissues with different functions or metabolic needs and to support new generations. Knowledge about the regulation of carbon allocation into oil (triacylglycerol) in plant storage tissue can be of great economic and environmental importance for developing new high-yielding oil crops. Here, the effect on global gene expression as well as on physiological changes in leaves transiently expressing five homologs of the transcription factor WRINKLED1 (WRI1) originating from diverse species and tissues; Arabidopsis thaliana and potato (Solanum tuberosum) seed embryo, poplar (Populus trichocarpa) stem cambium, oat (Avena sativa) grain endosperm, and nutsedge (Cyperus esculentus) tuber parenchyma, were studied by agroinfiltration in Nicotiana benthamiana. All WRI1 homologs induced oil accumulation when expressed in leaf tissue. Transcriptome sequencing revealed that all homologs induced the same general patterns with a drastic shift in gene expression profiles of leaves from that of a typical source tissue to a source-limited sink-like tissue: Transcripts encoding enzymes for plastid uptake and metabolism of phosphoenolpyruvate, fatty acid and oil biosynthesis were up-regulated, as were also transcripts encoding starch degradation. Transcripts encoding enzymes in photosynthesis and starch synthesis were instead down-regulated. Moreover, transcripts representing fatty acid degradation were up-regulated indicating that fatty acids might be degraded to feed the increased need to channel carbons into fatty acid synthesis creating a futile cycle. RT-qPCR analysis of leaves expressing Arabidopsis WRI1 showed the temporal trends of transcripts selected as 'markers' for key metabolic pathways one to five days after agroinfiltration. Chlorophyll fluorescence measurements of leaves expressing Arabidopsis WRI1 showed a significant decrease in photosynthesis, even though

  18. Evaluation of flooding tolerance in cuttings of Populus clones used ...

    African Journals Online (AJOL)

    We analysed the responses to flooding of 14 poplar clones used for forestation at the Paraná River Delta, Argentina. Some are commercial clones planted in the area, and others belong to a poplar breeding program from the National Institute of Agricultural Technology (INTA) in Argentina. Potted plants of 60 cm high ...

  19. Examination of correlation between histidine and nickel absorption by Morus L., Robinia pseudoacacia L. and Populus nigra L. using HPLC-MS and ICP-MS.

    Science.gov (United States)

    Ozen, Sukran Akkus; Yaman, Mehmet

    2016-08-02

    In this study, HPLC-MS and ICP-MS methods were used for the determination of histidine and nickel in Morus L., Robinia pseudoacacia L., and Populus nigra L. leaves taken from industrial areas including Gaziantep and Bursa cities. In the determination of histidine by HPLC-MS, all of the system parameters such as flow rate of mobile phase, fragmentor potential, injection volume and column temperature were optimized and found to be 0.2 mL min(-1), 70 V, 15 µL, and 20°C, respectively. Under the optimum conditions, histidine was extracted from plant sample by distilled water at 90°C for 30 min. Concentrations of histidine as mg kg(-1) were found to be between 2-9 for Morus L., 6-13 for Robinia pseudoacacia L., and 2-10 for Populus nigra L. Concentrations of nickel were in the ranges of 5-10 mg kg(-1) for Morus L., 3-10 mg kg(-1) for Robinia pseudoacacia L., and 0.6-4 mg kg(-1) for Populus nigra L. A significant linear correlation (r = 0.78) between histidine and Ni was observed for Populus nigra L., whereas insignificant linear correlation for Robinia pseudoacacia L. (r = 0.22) were seen. Limits of detection (LOD) and quantitation (LOQ) were found to be 0.025 mg Ni L(-1) and 0.075 mg Ni L(-1), respectively.

  20. Estimation of cost-effectiveness of poplar wood production in poplar plantations in Ravni Srem based on the method of pay back period

    Directory of Open Access Journals (Sweden)

    Keča Ljiljana

    2011-01-01

    Full Text Available Poplar plantations are a category of fixed assets in forestry, i.e. the assets with a biological character. They are related to their site, they are cultivated for a relatively long time and they have a relatively long utilization cycle, with the yield development determined by the plantation growth and age. Plantations transfer their value gradually to the obtained products during the period of their harvesting, and, by the realization of the products, the means invested in the plantation establishment are reproduced. The period of investments in poplar growing can be relatively long, and so is the period of harvesting. Therefore, it is important to determine the time of the return of the capital invested in these and similar plantations. This paper presents the analysis of commercial profitability of poplar cultivation according to the indicator for the assessment of projects in agriculture and forestry - pay back period. The application of pay back period (PBP calculation can affect greatly the reliability of predicting the degree of economic effectiveness of investments, and also the potential risks for the investor in his decisions on the investments in poplar cultivation. The analysis of poplar clone I-214 plantations was carried out in the area of Ravni Srem, under different rotations and soil types. Based on the analysis of costs and receipts in different plantation ages, and using the method of pay back period, the objective of the study was to evaluate the possible pay back period of invested capital in wood production in poplar plantations. PBP is practically unacceptable by the investor under the discount rate of 6%. The most favorable situation is in the youngest stands, using the discount rate of 2%. The situation regarding the pay back period in the over-aged stands is utterly unfavorable, so the credit cannot be repaid under any conditions. This fact supports the idea that the production cycle length should be shortened.

  1. Phytoremediation of a petroleum-hydrocarbon contaminated shallow aquifer in Elizabeth City, North Carolina, USA

    Science.gov (United States)

    Nichols, Elizabeth Guthrie; Cook, Rachel L.; Landmeyer, James E.; Atkinson, Brad; Malone, Donald R.; Shaw, George; Woods, Leilani

    2014-01-01

    A former bulk fuel terminal in North Carolina is a groundwater phytoremediation demonstration site where 3,250 hybrid poplars, willows, and pine trees were planted from 2006 to 2008 over approximately 579,000 L of residual gasoline, diesel, and jet fuel. Since 2011, the groundwater altitude is lower in the area with trees than outside the planted area. Soil-gas analyses showed a 95 percent mass loss for total petroleum hydrocarbons (TPH) and a 99 percent mass loss for benzene, toluene, ethylbenzene, and xylenes (BTEX). BTEX and methyl tert-butyl ether concentrations have decreased in groundwater. Interpolations of free-phase, fuel product gauging data show reduced thicknesses across the site and pooling of fuel product where poplar biomass is greatest. Isolated clusters of tree mortalities have persisted in areas with high TPH and BTEX mass. Toxicity assays showed impaired water use for willows and poplars exposed to the site's fuel product, but Populus survival was higher than the willows or pines on-site, even in a noncontaminated control area. All four Populus clones survived well at the site.

  2. Abnormal meiosis in an intersectional allotriploid of Populus L. and segregation of ploidy levels in 2x × 3x progeny.

    Directory of Open Access Journals (Sweden)

    Jun Wang

    Full Text Available Triploid plants are usually highly aborted owing to unbalanced meiotic chromosome segregation, but limited viable gametes can participate in the transition to different ploidy levels. In this study, numerous meiotic abnormalities were found with high frequency in an intersectional allotriploid poplar (Populus alba × P. berolinensis 'Yinzhong', including univalents, precocious chromosome migration, lagging chromosomes, chromosome bridges, micronuclei, and precocious cytokinesis, indicating high genetic imbalance in this allotriploid. Some micronuclei trigger mini-spindle formation in metaphase II and participate in cytokinesis to form polyads with microcytes. Unbalanced chromosome segregation and chromosome elimination resulted in the formation of microspores with aneuploid chromosome sets. Fusion of sister nuclei occurs in microsporocytes with precocious cytokinesis, which could form second meiotic division restitution (SDR-type gametes. However, SDR-type gametes likely contain incomplete chromosome sets due to unbalanced segregation of homologous chromosomes during the first meiotic division in triploids. Misorientation of spindles during the second meiotic division, such as fused and tripolar spindles with low frequency, could result in the formation of first meiotic division restitution (FDR-type unreduced gametes, which most likely contain three complete chromosome sets. Although 'Yinzhong' yields 88.7% stainable pollen grains with wide diameter variation from 23.9 to 61.3 μm, the pollen viability is poor (2.78% ± 0.38. A cross of 'Yinzhong' pollen with a diploid female clone produced progeny with extensive segregation of ploidy levels, including 29 diploids, 18 triploids, 4 tetraploids, and 48 aneuploids, suggesting the formation of viable aneuploidy and unreduced pollen in 'Yinzhong'. Individuals with different chromosome compositions are potential to analyze chromosomal function and to integrate the chromosomal dosage variation into

  3. Heavy metal accumulation in trees growing on contaminated sites in Central Europe

    International Nuclear Information System (INIS)

    Unterbrunner, R.; Puschenreiter, M.; Sommer, P.; Wieshammer, G.; Tlustos, P.; Zupan, M.; Wenzel, W.W.

    2007-01-01

    Metal-accumulating woody species have been considered for phytoextraction of metal-contaminated sites. We investigated Zn and Cd accumulation in tissues of adult trees and associated herbaceous species collected from contaminated areas in Central Europe. We found considerable Cd and Zn accumulation in various willow, poplar and birch species with up to 116 mg Cd kg -1 and 4680 mg Zn kg -1 in leaves of Salix caprea. Annual variation of Cd and Zn concentrations in leaves of Salix caprea were small, indicating that data obtained in different years can be compared. Metal concentrations in leaves were not related to total (aqua regia) or labile (1 M NH 4 NO 3 extract) concentrations in soil but the accumulation factors (leaf concentration: soil concentration) for Cd and Zn followed an inverse log type function. Metal partitioning between tissues showed a minimum in the wood, with increasing concentrations of Cd and Zn towards the leaves and fine roots. - Adult field-grown Salix caprea, Populus tremula and other tree species accumulate up to 4680 mg Zn kg -1 and 116 mg Cd kg -1 in their leaves

  4. Heavy metal accumulation in trees growing on contaminated sites in Central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Unterbrunner, R. [University of Natural Resources and Applied Life Sciences, Vienna - BOKU, Department of Forest and Soil Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria); Puschenreiter, M. [University of Natural Resources and Applied Life Sciences, Vienna - BOKU, Department of Forest and Soil Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria)]. E-mail: markus.puschenreiter@boku.ac.at; Sommer, P. [University of Natural Resources and Applied Life Sciences, Vienna - BOKU, Department of Forest and Soil Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria); Wieshammer, G. [University of Natural Resources and Applied Life Sciences, Vienna - BOKU, Department of Forest and Soil Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria); Tlustos, P. [Czech University of Agriculture Prague, 165 21 Praha 6-Suchdol (Czech Republic); Zupan, M. [University of Ljubljana, Biotechnical Faculty, Agronomy department, Jamnikarjeva 101, 1000 Ljubljana (Slovenia); Wenzel, W.W. [University of Natural Resources and Applied Life Sciences, Vienna - BOKU, Department of Forest and Soil Sciences, Peter Jordan Strasse 82, A-1190 Vienna (Austria)

    2007-07-15

    Metal-accumulating woody species have been considered for phytoextraction of metal-contaminated sites. We investigated Zn and Cd accumulation in tissues of adult trees and associated herbaceous species collected from contaminated areas in Central Europe. We found considerable Cd and Zn accumulation in various willow, poplar and birch species with up to 116 mg Cd kg{sup -1} and 4680 mg Zn kg{sup -1} in leaves of Salix caprea. Annual variation of Cd and Zn concentrations in leaves of Salix caprea were small, indicating that data obtained in different years can be compared. Metal concentrations in leaves were not related to total (aqua regia) or labile (1 M NH{sub 4}NO{sub 3} extract) concentrations in soil but the accumulation factors (leaf concentration: soil concentration) for Cd and Zn followed an inverse log type function. Metal partitioning between tissues showed a minimum in the wood, with increasing concentrations of Cd and Zn towards the leaves and fine roots. - Adult field-grown Salix caprea, Populus tremula and other tree species accumulate up to 4680 mg Zn kg{sup -1} and 116 mg Cd kg{sup -1} in their leaves.

  5. High Titer Ethanol and Lignosulfonate Production from SPORL Pretreated Poplar at Pilot Scale

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Haifeng [Key Laboratory of Low Carbon Energy and Chemical Engineering, Shandong University of Science and Technology, Qingdao (China); Forest Products Laboratory, USDA Forest Service, Madison, WI (United States); Zhu, J. Y., E-mail: jzhu@fs.fed.us; Gleisner, Roland [Forest Products Laboratory, USDA Forest Service, Madison, WI (United States); Qiu, Xueqing [School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou (China); Horn, Eric [BioPulping International, Inc., Madison, WI (United States)

    2015-04-27

    Poplar NE222 (Populus deltoides Bartr. ex Marsh × P. nigra L.) wood chips were pretreated in a 390 L pilot-scale rotating wood-pulping digester using a dilute sulfite solution of approximately pH 1.8 at 160°C for 40 min for bioconversion to ethanol and lignosulfonate (LS). An estimated combined hydrolysis factor (CHF) of 3.3 was used to scale the sulfite pretreatment temperature and time from laboratory bench scale experiments, which balanced sugar yield and inhibitor formation to facilitate high titer ethanol production through fermentation using S. cerevisiae YRH400 without detoxification. A terminal ethanol titer of 43.6 g L{sup -1} with a yield of 247 L tonne wood{sup -1} was achieved at total solids loading of 20%. The relatively low ethanol yield compared with yield from Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL)-pretreated softwoods was due to inefficient utilization of xylose. The LS from SPORL has a substantially higher phenolic group (Ph-OH) content, though it was less sulfonated and had a lower molecular weight than a purified commercial softwood LS, and therefore has potential for certain commercial markets and future novel applications through further processing. The conversion efficiency achieved through process integration and simplification, demonstrated here, has significant importance to the entire supply chain of biofuel production from woody biomass.

  6. Wood production potential in poplar plantations in Sweden

    International Nuclear Information System (INIS)

    Christersson, Lars

    2010-01-01

    Shortage of oil, large variations in exports from Russia of wood to Europe, plenty of abandoned agriculture land, new ideas about a more intensive silviculture; these circumstances are driving forces in Sweden for planting fast-growing poplar and hybrid aspen clones on suitable land. The advantage of such trees is that the wood can be used for both energy (heat, biofuels, electricity), paper and for construction. Poplar clones bred in the USA and Belgium, and older hybrid aspen clones from Sweden, together with new poplar clones collected and selected for Swedish conditions from British Columbia, Canada, were planted during the 1990s in south and central Sweden. The stem diameters and heights of the trees have been measured during the last 10 years and the woody biomass production above ground has been calculated. MAI for all the plantations is 10-31 m 3 or 3-10 ton DM per hectare with the highest annual woody production of 45 m 3 or 15 ton DM per hectare in some years in a very dense plantation in the most southern part of Sweden. All the plantations have been fenced for at least the first ten years. The damage has been caused by stem canker, insects, leaf rust and by moose after removal of the fences. The possibilities for the use of poplar plantations as energy forest and vegetation filters are discussed. (author)

  7. 21st Session of the International Poplar Commission (IPC-2000): poplar and willow culture: meeting the needs of society and the environment; 200 September 24-28; Vancouver, WA.

    Science.gov (United States)

    J.G. Isebrands; J. Richardson

    2000-01-01

    Research results and ongoing research activities on poplar and willow breeding, diseases, insects, production, and utilization are described in 220 abstracts from the International Poplar Commission meeting in Vancouver, Washington, September 24-28, 2000.

  8. Gene Structures, Classification, and Expression Models of the DREB Transcription Factor Subfamily in Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Yunlin Chen

    2013-01-01

    Full Text Available We identified 75 dehydration-responsive element-binding (DREB protein genes in Populus trichocarpa. We analyzed gene structures, phylogenies, domain duplications, genome localizations, and expression profiles. The phylogenic construction suggests that the PtrDREB gene subfamily can be classified broadly into six subtypes (DREB A-1 to A-6 in Populus. The chromosomal localizations of the PtrDREB genes indicated 18 segmental duplication events involving 36 genes and six redundant PtrDREB genes were involved in tandem duplication events. There were fewer introns in the PtrDREB subfamily. The motif composition of PtrDREB was highly conserved in the same subtype. We investigated expression profiles of this gene subfamily from different tissues and/or developmental stages. Sixteen genes present in the digital expression analysis had high levels of transcript accumulation. The microarray results suggest that 18 genes were upregulated. We further examined the stress responsiveness of 15 genes by qRT-PCR. A digital northern analysis showed that the PtrDREB17, 18, and 32 genes were highly induced in leaves under cold stress, and the same expression trends were shown by qRT-PCR. Taken together, these observations may lay the foundation for future functional analyses to unravel the biological roles of Populus’ DREB genes.

  9. Different Routes for Conifer- and Sinapaldehyde and Higher Saccharification upon Deficiency in the Dehydrogenase CAD1

    OpenAIRE

    Van Acker, Rebecca; Dejardin, Annabelle; Desmet, Sandrien; Hoengenaert, Lennart; Vanholme, Ruben; Morreel, Kris; Laurans, Françoise; Kim, Hoon; Santoro, Nicholas; Foster, Cliff; Goeminne, Geert; Legée, Frédéric; Lapierre, Catherine; Pilate, Gilles; Ralph, John

    2017-01-01

    In the search for renewable energy sources, genetic engineering is a promising strategy to improve plant cell wall composition for biofuel and bioproducts generation. Lignin is a major factor determining saccharification efficiency and, therefore, is a prime target to engineer. Here, lignin content and composition were modified in poplar (Populus tremula 3 Populus alba) by specifically down-regulating CINNAMYL ALCOHOL DEHYDROGENASE1 (CAD1) by a hairpin-RNA-mediated silencing approach, which r...

  10. Direct and indirect plant regeneration from various explants of ...

    African Journals Online (AJOL)

    user

    2011-04-18

    Apr 18, 2011 ... Populus species are important resource for certain branches of industry and have special roles for ... Key words: Poplar, tissue culture, regeneration, organogenesis. .... the best (90 to 100%) adaptation ratio in the plant growth.

  11. Detection of a variable number of ribosomal DNA loci by fluorescent in situ hybridization in Populus species.

    Science.gov (United States)

    Prado, E A; Faivre-Rampant, P; Schneider, C; Darmency, M A

    1996-10-01

    Fluorescent in situ hybridization (FISH) was applied to related Populus species (2n = 19) in order to detect rDNA loci. An interspecific variability in the number of hybridization sites was revealed using as probe an homologous 25S clone from Populus deltoides. The application of image analysis methods to measure fluorescence intensity of the hybridization signals has enabled us to characterize major and minor loci in the 18S-5.8S-25S rDNA. We identified one pair of such rDNA clusters in Populus alba; two pairs, one major and one minor, in both Populus nigra and P. deltoides; and three pairs in Populus balsamifera, (two major and one minor) and Populus euroamericana (one major and two minor). FISH results are in agreement with those based on RFLP analysis. The pBG13 probe containing 5S sequence from flax detected two separate clusters corresponding to the two size classes of units that coexist within 5S rDNA of most Populus species. Key words : Populus spp., fluorescent in situ hybridization, FISH, rDNA variability, image analysis.

  12. Characterization of MORE AXILLARY GROWTH genes in Populus.

    Directory of Open Access Journals (Sweden)

    Olaf Czarnecki

    Full Text Available Strigolactones are a new class of plant hormones that play a key role in regulating shoot branching. Studies of branching mutants in Arabidopsis, pea, rice and petunia have identified several key genes involved in strigolactone biosynthesis or signaling pathway. In the model plant Arabidopsis, MORE AXILLARY GROWTH1 (MAX1, MAX2, MAX3 and MAX4 are four founding members of strigolactone pathway genes. However, little is known about the strigolactone pathway genes in the woody perennial plants.Here we report the identification of MAX homologues in the woody model plant Populus trichocarpa. We identified the sequence homologues for each MAX protein in P. trichocarpa. Gene expression analysis revealed that Populus MAX paralogous genes are differentially expressed across various tissues and organs. Furthermore, we showed that Populus MAX genes could complement or partially complement the shoot branching phenotypes of the corresponding Arabidopsis max mutants.This study provides genetic evidence that strigolactone pathway genes are likely conserved in the woody perennial plants and lays a foundation for further characterization of strigolactone pathway and its functions in the woody perennial plants.

  13. Establishment and early growth of Populus hybrids irrigated with landfill leachate

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Adam H. Wiese; Edmund O. Bauer; Jill A. Zalesny

    2007-01-01

    Hybrid poplar genotypes exhibit great potential for tree establishment and growth when irrigated with municipal solid waste landfill leachate. We evaluated the potential for establishment on leachate-irrigated soils by testing: 1) aboveground growth of hybrid poplar during repeated irrigation with landfill leachate and 2) aboveground and belowground biomass after 70 d...

  14. Concentration- and flux-based ozone dose–response relationships for five poplar clones grown in North China

    International Nuclear Information System (INIS)

    Hu, Enzhu; Gao, Feng; Xin, Yue; Jia, Huixia; Li, Kaihui; Hu, Jianjun; Feng, Zhaozhong

    2015-01-01

    Concentration- and flux-based O_3 dose–response relationships were developed for poplars in China. Stomatal conductance (g_s) of five poplar clones was measured to parameterize a Jarvis-type multiplicative g_s model. The maximum g_s and other model parameters varied between clones. The strongest relationship between stomatal O_3 flux and total biomass was obtained when phytotoxic ozone dose (POD) was integrated using an uptake rate threshold of 7 nmol m"−"2 s"−"1. The R"2 value was similar between flux-based and concentration-based dose–response relationships. Ozone concentrations above 28–36 nmol mol"−"1 contributed to reducing the biomass production of poplar. Critical levels of AOT_4_0 (accumulated O_3 exposure over 40 nmol mol"−"1) and POD_7 in relation to 5% reduction in total biomass for poplar were 12 μmol mol"−"1 h and 3.8 mmol m"−"2, respectively. - Highlights: • A stomatal conductance model was calibrated for poplar clones in China. • The stomatal O_3 flux–response relationship was developed for poplars. • O_3 concentrations > 28–36 nmol mol"−"1 contributed to poplar biomass reduction. • Current ambient O_3 level in most places of China has threatened poplar growth. • Ozone sensitivity of poplar is similar to that of birch/beech. - For the first time, dose–response relationships were developed for risk assessment of O_3 impacts on poplars in China.

  15. Wood production potential in poplar plantations in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Christersson, Lars [Section of Short Rotation Forestry, VPE, SLU, Uppsala (Sweden)

    2010-09-15

    Shortage of oil, large variations in exports from Russia of wood to Europe, plenty of abandoned agriculture land, new ideas about a more intensive silviculture; these circumstances are driving forces in Sweden for planting fast-growing poplar and hybrid aspen clones on suitable land. The advantage of such trees is that the wood can be used for both energy (heat, biofuels, electricity), paper and for construction. Poplar clones bred in the USA and Belgium, and older hybrid aspen clones from Sweden, together with new poplar clones collected and selected for Swedish conditions from British Columbia, Canada, were planted during the 1990s in south and central Sweden. The stem diameters and heights of the trees have been measured during the last 10 years and the woody biomass production above ground has been calculated. MAI for all the plantations is 10-31 m{sup 3} or 3-10 ton DM per hectare with the highest annual woody production of 45 m{sup 3} or 15 ton DM per hectare in some years in a very dense plantation in the most southern part of Sweden. All the plantations have been fenced for at least the first ten years. The damage has been caused by stem canker, insects, leaf rust and by moose after removal of the fences. The possibilities for the use of poplar plantations as energy forest and vegetation filters are discussed. (author)

  16. Delimbing hybrid poplar prior to processing with a flail/chipper

    Science.gov (United States)

    Bruce Hartsough; Raffaele Spinelli; Steve Pottle

    2000-01-01

    We compared the performance of a flail/chipper for processing a) whole poplar trees and b) poplar trees that had been roughly delimbed with a pull-through delimber. Production rate was about 10% higher for the delimbed trees. The reduced cost of flail/chipping would not cover the additional cost of delimbing with the machine mix tested, but changes to equipment might...

  17. Enhancement of Biogas Yield of Poplar Leaf by High-Solid Codigestion with Swine Manure.

    Science.gov (United States)

    Wangliang, Li; Zhikai, Zhang; Guangwen, Xu

    2016-05-01

    The aim of this work was to examine the improvement of anaerobic biodegradability of organic fractions of poplar leaf from codigestion with swine manure (SM), thus biogas yield and energy recovery. When poplar leaf was used as a sole substrate, the cumulative biogas yield was low, about 163 mL (g volatile solid (VS))(-1) after 45 days of digestion with a substrate/inoculum ratio of 2.5 and a total solid (TS) of 22 %. Under the same condition, the cumulative biogas yield of poplar leaf reached 321 mL (g VS)(-1) when SM/poplar leaf ratio was 2:5 (based on VS). The SM/poplar leaf ratio can determine C/N ratio of the cosubstrate and thus has significant influence on biogas yield. When the SM/poplar leaf ratio was 2:5, C/N ratio was calculated to be 27.02, and the biogas yield in 45 days of digestion was the highest. The semi-continuous digestion of poplar leaf was carried out with the organic loading rate of 1.25 and 1.88 g VS day(-1). The average daily biogas yield was 230.2 mL (g VS)(-1) and 208.4 mL (g VS)(-1). The composition analysis revealed that cellulose and hemicellulose contributed to the biogas production.

  18. Initial effects of quinclorac on the survival and growth of high biomass tree species

    Directory of Open Access Journals (Sweden)

    Joshua P. Adams

    2017-07-01

    Full Text Available Increasingly, short rotation woody crops are being planted for biofuel/biomass production on unused lands or marginal agricultural lands. Many of these plantations occur near agriculture land which is intensively managed including yearly herbicide applications. Herbicide drift from these applications may cause tree stress and decreasing yields impacting potential biomass production. Quinclorac, a rice herbicide, is often cited as a potential source of tree damage and is the focal herbicide of this study. Five planting stocks, including three eastern cottonwood clones, a hybrid poplar clone, and American sycamore, were assessed for herbicide affects and deployed at three sites across south Arkansas. Stocks were exposed to a full rate labeled for rice (3.175 L ha-1, two rates simulating drift (1/100th and 1/10th the full rate, and a no-spray control. Survival of all Populus clones decreased drastically as quinclorac rate increased, while there was little observed effect on American sycamore. Some variability in treatment response among poplars occurred below the full herbicide rate; however, direct spraying a full herbicide rate on poplars resulted in survival rates below 65 percent and negative growth rates due to dieback. Conversely, photosynthetic rates of remaining leaves increased as quinclorac rate increased. Survival and damage scores of American sycamore, regardless of herbicide rate, remained nearly constant.

  19. Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees in Istanbul

    International Nuclear Information System (INIS)

    Baycu, Guelriz; Tolunay, Doganay; Ozden, Hakan; Guenebakan, Suereyya

    2006-01-01

    The concentrations of Cd, Pb, Zn and Ni were measured in the leaves of 7 species of deciduous trees, from the urban sites of Istanbul, in both the Spring and Autumn seasons. We detected some differences in the heavy metal concentrations of the control and urban site samples of identical species. Highest concentrations of Cd were detected in Populus, Pb in Aesculus and Robinia, Zn in Populus, and Ni in Robinia and Fraxinus. Lowest chlorophyll content and highest peroxidase (POD) activity was found in the urban site samples of Acer. We have found a positive correlation between the increase in the POD activity and the Pb concentration in Populus. Generally, the tree species investigated in this study, are considered to have different tolerance levels to heavy metal pollution. The data obtained show that the chlorophyll content and the POD activity may be used as heavy metal stress biomarkers in the urban trees. - Ecophysiological changes in the urban trees may be used as heavy metal stress biomarkers

  20. Effects of long-term ambient ozone exposure on biomass and wood traits in poplar treated with ethylenediurea (EDU)

    International Nuclear Information System (INIS)

    Carriero, G.; Emiliani, G.; Giovannelli, A.; Hoshika, Y.; Manning, W.J.; Traversi, M.L.; Paoletti, E.

    2015-01-01

    This is the longest continuous experiment where ethylenediurea (EDU) was used to protect plants from ozone (O 3 ). Effects of long-term ambient O 3 exposure (23 ppm h AOT40) on biomass of an O 3 sensitive poplar clone (Oxford) were examined after six years from in-ground planting. Trees were irrigated with either water or 450 ppm EDU. Above (−51%) and below-ground biomass (−47%) was reduced by O 3 although the effect was significant only for stem and coarse roots. Ambient O 3 decreased diameter of the lower stem, and increased moisture content along the stem of not-protected plants (+16%). No other change in the physical wood structure was observed. A comparison with a previous assessment in the same experiment suggested that O 3 effects on biomass partitioning to above-ground organs depend on the tree ontogenetic stage. The root/shoot ratios did not change, suggesting that previous short-term observations of reduced allocation to tree roots may be overestimated. - Highlights: • 6-y ambient O 3 exposure was investigated in a sensitive poplar clone. • EDU irrigation protected poplar against ambient O 3 exposure. • O 3 reduced biomass of roots and stem, but did not change biomass allocation. • O 3 decreased stem diameter only in the lower third of the stem. • O 3 increased moisture content of the wood along the stem. - Ozone exposure reduced lateral branching, leaves and roots in younger trees, and affected stem and roots in older trees, while shoot/root ratios did not change.

  1. Impacts of transgenic poplar-cotton agro-ecosystems upon target pests and non-target insects under field conditions.

    Science.gov (United States)

    Zhang, D J; Liu, J X; Lu, Z Y; Li, C L; Comada, E; Yang, M S

    2015-07-27

    Poplar-cotton agro-ecosystems are the main agricultural planting modes of cotton fields in China. With increasing acres devoted to transgenic insect-resistant poplar and transgenic insect-resistant cotton, studies examining the effects of transgenic plants on target and non-target insects become increasingly important. We systematically surveyed populations of both target pests and non-target insects for 4 different combinations of poplar-cotton eco-systems over 3 years. Transgenic Bt cotton strongly resisted the target insects Fall webworm moth [Hyphantria cunea (Drury)], Sylepta derogata Fabrieius, and American bollworm (Heliothis armigera), but no clear impact on non-target insect cotton aphids (Aphis gossypii). Importantly, intercrops containing transgenic Pb29 poplar significantly increased the inhibitory effects of Bt cotton on Fall webworm moth in ecosystem IV. Highly resistant Pb29 poplar reduced populations of the target pests Grnsonoma minutara Hubner and non-target insect poplar leaf aphid (Chaitophorus po-pulialbae), while Fall webworm moth populations were unaffected. We determined the effects of Bt toxin from transgenic poplar and cotton on target and non-target pests in different ecosystems of cotton-poplar intercrops and identified the synergistic effects of such combinations toward both target and non-target insects.

  2. Modulation of Protein S-Nitrosylation by Isoprene Emission in Poplar.

    Science.gov (United States)

    Vanzo, Elisa; Merl-Pham, Juliane; Velikova, Violeta; Ghirardo, Andrea; Lindermayr, Christian; Hauck, Stefanie M; Bernhardt, Jörg; Riedel, Katharina; Durner, Jörg; Schnitzler, Jörg-Peter

    2016-04-01

    Researchers have been examining the biological function(s) of isoprene in isoprene-emitting (IE) species for two decades. There is overwhelming evidence that leaf-internal isoprene increases the thermotolerance of plants and protects them against oxidative stress, thus mitigating a wide range of abiotic stresses. However, the mechanisms of abiotic stress mitigation by isoprene are still under debate. Here, we assessed the impact of isoprene on the emission of nitric oxide (NO) and the S-nitroso-proteome of IE and non-isoprene-emitting (NE) gray poplar (Populus × canescens) after acute ozone fumigation. The short-term oxidative stress induced a rapid and strong emission of NO in NE compared with IE genotypes. Whereas IE and NE plants exhibited under nonstressful conditions only slight differences in their S-nitrosylation pattern, the in vivo S-nitroso-proteome of the NE genotype was more susceptible to ozone-induced changes compared with the IE plants. The results suggest that the nitrosative pressure (NO burst) is higher in NE plants, underlining the proposed molecular dialogue between isoprene and the free radical NO Proteins belonging to the photosynthetic light and dark reactions, the tricarboxylic acid cycle, protein metabolism, and redox regulation exhibited increased S-nitrosylation in NE samples compared with IE plants upon oxidative stress. Because the posttranslational modification of proteins via S-nitrosylation often impacts enzymatic activities, our data suggest that isoprene indirectly regulates the production of reactive oxygen species (ROS) via the control of the S-nitrosylation level of ROS-metabolizing enzymes, thus modulating the extent and velocity at which the ROS and NO signaling molecules are generated within a plant cell. © 2016 American Society of Plant Biologists. All Rights Reserved.

  3. [Exploration of a quantitative methodology to characterize the retention of PM2.5 and other atmospheric particulate matter by plant leaves: taking Populus tomentosa as an example].

    Science.gov (United States)

    Zhang, Zhi-Dan; Xi, Ben-Ye; Cao, Zhi-Guo; Jia, Li-Ming

    2014-08-01

    Taking Populus tomentosa as an example, a methodology called elution-weighing-particle size-analysis (EWPA) was proposed to evaluate quantitatively the ability of retaining fine particulate matter (PM2.5, diameter d ≤ 2.5 μm) and atmospheric particulate matter by plant leaves using laser particle size analyzer and balance. This method achieved a direct, accurate measurement with superior operability about the quality and particle size distribution of atmospheric particulate matter retained by plant leaves. First, a pre-experiment was taken to test the stability of the method. After cleaning, centrifugation and drying, the particulate matter was collected and weighed, and then its particle size distribution was analyzed by laser particle size analyzer. Finally, the mass of particulate matter retained by unit area of leaf and stand was translated from the leaf area and leaf area index. This method was applied to a P. tomentosa stand which had not experienced rain for 27 days in Beijing Olympic Forest Park. The results showed that the average particle size of the atmospheric particulate matter retained by P. tomentosa was 17.8 μm, and the volume percentages of the retained PM2.5, inhalable particulate matter (PM10, d ≤ 10 μm) and total suspended particle (TSP, d ≤ 100 μm) were 13.7%, 47.2%, and 99.9%, respectively. The masses of PM2.5, PM10, TSP and total particulate matter were 8.88 x 10(-6), 30.6 x 10(-6), 64.7 x 10(-6) and 64.8 x 10(-6) g x cm(-2) respectively. The retention quantities of PM2.5, PM10, TSP and total particulate matter by the P. tomentosa stand were 0.963, 3.32, 7.01 and 7.02 kg x hm(-2), respectively.

  4. Accumulation of fluorine in the leaves of trees and shrubs growing in industrial territories

    Energy Technology Data Exchange (ETDEWEB)

    Asadov, G G; Alekperov, S A; Mamedov, G G

    1977-01-01

    Measurements were made to compare the concentration of fluorine in various plants in the vicinity of an aluminum plant, a glass plant and a chemical plant. The accumulation of fluorine was higher in the leaves of plants near the aluminum and glass industry than in the vicinity of another chemical industry. The fluorine concentration was found to be highest in spring. Pines and poplars were the most sensitive of the species tested.

  5. Stock characterization and improvement: DNA fingerprinting and cold tolerance of Populus and Salix clones

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Dolly; Hubbes, M.; Zsuffa, L. [Toronto Univ., ON (Canada). Faculty of Forestry; Tsarouhas, V.; Gullberg, U. [Swedish Univ. of Agricultural Sciences, Uppsala (Sweden). Dept. of Forest Genetics; Howe, G.; Hackett, W.; Gardner, G.; Furnier, G. [Minnesota Univ., St. Paul, MN (United States). Dept. of Forest Resources; Tuskan, G. [Oak Ridge National Lab., TN (United States)

    1998-12-31

    Molecular characterization of advanced-generation pedigrees and evaluation of cold tolerance are two aspects of Populus and Salix genetic improvement programmes worldwide that have traditionally received little emphasis. As such, chloroplast DNA markers were tested as a means of determining multi-generation parental contributions to hybrid progeny. Likewise, greenhouse, growth chamber and field studies were used to assess cold tolerance in Populus and Salix. Chloroplast DNA markers did not reveal size polymorphisms among four tested Populus species, but did produce sequence polymorphisms between P. maximowiczii and P. trichocarpa. Additional crosses between multiple genotypes from each species are being used to evaluate the utility of the detected polymorphism for ascertaining parentage within interspecific crosses. Short-day, cold tolerance greenhouse studies revealed that bud set date and frost damage are moderately heritable and genetically correlated in Populus. The relationship between greenhouse and field studies suggests that factors other than short days contribute to cold tolerance in Populus. In Salix, response to artificial fall conditioning varied among full-sibling families, with the fastest growing family displaying the greatest amount of cold tolerance 26 refs, 3 tabs

  6. Genome-Wide Constitutively Expressed Gene Analysis and New Reference Gene Selection Based on Transcriptome Data: A Case Study from Poplar/Canker Disease Interaction

    Directory of Open Access Journals (Sweden)

    Jiaping Zhao

    2017-10-01

    Full Text Available A number of transcriptome datasets for differential expression (DE genes have been widely used for understanding organismal biology, but these datasets also contain untapped information that can be used to develop more precise analytical tools. With the use of transcriptome data generated from poplar/canker disease interaction system, we describe a methodology to identify candidate reference genes from high-throughput sequencing data. This methodology will improve the accuracy of RT-qPCR and will lead to better standards for the normalization of expression data. Expression stability analysis from xylem and phloem of Populus bejingensis inoculated with the fungal canker pathogen Botryosphaeria dothidea revealed that 729 poplar transcripts (1.11% were stably expressed, at a threshold level of coefficient of variance (CV of FPKM < 20% and maximum fold change (MFC of FPKM < 2.0. Expression stability and bioinformatics analysis suggested that commonly used house-keeping (HK genes were not the most appropriate internal controls: 70 of the 72 commonly used HK genes were not stably expressed, 45 of the 72 produced multiple isoform transcripts, and some of their reported primers produced unspecific amplicons in PCR amplification. RT-qPCR analysis to compare and evaluate the expression stability of 10 commonly used poplar HK genes and 20 of the 729 newly-identified stably expressed transcripts showed that some of the newly-identified genes (such as SSU_S8e, LSU_L5e, and 20S_PSU had higher stability ranking than most of commonly used HK genes. Based on these results, we recommend a pipeline for deriving reference genes from transcriptome data. An appropriate candidate gene should have a unique transcript, constitutive expression, CV value of expression < 20% (or possibly 30% and MFC value of expression <2, and an expression level of 50–1,000 units. Lastly, when four of the newly identified HK genes were used in the normalization of expression data for 20

  7. Yellow-Poplar: Characteristics and Management

    Science.gov (United States)

    Donald E. Beck; Lino Della-Bianca

    1981-01-01

    This reference tool and field guide for foresters and other landmanagers includes a synthesis of information on the characteristics of yellow-poplar with guidelines for managing the species. It is based on research conducted by many individuals in State and Federal forestry organizations and in universities throughout the Eastern United States. This handbook...

  8. Tissue-type-specific transcriptome analysis identifies developing xylem-specific promoters in poplar.

    Science.gov (United States)

    Ko, Jae-Heung; Kim, Hyun-Tae; Hwang, Ildoo; Han, Kyung-Hwan

    2012-06-01

    Plant biotechnology offers a means to create novel phenotypes. However, commercial application of biotechnology in crop improvement programmes is severely hindered by the lack of utility promoters (or freedom to operate the existing ones) that can drive gene expression in a tissue-specific or temporally controlled manner. Woody biomass is gaining popularity as a source of fermentable sugars for liquid fuel production. To improve the quantity and quality of woody biomass, developing xylem (DX)-specific modification of the feedstock is highly desirable. To develop utility promoters that can drive transgene expression in a DX-specific manner, we used the Affymetrix Poplar Genome Arrays to obtain tissue-type-specific transcriptomes from poplar stems. Subsequent bioinformatics analysis identified 37 transcripts that are specifically or strongly expressed in DX cells of poplar. After further confirmation of their DX-specific expression using semi-quantitative PCR, we selected four genes (DX5, DX8, DX11 and DX15) for in vivo confirmation of their tissue-specific expression in transgenic poplars. The promoter regions of the selected DX genes were isolated and fused to a β-glucuronidase (GUS)-reported gene in a binary vector. This construct was used to produce transgenic poplars via Agrobacterium-mediated transformation. The GUS expression patterns of the resulting transgenic plants showed that these promoters were active in the xylem cells at early seedling growth and had strongest expression in the developing xylem cells at later growth stages of poplar. We conclude that these DX promoters can be used as a utility promoter for DX-specific biomass engineering. © 2012 The Authors. Plant Biotechnology Journal © 2012 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.

  9. Heat transfer mechanisms in poplar wood undergoing torrefaction

    Science.gov (United States)

    Sule, Idris O.; Mahmud, Shohel; Dutta, Animesh; Tasnim, Syeda Humaira

    2016-03-01

    Torrefaction, a thermal treatment process of biomass, has been proved to improve biomass combustible properties. Torrefaction is defined as a thermochemical process in reduced oxygen condition and at temperature range from 200 to 300 °C for shorter residence time whereby energy yield is maximized, can be a bridging technology that can lead the conventional system (e.g. coal-fired plants) towards a sustainable energy system. In efforts to develop a commercial operable torrefaction reactor, the present study examines the minimum input condition at which biomass is torrefied and explores the heat transfer mechanisms during torrefaction in poplar wood samples. The heat transfer through the wood sample is numerically modeled and analyzed. Each poplar wood is torrefied at temperature of 250, 270, and 300 °C. The experimental study shows that the 270 °C-treatment can be deduced as the optimal input condition for torrefaction of poplar wood. A good understanding of heat transfer mechanisms can facilitate the upscaling and downscaling of torrefaction process equipment to fit the feedstock input criteria and can help to develop treatment input specifications that can maximize process efficiency.

  10. Poplar Island Environmental Restoration Project Nekton Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Poplar Island Environmental Restoration Project (PIERP) is a large scale 1,800 acres restoration project located in mid Chesapeake Bay. Fishery collections are...

  11. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Joan Laur

    Full Text Available Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant. Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs. Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  12. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    Science.gov (United States)

    Laur, Joan; Hacke, Uwe G

    2014-01-01

    Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  13. Management of Animal Carcass Disposal Sites Using a Biochar Permeable Reactive Barrier and Fast Growth Tree (Populus euramericana: A Field Study in Korea

    Directory of Open Access Journals (Sweden)

    Jung-Hwan Yoon

    2017-03-01

    Full Text Available Among many disposal options of animal carcasses due to animal diseases including foot-and-mouth disease (FMD and avian influenza (AI, on-farm burial has been the most frequently used one in Korea. Animal carcasses generate contaminants such as ammonium-N and chloride. This study aimed at testing biochar (BC as a permeable reactive barrier (PRB material in combination with fast growing tree species (Populus euramericana to mitigate groundwater pollution from animal burial sites. For this, a PRB filled with BC was installed and 400 poplar tree (P. euramericana seedlings were planted. Tested BC was obtained from rice husk and its efficiency to mitigate contaminant migration from a burial site of pig carcasses was tested using ammonium-N, chloride, electrical conductivity (EC, and pH as monitoring parameters. Monitoring wells downstream from the burial site were used. Leachates from a monitoring well, three wells inside the burial site close to PRB and three wells outside the burial site close to PRB were sampled and analyzed for ammonium-N, Cl−, EC, and pH for four years from PRB installation. The pH, EC, and ammonium-N of leachate fluctuated during the test period depending on precipitation. pH, EC, and ammonium-N of the leachate samples collected from outside of the burial site close to PRB decreased compared to those from inside of the burial site close to PRB. The concentrations of ammonium-N in the leachate from the monitoring well kept under the threshold value of 10 mg·L−1 for two years from PRB construction. In addition, the growth of poplar plants appeared to be increased via uptaking available N and P released from the burial sites. Achieved results suggest that BC PRBs can be used to in situ mitigate contaminant release from buried animal carcasses.

  14. Ozone exposure affects leaf wettability and tree water balance

    NARCIS (Netherlands)

    Schreuder, M.D.J.; Hove, van L.W.A.; Brewer, C.A.

    2001-01-01

    Relatively little is known about the influences of growing-season background ozone (O3) concentrations on leaf cuticles and foliar water loss. Using fumigation chambers, leaf wettability and foliar water loss were studied in two poplar species, Populus nigra and P. euramericana, and a conifer,

  15. Modulation of Protein S-Nitrosylation by Isoprene Emission in Poplar1

    Science.gov (United States)

    Vanzo, Elisa; Velikova, Violeta; Ghirardo, Andrea; Lindermayr, Christian; Hauck, Stefanie M.; Riedel, Katharina; Durner, Jörg

    2016-01-01

    Researchers have been examining the biological function(s) of isoprene in isoprene-emitting (IE) species for two decades. There is overwhelming evidence that leaf-internal isoprene increases the thermotolerance of plants and protects them against oxidative stress, thus mitigating a wide range of abiotic stresses. However, the mechanisms of abiotic stress mitigation by isoprene are still under debate. Here, we assessed the impact of isoprene on the emission of nitric oxide (NO) and the S-nitroso-proteome of IE and non-isoprene-emitting (NE) gray poplar (Populus × canescens) after acute ozone fumigation. The short-term oxidative stress induced a rapid and strong emission of NO in NE compared with IE genotypes. Whereas IE and NE plants exhibited under nonstressful conditions only slight differences in their S-nitrosylation pattern, the in vivo S-nitroso-proteome of the NE genotype was more susceptible to ozone-induced changes compared with the IE plants. The results suggest that the nitrosative pressure (NO burst) is higher in NE plants, underlining the proposed molecular dialogue between isoprene and the free radical NO. Proteins belonging to the photosynthetic light and dark reactions, the tricarboxylic acid cycle, protein metabolism, and redox regulation exhibited increased S-nitrosylation in NE samples compared with IE plants upon oxidative stress. Because the posttranslational modification of proteins via S-nitrosylation often impacts enzymatic activities, our data suggest that isoprene indirectly regulates the production of reactive oxygen species (ROS) via the control of the S-nitrosylation level of ROS-metabolizing enzymes, thus modulating the extent and velocity at which the ROS and NO signaling molecules are generated within a plant cell. PMID:26850277

  16. Characterization of the photosynthetic induction response in a Populus species with stomata barely responding to light changes.

    Science.gov (United States)

    Tang, Y; Liang, N

    2000-08-01

    The photosynthetic induction response is constrained by stomatal and biochemical limitations. However, leaves in some plants like Populus koreana x trichocarpa cv. Peace (a hybrid clone) may have little stomatal limitation because their stomata barely respond to changes in photon flux density (PFD). We examined the induction responses of leaves of well-watered and dehydrated P. koreana x trichocarpa plants grown in a high-light or a low-light regime. With an increase in PFD from 50 to 500 micromol m(-2) s(-1), steady-state stomatal conductance (g(s)) increased by only 0.25-8.2%, regardless of the initial g(s), but steady-state assimilation rate (A) increased by 550-1810%. Photosynthetic induction times required to reach 50% (IT50) and 90% (IT90) of A at high PFD were 60-90 s and 210-360 s, respectively. Examination of the dynamic relationships between A and g(s), and between A and intercellular CO2 concentration, indicated that the induction limitation was imposed completely by the biochemical components within 30-40 s after the PFD increase. Values of IT50 and IT90 were significantly higher in low-light leaves than in high-light leaves, whereas the induction state at 60 s and the induction efficiency at 60 and 120 s after the increase in PFD were lower in low-light leaves than in high-light leaves. Dehydration reduced leaf water potential (psi) significantly, resulting in a significantly decreased initial g(s). Leaf water potential had no significant effects on induction time in high-light leaves, but a low psi significantly reduced the induction time in low-light leaves. We conclude that the photosynthetic induction response was limited almost completely by biochemical components because the stomata barely responded to light changes. The biochemical limitation appeared to be higher in low-light leaves than in high-light leaves. Mild water stress may have reduced steady-state A and g(s), but it had little effect on the photosynthetic induction response in high

  17. Analysis of a Farquhar-von Caemmerer-Berry leaf-level photosynthetic rate model for Populus tremuloides in the context of modeling and measurement limitations

    International Nuclear Information System (INIS)

    Lenz, Kathryn E.; Host, George E.; Roskoski, Kyle; Noormets, Asko; Sober, Anu; Karnosky, David F.

    2010-01-01

    The balance of mechanistic detail with mathematical simplicity contributes to the broad use of the Farquhar, von Caemmerer and Berry (FvCB) photosynthetic rate model. Here the FvCB model was coupled with a stomatal conductance model to form an [A,g s ] model, and parameterized for mature Populus tremuloides leaves under varying CO 2 and temperature levels. Data were selected to be within typical forest light, CO 2 and temperature ranges, reducing artifacts associated with data collected at extreme values. The error between model-predicted photosynthetic rate (A) and A data was measured in three ways and found to be up to three times greater for each of two independent data sets than for a base-line evaluation using parameterization data. The evaluation methods used here apply to comparisons of model validation results among data sets varying in number and distribution of data, as well as to performance comparisons of [A,g s ] models differing in internal-process components. - A photosynthetic rate model is parameterized for Populus tremuloides and evaluated based on its ability to predict dependent as well as independent data.

  18. Ethylene and jasmonic acid act as negative modulators during mutualistic symbiosis between Laccaria bicolor and Populus roots.

    Science.gov (United States)

    Plett, Jonathan M; Khachane, Amit; Ouassou, Malika; Sundberg, Björn; Kohler, Annegret; Martin, Francis

    2014-04-01

    The plant hormones ethylene, jasmonic acid and salicylic acid have interconnecting roles during the response of plant tissues to mutualistic and pathogenic symbionts. We used morphological studies of transgenic- or hormone-treated Populus roots as well as whole-genome oligoarrays to examine how these hormones affect root colonization by the mutualistic ectomycorrhizal fungus Laccaria bicolor S238N. We found that genes regulated by ethylene, jasmonic acid and salicylic acid were regulated in the late stages of the interaction between L. bicolor and poplar. Both ethylene and jasmonic acid treatments were found to impede fungal colonization of roots, and this effect was correlated to an increase in the expression of certain transcription factors (e.g. ETHYLENE RESPONSE FACTOR1) and a decrease in the expression of genes associated with microbial perception and cell wall modification. Further, we found that ethylene and jasmonic acid showed extensive transcriptional cross-talk, cross-talk that was opposed by salicylic acid signaling. We conclude that ethylene and jasmonic acid pathways are induced late in the colonization of root tissues in order to limit fungal growth within roots. This induction is probably an adaptive response by the plant such that its growth and vigor are not compromised by the fungus. © 2013 The Authors New Phytologist © 2013 New Phytologist Trust.

  19. Effect of Genetically Modified Poplars on Soil Microbial Communities during the Phytoremediation of Waste Mine Tailings▿†

    Science.gov (United States)

    Hur, Moonsuk; Kim, Yongho; Song, Hae-Ryong; Kim, Jong Min; Choi, Young Im; Yi, Hana

    2011-01-01

    The application of transgenic plants to clean up environmental pollution caused by the wastes of heavy metal mining is a promising method for removing metal pollutants from soils. However, the effect of using genetically modified organisms for phytoremediation is a poorly researched topic in terms of microbial community structures, despite the important role of microorganisms in the health of soil. In this study, a comparative analysis of the bacterial and archaeal communities found in the rhizosphere of genetically modified (GM) versus wild-type (WT) poplar was conducted on trees at different growth stages (i.e., the rhizospheres of 1.5-, 2.5-, and 3-year-old poplars) that were cultivated on contaminated soils together with nonplanted control soil. Based on the results of DNA pyrosequencing, poplar type and growth stages were associated with directional changes in the structure of the microbial community. The rate of change was faster in GM poplars than in WT poplars, but the microbial communities were identical in the 3-year-old poplars. This phenomenon may arise because of a higher rate and greater extent of metal accumulation in GM poplars than in naturally occurring plants, which resulted in greater changes in soil environments and hence the microbial habitat. PMID:21890678

  20. The arbuscular mycorrhizal status of poplar clones selected for phytoremediation of soils contaminated with heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, T.; Radimszky, L.; Nemeth, T. [Research Inst. for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences, Budapest (Hungary)

    2005-04-01

    The aim of this work was to study the colonization of indigenous arbuscular mycorrhizal fungi (AMF) species in fine-roots of poplar clones. Roots of 7 poplar clones were sampled from a 1-year-old trial established at an industrial site strongly polluted with heavy metals at Balatonfuezfoe, Hungary. The poplar clones have shown variable degrees of colonization by AMF, suggesting differential host susceptibility or mycorrhizal dependency. After outplanting the percentage of poplar survival was strongly correlated with the frequency of AMF infection. Two clones that survived at the lowest ratio after outplanting had not been colonized by AMF in contrast to those which survived to a much higher extent. (orig.)

  1. Study on the Effect of Heat Treatment on Physical Properties of Poplar and Beech Woods Impregnated with Nano-Copper and Nano-Silver

    Directory of Open Access Journals (Sweden)

    Hassan Siahposht

    2012-06-01

    Full Text Available Present study conducted to review effects of heat treatment on weight loss, water adsorption, and thickness swelling of poplar (Populus nigra and beech (Fagus oreintalis woods impregnated with nano-copper and nano-silver. Specimens werepressur (2.5 bar impregnated with 400 PPM water-based solution of nano-copper and nano-silver particles in a pressure vessel. For heat treatment, nano-cupper,  nano-silver impregnated and control specimens, were heat treated at 145°C temperature for 24 hours. Water absorption and thickness swelling decreased in heat treated and nano-heat treated specimens and this decrease in specimens impregnated with nano-copper and nano-silver was more obvious than in heat treated control specimens. The reasons were the degradation in crystal sections of celluloses chains and the ink variation of wood polymers. On the other hand, a comparison between heat treated and nano- heat treated specimens has shown weight loss further in nano-heat treated specimens. This shows that retent nano-copper and nano-silver by impregnation facilitates heat transfer in wood; and it may increase the process of degradation and pyrolysis of wood structures in inner parts of specimens.

  2. Political culture and the labour movement: a comparison between Poplar and West Ham, 1889-1914

    OpenAIRE

    Banks-Conney, Diana Elisabeth

    2005-01-01

    This thesis compares two areas of East London, Poplar and West Ham,that ultimately became strongholds of the Labour Party. The thesis attemptsto answer the crucial question of why, prior to 1914, it seemed as if Labour had succeeded in South West Ham but had failed to achieve similar representation in Poplar. This thesis considers that although contemporaries had identified similar social and economic problems in both Poplar and West Ham in the early twentieth century, more detailed analysis ...

  3. [Canopy conductance characteristics of poplar in agroforestry system in west Liaoning Province of Northeast China].

    Science.gov (United States)

    Li, Zheng; Niu, Li-Hua; Yuan, Feng-Hui; Guan, De-Xin; Wang, An-Zhi; Jin, Chang-Jie; Wu, Jia-Bing

    2012-11-01

    By using Granier' s thermal dissipation probe, the sap flow of poplar in a poplar-maize agroforestry system in west Liaoning was continuously measured, and as well, the environmental factors such as air temperature, air humidity, net radiation, wind speed, soil temperature, and soil moisture content were synchronically measured. Based on the sap flow data, the canopy conductance of poplar was calculated with simplified Penman-Monteith equation. In the study area, the diurnal variation of poplar' s canopy conductance showed a "single peak" curve, whereas the seasonal variation showed a decreasing trend. There was a negative logarithm relationship between the canopy conductance and vapor pressure deficit, with the sensitivity of canopy conductance to vapor pressure deficit change decreased gradually from May to September. The canopy conductance had a positive relationship with solar radiation. In different months, the correlation degree of canopy conductance with environmental factors differed. The vapor pressure deficit in the whole growth period of poplar was the most significant environmental factor correlated with the canopy conductance.

  4. Comparison of Different Wood Species as Raw Materials for Bioenergy

    Directory of Open Access Journals (Sweden)

    Bojana Klašnja

    2013-12-01

    Full Text Available Background and Purpose: Most projections of the global energy use predict that biomass will be an important component of primary energy sources in the coming decades. Short rotation plantations have the potential to become an important source of renewable energy in Europe because of the high biomass yields, a good combustion quality as solid fuel, ecological advantages and comparatively low biomass production costs. Materials and Methods: In this study, the wood of black locust Robinia pseudoacacia, white willow Salix alba L., poplars Populus deltoides and Populus x euramericana cl.I-214, aged eight years were examined. Immediately after the felling, sample discs were taken to assess moisture content, ash content, the width of growth rings, wood densities and calorific values, according to the standard methodology. Results:The mean values of willow, poplar and black locust wood density were 341 kg/m3, 336 kg/m3 and 602 kg/m3,respectively. The average heating values of willow poplar and black locust wood were 18.599 MJ/kg, 18.564 MJ/kg and 21.196 MJ/kg, respectively. The FVI index (average values was higher for black locust (17.186 than for poplar and willow clones, which were similar: 11.312 and 11.422 respectively. Conclusions: Black locust wood with a higher density, calorific value and ash content compared to poplar and willow wood proved to be a more suitable raw material as RES. However, it is very important, from the aspect of the application of wood of these tree species as RES, to also consider the influence of the biomass yield per unit area of the plantations established as “energy plantations”.

  5. Genome-wide analysis and heavy metal-induced expression profiling of the HMA gene family in Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Dandan eLi

    2015-12-01

    Full Text Available The heavy metal ATPase (HMA family plays an important role in transition metal transport in plants. However, this gene family has not been extensively studied in Populus trichocarpa. We identified 17 HMA genes in P. trichocarpa (PtHMAs, of which PtHMA1–PtHMA4 belonged to the zinc (Zn/cobalt (Co/cadmium (Cd/lead (Pb subgroup, and PtHMA5–PtHMA8 were members of the copper (Cu/silver (Ag subgroup. Most of the genes were localized to chromosomes I and III. Gene structure, gene chromosomal location, and synteny analyses of PtHMAs indicated that tandem and segmental duplications likely contributed to the expansion and evolution of the PtHMAs. Most of the HMA genes contained abiotic stress-related cis-elements. Tissue-specific expression of PtHMA genes showed that PtHMA1 and PtHMA4 had relatively high expression levels in the leaves, whereas Cu/Ag subgroup (PtHMA5.1- PtHMA8 genes were upregulated in the roots. High concentrations of Cu, Ag, Zn, Cd, Co, Pb and Mn differentially regulated the expression of PtHMAs in various tissues. The preliminary results of the present study generated basic information on the HMA family of Populus that may serve as foundation for future functional studies.

  6. Cytokinin signaling regulates cambial development in poplar

    Czech Academy of Sciences Publication Activity Database

    Nieminen, K.; Immanen, J.; Laxell, M.; Kauppinen, L.; Tarkowski, Petr; Doležal, Karel; Tähtiharju, S.; Elo, A.; Decourteix, M.; Ljung, K.; Bhalerao, R.; Keinonen, K.; Albert, V. A.; Helariutta, Y.

    2008-01-01

    Roč. 105, č. 50 (2008), s. 20032-20037 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z50380511 Keywords : cambial activity * cambium * secondary development * Populus * CYTOKININ OXIDASE Subject RIV: CE - Biochemistry Impact factor: 9.380, year: 2008

  7. Phytoremediation of landfill leachate using Populus

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Richard B. Hall; Bart Sexton

    2006-01-01

    Proper genotype selection is required for successful phytoremediation. We selected eight Populus clones (NC13460, NC14018, DM115, NC14104, NC14106, DN5, NM2, NM6) of four genomic groups after three cycles of phyto-recurrent selection for a field trial that began June 2005 at the Oneida County Landfill in Rhinelander, WI, USA.

  8. Biomass and genotype × environment interactions of Populus energy crops in the midwestern United States

    Science.gov (United States)

    Ronald S., Jr. Zalesny; Richard B. Hall; Jill A. Zalesny; Bernard G. McMahon; William E. Berguson; Glen R. Stanosz

    2009-01-01

    Using Populus feedstocks for biofuels, bioenergy, and bioproducts is becoming economically feasible as global fossil fuel prices increase. Maximizing Populus biomass production across regional landscapes largely depends on understanding genotype × environment interactions, given broad genetic variation at strategic (...

  9. Effect of different biochars on Nitrogen uptake in poplar trees

    Science.gov (United States)

    George, Elizabeth; Tonon, Giustino; Scandellari, Francesca

    2014-05-01

    Influence of biochar on soil nitrogen transformation and plant uptake has been reported. This paper presents preliminary results of plant N uptake in poplars by using 15N isotope tracer approach Two types of biochar were applied to two sets of pots containing only sand and each pot received a pre-rooted poplar cutting. Half of the pots were inoculated with commercial mycorrhizal gel and the other half were left without. It is intended to provide information on how biochar, mycorrhiza and root interaction mediate nitrogen uptake and organ allocation.

  10. The differential response of photosynthesis to high temperature for a boreal and temperate Populus species relates to differences in Rubisco activation and Rubisco activase properties.

    Science.gov (United States)

    Hozain, Moh'd I; Salvucci, Michael E; Fokar, Mohamed; Holaday, A Scott

    2010-01-01

    Significant inhibition of photosynthesis occurs at temperatures only a few degrees (Populus species adapted to contrasting thermal environments for determining the factors that constrain photosynthetic assimilation (A) under moderate heat stress in tree species. Consistent with its native range in temperate regions, Populus deltoides Bartr. ex Marsh. exhibited a significantly higher temperature optimum for A than did Populus balsamifera L., a boreal species. The higher A exhibited by P. deltoides at 33-40 degrees C compared to that for P. balsamifera was associated with a higher activation state of Rubisco and correlated with a higher ATPase activity of Rubisco activase. The temperature response of minimal chlorophyll a fluorescence for darkened leaves was similar for both species and was not consistent with a thylakoid lipid phase change contributing to the decline in A in the range of 30-40 degrees C. Taken together, these data support the idea that the differences in the temperature response of A for the two Populus species could be attributed to the differences in the response of Rubisco activation and ultimately to the thermal properties of Rubisco activase. That the primary sequence of Rubisco activase differed between the species, especially in regions associated with ATPase activity and Rubisco recognition, indicates that the genotypic differences in Rubisco activase might underlie the differences in the heat sensitivity of Rubisco activase and photosynthesis at moderately high temperatures.

  11. Patterns of genetic diversity and differentiation in resistance gene clusters of two hybridizing European Populus species

    OpenAIRE

    Casey, Céline; Stölting, Kai N.; Barbará, Thelma; González-Martínez, Santiago C.; Lexer, Christian

    2015-01-01

    Resistance genes (R-genes) are essential for long-lived organisms such as forest trees, which are exposed to diverse herbivores and pathogens. In short-lived model species, R-genes have been shown to be involved in species isolation. Here, we studied more than 400 trees from two natural hybrid zones of the European Populus species Populus alba and Populus tremula for microsatellite markers located in three R-gene clusters, including one cluster situated in the incipient sex chromosome region....

  12. Assessment of suitability of tree species for the production of biomass on trace element contaminated soils

    International Nuclear Information System (INIS)

    Evangelou, Michael W.H.; Deram, Annabelle; Gogos, Alexander; Studer, Björn; Schulin, Rainer

    2012-01-01

    Highlights: ► Birch: lowest metal concentrations in foliage, wood and bark. ► Bark proportion does not have to decline with increasing age of tree. ► Long harvest rotation (>25 y) reduces metal concentrations in stem. ► Birch: most suitable tree for BCL. - Abstract: To alleviate the demand on fertile agricultural land for production of bioenergy, we investigated the possibility of producing biomass for bioenergy on trace element (TE) contaminated land. Soil samples and plant tissues (leaves, wood and bark) of adult willow (Salix sp.), poplar (Populus sp.), and birch (Betula pendula) trees were collected from five contaminated sites in France and Germany and analysed for Zn, Cd, Pb, Cu, Ca, and K. Cadmium concentration in tree leaves were correlated with tree species, whereas Zn concentration in leaves was site correlated. Birch revealed significantly lower leaf Cd concentrations (1.2–8.9 mg kg −1 ) than willow and poplar (5–80 mg kg −1 ), thus posing the lowest risk for TE contamination of surrounding areas. Birch displayed the lowest bark concentrations for Ca (2300–6200 mg kg −1 ) and K (320–1250 mg kg −1 ), indicating that it would be the most suitable tree species for fuel production, as high concentrations of K and Ca decrease the ash melting point which results in a reduced plant lifetime. Due to higher TE concentrations in bark compared to wood a small bark proportion in relation to the trunk is desirable. In general the bark proportion was reduced with the tree age. In summary, birch was amongst the investigated species the most suitable for biomass production on TE contaminated land.

  13. Changes in tree density do not influence epicormic branching of yellow-poplar

    Science.gov (United States)

    H. Clay Smith

    1977-01-01

    Epicormic branching was studied in a West Virginia yellow-poplar stand thinned to various tree density levels. Study trees in the 55- to 60-year-old second-growth stand were primarily codominant in crown class with 32 to 48 feet of log height. Eight-year study results indicated that yellow-poplar trees in this age class and locale could be thinned without serious loss...

  14. Manipulation of Glutathione and Amino Acid Biosynthesis in the Chloroplast1

    Science.gov (United States)

    Noctor, Graham; Arisi, Ana-Carolina M.; Jouanin, Lise; Foyer, Christine H.

    1998-01-01

    Poplars (Populus tremula × Populus alba) were transformed to overexpress Escherichia coli γ-glutamylcysteine synthetase (γ-ECS) or glutathione synthetase in the chloroplast. Five independent lines of each transformant strongly expressed the introduced gene and possessed markedly enhanced activity of the gene product. Glutathione (GSH) contents were unaffected by high chloroplastic glutathione synthetase activity. Enhanced chloroplastic γ-ECS activity markedly increased γ-glutamylcysteine and GSH levels. These effects are similar to those previously observed in poplars overexpressing these enzymes in the cytosol. Similar to cytosolic γ-ECS overexpression, chloroplastic overexpression did not deplete foliar cysteine or methionine pools and did not lead to morphological changes. Light was required for maximal accumulation of GSH in poplars overexpressing γ-ECS in the chloroplast. High chloroplastic, but not cytosolic, γ-ECS activities were accompanied by increases in amino acids synthesized in the chloroplast. We conclude that (a) GSH synthesis can occur in the chloroplast and the cytosol and may be up-regulated in both compartments by increased γ-ECS activity, (b) interactions between GSH synthesis and the pathways supplying the necessary substrates are similar in both compartments, and (c) chloroplastic up-regulation of GSH synthesis is associated with an activating effect on the synthesis of specific amino acids formed in the chloroplast. PMID:9765532

  15. Kinetic modeling of batch fermentation for Populus hydrolysate tolerant mutant and wild type strains of Clostridium thermocellum.

    Science.gov (United States)

    Linville, Jessica L; Rodriguez, Miguel; Mielenz, Jonathan R; Cox, Chris D

    2013-11-01

    The extent of inhibition of two strains of Clostridium thermocellum by a Populus hydrolysate was investigated. A Monod-based model of wild type (WT) and Populus hydrolysate tolerant mutant (PM) strains of the cellulolytic bacterium C. thermocellum was developed to quantify growth kinetics in standard media and the extent of inhibition to a Populus hydrolysate. The PM was characterized by a higher growth rate (μmax=1.223 vs. 0.571 h(-1)) and less inhibition (KI,gen=0.991 vs. 0.757) in 10% v/v Populus hydrolysate compared to the WT. In 17.5% v/v Populus hydrolysate inhibition of PM increased slightly (KI,gen=0.888), whereas the WT was strongly inhibited and did not grow in a reproducible manner. Of the individual inhibitors tested, 4-hydroxybenzoic acid was the most inhibitory, followed by galacturonic acid. The PM did not have a greater ability to detoxify the hydrolysate than the WT. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. 7 CFR 301.51-2 - Regulated articles.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Regulated articles. 301.51-2 Section 301.51-2... Regulated articles. The following are regulated articles: (a) Firewood (all hardwood species), and green... (sycamore), Populus (poplar), Salix (willow), Sorbus (mountain ash), and Ulmus (elm). (b) Any other article...

  17. Multiple factors affect pest and pathogen damage on 31 Populus clones in South Carolina

    Science.gov (United States)

    David R. Coyle; Mark D. Coleman; Jaclin A. Durant; Lee A. Newman

    2006-01-01

    Populus species and hybrids have many practical applications, but there is a paucity of data regarding selections that perform well in the southeastern US. We compared pest susceptibility of 31 Populus clones over 3 years in South Carolina, USA. Cuttings were planted in spring 2001 on two study sites. Clones planted in the...

  18. Populus (Salicaceae plantations

    Directory of Open Access Journals (Sweden)

    Gonzalo M. Romano

    2013-01-01

    Full Text Available Aunque los cultivos forestales son comunidades artificiales, modifican condiciones ambientales que pueden alterar la diversidad fúngica nativa. Se estudiaron los efectos del manejo forestal de una plantación de sauces (Salix y álamos (Populus sobre la biodiversidad de Agaromycetes durante un año en una isla del Delta del Paraná, Argentina. Se midieron el peso seco y el número de basidiomas. Se identificaron 28 especies pertenecientes a los Agaricomycetes: 26 especies de Agaricales, una de Polyporales y una de Russulales. Nuestros resultados sugieren que el manejo forestal de dicha plantación no afecta la abundancia ni la diversidad de basidiomas de Agaricomycetes.

  19. A survey of the pyrabactin resistance-like abscisic acid receptor gene family in poplar.

    Science.gov (United States)

    Yu, Jingling; Li, Hejuan; Peng, Yajing; Yang, Lei; Zhao, Fugeng; Luan, Sheng; Lan, Wenzhi

    2017-08-03

    The conserved PYR/PYL/RCAR family acts as abscisic acid (ABA) receptors for land plants to adapt to terrestrial environments. Our recent study reported that the exogenous overexpression of poplar PtPYRL1 and PtPYRL5, the PYR/PYL/RCAR orthologs, promoted the sensitivity of transgenic Arabidopsis to ABA responses. Here, we surveyed the PtPYRL family in poplar, and revealed that although the sequence and structure are relatively conserved among these receptors, PtPYRL members have differential expression patterns and the sensitivity to ABA or drought treatment, suggesting that PtPYRLs might be good candidates to a future biotechnological use to enhance poplar resistance to water-stress environments.

  20. Light-regulated leaf expansion in two Populus species: dependence on developmentally controlled ion transport.

    Science.gov (United States)

    Stiles, Kari A; Van Volkenburgh, Elizabeth

    2002-07-01

    Leaf growth responses to light have been compared in two species of Populus, P. deltoides and P. trichocarpa. These species differ markedly in morphology, anatomy, and dependence on light during leaf expansion. Light stimulates the growth rate and acidification of cell walls in P. trichocarpa but not in P. deltoides, whereas leaves of P. deltoides maintain growth in the dark. Light-induced growth is promoted in P. deltoides when cells are provided 50-100 mM KCl. In both species, light initially depolarizes, then hyperpolarizes mesophyll plasma membranes. However, in the dark, the resting E(m) of mesophyll cells in P. deltoides, but not in P. trichocarpa, is relatively insensitive to decade changes in external [K+]. Results suggest that light-stimulated leaf growth depends on developmentally regulated cellular mechanisms controlling ion fluxes across the plasma membrane. These developmental differences underlie species-level differences in growth and physiological responses to the photoenvironment.

  1. Near-ambient ozone concentrations reduce the vigor of Betula and Populus species in Finland.

    Science.gov (United States)

    Oksanen, Elina; Manninen, Sirkku; Vapaavuori, Elina; Holopainen, Toini

    2009-12-01

    In this review the main growth responses of Finnish birch (Betula pendula, B. pubescens) and aspen species (Populus tremula and P. tremuloides x P. tremula) are correlated with ozone exposure, indicated as the AOT40 value. Data are derived from 23 different laboratory, open-top chamber, and free-air fumigation experiments. Our results indicate that these tree species are sensitive to increasing ozone concentrations, though high intraspecific variation exists. The roots are the most vulnerable targets in both genera. These growth reductions, determined from trees grown under optimal nutrient and water supply, were generally accompanied by increased visible foliar injuries, carbon allocation toward defensive compounds, reduced carbohydrate contents of leaves, impaired photosynthesis processes, disturbances in stomatal function, and earlier autumn senescence. Because both genera have shown complex ozone defense and response mechanisms, which are modified by variable environmental conditions, a mechanistically based approach is necessary for accurate ozone risk assessment.

  2. Atypical Thioredoxins in Poplar: The Glutathione-Dependent Thioredoxin-Like 2.1 Supports the Activity of Target Enzymes Possessing a Single Redox Active Cysteine1[W

    Science.gov (United States)

    Chibani, Kamel; Tarrago, Lionel; Gualberto, José Manuel; Wingsle, Gunnar; Rey, Pascal; Jacquot, Jean-Pierre; Rouhier, Nicolas

    2012-01-01

    Plant thioredoxins (Trxs) constitute a complex family of thiol oxidoreductases generally sharing a WCGPC active site sequence. Some recently identified plant Trxs (Clot, Trx-like1 and -2, Trx-lilium1, -2, and -3) display atypical active site sequences with altered residues between the two conserved cysteines. The transcript expression patterns, subcellular localizations, and biochemical properties of some representative poplar (Populus spp.) isoforms were investigated. Measurements of transcript levels for the 10 members in poplar organs indicate that most genes are constitutively expressed. Using transient expression of green fluorescent protein fusions, Clot and Trx-like1 were found to be mainly cytosolic, whereas Trx-like2.1 was located in plastids. All soluble recombinant proteins, except Clot, exhibited insulin reductase activity, although with variable efficiencies. Whereas Trx-like2.1 and Trx-lilium2.2 were efficiently regenerated both by NADPH-Trx reductase and glutathione, none of the proteins were reduced by the ferredoxin-Trx reductase. Only Trx-like2.1 supports the activity of plastidial thiol peroxidases and methionine sulfoxide reductases employing a single cysteine residue for catalysis and using a glutathione recycling system. The second active site cysteine of Trx-like2.1 is dispensable for this reaction, indicating that the protein possesses a glutaredoxin-like activity. Interestingly, the Trx-like2.1 active site replacement, from WCRKC to WCGPC, suppresses its capacity to use glutathione as a reductant but is sufficient to allow the regeneration of target proteins employing two cysteines for catalysis, indicating that the nature of the residues composing the active site sequence is crucial for substrate selectivity/recognition. This study provides another example of the cross talk existing between the glutathione/glutaredoxin and Trx-dependent pathways. PMID:22523226

  3. Improved diffusivity of NaOH solution in autohydrolyzed poplar sapwood chips for chemi-mechanical pulp production.

    Science.gov (United States)

    Zhang, Honglei; Hou, Qingxi; Liu, Wei; Yue, Zhen; Jiang, Xiaoya; Ma, Xixi

    2018-07-01

    This work investigated the changes in the physical structure of autohydrolyzed poplar sapwood chips and the effect on the subsequent alkali liquor diffusion properties for chemi-mechanical pulping (CMP). An alkali impregnation process was conducted by using the autohydrolyzed poplar sapwood with different levels of autohydrolysis intensity. The results showed that the volume porosity, water constraint capacity, and saturated water absorption of the autohydrolyzed poplar sapwood chips increased. Also, the effective capillary cross-sectional area (ECCSA) in the radial direction and the diffusion coefficients of NaOH solution in both the radial and axial directions all increased. Autohydrolysis pretreatment enhanced the alkali liquor diffusion properties in poplar sapwood chips, and the diffusion coefficient was increased more greatly in the radial direction than that in the axial direction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Chemical studies on oils derived from aspen poplar wood, cellulose, and an isolated aspen poplar lignin

    Energy Technology Data Exchange (ETDEWEB)

    Eager, R L; Pepper, J M; Roy, J C; Mathews, J F

    1983-01-01

    An initial study has been made of the chemical nature of the oil phase resulting from the conversion of aspen poplar wood, cellulose, and an isolated lignin from the aspen poplar as a result of their interactions with water and carbon monoxide in the presence of sodium carbonate at 360 degrees C. Gas chromatographic analysis of the sodium hydroxide soluble fractions from each substrate revealed similar spectra of alkyl-substituted phenols. The relative abundance of identified low molecular weight phenolic compounds decreased from lignin to wood to cellulose. This was in agreement with the known phenolic nature of lignin. As well, it confirmed the synthesis during reaction of such compounds from a carbohydrate substrate. Gas chromatographic analysis of the whole oils also revealed the presence in each case of several alkyl-substituted cyclopentanones whose relative abundance decreased from cellulose to wood to lignin. Silica gel column separation of the oils, after a charcoal treatment, followed by capillary gas chromatographic - mass spectrometric analyses of the resulting fraction indicated the presence of other higher molecular weight phenols, napthols, cycloalkanols, and polycyclic and long chain alkanes and alkenes.

  5. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles

    Energy Technology Data Exchange (ETDEWEB)

    Vollenweider, Pierre, E-mail: pierre.vollenweider@wsl.c [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Bernasconi, Petra [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland); Environmental Protection Office (AfU), Aabachstrasse 5, 6300 Zug (Switzerland); Gautschi, Hans-Peter [Centre for Microscopy and Image Analysis (CMI), University of Zurich, Gloriastrasse 30, 8006 Zuerich (Switzerland); Menard, Terry; Frey, Beat; Guenthardt-Goerg, Madeleine S. [Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Zuercherstrasse 111, 8903 Birmensdorf (Switzerland)

    2011-01-15

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing {beta}-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. - Zinc contaminants translocated to symplast of aged leaves were detoxified by phytic acid ligands.

  6. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles

    International Nuclear Information System (INIS)

    Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Guenthardt-Goerg, Madeleine S.

    2011-01-01

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. - Zinc contaminants translocated to symplast of aged leaves were detoxified by phytic acid ligands.

  7. Analysis of Poplar process value chain in Western Azerbaijan province aims to upgrading

    Directory of Open Access Journals (Sweden)

    omid hosein zadeh

    2015-05-01

    Full Text Available Due to the size and importance of poplar culturing and its role in the West Azerbaijan province economy, evaluation of the poplar value chain is necessary. With drawing up a comprehensive value chain and identify the lacks, setting the value chain in the province were studied. Finally, due to lacks of the value chain, value chain strategy for development was identified using ANP. The results of the calculation of location quotient in the West Azerbaijan province showed that the LQ is equal to 0.65852. Due to its lower LQ than one, it can be concluded that the poplar costumers in Western Azerbaijan province are less than the country average. The results of the prioritization of criteria affecting poplar value chain development in West Azerbaijan province indicated the most important criterion is the access to wooden raw materials weighing 0.16. After that the stable supply of raw materials, machinery and equipment, manpower, proximity to local markets, expertise and financial resources are with weights, 0.132, 0.123, 0.116, 0.105, 0.102 and 0.07 respectively. The weights of the other criteria have a little importance in the development of the poplar value chain. Final results of alternatives prioritization showed, the maximum weight is related to particleboard with the 0.295. The following options are OSB, MDF and HDF which have a weight of 0.185 and 0.178 respectively. After the composite wood products is turn of chemical products, namely cellulose, pulp and paper weights 0.112, 0.1 and 0.066 respectively.

  8. The potential of willow and poplar plantations as carbon sinks in Sweden

    International Nuclear Information System (INIS)

    Rytter, Rose-Marie

    2012-01-01

    A large share, estimated at 12–25%, of the annual anthropogenic greenhouse gas emissions is attributed to global deforestation. Increasing the forested areas therefore has a positive impact on carbon (C) sequestration and mitigation of high atmospheric CO 2 concentrations. Fast-growing species, such as willow and poplar, are of high interest as producers of biomass for fuel, but also as C sinks. The present study estimated the rate of C sequestration in biomass and soil in willow and poplar plantations. Calculations were based on above- and below-ground biomass production data from field experiments, including fine root turnover, litter decomposition rates, and production levels from commercial plantations. Accumulation of C in woody biomass, above and below ground, was estimated at 76.6–80.1 Mg C ha −1 and accumulation of C in the soil at 9.0–10.3 Mg C ha −1 over the first 20–22 years. The average rates of C sequestration were 3.5–4.0 Mg C ha −1 yr −1 in woody biomass, and 0.4–0.5 Mg C ha −1 yr −1 in the soil. If 400,000 ha of abandoned arable land in Sweden were planted with willow and poplar, about 1.5 Tg C would be sequestered annually in woody biomass and 0.2 Tg C in soils. This would be nearly one tenth of the annual anthropogenic emissions of C in Sweden today. These calculations show the potential of fast-growing plantations on arable land to mitigate the effect of high CO 2 concentrations over a short time span. Knowledge gaps were found during the calculation process and future research areas were suggested. -- Highlights: ► Poplars and willows as producers of biomass for fuel and as C sinks. ► Calculation of C sequestration rates in biomass and soil in willow and poplar plantations. ► Increasing forested areas has positive impact on high CO 2 levels. ► Willow and poplar plantations on arable land mitigate anthropogenic CO 2 emissions.

  9. FEM growth and yield data monocultures - Poplar

    NARCIS (Netherlands)

    Mohren, G.M.J.; Goudzwaard, L.; Jansen, J.J.; Oosterbaan, A.; Oldenburger, J.F.; Ouden, den J.

    2016-01-01

    The current database is part of the FEM growth and yield database, a collection of growth and yield data from even-aged monocultures (douglas fir, common oak, poplar, Japanese Larch, Norway spruce, Scots pine, Corsican pine, Austrian pine, red oak and several other species, with only a few plots,

  10. Biodegradation of Nitro-Substituted Explosives 2,4,6-Trinitrotoluene, Hexahydro-1,3,5-Trinitro-1,3,5-Triazine, and Octahydro-1,3,5,7-Tetranitro-1,3,5-Tetrazocine by a Phytosymbiotic Methylobacterium sp. Associated with Poplar Tissues (Populus deltoides × nigra DN34)

    Science.gov (United States)

    Van Aken, Benoit; Yoon, Jong Moon; Schnoor, Jerald L.

    2004-01-01

    A pink-pigmented symbiotic bacterium was isolated from hybrid poplar tissues (Populus deltoides × nigra DN34). The bacterium was identified by 16S and 16S-23S intergenic spacer ribosomal DNA analysis as a Methylobacterium sp. (strain BJ001). The isolated bacterium was able to use methanol as the sole source of carbon and energy, which is a specific attribute of the genus Methylobacterium. The bacterium in pure culture was shown to degrade the toxic explosives 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazene (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine (HMX). [U-ring-14C]TNT (25 mg liter−1) was fully transformed in less than 10 days. Metabolites included the reduction derivatives amino-dinitrotoluenes and diamino-nitrotoluenes. No significant release of 14CO2 was recorded from [14C]TNT. In addition, the isolated methylotroph was shown to transform [U-14C]RDX (20 mg liter−1) and [U-14C]HMX (2.5 mg liter−1) in less than 40 days. After 55 days of incubation, 58.0% of initial [14C]RDX and 61.4% of initial [14C]HMX were mineralized into 14CO2. The radioactivity remaining in solution accounted for 12.8 and 12.7% of initial [14C]RDX and [14C]HMX, respectively. Metabolites detected from RDX transformation included a mononitroso RDX derivative and a polar compound tentatively identified as methylenedinitramine. Since members of the genus Methylobacterium are distributed in a wide diversity of natural environments and are very often associated with plants, Methylobacterium sp. strain BJ001 may be involved in natural attenuation or in situ biodegradation (including phytoremediation) of explosive-contaminated sites. PMID:14711682

  11. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Liaoning Forestry Vocational-Technical College, Shenyang 110101 (China); Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Xia, Xinli, E-mail: xiaxl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China); Yin, Weilun, E-mail: yinwl@bjfu.edu.cn [College of Biological Sciences and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083 (China)

    2014-07-18

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth.

  12. A novel bHLH transcription factor PebHLH35 from Populus euphratica confers drought tolerance through regulating stomatal development, photosynthesis and growth in Arabidopsis

    International Nuclear Information System (INIS)

    Dong, Yan; Wang, Congpeng; Han, Xiao; Tang, Sha; Liu, Sha; Xia, Xinli; Yin, Weilun

    2014-01-01

    Highlights: • PebHLH35 is firstly cloned from Populus euphratica and characterized its functions. • PebHLH35 is important for earlier seedling establishment and vegetative growth. • PebHLH35 enhances tolerance to drought by regulating growth. • PebHLH35 enhances tolerance to drought by regulating stomatal development. • PebHLH35 enhances tolerance to drought by regulating photosynthesis and transpiration. - Abstract: Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes including the regulation of plant responses to various abiotic stresses. However, few drought-responsive bHLH family members in Populus have been reported. In this study, a novel bHLH gene (PebHLH35) was cloned from Populus euphratica. Expression analysis in P. euphratica revealed that PebHLH35 was induced by drought and abscisic acid. Subcellular localization studies using a PebHLH35-GFP fusion showed that the protein was localized to the nucleus. Ectopic overexpression of PebHLH35 in Arabidopsis resulted in a longer primary root, more leaves, and a greater leaf area under well-watered conditions compared with vector control plants. Notably, PebHLH35 overexpression lines showed enhanced tolerance to water-deficit stress. This finding was supported by anatomical and physiological analyses, which revealed a reduced stomatal density, stomatal aperture, transpiration rate, and water loss, and a higher chlorophyll content and photosynthetic rate. Our results suggest that PebHLH35 functions as a positive regulator of drought stress responses by regulating stomatal density, stomatal aperture, photosynthesis and growth

  13. Manipulation Of Lignin Biosynthesis To Maximize Ethanol Production From Populus Feedstocks

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Clint Chapple; Dr. Rick Lindroth; Dr. Burce Dien; Dr. Glen Stanosz; Dr. Alex Wiedenhoeft; Dr. Fu Zhao; Dr. Duane Wegener; Dr. Janice Kelly; Dr. Leigh Raymond; Dr. Wallace Tyner

    2012-05-15

    Our research focuses on transgenic strategies for modifying lignification to improve biomass quality, without leading to deleterious effects on plant performance. In order to accomplish this objective, we designed molecular strategies and selected appropriate transgenes for manipulating the expression of lignification-associated genes; we generated poplar engineered for altered lignin content and/or monomer composition, and field-tested them for fitness; we analyzed the impact of these transgenic strategies on metabolism in general and lignin biosynthesis in particular; and evaluated the ease with which cell wall deconstruction can be accomplished using both chemical and enzymatic means using wild-type and high syringyl poplar.

  14. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    Science.gov (United States)

    Kiendler-Scharr, A.; Andres, S.; Bachner, M.; Behnke, K.; Broch, S.; Hofzumahaus, A.; Holland, F.; Kleist, E.; Mentel, T. F.; Rubach, F.; Springer, M.; Steitz, B.; Tillmann, R.; Wahner, A.; Schnitzler, J.-P.; Wildt, J.

    2012-01-01

    Stress-induced volatile organic compound (VOC) emissions from transgenic Grey poplar modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA) formation. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m-2 s-1 in non-transgenic controls (wild type WT) and nearly zero (plants (line RA22), respectively. Nucleation rates of up to 3600 cm-3 s-1 were observed in our experiments. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8) was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3% of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  15. Insertional mutagenesis in Populus: relevance and feasibility

    Science.gov (United States)

    Victor Busov; Matthias Fladung; Andrew Groover; Steven Strauss

    2005-01-01

    The recent sequencing of the first tree genome, that of the black cottonwood (Populus trichocarpa), opens a new chapter in tree functional genomics. While the completion of the genome is a milestone, mobilizing this significant resource for better understanding the growth and development of woody perennials will be an even greater undertaking in the...

  16. The effect of mycorrhizal inoculation on hybrid poplar fine root dynamics in hydrocarbon contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Gunderson, J.; Knight, J.D.; Van Rees, K.C.J. [Saskatchewan Univ., Saskatoon, SK (Canada). Dept. of Soil Science

    2006-07-01

    The biological remediation of contaminated soils using plants was discussed. Hybrid poplars are good candidates for phytoremediation because they root deeply, cycle large amounts of water and grow quickly. Their fine root system is pivotal in nutrient and water acquisition. Therefore, in order to maximize the phytoremediation potential, it is important to understand the response of the fine root system. In addition to degrading organic chemicals, ectomycorrhizal (ECM) fungi provide the host with greater access to nutrients. This study determined the relationship between residual soil hydrocarbons and soil properties at a field site. The effects of residual contamination on hybrid poplar fine root dynamics was also examined along with the effect of ectomycorrhizal colonization on hybrid poplar fine root dynamics when grown in diesel contaminated soil under controlled conditions. A minirhizotron camera inside a growth chamber captured images of mycorrhizal inoculation on hybrid poplar fine root production. Walker hybrid poplar seedlings were grown for 12 weeks in a control soil and also in a diesel contaminated soil. Seedlings were also grown in control and diesel contaminated, ectomycorrhizal inoculated soils. The inoculum was a mycorrhizal mix containing Pisolithus tinctorius and Rhizopogon spp. The images showed that colonization by ECM fungi increased hybrid poplar fine root production and aboveground biomass in a diesel contaminated soil compared to non-colonized trees in the same soil. Root:shoot ratios were much higher in the diesel contaminated/non-inoculated treatment than in either of the control soil treatments. Results of phytoremediation in diesel contaminated soil were better in the non-colonized treatment than in the colonized treatment. Both treatments removed more contaminants from the soil than the unplanted control. Much higher quantities of hydrocarbons were found sequestered in the roots from the inoculated treatment than from the non

  17. Micropropagation, genetic engineering, and molecular biology of Populus

    Science.gov (United States)

    N. B. Klopfenstein; Y. W. Chun; M. -S. Kim; M. A. Ahuja; M. C. Dillon; R. C. Carman; L. G. Eskew

    1997-01-01

    Thirty-four Populus biotechnology chapters, written by 85 authors, are comprised in 5 sections: 1) in vitro culture (micropropagation, somatic embryogenesis, protoplasts, somaclonal variation, and germplasm preservation); 2) transformation and foreign gene expression; 3) molecular biology (molecular/genetic characterization); 4) biotic and abiotic resistance (disease,...

  18. Potential and limitations of local tree ring records in estimating a priori the growth performance of short-rotation coppice plantations

    Czech Academy of Sciences Publication Activity Database

    Trnka, Miroslav; Fischer, Milan; Bartošová, Lenka; Orság, Matěj; Kyncl, T.; Ceulemans, R.; King, J.R.; Büntgen, Ulf

    2016-01-01

    Roč. 92, sep (2016), s. 12-19 ISSN 0961-9534 R&D Projects: GA MŠk(CZ) LO1415; GA MŠk(CZ) LD13030 Institutional support: RVO:67179843 Keywords : dendroecology * plantation site selection * populus nigra * poplar hybrid * weather-growth relationship Subject RIV: EH - Ecology, Behaviour Impact factor: 3.219, year: 2016

  19. Woody crops conference 2013; Agrarholz-Kongress 2013

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-06-01

    Within the Guelzow expert discussions at 19th and 20th February 2013 in Berlin (Federal Republic of Germany) the following lectures were held: (1) Research funding of the BMELV in the field of the production of woody crops (Andreas Schuette); (2) ELKE - Development of extensive concepts of land use for the production of renewable raw materials as possible compensatory measures and substitute measures (Frank Wegener); (3) Knowledge transfer to the realm of practice, experiences of the DLG (Frank Setzer); (4) Results of the tests with fast growing tree species after 18 years of cultivation in Guelzow (Andreas Gurgel); (5) Latest findings on the production of woody crops in Brandenburg (D. Murach); (6) Phytosanitary situation in short-rotation coppices in Germany - Current state of knowledge and prognoses for the future (Christiane Helbig); (7) Evaluation of alternative delivery procedures in short-rotation coppices (Janine Schweier); (8) With a short-rotation coppice shredder through Germany (Wolfram Kudlich); (9) Changes of land-use of traditional crops rotation systems to short-rotation coppices consisting of poplar trees and willow trees, which sites are suitable? - Selected results from the ProLoc association (Martin Hofmann); (10) Cultivation of populus tremula for short-rotation coppices at agricultural areas (Mirko Liesebach); (11) Investigations of the resistance behaviour of newly developed black poplar clones and balsam poplar clones against the poplar leave rust Melampsora larici-populina (Christina Fey-Wagner); (12) A agri-forestry system for ligneous energy production in the organic farming - First results from cultivation experiments in Bavaria (Klaus Wiesinger); (13) Implementation of agri-forestry systems with energy wood in the rural area - the project AgroForstEnergie (Armin Vetter); (14) Impact of agroforestry land utilization on microclimate, soil fertility and quality of water (Christian Boehm).

  20. Effects on the forest of sulfur dioxide from a sulfur fire near Edson, Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Hocking, D

    1975-01-01

    Sulfur was burnt in a sanitary landfill during August 9 and 10, 1974. Resulting sulfur dioxide impinged on the surrounding mixed forest for 29 h. About 4 ha of forest displayed visible injury symptoms of varying intensity soon after. However, only .4 ha remained permanently injured the next season. Here, white spruce (Picea glauca (Moench) Voss) and scattered individuals of balsam poplar (Populus balsamifera L.), alder (Alnus tenuifolia Nutt.), and trembling aspen (Populus tremuloides Michx.) were killed. This report describes the extent of injury, relative sensitivities of affected plant species, and recovery in the spring in 1975.

  1. Identification of Quantitative Trait Loci (QTL) and Candidate Genes for Cadmium Tolerance in Populus

    Energy Technology Data Exchange (ETDEWEB)

    Induri, Brahma R [West Virginia University; Ellis, Danielle R [West Virginia University; Slavov, Gancho [West Virginia University; Yin, Tongming [ORNL; Muchero, Wellington [ORNL; Tuskan, Gerald A [ORNL; DiFazio, Stephen P [West Virginia University

    2012-01-01

    Knowledge of genetic variation in response of Populus to heavy metals like cadmium (Cd) is an important step in understanding the underlying mechanisms of tolerance. In this study, a pseudo-backcross pedigree of Populus trichocarpa and Populus deltoides was characterized for Cd exposure. The pedigree showed significant variation for Cd tolerance thus enabling the identification of relatively tolerant and susceptible genotypes for intensive characterization. A total of 16 QTLs at logarithm of odds (LOD) ratio > 2.5, were found to be associated with total dry weight, its components, and root volume. Four major QTLs for total dry weight were mapped to different linkage groups in control (LG III) and Cd conditions (LG XVI) and had opposite allelic effects on Cd tolerance, suggesting that these genomic regions were differentially controlled. The phenotypic variation explained by Cd QTL for all traits under study varied from 5.9% to 11.6% and averaged 8.2% across all QTL. Leaf Cd contents also showed significant variation suggesting the phytoextraction potential of Populus genotypes, though heritability of this trait was low (0.22). A whole-genome microarray study was conducted by using two genotypes with extreme responses for Cd tolerance in the above study and differentially expressed genes were identified. Candidate genes including CAD2 (CADMIUM SENSITIVE 2), HMA5 (HEAVY METAL ATPase5), ATGTST1 (Arabidopsis thaliana Glutathione S-Transferase1), ATGPX6 (Glutathione peroxidase 6), and ATMRP 14 (Arabidopsis thaliana Multidrug Resistance associated Protein 14) were identified from QTL intervals and microarray study. Functional characterization of these candidate genes could enhance phytoremediation capabilities of Populus.

  2. The Potential of the Ni-Resistant TCE-Degrading Pseudomonas putida W619-TCE to Reduce Phytotoxicity and Improve Phytoremediation Efficiency of Poplar Cuttings on A Ni-TCE Co-Contamination.

    Science.gov (United States)

    Weyens, Nele; Beckers, Bram; Schellingen, Kerim; Ceulemans, Reinhart; van der Lelie, Daniel; Newman, Lee; Taghavi, Safiyh; Carleer, Robert; Vangronsveld, Jaco

    2015-01-01

    To examine the potential of Pseudomonas putida W619-TCE to improve phytoremediation of Ni-TCE co-contamination, the effects of inoculation of a Ni-resistant, TCE-degrading root endophyte on Ni-TCE phytotoxicity, Ni uptake and trichloroethylene (TCE) degradation of Ni-TCE-exposed poplar cuttings are evaluated. After inoculation with P. putida W619-TCE, root weight of non-exposed poplar cuttings significantly increased. Further, inoculation induced a mitigation of the Ni-TCE phytotoxicity, which was illustrated by a diminished exposure-induced increase in activity of antioxidative enzymes. Considering phytoremediation efficiency, inoculation with P. putida W619-TCE resulted in a 45% increased Ni uptake in roots as well as a slightly significant reduction in TCE concentration in leaves and TCE evapotranspiration to the atmosphere. These results indicate that endophytes equipped with the appropriate characteristics can assist their host plant to deal with co-contamination of toxic metals and organic contaminants during phytoremediation. Furthermore, as poplar is an excellent plant for biomass production as well as for phytoremediation, the obtained results can be exploited to produce biomass for energy and industrial feedstock applications in a highly productive manner on contaminated land that is not suited for normal agriculture. Exploiting this land for biomass production could contribute to diminish the conflict between food and bioenergy production.

  3. Laboratory and Airborne BRDF Analysis of Vegetation Leaves and Soil Samples

    Science.gov (United States)

    Georgiev, Georgi T.; Gatebe, Charles K.; Butler, James J.; King, Michael D.

    2008-01-01

    Laboratory-based Bidirectional Reflectance Distribution Function (BRDF) analysis of vegetation leaves, soil, and leaf litter samples is presented. The leaf litter and soil samples, numbered 1 and 2, were obtained from a site located in the savanna biome of South Africa (Skukuza: 25.0degS, 31.5degE). A third soil sample, number 3, was obtained from Etosha Pan, Namibia (19.20degS, 15.93degE, alt. 1100 m). In addition, BRDF of local fresh and dry leaves from tulip tree (Liriodendron tulipifera) and acacia tree (Acacia greggii) were studied. It is shown how the BRDF depends on the incident and scatter angles, sample size (i.e. crushed versus whole leaf,) soil samples fraction size, sample status (i.e. fresh versus dry leaves), vegetation species (poplar versus acacia), and vegetation s biochemical composition. As a demonstration of the application of the results of this study, airborne BRDF measurements acquired with NASA's Cloud Absorption Radiometer (CAR) over the same general site where the soil and leaf litter samples were obtained are compared to the laboratory results. Good agreement between laboratory and airborne measured BRDF is reported.

  4. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    Science.gov (United States)

    Chen, Weimin; Zhou, Xiaoyan; Zhang, Xiaotao; Bian, Jie; Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi; Wan, Jinglin

    2017-06-01

    The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Sisbnd Osbnd C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  5. Effects of Clone, Silvicultural, and Miticide Treatments on Cottonwood Leafcurl Mite (Acari: Eriophyidae) Damage in Plantation Populus

    Science.gov (United States)

    David R. Coyle

    2002-01-01

    Aculops lobuliferus (Keifer) is a little known pest of plantation Populus spp., which is capable of causing substantial damage. This is the First documented occurrence of A. lobuliferus in South Carolina. Previous anecdotal data indicated clonal variation in Populus susceptibility to A...

  6. To Make Long Character-Marked Cuttings From Low-Grade Yellow-Poplar Lumber - Rip First

    Science.gov (United States)

    Philip A. Araman

    1979-01-01

    Long, character-marked furniture cuttings are easily obtained when low-grade (2A and 2B Common) yellow-poplar lumber is first ripped into strips and then crosscut to remove objectionable defects. Overall yields of character-marked material using this procedure were 78% from 1 Common and 2A Common and 70% from 2B Common yellow-poplar lumber. Furthermore, 82% of the 1...

  7. Effect of calcium cyanamide on growth and nutrition of plan fed yellow-poplar seedlings

    Science.gov (United States)

    L.R. Auchmoody; G.W. Wendel; G.W. Wendel

    1973-01-01

    Calcium cyanamide, a nitrogenous fertilizer that also acts as an herbicide, was evaluated over a 3-year period for use in establishing planted yellow-poplar on an old-field site. Results of this study show that first and second year growth of yellow-poplar can be increased by nbroadcasting CaCN2 around the seedlings. When applied at rates of 400 to 500 pounds of...

  8. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Science.gov (United States)

    Tian, Feng-Xia; Zang, Jian-Lei; Wang, Tan; Xie, Yu-Li; Zhang, Jin; Hu, Jian-Jun

    2015-01-01

    Aldehyde dehydrogenases (ALDHs) constitute a superfamily of NAD(P)+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  9. Aldehyde Dehydrogenase Gene Superfamily in Populus: Organization and Expression Divergence between Paralogous Gene Pairs.

    Directory of Open Access Journals (Sweden)

    Feng-Xia Tian

    Full Text Available Aldehyde dehydrogenases (ALDHs constitute a superfamily of NAD(P+-dependent enzymes that catalyze the irreversible oxidation of a wide range of reactive aldehydes to their corresponding nontoxic carboxylic acids. ALDHs have been studied in many organisms from bacteria to mammals; however, no systematic analyses incorporating genome organization, gene structure, expression profiles, and cis-acting elements have been conducted in the model tree species Populus trichocarpa thus far. In this study, a comprehensive analysis of the Populus ALDH gene superfamily was performed. A total of 26 Populus ALDH genes were found to be distributed across 12 chromosomes. Genomic organization analysis indicated that purifying selection may have played a pivotal role in the retention and maintenance of PtALDH gene families. The exon-intron organizations of PtALDHs were highly conserved within the same family, suggesting that the members of the same family also may have conserved functionalities. Microarray data and qRT-PCR analysis indicated that most PtALDHs had distinct tissue-specific expression patterns. The specificity of cis-acting elements in the promoter regions of the PtALDHs and the divergence of expression patterns between nine paralogous PtALDH gene pairs suggested that gene duplications may have freed the duplicate genes from the functional constraints. The expression levels of some ALDHs were up- or down-regulated by various abiotic stresses, implying that the products of these genes may be involved in the adaptation of Populus to abiotic stresses. Overall, the data obtained from our investigation contribute to a better understanding of the complexity of the Populus ALDH gene superfamily and provide insights into the function and evolution of ALDH gene families in vascular plants.

  10. Isoprene in poplar emissions: effects on new particle formation and OH concentrations

    Directory of Open Access Journals (Sweden)

    A. Kiendler-Scharr

    2012-01-01

    Full Text Available Stress-induced volatile organic compound (VOC emissions from transgenic Grey poplar modified in isoprene emission potential were used for the investigation of photochemical secondary organic aerosol (SOA formation. In poplar, acute ozone stress induces the emission of a wide array of VOCs dominated by sesquiterpenes and aromatic VOCs. Constitutive light-dependent emission of isoprene ranged between 66 nmol m−2 s−1 in non-transgenic controls (wild type WT and nearly zero (<0.5 nmol m−2 s−1 in isoprene emission-repressed plants (line RA22, respectively. Nucleation rates of up to 3600 cm−3 s−1 were observed in our experiments. In the presence of isoprene new particle formation was suppressed compared to non-isoprene containing VOC mixtures. Compared to isoprene/monoterpene systems emitted from other plants the suppression of nucleation by isoprene was less effective for the VOC mixture emitted from stressed poplar. This is explained by the observed high efficiency of new particle formation for emissions from stressed poplar. Direct measurements of OH in the reaction chamber revealed that the steady state concentration of OH is lower in the presence of isoprene than in the absence of isoprene, supporting the hypothesis that isoprenes' suppressing effect on nucleation is related to radical chemistry. In order to test whether isoprene contributes to SOA mass formation, fully deuterated isoprene (C5D8 was added to the stress-induced emission profile of an isoprene free poplar mutant. Mass spectral analysis showed that, despite the isoprene-induced suppression of particle formation, fractions of deuterated isoprene were incorporated into the SOA. A fractional mass yield of 2.3% of isoprene was observed. Future emission changes due to land use and climate change may therefore affect both gas phase oxidation capacity and new particle number formation.

  11. Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Directory of Open Access Journals (Sweden)

    Babst Benjamin A

    2009-12-01

    Full Text Available Abstract Background Phenylpropanoid-derived phenolic glycosides (PGs and condensed tannins (CTs comprise large, multi-purpose non-structural carbon sinks in Populus. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known. Results Populus cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM, and a negative effect on cell growth (at 10 mM. The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis. Conclusions Exogenous salicyl alcohol was readily glycosylated in Populus cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we

  12. GENOME-ENABLED DISCOVERY OF CARBON SEQUESTRATION GENES IN POPLAR

    Energy Technology Data Exchange (ETDEWEB)

    DAVIS J M

    2007-10-11

    Plants utilize carbon by partitioning the reduced carbon obtained through photosynthesis into different compartments and into different chemistries within a cell and subsequently allocating such carbon to sink tissues throughout the plant. Since the phytohormones auxin and cytokinin are known to influence sink strength in tissues such as roots (Skoog & Miller 1957, Nordstrom et al. 2004), we hypothesized that altering the expression of genes that regulate auxin-mediated (e.g., AUX/IAA or ARF transcription factors) or cytokinin-mediated (e.g., RR transcription factors) control of root growth and development would impact carbon allocation and partitioning belowground (Fig. 1 - Renewal Proposal). Specifically, the ARF, AUX/IAA and RR transcription factor gene families mediate the effects of the growth regulators auxin and cytokinin on cell expansion, cell division and differentiation into root primordia. Invertases (IVR), whose transcript abundance is enhanced by both auxin and cytokinin, are critical components of carbon movement and therefore of carbon allocation. Thus, we initiated comparative genomic studies to identify the AUX/IAA, ARF, RR and IVR gene families in the Populus genome that could impact carbon allocation and partitioning. Bioinformatics searches using Arabidopsis gene sequences as queries identified regions with high degrees of sequence similarities in the Populus genome. These Populus sequences formed the basis of our transgenic experiments. Transgenic modification of gene expression involving members of these gene families was hypothesized to have profound effects on carbon allocation and partitioning.

  13. Environmental Metabarcoding Reveals Contrasting Belowground and Aboveground Fungal Communities from Poplar at a Hg Phytomanagement Site.

    Science.gov (United States)

    Durand, Alexis; Maillard, François; Foulon, Julie; Gweon, Hyun S; Valot, Benoit; Chalot, Michel

    2017-11-01

    Characterization of microbial communities in stressful conditions at a field level is rather scarce, especially when considering fungal communities from aboveground habitats. We aimed at characterizing fungal communities from different poplar habitats at a Hg-contaminated phytomanagement site by using Illumina-based sequencing, network analysis approach, and direct isolation of Hg-resistant fungal strains. The highest diversity estimated by the Shannon index was found for soil communities, which was negatively affected by soil Hg concentration. Among the significant correlations between soil operational taxonomic units (OTUs) in the co-occurrence network, 80% were negatively correlated revealing dominance of a pattern of mutual exclusion. The fungal communities associated with Populus roots mostly consisted of OTUs from the symbiotic guild, such as members of the Thelephoraceae, thus explaining the lowest diversity found for root communities. Additionally, root communities showed the highest network connectivity index, while rarely detected OTUs from the Glomeromycetes may have a central role in the root network. Unexpectedly high richness and diversity were found for aboveground habitats, compared to the root habitat. The aboveground habitats were dominated by yeasts from the Lalaria, Davidiella, and Bensingtonia genera, not detected in belowground habitats. Leaf and stem habitats were characterized by few dominant OTUs such as those from the Dothideomycete class producing mutual exclusion with other OTUs. Aureobasidium pullulans, one of the dominating OTUs, was further isolated from the leaf habitat, in addition to Nakazawaea populi species, which were found to be Hg resistant. Altogether, these findings will provide an improved point of reference for microbial research on inoculation-based programs of tailings dumps.

  14. Leaf stomatal traits variation within and among black poplar native populations in Serbia

    OpenAIRE

    Cortan, Dijana; Vilotic, Dragica; Sijacic-Nikolic, Mirjana; Miljkovic, Danijela

    2017-01-01

    Populus nigra as a keystone riparian pioneer tree species is one of the rarest and most endangered species in Europe due to the loss of its natural habitats. Genetic diversity existence is a key factor in survival of one species, and stomata as genetically controlled trait could be used for differentiation studies. With the aim of proving stomatal phenotypic variation of the four native populations of Populus nigra located on the banks of three biggest river valleys (Dunabe, Tisa and Sava) in...

  15. White poplar (Populus alba L. - Litter impact on chemical and biochemical parameters related to nitrogen cycle in contaminated soils

    Directory of Open Access Journals (Sweden)

    Paula Madejon

    2014-04-01

    Full Text Available Aim of study: The aim of this study was to determine the effect of litter from Populus alba on chemical and biochemical properties related to the N cycle in soils with different pH values and trace element contents. We hypothesized that this litter would influence several parameters related to the N cycle and consequently to soil health.Area of study: we collected two reforested contaminated soils of different pH values (AZ pH 7.23 and DO pH = 2.66 and a non-contaminated soil (RHU pH 7.19.Materials and methods: Soil samples were placed in 2,000 cm3 microcosms and were incubated for 40 weeks in controlled conditions. Each soil was mixed with its corresponding litter, and soils without litter were also tested for comparison. Ammonium (NH4+-N and nitrate (NO3–-N content, potential nitrification rate (PNR, microbial biomass nitrogen (MBN, protease activity, and several chemical properties such as pH, available trace element concentrations (extracted with 0.01 M CaCl2 were determined at different times of incubation.Main results: Values of available trace elements did not vary during the incubation and were always higher in acid soil. In neutral soils litter presence increased values of Kjeldahl-N, NO3–-N content, potential nitrification rate (PNR, microbial biomass nitrogen (MBN and protease activity. Presence of trace elements in neutral soils did not alter the parameters studied. However, acidic pH and high content of available trace elements strongly affected NH4+-N andNO3–-N, microbial biomass N and protease activity.Research highlights: Our results showed the negative effect of the acidity and trace element availability in parameters related with the N-cycle.Key words: microbial biomass N; protease activity; soil pH; N mineralization; nitrification; phytoremediation.

  16. Structure and vascular tissue expression of duplicated TERMINAL EAR1-like paralogues in poplar.

    Science.gov (United States)

    Charon, Céline; Vivancos, Julien; Mazubert, Christelle; Paquet, Nicolas; Pilate, Gilles; Dron, Michel

    2010-02-01

    TERMINAL EAR1-like (TEL) genes encode putative RNA-binding proteins only found in land plants. Previous studies suggested that they may regulate tissue and organ initiation in Poaceae. Two TEL genes were identified in both Populus trichocarpa and the hybrid aspen Populus tremula x P. alba, named, respectively, PoptrTEL1-2 and PtaTEL1-2. The analysis of the organisation around the PoptrTEL genes in the P. trichocarpa genome and the estimation of the synonymous substitution rate for PtaTEL1-2 genes indicate that the paralogous link between these two Populus TEL genes probably results from the Salicoid large-scale gene-duplication event. Phylogenetic analyses confirmed their orthology link with the other TEL genes. The expression pattern of both PtaTEL genes appeared to be restricted to the mother cells of the plant body: leaf founder cells, leaf primordia, axillary buds and root differentiating tissues, as well as to mother cells of vascular tissues. Most interestingly, PtaTEL1-2 transcripts were found in differentiating cells of secondary xylem and phloem, but probably not in the cambium itself. Taken together, these results indicate specific expression of the TEL genes in differentiating cells controlling tissue and organ development in Populus (and other Angiosperm species).

  17. Syringyl-Rich Lignin Renders Poplars More Resistant to Degradation by Wood Decay Fungi

    Science.gov (United States)

    Skyba, Oleksandr; Douglas, Carl J.

    2013-01-01

    In order to elucidate the effects of lignin composition on the resistance of wood to degradation by decay fungi, wood specimens from two transgenic poplar lines expressing an Arabidopsis gene encoding ferulate 5-hydroxylase (F5H) driven by the cinnimate-4-hydroxylase promoter (C4H::F5H) that increased syringyl/guaiacyl (S/G) monolignol ratios relative to those in the untransformed control wood were incubated with six different wood decay fungi. Alterations in wood weight and chemical composition were monitored over the incubation period. The results showed that transgenic poplar lines extremely rich in syringyl lignin exhibited a drastically improved resistance to degradation by all decay fungi evaluated. Lignin monomer composition and its distribution among cell types and within different cell layers were the sole wood chemistry parameters determining wood durability. Since transgenic poplars with exceedingly high syringyl contents were recalcitrant to degradation, where wood durability is a critical factor, these genotypes may offer improved performance. PMID:23396333

  18. Transcriptome responses to aluminum stress in roots of aspen (Populus tremula

    Directory of Open Access Journals (Sweden)

    Grisel Nadine

    2010-08-01

    Full Text Available Abstract Background Ionic aluminum (mainly Al3+ is rhizotoxic and can be present in acid soils at concentrations high enough to inhibit root growth. Many forest tree species grow naturally in acid soils and often tolerate high concentrations of Al. Previously, we have shown that aspen (Populus tremula releases citrate and oxalate from roots in response to Al exposure. To obtain further insights into the root responses of aspen to Al, we investigated root gene expression at Al conditions that inhibit root growth. Results Treatment of the aspen roots with 500 μM Al induced a strong inhibition of root growth within 6 h of exposure time. The root growth subsequently recovered, reaching growth rates comparable to that of control plants. Changes in gene expression were determined after 6 h, 2 d, and 10 d of Al exposure. Replicated transcriptome analyses using the Affymetrix poplar genome array revealed a total of 175 significantly up-regulated and 69 down-regulated genes, of which 70% could be annotated based on Arabidopsis genome resources. Between 6 h and 2 d, the number of responsive genes strongly decreased from 202 to 26, and then the number of changes remained low. The responses after 6 h were characterized by genes involved in cell wall modification, ion transport, and oxidative stress. Two genes with prolonged induction were closely related to the Arabidopsis Al tolerance genes ALS3 (for Al sensitive 3 and MATE (for multidrug and toxin efflux protein, mediating citrate efflux. Patterns of expression in different plant organs and in response to Al indicated that the two aspen genes are homologs of the Arabidopsis ALS3 and MATE. Conclusion Exposure of aspen roots to Al results in a rapid inhibition of root growth and a large change in root gene expression. The subsequent root growth recovery and the concomitant reduction in the number of responsive genes presumably reflect the success of the roots in activating Al tolerance mechanisms. The

  19. Multilocus analysis of nucleotide variation and speciation in three closely related Populus (Salicaceae) species.

    Science.gov (United States)

    Du, Shuhui; Wang, Zhaoshan; Ingvarsson, Pär K; Wang, Dongsheng; Wang, Junhui; Wu, Zhiqiang; Tembrock, Luke R; Zhang, Jianguo

    2015-10-01

    Historical tectonism and climate oscillations can isolate and contract the geographical distributions of many plant species, and they are even known to trigger species divergence and ultimately speciation. Here, we estimated the nucleotide variation and speciation in three closely related Populus species, Populus tremuloides, P. tremula and P. davidiana, distributed in North America and Eurasia. We analysed the sequence variation in six single-copy nuclear loci and three chloroplast (cpDNA) fragments in 497 individuals sampled from 33 populations of these three species across their geographic distributions. These three Populus species harboured relatively high levels of nucleotide diversity and showed high levels of nucleotide differentiation. Phylogenetic analysis revealed that P. tremuloides diverged earlier than the other two species. The cpDNA haplotype network result clearly illustrated the dispersal route from North America to eastern Asia and then into Europe. Molecular dating results confirmed that the divergence of these three species coincided with the sundering of the Bering land bridge in the late Miocene and a rapid uplift of the Qinghai-Tibetan Plateau around the Miocene/Pliocene boundary. Vicariance-driven successful allopatric speciation resulting from historical tectonism and climate oscillations most likely played roles in the formation of the disjunct distributions and divergence of these three Populus species. © 2015 John Wiley & Sons Ltd.

  20. The effect of altered lignin composition on mechanical properties of CINNAMYL ALCOHOL DEHYDROGENASE (CAD) deficient poplars.

    Science.gov (United States)

    Özparpucu, Merve; Gierlinger, Notburga; Burgert, Ingo; Van Acker, Rebecca; Vanholme, Ruben; Boerjan, Wout; Pilate, Gilles; Déjardin, Annabelle; Rüggeberg, Markus

    2018-04-01

    CAD-deficient poplars enabled studying the influence of altered lignin composition on mechanical properties. Severe alterations in lignin composition did not influence the mechanical properties. Wood represents a hierarchical fiber-composite material with excellent mechanical properties. Despite its wide use and versatility, its mechanical behavior has not been entirely understood. It has especially been challenging to unravel the mechanical function of the cell wall matrix. Lignin engineering has been a useful tool to increase the knowledge on the mechanical function of lignin as it allows for modifications of lignin content and composition and the subsequent studying of the mechanical properties of these transgenics. Hereby, in most cases, both lignin composition and content are altered and the specific influence of lignin composition has hardly been revealed. Here, we have performed a comprehensive micromechanical, structural, and spectroscopic analysis on xylem strips of transgenic poplar plants, which are downregulated for cinnamyl alcohol dehydrogenase (CAD) by a hairpin-RNA-mediated silencing approach. All parameters were evaluated on the same samples. Raman microscopy revealed that the lignin of the hpCAD poplars was significantly enriched in aldehydes and reduced in the (relative) amount of G-units. FTIR spectra indicated pronounced changes in lignin composition, whereas lignin content was not significantly changed between WT and the hpCAD poplars. Microfibril angles were in the range of 18°-24° and were not significantly different between WT and transgenics. No significant changes were observed in mechanical properties, such as tensile stiffness, ultimate stress, and yield stress. The specific findings on hpCAD poplar allowed studying the specific influence of lignin composition on mechanics. It can be concluded that the changes in lignin composition in hpCAD poplars did not affect the micromechanical tensile properties.

  1. Response of ecosystem carbon fluxes to drought events in a poplar plantation in Northern China

    Science.gov (United States)

    Jie Zhou; Zhiqiang Zhang; Ge Sun; Xianrui Fang; Tonggang Zha; Steve McNulty; Jiquan Chen; Ying Jin; Asko Noormets

    2013-01-01

    Poplar plantations are widely used for timber production and ecological restoration in northern China,a region that experiences frequent droughts and water scarcity. An open-path eddy-covariance (EC)system was used to continuously measure the carbon,water,and energy fluxes in a poplar plantation during the growing season (i.e., April–October)over the period 2006–2008...

  2. A structured understanding of cellobiohydrolase I binding to poplar lignin fractions after dilute acid pretreatment.

    Science.gov (United States)

    Yao, Lan; Yoo, Chang Geun; Meng, Xianzhi; Li, Mi; Pu, Yunqiao; Ragauskas, Arthur J; Yang, Haitao

    2018-01-01

    Cellulase adsorption to lignin is considered a cost barrier for bioethanol production; however, its detailed association mechanism is still not fully understood. In this study, two natural poplar variants with high and low sugar release performance were selected as the low and high recalcitrant raw materials (named L and H , respectively). Three different lignin fractions were extracted using ethanol, followed by p -dioxane and then cellulase treatment from the dilute acid pretreated poplar solids (fraction 1, 2, and 3, respectively). Each lignin fraction had different physicochemical properties. Ethanol-extracted lignin had the lowest weight average molecular weight, while the molecular weights for the other two lignin fractions were similar. 31 P NMR analysis revealed that lignin fraction with higher molecular weight contained more aliphatic hydroxyl groups and less phenolic hydroxyl groups. Semi-quantitative analysis by 2D HSQC NMR indicated that the lignin fractions isolated from the natural variants had different contents of syringyl (S), guaiacyl (G) and interunit linkages. Lignin extracted by ethanol contained the largest amount of S units, the smallest amounts of G and p -hydroxybenzoate (PB) subunits, while the contents of these lignin subunits in the other two lignin fractions were similar. The lignin fraction obtained after cellulase treatment was primarily comprised of β- O -4 linkages with small amounts of β-5 and β-β linkages. The binding strength of these three lignin fractions obtained by Langmuir equations were in the order of L 1  >  L 3  >  L 2 for the low recalcitrance poplar and H 1  >  H 2  >  H 3 for the high recalcitrance poplar. Overall, adsorption ability of lignin was correlated with the sugar release of poplar. Structural features of lignin were associated with its binding to CBH. For natural poplar variants, lignin fractions with lower molecular weight and polydispersity index (PDI) exhibited more CBH adsorption

  3. A New Stem Taper Function for Short-rotation poplar

    Energy Technology Data Exchange (ETDEWEB)

    Benbrahim, Mohammed [INRA Centre de Bordeaux, Cestas (France). Unite de Recherches Forestieres; Gavaland, Andre [INRA Centre de Toulouse, Castanet-Tolosane (France). Unite Agroforesterie et Foret Paysanne

    2003-07-01

    A new stem taper function was established for individual trees of two poplar hybrid clones grown on a short-rotation coppice. The model could be easily fitted and required three parameters to be estimated. It can be used to estimate both diameter at a given height and height for a given top diameter. Two of the three parameters controlled the conical and the neiloid parts of the stem. Significant differences in these parameters were observed between the two clones even if no differences were observed for diameter at breast height or total height of the stem. The model could not be integrated to calculate volumes (total volume, merchantable volume), which were estimated by numerical integration. However, use of this new model allows the optimal length of billets to be determined and thus maximizes the merchantable biomass of poplar in short-rotation coppice by minimizing the biomass of residues.

  4. Diversification and expression of the PIN, AUX/LAX and ABCB families of putative auxin transporters in Populus

    Directory of Open Access Journals (Sweden)

    Nicola eCarraro

    2012-02-01

    Full Text Available Intercellular transport of the plant hormone auxin is mediated by three families of membrane-bound protein carriers, with the PIN and ABCB families coding primarily for efflux proteins and the AUX/LAX family coding for influx proteins. In the last decade our understanding of gene and protein function for these transporters in Arabidopsis has expanded rapidly but very little is known about their role in woody plant development. Here we present a comprehensive account of all three families in the model woody species Populus, including chromosome distribution, protein structure, quantitative gene expression, and evolutionary relationships. The PIN and AUX/LAX gene families in Populus comprise 16 and 8 members respectively, and show evidence for the retention of paralogs following a relatively recent whole genome duplication. There is also evidence for differential expression across tissues within many gene pairs. The ABCB family is previously undescribed in Populus and includes 20 members, showing a much deeper evolutionary history including both tandem and whole genome duplication as well as probable loss. A striking number of these transporters are expressed in developing Populus stems and we suggest that evolutionary and structural relationships with known auxin transporters in Arabidopsis can point toward candidate genes for further study in Populus. This is especially important for the ABCBs, which is a large family and includes members in Arabidopsis that are able to transport other substrates in addition to auxin. Protein modeling, sequence alignment and expression data all point to ABCB1.1 as a likely auxin transport protein in Populus. Given that basipetal auxin flow through the cambial zone shapes the development of woody stems, it is important that we identify the full complement of proteins involved in this process. This work should lay the foundation for studies targeting specific proteins for functional characterization and in situ

  5. Effects of progressive soil water deficit on growth, and physiological and biochemical responses of populus euphratica in arid area: a case study in China

    International Nuclear Information System (INIS)

    Yang, Y.; Chen, Y.; Li, W.; Zhu, C.

    2015-01-01

    The aim of this study was to investigate the responses of Populus euphratica seedlings under a short-term soil water deficit. To mimic natural conditions in which drought stress develops gradually, stress was imposed by subjecting plants to a gradual decrease of soil water content for a period of 21 d. We studied growth, physiological and biochemical responses to progressive soil water deficit of potted Populus euphratica seedlings at outdoors. Results showed that, in 6 d of water withholding, the soil moisture content decreased to a slight drought stress level, and it reached a severe drought stress level after 15 d of water withholding in July. In the process of soil water declining from saturated to severe drought levels, the increasing soil water deficit resulted in decreases in the height, stem base diameter, number of lateral branches. Leaf predawn water potential decreased after 15 d of withholding irrigation. After 21 d of withholding irrigation, actual photochemical efficiency of photosystem II (PSII) in light-adapted leaves and photochemical quenching coefficient decreased, respectively; the peroxidase activity, the content of chlorophyll a and chlorophyll b decreased. There were no significant changes in proline, malondialdehyde content, chlorophyll a/b value and superoxide dismutase activity. (author)

  6. Rapid continental-scale vegetation response to the Younger Dryas Cool Episode

    Science.gov (United States)

    Peros, M.; Gajewski, K.; Viau, A.

    2006-12-01

    The Younger Dryas Cool Episode had rapid and widespread effects on flora and fauna throughout the Americas. Fossil pollen records document how plant communities responded to this event, although such data are generally only representative of changes at local- to regional-scales. We use a new approach to provide insight into vegetation responses to the Younger Dryas at a continental-scale, by focusing on data extracted for a single taxon (Populus poplar, cottonwood, aspen) from pollen diagrams throughout North America. We show that Populus underwent a rapid and continent-wide decline as the climate rapidly cooled and dried. At the termination of the Younger Dryas, Populus underwent another widespread decline, this time in response to competition from boreal and temperate taxa as the climate abruptly warmed. Late glacial-early Holocene pollen assemblages with high quantities of Populus pollen often lack modern analogues and thus confound quantitative paleoclimatic reconstructions; our results provide a context to interpret these assemblages. Furthermore, while Populus may continue to expand in the future in response to human disturbance and increasing temperatures, its sensitivity to competition may eventually put it at risk as global warming accelerates.

  7. Creation and genomic analysis of irradiation hybrids in Populus

    Science.gov (United States)

    Matthew S. Zinkgraf; K. Haiby; M.C. Lieberman; L. Comai; I.M. Henry; Andrew Groover

    2016-01-01

    Establishing efficient functional genomic systems for creating and characterizing genetic variation in forest trees is challenging. Here we describe protocols for creating novel gene-dosage variation in Populus through gamma-irradiation of pollen, followed by genomic analysis to identify chromosomal regions that have been deleted or inserted in...

  8. Changes in soil quality following poplar short-rotation forestry under different cutting cycles

    Directory of Open Access Journals (Sweden)

    Claudia Di Bene

    2011-02-01

    Full Text Available In the last decade, the change of energy concept induced by global warming and fossil fuel depletion together with the advances in agriculture towards a multifunctional and a more sustainable use of rural areas promoted the development of biomass crops. In this regard, Populus is largely utilised in short-rotation forestry (SRF, as it is known to be a fast-growing tree, producing large yields and having a high energy potential. Most studies focused on economic-productive and energetic aspects of Populus plantations, whereas their impact on soil quality and health have been poorly investigated. In this study, the main soil chemical parameters, microbial biomass and activity were assessed aiming at evaluating the impact of Populus SRF under one, two and three-year cutting cycles (T1, T2 and T3 in comparison with an intensive food cropping system (wheat-soybean rotation, WS. In addition, arbuscular mycorrhizal (AM fungal inoculum potential was measured using root colonisation (RC and number of entry points (EP. In the 0-10 cm soil depth, pH, phosphorus (P, total nitrogen (N and soil organic carbon (SOC were significantly affected by the management. In comparison with WS, Populus SRF treatments produced significant pH decreases together with N and SOC increases, these last ones ranging from 11 to 34% and from 21 to 57%, respectively. Under T3 soil pH decreased of 0.25 units, while P, N and SOC increased of 10, 34 and 57%, respectively, in comparison with WS. Microbial biomass and soil respiration under SRF showed also mean increases of 71 and 17%, respectively. Under SRF treatments, Lolium perenne, commonly observed in all field plots, was more than twofold colonised by AM fungi in comparison with WS, while the number of EP, observed on Lactuca sativa used as a test plant, showed values ranging from 8 to 21 times higher. The present study shows the potential of a Populus SRF to improve soil chemical, biochemical and biological quality parameters in

  9. Vapour pressure deficit during growth has little impact on genotypic differences of transpiration efficiency at leaf and whole-plant level: an example from Populus nigra L.

    Science.gov (United States)

    Rasheed, Fahad; Dreyer, Erwin; Richard, Béatrice; Brignolas, Franck; Brendel, Oliver; Le Thiec, Didier

    2015-04-01

    Poplar genotypes differ in transpiration efficiency (TE) at leaf and whole-plant level under similar conditions. We tested whether atmospheric vapour pressure deficit (VPD) affected TE to the same extent across genotypes. Six Populus nigra genotypes were grown under two VPD. We recorded (1) (13)C content in soluble sugars; (2) (18)O enrichment in leaf water; (3) leaf-level gas exchange; and (4) whole-plant biomass accumulation and water use. Whole-plant and intrinsic leaf TE and (13)C content in soluble sugars differed significantly among genotypes. Stomatal conductance contributed more to these differences than net CO2 assimilation rate. VPD increased water use and reduced whole-plant TE. It increased intrinsic leaf-level TE due to a decline in stomatal conductance. It also promoted higher (18)O enrichment in leaf water. VPD had no genotype-specific effect. We detected a deviation in the relationship between (13)C in leaf sugars and (13)C predicted from gas exchange and the standard discrimination model. This may be partly due to genotypic differences in mesophyll conductance, and to its lack of sensitivity to VPD. Leaf-level (13)C discrimination was a powerful predictor of the genetic variability of whole-plant TE irrespective of VPD during growth. © 2014 John Wiley & Sons Ltd.

  10. Urbanization-related changes in European aspen (Populus tremula L.): Leaf traits and litter decomposition

    International Nuclear Information System (INIS)

    Nikula, Suvi; Vapaavuori, Elina; Manninen, Sirkku

    2010-01-01

    We investigated foliar and litter responses of European aspen (Populus tremula L.) to urbanization, including factors such as increased temperature, moisture stress and nitrogen (N) deposition. Leaf samples were collected in 2006-2008 from three urban and three rural forest stands in the Helsinki Metropolitan Area, southern Finland, and reciprocal litter transplantations were established between urban and rural sites. Urban leaves exhibited a higher amount of epicuticular waxes and N concentration, and a lower C:N ratio than rural ones, but there was no difference in specific leaf area. Urban litter had a slightly higher N concentration, lower concentrations of lignin and total phenolics, and was more palatable to a macrofaunal decomposer. Moreover, litter decay was faster at the urban site and for urban litter. Urbanization thus resulted in foliar acclimatization in terms of increased amount of epicuticular waxes, as well as in accelerated decomposition of the N-richer leaf litter. - Urbanization can modify leaf traits of aspen and accelerate litter decomposition through changes in litter traits as well as in environmental conditions at the decomposition site.

  11. Lignin Sulfonation and SO2 Addition Enhance the Hydrolyzability of Deacetylated and Then Steam-Pretreated Poplar with Reduced Inhibitor Formation.

    Science.gov (United States)

    Tang, Yong; Dou, Xiaoli; Hu, Jinguang; Jiang, Jianxin; Saddler, Jack N

    2018-01-01

    The merit of deacetylation of corn stover prior to pretreatment is decreasing the formation of inhibitors and improving enzyme hydrolysis, proved in dilute acid pretreatment. However, few studies are done on how deacetylation would affect bioconversion process containing steam explosion. In this study, the effect of deacetylation on steam explosion was conducted using poplar as substrate. About 57 to 90% of acetyl group in poplar, depending on alkaline types and concentration, was removed by dilute alkaline deacetylation in 6 h. Deacetylation eliminated over 85% of inhibitor formation during downstream steam explosion. However, deacetylation prior to steam explosion decreased the dissolution of hemicellulose, thus reducing the cellulose accessibility of pretreated poplar, finally resulting in 5-20% decrease in glucose yield and 20-35% decrease in xylose yield. The addition of 5% SO 2 during steam explosion significantly improved the hydrolysis of deacetylated and pretreated poplar without significantly increasing the concentration of inhibitors. Incorporating 45 mmol/kg sulfoacid group in lignin fraction of deacetylated and then pretreated poplar dramatically improved the xylose yield to about 100% and increased the glucose yield by 30%.

  12. Fast enhancement on hydrophobicity of poplar wood surface using low-pressure dielectric barrier discharges (DBD) plasma

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Weimin [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China); Zhou, Xiaoyan, E-mail: zhouxiaoyan@njfu.edu.cn [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Zhang, Xiaotao [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Bian, Jie [Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China); Shi, Shukai; Nguyen, Thiphuong; Chen, Minzhi [College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037 (China); Jiangsu Engineering Research Center of Fast-growing Trees and Agri-fiber Materials, Nanjing 210037 (China); Wan, Jinglin [Nanjing Suman Plasma Technology Co., Ltd, Enterprise of Graduate Research Station of Jiangsu Province, No. 3 Youyihe Road, Nanjing 210001 (China)

    2017-06-15

    Highlights: • Plasma working under low pressure is easy to realize industrialization. • Enhancing process finished within 75 s. • Plasma treatment leads to the increase in equilibrium contact angle by 330%. • Tinfoil film with simple chemical structure was used to reveal the mechanism. - Abstract: The hydrophilicity of woody products leads to deformation and cracks, which greatly limits its applications. Low-pressure dielectric barrier discharge (DBD) plasma using hexamethyldisiloxane was applied in poplar wood surface to enhance the hydrophobicity. The chemical properties, micro-morphology, and contact angles of poplar wood surface before and after plasma treatment were investigated by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), x-ray photoelectron spectroscopy (XPS), scanning electron microscope and energy dispersive analysis of X-ray (SEM-EDX), atomic force microscopy (AFM), and optical contact angle measurement (OCA). Moreover, tinfoil film was used as the base to reveal the enhancement mechanism. The results showed that hexamethyldisiloxane monomer is first broken into several fragments with active sites and hydrophobic chemical groups. Meanwhile, plasma treatment results in the formation of free radicals and active sites in the poplar wood surface. Then, the fragments are reacted with free radicals and incorporated into the active sites to form a network structure based on the linkages of Si-O-Si and Si−O−C. Plasma treatment also leads to the formation of acicular nano-structure in poplar wood surface. These facts synergistically enhance the hydrophobicity of poplar wood surface, demonstrating the dramatically increase in the equilibrium contact angle by 330%.

  13. [Difference of water relationships of poplar trees in Zhangbei County, Hebei, China based on stable isotope and thermal dissipation method].

    Science.gov (United States)

    Miao, Bo; Meng, Ping; Zhang, Jin Song; He, Fang Jie; Sun, Shou Jia

    2017-07-18

    The water sources and transpiration of poplar trees in Zhangbei County were measured using stable hydrogen isotope and thermal dissipation method. The differences in water relationships between dieback and non-dieback poplar trees were analyzed. The results showed that the dieback trees mainly used shallow water from 0-30 cm soil layer during growing season while the non-dieback trees mainly used water from 30-80 cm soil layer. There was a significant difference in water source between them. The non-dieback trees used more water from middle and deep soil layers than that of the dieback trees during the dry season. The percentage of poplar trees using water from 0-30 cm soil layer increased in wet season, and the increase of dieback trees was higher than that of non-dieback trees. The contributions of water from 30-180 cm soil layer of dieback and non-dieback trees both decreased in wet season. The sap flow rate of non-dieback trees was higher than that of dieback trees. There was a similar variation tend of sap flow rate between dieback and non-dieback trees in different weather conditions, but the start time of sap flow of non-dieback trees was earlier than that of dieback trees. Correlation analysis showed that the sap flow rate of either dieback or non-dieback poplar trees strongly related to soil temperature, wind speed, photosynthetically active radiation, relative humidity and air temperature. The sap flow rate of die-back poplar trees strongly negatively related to soil temperature and relative humidity, and strongly positively related to the other factors. The sap flow rate of non-dieback poplar trees only strongly negatively related to relative humidity but positively related to the other factors. The results revealed transpiration of both poplar trees was easily affected by environmental factors. The water consumption of dieback trees was less than non-dieback trees because the cumulative sap flow amount of dieback trees was lower. Reduced transpiration

  14. FEM growth and yield data Monocultures - Poplar (revised version)

    NARCIS (Netherlands)

    Mohren, G.M.J.; Goudzwaard, L.; Jansen, J.J.; Schmidt, P.; Oosterbaan, A.; Oldenburger, J.; Ouden, den J.

    2017-01-01

    The current database is part of the FEM growth and yield database, a collection of growth and yield data from even-aged monocultures (douglas fir, common oak, poplar, Japanese Larch, Norway spruce, Scots pine, Corsican pine, Austrian pine, red oak and several other species with only a few plots,

  15. Preparation and Characterization of Lignocellulosic Oil Sorbent by Hydrothermal Treatment of Populus Fiber

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2014-09-01

    Full Text Available This study is aimed at achieving the optimum conditions of hydrothermal treatment and acetylation of Populus fiber to improve its oil sorption capacity (OSC in an oil-water mixture. The characteristics of the hydrolyzed and acetylated fibers were comparatively investigated by FT-IR, CP-MAS 13C-NMR, SEM and TGA. The optimum conditions of the hydrothermal treatment and acetylation were obtained at170 °C for 1 h and 120 °C for 2 h, respectively. The maximum OSC of the hydrolyzed fiber (16.78 g/g was slightly lower than that of the acetylated fiber (21.57 g/g, but they were both higher than the maximum OSC of the unmodified fiber (3.94 g/g. In addition, acetylation after hydrothermal treatment for the Populus fiber was unnecessary as the increment of the maximum OSC was only 3.53 g/g. The hydrolyzed and the acetylated Populus fibers both displayed a lumen orifice enabling a high oil entrapment. The thermal stability of the modified fibers was shown to be increased in comparison with that of the raw fiber. The hydrothermal treatment offers a new approach to prepare lignocellulosic oil sorbent.

  16. Strontium isotope detection of brine contamination in the East Poplar oil field, Montana

    Science.gov (United States)

    Peterman, Zell E.; Thamke, Joanna N.; Futa, Kiyoto; Oliver, Thomas A.

    2010-01-01

    Brine contamination of groundwater in the East Poplar oil field was first documented in the mid-1980s by the U.S. Geological Survey by using hydrochemistry, with an emphasis on chloride (Cl) and total dissolved solids concentrations. Supply wells for the City of Poplar are located downgradient from the oil field, are completed in the same shallow aquifers that are documented as contaminated, and therefore are potentially at risk of being contaminated. In cooperation with the Office of Environmental Protection of the Fort Peck Tribes, groundwater samples were collected in 2009 and 2010 from supply wells, monitor wells, and the Poplar River for analyses of major and trace elements, including strontium (Sr) concentrations and isotopic compositions. The ratio of strontium-87 to strontium-86 (87Sr/86Sr) is used extensively as a natural tracer in groundwater to detect mixing among waters from different sources and to study the effects of water/rock interaction. On a plot of the reciprocal strontium concentration against the 87Sr/86Sr ratio, mixtures of two end members will produce a linear array. Using this plotting method, data for samples from most of the wells, including the City of Poplar wells, define an array with reciprocal strontium values ranging from 0.08 to 4.15 and 87Sr/86Sr ratios ranging from 0.70811 to 0.70828. This array is composed of a brine end member with an average 87Sr/86Sr of 0.70822, strontium concentrations in excess of 12.5 milligrams per liter (mg/L), and chloride concentrations exceeding 8,000 mg/L mixing with uncontaminated water similar to that in USGS06-08 with 18.0 mg/L chloride, 0.24 mg/L strontium, and a 87Sr/86Sr ratio of 0.70811. The position of samples from the City of Poplar public-water supply wells within this array indicates that brine contamination has reached all three wells. Outliers from this array are EPU-4G (groundwater from the Cretaceous Judith River Formation), brine samples from disposal wells (Huber 5-D and EPU 1-D

  17. Partitioning of K, Cl, S and P during combustion of poplar and brassica energy crops

    DEFF Research Database (Denmark)

    Díaz-Ramírez, Maryori; Jappe Frandsen, Flemming; Glarborg, Peter

    2014-01-01

    K-, Cl-, S- and P-release from a herbaceous (brassica) and a short rotation coppice (poplar) cultivated in the Mediterranean region, have been investigated under combustion conditions [500-1100 °C]. Contrary to brassica, Cl- and S-release from poplar were substantial for all temperatures tested....... Low-temperature [500-700 °C] Cl-release from the high-Cl brassica appeared to be primarily limited by the fuel chemical composition and secondarily by interactions of the ash-forming elements with the fuel organic matrix. Below 700 °C, Cl-release was nearly 50%, whereas complete dechlorination...... resulted around 800 °C. S-release from brassica was up to 40% at low temperature. Above 1000 °C, additional S-release was observed presumably by sulfate dissociation. K-release was linked to Cl-release around 700 °C and, gradually increased afterwards. At 1100 °C, nearly 60% of K in poplar was retained...

  18. Estimation of cost-effectiveness of poplar wood production in poplar plantations in Ravni Srem based on the cost-benefit method

    Directory of Open Access Journals (Sweden)

    Keča Ljiljana

    2011-01-01

    Full Text Available Cost-effectiveness of polar cultivation was analyzed based on one of the indicators for the assessment of agriculture and forestry projects - cost-benefit (r. Poplar plantations of the clone I-214 of different rotations and on different soil types were analyzed in the area of Ravni Srem. The aim of the study was to evaluate the justification of the invested financial means in wood production in poplar plantations, based on the analysis of costs and receipts at different plantation ages, using the cost-benefit method. It was found that in all 13 analyzed compartments, the average cost-benefit ratio was 0.36. This means that the costs at the discount rate of 12% are about 2.8 times higher than the receipts. Accordingly, it can be asserted that it is economically unjustified to invest in the projected stands, but only in the case when the value of social capital accounts for 12%. Based on the analysis of sensitivity of the cost-benefit method, it was concluded that cost benefit ratio for p=8-12% was below 1 within the study range of costs and receipts changes, while for p=4-6% this ratio was above 1 in some cases of decrease in costs, i.e. increase in receipts. It was noted that the change in r depending on the change in costs, developed by the exponential function, and the change in r depending on the change in receipts developed by the linear function. Also, it was concluded that at the lower discount rates, the values of r moved towards 1, so for 8% r=0.71, and for 6% r=0.94. The value at the discount rate of 4% indicates that the project is cost-effective and that the invested € 1 makes € 1.22. This fact is especially important when poplar cultivation projects are ranked. For this reason, this method is used for the evaluation of social benefits, i.e. for economic analyses. It is almost never applied in the analysis of private investments.

  19. Enhanced Mechanical Properties of Poplar Wood by a Combined-Hydro-Thermo-Mechanical (CHTM) Modification

    OpenAIRE

    Houri Sharifnia; Behbood Mohebbi

    2011-01-01

    The current research explains an innovated technique to enhanced mechanice properties of poplar wood by combination of two modification techniques, hydrothermal and mechanical. Blocks of 50×55×500mm3 were cut from poplar wood and treated in a reactor at 120, 150 and 180°C for 30 min. Afterwards, the blocks were pressed at 180°C for 20 min at a pressure of 80 bar to achieve a compression set of 60% in radial direction. Density and bending properties (moduli of elasticity and rupture) as well a...

  20. Selection against recombinant hybrids maintains reproductive isolation in hybridizing Populus species despite F1 fertility and recurrent gene flow.

    Science.gov (United States)

    Christe, Camille; Stölting, Kai N; Bresadola, Luisa; Fussi, Barbara; Heinze, Berthold; Wegmann, Daniel; Lexer, Christian

    2016-06-01

    Natural hybrid zones have proven to be precious tools for understanding the origin and maintenance of reproductive isolation (RI) and therefore species. Most available genomic studies of hybrid zones using whole- or partial-genome resequencing approaches have focused on comparisons of the parental source populations involved in genome admixture, rather than exploring fine-scale patterns of chromosomal ancestry across the full admixture gradient present between hybridizing species. We have studied three well-known European 'replicate' hybrid zones of Populus alba and P. tremula, two widespread, ecologically divergent forest trees, using up to 432 505 single-nucleotide polymorphisms (SNPs) from restriction site-associated DNA (RAD) sequencing. Estimates of fine-scale chromosomal ancestry, genomic divergence and differentiation across all 19 poplar chromosomes revealed strikingly contrasting results, including an unexpected preponderance of F1 hybrids in the centre of genomic clines on the one hand, and genomically localized, spatially variable shared variants consistent with ancient introgression between the parental species on the other. Genetic ancestry had a significant effect on survivorship of hybrid seedlings in a common garden trial, pointing to selection against early-generation recombinants. Our results indicate a role for selection against recombinant genotypes in maintaining RI in the face of apparent F1 fertility, consistent with the intragenomic 'coadaptation' model of barriers to introgression upon secondary contact. Whole-genome resequencing of hybridizing populations will clarify the roles of specific genetic pathways in RI between these model forest trees and may reveal which loci are affected most strongly by its cyclic breakdown. © 2016 John Wiley & Sons Ltd.

  1. Figured grain in aspen is heritable and not affected by graft-transmissible signals

    Science.gov (United States)

    Youran Fan; Kendal Rupert; Alex C. Wiedenhoeft; Keith Woeste; Christian Lexer; Richard. Meilan

    2013-01-01

    Figure can add value to wood products, but its occurrence is unpredictable. A first step in reliably producing figured wood is determining whether it is faithfully transmitted to progeny via sexual and asexual reproduction. We describe a 26-year-old male aspen genotype, designated ‘Curly Poplar’, which was shown to be a Populus × canescens hybrid using microsatellite...

  2. The Populus ARBORKNOX1 homeodomain transcription factor regulates woody growth through binding to evolutionarily conserved target genes of diverse function

    Science.gov (United States)

    Lijun Liu; Matthew S. Zinkgraf; H. Earl Petzold; Eric P. Beers; Vladimir Filkov; Andrew Groover

    2014-01-01

    The class I KNOX homeodomain transcription factor ARBORKNOX1 (ARK1) is a key regulator of vascular cambium maintenance and cell differentiation in Populus. Currently, basic information is lacking concerning the distribution, functional characteristics, and evolution of ARK1 binding in the Populus genome.

  3. Phylogeny reconstruction and hybrid analysis of populus (Salicaceae) based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments.

    Science.gov (United States)

    Wang, Zhaoshan; Du, Shuhui; Dayanandan, Selvadurai; Wang, Dongsheng; Zeng, Yanfei; Zhang, Jianguo

    2014-01-01

    Populus (Salicaceae) is one of the most economically and ecologically important genera of forest trees. The complex reticulate evolution and lack of highly variable orthologous single-copy DNA markers have posed difficulties in resolving the phylogeny of this genus. Based on a large data set of nuclear and plastid DNA sequences, we reconstructed robust phylogeny of Populus using parsimony, maximum likelihood and Bayesian inference methods. The resulting phylogenetic trees showed better resolution at both inter- and intra-sectional level than previous studies. The results revealed that (1) the plastid-based phylogenetic tree resulted in two main clades, suggesting an early divergence of the maternal progenitors of Populus; (2) three advanced sections (Populus, Aigeiros and Tacamahaca) are of hybrid origin; (3) species of the section Tacamahaca could be divided into two major groups based on plastid and nuclear DNA data, suggesting a polyphyletic nature of the section; and (4) many species proved to be of hybrid origin based on the incongruence between plastid and nuclear DNA trees. Reticulate evolution may have played a significant role in the evolution history of Populus by facilitating rapid adaptive radiations into different environments.

  4. Phylogeny reconstruction and hybrid analysis of populus (Salicaceae based on nucleotide sequences of multiple single-copy nuclear genes and plastid fragments.

    Directory of Open Access Journals (Sweden)

    Zhaoshan Wang

    Full Text Available Populus (Salicaceae is one of the most economically and ecologically important genera of forest trees. The complex reticulate evolution and lack of highly variable orthologous single-copy DNA markers have posed difficulties in resolving the phylogeny of this genus. Based on a large data set of nuclear and plastid DNA sequences, we reconstructed robust phylogeny of Populus using parsimony, maximum likelihood and Bayesian inference methods. The resulting phylogenetic trees showed better resolution at both inter- and intra-sectional level than previous studies. The results revealed that (1 the plastid-based phylogenetic tree resulted in two main clades, suggesting an early divergence of the maternal progenitors of Populus; (2 three advanced sections (Populus, Aigeiros and Tacamahaca are of hybrid origin; (3 species of the section Tacamahaca could be divided into two major groups based on plastid and nuclear DNA data, suggesting a polyphyletic nature of the section; and (4 many species proved to be of hybrid origin based on the incongruence between plastid and nuclear DNA trees. Reticulate evolution may have played a significant role in the evolution history of Populus by facilitating rapid adaptive radiations into different environments.

  5. Free-air CO2 enrichment (FACE) enhances biomass production in a short-rotation poplar plantation

    International Nuclear Information System (INIS)

    Calfapietra, C.; De Angelis, P.; Scarascia-Mungozza, G.; Gielen, B.; Ceulemans, R.; Galema, A. N. J.; Lukac, M.; Moscatelli, M. C.

    2003-01-01

    The possible contribution of short rotation cultures (SRC) to carbon sequestration in both current and elevated carbon dioxide concentrations was investigated using the free-air carbon dioxide enrichment (FACE) technique. Three poplar species were grown in an SRC plantation for three growing seasons. Above-ground and below-ground biomass increased by 15 to 27 per cent and by 22 to 38 per cent, respectively; light-efficiency also increased as a result. Depletion of inorganic nitrogen from the soil increased after three growing seasons at elevated carbon dioxide levels, but carbon dioxide showed no effect on stem wood density. Stem wood density also differed significantly from species to species. These results confirmed inter-specific differences in biomass production in poplar, and demonstrated that elevated carbon dioxide enhanced biomass productivity and light-use efficiency of a poplar short rotation cultivation ecosystem without changing biomass allocation. The reduction in soil nitrogen raises the possibility of reduced long-term biomass productivity. 60 refs., 4 tabs., 4 figs

  6. Constitutively elevated salicylic acid levels alter photosynthesis and oxidative state but not growth in transgenic populus.

    Science.gov (United States)

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O; Nyamdari, Batbayar; Wilson, Mark C; Frost, Christopher J; Chen, Han-Yi; Babst, Benjamin A; Harding, Scott A; Tsai, Chung-Jui

    2013-07-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained.

  7. Conversion from cropland to short rotation coppice willow and poplar: Accumulation of soil organic carbon

    Science.gov (United States)

    Georgiadis, Petros; Stupak, Inge; Vesterdal, Lars; Raulund-Rasmussen, Karsten

    2015-04-01

    Increased demand for bioenergy has intensified the production of Short Rotation Coppice (SRC) willow and poplar in temperate zones. We used a combined chronosequence and paired plot approach to study the potential of SRC willow and poplar stands to increase the soil carbon stock compared to stocks of the previous arable land-use. The study focused on well-drained soils. We sampled soil from 30 SRC stands in Denmark and southern Sweden including soils from their adjacent arable fields. The 18 willow and 12 poplar stands formed a chronosequence ranging between 4 and 29 years after conversion. The soil was sampled both with soil cores taken by fixed depths of 0-5, 5-10, 10-15, 15-25, and 25-40 cm and by genetic horizons from soil pits to 1m depth. The aim of the study was to estimate the difference and the ratio between soil carbon contents of the SRC and annual crop land and analyze the results as a chronosequence to examine the effect of age after conversion on the difference. Covariates such as soil type, fertilization type and harvest frequency were also taken into account. Preliminary results suggest an overall increase in carbon stocks over time with average accumulation rates ranging from 0.25 to 0.4 Mg ha-1 yr-1 in willow and poplar stands. Poplar stands had higher rates of C gain, probably due to less frequent harvesting. The differences in carbon between the SRC and the paired cropland were initially negative but changed to positive over time, implying loss of carbon after conversion and a later gain in soil carbon with stand age. Pairwise differences ranged from -25 Mg C ha-1 to 37 Mg C ha-1 for the top 40 cm. The carbon stock ratio of the SRC stand to the arable land was estimated to minimize the effect of site-related factors. The results of this analysis suggested that the ratio increased significantly with age after conversion for the top 10 cm of the soil, both for poplar and willow. A slight increase with age was also noticed at the deeper depths, but

  8. Selecting and utilizing Populus and Salix for landfill covers: implications for leachate irrigation.

    Science.gov (United States)

    Zalesny, Ronald S; Bauer, Edmund O

    2007-01-01

    The success of using Populus and Salix for phytoremediation has prompted further use of leachate as a combination of irrigation and fertilization for the trees. A common protocol for such efforts has been to utilize a limited number of readily-available genotypes with decades of deployment in other applications, such as fiber or windbreaks. However, it may be possible to increase phytoremediation success with proper genotypic screening and selection, followed by the field establishment of clones that exhibited favorable potential for cleanup of specific contaminants. There is an overwhelming need for testing and subsequent deployment of diverse Populus and Salix genotypes, given current availability of clonal material and the inherent genetic variation among and within these genera. Therefore, we detail phyto-recurrent selection, a method that consists of revising and combining crop and tree improvement protocols to meet the objective of utilizing superior Populus and Salix clones for remediation applications. Although such information is lacking for environmental clean-up technologies, centuries of plant selection success in agronomy, horticulture, and forestry validate the need for similar approaches in phytoremediation. We bridge the gap between these disciplines by describing project development, clone selection, tree establishment, and evaluation of success metrics in the context of their importance to utilizing trees for phytoremediation.

  9. Evaluation of interspecific DNA variability in poplars using AFLP and ...

    African Journals Online (AJOL)

    The objective of this paper was to examine interspecific DNA variation in poplars using AFLP and SSR markers. The AFLP and SSR markers polymorphism and its power of discrimination were determined within 13 genotypes of different genetic background (clones, cultivars, hybrids) of two sections (Aigeiros and ...

  10. Cross-laminated timber made of Hungarian raw materials

    Science.gov (United States)

    Marko, G.; Bejo, L.; Takats, P.

    2016-04-01

    Cross-laminated timber (CLT), generally made out of softwood, enjoys increasing popularity throughout Europe. This material offers a versatile, eco-friendly technology to create strong, lightweight and energy-efficient buildings. Unfortunately, the sites and climatic conditions in Hungary are not suitable for growing high-quality coniferous trees. Transporting raw materials from other countries (sometimes thousands of kilometres away) negates the environmental advantages of wood-based construction. Local options are definitely preferable from an ecological aspect. Poplar wood (populus spp.) is of great economic importance in Hungary. There are several relatively high density, high strength varieties growing in large quantities in Hungary, that may be used as alternatives to softwood, with comparable properties. There is an increasing interest in using poplar as a construction material, especially in regions were there is a shortage of traditional construction timber. This paper presents the results of a preliminary investigation to create CLT using poplar lumber. Laboratory-scale CLT specimens were created in a hot press, and tested for their loadbearing capacity. The MOR values of poplar CLT are comparable to, albeit somewhat lowerthan those of softwood CLT. Further investigations are required to establish the economic viability and technological conditions for the commercial production of poplar CLT.

  11. Biomass production of intensively grown poplars in the southernmost part of Sweden: Observations of characters, traits and growth potential

    International Nuclear Information System (INIS)

    Christersson, Lars

    2006-01-01

    Observation of possibilities and problems was performed when trying to optimise growing conditions for high biomass production by irrigation and fertilisation in a clone test of poplar on sandy soil in the south of Sweden. One hundred and eight clones of pure Populus trichocarpa and hybrids between P. trichocarpa and P. deltoides were evaluated for growth rate, phenology, quality, frost hardiness and pest resistance. Some fertilisation experiments were performed. In some years, some unfertilised clones produced up to 2 kg m -2 of woody dry biomass. Some fertilised clones produced almost twice as much in the years following fertilisation. Stem canker was the main cause of serious injuries in all hybrids, but pure P. trichocarpa stems were not affected. The cimbicid sawfly (Cimbex lutea) caused damage to the quality of the trees in the form of curved stems of some clones. Winter frost killed top shoots of the hybrids in a year with particularly low winter temperatures with long duration. Summer frost (in June) killed up to 1 m of some young top shoots in some clones in the first 3-4 years. The results are discussed in terms of radiation utilisation efficiency, energy efficient ratio, and water and nutrient use efficiency. The discussion finishes with the conclusion that fertilisation, but not irrigation, can be economically motivated. If irrigation is to be economic, then the main objective of the whole operation should be to produce drinkable water from water polluted by society. Biomass production would then be a bonus

  12. Carbon budget and its response to environmental factors in young and mature poplar plantations along the middle and lower reaches of the Yangtze River, China

    Science.gov (United States)

    Jinxing Zhou; Yuan Wei; Jun Yang; Xiaohui Yang; Zeping Jiang; Jiquan Chen; Asko Noormets; Xiaosong Zhao

    2012-01-01

    Although poplar forest is the dominant plantation type in China, there is uncertainty about the carbon budget of these forests across the country. The observations, performed in 2006, of two eddy covariance flux towers on a young poplar plantation (Yueyang, Hunan province) and a mature poplar plantation (Huaining, Anhui province) provide an opportunity to understand...

  13. Economic investigations of short rotation intensively cultured hybrid poplars

    Science.gov (United States)

    David C. Lothner

    1983-01-01

    The history of the economic analyses is summarized for short rotation intensively cultured hybrid poplar at the North Central Forest Experiment Station. Early break-even analyses with limited data indicated that at a price of $25-30 per dry ton for fiber and low to medium production costs, several systems looked profitable. Later cash flow analyses indicated that two...

  14. Molecular Cloning and Functional Analysis of UV RESISTANCE LOCUS 8 (PeUVR8 from Populus euphratica.

    Directory of Open Access Journals (Sweden)

    Ke Mao

    Full Text Available Ultraviolet-B (UV-B; 280-315 nm light, which is an integral part of the solar radiation reaching the surface of the Earth, induces a broad range of physiological responses in plants. The UV RESISTANCE LOCUS 8 (UVR8 protein is the first and only light photoreceptor characterized to date that is specific for UV-B light and it regulates various aspects of plant growth and development in response to UV-B light. Despite its involvement in the control of important plant traits, most studies on UV-B photoreceptors have focused on Arabidopsis and no data on UVR8 function are available for forest trees. In this study, we isolated a homologue of the UV receptor UVR8 of Arabidopsis, PeUVR8, from Populus euphratica (Euphrates poplar and analyzed its structure and function in detail. The deduced PeUVR8 amino acid sequence contained nine well-conserved regulator of chromosome condensation 1 (RCC1 repeats and the region 27 amino acids from the C terminus (C27 that interact with COP1 (CONSTITUTIVELY PHOTOMORPHOGENIC1. Secondary and tertiary structure analysis showed that PeUVR8 shares high similarity with the AtUVR8 protein from Arabidopsis thaliana. Using heterologous expression in Arabidopsis, we showed that PeUVR8 overexpression rescued the uvr8 mutant phenotype. In addition, PeUVR8 overexpression in wild-type background seedlings grown under UV-B light inhibited hypocotyl elongation and enhanced anthocyanin accumulation. Furthermore, we examined the interaction between PeUVR8 and AtCOP1 using a bimolecular fluorescence complementation (BiFC assay. Our data provide evidence that PeUVR8 plays important roles in the control of photomorphogenesis in planta.

  15. Diversity of cuticular wax among Salix species and Populus species hybrids.

    Science.gov (United States)

    Cameron, Kimberly D; Teece, Mark A; Bevilacqua, Eddie; Smart, Lawrence B

    2002-08-01

    The leaf cuticular waxes of three Salix species and two Populus species hybrids, selected for their ability to produce high amounts of biomass, were characterized. Samples were extracted in CH(2)Cl(2) three times over the growing season. Low kV SEM was utilized to observe differences in the ultrastructure of leaf surfaces from each clone. Homologous series of wax components were classified into organic groups, and the variation in wax components due to clone, sample time, and their interaction was identified. All Salix species and Populus species hybrids showed differences in total wax load at each sampling period, whereas the pattern of wax deposition over time differed only between the Salix species. A strong positive relationship was identified between the entire homologous series of alcohols and total wax load in all clones. Similarly strong relationships were observed between fatty acids and total wax load as well as fatty acids and alcohols in two Salix species and one Populus species hybrid. One Salix species, S. dasyclados, also displayed a strong positive relationship between alcohols and alkanes. These data indicate that species grown under the same environmental conditions produce measurably different cuticular waxes and that regulation of wax production appears to be different in each species. The important roles cuticular waxes play in drought tolerance, pest, and pathogen resistance, as well as the ease of wax extraction and analysis, strongly suggest that the characteristics of the cuticular wax may prove to be useful selectable traits in a breeding program.

  16. Environmental profile of ethanol from poplar biomass as transport fuel in Southern Europe

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, Sara; Moreira, M. Teresa; Feijoo, Gumersindo; Gasol, Carles M.; Gabarrell, Xavier; Rieradevall, Joan

    2010-01-01

    Liquid biofuels provide one of the few options for fossil fuel substitution in the short to medium-term and they are strongly being promoted by the European Union as transport fuel (such as ethanol) since they have the potential to offer both greenhouse gas (GHG) savings and energy security. A ''well to wheel'' analysis has been conducted for poplar based ethanol by means of the Life Cycle Assessment (LCA) approach. The aim of the analysis is to assess the environmental performance of three ethanol applications (E10, E85 and E100) in comparison with conventional gasoline. To compare the environmental profiles, the study addressed the impact potentials per kilometre driven by a middle size passenger car, taking into account the performance difference between ethanol blends and gasoline. According to the results of this study, fuel ethanol derived from poplar biomass may help to reduce the contributions to global warming, abiotic resources depletion and ozone layer depletion up to 62%, 72% and 36% respectively. Reductions of fossil fuel extraction of up to 80% could be achieved when pure ethanol is used. On the contrary, contributions to other impact categories would be increased, specifically to acidification and eutrophication. In both categories, ethanol based blends are less environmentally friendly than conventional gasoline due to the higher impact from the upstream activities. Research focussed on the reduction of the environmental impacts should be pointed forward poplar cultivation as well as ethanol conversion plant (enzyme manufacturing, energy production and distillation). In this study poplar cultivation was really intensive in order to obtain a high yield. Strategic planning according to the location of the crops and its requirements should help to reduce these impacts from its cultivation. (author)

  17. Water use sources of desert riparian Populus euphratica forests.

    Science.gov (United States)

    Si, Jianhua; Feng, Qi; Cao, Shengkui; Yu, Tengfei; Zhao, Chunyan

    2014-09-01

    Desert riparian forests are the main body of natural oases in the lower reaches of inland rivers; its growth and distribution are closely related to water use sources. However, how does the desert riparian forest obtains a stable water source and which water sources it uses to effectively avoid or overcome water stress to survive? This paper describes an analysis of the water sources, using the stable oxygen isotope technique and the linear mixed model of the isotopic values and of desert riparian Populus euphratica forests growing at sites with different groundwater depths and conditions. The results showed that the main water source of Populus euphratica changes from water in a single soil layer or groundwater to deep subsoil water and groundwater as the depth of groundwater increases. This appears to be an adaptive selection to arid and water-deficient conditions and is a primary reason for the long-term survival of P. euphratica in the desert riparian forest of an extremely arid region. Water contributions from the various soil layers and from groundwater differed and the desert riparian P. euphratica forests in different habitats had dissimilar water use strategies.

  18. Patterns of genomic variation in the poplar rust fungus Melampsora larici-populina identify pathogenesis-related factors

    Directory of Open Access Journals (Sweden)

    Antoine ePersoons

    2014-09-01

    Full Text Available Melampsora larici-populina is a fungal pathogen responsible for foliar rust disease on poplar trees, which causes damage to forest plantations worldwide, particularly in Northern Europe. The reference genome of the isolate 98AG31 was previously sequenced using a whole genome shotgun strategy, revealing a large genome of 101 megabases containing 16,399 predicted genes, which included secreted protein genes representing poplar rust candidate effectors. In the present study, the genomes of 15 isolates collected over the past 20 years throughout the French territory, representing distinct virulence profiles, were characterized by massively parallel sequencing to assess genetic variation in the poplar rust fungus. Comparison to the reference genome revealed striking structural variations. Analysis of coverage and sequencing depth identified large missing regions between isolates related to the mating type loci. More than 611,824 single-nucleotide polymorphism (SNP positions were uncovered overall, indicating a remarkable level of polymorphism. Based on the accumulation of non-synonymous substitutions in coding sequences and the relative frequencies of synonymous and non-synonymous polymorphisms (i.e. PN/PS, we identify candidate genes that may be involved in fungal pathogenesis. Correlation between non-synonymous SNPs in genes encoding secreted proteins and pathotypes of the studied isolates revealed candidate genes potentially related to virulences 1, 6 and 8 of the poplar rust fungus.

  19. Environmental benefits of cropland conversion to hybrid poplar: economic and policy considerations

    International Nuclear Information System (INIS)

    Updegraff, K.; Baughman, M.J.; Taff, S.J.

    2004-01-01

    To evaluate environmental benefits that might accrue from conversion of farmland to short-rotation woody crops (SRWC), a hypothetical conversion of 10%, 20% and 30% of cropland was modeled in a watershed of the Lower Minnesota River. The analysis synthesized output from a watershed model (ADAPT) with literature-based estimates of productivity and economic values for water quality, forest conservation and carbon sequestration. A Monte Carlo simulation approach was used to estimate ranges of environmental benefit values for cropland conversion to SRWCS. The summed average net benefits justified annual public subsidies ranging from $44 to 596 ha -1 , depending on market scenario and conversion level. Cropland conversion to SRWCs reduced cumulative annual stream flows, sediment and nitrogen loadings by up to 9%, 28% and 15%, respectively. Reduced sediment loads resulted in potential average annual public savings on culvert and ditch maintenance costs of $9.37 Mg -1 of sediment not delivered to the watershed outlet. Hybrid poplars over a 5-year rotation produced an estimated annual economic value due to carbon sequestration of $13-15 ha -1 when used for bioenergy and $29-33 ha -1 (depending on conversion rate) when converted to wood products. If hybrid poplars are substituted for aspen traditionally harvested from natural woodlands, the poplars create annual forest preservation values of $4.79-5.44 ha -1 . (author)

  20. The effects of exotic and native poplars on rhizosphere soil microbe ...

    African Journals Online (AJOL)

    user

    2012-01-19

    Jan 19, 2012 ... ecology. However, how different poplars species affect soil microbial community and soil .... ml of molasses-urea block (MUB) (pH 6.0) and 0.5 ml of 25 mM p- ... Microbial community DNA extraction and polymerase chain.

  1. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling.

    Directory of Open Access Journals (Sweden)

    Yuanzhong Jiang

    Full Text Available The plant hormones jasmonic acid (JA and salicylic acid (SA play key roles in plant defenses against pathogens and several WRKY transcription factors have been shown to have a role in SA/JA crosstalk. In a previous study, overexpression of the poplar WRKY gene PtrWRKY89 enhanced resistance to pathogens in transgenic poplars. In this study, the promoter of PtrWRKY89 (ProPtrWRKY89 was isolated and used to drive GUS reporter gene. High GUS activity was observed in old leaves of transgenic Arabidopsis containing ProPtrWRKY89-GUS construct and GUS expression was extremely induced by SA solution and SA+MeJA mixture but not by MeJA treatment. Subcellular localization and transactivation assays showed that PtrWRKY89 acted as a transcription activator in the nucleus. Constitutive expression of PtrWRKY89 in Arabidopsis resulted in more susceptible to Pseudomonas syringae and Botrytis cinerea compared to wild-type plants. Quantitative real-time PCR (qRT-PCR analysis confirmed that marker genes of SA and JA pathways were down-regulated in transgenic Arabidopsis after pathogen inoculations. Overall, our results indicated that PtrWRKY89 modulates a cross talk in resistance to P. syringe and B. cinerea by negatively regulating both SA and JA pathways in Arabidopsis.

  2. Overexpression of Poplar PtrWRKY89 in Transgenic Arabidopsis Leads to a Reduction of Disease Resistance by Regulating Defense-Related Genes in Salicylate- and Jasmonate-Dependent Signaling.

    Science.gov (United States)

    Jiang, Yuanzhong; Guo, Li; Liu, Rui; Jiao, Bo; Zhao, Xin; Ling, Zhengyi; Luo, Keming

    2016-01-01

    The plant hormones jasmonic acid (JA) and salicylic acid (SA) play key roles in plant defenses against pathogens and several WRKY transcription factors have been shown to have a role in SA/JA crosstalk. In a previous study, overexpression of the poplar WRKY gene PtrWRKY89 enhanced resistance to pathogens in transgenic poplars. In this study, the promoter of PtrWRKY89 (ProPtrWRKY89) was isolated and used to drive GUS reporter gene. High GUS activity was observed in old leaves of transgenic Arabidopsis containing ProPtrWRKY89-GUS construct and GUS expression was extremely induced by SA solution and SA+MeJA mixture but not by MeJA treatment. Subcellular localization and transactivation assays showed that PtrWRKY89 acted as a transcription activator in the nucleus. Constitutive expression of PtrWRKY89 in Arabidopsis resulted in more susceptible to Pseudomonas syringae and Botrytis cinerea compared to wild-type plants. Quantitative real-time PCR (qRT-PCR) analysis confirmed that marker genes of SA and JA pathways were down-regulated in transgenic Arabidopsis after pathogen inoculations. Overall, our results indicated that PtrWRKY89 modulates a cross talk in resistance to P. syringe and B. cinerea by negatively regulating both SA and JA pathways in Arabidopsis.

  3. Comparing growth rate in a mixed plantation (walnut, poplar and nurse trees with different planting designs: results from an experimental plantation in northern Italy

    Directory of Open Access Journals (Sweden)

    Francesco Pelleri

    2013-12-01

    Full Text Available 800x600 Results of a mixed plantation with poplar, walnut and nurse trees established in winter 2003 in Northern Italy, are reported. Main tree species (poplar and walnut were planted according to a rectangular design (10 x 11m, with different spacings and alternate lines. The experimental trial was carried out to verify the following working hypotheses: (i possibility to combine main trees with different growth levels (common walnut, hybrid walnut, and different poplar clones and test two different poplar and walnut spacings (5.0 and 7.4 m in the same plantation; (ii opportunity to reduce cultivation’s workload, in comparison with poplar monoculture, using mixtures with different poplar clones and N-fixing nurse trees; (iii verifying the growth pattern of two new poplar clones in comparison with the traditional clones cultivated for different purposes in Italy.The use of different valuable crop trees’ mixtures intercropped with nurse trees and shrubs (including N-fixing trees allows to decrease the cultivation’s workload. In fact, a heavy reduction of cultural practices - fertilizers, weed control, irrigation and pesticides applications (-61% are the main concurrent, supplementary benefits. The best growth performances (DBH and tree height, associated with the higher competition towards walnuts, were recorded with the new clones Lena and Neva in comparison with the I214 and Villafranca. The closer spacing (5 m between poplar and walnut trees was found to be unsuited to get merchantable poplars sized 30 cm without developing a heavy competition towards walnut trees. The wider spacing (7.4 m resulted vice versa suitable to get poplar trees sized as requested by veneer factories and to maintain an acceptable competitive level with walnut. Within this plantation design, a shorter rotation (8 yrs is needed for Lena and Neva clones in comparison with I214 and Villafranca (10 yrs. Walnut intercropped with poplar showed cone-shaped crowns, light

  4. Evaluation of Populus and Salix continuously irrigated with landfill leachate II. soils and early tree development.

    Science.gov (United States)

    Zalesny, Ronald S; Bauer, Edmund O

    2007-01-01

    Soil contaminant levels and early tree growth data are helpful for assessing phytoremediation systems. Populus (DN17, DN182, DN34, NM2, and NM6) and Salix (94003, 94012, S287, S566, and SX61) genotypes were irrigated with landfill leachate or municipal water and tested for differences in (1) element concentrations (P, K, Ca, Mg, S, Zn, B, Mn, Fe, Cu, Al, and Na) of a topsoil layer and a layer of sand in tanks with a cover crop of trees or no trees and (2) height, diameter, volume, and dry mass of leaves, stems, and roots. Trees were irrigated with leachate or water during the final 12 wk of the 18-wk study. Differences in most soil element concentrations were negligible (P > 0.05) for irrigation treatments and cover main effects. Phosphorous, K, Mg, S, Zn, Mn, Fe, and Al concentrations were greater in topsoil than sand (P = 0.0011 for Mg; P tree yield. From a practical standpoint, these results may be used as a baseline for the development of future remediation systems.

  5. Uptake of macro- and micro-nutrients into leaf, woody, and root tissue of Populus after irrigation with landfill leachate

    Science.gov (United States)

    Jill A. Zalesny; Ronald S., Jr. Zalesny; Adam H. Wiese; Bart T. Sexton; Richard B. Hall

    2008-01-01

    Information about macro- and micro-nutrient uptake and distribution into tissues of Populus irrigated with landfill leachate helps to maximize biomass production and understand impacts of leachate chemistry on tree health. We irrigated eight Populus clones (NC 13460, NCI4O18, NC14104, NC14106, DM115, DN5, NM2, NM6) with fertilized (N, P, K) well...

  6. Predictive models of biomass for poplar and willow. Short rotation coppice in the United Kingdom

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, A.C.; Morgan, G.W.; Poole, E.J.; Baldwin, M.E.; Tubby, I. (Biometrics, Surveys and Statistics Division, Forest Research, Farnham (United Kingdom))

    2007-07-01

    A series of forty-nine experimental trials on short rotation coppice (SRC) were conducted throughout the United Kingdom using a selection of varieties of poplar and willow with the aim of evaluating their performance for wood fuel production under a representative range of UK conditions. Observations on the crops and on a range of site and climatic conditions during the growth of the crops were taken over two three-year cutting cycles. These observations were used to develop a suite of empirical models for poplar and willow SRC growth and yield from which systems were constructed to provide a- priori predictions of biomass yield for any site in the UK with known characteristics (predictive yield models), and estimates of biomass yield from a standing crop (standing biomass models). The structure of the series of field trials and the consequent approach and methodology used in the construction of the suite of empirical models are described, and their use in predicting biomass yields of poplar and willow SRC is discussed. (orig.)

  7. [Time lag effect between poplar' s sap flow velocity and microclimate factors in agroforestry system in West Liaoning Province].

    Science.gov (United States)

    Di, Sun; Guan, De-xin; Yuan, Feng-hui; Wang, An-zhi; Wu, Jia-bing

    2010-11-01

    By using Granier's thermal dissipation probe, the sap flow velocity of the poplars in agroforestry system in west Liaoning was continuously measured, and the microclimate factors were measured synchronously. Dislocation contrast method was applied to analyze the sap flow velocity and corresponding air temperature, air humidity, net radiation, and vapor pressure deficit to discuss the time lag effect between poplar' s sap flow velocity and microclimate factors on sunny days. It was found that the poplar's sap flow velocity advanced of air temperature, air humidity, and vapor pressure deficit, and lagged behind net radiation. The sap flow velocity in June, July, August, and September was advanced of 70, 30, 50, and 90 min to air temperature, of 80, 30, 40, and 90 min to air humidity, and of 90, 50, 70, and 120 min to vapor pressure deficit, but lagged behind 10, 10, 40, and 40 min to net radiation, respectively. The time lag time of net radiation was shorter than that of air temperature, air humidity, and vapor pressure. The regression analysis showed that in the cases the time lag effect was contained and not, the determination coefficients between comprehensive microclimate factor and poplar's sap flow velocity were 0.903 and 0.855, respectively, indicating that when the time lag effect was contained, the determination coefficient was ascended by 2.04%, and thus, the simulation accuracy of poplar's sap flow velocity was improved.

  8. Insight into the genetic components of community genetics: QTL mapping of insect association in a fast-growing forest tree.

    Directory of Open Access Journals (Sweden)

    Jennifer DeWoody

    Full Text Available Identifying genetic sequences underlying insect associations on forest trees will improve the understanding of community genetics on a broad scale. We tested for genomic regions associated with insects in hybrid poplar using quantitative trait loci (QTL analyses conducted on data from a common garden experiment. The F2 offspring of a hybrid poplar (Populus trichocarpa x P. deltoides cross were assessed for seven categories of insect leaf damage at two time points, June and August. Positive and negative correlations were detected among damage categories and between sampling times. For example, sap suckers on leaves in June were positively correlated with sap suckers on leaves (P<0.001 but negatively correlated with skeletonizer damage (P<0.01 in August. The seven forms of leaf damage were used as a proxy for seven functional groups of insect species. Significant variation in insect association occurred among the hybrid offspring, including transgressive segregation of susceptibility to damage. NMDS analyses revealed significant variation and modest broad-sense heritability in insect community structure among genets. QTL analyses identified 14 genomic regions across 9 linkage groups that correlated with insect association. We used three genomics tools to test for putative mechanisms underlying the QTL. First, shikimate-phenylpropanoid pathway genes co-located to 9 of the 13 QTL tested, consistent with the role of phenolic glycosides as defensive compounds. Second, two insect association QTL corresponded to genomic hotspots for leaf trait QTL as identified in previous studies, indicating that, in addition to biochemical attributes, leaf morphology may influence insect preference. Third, network analyses identified categories of gene models over-represented in QTL for certain damage types, providing direction for future functional studies. These results provide insight into the genetic components involved in insect community structure in a fast

  9. Genetic basis of aboveground productivity in two native Populus species and their hybrids.

    Science.gov (United States)

    Lojewski, Nathan R; Fischer, Dylan G; Bailey, Joseph K; Schweitzer, Jennifer A; Whitham, Thomas G; Hart, Stephen C

    2009-09-01

    Demonstration of genetic control over riparian tree productivity has major implications for responses of riparian systems to shifting environmental conditions and effects of genetics on ecosystems in general. We used field studies and common gardens, applying both molecular and quantitative techniques, to compare plot-level tree aboveground net primary productivity (ANPP(tree)) and individual tree growth rate constants in relation to plant genetic identity in two naturally occurring Populus tree species and their hybrids. In field comparisons of four cross types (Populus fremontii S. Wats., Populus angustifolia James, F(1) hybrids and backcross hybrids) across 11 natural stands, productivity was greatest for P. fremontii trees, followed by hybrids and lowest in P. angustifolia. A similar pattern was observed in four common gardens across a 290 m elevation and 100 km environmental gradient. Despite a doubling in productivity across the common gardens, the relative differences among the cross types remained constant. Using clonal replicates in a common garden, we found ANPP(tree) to be a heritable plant trait (i.e., broad-sense heritability), such that plant genetic factors explained between 38% and 82% of the variation in ANPP(tree). Furthermore, analysis of the genetic composition among individual tree genotypes using restriction fragment length polymorphism molecular markers showed that genetically similar trees also exhibited similar ANPP(tree). These findings indicate strong genetic contributions to natural variation in ANPP with important ecological implications.

  10. Wood ash as a soil additive and liming agent

    International Nuclear Information System (INIS)

    Campbell, A.; Etiegni, L.; Mahler, R.L.

    1991-01-01

    This study evaluated wood ash as an agricultural soil supplement and liming material. Winter wheat (Triticum aestivum) and poplar (Populus sp.) were grown in a greenhouse on six different Idaho soils amended with different ash concentrations. At ash levels equal to or lower than 2%, no detrimental effects were observed. In fact, the biomass of the wheat and the caliper and height of the poplar cuttings increased more at 2% ash 940 metric tons/ha than with the control soil. These results suggest that wood ash could be used in agricultural applications as a low analysis fertilizer containing potassium and as a liming agent. Land application of wood ash could be less expensive and more environmentally sound than present landfilling practices

  11. RNA-SEQ reveals transcriptional level changes of poplar roots in different forms of nitrogen treatments

    Directory of Open Access Journals (Sweden)

    Chunpu eQu

    2016-02-01

    Full Text Available Poplar has emerged as a model plant for understanding molecular mechanisms of tree growth, development and response to environment. Long-term application of different forms of nitrogen (such as NO3--N and NH4+-N may cause morphological changes of poplar roots; however, the molecular level changes are still not well known. In this study, we analyzed the expression profiling of poplar roots treated by three forms of nitrogen: S1 (NH4+, S2 (NH4NO3 and S3 (NO3- by using RNA-SEQ technique. We found 463 genes significantly differentially expressed in roots by different N treatments, of which a total of 116 genes were found to differentially express between S1 and S2, 173 genes between S2 and S3, and 327 genes between S1 and S3. A cluster analysis shows significant difference in many transcription factor families and functional genes family under different N forms. Through an analysis of Mapman metabolic pathway, we found that the significantly differentially expressed genes are associated with fermentation, glycolysis and tricarboxylic acid cycle (TCA, secondary metabolism, hormone metabolism, and transport processing. Interestingly, we did not find significantly differentially expressed genes in N metabolism pathway, mitochondrial electron transport / ATP synthesis and mineral nutrition. We also found abundant candidate genes (20 transcription factors and 30 functional genes regulating morphology changes of poplar roots under the three N forms. The results obtained are beneficial to a better understanding of the potential molecular and cellular mechanisms regulating root morphology changes under different N treatments.

  12. Dicty_cDB: Contig-U01201-1 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available DT573931 ) EST1084571 GH_TMO Gossypium hirsutum cDNA, mRNA s... 46 2.3 1 ( DR026249 ) Osmo00116 F. cylindrus osmotic stress library...67 ) Glycine max cDNA clone: GMFL01-28-N10, 3'end. 44 9.0 1 ( BU869818 ) Q004H08 Populus flower cDNA library Populus tric...Lib... 46 2.3 1 ( DU120744 ) KBrH113B12F Brassica rapa BAC library KBrH Brassi......... 46 2.3 1 ( CB285041 ) DF1898 Dermatophagoides farinae cDNA library Derm... 46 2.3 1 ( C25513 ) Dic...rary Ictalurus... 44 9.0 1 ( CF230535 ) PtaC0009E5E0509 Poplar cDNA library from ca

  13. Transcriptional and Hormonal Regulation of Gravitropism of Woody Stems in Populus

    Science.gov (United States)

    Suzanne Gerttula; Matthew S. Zinkgraf; Gloria K. Muday; Daniel R. Lewis; Farid M. Ibatullin; Harry Brumer; Foster Hart; Shawn D. Mansfield; Vladimir Filkov; Andrew Groover

    2015-01-01

    Angiosperm trees reorient their woody stems by asymmetrically producing a specialized xylem tissue, tension wood, which exerts a strong contractile force resulting in negative gravitropism of the stem. Here, we show, in Populus trees, that initial gravity perception and response occurs in specialized cells through sedimentation of starch-filled...

  14. Strong population bottleneck and repeated demographic expansions of Populus adenopoda (Salicaceae) in subtropical China.

    Science.gov (United States)

    Fan, Liqiang; Zheng, Honglei; Milne, Richard I; Zhang, Lei; Mao, Kangshan

    2018-03-14

    Glacial refugia and inter-/postglacial recolonization routes during the Quaternary of tree species in Europe and North America are well understood, but far less is known about those of tree species in subtropical eastern Asia. Thus, we have examined the phylogeographic history of Populus adenopoda (Salicaceae), one of the few poplars that naturally occur in this subtropical area. Genetic variations across the range of the species in subtropical China were surveyed using ten nuclear microsatellite loci and four chloroplast fragments (matK, trnG-psbK, psbK-psbI and ndhC-trnV). Coalescent-based analyses were used to test demographic and migration hypotheses. In addition, species distribution models (SDMs) were constructed to infer past, present and future potential distributions of the species. Thirteen chloroplast haplotypes were detected, and haplotype-rich populations were found in central and southern parts of the species' range. STRUCTURE analyses of nuclear microsatellite loci suggest obvious lineage admixture, especially in peripheral and northern populations. DIYABC analysis suggests that the species might have experienced two independent rounds of demographic expansions and a strong bottleneck in the late Quaternary. SDMs indicate that the species' range contracted during the Last Glacial Maximum (LGM), and contracted northward but expanded eastward during the Last Interglacial (LIG). Chloroplast data and SDMs suggest that P. adenopoda might have survived in multiple glacial refugia in central and southern parts of its range during the LGM. Populations of the Yunnan-Guizhou Plateau in the southern part have high chloroplast DNA diversity, but may have contributed little to the postglacial recolonization of northern and eastern parts. The three major demographic events inferred by DIYABC coincide with the initiation of the LIG, start of the LGM and end of the LGM, respectively. The species may have experienced multiple rounds of range contraction during

  15. Short rotation Populus: a bibliography of North American literature, 1989-2011

    Science.gov (United States)

    Ronald S. Zalesny; David R. Coyle

    2013-01-01

    There have been three comprehensive poplar bibliographies dating back to 1854 and the most recent contained literature published through 1988. Given that these bibliographies are outdated, the number of forestry/bioenergy related journals has increased dramatically (along with subsequent publications), and there have been profound advances in science (particularly in...

  16. Growth and physiological responses of isohydric and anisohydric poplars to drought

    Science.gov (United States)

    Ziv Attia; Jean-Christophe Domec; Ram Oren; Danielle A. Way; Menachem Moshelion

    2015-01-01

    Understanding how different plants prioritize carbon gain and drought vulnerability under a variable water supply is important for predicting which trees will maximize woody biomass production under different environmental conditions. Here, Populus balsamifera (BS, isohydric genotype), P. simonii (SI, previously uncharacterized stomatal behaviour), and their cross, P....

  17. Surface characterization of pretreated and microbial-treated populus cross-sections

    Energy Technology Data Exchange (ETDEWEB)

    Tolbert, Allison K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    The first objective of this thesis is to illustrate the advantages of surface characterization in biomass utilization studies. The second objective is to gain insight into the workings of potential consolidated bioprocessing microorganisms on the surface of poplar samples. The third objective is to determine the impact biomass recalcitrance has on enzymatic hydrolysis and microbial fermentation in relation to the surface chemistry.

  18. Gibberellins in shoots and developing capsules of Populus species.

    Science.gov (United States)

    Pearce, David W; Hutt, Oliver E; Rood, Stewart B; Mander, Lewis N

    2002-03-01

    Extracts of stems of growing shoots of Populus deltoides and P. trichocarpa, and developing capsules of P. deltoides were analysed for gibberellins (GAs) by gas chromatography-mass spectrometry. The following known GAs were identified by comparison of their Kovats retention indices (KRIs) and mass spectra with those of standards: GA1, GA8, GA9, GA19, GA20, 16 beta,17-dihydro-17-hydroxy GA20, GA23, GA28, GA29, GA34, GA44, and GA97. Several of these have not been previously reported from Populus. In addition, two new GAs were identified as 12 beta-hydroxy GA53 (GA127) and 16 beta,17-dihydro-17-hydroxy GA53 and their structures were confirmed by partial synthesis. Evidence was found of 16,17-dihydro-16,17-dihydroxy GA9, 16,17-dihydro-16,17-dihydroxy GA12, 12-hydroxy GA14, and GA34-catabolite by comparison of mass spectra and KRIs with published data. Several putative GAs (hydroxy- and dihydroxy-GA12-like) were also found. The catabolites of active GAs or of key precursors, hydroxylated at C-2 in stems and either C-2, C-12, C-17, or C-16,17 in capsules, were the major proportion of the GAs.

  19. Mammalian cytochrome CYP2E1 triggered differential gene regulation in response to trichloroethylene (TCE) in a transgenic poplar.

    Science.gov (United States)

    Kang, Jun Won; Wilkerson, Hui-Wen; Farin, Federico M; Bammler, Theo K; Beyer, Richard P; Strand, Stuart E; Doty, Sharon L

    2010-08-01

    Trichloroethylene (TCE) is an important environmental contaminant of soil, groundwater, and air. Studies of the metabolism of TCE by poplar trees suggest that cytochrome P450 enzymes are involved. Using poplar genome microarrays, we report a number of putative genes that are differentially expressed in response to TCE. In a previous study, transgenic hybrid poplar plants expressing mammalian cytochrome P450 2E1 (CYP2E1) had increased metabolism of TCE. In the vector control plants for this construct, 24 h following TCE exposure, 517 genes were upregulated and 650 genes were downregulated over 2-fold when compared with the non-exposed vector control plants. However, in the transgenic CYP2E1 plant, line 78, 1,601 genes were upregulated and 1,705 genes were downregulated over 2-fold when compared with the non-exposed transgenic CYP2E1 plant. It appeared that the CYP2E1 transgenic hybrid poplar plants overexpressing mammalian CYP2E1 showed a larger number of differentially expressed transcripts, suggesting a metabolic pathway for TCE to metabolites had been initiated by activity of CYP2E1 on TCE. These results suggest that either the over-expression of the CYP2E1 gene or the abundance of TCE metabolites from CYP450 2E1 activity triggered a strong genetic response to TCE. Particularly, cytochrome p450s, glutathione S-transferases, glucosyltransferases, and ABC transporters in the CYP2E1 transgenic hybrid poplar plants were highly expressed compared with in vector controls.

  20. Spatial Pattern of Populus euphratica Forest Change as Affected by Water Conveyance in the Lower Tarim River

    Directory of Open Access Journals (Sweden)

    Shuhong Peng

    2014-01-01

    Full Text Available To restore declining species, including Populus euphratica and other riparian communities, in the river ecosystem of the lower Tarim River, the ecological water conveyance project (EWCP, as a part of an integrated water resource management plan, was implemented in 2000. The EWCP aims to schedule and manage the water resources in the upper reaches and transfer water to the lower reaches by a series of intermittent water deliveries. The delivered water flows along a modified river channel and nourishes riparian communities by river overflow flooding. Since it began, it has caused a fierce debate over the response of riparian vegetation to the water conveyance scheme. This study focuses on the lower Tarim River, where Populus euphratica forests have undergone watering, due to the EWCP. Twelve Landsat sensor images and one IKONOS satellite imagery acquired between 1999 and 2009 were used to monitor the change in Populus euphratica forests. Bi-temporal change detection and temporal trajectory analysis were employed to represent the spatial pattern of the forest change. Field investigations were used to analyze the driving forces behind forest change from the perspectives of anthropogenic activities and natural forces. The results showed that Populus euphratica forest have been declining in area, which implies that ecological risks have been increased during the watering process. However, forests areas have increased in the regions where the water supply is abundant, and vice versa.

  1. Litter Quality of Populus Species as Affected by Free-Air CO2

    NARCIS (Netherlands)

    Vermue, E.; Buurman, P.; Hoosbeek, M.R.

    2009-01-01

    The effect of elevated CO2 and nitrogen fertilization on the molecular chemistry of litter of three Populus species and associated soil organic matter (SOM) was investigated by pyrolysis-gas chromatography/mass spectrometry. The results are based on 147 quantified organic compounds in 24 litter

  2. Light regimes in Populus plantations using the Voxel-based Light Interception Model

    NARCIS (Netherlands)

    Van der Zande, D.; Dieussart, K.; Stuckens, J.; Verstraeten, W.W.; Coppin, P.

    2011-01-01

    Three-dimensional light interception by three uniform Populus canopies was studied using the Voxel-based Light Interception Model (VLIM) in combination with ground-based Light Detection and Ranging (LiDAR) measurements. As the VLIM was developed and validated in a virtual environment to ensure

  3. Characterization and 2D structural model of corn straw and poplar leaf biochars.

    Science.gov (United States)

    Zhao, Nan; Lv, YiZhong; Yang, XiXiang; Huang, Feng; Yang, JianWen

    2017-12-22

    The integrated experimental methods were used to analyze the physicochemical properties and structural characteristics and to build the 2D structural model of two kinds of biochars. Corn straw and poplar leaf biochars were gained by pyrolysing the raw materials slowly in a furnace at 300, 500, and 700 °C under oxygen-deficient conditions. Scanning electron microscope was applied to observe the surface morphology of the biochars. High temperatures destroyed the pore structures of the biochars, forming a particle mixture of varying sizes. The ash content, yield, pH, and surface area were also observed to describe the biochars' properties. The yield decreases as the pyrolysis temperature increases. The biochars are neutral to alkaline. The biggest surface area is 251.11 m 2 /g for 700 °C corn straw biochar. Elemental analysis, infrared microspectroscopy, solid-state C-13 NMR spectroscopy, and pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) were also used to study the structural characteristics and build the 2D structural models of biochars. The C content in the corn straw and poplar leaf biochars increases with the increase of the pyrolysis temperature. A higher pyrolysis temperature makes the aryl carbon increase, and C=O, OH, and aliphatic hydrocarbon content decrease in the IR spectra. Solid-state C-13 NMR spectra show that a higher pyrolysis temperature makes the alkyl carbon and alkoxy carbon decrease and the aryl carbon increase. The results of IR microspectra and solid-state C-13 NMR spectra reveal that some noticeable differences exist in these two kinds of biochars and in the same type of biochar but under different pyrolysis temperatures. The conceptual elemental compositions of 500 °C corn straw and poplar leaf biochars are C 61 H 33 NO 13 and C 59 H 41 N 3 O 12 , respectively. Significant differences exist in the SEM images, physicochemical properties, and structural characteristics of corn straw and poplar leaf biochars.

  4. Irrigating poplar energy crops with landfill leachate negatively affects soil micro- and meso-fauna.

    Science.gov (United States)

    Coyle, David R; Zalesny, Jill A; Zalesny, Ronald S; Wiese, Adam H

    2011-10-01

    Increased municipal solid waste generated worldwide combined with substantial demand for renewable energy has prompted testing and deployment of woody feedstock production systems that reuse and recycle wastewaters as irrigation and fertilization. Populus selections are ideal for such systems given their fast growth, extensive root systems, and high water usage rates. Maintaining ecological sustainability (i.e., the capacity for an ecosystem to maintain its function and retain its biodiversity over time) during tree establishment and development is an important component of plantation success, especially for belowground faunal populations. To determine the impact of solid waste leachate on soil micro- and meso-fauna, we compared soilfrom eight different Populus clones receiving municipal solid waste landfill leachate irrigation with clones receiving fertilized (N, P K) well water irrigation. Microfauna (i.e., nematodes) communities were more diverse in control soils. Mesofauna (i.e., insects) were associated with all clones; however, they were four times more abundant around trees found within the control plot than those that received leachate treatments. Nematode and insect abundance varied among Populus clones yet insect diversity was greater in the leachate-treated soils. Phytotechnologies must allow for soil faunal sustainability, as upsetting this balance could lead to great reductions in phytotechnology efficacy.

  5. Engineering functional artificial hybrid proteins between poplar peroxiredoxin II and glutaredoxin or thioredoxin

    International Nuclear Information System (INIS)

    Rouhier, Nicolas; Gama, Filipe; Wingsle, Gunnar; Gelhaye, Eric; Gans, Pierre; Jacquot, Jean-Pierre

    2006-01-01

    The existence of natural peroxiredoxin-glutaredoxin hybrid enzymes in several bacteria is in line with previous findings indicating that poplar peroxiredoxin II can use glutaredoxin as an electron donor. This peroxiredoxin remains however unique since it also uses thioredoxin with a quite good efficiency. Based on the existing fusions, we have created artificial enzymes containing a poplar peroxiredoxin module linked to glutaredoxin or thioredoxin modules. The recombinant fusion enzymes folded properly into non-covalently bound homodimers or homotetramers. Two of the three protein constructs exhibit peroxidase activity, a reaction where the two modules need to function together, but they also display enzymatic activities specific of each module. In addition, mass spectrometry analyses indicate that the Prx module can be both glutathiolated or overoxidized in vitro. This is discussed in the light of the Prx reactivity

  6. Impacts of supplyshed-level differences in productivity and land Costs on the economics of hybrid poplar production in Minnesota, USA

    Science.gov (United States)

    William Lazarus; William L. Headlee; Ronald S. Zalesny

    2015-01-01

    The joint effects of poplar biomass productivity and land costs on poplar production economics were compared for 12 Minnesota counties and two genetic groups, using a process-based model (3-PG) to estimate productivity. The counties represent three levels of productivity and a range of land costs (annual rental rates) from $128/ha to $534/ha. An optimal rotation age...

  7. Bacterial microflora isolated from the bark surface of poplars growing in areas where air pollution is very high

    Directory of Open Access Journals (Sweden)

    Krystyna Przybył

    2015-01-01

    Full Text Available In the autumn of 1976 bacteria of the genera Bacillus, Pseudomonas, Flavobacterium, Erwinia and Cellulomonas were isolated from the bark surface of poplars growing in protective belts around several industrial plants. It was found that the qualitative and quantitative composition of the surface bacterial microflora changes in dependence on the degree of resistance of the poplars to the action of the dust emitted by the industrial establishment and containing high amounts of heavy metals.

  8. Trace element accumulation in woody plants of the Guadiamar Valley, SW Spain: A large-scale phytomanagement case study

    International Nuclear Information System (INIS)

    Dominguez, Maria T.; Maranon, Teodoro; Murillo, Jose M.; Schulin, Rainer; Robinson, Brett H.

    2008-01-01

    Phytomanagement employs vegetation and soil amendments to reduce the environmental risk posed by contaminated sites. We investigated the distribution of trace elements in soils and woody plants from a large phytomanaged site, the Guadiamar Valley (SW Spain), 7 years after a mine spill, which contaminated the area in 1998. At spill-affected sites, topsoils (0-25 cm) had elevated concentrations of As (129 mg kg -1 ), Bi (1.64 mg kg -1 ), Cd (1.44 mg kg -1 ), Cu (115 mg kg -1 ), Pb (210 mg kg -1 ), Sb (13.8 mg kg -1 ), Tl (1.17 mg kg -1 ) and Zn (457 mg kg -1 ). Trace element concentrations in the studied species were, on average, within the normal ranges for higher plants. An exception was white poplar (Populus alba), which accumulated Cd and Zn in leaves up to 3 and 410 mg kg -1 respectively. We discuss the results with regard to the phytomanagement of trace element contaminated sites. - There is a low trace element transfer from contaminated soils to the aboveground parts of afforested woody plants under a semi-arid climate

  9. Identification of five B-type response regulators as members of a multistep phosphorelay system interacting with histidine-containing phosphotransfer partners of Populus osmosensor

    Directory of Open Access Journals (Sweden)

    Bertheau Lucie

    2012-12-01

    between identified B-type RR and HPt proteins, and the co-expression analysis of transcripts of these potential partners in poplar organs, our results favor the model that RR12, 13, 14, 16 and 19 are able to interact with the main partners of HK1, HPt2, 7 and 9, and this HPt/RR interaction occurs within the nucleus. On the whole, the five B-type RRs of interest could be third protagonists putatively involved in the osmosensing signaling pathway in Populus.

  10. [Seasonal variation of Tamarix ramosissima and Populus euphratica water potentials in southern fringe of Taklamakan Desert].

    Science.gov (United States)

    Zeng, Fanjiang; Zhang, Ximing; Li, Xiangyi; Foetzki, Andrea; Runge, Michael

    2005-08-01

    The measurement of the seasonal and diurnal variations of Tamarix ramosissima and Populus euphratica water potentials in the southern fringe of Taklamakan Desert indicated that there was no apparent water stress for the two species during their growth period, with little change of predawn water potential and some extent decrease of midday water potential. Irrigation once or thinning had no significant effects on the water status of the plants, while groundwater appeared to be a prerequisite for the survival and growth of these species. It is very important to ensure a stable groundwater table for the restoration of Tamarix ramosissima and Populus euphratica in this area.

  11. Elevated atmospheric CO2 concentration leads to increased whole-plant isoprene emission in hybrid aspen (Populus tremula × Populus tremuloides).

    Science.gov (United States)

    Sun, Zhihong; Niinemets, Ülo; Hüve, Katja; Rasulov, Bahtijor; Noe, Steffen M

    2013-05-01

    Effects of elevated atmospheric [CO2] on plant isoprene emissions are controversial. Relying on leaf-scale measurements, most models simulating isoprene emissions in future higher [CO2] atmospheres suggest reduced emission fluxes. However, combined effects of elevated [CO2] on leaf area growth, net assimilation and isoprene emission rates have rarely been studied on the canopy scale, but stimulation of leaf area growth may largely compensate for possible [CO2] inhibition reported at the leaf scale. This study tests the hypothesis that stimulated leaf area growth leads to increased canopy isoprene emission rates. We studied the dynamics of canopy growth, and net assimilation and isoprene emission rates in hybrid aspen (Populus tremula × Populus tremuloides) grown under 380 and 780 μmol mol(-1) [CO2]. A theoretical framework based on the Chapman-Richards function to model canopy growth and numerically compare the growth dynamics among ambient and elevated atmospheric [CO2]-grown plants was developed. Plants grown under elevated [CO2] had higher C : N ratio, and greater total leaf area, and canopy net assimilation and isoprene emission rates. During ontogeny, these key canopy characteristics developed faster and stabilized earlier under elevated [CO2]. However, on a leaf area basis, foliage physiological traits remained in a transient state over the whole experiment. These results demonstrate that canopy-scale dynamics importantly complements the leaf-scale processes, and that isoprene emissions may actually increase under higher [CO2] as a result of enhanced leaf area production. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. Constitutively Elevated Salicylic Acid Levels Alter Photosynthesis and Oxidative State but Not Growth in Transgenic Populus[C][W

    Science.gov (United States)

    Xue, Liang-Jiao; Guo, Wenbing; Yuan, Yinan; Anino, Edward O.; Nyamdari, Batbayar; Wilson, Mark C.; Frost, Christopher J.; Chen, Han-Yi; Babst, Benjamin A.; Harding, Scott A.; Tsai, Chung-Jui

    2013-01-01

    Salicylic acid (SA) has long been implicated in plant responses to oxidative stress. SA overproduction in Arabidopsis thaliana leads to dwarfism, making in planta assessment of SA effects difficult in this model system. We report that transgenic Populus tremula × alba expressing a bacterial SA synthase hyperaccumulated SA and SA conjugates without negative growth consequences. In the absence of stress, endogenously elevated SA elicited widespread metabolic and transcriptional changes that resembled those of wild-type plants exposed to oxidative stress-promoting heat treatments. Potential signaling and oxidative stress markers azelaic and gluconic acids as well as antioxidant chlorogenic acids were strongly coregulated with SA, while soluble sugars and other phenylpropanoids were inversely correlated. Photosynthetic responses to heat were attenuated in SA-overproducing plants. Network analysis identified potential drivers of SA-mediated transcriptome rewiring, including receptor-like kinases and WRKY transcription factors. Orthologs of Arabidopsis SA signaling components NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1 and thioredoxins were not represented. However, all members of the expanded Populus nucleoredoxin-1 family exhibited increased expression and increased network connectivity in SA-overproducing Populus, suggesting a previously undescribed role in SA-mediated redox regulation. The SA response in Populus involved a reprogramming of carbon uptake and partitioning during stress that is compatible with constitutive chemical defense and sustained growth, contrasting with the SA response in Arabidopsis, which is transient and compromises growth if sustained. PMID:23903318

  13. Biomass and Volume Yield in Mature Hybrid Poplar Plantations on Temperate Abandoned Farmland

    Directory of Open Access Journals (Sweden)

    Benoit Truax

    2014-12-01

    Full Text Available In this study, we developed clone-specific allometric relationships, with the objective of calculating volume and biomass production after 13 years in 8 poplar plantations, located across an environmental gradient, and composed of 5 unrelated hybrid poplar clones. Allometry was found to be very similar for clones MxB-915311, NxM-3729 and DNxM-915508, all having P. maximoviczii parentage. Clones DxN-3570 and TxD-3230 also had a similar allometry; for a given DBH they have a lower stem volume, stem biomass and branch biomass than P. maximoviczii hybrids. Strong Site × Clone interactions were observed for volume and woody biomass growth, with DxN and TxD hybrids only productive on low elevation fertile sites, whereas P. maximovizcii hybrids were also very productive on higher elevation sites with moderate to high soil fertility. At the site level (5 clones mean, yield reached 27.5 and 22.7 m3/ha/yr. on the two best sites (high fertility and low elevation, confirming the great potential of southern Québec (Canada for poplar culture. The productivity gap between the most and least productive sites has widened from year 8 to year 13, highlighting the need for high quality abandoned farmland site selection in terms of climate and soil fertility. Although clone selection could optimize yield across the studied environmental gradient, it cannot fully compensate for inadequate site selection.

  14. Comparative physiology of allopatric Populus species: geographic clines in photosynthesis, height growth, and carbon isotope discrimination in common gardens.

    Science.gov (United States)

    Soolanayakanahally, Raju Y; Guy, Robert D; Street, Nathaniel R; Robinson, Kathryn M; Silim, Salim N; Albrectsen, Benedicte R; Jansson, Stefan

    2015-01-01

    Populus species with wide geographic ranges display strong adaptation to local environments. We studied the clinal patterns in phenology and ecophysiology in allopatric Populus species adapted to similar environments on different continents under common garden settings. As a result of climatic adaptation, both Populus tremula L. and Populus balsamifera L. display latitudinal clines in photosynthetic rates (A), whereby high-latitude trees of P. tremula had higher A compared to low-latitude trees and nearly so in P. balsamifera (p = 0.06). Stomatal conductance (g s) and chlorophyll content index (CCI) follow similar latitudinal trends. However, foliar nitrogen was positively correlated with latitude in P. balsamifera and negatively correlated in P. tremula. No significant trends in carbon isotope composition of the leaf tissue (δ(13)C) were observed for both species; but, intrinsic water-use efficiency (WUEi) was negatively correlated with the latitude of origin in P. balsamifera. In spite of intrinsically higher A, high-latitude trees in both common gardens accomplished less height gain as a result of early bud set. Thus, shoot biomass was determined by height elongation duration (HED), which was well approximated by the number of days available for free growth between bud flush and bud set. We highlight the shortcoming of unreplicated outdoor common gardens for tree improvement and the crucial role of photoperiod in limiting height growth, further complicating interpretation of other secondary effects.

  15. Cometabolic degradation of trichloroethylene by Burkholderia cepacia G4 with poplar leaf homogenate.

    Science.gov (United States)

    Kang, Jun Won; Doty, Sharon Lafferty

    2014-07-01

    Trichloroethylene (TCE), a chlorinated organic solvent, is one of the most common and widespread groundwater contaminants worldwide. Among the group of TCE-degrading aerobic bacteria, Burkholderia cepacia G4 is the best-known representative. This strain requires the addition of specific substrates, including toluene, phenol, and benzene, to induce the enzymes to degrade TCE. However, the substrates are toxic and introducing them into the soil can result in secondary contamination. In this study, poplar leaf homogenate containing natural phenolic compounds was tested for the ability to induce the growth of and TCE degradation by B. cepacia G4. The results showed that the G4 strain could grow and degrade TCE well with the addition of phytochemicals. The poplar leaf homogenate also functioned as an inducer of the toluene-ortho-monooxygenase (TOM) gene in B. cepacia G4.

  16. The level of invasion of the willow-poplar floodplain forests of Danube lowland

    International Nuclear Information System (INIS)

    Botkova, K.; Petrasova, K.

    2015-01-01

    Invasions of neophyte plant species are considered as one of the major threats to the diversity of natural ecosystems including floodplain forests. The aims of our study were to find out if there is a significant increase in the number and cover of neophyte species in the willow-poplar floodplain forests of Danube lowland over time. The level of invasion of the willow-poplar floodplain forests was evaluated from 1950 to the present time using Kruskal-Wallis non-parametric ANOVA. According to the analysis results, along the time gradient there is a significant increase in the number and cover of neophytes among analysed periods. This result is not caused by increasing biodiversity, because the number of native species significantly decreased. Therefor it is necessary to look for reasons of this situation in deteriorating condition of floodplain biotopes. (authors)

  17. Increasing the productivity of biomass plantations of Populus species and hybrids in the Pacific Northwest. Final report, September 14, 1981--December 31, 1996

    Energy Technology Data Exchange (ETDEWEB)

    DeBell, D.S.; Harrington, C.A.; Clendenen, G.W. [USDA Forest Service, Olympia, WA (United States)] [and others

    1997-08-01

    This final report represents the culmination of eight years of biological research devoted to increasing the productivity of short rotation plantations of Populus trichocarpa and Populus hybrids in the Pacific Northwest. Studies described herein provide an understanding of tree growth, stand development and biomass yield at various spacings, and how patterns thereof differ by Populus clone in monoclonal and polyclonal plantings. Also included is some information about factors related to wind damage in Populus plantings, use of leaf size as a predictor of growth potential, and approaches for estimating tree and stand biomass and biomass growth. The work was accomplished in three research plantations, all established cooperatively with the Washington State Department of Natural Resources (DNR) and located at the DNR Tree Improvement Center near Olympia. The first plantation was established in Spring 1986 to evaluate the highly touted {open_quotes}woodgrass{close_quotes} concept and compare it with more conventional short-rotation management regimes, using two Populus hybrid clones planted at five spacings. Besides providing scientific data to resolve the politicized {open_quotes}wood-grass{close_quotes} dispute, this plantation has furnished excellent data on stand dynamics and woody biomass yield. A second plantation was established at the same time; groups of trees therein received two levels of irrigation and different amounts of four fertilizer amendments, resulting in microsites with diverse moisture and nutrient conditions.

  18. Somaclonal variation in hybrid poplars for resistance to Septoria leaf spot

    Science.gov (United States)

    M.E. Ostry; D. D. Skilling

    1987-01-01

    Tissue culture techniques have been used to obtain hybrid poplars with putative resistance to leaf spot caused by Septoria musiva from clones previously susceptible to the disease. Stem internode explants were used to obtain proliferating callus cultures. Adventitious bud formation and shoot proliferation were then induced. Elongated shoots were excised and rooted in a...

  19. Lignin-enriched Fermentation Residues from Bioethanol Production of Fast-growing Poplar and Forage Sorghum

    Directory of Open Access Journals (Sweden)

    José I Santos

    2015-07-01

    Full Text Available The current challenges in developing a cost-effective bioethanol industry include the production of not only high-volume, low cost biofuels but also high-value products with minimal downstream waste. The up-grading of side-stream lignins from bioethanol production plants to novel high-value products will improve the profitability of the bioethanol industry; to do that, a precise understanding of lignin is required. In the present study, lignin-enriched fermentation residues from bioethanol production (steam explosion pretreatment, saccharification, and fermentation of fast-growing poplar and forage sorghum were characterized. In addition to the purity and composition, lignin structure (syringyl/guaiacyl (S/G ratio, inter-unit linkages was also analyzed with spectroscopy techniques such as Fourier transform infrared and two-dimensional nuclear magnetic resonance. Bioethanol processing and feedstock origins seemed to be the main factors determining the purity, composition, and structure of lignins. Residual lignins from poplar and forage sorghum contained significant amounts of sugar and protein impurities. Poplar lignin showed a very high S/G ratio associated with p-hydroxybenzoate. A lower S/G ratio together with H lignin units and p-hydroxycinnamates (p-coumarate and ferulate was observed for forage sorghum lignin. The main inter-unit linkages present in both lignins were β-O-4´ aryl ether followed by resinols and phenylcoumarans.

  20. Utilization of poplar wood sawdust for heavy metals removal from model solutions

    Directory of Open Access Journals (Sweden)

    Demcak Stefan

    2017-06-01

    Full Text Available Some kinds of natural organic materials have a potential for removal of heavy metal ions from wastewater. It is well known that cellulosic waste materials or by-products can be used as cheap adsorbents in chemical treatment process. In this paper, poplar wood sawdust were used for removal of Cu(II, Zn(II and Fe(II ions from model solutions with using the static and dynamic adsorption experiments. Infrared spectrometry of poplar wood sawdust confirmed the presence of the functional groups which correspond with hemicelluloses, cellulose and lignin. At static adsorption was achieved approximately of 80 % efficiency for all treated model solutions. Similar efficiency of the adsorption processes was reached after 5 min at dynamic condition. The highest efficiency of Cu(II removal (98 % was observed after 30 min of dynamic adsorption. Changes of pH values confirmed a mechanism of ion exchange on the beginning of the adsorption process.

  1. Compartmentation of metals in foliage of Populus tremula grown on soils with mixed contamination. II. Zinc binding inside leaf cell organelles.

    Science.gov (United States)

    Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Günthardt-Goerg, Madeleine S

    2011-01-01

    The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. Twenty-one genome sequences from Pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides.

    Science.gov (United States)

    Brown, Steven D; Utturkar, Sagar M; Klingeman, Dawn M; Johnson, Courtney M; Martin, Stanton L; Land, Miriam L; Lu, Tse-Yuan S; Schadt, Christopher W; Doktycz, Mitchel J; Pelletier, Dale A

    2012-11-01

    To aid in the investigation of the Populus deltoides microbiome, we generated draft genome sequences for 21 Pseudomonas strains and 19 other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium, and Variovorax were generated.

  3. Genetic improvement and evaluation of black cottonwood for short- rotation biomass production. Final report, 1987--1992

    Energy Technology Data Exchange (ETDEWEB)

    Stettler, R.F.; Hinckley, T.M. [Washington Univ., Seattle, WA (United States). Coll. of Forest Resources; Heilman, P.E. [Washington State Univ., Puyallup, WA (United States). Research and Extension Center; Bradshaw, H.D. Jr. [Washington Univ., Seattle, WA (United States). Dept. of Biochemistry

    1993-04-30

    This project was initiated in 1978 to serve three objectives: (1) develop genetically improved poplar cultivars offering increased productivity under short-rotation culture; (2) identify the major components of productivity in poplar and determine ways in which they can be manipulated, genetically and culturally; and (3) engage in technology transfer to regional industry and agencies so as to make poplar culture in the Pacific Northwest economically feasible. The project is aimed at capturing natural variation in the native black cottonwood. Populus trichocarpa T & G, and enhancing it through selective breeding. Major emphasis has been placed on hybridization of black cottonwood with P deltoides and P maximowiczii, more recently with p nigra. First-generation (F{sub 1}) hybrids have consistently outperformed black cottonwood by a factor of 1.5.-2. The high yields of woody biomass obtained from these clonally propagated hybrids, in rotations of 4-7 years, have fostered the establishment of large-scale plantations by the pulp and paper industry in the region. Physiological studies have helped to elucidate hybrid superiority and several of the underlying mechanisms.

  4. Determination of Screw and Nail Withdrawal Strengths in Parallel and Perpendicular to Grain of some Hardwoods of Iran

    Directory of Open Access Journals (Sweden)

    Sadegh Maleki

    2013-06-01

    Full Text Available In this study, screw and nail withdrawal strengths parallel and perpendicular longitudinal to grain of some hardwoods; oak (Quercus castaneifolia, hornbeam (Carpinus betulus, beech (Fagus orientalis, Sycamore (Platanus oriantalis and poplar (Populus deltoids were investigated. The tests were conducted following ASTM D 1761 with specimen dimension of 15×5×5(T×R×L. Three kinds of screws namely sheet metal screw, wood screw and coarse drywall screw with diameter of 4 and 5 mm were used. Three different nails with nominal diameter of 2.5, 3.25 and 3.75 mm were also used. The highest screw withdrawal strengths parallel and perpendicular to grain were related to hornbeam, beech, oak, Sycamore and poplar respectively. Furthermore, the highest nail withdrawal strengths parallel and perpendicular to grain were related to hornbeam, oak, beech, Sycamore and poplar respectively for nails with 3.75 mm diameter. Higher density and shear strength of hornbeam compared to the other species accounts for its high screw and nail withdrawal strengths parallel and perpendicular to grain.

  5. Using low energy x-ray radiography to evaluate root initiation and growth of Populus

    Science.gov (United States)

    Ronald S., Jr. Zalesny; A. L. Friend; B. Kodrzycki; D.W. McDonald; R. Michaels; A.H. Wiese; J.W. Powers

    2007-01-01

    Populus roots have been studied less than aboveground tissues. However, there is an overwhelming need to evaluate root initiation and growth in order to understand the genetics and physiology of rooting, along with genotype x environment interactions.

  6. Twenty-One Genome Sequences from Pseudomonas Species and 19 Genome Sequences from Diverse Bacteria Isolated from the Rhizosphere and Endosphere of Populus deltoides

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Steven D [ORNL; Utturkar, Sagar M [ORNL; Klingeman, Dawn Marie [ORNL; Johnson, Courtney M [ORNL; Martin, Stanton [ORNL; Land, Miriam L [ORNL; Lu, Tse-Yuan [ORNL; Schadt, Christopher Warren [ORNL; Doktycz, Mitchel John [ORNL; Pelletier, Dale A [ORNL

    2012-01-01

    To aid in the investigation of the Populus deltoides microbiome we generated draft genome sequences for twenty one Pseudomonas and twenty one other diverse bacteria isolated from Populus deltoides roots. Genome sequences for isolates similar to Acidovorax, Bradyrhizobium, Brevibacillus, Burkholderia, Caulobacter, Chryseobacterium, Flavobacterium, Herbaspirillum, Novosphingobium, Pantoea, Phyllobacterium, Polaromonas, Rhizobium, Sphingobium and Variovorax were generated.

  7. Mercury Content of Sediments in East Fork Poplar Creek: Current Assessment and Past Trends

    Energy Technology Data Exchange (ETDEWEB)

    Brooks, Scott C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Eller, Virginia A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Dickson, Johnbull O. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Earles, Jennifer E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lowe, Kenneth Alan [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Mehlhorn, Tonia L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Olsen, Todd A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); DeRolph, Christopher R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Watson, David J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Phillips, Debra H. [Queen' s Univ., Belfast (United Kingdom); Peterson, Mark J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-01-01

    This study provided new information on sediment mercury (Hg) and monomethylmercury (MMHg) content and chemistry. The current inventory of Hg in East Fork Poplar Creek (EFPC) bed sediments was estimated to be 334 kg, which represents a ~67% decrease relative to the initial investigations in 1984. MMHg sediment inventory was estimated to be 44.1 g, lower but roughly similar to past estimates. The results support the relevance and potential impacts of other active and planned investigations within the Mercury Remediation Technology Development for Lower East Fork Poplar Creek project (e.g., assessment and control of bank soil inputs, sorbents for Hg and MMHg removal, re-introduction of freshwater clams to EFPC), and identify gaps in current understanding that represent opportunities to understand controlling variables that may inform future technology development studies.

  8. Shifting dominance of riparian Populus and Tamarix along gradients of flow alteration in western North American rivers.

    Science.gov (United States)

    Merritt, David M; Poff, N LeRoy

    2010-01-01

    Tamarix ramosissima is a naturalized, nonnative plant species which has become widespread along riparian corridors throughout the western United States. We test the hypothesis that the distribution and success of Tamarix result from human modification of river-flow regimes. We conducted a natural experiment in eight ecoregions in arid and semiarid portions of the western United States, measuring Tamarix and native Populus recruitment and abundance at 64 sites along 13 perennial rivers spanning a range of altered flow regimes. We quantified biologically relevant attributes of flow alteration as an integrated measure (the index of flow modification, IFM), which was then used to explain between-site variation in abundance and recruitment of native and nonnative riparian plant species. We found the likelihood of successful recruitment of Tamarix to be highest along unregulated river reaches and to remain high across a gradient of regulated flows. Recruitment probability for Populus, in contrast, was highest under free-flowing conditions and declined abruptly under even slight flow modification (IFM > 0.1). Adult Tamarix was most abundant at intermediate levels of IFM. Populus abundance declined sharply with modest flow regulation (IFM > 0.2) and was not present at the most flow-regulated sites. Dominance of Tamarix was highest along rivers with the most altered flow regimes. At the 16 least regulated sites, Tamarix and Populus were equally abundant. Given observed patterns of Tamarix recruitment and abundance, we infer that Tamarix would likely have naturalized, spread, and established widely in riparian communities in the absence of dam construction, diversions, and flow regulation in western North America. However, Tamarix dominance over native species would likely be less extensive in the absence of human alteration of river-flow regimes. Restoration that combines active mechanical removal of established stands of Tamarix with a program of flow releases conducive to

  9. Contrasting patterns of cytokinins between years in senescing aspen leaves

    Czech Academy of Sciences Publication Activity Database

    Edlund, E.; Novák, Ondřej; Karady, M.; Ljung, K.; Jansson, S.

    2017-01-01

    Roč. 40, č. 5 (2017), s. 622-634 ISSN 0140-7791 R&D Projects: GA ČR GA14-34792S; GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : leaf senescence * arabidopsis-thaliana * autumn senescence * gene-expression * populus-trichocarpa * mass-spectrometry * tobacco plants * translocation * biosynthesis * identification * autumn senescence * gene expression * metabolism * Populus tremula * profiling Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Plant sciences, botany Impact factor: 6.173, year: 2016

  10. Field performance of Populus expressing somaclonal variation in resistance to Septoria musiva

    Science.gov (United States)

    M. E. Ostry; K. T. Ward

    2003-01-01

    Over 1500 trees from two hybrid poplar clones regenerated from tissue culture and expressing somatic variation in leaf disease resistance in a laboratory leaf disk bioassay were field-tested for 5-11 years to examine their resistance to Septoria leaf spot and canker and to assess their growth characteristics compared with the source clones....

  11. Xylanase supplementation on enzymatic saccharification of dilute acid pretreated poplars at different severities

    Science.gov (United States)

    Chao Zhang; Xinshu Zhuang; Zhao Jiang Wang; Fred Matt; Franz St. John; J.Y. Zhu

    2013-01-01

    Three pairs of solid substrates from dilute acid pretreatment of two poplar wood samples were enzymatically hydrolyzed by cellulase preparations supplemented with xylanase. Supplementation of xylanase improved cellulose saccharification perhaps due to improved cellulose accessibility by xylan hydrolysis. Total xylan removal directly affected enzymatic cellulose...

  12. Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa.

    Science.gov (United States)

    He, Hongsheng; Dong, Qing; Shao, Yuanhua; Jiang, Haiyang; Zhu, Suwen; Cheng, Beijiu; Xiang, Yan

    2012-07-01

    WRKY transcription factors participate in diverse physiological and developmental processes in plants. They have highly conserved WRKYGQK amino acid sequences in their N-termini, followed by the novel zinc-finger-like motifs, Cys₂His₂ or Cys₂HisCys. To date, numerous WRKY genes have been identified and characterized in a number of herbaceous species. Survey and characterization of WRKY genes in a ligneous species would facilitate a better understanding of the evolutionary processes and functions of this gene family. In this study, 104 poplar WRKY genes (PtWRKY) were identified in the latest poplar genome sequence. According to their structural features, the predicted members were divided into the previously defined groups I-III, as described in rice. In addition, chromosomal localization of the genes demonstrated that there might be WRKY gene hot spots in 2.3 Mb regions on chromosome 14. Furthermore, approximately 83% (86 out of 104) WRKY genes participated in gene duplication events, including 69% (29 out of 42) gene pairs which exhibited segmental duplication. Using semi-quantitative RT-PCR, the expression patterns of subgroup III genes were investigated under different stresses [cold, drought, salinity and salicylic acid (SA)]. The data revealed that these genes presented different expression levels in response to various stress conditions. Expression analysis exhibited PtWRKY76 gene induced markedly in 0.1 mM SA or 25% PEG-6000 treatment. The results presented here provide a fundamental clue for cloning specific function genes in further studies and applications. This study identified 104 poplar WRKY genes and demonstrated WRKY gene hot spots on chromosome 14. Furthermore, semi-quantitative RT-PCR showed variable stress responses in subgroup III.

  13. Liquefaction of aspen poplar wood

    Energy Technology Data Exchange (ETDEWEB)

    Eager, R L; Mathews, J F; Pepper, J M

    1982-01-01

    Dried and green aspen poplar wood suspended in water containing alkali catalysts was converted completely to an oil, water-soluble chemical, and gases by heating for 1 hour in the presence of CO in a rocking batch reactor. Within the ranges of parameters studied: temperature of 593-633 K; nominal reaction times of less than or equal to 1 hour; water-to-wood ratio of 0.5:1-5:1; Na/sub 2/CO/sub 3/, K/sub 2/CO/sub 3/, and NaOH catalysts; amount of catalyst 7.0-12.5%; and initial H-CO ratios of 2:1-0:1, the water-to-wood ratio was most important. Oil yields of approximately 50% with a C plus H content of approximately 80% and representing a C recovery of approximately 66% were obtained. The higher heats of combustion were 32.2-36.0 MJ/kg.

  14. Partitioning of Multivariate Phenotypes using Regression Trees Reveals Complex Patterns of Adaptation to Climate across the Range of Black Cottonwood (Populus trichocarpa

    Directory of Open Access Journals (Sweden)

    Regis Wendpouire Oubida

    2015-03-01

    Full Text Available Local adaptation to climate in temperate forest trees involves the integration of multiple physiological, morphological, and phenological traits. Latitudinal clines are frequently observed for these traits, but environmental constraints also track longitude and altitude. We combined extensive phenotyping of 12 candidate adaptive traits, multivariate regression trees, quantitative genetics, and a genome-wide panel of SNP markers to better understand the interplay among geography, climate, and adaptation to abiotic factors in Populus trichocarpa. Heritabilities were low to moderate (0.13 to 0.32 and population differentiation for many traits exceeded the 99th percentile of the genome-wide distribution of FST, suggesting local adaptation. When climate variables were taken as predictors and the 12 traits as response variables in a multivariate regression tree analysis, evapotranspiration (Eref explained the most variation, with subsequent splits related to mean temperature of the warmest month, frost-free period (FFP, and mean annual precipitation (MAP. These grouping matched relatively well the splits using geographic variables as predictors: the northernmost groups (short FFP and low Eref had the lowest growth, and lowest cold injury index; the southern British Columbia group (low Eref and intermediate temperatures had average growth and cold injury index; the group from the coast of California and Oregon (high Eref and FFP had the highest growth performance and the highest cold injury index; and the southernmost, high-altitude group (with high Eref and low FFP performed poorly, had high cold injury index, and lower water use efficiency. Taken together, these results suggest variation in both temperature and water availability across the range shape multivariate adaptive traits in poplar.

  15. Anthropogenic radionuclides and heavy metals in black poplar tree (Populus nigra l.) bark sampled in one of the residential districts of Kyiv

    International Nuclear Information System (INIS)

    Berlizov, A.N.; Malyuk, I.A.; Sazhenyuk, A.D.; Tryshyn, V.V.

    2006-01-01

    Tree bark is known to be a good alternative biological substrate that can be successfully used in the air pollution monitoring studies, especially in urban and industrialized areas suffering from the severe anthropogenic pressure. In Kyiv black poplar is a widespread tree species, whose bark was used as a biological indicator in our research. The bark samples were collected within one of the residential districts of Kyiv and were subject to comprehensive analysis for the content of stable elements and anthropogenic radionuclides. Thermal and epicadmium NAA in short- and long-term irradiation modes, respectively, were used for the determination of concentrations of up to 40 heavy metals, while gamma spectrometry, alpha spectrometry and radiochemical extraction-ion-exchange techniques were applied to determine 137 Cs, 90 Sr, Pu and Am radioactive isotopes in single bark samples. The analytical data obtained were subject to correlation and factor analysis, which revealed basic air pollution sources in the investigated region. It was shown that no significant correlations exist between radionuclides and any determined stable elements in the analyzed samples. All measured radioactive isotopes turned out to fall into a separate factor, which is believed to present the direct deposition of fuel microparticles from the Chernobyl NPP's Unit 4 from the atmosphere into the substratum during radioactive fallouts in spring 1986. This conclusion was supported by the evaluated isotopic ratios 137 Cs/ 90 Sr = 1.1 ± 0.4, 137 Cs/ 239+240 Pu = 100 ± 40, 239+240 Pu/ 238 Pu = 1.0 ± 0.6, as well as by the observed significant variation of the radionuclide concentrations (e.g. 10 Bq/kg - 1540 Bq/kg for 137 Cs, 0.1 Bq/kg - 21 Bq/kg for 238,240 Pu), which is believed to reflect a microparticle character of the pollution. The obtained data suggest that re-suspension does not play a significant role in the formation of atmospheric air pollution by radioactive substances in the

  16. The use of some local plants for removal of radioactive and trace elements from aqueous media

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Amin, Y.; Al-Akel, B; Al-Naama, T.

    2008-02-01

    The removal of metal ions from aqueous solutions by biosorption plays an important role in water pollution control. In this study, dried leaves of Barbary, Jew's mallow and poplar, branches of poplar trees and creeping club as biomass for removal of toxic elements (Cd, Pb and U) and some radionuclides ( 133 Ba, 137 Cs and 226 Ra) from aqueous solution have been evaluated. The results show that all studied plants can be effectively used for removing U and Ba from aqueous solutions, while Pb was removed using branches of poplar trees. In addition, Cd was removed using Barbary, Jew's mallow and branches of poplar trees. The adsorption of U and Cd by leaves of Barbary reached 3.3 mg g -1 and 3.5 mg g -1 , respectively. Moreover, the leaves of poplar trees were the best plant for biosorping Pb, its maximum capacity reached a value 1.7 mg g -1 . On the other hand, the maximum capacity for studied radionuclide was less than 10-6 mg g -1 . Further more, the effect of many factors such as, plant pretreatment, solution temperature, pH, plant particles size and contact time, on biosorption process were performed and the best conditions of biosorption were recognized. The studied plants were used for removing 226 Ra and some trace elements from real polluted water. The results show that the method is effective.(author)

  17. Clonal variation in lateral and basal rooting of Populus irrigated with landfill leachate

    Science.gov (United States)

    R.S. Zalesny Jr.; J.A. Zalesny

    2011-01-01

    Successful establishment and productivity of Populus depends upon adventitious rooting from: 1) lateral roots that develop from either preformed or induced primordia and 2) basal roots that differentiate from callus at the base of the cutting in response to wounding. Information is needed for phytotechnologies about the degree to which ...

  18. Biomass carbon, nitrogen and phosphorus stocks in hybrid poplar buffers, herbaceous buffers and natural woodlots in the riparian zone on agricultural land.

    Science.gov (United States)

    Fortier, Julien; Truax, Benoit; Gagnon, Daniel; Lambert, France

    2015-05-01

    In many temperate agricultural areas, riparian forests have been converted to cultivated land, and only narrow strips of herbaceous vegetation now buffer many farm streams. The afforestation of these riparian zones has the potential to increase carbon (C) storage in agricultural landscapes by creating a new biomass sink for atmospheric CO2. Occurring at the same time, the storage of nitrogen (N) and phosphorus (P) in plant biomass, is an important water quality function that may greatly vary with types of riparian vegetation. The objectives of this study were (1) to compare C, N and P storage in aboveground, belowground and detrital biomass for three types of riparian vegetation cover (9-year-old hybrid poplar buffers, herbaceous buffers and natural woodlots) across four agricultural sites and (2) to determine potential vegetation cover effects on soil nutrient supply rate in the riparian zone. Site level comparisons suggest that 9-year-old poplar buffers have stored 9-31 times more biomass C, 4-10 times more biomass N, and 3-7 times more biomass P than adjacent non managed herbaceous buffers, with the largest differences observed on the more fertile sites. The conversion of these herbaceous buffers to poplar buffers could respectively increase C, N and P storage in biomass by 3.2-11.9 t/ha/yr, 32-124 kg/ha/yr and 3.2-15.6 kg/ha/yr, over 9 years. Soil NO3 and P supply rates during the summer were respectively 57% and 66% lower in poplar buffers than in adjacent herbaceous buffers, potentially reflecting differences in nutrient storage and cycling between the two buffer types. Biomass C ranged 49-160 t/ha in woodlots, 33-110 t/ha in poplar buffers and 3-4 t/ha in herbaceous buffers. Similar biomass C stocks were found in the most productive poplar buffer and three of the four woodlots studied. Given their large and varied biomass C stocks, conservation of older riparian woodlots is equally important for C balance management in farmland. In addition, the

  19. Tree age-dependent changes in photosynthetic and respiratory CO2 exchange in leaves of micropropagated diploid, triploid and hybrid aspen.

    Science.gov (United States)

    Pärnik, Tiit; Ivanova, Hiie; Keerberg, Olav; Vardja, Rael; Niinemets, Ulo

    2014-06-01

    The growth rate of triploid European aspen (Populus tremula L.) and hybrid aspen (P. tremula × Populus tremuloides Michx.) significantly exceeds that of diploid aspen, but the underlying physiological controls of the superior growth rates of these genotypes are not known. We tested the hypothesis that the superior growth rate of triploid and hybrid aspen reflects their greater net photosynthesis rate. Micropropagated clonal plants varying in age from 2.5 to 19 months were used to investigate the ploidy and plant age interaction. The quantum yield of net CO2 fixation (Φ) in leaves of young 2.5-month-old hybrid aspen was lower than that of diploid and triploid trees. However, Φ in 19-month-old hybrid aspen was equal to that in triploid aspen and higher than that in diploid aspen. Φ and the rate of light-saturated net photosynthesis (ANS) increased with plant age, largely due to higher leaf dry mass per unit area in older plants. ANS in leaves of 19-month-old trees was highest in hybrid, medium in triploid and lowest in diploid aspen. Light-saturated photosynthesis had a broad temperature optimum between 20 and 35 °C. Rate of respiration in the dark (RDS) did not vary among the genotypes in 2.5-month-old plants, and the shape of the temperature response was also similar. RDS increased with plant age, but RDS was still not significantly different among the leaves of 19-month-old diploid and triploid aspen, but it was significantly lower in leaves of 19-month-old hybrid plants. The initial differences in the growth of plants with different ploidy were minor up to the age of 19 months, but during the next 2 years, the growth rate of hybrid aspen exceeded that of triploid plants by 2.7 times and of diploid plants by five times, in line with differences in ANS of 19-month-old plants of these species. It is suggested that differences in photosynthesis and growth became more pronounced with tree aging, indicating that ontogeny plays a key role in the expression of

  20. Leaf chemical composition of twenty-one Populus hybrid clones grown under intensive culture

    Science.gov (United States)

    Richard E. Dickson; Philip R. Larson

    1976-01-01

    Leaf material from 21 nursery-grown Populus hybrid clones was analyzed for three nitrogen fractions (total N, soluble protein, and soluble amino acids) and three carbhydrate fractions (reducing sugars, total soluble sugars, and total nonstructural carbohydrates-TNC). In addition, nursery-grown green ash and silver maple, field-grown bigtooth and trembling aspen, and...