WorldWideScience

Sample records for polyvinylidene fluoride films

  1. Polyvinylidene fluoride film as a capacitor dielectric

    Science.gov (United States)

    Dematos, H. V.

    1981-01-01

    Thin strips of polyvinylidene fluoride film (PVDF) with vacuum deposited electrodes were made into capacitors by conventional winding and fabrication techniques. These devices were used to identify and evaluate the performance characteristics offered by the PVDF in metallized film capacitors. Variations in capacitor parameters with temperature and frequence were evaluated and compared with other dielectric films. Their impact on capacitor applications is discussed.

  2. Effects of Gamma Irradiation on Polyvinylidene Fluoride Thin Films

    Science.gov (United States)

    Madivalappa, Shivaraj; Jali, V. M.

    2018-02-01

    Polyvinylidene fluoride thin films were synthesized by Sol-Gel method with spin rate of 3000 rpm for 30 sec on ITO glass substrates and were annealed at 170 C. The films were irradiated by Gamma radiation with different doses (10, 30, 40 and 50 kGy). XRD and FTIR spectra have been obtained to identify the presence of α / β phases. Mean crystallite size was calculated by Scherer’s equation. Different vibrational bands were identified and percentage of β phase was determined by FTIR analysis. Optical properties like band gap, refractive index, optical activation energy have been determined. Surface morphology and compositions of pristine and gamma irradiated PVDF thin films were confirmed respectively, by SEM and Energy dispersive X-ray analysis. The comparison of the structural and optical optical properties of pristine PVDF polymer film has been made with those of the Gamma irradiated films.

  3. Gamma irradiation effects on poly(vinylidene fluoride) films

    International Nuclear Information System (INIS)

    Ribeiro, Geise; Zen, Heloisa A.; Geraldes, Adriana N.; Souza, Camila P.; Parra, Duclerc F.; Lima, Luis Filipe C.P.; Lugao, Ademar B.

    2009-01-01

    In this work, the properties of Poly(vinylidene fluoride) PVDF films after exposing to gamma radiation at different doses (5, 10 and 15 kGy) were investigated. PVDF is a semicrystalline polymer that shows good properties in terms of chemical, thermal and electrical stabilities. The gamma radiation is a convenient and effective way of modification perfluorinated and partially fluorinated polymers such as PVDF. The properties of the pristine and irradiated PVDF films were studied by infrared spectroscopy, thermal analysis (TGA and DSC) and mechanical measurements at room temperature and at melting temperature of the PVDF. The infrared spectra of the irradiated PVDF samples do not present significant alterations in the absorption bands at all irradiated doses. The results obtained by thermal analysis indicate that the radiation does not alter significantly the decomposition temperature of the pristine PVDF film. Tensile strength measurements at room temperature before and after exposition to gamma radiation showed decrease of elongation at rupture in relation of pristine PVDF, suggesting that the radiation caused the crosslinking or chain scission of the PVDF film. (author)

  4. Glucose Sensing Using Capacitive Biosensor Based on Polyvinylidene Fluoride Thin Film

    Directory of Open Access Journals (Sweden)

    Ambran Hartono

    2018-01-01

    Full Text Available A polyvinylidene fluoride (PVDF film-based capacitive biosensor was developed for glucose sensing. This device consists of a PVDF film sandwiched between two electrodes. A capacitive biosensor measures the dielectric properties of the dielectric layers at the interface between the electrolyte and the electrode. A glucose oxidase (GOx enzyme was immobilized onto the electrode to oxidize glucose. In practice, the biochemical reaction of glucose with the GOx enzyme generates free electron carriers. Consequently, the potential difference between the electrodes is increased, resulting in a measurable voltage output of the biosensor. The device was tested for various glucose concentrations in the range of 0.013 to 5.85 M, and various GOx enzyme concentrations between 4882.8 and 2.5 million units/L. We found that the sensor output increased with increasing glucose concentration up to 5.85 M. These results indicate that the PVDF film-based capacitive biosensors can be properly applied to glucose sensing and provide opportunities for the low-cost fabrication of glucose-based biosensors based on PVDF materials.

  5. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film

    Science.gov (United States)

    Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin

    2018-03-01

    A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.

  6. Fibronectin adsorption and cell response on electroactive poly(vinylidene fluoride) films

    International Nuclear Information System (INIS)

    Ribeiro, C; Panadero, J A; Sencadas, V; Lanceros-Méndez, S; Tamaño, M N; Moratal, D; Salmerón-Sánchez, M; Gómez Ribelles, J L

    2012-01-01

    Due to the large potential of electroactive materials in novel tissue engineering strategies, the aim of this work is to determine if the crystalline phase and/or the surface electrical charge of electroactive poly(vinylidene fluoride), PVDF, have influence on the biological response in monolayer cell culture. Non-polar α-PVDF and electroactive β-PVDF were prepared. The β-PVDF films were poled by corona discharge to show negative or positive electrical surface charge density. It has been concluded that hydrophilicity of the PVDF substrates depends significantly on crystalline phase and polarity. Furthermore, by means of atomic force microscopy and an enzyme-linked immunosorbent assay test, it has been shown that positive or negative poling strongly influences the behavior of β-PVDF supports with respect to fibronectin (FN) adsorption, varying the exhibition of adhesion ligands of adsorbed FN. Culture of MC3T3-E1 pre-osteoeblasts proved that cell proliferation depends on surface polarity as well. These results open the viability of cell culture stimulation by mechanical deformation of a piezoelectric substrate that results in varying electrical charge densities on the substrate surface. (paper)

  7. Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films.

    Science.gov (United States)

    Tang, Bolin; Zhang, Bo; Zhuang, Junjun; Wang, Qi; Dong, Lingqing; Cheng, Kui; Weng, Wenjian

    2018-05-02

    Surface potential of biomaterials can dramatically influence cellular osteogenic differentiation. In this work, a wide range of surface potential on ferroelectric polyvinylidene fluoride trifluoroethylene (P(VDF-TrFE)) films was designed to get insight into the interfacial interaction of cell-charged surface. The P(VDF-TrFE) films poled by contact electric poling at various electric fields obtained well stabilized surface potential, with wide range from -3 to 915 mV. The osteogenic differentiation level of cells cultured on the films was strongly dependent on surface potential and reached the optimum at 391 mV in this system. Binding specificity assay indicated that surface potential could effectively govern the binding state of the adsorbed fibronectin (FN) with integrin. Molecular dynamic (MD) simulation further revealed that surface potential brought a significant difference in the relative distance between RGD and synergy PHSRN sites of adsorbed FN, resulting in a distinct integrin-FN binding state. These results suggest that the full binding of integrin α5β1 with both RGD and PHSRN sites of FN possesses a strong ability to activate osteogenic signaling pathway. This work sheds light on the underlying mechanism of osteogenic differentiation behavior on charged material surfaces, and also provides a guidance for designing a reasonable charged surface to enhance osteogenic differentiation. The ferroelectric P(VDF-TrFE) films with steady and a wide range of surface potential were designed to understand underlying mechanism of cell-charged surface interaction. The results showed that the charged surface well favored upregulation of osteogenic differentiation of MC3T3-E1 cells, and more importantly, a highest level occurred on the film with a moderate surface potential. Experiments and molecular dynamics simulation demonstrated that the surface potential could govern fibronectin conformation and then the integrin-fibronectin binding. We propose that a full binding

  8. Crystallographic features of poly(vinylidene fluoride) film upon an attractive substrate of KBr.

    Science.gov (United States)

    Huang, Rui; Wang, Gang; Guo, Shuo; Wang, Ke; Fu, Qiang

    2017-10-18

    Among all the polymorphs of poly(vinylidene fluoride) (PVDF), the polar γ-form possesses the highest melting point and electrical breakdown strength as well as the strongest solvent and irradiation resistance, which are beneficial for the durability of PVDF products. Since the γ-form is neither kinetically favorable nor the most thermodynamically stable, it is still difficult to attain the exclusive γ-polymorph, particularly in the case of neat PVDF. In this study, the melt isothermal crystallization of PVDF films was carried out between two KBr wafers. Owing to the characteristics of KBr wafer, including no IR absorbance and high optical transmittance, the crystallographic features originating from the KBr substrate can be conveniently elucidated through the in situ inspected techniques of FTIR and PLM. The KBr wafers significantly accelerated the crystallization kinetics of α-crystals, and then readily triggered the solid-state α- to γ-transformation of the pre-formed α-spherulites, resulting in a 10 μm-thick, neat PVDF film with an absolute crystallinity of 35% and a relative γ fraction as high as 94%. When the film thickness was increased to 40 μm, the crystallization rate of the α-form was still rapid, but the solid-state transformation was not appreciable. These interesting crystallographic phenomena are attributed to the existence of ion-dipole interaction between the -CF 2 or -CH 2 of PVDF chains and the surface of KBr wafer. Unlike most traditional substrate-dominated crystallizations that prevail in a surface epitaxy manner, in which the target films are of ultra-thin thickness (of the order of 10 nm), the ion-dipole interaction promotes the effective thickness to a ten micron level, which enables its production and application at scalable level. Moreover, the triggering of α- to γ-transformation via external fields could be an alternative for achieving the γ-dominant PVDF products, particularly when the introduction of external additives is

  9. Phase Change Activation and Characterization of Spray-Deposited Poly(vinylidene) Fluoride Piezoelectric Thin Films

    Science.gov (United States)

    Riosbaas, Miranda Tiffany

    Structural safety and integrity continues to be an issue of utmost concern in our world today. Existing infrastructures in civil, commercial, and military applications are beginning to see issues associated with age and environmental conditions. In addition, new materials are being put to service that are not yet fully characterized and understood when it comes to long term behavior. In order to assess the structural health of both old and new materials, it is necessary to implement a technique for monitoring wear and tear. Current methods that are being used today typically depend on visual inspection techniques or handheld instruments. These methods are not always ideal for large structures as they become very tedious leading to a substantial amount of both time and money spent. More recently, composite materials have been introduced into applications that can benefit from high strength-to-weight ratio materials. However, the use of more complex materials (such as composites) leads to a high demand of structural health monitoring techniques, since the damage is often internal and not visible to the naked eye. The work performed in this thesis examines the methods that can be used for phase change activation and characterization of sprayable poly(vinylidene) fluoride (PVDF) thin films in order to exploit their piezoelectric characteristics for sensing applications. PVDF is widely accepted to exist in four phases: alpha, beta, gamma, and delta. Alpha phase PVDF is produced directly from the melt and exhibits no piezoelectric properties. The activation or transition from α phase to some combination of beta and/or gamma phase PVDF leads to a polarizable piezoelectric thin film to be used in sensing applications. The work herein presents the methods used to activate phase change in PVDF, such as mechanical stretching, annealing, and chemical composition, to be able to implement PVDF as an impact detection sensor. The results and analysis provided in this thesis will

  10. Comparison of neat and photo-crosslinked polyvinylidene fluoride-co-hexafluoropropylene thin film dielectrics formed by spin-coating

    International Nuclear Information System (INIS)

    Iyore, O.D.; Roodenko, K.; Winkler, P.S.; Noriega, J.R.; Vasselli, J.J.; Chabal, Y.J.; Gnade, B.E.

    2013-01-01

    We report the characterization of photo-crosslinked polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) thin film, metal–insulator–metal capacitors fabricated using standard semiconductor processing techniques. We characterize the capacitors using in-situ vibrational spectroscopy during thermally-assisted poling and correlate the Fourier transform infrared spectroscopy (FTIR) results with X-ray diffraction (XRD) results. FTIR analysis of the neat PVDF-HFP showed α → β transformations during poling at room temperature and at 55 °C. α → β transformations were observed for the crosslinked polymer only during poling at 55 °C. XRD data revealed that photo-crosslinking caused the polymer to partially crystallize into the β-phase. The similar behavior of the neat and crosslinked samples at 55 °C suggests that a higher activation energy was needed for α → β transformations in crosslinked PVDF-HFP during poling. Electrical measurements showed that photo-crosslinking had no significant effect on the dielectric constant and dielectric loss of PVDF-HFP. However, the dielectric strength and maximum energy density of the crosslinked polymer were severely reduced. - Highlights: • Polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) dielectrics were studied. • Phase transformations were observed only at 55 °C for the crosslinked PVDF-HFP. • Crosslinking had no strong effect on the dielectric constant of PVDF-HFP. • Breakdown strengths were 620 MVm −1 and 362 MVm −1 for neat and crosslinked films

  11. Comparison of neat and photo-crosslinked polyvinylidene fluoride-co-hexafluoropropylene thin film dielectrics formed by spin-coating

    Energy Technology Data Exchange (ETDEWEB)

    Iyore, O.D.; Roodenko, K.; Winkler, P.S. [Materials Science and Engineering Department, The University of Texas at Dallas, Richardson, TX 75080 (United States); Noriega, J.R.; Vasselli, J.J. [Electrical Engineering Department, The University of Texas at Tyler, Tyler, TX 75799 (United States); Chabal, Y.J. [Materials Science and Engineering Department, The University of Texas at Dallas, Richardson, TX 75080 (United States); Gnade, B.E., E-mail: gnade@utdallas.edu [Materials Science and Engineering Department, The University of Texas at Dallas, Richardson, TX 75080 (United States)

    2013-12-02

    We report the characterization of photo-crosslinked polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) thin film, metal–insulator–metal capacitors fabricated using standard semiconductor processing techniques. We characterize the capacitors using in-situ vibrational spectroscopy during thermally-assisted poling and correlate the Fourier transform infrared spectroscopy (FTIR) results with X-ray diffraction (XRD) results. FTIR analysis of the neat PVDF-HFP showed α → β transformations during poling at room temperature and at 55 °C. α → β transformations were observed for the crosslinked polymer only during poling at 55 °C. XRD data revealed that photo-crosslinking caused the polymer to partially crystallize into the β-phase. The similar behavior of the neat and crosslinked samples at 55 °C suggests that a higher activation energy was needed for α → β transformations in crosslinked PVDF-HFP during poling. Electrical measurements showed that photo-crosslinking had no significant effect on the dielectric constant and dielectric loss of PVDF-HFP. However, the dielectric strength and maximum energy density of the crosslinked polymer were severely reduced. - Highlights: • Polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) dielectrics were studied. • Phase transformations were observed only at 55 °C for the crosslinked PVDF-HFP. • Crosslinking had no strong effect on the dielectric constant of PVDF-HFP. • Breakdown strengths were 620 MVm{sup −1} and 362 MVm{sup −1} for neat and crosslinked films.

  12. Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics

    KAUST Repository

    Mao, Duo

    2010-05-01

    The impact of thermal treatment and thickness on the polarization and leakage current of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer thin film capacitors has been studied. The evolution of the film morphology, crystallinity and bonding orientation as a function of annealing temperature and thickness were characterized using multiple techniques. Electrical performance of the devices was correlated with the material properties. It was found that annealing at or slightly above the Curie temperature (Tc) is the optimal temperature for high polarization, smooth surface morphology and low leakage current. Higher annealing temperature (but below the melting temperature Tm) favors larger size β crystallites through molecular chain self-organization, resulting in increased film roughness, and the vertical polarization tends to saturate. Metal-Ferroelectric-Metal (MFM) capacitors consistently achieved Ps, Pr and Vc of 8.5 μC/cm2, 7.4 μC/cm2 and 10.2 V, respectively.

  13. Optimization of poly(vinylidene fluoride-trifluoroethylene) films as non-volatile memory for flexible electronics

    KAUST Repository

    Mao, Duo; Quevedo-Ló pez, Manuel Angel Quevedo; Stiegler, Harvey J.; Gnade, Bruce E.; Alshareef, Husam N.

    2010-01-01

    The impact of thermal treatment and thickness on the polarization and leakage current of poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer thin film capacitors has been studied. The evolution of the film morphology, crystallinity and bonding orientation as a function of annealing temperature and thickness were characterized using multiple techniques. Electrical performance of the devices was correlated with the material properties. It was found that annealing at or slightly above the Curie temperature (Tc) is the optimal temperature for high polarization, smooth surface morphology and low leakage current. Higher annealing temperature (but below the melting temperature Tm) favors larger size β crystallites through molecular chain self-organization, resulting in increased film roughness, and the vertical polarization tends to saturate. Metal-Ferroelectric-Metal (MFM) capacitors consistently achieved Ps, Pr and Vc of 8.5 μC/cm2, 7.4 μC/cm2 and 10.2 V, respectively.

  14. Modeling of Structure Effect for Ferroelectric Capacitor Based on Poly(vinylidene fluoride-trifluoroethylene Ultrathin Films

    Directory of Open Access Journals (Sweden)

    Long Li

    2017-12-01

    Full Text Available The characteristics of ferroelectric capacitors with poly(vinylidene fluoride-trifluoroethlene (P(VDF-TrFE films have been studied at different structures of cell electrodes. It is suggested that the effect of electrode structures could induce changes of performance. Remarkably, cells with line electrodes display a better polarization and fatigue resistance than those with flat electrodes. For P(VDF-TrFE ultrathin films with different electrode structures, the models of charge compensation mechanism for depolarization field and domain fatigue decomposition are used to explain the effect of electrode structure. Furthermore, the driving voltage based on normal speed-functionality is designed, and the testing results show that the line electrode structure could induce a robust switching, which is determined by the free charges concentration in active layer. These findings provide an effective route to design the optimum structure for a ferroelectric capacitor based on P(VDF-TrFE copolymer ultrathin film.

  15. Synthesis and crystalline properties of CdS incorporated polyvinylidene fluoride (PVDF) composite film

    Science.gov (United States)

    Patel, Arunendra Kumar; Sunder, Aishwarya; Mishra, Shweta; Bajpai, Rakesh

    2018-05-01

    This paper gives an insight on the synthesis and crystalline properties of Polyvinylidene Fluoride (PVDF) (host matrix) composites impregnated with Cadmium Sulphide (CdS) using Dimethyl formamide (DMF) as the base, prepared by the well known solvent casting technique. The effect of doping concentration of CdS in to the PVDF matrix was studied using X-ray diffraction technique. The structural properties like crystallinity Cr, interplanar distance d, average size of the crystalline region (D), and average inter crystalline separation (R) have been estimated for the developed composite. The crystallinity index, crystallite size and inter crystalline separation is increasing with increase in the concentration of CdS in to the PVDF matrix while the interplanar distance d is decreasing.

  16. Impressive nonlinear optical response exhibited by Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite films

    Science.gov (United States)

    Sabira, K.; Saheeda, P.; Divyasree, M. C.; Jayalekshmi, S.

    2017-12-01

    In the present work, the nonlinear optical properties of free-standing films of Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite are investigated to assess their suitability as efficient optical limiters. The PVDF/RGO nanocomposite films are generated by mixing different concentrations of RGO as the filler, with PVDF, using solution casting method. The XRD and FTIR data of these nanocomposite films confirm the enhancement in the β phase of PVDF when RGO is added to PVDF, which is one of the prime factors, enhancing the nonlinear response of the nanocomposite. The open aperture and closed aperture Z-scan technique under nanosecond excitation (532 nm, 7 ns) is used to investigate the nonlinear optical characteristics of the PVDF/RGO nanocomposite films. These films are found to exhibit two photon absorption assisted optical non linearity in the nanosecond regime. The highlight of the present work is the observation of quite low values of the normalized transmittance and low optical limiting threshold power in free standing films of PVDF/RGO nanocomposite. These flexible, free-standing and stable nanocomposite films offer high application prospects in the design of efficient optical limiting devices of any desired size or shape.

  17. β-Phase poly(vinylidene fluoride) films encouraged more homogeneous cell distribution and more significant deposition of fibronectin towards the cell–material interface compared to α-phase poly(vinylidene fluoride) films

    Energy Technology Data Exchange (ETDEWEB)

    Low, Y.K.A.; Zou, X. [School of Materials Science and Engineering, Nanyang Technological University, N4.1 50 Nanyang Avenue, Singapore 639798 (Singapore); Fang, Y.M. [School of Computer Engineering, Nanyang Technological University, N4 50 Nanyang Avenue, Singapore 639798 (Singapore); Wang, J.L. [School of Materials Science and Engineering, Nanyang Technological University, N4.1 50 Nanyang Avenue, Singapore 639798 (Singapore); Lin, W.S. [School of Computer Engineering, Nanyang Technological University, N4 50 Nanyang Avenue, Singapore 639798 (Singapore); Boey, F.Y.C. [School of Materials Science and Engineering, Nanyang Technological University, N4.1 50 Nanyang Avenue, Singapore 639798 (Singapore); Ng, K.W., E-mail: kwng@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, N4.1 50 Nanyang Avenue, Singapore 639798 (Singapore)

    2014-01-01

    The piezoelectric response from β-phase poly(vinylidene fluoride) (PVDF) can potentially be exploited for biomedical application. We hypothesized that α and β-phase PVDF exert direct but different influence on cellular behavior. α- and β-phase PVDF films were synthesized through solution casting and characterized with FT-IR, XRD, AFM and PFM to ensure successful fabrication of α and β-phase PVDF films. Cellular evaluation with L929 mouse fibroblasts over one-week was conducted with AlamarBlue® metabolic assay and PicoGreen® proliferation assay. Immunostaining of fibronectin investigated the extent and distribution of extracellular matrix deposition. Image saliency analysis quantified differences in cellular distribution on the PVDF films. Our results showed that β-phase PVDF films with the largest area expressing piezoelectric effect elicited highest cell metabolic activity at day 3 of culture. Increased fibronectin adsorption towards the cell–material interface was shown on β-phase PVDF films. Image saliency analysis showed that fibroblasts on β-phase PVDF films were more homogeneously distributed than on α-phase PVDF films. Taken collectively, the different molecular packing of α and β-phase PVDF resulted in differing physical properties of films, which in turn induced differences in cellular behaviors. Further analysis of how α and β-phase PVDF may evoke specific cellular behavior to suit particular application will be intriguing. - Highlights: • β-Phase PVDF exhibited strongest piezoelectric effects compared to α-phase PVDF. • β-Phase PVDF induced more homogeneous cell distribution than α-phase PVDF. • β-Phase PVDF encouraged more fibronectin deposition at the cell–material interface.

  18. Switching characteristics for ferroelectric random access memory based on RC model in poly(vinylidene fluoride-trifluoroethylene) ultrathin films

    Energy Technology Data Exchange (ETDEWEB)

    Liu, ChangLi [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China); Complex and Intelligent System Research Center, East China University of Science and Technology, Shanghai 200237 (China); Wang, XueJun [Complex and Intelligent System Research Center, East China University of Science and Technology, Shanghai 200237 (China); Zhang, XiuLi [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China); School of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620 (China); Du, XiaoLi [School of Fundamental Studies, Shanghai University of Engineering Science, Shanghai 201620 (China); Xu, HaiSheng, E-mail: hsxu@ecust.edu.cn [Department of Physics, East China University of Science and Technology, Shanghai 200237 (China); Kunshan Hisense Electronics Co., Ltd., Kunshan, Jiangsu 215300 (China)

    2016-05-15

    The switching characteristic of the poly(vinylidene fluoride-trifluoroethlene) (P(VDF-TrFE)) films have been studied at different ranges of applied electric field. It is suggest that the increase of the switching speed upon nucleation protocol and the deceleration of switching could be related to the presence of a non-ferroelectric layer. Remarkably, a capacitor and resistor (RC) links model plays significant roles in the polarization switching dynamics of the thin films. For P(VDF-TrFE) ultrathin films with electroactive interlayer, it is found that the switching dynamic characteristics are strongly affected by the contributions of resistor and non-ferroelectric (non-FE) interface factors. A corresponding experiment is designed using poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic) (PEDOT-PSSH) as interlayer with different proton concentrations, and the testing results show that the robust switching is determined by the proton concentration in interlayer and lower leakage current in circuit to reliable applications of such polymer films. These findings provide a new feasible method to enhance the polarization switching for the ferroelectric random access memory.

  19. Kinetic investigations of graft copolymerization of sodium styrene sulfonate onto electron beam irradiated poly(vinylidene fluoride) films

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoud Nasef, Mohamed, E-mail: mahmoudeithar@fkkksa.utm.m [Institute of Hydrogen Economy, International City Campus, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Chemical Engineering Department, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Saidi, Hamdani [Institute of Hydrogen Economy, International City Campus, Universiti Teknologi Malaysia, Jalan Semarak, 54100 Kuala Lumpur (Malaysia); Chemical Engineering Department, Faculty of Chemical and Natural Resources Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Mohd Dahlan, Khairul Zaman [Radiation Processing Technology Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2011-01-15

    Graft copolymerization of sodium styrene sulfonate (SSS) onto electron beam (EB) irradiated poly(vinylidene fluoride) (PVDF) films was investigated to find out a simple preparation process for sulfonic acid proton exchange membranes with respect to monomer concentration, absorbed dose, temperature, film thickness and storage time. The reaction order of the monomer concentration and absorbed dose of grafting was found to be 2.84 and 1.20, respectively. The overall activation energy for graft copolymerization reaction was calculated to be 11.36 kJ/mol. The initial rate of grafting was found to decrease with an increase in the film thickness. The trapped radicals in the irradiated PVDF films remained effective in initiating the reaction without considerable loss in grafting level up to 180 days, when stored under -60 {sup o}C. The presence and distribution of polystyrene sulfonate grafts in the obtained membranes were observed by Fourier transform infrared (FTIR) spectroscopic analysis, scanning optical microscope and scanning transmission electron microscopy (STEM) coupled with X-ray energy dispersive (EDX), respectively.

  20. Switching characteristics for ferroelectric random access memory based on RC model in poly(vinylidene fluoride-trifluoroethylene) ultrathin films

    International Nuclear Information System (INIS)

    Liu, ChangLi; Wang, XueJun; Zhang, XiuLi; Du, XiaoLi; Xu, HaiSheng

    2016-01-01

    The switching characteristic of the poly(vinylidene fluoride-trifluoroethlene) (P(VDF-TrFE)) films have been studied at different ranges of applied electric field. It is suggest that the increase of the switching speed upon nucleation protocol and the deceleration of switching could be related to the presence of a non-ferroelectric layer. Remarkably, a capacitor and resistor (RC) links model plays significant roles in the polarization switching dynamics of the thin films. For P(VDF-TrFE) ultrathin films with electroactive interlayer, it is found that the switching dynamic characteristics are strongly affected by the contributions of resistor and non-ferroelectric (non-FE) interface factors. A corresponding experiment is designed using poly(3,4-ethylene dioxythiophene):poly(styrene sulfonic) (PEDOT-PSSH) as interlayer with different proton concentrations, and the testing results show that the robust switching is determined by the proton concentration in interlayer and lower leakage current in circuit to reliable applications of such polymer films. These findings provide a new feasible method to enhance the polarization switching for the ferroelectric random access memory.

  1. Temperature dependence of coercive field and fatigue in poly(vinylidene fluoride-trifluoroethylene) copolymer ultra-thin films

    International Nuclear Information System (INIS)

    Zhang Xiuli; Xu Haisheng; Zhang Yanni

    2011-01-01

    The experimental intrinsic coercive field of ferroelectric poly(vinylidene fluoride-trifluoethylene) copolymer films, with both bottom and top gold electrodes is measured at a wide temperature range. In the lower temperature region from -20 to 25 deg. C, the temperature dependence of coercive field shows good agreement with the prediction by the Landau-Ginzburg (LG) mean-field theory. In the higher temperature region from 25 to 80 deg. C, the coercive field shows a slow decrease with the increased temperature, where the LG theory is not applicable any more. The temperature-dependent changes in the polymer chains have been analysed. A reversible 'inherent fatigue' is observed from the partially recovered remanent polarization after re-annealing a fatigued P(VDF-TrFE) film. FTIR spectra indicate that the interchain spacing does not change from 10 to 10 7 switching cycles while the degree of all-trans ferroelectric phase decreases gradually with applied switching cycles. After a re-annealing treatment, ferroelectric phase recovers and dipoles at the boundary of crystallites acquire much higher energy.

  2. Grafting of styrene onto poly(vinylidene fluoride) films by gamma irradiation; Enxertia de estireno em filmes de poli(fluoreto de vinilideno) induzida por irradiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, H.P.; Souza, C.P. de; Parra, D.F.; Lugao, A.B., E-mail: hp.ferreira@yahoo.com.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Centro de Quimica e Meio Ambiente

    2010-07-01

    Radiation induced grafting of styrene onto poly(vinylidene fluoride) (PVDF) was studied owing to the crescent interest in use of grafted films to produce membranes with ion exchange capability. A Cobalt-60 source was used, with doses of 5 and 10 kGy, at dose rate of 5 kGy.h{sup -1}, at room temperature, inert atmosphere and according to the simultaneous method. Solutions of styrene/toluene (1:1, v/v) and styrene/N,N-dimethylformamide (DMF) (1:1, v/v) were used. The films were characterized by FT-IR spectroscopy (Infrared Spectroscopy), Differential Scanning Calorimetry (DSC), Thermogravimetric Measurement (TG) and the degree of grafting (DOG) were calculated gravimetrically. Results shown that in studied conditions, DMF allow greatest DOG than toluene and that increasing the irradiation dose correspond an increase in DOG. Infrared and thermal analyses confirmed the presence in the grafted polymers. (author)

  3. Radiation-induced grafting of styrene onto poly-vinylidene fluoride) film by simultaneous method with two different solvents

    International Nuclear Information System (INIS)

    Ferreira, H.P.; Parra, D.F.; Lugao, A.B.

    2011-01-01

    Complete text of publication follows. Radiation-induced grafting to create membranes with ion exchange capacity in fluorinated polymers has been studied for applications such as fuel cells, filtration and waste treatment and polymeric actuators due to their good physical and chemical properties. In this work, radiation-induced grafting of styrene into poly(vinylidene fluoride) (PVDF) films with 0.125 mm thickness at doses of 1 and 2.5 kGy in the presence of a styrene/N,N- dimethylformamide (DMF) solution (1:1, v/v) and at doses of 20, 40 and 80 kGy in presence of a styrene/toluene solution (1:1, v/v) at dose rate of 5 kGy h-1 was carried out by simultaneous method under nitrogen atmosphere and at room temperature, using gamma-rays form a Co-60. The films were characterized before and after modification by the grafting yield (GY), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). GY results shows that grafting increases with dose, and it was possible to confirm the grafting of styrene by FT-IR due to the new characteristics peaks and by the TG and DSC due to changes in thermal behavior of the grafted material. Results showed that the system allows the homogeneous grafting of styrene into PVDF using gamma irradiation at doses as low as 1 kGy when DMF is used and heterogeneous grafting when toluene is used, showing the importance of the solvent nature during the simultaneous method.

  4. A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices

    KAUST Repository

    Park, Jihoon; Kurra, Narendra; AlMadhoun, M. N.; Odeh, Ihab N.; Alshareef, Husam N.

    2015-01-01

    We report a simple two-step annealing scheme for the fabrication of stable non-volatile memory devices employing poly(vinylidene fluoride) (PVDF) polymer thin-films. The proposed two-step annealing scheme comprises the crystallization

  5. Pyroelectric energy harvesting using Olsen cycles in purified and porous poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] thin films

    International Nuclear Information System (INIS)

    Navid, Ashcon; Pilon, Laurent

    2011-01-01

    This paper is concerned with the direct conversion of heat into electricity using pyroelectric materials. The Olsen (or Ericsson) cycle was experimentally performed on three different types of 60/40 poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] copolymer samples, namely commercial, purified, and porous films. This cycle consists of two isoelectric field and two isothermal processes. The commercial and purified films were about 50 µm thick and produced a maximum energy density of 521 J l −1 and 426 J l −1 per cycle, respectively. This was achieved by successively dipping the films in cold and hot silicone oil baths at 25 and 110 °C under low and high applied electric fields of about 200 and 500 kV cm −1 , respectively. The 11 µm thick porous films achieved a maximum energy density of 188 J l −1 per cycle between 25 and 100 °C and electric field between 200 and 400 kV cm −1 . The performance of the purified and porous films suffered from their lower electrical resistivity and electric breakdown compared with commercial thin films. However, the energy densities of all 60/40 P(VDF-TrFE) films considered matched or exceeded those reported recently for 0.9Pb(Mg 1/3 Nb 2/3 )O 3 –0.10PbTiO 3 (0.9PMN–0.1PT) (186 J l −1 ) and Pb(Zn 1/3 Nb 2/3 ) 0.955 Ti 0.045 O 3 (243 J l −1 ) bulk ceramics. Furthermore, the results are discussed in light of recently proposed figures of merit for energy harvesting applications

  6. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites

    OpenAIRE

    Liu, Yiwei; Wang, Baomin; Zhan, Qingfeng; Tang, Zhenhua; Yang, Huali; Liu, Gang; Zuo, Zhenghu; Zhang, Xiaoshan; Xie, Yali; Zhu, Xiaojian; Chen, Bin; Wang, Junling; Li, Run-Wei

    2014-01-01

    The magnetic anisotropy is decreased with increasing temperature in normal magnetic materials, which is harmful to the thermal stability of magnetic devices. Here, we report the realization of positive temperature coefficient of magnetic anisotropy in a novel composite combining β-phase polyvinylidene fluoride (PVDF) with magnetostrictive materials (magnetostrictive film/PVDF bilayer structure). We ascribe the enhanced magnetic anisotropy of the magnetic film at elevated temperature to the st...

  7. Object Imaging Accomplished with an Integrated Circuit Robotic Tactile Sensor Incorporating a Piezoelectric Polyvinylidene Fluoride Thin Film

    Science.gov (United States)

    1993-12-01

    polarization [12]: 3-16 h K" + (3.34) Similarly, the stress in a material due to an applied strain and polarization is [12]: T = cS- hTP (3.35) The electric...pp. 37-63, 1992. [11] KYNAR Piezo Film Department. Kynar Piezo Film Technical Manual . Manual 10-M-ll-83-M. King of Prussia, PA: Pennwalt Corporation

  8. Enhanced electric polarization and breakdown strength in the all-organic sandwich-structured poly(vinylidene fluoride-based dielectric film for high energy density capacitor

    Directory of Open Access Journals (Sweden)

    Yue Zhang

    2017-07-01

    Full Text Available It is essential to develop the dielectric energy storage capacitor for the modern electrical and electronic equipment. Here, the all-organic sandwich-structured composite with superior breakdown strength and delayed saturation polarization is presented. Furthermore, the energy storage characteristics of the composite are enhanced by the poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene fiber and the redistribution of local electric field. The dielectric permittivity of composite increases to ∼16, and the discharged energy density is high to ∼8.7 J/cm3 at 360 kV/mm, and the breakdown strength is up to ∼408 kV/mm. The excellent performance of the composite broadens the application in the field of power electronics industry.

  9. Temperature dependence of working characteristics of piezoelectric sensors based on polyvinylidene fluoride

    Directory of Open Access Journals (Sweden)

    Revenyuk T. A.

    2011-04-01

    Full Text Available It has been found that the piezoelectric sensors produced on the basis of electrified films of polyvinylidene fluoride (PVDF work reliably in the temperature range from –20°C to +80°C. At the operating temperature of 80°C d33 piezocoefficient decreases by 2% during two years that is permissible. At higher temperatures irreversible reduction of the piezocoefficient was observed. The lowest temperature of the working range is close to the glass transition temperature of the amorphous phase of PVDF. Annealing of the films at 80°C ensures stabile characteristics of the sensors within a few years.

  10. Poly(vinylidene fluoride) Flexible Nanocomposite Films with Dopamine-Coated Giant Dielectric Ceramic Nanopowders, Ba(Fe0.5Ta0.5)O3, for High Energy-Storage Density at Low Electric Field.

    Science.gov (United States)

    Wang, Zhuo; Wang, Tian; Wang, Chun; Xiao, Yujia; Jing, Panpan; Cui, Yongfei; Pu, Yongping

    2017-08-30

    Ba(Fe 0.5 Ta 0.5 )O 3 /poly(vinylidene fluoride) (BFT/PVDF) flexible nanocomposite films are fabricated by tape casting using dopamine (DA)-modified BFT nanopowders and PVDF as a matrix polymer. After a surface modification of installing a DA layer with a thickness of 5 nm, the interfacial couple interaction between BFT and PVDF is enhanced, resulting in less hole defects at the interface. Then the dielectric constant (ε'), loss tangent (tan δ), and AC conductivity of nanocomposite films are reduced. Meanwhile, the value of the reduced dielectric constant (Δε') and the strength of interfacial polarization (k) are introduced to illustrate the effect of DA on the dielectric behavior of nanocomposite films. Δε' can be used to calculate the magnitude of interfacial polarization, and the strength of the dielectric constant contributed by the interface can be expressed as k. Most importantly, the energy-storage density and energy-storage efficiency of nanocomposite films with a small BFT@DA filler content of 1 vol % at a low electric field of 150 MV/m are enhanced by about 15% and 120%, respectively, after DA modification. The high energy-storage density of 1.81 J/cm 3 is obtained in the sample. This value is much larger than the reported polymer-based nanocomposite films. In addition, the outstanding cycle and bending stability of the nanocomposite films make it a promising candidate for future flexible portable energy devices.

  11. Radiation-induced crosslinking of poly(vinylidene fluoride)

    International Nuclear Information System (INIS)

    Makuuchi, Keizo

    1977-07-01

    The factors influencing radiation-induced crosslinking efficiency of poly(vinylidene fluoride) (PVdF) have been studied. Results of the basic research on irradiation conditions (dose rate and atmosphere) and initial physical properties of PVdF (structure of molecular chain and molecular mobility of chain segment) showed that crosslinking efficiency is raised in irradiation at high temperature above 50 0 C under vacuum in the presence of an absorbent for the evolved hydrogen fluoride. The crosslinking reaction is also accelerated with irregular molecular structure such as head-to-head bond in main chain. High crosslinking efficiency is obtained by addition of a polyfunctional monomer having good solubility with PVdF. Mechanical properties of PVdF, the strength at high temperature near the melting point in particular, are improved by crosslinking in the presence of a polyfunctional monomer. (auth.)

  12. Improved Dielectric Properties of Polyvinylidene Fluoride Nanocomposite Embedded with Poly(vinylpyrrolidone)-Coated Gold Nanoparticles

    KAUST Repository

    Toor, Anju

    2017-01-25

    A novel nanocomposite dielectric was developed by embedding polyvinylpyrrolidone (PVP)-encapsulated gold (Au) nanoparticles in the polyvinylidene fluoride (PVDF) polymer matrix. The surface functionalization of Au nanoparticles with PVP facilitates favorable interaction between the particle and polymer phase, enhancing nanoparticle dispersion. To study the effect of entropic interactions on particle dispersion, nanocomposites with two different particle sizes (5 and 20 nm in diameter) were synthesized and characterized. A uniform particle distribution was observed for nanocomposite films consisting of 5 nm Au particles, in contrast to the film with 20 nm particles. The frequency-dependent dielectric permittivity and the loss tangent were studied for the nanocomposite films. These results showed the effectiveness of PVP ligand in controlling the agglomeration of Au particles in the PVDF matrix. Moreover, the study showed the effect of particle concentration on their spatial distribution in the polymer matrix and the dielectric properties of nanocomposite films.

  13. Improved Dielectric Properties of Polyvinylidene Fluoride Nanocomposite Embedded with Poly(vinylpyrrolidone)-Coated Gold Nanoparticles

    KAUST Repository

    Toor, Anju; So, Hongyun; Pisano, Albert P.

    2017-01-01

    A novel nanocomposite dielectric was developed by embedding polyvinylpyrrolidone (PVP)-encapsulated gold (Au) nanoparticles in the polyvinylidene fluoride (PVDF) polymer matrix. The surface functionalization of Au nanoparticles with PVP facilitates favorable interaction between the particle and polymer phase, enhancing nanoparticle dispersion. To study the effect of entropic interactions on particle dispersion, nanocomposites with two different particle sizes (5 and 20 nm in diameter) were synthesized and characterized. A uniform particle distribution was observed for nanocomposite films consisting of 5 nm Au particles, in contrast to the film with 20 nm particles. The frequency-dependent dielectric permittivity and the loss tangent were studied for the nanocomposite films. These results showed the effectiveness of PVP ligand in controlling the agglomeration of Au particles in the PVDF matrix. Moreover, the study showed the effect of particle concentration on their spatial distribution in the polymer matrix and the dielectric properties of nanocomposite films.

  14. Improved dielectric constant and breakdown strength of γ-phase dominant super toughened polyvinylidene fluoride/TiO2 nanocomposite film: an excellent material for energy storage applications and piezoelectric throughput

    Science.gov (United States)

    Mehebub Alam, Md; Ghosh, Sujoy Kumar; Sarkar, Debabrata; Sen, Shrabanee; Mandal, Dipankar

    2017-01-01

    Titanium dioxide (TiO2) nanoparticles (NPs) embedded γ-phase containing polyvinylidene fluoride (PVDF) nanocomposite (PNC) film turns to an excellent material for energy storage application due to an increased dielectric constant (32 at 1 kHz), enhanced electric breakdown strength (400 MV m-1). It also exhibits a high energy density of 4 J cm-3 which is 25 times higher than that of virgin PVDF. 98% of the electroactive γ-phase has been acheived by the incorporation of TiO2 NPs and the resulting PNC behaves like a super-toughened material due to a dramatic improvement (more than 80%) in the tensile strength. Owing to their electroactive nature and extraordinary mechanical properties, PNC films have a strong ability to fabricate the piezoelectric nanogenerators (PNGs) that have recently been an area of focus regarding mechanical energy harvesting. The feasibility of piezoelectric voltage generation from PNGs is demostrated under the rotating fan that also promises further utility such as rotational speed (RPM) determination.

  15. “Self-Peel-Off” Transfer Produces Ultrathin Polyvinylidene-Fluoride-Based Flexible Nanodevices

    KAUST Repository

    Tai, Yanlong; Lubineau, Gilles

    2017-01-01

    Here, a new strategy, self-peel-off transfer, for the preparation of ultrathin flexible nanodevices made from polyvinylidene-fluoride (PVDF) is reported. In this process, a functional pattern of nanoparticles is transferred via peeling from a

  16. Human Mesenchymal Stem Cells Growth and Osteogenic Differentiation on Piezoelectric Poly(vinylidene fluoride Microsphere Substrates

    Directory of Open Access Journals (Sweden)

    R. Sobreiro-Almeida

    2017-11-01

    Full Text Available The aim of this work was to determine the influence of the biomaterial environment on human mesenchymal stem cell (hMSC fate when cultured in supports with varying topography. Poly(vinylidene fluoride (PVDF culture supports were prepared with structures ranging between 2D and 3D, based on PVDF films on which PVDF microspheres were deposited with varying surface density. Maintenance of multipotentiality when cultured in expansion medium was studied by flow cytometry monitoring the expression of characteristic hMSCs markers, and revealed that cells were losing their characteristic surface markers on these supports. Cell morphology was assessed by scanning electron microscopy (SEM. Alkaline phosphatase activity was also assessed after seven days of culture on expansion medium. On the other hand, osteoblastic differentiation was monitored while culturing in osteogenic medium after cells reached confluence. Osteocalcin immunocytochemistry and alizarin red assays were performed. We show that flow cytometry is a suitable technique for the study of the differentiation of hMSC seeded onto biomaterials, giving a quantitative reliable analysis of hMSC-associated markers. We also show that electrosprayed piezoelectric poly(vinylidene fluoride is a suitable support for tissue engineering purposes, as hMSCs can proliferate, be viable and undergo osteogenic differentiation when chemically stimulated.

  17. Structural and Optical Changes of Poly-Vinylidene Fluoride by Electron Irradiation at High Dose Rate

    International Nuclear Information System (INIS)

    Jaleh, B.; Fakhri, P.; Borhani, M.; Habibi, S.; Noroozi, M.

    2012-01-01

    Poly-vinylidene fluoride films were prepared and irradiated by 10MeV electrons at different doses ranging from 50 to 300kGy with a dose rate of 10kGy/s. The FTIR results indicated that no major phase content change was observed. The optical absorption spectra indicated that the electron irradiation results in shifting of the absorption peak, appearance of a new peak and increasing the band gap (Eg). These changes may be due to the breaking of polymer chains and creation of new defects. The X-ray diffraction analysis of samples indicated that the crystallinity did not show any major changes. Concerning the gel fraction measurements, it was observed that gel fraction increases with increasing the dose, where it is an indication of the formation of cross-linked films.

  18. Fabrication and Characterization of Polyvinylidene Fluoride Microfilms for Microfluidic Applications

    Science.gov (United States)

    Rao, Yammani Venkat Subba; Raghavan, Aravinda Narayanan; Viswanathan, Meenakshi

    2016-10-01

    The ability to create patterns of piezo responsive material on smooth substrate is an important method to develop efficient microfluidic mixers. This paper reports the fabrication of Poly vinylidene fluoride microfilms using spin-coating on smooth glass surface. The suitable crystalline phases, surface morphology and microstructural properties of the PVDF films have been investigated. We found that films of average thickness 10μm, had average roughness of 0.13μm. These PVDF films are useful in microfluidic mixer applications.

  19. Influence of temperature on the mechanical behavior of polyvinylidene fluoride

    International Nuclear Information System (INIS)

    Goncalez, Viviane; Pasqualino, Ilson Paranhos; Costa, Marysilvia Ferreira da

    2009-01-01

    Polyvinylidene fluoride (PVDF) is a semicrystalline polymer that presents four crystalline phases being the non polar alpha phase the most common. Due to the very good chemical stability as well a good mechanical properties, PVDF is successfully employed as pressure barrier layers in risers. Meanwhile, its long time behavior in the presence of temperature and in direct contact with fluids is not yet well established. In this work, PVDF stress-strain behavior and stress relaxation with temperature were investigated. It was observed a decrease in elasticity modulus with increasing temperature although the decrease was not linear with temperature increase. The temperature increase also caused the decrease in the relaxation modulus (G(t)). It was also observed that samples strained up to 10% showed a more drastic decrease in modulus compared to samples strained up to 5% regardless the temperature. This behavior was expected and it was attributed to the fact that larger deformation associated to temperature facilitates mobility of the amorphous chains. Through the analysis of x-ray diffraction (XRD) it was observed that the structure was not change after relaxation tests regardless of the test temperature. Experimental results were used to validate the numerical model developed where good correlation with the experimental results were observed. (author)

  20. Effects of configurational changes on molecular dynamics in polyvinylidene fluoride and poly(vinylidene fluoride-trifluoroethylene) ferroelectric polymers

    Energy Technology Data Exchange (ETDEWEB)

    Jalarvo, N., E-mail: jalarvonh@ornl.gov, E-mail: abhijit.pramanick@gmail.com, E-mail: omardiallos@ornl.gov [Jülich Centre for Neutron Science, Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Pramanick, A., E-mail: jalarvonh@ornl.gov, E-mail: abhijit.pramanick@gmail.com, E-mail: omardiallos@ornl.gov [Department of Physics and Materials Science, City University of Hong Kong, Kowloon (Hong Kong); Do, C. [Biology and Soft-Matter Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Diallo, S. O., E-mail: jalarvonh@ornl.gov, E-mail: abhijit.pramanick@gmail.com, E-mail: omardiallos@ornl.gov [Chemical and Engineering Materials Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2015-08-24

    We present a comparative study of proton dynamics in unpoled non-ferroelectric polymer polyvinylidene fluoride (PVDF) and in its trifluoroethylene containing ferroelectric copolymer (with 70/30 molar proportion), using quasi-elastic neutron scattering. The neutron data reveal the existence of two distinct types of molecular motions in the temperature range investigated. The slower motion, which is characterized in details here, is ascribed to protons jump diffusion along the polymeric carbon chains, while the faster motion could be attributed to localized rotational motion of methylene groups. At temperatures below the Curie point (T{sub c} ∼ 385 K) of the composite polymer, the slower diffusive mode experiences longer relaxation times in the ferroelectric blend than in the bare PVDF, although the net corresponding diffusion coefficient remains comparatively the same in both polymers with characteristic activation energy of E{sub A} ≈ 27–33 kJ/mol. This arises because of a temperature dependent jump length r{sub 0}, which we observe to be effectively longer in the copolymer, possibly due to the formation of ordered ferroelectric domains below T{sub c}. Above T{sub c}, there is no appreciable difference in r{sub 0} between the two systems. This observation directly relates the known dependence of T{sub c} on molar ratio to changes in r{sub 0}, providing fundamental insight into the ferroelectric properties of PVDF-based copolymers.

  1. Dynamic pyroelectric response of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene) and ferroelectric ceramics of barium lead zirconate titanate

    Energy Technology Data Exchange (ETDEWEB)

    Solnyshkin, A.V. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Morsakov, I.M.; Bogomolov, A.A. [Tver State University, Department of Condensed Matter Physics, Tver (Russian Federation); Belov, A.N.; Vorobiev, M.I.; Shevyakov, V.I.; Silibin, M.V. [National Research University ' ' MIET' ' , Department of Intellectual Technical Systems, Zelenograd, Moscow (Russian Federation); Shvartsman, V.V. [University of Duisburg-Essen, Institute for Materials Science, Essen (Germany)

    2015-10-15

    In this work, pyroelectric properties of composite films on the basis of poly(vinylidene fluoride-trifluoroethylene) copolymer with a various level of ferroelectric ceramics inclusions of barium lead zirconate titanate solid solution were investigated by the dynamic method. The composite films were prepared by the solvent cast method. The unusual spike-like dynamic response with a quasi-stationary component was observed. It is supposed that composite films may be effectively used for pyroelectric applications. (orig.)

  2. A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices

    KAUST Repository

    Park, Jihoon

    2015-01-01

    We report a simple two-step annealing scheme for the fabrication of stable non-volatile memory devices employing poly(vinylidene fluoride) (PVDF) polymer thin-films. The proposed two-step annealing scheme comprises the crystallization of the ferroelectric gamma-phase during the first step and enhancement of the PVDF film dense morphology during the second step. Moreover, when we extended the processing time of the second step, we obtained good hysteresis curves down to 1 Hz, the first such report for ferroelectric PVDF films. The PVDF films also exhibit a coercive field of 113 MV m-1 and a ferroelectric polarization of 5.4 μC cm-2. © The Royal Society of Chemistry 2015.

  3. “Self-Peel-Off” Transfer Produces Ultrathin Polyvinylidene-Fluoride-Based Flexible Nanodevices

    KAUST Repository

    Tai, Yanlong

    2017-02-23

    Here, a new strategy, self-peel-off transfer, for the preparation of ultrathin flexible nanodevices made from polyvinylidene-fluoride (PVDF) is reported. In this process, a functional pattern of nanoparticles is transferred via peeling from a temporary substrate to the final PVDF film. This peeling process takes advantage of the differences in the work of adhesion between the various layers (the PVDF layer, the nanoparticle-pattern layer and the substrate layer) and of the high stresses generated by the differential thermal expansion of the layers. The work of adhesion is mainly guided by the basic physical/chemical properties of these layers and is highly sensitive to variations in temperature and moisture in the environment. The peeling technique is tested on a variety of PVDF-based functional films using gold/palladium nanoparticles, carbon nanotubes, graphene oxide, and lithium iron phosphate. Several PVDF-based flexible nanodevices are prepared, including a single-sided wireless flexible humidity sensor in which PVDF is used as the substrate and a double-sided flexible capacitor in which PVDF is used as the ferroelectric layer and the carrier layer. Results show that the nanodevices perform with high repeatability and stability. Self-peel-off transfer is a viable preparation strategy for the design and fabrication of flexible, ultrathin, and light-weight nanodevices.

  4. Anomalous piezoelectric properties of poly(vinylidene fluoride-trifluoroethylene)/ionic liquid gels

    Science.gov (United States)

    Fukagawa, Miki; Koshiba, Yasuko; Fukushima, Tatsuya; Morimoto, Masahiro; Ishida, Kenji

    2018-04-01

    Piezoelectric gels were prepared from low-volatile ionic liquid (IL) 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim][TFSI]) gels, and their structural, ferroelectric, and piezoelectric properties were investigated. Poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE)/IL gels were formed using thermally reversible physical gels. The structural characterization indicated that the P(VDF-TrFE) molecules in the gels predominantly formed a ferroelectric phase (Form I) of P(VDF-TrFE). Polarization switching peaks were clearly observed using a three-layer stacked device structure. The coercive field of the P(VDF-TrFE)/IL gels substantially decreased to 4-9 MV/m, and their remnant polarizations were maintained at 63-71 mC/m2, which is similar to that for typical solid-state P(VDF-TrFE). Finally, the P(VDF-TrFE)/IL gel films exhibited a piezoelectric response, and the highest piezoelectric coefficient was ˜300 pm/V at an applied voltage frequency of 4 kHz.

  5. Low Energy Gamma Radiation Induced Effects on Ultrasonic Velocity and Acoustic Parameters in Polyvinylidene Fluoride Solution

    Directory of Open Access Journals (Sweden)

    S. S. Kulkarni

    2016-01-01

    Full Text Available The modification of polyvinylidene fluoride (PVDF polymer properties with irradiation is of interest as it possesses unique piezo-, pyro-, and ferroelectric properties. In this paper, we report the results of acoustic parameters of irradiated PVDF mixed with dimethylacetamide (DMAC solution with low energy γ-source (Cs-137. The polymer solution covered with mica film assures only γ-ray passage and the duration was increased from 18 to 50 hours to achieve the higher dose rate. The dose rate was estimated using the strength of the radioactive source and the duration of the exposure. The ultrasonic velocity (v, density (ρ, and viscosity (η of 0.2 wt% and 0.5 wt% PVDF dissolved in pure DMAC solution, irradiated with different dose rate were measured using ultrasonic interferometer (Mittal make, Pyknometer, and Oswald’s viscometer, respectively. It is observed that the values of v, ρ, and η change with dose rate. The acoustic parameters such as adiabatic compressibility (β, intermolecular free path length (Lf, acoustic impedance (Z, relative association (RA, ultrasonic attenuation (α/f2, and relaxation time (τ are calculated using the experimental data. These results are interpreted in terms of the solute-solvent interaction in a polymer solution and scissoring chain damage.

  6. Development of a Wearable Controller for Gesture-Recognition-Based Applications Using Polyvinylidene Fluoride.

    Science.gov (United States)

    Van Volkinburg, Kyle; Washington, Gregory

    2017-08-01

    This paper reports on a wearable gesture-based controller fabricated using the sensing capabilities of the flexible thin-film piezoelectric polymer polyvinylidene fluoride (PVDF) which is shown to repeatedly and accurately discern, in real time, between right and left hand gestures. The PVDF is affixed to a compression sleeve worn on the forearm to create a wearable device that is flexible, adaptable, and highly shape conforming. Forearm muscle movements, which drive hand motions, are detected by the PVDF which outputs its voltage signal to a developed microcontroller-based board and processed by an artificial neural network that was trained to recognize the generated voltage profile of right and left hand gestures. The PVDF has been spatially shaded (etched) in such a way as to increase sensitivity to expected deformations caused by the specific muscles employed in making the targeted right and left gestures. The device proves to be exceptionally accurate both when positioned as intended and when rotated and translated on the forearm.

  7. Piezoelectricity and pyroelectricity in polyvinylidene fluoride - Influence of the lattice structure

    Science.gov (United States)

    Purvis, C. K.; Taylor, P. L.

    1983-01-01

    Piezoelectric and pyroelectric responses of beta-phase (Phase I) polyvinylidene fluoride are predicted for a model system of polarizable point dipoles. The model incorporates the influence of the orthorhombic crystal structure by including the dependence of the internal electric field on the lattice parameters. Strong anisotropy in the piezoelectric response under uniaxial stress is predicted as a consequence of the orthorhombic lattice structure. Predictions are found to be in reasonable agreement with room-temperature experimental data.

  8. Thermal Stability and Magnetic Properties of Polyvinylidene Fluoride/Magnetite Nanocomposites

    OpenAIRE

    Ouyang, Zen-Wei; Chen, Erh-Chiang; Wu, Tzong-Ming

    2015-01-01

    This work describes the thermal stability and magnetic properties of polyvinylidene fluoride (PVDF)/magnetite nanocomposites fabricated using the solution mixing technique. The image of transmission electron microscopy for PVDF/magnetite nanocomposites reveals that the 13 nm magnetite nanoparticles are well distributed in PVDF matrix. The electroactive β-phase and piezoelectric responses of PVDF/magnetite nanocomposites are increased as the loading of magnetite nanoparticles increases. The pi...

  9. Stretchable Kirigami Polyvinylidene Difluoride Thin Films for Energy Harvesting: Design, Analysis, and Performance

    Science.gov (United States)

    Hu, Nan; Chen, Dajing; Wang, Dong; Huang, Shicheng; Trase, Ian; Grover, Hannah M.; Yu, Xiaojiao; Zhang, John X. J.; Chen, Zi

    2018-02-01

    Kirigami, a modified form of origami which includes cutting, has been used to improve material stretchability and compliance. However, this technique is, so far, underexplored in patterning piezoelectric materials towards developing efficient and mechanically flexible thin-film energy generators. Motivated by existing kirigami-based applications, we introduce interdigitated cuts to polyvinylidene fluoride (PVDF) films to evaluate the effect on voltage generation and stretchability. Our results from theoretical analysis, numerical simulations, and experimental tests show that kirigami PVDF films exhibit an extended strain range while still maintaining significant voltage generation compared to films without cuts. Various cutting patterns are studied, and it is found that films with denser cuts have a larger voltage output. This kirigami design can enhance the properties of existing piezoelectric materials and help to integrate tunable PVDF generators into biomedical devices.

  10. Dielectric properties of composite based on ferroelectric copolymer of poly(vinylidene fluoride-trifluoroethylene and ferroelectric ceramics of barium lead zirconate titanate

    Directory of Open Access Journals (Sweden)

    A. V. Solnyshkin

    2017-10-01

    Full Text Available A study of dielectric properties of composite films on the base of poly(vinylidene fluoride-trifluoroethylene copolymer P(VDF-TrFE and ferroelectric ceramics of barium lead zirconate titanate (BPZT solid solution is presented in this work. The composite films containing up to 50 vol.% of BPZT grains with size ∼1μm were prepared by the solvent cast method. Frequency dependences of real and imaginary components of the complex permittivity were determined. The concentration dependence of the dielectric constant was discussed.

  11. Preparation and properties of poly(vinylidene fluoride nanocomposites blended with graphene oxide coated silica hybrids

    Directory of Open Access Journals (Sweden)

    Q. Fu

    2012-04-01

    Full Text Available Graphene oxide coated silica hybirds (SiO2-GO were fabricated through electrostatic assembly in this work, then blended with poly(vinylidene fluoride (PVDF by solution mixing to make PVDF nanocomposites. The interfacial interaction was investigated by scanning electron microscopy (SEM, polarized optical microscopy (POM and Fourier transform infrared spectroscopy (FTIR. The results showed that the interfacial interaction was enhanced by adding of SiO2-GO and strong hydrogen bonds were observed. The as-made nanocomposites were investigated using standard tensile test and dynamic mechanical analysis (DMA measurements, mechanical properties of PVDF with SiO2-GO hybrids showed limited improvement.

  12. Morphology and performance of polyvinylidene fluoride/perfluoro sulphonic acid hollow fiber ultrafiltration blend membranes

    International Nuclear Information System (INIS)

    Yuan, Guo-Lin; Xu, Zhen-Liang; Wei, Yong-Ming; Yu, Li-Yun

    2009-01-01

    Polyvinylidene fluoride-perfluoro sulphonic acid hollow fibre ultrafiltration blend membranes were prepared by wet-spinning method. Polyvinylpyrrolidone and ethanol aqueous solutions were employed as additive and coagulants, respectively. The effect of Polyvinylpyrrolidone concentration in the dopes and ethanol concentration in the coagulants on morphology and performance of Polyvinylidene fluoride -perfluoro sulphonic acid hollow fibre ultrafiltration blend membranes were investigated. Blend membranes were characterized in terms of precipitation kinetics, morphology, thermal property and separation performance. The results showed that the increments of Polyvinylpyrrolidone concentration in the dopes and ethanol concentration in coagulants both resulted in higher pure water permeation flux and worse rejection (R) of bovine serum albumin (with the increment of Polyvinylpyrrolidone concentration from 0 to 5 wt% in the dopes, pure water permeation increased from 41.7 L.m -2 .h -1 to 134 L.m -2 .h -1 and R decreased from 99.8% to 84.4% as well as with the increase in ethanol concentration in coagulants from 0 to 40 wt%, pure water permeation increased from 33.5 L.m -2 .h- 1 to 123 L.m -2 .h -1 and R decreased from 97.7% to 88.7%). However, the proportion of sponge-like structure in the cross-section of membranes decreased with the increasing Polyvinylpyrrolidone concentration in the dopes and the proportion increased with the increased ethanol concentration in the coagulations. In addition, the location of the sponge-like structure in the cross-section of membranes was significantly influenced by ethanol concentrations in the coagulants and differential scanning calorimeter results revealed that the crystallinity (X c ) of the blend membrane was in accordance with the proportion of sponge-like structure. These behaviours were attributed to the different roles of Polyvinylpyrrolidone in the dopes and ethanol in the coagulants, respectively. Polyvinylidene fluoride

  13. Cross-Selectivity Enhancement of Poly(vinylidene fluoride-hexafluoropropylene-Based Sensor Arrays for Detecting Acetone and Ethanol

    Directory of Open Access Journals (Sweden)

    Ali Daneshkhah

    2017-03-01

    Full Text Available Two methods for cross-selectivity enhancement of porous poly(vinylidene fluoride-hexafluoropropylene (PVDF-HFP/carbon black (CB composite-based resistive sensors are provided. The sensors are tested with acetone and ethanol in the presence of humid air. Cross-selectivity is enhanced using two different methods to modify the basic response of the PVDF-HFP/CB sensing platform. In method I, the adsorption properties of PVDF-HFP/CB are altered by adding a polyethylene oxide (PEO layer or by treating with infrared (IR. In method II, the effects of the interaction of acetone and ethanol are enhanced by adding diethylene carbonate (DEC or PEO dispersed in DEC (PEO/DEC to the film. The results suggest the approaches used in method I alter the composite ability to adsorb acetone and ethanol, while in method II, they alter the transduction characteristics of the composite. Using these approaches, sensor relative response to acetone was increased by 89% compared with the PVDF-HFP/CB untreated film, whereas sensor relative response to ethanol could be decreased by 57% or increased by 197%. Not only do these results demonstrate facile methods for increasing sensitivity of PVDF-HFP/CB film, used in parallel they demonstrate a roadmap for enhancing system cross-selectivity that can be applied to separate units on an array. Fabrication methods, experimental procedures and results are presented and discussed.

  14. Low temperature internal friction on γ-irradiated polyvinylidene fluoride (PVDF)

    International Nuclear Information System (INIS)

    Callens, A.; Eersels, L.; De Batist, R.

    1978-01-01

    A least-squares fitting of the below room temperature part of the internal friction spectra, obtained by the torsion pendulum technique on as-received and γ-irradiated (up to 1 Grad) strips and fibres of polyvinylidene fluoride by a superposition of single Debye functions, reveals that the spectral component features are determined not only by purely amorphous chain characteristics but also by the dose-dependence of crystallinity. A careful analysis of the relaxation spectra confirms that at least one relaxation effect (approximately 236 K) is created upon irradiation. The analysis of the dose dependence of the characteristics of the β (glass transition; approximately 220 K) and βsub(u) (apparent upper glass transition; approximately 270 K) relaxations, suggests the probable influence of crystallinity on the molecular motion in the amorphous phase. The increase of the intensity of the γ relaxation (approximately 190 K) is related to the irradiation-induced crystallite degradation. (author)

  15. Tapered Fiber Coated with Hydroxyethyl Cellulose/Polyvinylidene Fluoride Composite for Relative Humidity Sensor

    Directory of Open Access Journals (Sweden)

    M. Z. Muhammad

    2013-01-01

    Full Text Available A simple relative humidity (RH sensor is demonstrated using a tapered fiber coated with hydroxyethyl cellulose/polyvinylidene fluoride (HEC/PVDF composite as a probe. This coating acts as an inner cladding whose refractive index decreases with the rise in humidity and thus allows more light to be transmitted in humid state. A difference of up to 0.89 dB of the transmitted optical power is observed when RH changes from 50% to 80% in case of the silica fiber probe. The proposed sensor has a sensitivity of about 0.0228 dB/%RH with a slope linearity of more than 99.91%. In case of the plastic optical fiber (POF probe, the output voltage of the sensor increases linearly with a sensitivity of 0.0231 mV/%RH and a linearity of more than 99.65% as the relative humidity increases from 55% to 80%.

  16. A super hydrophilic modification of poly(vinylidene fluoride) (PVDF) nanofibers: By in situ hydrothermal approach

    Science.gov (United States)

    Sheikh, Faheem A.; Zargar, Mohammad Afzal; Tamboli, Ashif H.; Kim, Hern

    2016-11-01

    Nanofibers fabricated from Poly(vinylidene fluoride) (PVDF) possesses potential applications in the field of filtrations, because of their excellent resistance towards harsh chemicals. However, the hydrophobicity restricts its further application. In this work, we focus on optimal parameters for post-electrospun tethering of Poly(vinyl alcohol) (PVA) as superhydrophilic domain onto each individual PVDF nanofibers by exploiting the in situ hydrothermal approach. The results indicated an increase in nanofiber diameters due to coating of PVA and improved surface wettability of PVDF nanofibers. The tensile tests of nanofibers indicated that mechanical properties of PVDF nanofibers could be sharply tuned from rigid to ductile. Furthermore, the studies strongly suggest that in situ hydrothermal treatment of post-electrospun nanofibers can improve the water contact angle and these nanofibers can be used in varied applications (e.g., in water purification systems).

  17. Doping and band gap control at poly(vinylidene fluoride)/graphene interface

    Science.gov (United States)

    Cai, Jia; Wang, Jian-Lu; Gao, Heng; Tian, Bobo; Gong, Shi-Jing; Duan, Chun-Gang; Chu, Jun-Hao

    2018-05-01

    Using the density-functional first-principles calculations, we investigate the electronic structures of poly(vinylidene fluoride) PVDF/graphene composite systems. The n- and p-doping of graphene can be flexibly switched by reversing the ferroelectric polarization of PVDF, without scarifying the intrinsic π-electron band dispersions of graphene that are usually undermined by chemical doping. The doping degree is also dependent on the thickness of PVDF layers, which will get saturated when PVDF is thick enough. In PVDF/bilayer graphene (BLG) heterostructure, the doping degree directly determines the local energy gap of the charged BLG. The sandwich structure of PVDF/BLG/PVDF can further enhance the local energy gap as well as keep the electric neutrality of BLG, which will be of great application potentials in graphene-based nanoelectronics.

  18. Effect of electron irradiation on poly(vinylidene fluoride-trifluoroethylene) 56/44 mol% copolymers

    International Nuclear Information System (INIS)

    Guo, S S; Zhao, X-Z; Lu, S G; Lau, S T; Chan, H L W

    2004-01-01

    High-energy electron-irradiated poly(vinylidene fluoride-trifluoroethylene) 56/44 mol% copolymers are studied in a broad dose ranging from 0 to 110 Mrad. The experimental results are obtained by differential scanning calorimetry (DSC), x-ray diffraction, dielectric constant, dc conductivity and polarization hysteresis loop based on structural changes and dielectric relaxation behaviour. All the x-ray and DSC results show that both the crystalline and polar ordering decreased after irradiation, indicating a partial recovery from trans-gauche bonds to local trans bonds (polar ordering). The dielectric relaxation peaks, obeying the Vogel-Fulcher Law, indicate that the copolymers have transformed from a normal ferroelectric to a relaxor ferroelectric. It is also found that dc conductivity can be modulated with electron irradiation, as well as the hysteresis loop characteristics

  19. Properties and Applications of the β Phase Poly(vinylidene fluoride

    Directory of Open Access Journals (Sweden)

    Liuxia Ruan

    2018-02-01

    Full Text Available Poly(vinylidene fluoride, PVDF, as one of important polymeric materials with extensively scientific interests and technological applications, shows five crystalline polymorphs with α, β, γ, δ and ε phases obtained by different processing methods. Among them, β phase PVDF presents outstanding electrical characteristics including piezo-, pyro-and ferroelectric properties. These electroactive properties are increasingly important in applications such as energy storage, spin valve devices, biomedicine, sensors and smart scaffolds. This article discusses the basic knowledge and character methods for PVDF fabrication and provides an overview of recent advances on the phase modification and recent applications of the β phase PVDF are reported. This study may provide an insight for the development and utilization for β phase PVDF nanofilms in future electronics.

  20. Buffer layer investigations on MFIS capacitors consisting of ferroelectric poly[vinylidene fluoride trifluoroethylene

    International Nuclear Information System (INIS)

    Henkel, K; Seime, B; Paloumpa, I; Mueller, K; Schmeisser, D

    2010-01-01

    In this paper we present capacitance-voltage (CV) measurements on metal-ferroelectric-insulator-semiconductor (MFIS) capacitors with poly[vinylidene fluoride trifluoroethylene] (P[VDF/TrFE] as ferroelectric layer and SiO 2 , Al 2 O 3 and HfO 2 as buffering insulator layer. In order to discuss our data in a quantitative manner we perform fits to the data based on a model proposed by Miller and McWorther. The improvement of the polarization values and subsequently its effect on the hysteresis of the CV curve by the successive shrinking of the buffer layer thickness and the following choice of a high-k buffer material is demonstrated. Our data underline that a saturated polarization of P[VDF/TrFE] cannot be controlled with a SiO 2 buffer layer and the insertion of a high-k buffer layer is essential for further improvements of the characteristics of MFIS stacks.

  1. Clay nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene): Structure and properties

    KAUST Repository

    Kelarakis, Antonios

    2010-01-01

    Structure-properties relationships in poly(vinylidene fluoride-co-hexafluoropropylene), PVDF-HFP, clay nanocomposites are reported for the first time. Addition of organically modified clays to PVDF-HFP promotes an α to β transformation of the polymer crystals. The degree of transformation depends on the nature of the clay surface modifier and scales with the strength of the interactions between the clay and the polymer. The nanocomposites exhibit significant increases in elongation to failure compared to the neat copolymer. In addition, their dielectric permittivity is higher over a wide temperature range. Their mechanical and dielectric properties scale similar to the amount of the β phase present in the nanocomposites. © 2009 Elsevier Ltd. All rights reserved.

  2. Microporous gel electrolytes based on amphiphilic poly(vinylidene fluoride-co-hexafluoropropylene) for lithium batteries

    International Nuclear Information System (INIS)

    Yu Shicheng; Chen Lie; Chen Yiwang; Tong Yongfen

    2012-01-01

    Poly(vinylidene fluoride-co-hexafluoropropylene) grafted poly(poly(ethylene glycol) methyl ether methacrylate) (PVDF-HFP-g-PPEGMA) is simply prepared by single-step synthesis directly via atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether methacrylate (PEGMA) from poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). Thermal, mechanical, swelling and electrochemical properties, as well as microstructures of the prepared polymer electrolytes, are evaluated and the effects of the various contents and average molecular weights of PEGMA on those properties are also been investigated. By phase inversion technique, the copolymer membranes tend to form well-defined microporous morphology with the increase of content and average molecular weight of PEGMA, due to the competition and cooperation between the hydrophilic PEGMA segments and hydrophobic PVDF-HFP. When these membranes are gelled with 1 M LiCF 3 SO 3 in ethylene carbonate (EC)/propylene carbonate (PC) (1:1, v/v), their saturated electrolyte uptakes (up to 323.5%) and ion conductivities (up to 2.01 × 10 -3 S cm -1 ) are dramatically improved with respect to the pristine PVDF-HFP, ascribing to the strong affinity of the hydrophilic PEGMA segments with the electrolytes. All the polymer electrolytes are electrochemically stable up to 4.7 V versus Li/Li + , and show good mechanical properties. Coin cells based on the polymer electrolytes show stable charge-discharge cycles and deliver discharge capacities to LiFePO 4 is up to 156 mAh g -1 .

  3. Poly(vinylidene fluoride) modification induced by gamma irradiation for application as ionic polymer-metal composite

    International Nuclear Information System (INIS)

    Ferreira, Henrique Perez

    2011-01-01

    Gamma-radiation-induced grafting of styrene into poly(vinylidene fluoride) (PVDF) films with 0.125 mm thickness at doses from 1 to 100 kGy in the presence of a styrene/N,N- dimethylformamide (DMF) solution (1:1, v/v) and styrene/toluene (1:1, v/v) at dose rate of 5 kGy h-1 was carried out by simultaneous method under nitrogen atmosphere at room temperature, using gamma rays from a Co-60. After grafting reactions, the polymer was then sulfonated in chlorosulfonic acid/1,2-dichloroethane (2 and 10%) for 3 hours. The films were characterized before and after modification by calculating the degree of grafting (DOG), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). DOG results show that grafting increases with dose, and varies enormously depending on the solvent used, with DOGs about 20 times greater in DMF than in toluene. It was possible to confirm the grafting of styrene by FT-IR due to the appearance of the new characteristic peaks and by the TG and DSC which exhibited changes in the thermal behavior of the grafted/sulfonated material. Sulfonated material was also characterized by ion exchange capacity (IEC) showed that both DOG and sulfonic acid concentration increase IEC values. Results showed that it is possible to obtain materials with ion exchange capacity of possible application as ionic polymer-metal composites. (author)

  4. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors

    KAUST Repository

    Liang, Shuai; Qi, Genggeng; Xiao, Kang; Sun, Jianyu; Giannelis, Emmanuel P.; Huang, Xia; Elimelech, Menachem

    2014-01-01

    This study systematically investigates the organic fouling behavior of a superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membrane functionalized via post-fabrication tethering of surface-tailored silica nanoparticles to poly

  5. Facile fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) nanodot arrays for organic ferroelectric memory

    Science.gov (United States)

    Fang, Huajing; Yan, Qingfeng; Geng, Chong; Chan, Ngai Yui; Au, Kit; Yao, Jianjun; Ng, Sheung Mei; Leung, Chi Wah; Li, Qiang; Guo, Dong; Wa Chan, Helen Lai; Dai, Jiyan

    2016-01-01

    Nano-patterned ferroelectric materials have attracted significant attention as the presence of two or more thermodynamically equivalent switchable polarization states can be employed in many applications such as non-volatile memory. In this work, a simple and effective approach for fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) P(VDF-TrFE) nanodot arrays is demonstrated. By using a soft polydimethylsiloxane mold, we successfully transferred the 2D array pattern from the initial monolayer of colloidal polystyrene nanospheres to the imprinted P(VDF-TrFE) films via nanoimprinting. The existence of a preferred orientation of the copolymer chain after nanoimprinting was confirmed by Fourier transform infrared spectra. Local polarization switching behavior was measured by piezoresponse force microscopy, and each nanodot showed well-formed hysteresis curve and butterfly loop with a coercive field of ˜62.5 MV/m. To illustrate the potential application of these ordered P(VDF-TrFE) nanodot arrays, the writing and reading process as non-volatile memory was demonstrated at a relatively low voltage. As such, our results offer a facile and promising route to produce arrays of ferroelectric polymer nanodots with improved piezoelectric functionality.

  6. Linear optical absorption response of poly(vinylidene fluoride - trifluoroethylene) copolymers to high gamma dose

    International Nuclear Information System (INIS)

    Medeiros, Adriana S.

    2009-01-01

    Poly(vinylidene fluoride) [PVDF] is a semicrystalline linear homopolymer composed by the repetition of CH 2 - CF 2 monomers. The Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] is a copolymer which is obtained with the random introduction of fluorinated CHF-CF 2 monomers in the PVDF main chain. PVDF, and also its copolymers with TrFE contents ranging from 18 to 63 wt. %, have long been studied for their striking ferroelectric properties and their applications in actuators, transducers and ferroelectric memory. Recent research work around the world have demonstrated that, for TrFE contents ranging from with 30 to 50 wt. %, the copolymer can have its ferroelectric properties modified by high doses of ionizing radiation, with the appearing of radio-induced relaxor ferroelectric features. These studies have lead us to investigate the possible use of these copolymers as high dose dosemeters, once the reported amount of induced C=C conjugated bonds after X-ray, UV and gamma irradiation seems to be a function of the delivered radiation dose. In a first investigation for doses ranging from 0.1 to 100 kGy we found out a linear relation between the gamma radiation dose and the absorption peak intensities in the UV region of the spectrum, i.e., at 223 and 274 nm. The absorption peak at 223 nm is the most sensitive to gamma rays and can be used for detecting gamma doses ranging from 0.3 to 75 kGy. Simultaneously, the absorption peak at 274 nm can be used for doses ranging from 1 to 100 kGy. Now, in the present work, we extended the investigation to gamma doses up to 3 MGy. Particularly, this study is focused in the optical absorption peak at 274 nm, corresponding to the radio-induction of triplets of conjugated C=C double bonds. The investigation revealed a linear correlation between the gamma dose and peak intensity at 274 nm for gamma doses ranging from 0.1 to more than 750 KGy, with a huge extension of the original usable dose range. Calorimetric data revealed a

  7. Effects of substrate on piezoelectricity of electrospun poly(vinylidene fluoride)-nanofiber-based energy generators.

    Science.gov (United States)

    Lee, Byoung-Sun; Park, Boongik; Yang, Ho-Sung; Han, Jin Woo; Choong, Chweelin; Bae, Jihyun; Lee, Kihwan; Yu, Woong-Ryeol; Jeong, Unyong; Chung, U-In; Park, Jong-Jin; Kim, Ohyun

    2014-03-12

    We report the effects of various substrates and substrate thicknesses on electrospun poly(vinylidene fluoride) (PVDF)-nanofiber-based energy harvesters. The electrospun PVDF nanofibers showed an average diameter of 84.6 ± 23.5 nm. A high relative β-phase fraction (85.2%) was achieved by applying high voltage during electrospinning. The prepared PVDF nanofibers thus generated considerable piezoelectric potential in accordance with the sound-driven mechanical vibrations of the substrates. Slide glass, poly(ethylene terephthalate), poly(ethylene naphthalate), and paper substrates were used to investigate the effects of the intrinsic and extrinsic substrate properties on the piezoelectricity of the energy harvesters. The thinnest paper substrate (66 μm) with a moderate Young's modulus showed the highest voltage output (0.4885 V). We used high-performance 76, 66, and 33 μm thick papers to determine the effect of paper thickness on the output voltage. The thinnest paper substrate resulted in the highest voltage output (0.7781 V), and the numerical analyses of the sound-driven mechanical deformation strongly support the hypothesis that substrate thickness has a considerable effect on piezoelectric performance.

  8. Spontaneous high piezoelectricity in poly(vinylidene fluoride) nanoribbons produced by iterative thermal size reduction technique.

    Science.gov (United States)

    Kanik, Mehmet; Aktas, Ozan; Sen, Huseyin Sener; Durgun, Engin; Bayindir, Mehmet

    2014-09-23

    We produced kilometer-long, endlessly parallel, spontaneously piezoelectric and thermally stable poly(vinylidene fluoride) (PVDF) micro- and nanoribbons using iterative size reduction technique based on thermal fiber drawing. Because of high stress and temperature used in thermal drawing process, we obtained spontaneously polar γ phase PVDF micro- and nanoribbons without electrical poling process. On the basis of X-ray diffraction (XRD) analysis, we observed that PVDF micro- and nanoribbons are thermally stable and conserve the polar γ phase even after being exposed to heat treatment above the melting point of PVDF. Phase transition mechanism is investigated and explained using ab initio calculations. We measured an average effective piezoelectric constant as -58.5 pm/V from a single PVDF nanoribbon using a piezo evaluation system along with an atomic force microscope. PVDF nanoribbons are promising structures for constructing devices such as highly efficient energy generators, large area pressure sensors, artificial muscle and skin, due to the unique geometry and extended lengths, high polar phase content, high thermal stability and high piezoelectric coefficient. We demonstrated two proof of principle devices for energy harvesting and sensing applications with a 60 V open circuit peak voltage and 10 μA peak short-circuit current output.

  9. Preparation and properties of homogeneous-reinforced polyvinylidene fluoride hollow fiber membrane

    International Nuclear Information System (INIS)

    Zhang Xuliang; Xiao Changfa; Hu Xiaoyu; Bai Qianqian

    2013-01-01

    Highlights: ► The homogeneous-reinforced method has been adopted firstly in preparing of PVDF membranes. ► The HR membranes have a favorable interfacial bonding between the coating layer and the matrix membrane. ► The better performance of the HR membranes in protein solution can indirectly improve the service life of membranes. - Abstract: Homogeneous-reinforced (HR) polyvinylidene fluoride (PVDF) hollow fiber membranes include PVDF polymer solutions (coating layer) and the matrix membrane prepared through the dry-wet spinning process. The performance of HR membranes varies with the polymer concentration in the polymer solutions and is characterized in terms of pure water flux, rejection of protein, porosity, infiltration property, a mechanical strength test, and morphology observations by a field emission scanning electron microscope (FESEM). The results of this study indicate that the tensile strength of the HR PVDF membranes decreases slights compared with that of the matrix membrane, but the elongation at break increases much more and the hollow fiber membranes are endowed with better flexibility performance. The HR PVDF hollow fiber membranes have a favorable interfacial bonding between the coating layer and the matrix membrane, as shown by FESEM. The infiltration property is characterized by the contact angle experiments. Pure water flux decreases while the rejection ratio with an increase in polymer concentration increasing. The protein solution flux of the HR PVDF membranes is higher than that of the matrix membrane after 100 min of infiltration.

  10. Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes.

    Science.gov (United States)

    Liu, Jie; Lu, Xiaolong; Wu, Chunrui

    2013-11-21

    Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of α and β phases, the overall membranes were predominantly α phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of α and β phases, the overall membranes were predominantly α phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites.

  11. Preparation of antifouling poly(vinylidene fluoride) membranes via different coating methods using a zwitterionic copolymer

    International Nuclear Information System (INIS)

    Ma, Wenzhong; Rajabzadeh, Saeid; Matsuyama, Hideto

    2015-01-01

    Graphical abstract: - Highlights: • We successfully coated the poly(MPC-co-BMA) copolymer on the ultrafiltration membrane. • The hydrophilicity and antifouling were improved by coating poly(MPC-co-BMA). • The flow-through method showed better anti-fouling properties compared with immersion method. • P(MPC-co-BMA) was quite stable on the coated membranes. - Abstract: To reduce the fouling resistance of poly(vinylidene fluoride) membranes, a copolymer of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate (BMA) [poly(MPC-co-BMA)] was coated on a membrane and into its pores from an aqueous solution using two different methods, the immersion and flow-through methods. The effects of poly(MPC-co-BMA) coating on the water flux, surface morphology, and fouling propensity of three types of commercial ultrafiltration membranes with molecular-weight cutoffs ranging from 50 to 250 kDa were investigated. The fouling resistances of modified membranes to bovine serum albumin were compared to those of the unmodified membranes. The evaluation of X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of the modified membranes confirmed that poly(MPC-co-BMA) was coated on the membrane surfaces. Although both modification methods effectively prevented protein fouling, the flow-through coating method demonstrated a better antifouling propensity. The coated copolymer stability results indicated that the coated copolymer layer on the membrane surface using both coating methods was quite stable even after ultrasonic treatment.

  12. Preparation and characterization of functional poly(vinylidene fluoride) (PVDF) membranes with ultraviolet-absorbing property

    Science.gov (United States)

    Dong, Li; Liu, Xiangdong; Xiong, Zhengrong; Sheng, Dekun; Lin, Changhong; Zhou, Yan; Yang, Yuming

    2018-06-01

    We first reported a strategy to prepare functional poly(vinylidene fluoride) (PVDF) membranes with excellent ultraviolet-absorbing property through chemically induced grafting. Herein, the polymerizable ultraviolet (UV) absorber 2-hydroxy-4-(3-methacryloxy-2-hydroxylpropoxy) benzophenone (BPMA) made by ourselves was grafted onto the PVDF chains that have been pretreated with tetraethylammonium hydroxide (TEAH) alkaline solution. Moreover, the effect of experiment conditions such as the alkali and monomer concentrations, alkali treatment time on the UV-absorbing property of the obtained PVDF-g-PBPMA membranes were studied in detail. The chemical structure of the modified membranes was confirmed by 1H NMR, FT-IR and XPS measurements. Meanwhile, the thermal and UV-absorbing properties were characterized by TGA, DSC and UV-Vis spectrophotometer, respectively. The results indicated that BPMA side chains were successfully introduced onto PVDF backbones. Most importantly, the obtained PVDF-g-PBPMA membranes exhibited excellent UV-absorbing property. The transmittance of UV light at 300 nm decreased to as low as 0.02% and the UV light below 388 nm could be completely absorbed by the PVDF-g-PBPMA membrane made under optimal condition.

  13. Electronic properties and optical absorption of graphene-polyvinylidene fluoride nanocomposites: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, Siddheshwar, E-mail: schopra1@amity.edu

    2017-01-15

    Graphene/polyvinylidene fluoride (graphene/PVDF) nanocomposites were studied using Density functional theory (DFT)/Time dependent density functional theory (TDDFT) calculations. Five nanocomposite configurations were constructed. Electronic properties like binding energy, electronic gap and work function were calculated. The most stable structure was determined. The electronic gap of graphene shifts from semiconducting to conducting, on nanocomposite formation. Workfunction of the most stable nanocomposite was 4.34eV ± 0.05eV, close to that of the pristine graphene (4.33eV ± 0.05eV). Thermochemical analysis showed that the adsorption is spontaneous above ∼870 K, and endothermic in nature. TDDFT calculations were performed for B3LYP, LSDA, BHHLYP and PBE0 functionals. B3LYP and PBE0 are suitable in describing optical absorption. Optical gap of graphene shrinks, and light absorption gets enhanced on nanocomposite formation. - Highlights: • Various properties of graphene-PVDF nanocomposites were studied theoretically. • Electronic gap of graphene shifts to conducting nature, on composite formation. • Adsorption is spontaneous above ∼870 K, and endothermic in nature. • B3LYP and PBE0 functionals are suitable in describing absorption. • Optical absorption gets enhanced on nanocomposite formation.

  14. Fluorine incorporation into SnO2 nanoparticles by co-milling with polyvinylidene fluoride

    Science.gov (United States)

    Senna, Mamoru; Turianicová, Erika; Šepelák, Vladimír; Bruns, Michael; Scholz, Gudrun; Lebedkin, Sergei; Kübel, Christian; Wang, Di; Kaňuchová, Mária; Kaus, Maximilian; Hahn, Horst

    2014-04-01

    Fluorine was incorporated into SnO2 nanoparticles from polyvinylidene fluoride (PVdF) by co-milling. The incorporation process was triggered by an oxidative partial decomposition of PVdF due to the abstraction of oxygen atoms, and began soon after milling with a simultaneous decrease in the crystallite size of SnO2 from 56 nm to 19 nm, and increase in the lattice strain by a factor 7. Appearance of D and G Raman peaks indicated that the decomposition of PVdF was accompanied by the formation of nanometric carbon species. Decomposing processes of PVdF were accompanied by the continuous change in the states of F, with a decrease of C-F in PVdF and increase in Sn-F. This indicates the gradual incorporation of F into SnO2, by replacing a part of oxygen in the oxide with fluorine. These serial mechanochemical reaction processes were discussed on the basis of X-ray diffractometry, FT-IR, Raman and UV-Vis diffuse reflectance spectroscopy, transmission electron microscopy, F1s, Sn3d and C1s X-ray photoelectron spectroscopy and Auger electron spectra, as well as magic angle spinning NMR spectroscopy of 19F and 119Sn. The present findings serve as an initial stage of incorporating fluorine into SnO2 via a solvent-free solid-state process, toward the rational fabrication of fluorine doped SnO2 powders.

  15. Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride for uric acid measurements

    Directory of Open Access Journals (Sweden)

    Vanessa F Cardoso, Pedro Martins, Gabriela Botelho, Luis Rebouta, Senentxu Lanceros-Méndez and Graca Minas

    2010-01-01

    Full Text Available Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride (β-PVDF. If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

  16. Preparation and properties of homogeneous-reinforced polyvinylidene fluoride hollow fiber membrane

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Xuliang [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Xiao Changfa, E-mail: xiaotjpu@163.com [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China); Hu Xiaoyu; Bai Qianqian [State Key Laboratory of Hollow Fiber Membrane Materials and Processes, Tianjin Polytechnic University, Tianjin 300387 (China)

    2013-01-01

    Highlights: Black-Right-Pointing-Pointer The homogeneous-reinforced method has been adopted firstly in preparing of PVDF membranes. Black-Right-Pointing-Pointer The HR membranes have a favorable interfacial bonding between the coating layer and the matrix membrane. Black-Right-Pointing-Pointer The better performance of the HR membranes in protein solution can indirectly improve the service life of membranes. - Abstract: Homogeneous-reinforced (HR) polyvinylidene fluoride (PVDF) hollow fiber membranes include PVDF polymer solutions (coating layer) and the matrix membrane prepared through the dry-wet spinning process. The performance of HR membranes varies with the polymer concentration in the polymer solutions and is characterized in terms of pure water flux, rejection of protein, porosity, infiltration property, a mechanical strength test, and morphology observations by a field emission scanning electron microscope (FESEM). The results of this study indicate that the tensile strength of the HR PVDF membranes decreases slights compared with that of the matrix membrane, but the elongation at break increases much more and the hollow fiber membranes are endowed with better flexibility performance. The HR PVDF hollow fiber membranes have a favorable interfacial bonding between the coating layer and the matrix membrane, as shown by FESEM. The infiltration property is characterized by the contact angle experiments. Pure water flux decreases while the rejection ratio with an increase in polymer concentration increasing. The protein solution flux of the HR PVDF membranes is higher than that of the matrix membrane after 100 min of infiltration.

  17. Electronic properties and optical absorption of graphene-polyvinylidene fluoride nanocomposites: A theoretical study

    International Nuclear Information System (INIS)

    Chopra, Siddheshwar

    2017-01-01

    Graphene/polyvinylidene fluoride (graphene/PVDF) nanocomposites were studied using Density functional theory (DFT)/Time dependent density functional theory (TDDFT) calculations. Five nanocomposite configurations were constructed. Electronic properties like binding energy, electronic gap and work function were calculated. The most stable structure was determined. The electronic gap of graphene shifts from semiconducting to conducting, on nanocomposite formation. Workfunction of the most stable nanocomposite was 4.34eV ± 0.05eV, close to that of the pristine graphene (4.33eV ± 0.05eV). Thermochemical analysis showed that the adsorption is spontaneous above ∼870 K, and endothermic in nature. TDDFT calculations were performed for B3LYP, LSDA, BHHLYP and PBE0 functionals. B3LYP and PBE0 are suitable in describing optical absorption. Optical gap of graphene shrinks, and light absorption gets enhanced on nanocomposite formation. - Highlights: • Various properties of graphene-PVDF nanocomposites were studied theoretically. • Electronic gap of graphene shifts to conducting nature, on composite formation. • Adsorption is spontaneous above ∼870 K, and endothermic in nature. • B3LYP and PBE0 functionals are suitable in describing absorption. • Optical absorption gets enhanced on nanocomposite formation.

  18. Preparation of antifouling poly(vinylidene fluoride) membranes via different coating methods using a zwitterionic copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Wenzhong; Rajabzadeh, Saeid; Matsuyama, Hideto, E-mail: matuyama@kobe-u.ac.jp

    2015-12-01

    Graphical abstract: - Highlights: • We successfully coated the poly(MPC-co-BMA) copolymer on the ultrafiltration membrane. • The hydrophilicity and antifouling were improved by coating poly(MPC-co-BMA). • The flow-through method showed better anti-fouling properties compared with immersion method. • P(MPC-co-BMA) was quite stable on the coated membranes. - Abstract: To reduce the fouling resistance of poly(vinylidene fluoride) membranes, a copolymer of 2-methacryloyloxyethyl phosphorylcholine (MPC) and n-butyl methacrylate (BMA) [poly(MPC-co-BMA)] was coated on a membrane and into its pores from an aqueous solution using two different methods, the immersion and flow-through methods. The effects of poly(MPC-co-BMA) coating on the water flux, surface morphology, and fouling propensity of three types of commercial ultrafiltration membranes with molecular-weight cutoffs ranging from 50 to 250 kDa were investigated. The fouling resistances of modified membranes to bovine serum albumin were compared to those of the unmodified membranes. The evaluation of X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of the modified membranes confirmed that poly(MPC-co-BMA) was coated on the membrane surfaces. Although both modification methods effectively prevented protein fouling, the flow-through coating method demonstrated a better antifouling propensity. The coated copolymer stability results indicated that the coated copolymer layer on the membrane surface using both coating methods was quite stable even after ultrasonic treatment.

  19. Phononic band gap and wave propagation on polyvinylidene fluoride-based acoustic metamaterials

    Directory of Open Access Journals (Sweden)

    Oral Oltulu

    2016-12-01

    Full Text Available In the present work, the acoustic band structure of a two-dimensional phononic crystal (PC containing an organic ferroelectric (PVDF-polyvinylidene fluoride and topological insulator (SnTe was investigated by the plane-wave-expansion (PWE method. Two-dimensional PC with square lattices composed of SnTe cylindrical rods embedded in the PVDF matrix is studied to find the allowed and stop bands for the waves of certain energy. Phononic band diagram ω = ω(k for a 2D PC, in which non-dimensional frequencies ωa/2πc (c-velocity of wave were plotted vs. the wavevector k along the Г–X–M–Г path in the square Brillouin zone shows five stop bands in the frequency range between 10 and 110 kHz. The ferroelectric properties of PVDF and the unusual properties of SnTe as a topological material give us the ability to control the wave propagation through the PC over a wide frequency range of 103–106 Hz. SnTe is a discrete component that allows conducting electricity on its surface but shows insulator properties through its bulk volume. Tin telluride is considered as an acoustic topological insulator as the extension of topological insulators into the field of “topological phononics”.

  20. Preparation and Preliminary Dialysis Performance Research of Polyvinylidene Fluoride Hollow Fiber Membranes

    Science.gov (United States)

    Zhang, Qinglei; Lu, Xiaolong; Liu, Juanjuan; Zhao, Lihua

    2015-01-01

    In this study, the separation properties of Polyvinylidene fluoride (PVDF) hollow fiber hemodialysis membranes were improved by optimizing membrane morphology and structure. The results showed that the PVDF membrane had better mechanical and separation properties than Fresenius Polysulfone High-Flux (F60S) membrane. The PVDF membrane tensile stress at break, tensile elongation and bursting pressure were 11.3 MPa, 395% and 0.625 MPa, respectively. Ultrafiltration (UF) flux of pure water reached 108.2 L∙h−1∙m−2 and rejection of Albumin from bovine serum was 82.3%. The PVDF dialyzers were prepared by centrifugal casting. The influences of membrane area and simulate fluid flow rate on dialysis performance were investigated. The results showed that the clearance rate of urea and Lysozyme (LZM) were improved with increasing membrane area and fluid flow rate while the rejection of albumin from bovine serum (BSA) had little influence. The high-flux PVDF dialyzer UF coefficient reached 62.6 mL/h/mmHg. The PVDF dialyzer with membrane area 0.69 m2 has the highest clearance rate to LZM and urea. The clearance rate of LZM was 66.8% and urea was 87.7%. PMID:25807890

  1. Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong-Jik [Hankyong National University, Department of Bioresources and Rural Systems Engineering (Korea, Republic of); Cheedrala, Ravi Kumar; Diallo, Mamadou S., E-mail: mdiallo@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of); Kim, Changmin; Kim, In S. [Gwangju Institute of Science and Technology (GIST), Department of Environmental Science and Engineering (Korea, Republic of); Goddard, William A. [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of)

    2012-07-15

    In this article, we describe the synthesis of new and ion-selective nanofiltration (NF) membranes using polyvinylidene fluoride (PVDF) nanofibers and hyperbranched polyethylenimine (PEI) as building blocks. These new nanofibrous composite (NFC) membranes consist of crosslinked hyperbranched PEI networks supported by PVDF nanofibrous scaffolds that are electrospun onto commercial PVDF microfiltration (MF) membranes. A major objective of our study was to fabricate positively charged NF membranes that can be operated at low pressure with high water flux and improved rejection for monovalent cations. To achieve this, we investigated the effects of crosslinker chemistry on membrane properties (morphology, composition, hydrophobicity, and zeta potential) and membrane performance (salt rejection and permeate flux) in aqueous solutions (2,000 mg/L) of four salts (NaCl, MgCl{sub 2}, Na{sub 2}SO{sub 4}, and MgSO{sub 4}) at pH 4, 6, and 8. We found that an NFC-PVDF membrane with a network of PEI macromolecules crosslinked with trimesoyl chloride has a high water flux ({approx}30 L m{sup -2} h{sup -1}) and high rejections for MgCl{sub 2} ({approx}88 %) and NaCl ({approx}65 %) at pH 6 using a pressure of 7 bar. The overall results of our study suggest that PVDF nanofibers and hyperbranched PEI are promising building blocks for the fabrication of high performance NF membranes for water purification.

  2. Nanofiltration membranes based on polyvinylidene fluoride nanofibrous scaffolds and crosslinked polyethyleneimine networks

    International Nuclear Information System (INIS)

    Park, Seong-Jik; Cheedrala, Ravi Kumar; Diallo, Mamadou S.; Kim, Changmin; Kim, In S.; Goddard, William A.

    2012-01-01

    In this article, we describe the synthesis of new and ion-selective nanofiltration (NF) membranes using polyvinylidene fluoride (PVDF) nanofibers and hyperbranched polyethylenimine (PEI) as building blocks. These new nanofibrous composite (NFC) membranes consist of crosslinked hyperbranched PEI networks supported by PVDF nanofibrous scaffolds that are electrospun onto commercial PVDF microfiltration (MF) membranes. A major objective of our study was to fabricate positively charged NF membranes that can be operated at low pressure with high water flux and improved rejection for monovalent cations. To achieve this, we investigated the effects of crosslinker chemistry on membrane properties (morphology, composition, hydrophobicity, and zeta potential) and membrane performance (salt rejection and permeate flux) in aqueous solutions (2,000 mg/L) of four salts (NaCl, MgCl 2 , Na 2 SO 4 , and MgSO 4 ) at pH 4, 6, and 8. We found that an NFC–PVDF membrane with a network of PEI macromolecules crosslinked with trimesoyl chloride has a high water flux (∼30 L m −2 h −1 ) and high rejections for MgCl 2 (∼88 %) and NaCl (∼65 %) at pH 6 using a pressure of 7 bar. The overall results of our study suggest that PVDF nanofibers and hyperbranched PEI are promising building blocks for the fabrication of high performance NF membranes for water purification.

  3. Degradation studies of transparent conductive electrodes on electroactive poly(vinylidene fluoride) for uric acid measurements

    International Nuclear Information System (INIS)

    Cardoso, Vanessa F; Minas, Graca; Martins, Pedro; Rebouta, Luis; Lanceros-Mendez, Senentxu; Botelho, Gabriela

    2010-01-01

    Biochemical analysis of physiological fluids using, for example, lab-on-a-chip devices requires accurate mixing of two or more fluids. This mixing can be assisted by acoustic microagitation using a piezoelectric material, such as the β-phase of poly(vinylidene fluoride) (β-PVDF). If the analysis is performed using optical absorption spectroscopy and β-PVDF is located in the optical path, the material and its conductive electrodes must be transparent. Moreover, if, to improve the transmission of the ultrasonic waves to the fluids, the piezoelectric transducer is placed inside the fluidic structures, its degradation must be assessed. In this paper, we report on the degradation properties of transparent conductive oxides, namely, indium tin oxide (ITO) and aluminum-doped zinc oxide, when they are used as electrodes for providing acoustic microagitation. The latter promotes mixing of chemicals involved in the measurement of uric acid concentration in physiological fluids. The results are compared with those for aluminum electrodes. We find that β-PVDF samples with ITO electrodes do not degrade either with or without acoustic microagitation.

  4. Preparation and characterization of poly(vinyl sulfone)- and poly(vinylidene fluoride)-based electrolytes

    Energy Technology Data Exchange (ETDEWEB)

    Choe, H.S.; Giaccai, J.; Alamgir, M.; Abraham, K.M. [EIC Labs., Inc., Norwood, MA (United States)

    1995-10-01

    A novel group of polymer electrolytes based on poly(vinyl sulfone) (PVS) and poly(vinylidene fluoride) (PVdF) polymers, plasticized with highly conductive solutions of LiClO{sub 4}, LiN(CF{sub 3}SO{sub 2}){sub 2} or LiAsF{sub 6} dissolved in ethylene carbonate, propylene carbonate, sulfolane, or mixtures thereof, was prepared via in situ photopolymerization and solution casting, respectively. The polymer electrolytes were characterized from conductivity and cyclic voltammetry data. It was found that solutions of Li salts in the vinyl sulfone monomer were highly conductive at room temperature with conductivities of 0.6 to 1.3 x 10{sup -3} {Omega}{sup -1}cm{sup -1} at 30{sup o}C, but the conductivities decreased by about 10{sup 3} times on polymerizing. Conversely, the conductivities increased by about 10{sup 2} to 10{sup 4} times on incorporating plasticizing solvents into the solid polymer electrolytes, suggesting that ionic mobility is the primary factor affecting the conductivities of solid polymer electrolytes. The highest conductivity exhibited by PVS-based electrolyte was 3.74 x 10{sup -4} {Omega}{sup -1}cm{sup -1} and that by PVdF-based electrolyte was 1.74 x 10{sup -3} {Omega}{sup -1}cm{sup -1}, at 30{sup o}C. The PVS-based electrolytes were found to be stable to oxidation up to potentials ranging between 4.5 and 4.8 V, while the stable potential limits for PVdF-based electrolytes were between 3.9 and 4.3 V vs. Li{sup +}/Li. (author)

  5. Clay nanoparticles effects on performance and morphology of poly(vinylidene fluoride membranes

    Directory of Open Access Journals (Sweden)

    A. C. D. Morihama

    2014-03-01

    Full Text Available In this study, a comparison between neat poly(vinylidene fluoride (PVDF membrane and composite (PVDF-Nanoclay and PVDF-PVP-Nanoclay membranes is presented. All membranes were synthesized by the phase inversion process, using 18% PVDF, n-methylpyrrolidone as solvent and water as the non-solvent. Demineralized water cross-flow permeation tests were conducted to evaluate the membranes performance. Scanning electron microscopy (SEM images of the membranes surface and cross-section and water contact angle measurements were used to estimate additives effects on membranes morphology. The results indicate that dopant addition affected membrane permeate flux and morphology. The 4% nanoclay composite membrane resulted in the highest ultrapure water permeability (0.9130 m³.m-2.h-1.MPa-1, lower hydraulic resistance (3.27´10+12.m-1, lower contact angle (87.1º and highest surface porosity (0.95%. Furthermore, it was verified that the membrane surface porosity increased with increasing clay nanoparticles concentrations. It was observed that the morphology of the membranes with clay nanoparticle addition is characterized by a thin surface layer, with macro-pores, a thin bottom layer, which has a sponge-like structure with micro-pores and a thick intermediate layer, with finger-like pores and macro-pores. It was also verified that the introduction of PVP promotes a denser morphology compared with membranes without it. Based on the SEM surface and cross-sectional images and permeability tests, it became evident that the internal pore morphology plays an important role in membrane performance, because the higher the frequency and extent of the finger-like pores in the intermediate layer the higher is the membrane permeability. These preliminary results indicated that the use of nanoclay as an additive for membrane casting is a promising procedure for improving membrane performance for water and wastewater treatment.

  6. DEVELOPMENT AND CHARACTERIZATION OF POLYVINYLIDENE FLUORIDE - IMIDAZOLIUM FUNCTIONALIZED POLYSULFONE BLEND ANION EXCHANGE MEMBRANE

    Directory of Open Access Journals (Sweden)

    S. VELU

    2015-09-01

    Full Text Available Anion exchange membrane (AEM is one of the core components of an alkaline fuel cell influencing the fuel cell’s performance, durability and stability. Out of the many anion exchange membranes reported so far, imidazolium functionalized polysulfone (PSf-ImOH membrane has been identified to have high hydroxide ionic conductivity, reaching up to 50 mS cm-1 at 20oC. However, at high levels of ion exchange capacity, the membrane’s water uptake and swelling ratio increases significantly with temperature thus destabilizing it and making it unfit for potential use in high temperature alkaline fuel cells. This limitation of PSf-ImOH membranes has been overcome by blending it with polyvinylidene fluoride (PVDF polymer, which is a thermally stable and highly hydrophobic polymer. PSf-ImOH membrane with a high degree of chloromethylation (180% was synthesized and blended with PVDF at different weight ratios (PVDF / PSf-ImOH: 30/70, 50/50 and 70/30 to create a series of novel anion exchange membranes. The prepared membranes were characterized to study their structure, water uptake, swelling ratio, solubility in low boiling water soluble solvents, thermal stability, ion exchange capacity (IEC and ionic conductivity (IC at different temperatures. The 70% PVDF blend membrane demonstrated the better performance in terms of IEC, IC and water uptake properties compared to other membranes. Comparative studies on the water uptake and IC variation between the 70% PVDF blend membrane and pure PSfImOH membrane (having the same IEC as that of the blend membrane, clearly indicated the superiority and the promising use of the blend membrane in alkaline fuel cell especially for high temperature working condition.

  7. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    Energy Technology Data Exchange (ETDEWEB)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody [Department of Electrical & Computer Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Agarwal, Mangilal, E-mail: agarwal@iupui.edu [Department of Electrical & Computer Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Integrated Nanosystems Development Institute (INDI), Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States); Department of Mechanical Engineering, Indiana University-Purdue University Indianapolis (IUPUI), Indianapolis, IN, 46202 (United States)

    2016-06-15

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10{sup −3} S cm{sup −1}. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g{sup −1} for standard metallic current collectors and (ii) 99.5 mAh g{sup −1} for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  8. Poly(vinylidene fluoride-hexafluoropropylene polymer electrolyte for paper-based and flexible battery applications

    Directory of Open Access Journals (Sweden)

    Nojan Aliahmad

    2016-06-01

    Full Text Available Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene (PVDH-HFP porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphoneimide (LiTFSI and lithium aluminum titanium phosphate (LATP, with an ionic conductivity of 2.1 × 10−3 S cm−1. Combining ceramic (LATP with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO and lithium cobalt oxide (LCO electrodes and (i standard metallic current collectors and (ii paper-based current collectors were fabricated and tested. The achieved specific capacities were (i 123 mAh g−1 for standard metallic current collectors and (ii 99.5 mAh g−1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  9. The relaxational behaviour of poly-(vinylidene fluoride) before and after gamma-irradiation

    International Nuclear Information System (INIS)

    Callens, A.

    The main purpose of this work was to investigate how molecular chain reorganization may affect the physical property of polymers. This may be done by the analysis of the as received and post-irradiation relaxation spectra of the semi-crystalline linear chain polymer polyvinylidene fluoride (PVDF), which has been gamma-irradiated up to doses of 1 grad. The effects of the irradiation on the material are primarly main chain cross-linking production of unsaturated bonds and crystallite degradation. To reach a complete interpretation of the relaxation spectra, it is necessary to incorporate a third phase into the analysis besides the amorphous viscoelastic region (AVR) and the crystalline viscoelastic region (CVR), the intermediate phase. The amorphous phase (AVR) is at the origin of the relaxation effects occurring in the temperature region below room temperature. The saturation like behaviour of the cross-linking in the amorphous phase is at the origin of the intensity decrease, temperature shift and peak broadening of the beta relaxation. There is a large amount of evidence that in the neighbourhood of the beta relaxation, relaxation effects are created through irradiation, as mainly revealed by TSD-spectra (thermalloy stimulated depolarisation). The intensity of the gamma relaxation, gradually increases with dose, which has been attributed to the production of disordered chain from the debris of radiation enhanced crystallite destruction. The relaxation effect, occuring at the temperatures between AVR and CVR, is assigned to the long amorphous chain segments attached partly to the crystallites, mainly from the consideration of the similarity of the dose enhanced decrease in intensity of both beta and βsub(μ)-effects. The increase with dose of the intensity of the α1 relaxation, which has been classified within CVR, confirms the grainboundary hypothesis. The second component of CVR (α2 relaxation) is due to relaxation effects of molecular chains belonging to the

  10. Poly(vinylidene fluoride-hexafluoropropylene) polymer electrolyte for paper-based and flexible battery applications

    Science.gov (United States)

    Aliahmad, Nojan; Shrestha, Sudhir; Varahramyan, Kody; Agarwal, Mangilal

    2016-06-01

    Paper-based batteries represent a new frontier in battery technology. However, low-flexibility and poor ionic conductivity of solid electrolytes have been major impediments in achieving practical mechanically flexible batteries. This work discuss new highly ionic conductive polymer gel electrolytes for paper-based battery applications. In this paper, we present a poly(vinylidene fluoride-hexafluoropropylene) (PVDH-HFP) porous membrane electrolyte enhanced with lithium bis(trifluoromethane sulphone)imide (LiTFSI) and lithium aluminum titanium phosphate (LATP), with an ionic conductivity of 2.1 × 10-3 S cm-1. Combining ceramic (LATP) with the gel structure of PVDF-HFP and LiTFSI ionic liquid harnesses benefits of ceramic and gel electrolytes in providing flexible electrolytes with a high ionic conductivity. In a flexibility test experiment, bending the polymer electrolyte at 90° for 20 times resulted in 14% decrease in ionic conductivity. Efforts to further improving the flexibility of the presented electrolyte are ongoing. Using this electrolyte, full-cell batteries with lithium titanium oxide (LTO) and lithium cobalt oxide (LCO) electrodes and (i) standard metallic current collectors and (ii) paper-based current collectors were fabricated and tested. The achieved specific capacities were (i) 123 mAh g-1 for standard metallic current collectors and (ii) 99.5 mAh g-1 for paper-based current collectors. Thus, the presented electrolyte has potential to become a viable candidate in paper-based and flexible battery applications. Fabrication methods, experimental procedures, and test results for the polymer gel electrolyte and batteries are presented and discussed.

  11. Highly Hydrophilic Polyvinylidene Fluoride (PVDF) Ultrafiltration Membranes via Postfabrication Grafting of Surface-Tailored Silica Nanoparticles

    KAUST Repository

    Liang, Shuai

    2013-07-24

    Polyvinylidene fluoride (PVDF) has drawn much attention as a predominant ultrafiltration (UF) membrane material due to its outstanding mechanical and physicochemical properties. However, current applications suffer from the low fouling resistance of the PVDF membrane due to the intrinsic hydrophobic property of the membrane. The present study demonstrates a novel approach for the fabrication of a highly hydrophilic PVDF UF membrane via postfabrication tethering of superhydrophilic silica nanoparticles (NPs) to the membrane surface. The pristine PVDF membrane was grafted with poly(methacrylic acid) (PMAA) by plasma induced graft copolymerization, providing sufficient carboxyl groups as anchor sites for the binding of silica NPs, which were surface-tailored with amine-terminated cationic ligands. The NP binding was achieved through a remarkably simple and effective dip-coating technique in the presence or absence of the N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC)/N-hydroxysuccinimide (NHS) cross-linking process. The properties of the membrane prepared from the modification without EDC/NHS cross-linking were comparable to those for the membrane prepared with the EDC/NHS cross-linking. Both modifications almost doubled the surface energy of the functionalized membranes, which significantly improved the wettability of the membrane and converted the membrane surface from hydrophobic to highly hydrophilic. The irreversibly bound layer of superhydrophilic silica NPs endowed the membranes with strong antifouling performance as demonstrated by three sequential fouling filtration runs using bovine serum albumin (BSA) as a model organic foulant. The results suggest promising applications of the postfabrication surface modification technique in various membrane separation areas. © 2013 American Chemical Society.

  12. Development of Polyvinylidene fluoride (PVDF)-ZIF-8 Membrane for Wastewater Treatment

    Science.gov (United States)

    Ibrahim, N. A.; Wirzal, M. D. H.; Nordin, N. A. H.; Halim, N. S. Abd

    2018-04-01

    Nowadays, the water shortage problem following the urbanization and increasing pollution of natural water source have increased the awareness to treat wastewater. Membrane filtration is often used in wastewater treatment plants to filter out more residual activated sludge from aeration process in the secondary stage. However, fouling is the main concern due to the fact it can happen to any membrane application. Antifouling properties in membrane can be improved by blending membranes with fillers or additives to make them more hydrophilic. This study aims to improve the antifouling properties in polyvinylidene fluoride (PVDF) membranes while optimizing the loading of Zeolitic imidazolate framework-8 (ZIF-8) fillers; at different loading (2.0 wt. %, 4.0 wt. %, 6.0 wt. %, 8.0 wt. % and 10.0 wt. %). Manual hand-casting of flat sheet membrane was done and the fabricated membranes were tested for their filterability against pure water and domestic wastewater. Both permeability tests showed that PVDF with 8% ZIF-8 membrane was the most permeable with a pure water and wastewater permeability of 150 L/m2.h.bar and 94 L/m2.h.bar, respectively. The pure water permeability of PVDF with 8% ZIF-8 membrane increases for about 130% compared to the pure PVDF membrane. The turbidity test of the initial feed and final permeate of wastewater, PVDF with 8% ZIF-8 membrane also gave out the highest reduction rate at 87%, which is 36% higher than that of pure PVDF membrane. It can be deduced that 8% of ZIF-8 is the ideal loading to PVDF in improving its antifouling properties to be used in domestic wastewater treatment.

  13. Poly(vinylidene fluoride)-based ion track membranes with different pore diameters and shapes. SEM observations and conductometric analysis

    International Nuclear Information System (INIS)

    Nuryanthi, Nunung; Yamaki, Tetsuya; Koshikawa, Hiroshi; Asano, Masaharu; Enomoto, Kazuyuki; Sawada, Shin-ichi; Maekawa, Yasunari; Voss, Kay-Obbe; Trautmann, Christina; Neumann, Reinhard

    2010-01-01

    Poly(vinylidene fluoride) (PVDF) membranes with conical and cylindrical nanopores were prepared in a controlled manner by the ion-track technique, which involved heavy-ion beam irradiation and subsequent alkaline etching. The etching behavior mainly depended on the energy deposition of the ion beams, and thus its depth distribution, estimated by theoretical simulation, was successfully applied to control the shapes and diameters of the etched pores. Scanning electron microscopy (SEM) and electrolytic conductometry provided an insight into the critical experimental parameters. Interestingly, applying a higher voltage to the conductometry cell promoted track etching up to breakthrough probably because electrophoretic migration of the dissolved products occurred out of each pore. (author)

  14. A Novel Poly(vinylidene fluoride)-Based 4-Miktoarm Star Terpolymer: Synthesis and Self-Assembly

    KAUST Repository

    Patil, Yogesh Raghunath; Bilalis, Panagiotis; Polymeropoulos, George; Almahdali, Sarah; Hadjichristidis, Nikolaos; Rodionov, Valentin

    2018-01-01

    A well-defined amphiphilic miktoarm polymer incorporating poly(vinylidene fluoride) (PVDF), polystyrene (PS), and poly(ethylene glycol) (PEG) blocks was synthesized via a combination of atom-transfer radical polymerization (ATRP), iodine transfer radical polymerization (ITP), and copper-catalyzed azide-alkyne cycloaddition (CuAAC). Morphology and self-assembly of this star polymer were examined in organic solvents and in water. The aggregates formed in water were found to possess unusual frustrated topology due to immiscibility of PS and PVDF. The polymer was evaluated for transport of small hydrophobic molecules in water.

  15. A Novel Poly(vinylidene fluoride)-Based 4-Miktoarm Star Terpolymer: Synthesis and Self-Assembly

    KAUST Repository

    Patil, Yogesh Raghunath

    2018-03-15

    A well-defined amphiphilic miktoarm polymer incorporating poly(vinylidene fluoride) (PVDF), polystyrene (PS), and poly(ethylene glycol) (PEG) blocks was synthesized via a combination of atom-transfer radical polymerization (ATRP), iodine transfer radical polymerization (ITP), and copper-catalyzed azide-alkyne cycloaddition (CuAAC). Morphology and self-assembly of this star polymer were examined in organic solvents and in water. The aggregates formed in water were found to possess unusual frustrated topology due to immiscibility of PS and PVDF. The polymer was evaluated for transport of small hydrophobic molecules in water.

  16. Flexible carbon nanofiber/polyvinylidene fluoride composite membranes as interlayers in high-performance Lithiumsbnd Sulfur batteries

    Science.gov (United States)

    Wang, Zhenhua; Zhang, Jing; Yang, Yuxiang; Yue, Xinyang; Hao, Xiaoming; Sun, Wang; Rooney, David; Sun, Kening

    2016-10-01

    Traditionally polyvinylidene fluoride membranes have been used in applications such as membrane distillation, wastewater treatment, desalination and separator fabrication. Within this work we demonstrate that a novel carbon nanofiber/polyvinylidene fluoride (CNF/PVDF) composite membrane can be used as an interlayer for Lithiumsbnd Sulfur (Lisbnd S) batteries yielding both high capacity and long cycling life. This PVDF membrane is shown to effectively separate dissolved lithium polysulfide with the high electronic conductivity CNF not only reducing the internal resistance in the sulfur cathode but also helping immobilize the polysulfide through its abundant nanospaces. The resulting Lisbnd S battery assembled with the CNF/PVDF composite membrane effectively solves the polysulfide permeation problem and exhibits excellent electrochemical performance. It is further shown that the CNF/PVDF electrode has an excellent cycling stability and retains a capacity of 768.6 mAh g-1 with a coulombic efficiency above 99% over 200 cycles at 0.5C, which is more than twice that of a cell without CNF/PVDF (374 mAh g-1). In addition, the low-cost raw materials and the simple preparation process of CNF/PVDF composite membrane is also amenable for industrial production.

  17. Vacuum-evaporated ferroelectric films and heterostructures of vinylidene fluoride/trifluoroethylene copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Draginda, Yu. A., E-mail: lbf@ns.crys.ras.ru; Yudin, S G; Lazarev, V V; Yablonskii, S V; Palto, S P [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2012-05-15

    The potential of the vacuum method for preparing ferroelectric films and photonic heterostructures from organic materials is studied. Vacuum-evaporated films of fluoropolymers and heterostructures on their basis are obtained and their ferroelectric and spectral properties are studied. In particular, homogeneous films of the well-known piezoelectric polymer polyvinylidene fluoride and ferroelectric material vinylidene fluoride/trifluoroethylene copolymer (P(VDF/TFE)) are produced. Experimental studies of vacuum-evaporated P(VDF/TFE) films confirmed their ferroelectric properties. The heterostructures composed of alternating layers of P(VDF/TFE) copolymer molecules and azodye molecules are fabricated by vacuum evaporation. Owing to the controlled layer thickness and a significant difference in the refractive indices of the P(VDF/TFE) copolymer and azodyes, these heterostructures exhibit properties of photonic crystals. This finding is confirmed by the occurrence of a photonic band in the absorption spectra of the heterostructures.

  18. Reflection and Transmission Coefficient of Yttrium Iron Garnet Filled Polyvinylidene Fluoride Composite Using Rectangular Waveguide at Microwave Frequencies

    Science.gov (United States)

    Soleimani, Hassan; Abbas, Zulkifly; Yahya, Noorhana; Shameli, Kamyar; Soleimani, Hojjatollah; Shabanzadeh, Parvaneh

    2012-01-01

    The sol-gel method was carried out to synthesize nanosized Yttrium Iron Garnet (YIG). The nanomaterials with ferrite structure were heat-treated at different temperatures from 500 to 1000 °C. The phase identification, morphology and functional groups of the prepared samples were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR), respectively. The YIG ferrite nanopowder was composited with polyvinylidene fluoride (PVDF) by a solution casting method. The magnitudes of reflection and transmission coefficients of PVDF/YIG containing 6, 10 and 13% YIG, respectively, were measured using rectangular waveguide in conjunction with a microwave vector network analyzer (VNA) in X-band frequencies. The results indicate that the presence of YIG in polymer composites causes an increase in reflection coefficient and decrease in transmission coefficient of the polymer. PMID:22942718

  19. Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template

    International Nuclear Information System (INIS)

    Lu Haiqiang; Zhang Lixiong; Xing Weihong; Wang Huanting; Xu Nanping

    2005-01-01

    TiO 2 hollow fibers were successfully prepared by using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. The preparation procedure includes repeated impregnation of the TiO 2 precursor in the pores of the polymeric membrane, and calcination to burn off the template, producing the TiO 2 hollow fibers. The TiO 2 hollow fibers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). TiO 2 hollow fibers with other structures, such as honeycomb monolith and spring, were also prepared by preshaping the polymeric membranes into the honeycomb structure and spring, respectively. The phase structure of the TiO 2 hollow fibers could be readily adjusted by changing the calcination temperature

  20. Novel poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide) blends for battery separators in lithium-ion applications

    International Nuclear Information System (INIS)

    Costa, C.M.; Nunes-Pereira, J.; Rodrigues, L.C.; Silva, M.M.; Ribelles, J.L. Gomez; Lanceros-Méndez, S.

    2013-01-01

    Highlights: ► New P(VDF-TrFE)/PEO polymer blends were prepared for battery separator. ► The porosity and hydrophilicity degree are tailored within this blend. ► Ionic conductivity depends on PEO presence and is stable with temperature. ► High ionic conductivity of 0.25 mS cm −1 for the 60/40 blend. -- Abstract: Polymer blends based on poly(vinylidene fluoride-trifluoroethylene)/poly(ethylene oxide), P(VDF-TrFE)/PEO for Li-ion battery separator applications have been prepared through solvent casting technique. The microstructure, hydrophilicity and electrolyte uptake strongly depend on PEO content within the blend. The best value of ionic conductivity at room temperature was 0.25 mS cm −1 for the 60/40 membrane. The membranes are electrochemically stable

  1. A hybrid strain and thermal energy harvester based on an infra-red sensitive Er3+ modified poly(vinylidene fluoride) ferroelectret structure.

    Science.gov (United States)

    Ghosh, Sujoy Kumar; Xie, Mengying; Bowen, Christopher Rhys; Davies, Philip R; Morgan, David J; Mandal, Dipankar

    2017-12-01

    In this paper, a novel infra-red (IR) sensitive Er 3+ modified poly(vinylidene fluoride) (PVDF) (Er-PVDF) film is developed for converting both mechanical and thermal energies into useful electrical power. The addition of Er 3+ to PVDF is shown to improve piezoelectric properties due to the formation of a self-polarized ferroelectric β-phase and the creation of an electret-like porous structure. In addition, we demonstrate that Er 3+ acts to enhance heat transfer into the Er-PVDF film due to its excellent infrared absorbance, which, leads to rapid and large temperature fluctuations and improved pyroelectric energy transformation. We demonstrate the potential of this novel material for mechanical energy harvesting by creating a durable ferroelectret energy harvester/nanogenerator (FTNG). The high thermal stability of the β-phase enables the FTNG to harvest large temperature fluctuations (ΔT ~ 24 K). Moreover, the superior mechanosensitivity, S M  ~ 3.4 VPa -1 of the FTNG enables the design of a wearable self-powered health-care monitoring system by human-machine integration. The combination of rare-earth ion, Er 3+ with the ferroelectricity of PVDF provides a new and robust approach for delivering smart materials and structures for self-powered wireless technologies, sensors and Internet of Things (IoT) devices.

  2. Enhanced electroactive and mechanical properties of poly(vinylidene fluoride) by controlling crystallization and interfacial interactions with low loading polydopamine coated BaTiO₃.

    Science.gov (United States)

    Jia, Nan; Xing, Qian; Liu, Xu; Sun, Jing; Xia, Guangmei; Huang, Wei; Song, Rui

    2015-09-01

    Poly(vinylidene fluoride) (PVDF) is a semi-crystalline polymer and the polar β-phase of PVDF shows superb electroactive properties. In order to enhance the β-phase of PVDF, extreme low content of BaTiO3 nanoparticles (BT-NPs) coated with polydopamine (Pdop) were incorporated into PVDF matrix by solution casting. The β-phase of the resulting PVDF nanocomposites film was dramatically increased and the d33 value reached 34.3±0.4 pCN(-1). It is found that the Pdop layer could improve the dispersibility and stability of the BT NPs in solution and endow the BT NPs good dispersity in the PVDF matrix. Moreover, the interfacial interaction between PVDF chains and the surface of BT-Pdop nanoparticles (BT-Pdop NPs) were revealed, in which the CF2 groups on PVDF could interact with the electron-rich plane of aromatic ring of Pdop moiety. This interaction, led to the increase of the crystallization activation energy as derived from the DSC nonisothermal crystallization measurement. The α-β crystal transformation, organization of interfacial interactions as well as the prevention of agglomeration of BT-NPs confer the improvement of mechanical and thermal properties of PVDF, such as toughness, tensile strength, elongation at break, and thermal conductivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Polyvinylidene Fluoride Micropore Membranes as Solid-Phase Extraction Disk for Preconcentration of Nanoparticulate Silver in Environmental Waters.

    Science.gov (United States)

    Zhou, Xiao-Xia; Lai, Yu-Jian; Liu, Rui; Li, Sha-Sha; Xu, Jing-Wen; Liu, Jing-Fu

    2017-12-05

    Efficient separation and preconcentration of trace nanoparticulate silver (NAg) from large-volume environmental waters is a prerequisite for reliable analysis and therefore understanding the environmental processes of silver nanoparticles (AgNPs). Herein, we report the novel use of polyvinylidene fluoride (PVDF) filter membrane for disk-based solid phase extraction (SPE) of NAg in 1 L of water samples with the disk-based SPE system, which consists of a syringe pump and a syringe filter holder to embed the filter membrane. While the PVDF membrane can selectively adsorb NAg in the presence of Ag + , aqueous solution of 2% (m/v) FL-70 is found to efficiently elute NAg. Analysis of NAg is performed following optimization of filter membrane and elution conditions with an enrichment factor of 1000. Additionally, transmission electron microscopy (TEM), UV-vis spectroscopy, and size-exclusion chromatography coupled with ICP-MS (SEC-ICP-MS) analysis showed that the extraction gives rise to no change in NAg size or shape, making this method attractive for practical applications. Furthermore, feasibility of the protocol is verified by applying it to extract NAg in four real waters with recoveries of 62.2-80.2% at 0.056-0.58 μg/L spiked levels. This work will facilitate robust studies of trace NAg transformation and their hazard assessments in the environment.

  4. Influence of miscibility phenomenon on crystalline polymorph transition in poly(vinylidene fluoride)/acrylic rubber/clay nanocomposite hybrid.

    Science.gov (United States)

    Abolhasani, Mohammad Mahdi; Naebe, Minoo; Jalali-Arani, Azam; Guo, Qipeng

    2014-01-01

    In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride) (PVDF) and acrylic rubber(ACM) was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found to be dominant in PVDF/ACM/Clay miscible hybrids. Flory-Huggins interaction parameter (B) was used to further explain the miscibility phenomenon observed. The B parameter was determined by combining the melting point depression and the binary interaction model. The estimated B values for the ternary PVDF/ACM/Clay and PVDF/ACM pairs were all negative, showing both proper intercalation of the polymer melt into the nanoclay galleries and the good miscibility of PVDF and ACM blend. The B value for the PVDF/ACM blend was almost the same as that measured for the PVDF/ACM/Clay hybrid, suggesting that PVDF chains in nanocomposite hybrids interact with ACM chains and that nanoclay in hybrid systems is wrapped by ACM molecules.

  5. Influence of miscibility phenomenon on crystalline polymorph transition in poly(vinylidene fluoride/acrylic rubber/clay nanocomposite hybrid.

    Directory of Open Access Journals (Sweden)

    Mohammad Mahdi Abolhasani

    Full Text Available In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride (PVDF and acrylic rubber(ACM was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found to be dominant in PVDF/ACM/Clay miscible hybrids. Flory-Huggins interaction parameter (B was used to further explain the miscibility phenomenon observed. The B parameter was determined by combining the melting point depression and the binary interaction model. The estimated B values for the ternary PVDF/ACM/Clay and PVDF/ACM pairs were all negative, showing both proper intercalation of the polymer melt into the nanoclay galleries and the good miscibility of PVDF and ACM blend. The B value for the PVDF/ACM blend was almost the same as that measured for the PVDF/ACM/Clay hybrid, suggesting that PVDF chains in nanocomposite hybrids interact with ACM chains and that nanoclay in hybrid systems is wrapped by ACM molecules.

  6. Effects of polarization of polar semiconductor on electrical properties of poly(vinylidene fluoride-trifluoroethylene)/ZnO heterostructures

    International Nuclear Information System (INIS)

    Yamada, Hiroaki; Yoshimura, Takeshi; Fujimura, Norifumi

    2015-01-01

    The electrical properties of heterostructures composed of poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) and ZnO with different crystallographic polarities, i.e., O- and Zn-polar ZnO, were investigated. Distinct differences in the capacitance-voltage and polarization-voltage characteristics between the P(VDF-TrFE)/O- and Zn-polar ZnO were obtained in the depletion regions of ZnO. The band configurations were determined by X-ray photoelectron spectroscopy (XPS) using a synchrotron radiation beam to analyze the differences in the electrical properties of the P(VDF-TrFE)/O- and Zn-polar ZnO. The XPS spectra indicated that the valence band maximum of P(VDF-TrFE) is 2.9 and 2.7 eV higher than Zn- and O-polar ZnO, respectively. Thus, both structures have staggered band configurations with large valence band offsets, and the spontaneous polarization of ZnO is less effective on the band lineup. The electrical properties of the P(VDF-TrFE)/ZnO heterostructures are modulated through carrier generation because of the polarization-mediated interface charges and the staggered band alignments of the P(VDF-TrFE)/ZnO with a large valence band offset

  7. Influence of Miscibility Phenomenon on Crystalline Polymorph Transition in Poly(Vinylidene Fluoride)/Acrylic Rubber/Clay Nanocomposite Hybrid

    Science.gov (United States)

    Abolhasani, Mohammad Mahdi; Naebe, Minoo; Jalali-Arani, Azam; Guo, Qipeng

    2014-01-01

    In this paper, intercalation of nanoclay in the miscible polymer blend of poly(vinylidene fluoride) (PVDF) and acrylic rubber(ACM) was studied. X-ray diffraction was used to investigate the formation of nanoscale polymer blend/clay hybrid. Infrared spectroscopy and X-ray analysis revealed the coexistence of β and γ crystalline forms in PVDF/Clay nanocomposite while α crystalline form was found to be dominant in PVDF/ACM/Clay miscible hybrids. Flory-Huggins interaction parameter (B) was used to further explain the miscibility phenomenon observed. The B parameter was determined by combining the melting point depression and the binary interaction model. The estimated B values for the ternary PVDF/ACM/Clay and PVDF/ACM pairs were all negative, showing both proper intercalation of the polymer melt into the nanoclay galleries and the good miscibility of PVDF and ACM blend. The B value for the PVDF/ACM blend was almost the same as that measured for the PVDF/ACM/Clay hybrid, suggesting that PVDF chains in nanocomposite hybrids interact with ACM chains and that nanoclay in hybrid systems is wrapped by ACM molecules. PMID:24551141

  8. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO2/polyethylene glycol mixture

    International Nuclear Information System (INIS)

    Zhang, Jie; Wang, Zhiwei; Zhang, Xingran; Zheng, Xiang; Wu, Zhichao

    2015-01-01

    Graphical abstract: - Highlights: • Nano-TiO 2 /polyethylene glycol (PEG) mixture was used to modify PVDF membranes. • The steric hindrance effects of PEG enabled the dispersion of nanoparticles. • The energy barrier between SMP and modified membranes was increased. • The modification by nano-TiO 2 /PEG well improved the anti-fouling ability. - Abstract: Titanium dioxide (TiO 2 ) nanoparticles/polyethylene glycol (PEG) mixture was used to modify polyvinylidene fluoride (PVDF) membranes aiming to improve their antifouling ability. The use of PEG could improve the dispersion of nanoparticles thanks to steric hindrance effects. Test results showed that compared to the original PVDF membrane, the modified membranes had higher hydrophilicity and lower negative Zeta potential, facilitating membrane fouling control. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that the addition of TiO 2 nanoparticles improved their electron donor monopolarity, i.e., enhanced electron-donating ability. The interaction energy barrier between soluble microbial products (SMP) and membrane surfaces was also improved, indicating that anti-fouling ability of the modified membrane was elevated. The optimal dosage of nano-TiO 2 was found to be 0.15%, and further increase of dosage resulted in the aggregation of nanoparticles which consequently impaired the modification efficiency. Quartz crystal microbalance with dissipation (QCM-D) monitoring and SMP filtration tests confirmed the antifouling ability of the modified membrane

  9. Surface zwitterionicalization of poly(vinylidene fluoride) membranes from the entrapped reactive core-shell silica nanoparticles.

    Science.gov (United States)

    Zhu, Li-Jing; Zhu, Li-Ping; Zhang, Pei-Bin; Zhu, Bao-Ku; Xu, You-Yi

    2016-04-15

    We demonstrate the preparation and properties of poly(vinylidene fluoride) (PVDF) filtration membranes modified via surface zwitterionicalization mediated by reactive core-shell silica nanoparticles (SiO2 NPs). The organic/inorganic hybrid SiO2 NPs grafted with poly(methyl meth acrylate)-block-poly(2-dimethylaminoethyl methacrylate) copolymer (PMMA-b-PDMAEMA) shell were prepared by surface-initiated reversible addition fragmentation chain transfer (SI-RAFT) polymerization and then used as a membrane-making additive of PVDF membranes. The PDMAEMA exposed on membrane surface and pore walls were quaternized into zwitterionic poly(sulfobetaine methacrylate) (PSBMA) using 1,3-propane sultone (1,3-PS) as the quaternization agent. The membrane surface chemistry and morphology were analyzed by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), respectively. The hydrophilicity, permeability and antifouling ability of the investigated membranes were evaluated in detail. It was found that the PSBMA chains brought highly-hydrophilic and strong fouling resistant characteristics to PVDF membranes due to the powerful hydration of zwitterionic surface. The SiO2 cores and PMMA chains in the hybrid NPs play a role of anchors for the linking of PSBMA chains to membrane surface. Compared to the traditional strategies for membrane hydrophilic modification, the developed method in this work combined the advantages of both blending and surface reaction. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Largely enhanced dielectric properties of carbon nanotubes/polyvinylidene fluoride binary nanocomposites by loading a few boron nitride nanosheets

    International Nuclear Information System (INIS)

    Yang, Minhao; Zhao, Hang; He, Delong; Bai, Jinbo

    2016-01-01

    The ternary nanocomposites of boron nitride nanosheets (BNNSs)/carbon nanotubes (CNTs)/polyvinylidene fluoride (PVDF) are fabricated via a combination of solution casting and extrusion-injection processes. The effects of BNNSs on the electrical conductivity, dielectric behavior, and microstructure changes of CNTs/PVDF binary nanocomposites are systematically investigated. A low percolation value (f_c) for the CNTs/PVDF binary system is obtained due to the integration of solution and melting blending procedures. Two kinds of CNTs/PVDF binary systems with various CNTs contents (f_C_N_T_s) as the matrix are discussed. The results reveal that compared with CNTs/PVDF binary systems at the same f_C_N_T_s, the ternary BNNSs/CNTs/PVDF nanocomposites exhibit largely enhanced dielectric properties due to the improvement of the CNTs dispersion state and the conductive network. The dielectric constant of CNTs/PVDF binary nanocomposite with 6 vol. % CNTs (f_C_N_T_s   f_c), it displays a 43.32% improvement from 1325 to 1899 after the addition of 3 vol. % BNNSs. The presence of BNNSs facilitates the formation of the denser conductive network. Meanwhile, the ternary BNNSs/CNTs/PVDF systems exhibit a low dielectric loss. The adjustable dielectric properties could be obtained by employing the ternary systems due to the microstructure changes of nanocomposites.

  11. High Thermal Gradient in Thermo-electrochemical Cells by Insertion of a Poly(Vinylidene Fluoride) Membrane

    Science.gov (United States)

    Hasan, Syed Waqar; Said, Suhana Mohd; Sabri, Mohd Faizul Mohd; Bakar, Ahmad Shuhaimi Abu; Hashim, Nur Awanis; Hasnan, Megat Muhammad Ikhsan Megat; Pringle, Jennifer M.; Macfarlane, Douglas R.

    2016-07-01

    Thermo-Electrochemical cells (Thermocells/TECs) transform thermal energy into electricity by means of electrochemical potential disequilibrium between electrodes induced by a temperature gradient (ΔT). Heat conduction across the terminals of the cell is one of the primary reasons for device inefficiency. Herein, we embed Poly(Vinylidene Fluoride) (PVDF) membrane in thermocells to mitigate the heat transfer effects - we refer to these membrane-thermocells as MTECs. At a ΔT of 12 K, an improvement in the open circuit voltage (Voc) of the TEC from 1.3 mV to 2.8 mV is obtained by employment of the membrane. The PVDF membrane is employed at three different locations between the electrodes i.e. x = 2 mm, 5 mm, and 8 mm where ‘x’ defines the distance between the cathode and PVDF membrane. We found that the membrane position at x = 5 mm achieves the closest internal ΔT (i.e. 8.8 K) to the externally applied ΔT of 10 K and corresponding power density is 254 nWcm-2 78% higher than the conventional TEC. Finally, a thermal resistivity model based on infrared thermography explains mass and heat transfer within the thermocells.

  12. A small graphene oxide sheet/polyvinylidene fluoride bilayer actuator with large and rapid responses to multiple stimuli.

    Science.gov (United States)

    Xu, Guochuang; Zhang, Miao; Zhou, Qinqin; Chen, Hongwu; Gao, Tiantian; Li, Chun; Shi, Gaoquan

    2017-11-16

    A high-performance actuator should be able to deliver large-shape deformations, fast actuations and sensitive responses to multiple stimuli. Here, we report such an actuator constructed from one layer of polyvinylidene fluoride (PVDF) with a high coefficient of thermal expansion (CTE), and another layer of small sheets of graphene oxide (SGO) with a negative CTE. The opposite deformations of both actuation layers make the SGO/PVDF bilayer actuator highly sensitive to the temperature stimulus with a large bending sensitivity of 1.5 cm -1 °C -1 . Upon irradiation with 60 mW cm -2 infrared light, this SGO/PVDF bilayer actuator displayed an extremely rapid tip displacement rate of 140 mm s -1 . Furthermore, this actuator can also sensitively respond to moisture because of its SGO layer, showing a curvature change from -22 to 13 cm -1 upon changing the relative humidity (RH) from 11% to 86%. This actuator can generate a contractile or relaxed stress 18 times that of mammalian skeletal muscle, under light irradiation or moisture with a response time as short as 1 s, being capable of lifting an object with a weight 80 times that of itself. Furthermore, it also showed excellent stability and repeatability.

  13. Enhanced antifouling behaviours of polyvinylidene fluoride membrane modified through blending with nano-TiO{sub 2}/polyethylene glycol mixture

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jie [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Wang, Zhiwei, E-mail: zwwang@tongji.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zhang, Xingran [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China); Zheng, Xiang, E-mail: zhengxiang7825@163.com [School of Environment and Natural Resources, Renmin University of China, Beijing, 100872 (China); Wu, Zhichao [State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092 (China)

    2015-08-01

    Graphical abstract: - Highlights: • Nano-TiO{sub 2}/polyethylene glycol (PEG) mixture was used to modify PVDF membranes. • The steric hindrance effects of PEG enabled the dispersion of nanoparticles. • The energy barrier between SMP and modified membranes was increased. • The modification by nano-TiO{sub 2}/PEG well improved the anti-fouling ability. - Abstract: Titanium dioxide (TiO{sub 2}) nanoparticles/polyethylene glycol (PEG) mixture was used to modify polyvinylidene fluoride (PVDF) membranes aiming to improve their antifouling ability. The use of PEG could improve the dispersion of nanoparticles thanks to steric hindrance effects. Test results showed that compared to the original PVDF membrane, the modified membranes had higher hydrophilicity and lower negative Zeta potential, facilitating membrane fouling control. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) analysis indicated that the addition of TiO{sub 2} nanoparticles improved their electron donor monopolarity, i.e., enhanced electron-donating ability. The interaction energy barrier between soluble microbial products (SMP) and membrane surfaces was also improved, indicating that anti-fouling ability of the modified membrane was elevated. The optimal dosage of nano-TiO{sub 2} was found to be 0.15%, and further increase of dosage resulted in the aggregation of nanoparticles which consequently impaired the modification efficiency. Quartz crystal microbalance with dissipation (QCM-D) monitoring and SMP filtration tests confirmed the antifouling ability of the modified membrane.

  14. Novel electrospun polyvinylidene fluoride-graphene oxide-silver nanocomposite membranes with protein and bacterial antifouling characteristics

    Directory of Open Access Journals (Sweden)

    C. Liu

    2018-04-01

    Full Text Available We developed and fabricated novel polyvinylidene fluoride (PVDF-(0.5–2%Ag and PVDF-(0.5–2%Ag-1% graphene oxide (GO nanocomposite membranes with antifouling properties through electrospinning. Silver nanoparticles (AgNPs were in situ synthesized from silver nitrate precursor directly. The tensile properties, wetting, antifouling characteristics of pristine PVDF and its nanocomposite membranes were studied. Tensile tests showed that the addition of 0.5–2% AgNPs to PVDF improves its elastic modulus and tensile strength markedly. A further increase in both tensile modulus and strength of PVDF were obtained by hybridizing AgNPs with 1% GO. Water contact angle measurements revealed that the incorporation of AgNPs or AgNPs/GO nanofillers into PVDF decreases its degree of hydrophobicity. This led to the nanocomposite membranes having higher water flux permeation. In addition, AgNPs and AgNPs/GO fillers played a crucial role against protein and bacterial fouling of the resulting composite membranes. The antibacterial activities of electrospun nanocomposite membranes were assessed against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. On the basis of water contact angle, water permeation flux and antifouling results, electrospun PVDF-2% Ag-GO composite membrane was found to exhibit excellent filtration performance, protein antifouling and bactericidal activities. Thus such a fibrous nanocomposite is considered as a high-potential membrane for water purification and disinfection applications.

  15. Unzipped multiwalled carbon nanotubes-incorporated poly(vinylidene fluoride) nanocomposites with enhanced interface and piezoelectric β phase.

    Science.gov (United States)

    He, Linghao; Xia, Guangmei; Sun, Jing; Zhao, Qiaoling; Song, Rui; Ma, Zhi

    2013-03-01

    An improved method is described for the fabrication of poly(vinylidene fluoride) (PVDF)/carbon nanotubes (CNTs) hybrid materials to solve intrinsic limitation of CNTs. In this study, multiwalled carbon nanotubes (MWCNTs) were unzipped by an oxidative unzipping process before dispersing in PVDF matrix, and unzipped MWCNTs (μCNTs) with different unzipping degrees were obtained through controlling the amounts of oxidant (KMnO(4)). Due to the increased available interface area and specific interaction between the oxygen-containing groups (such as >C=O) in μCNTs and the >CF(2) group of PVDF, the dispersion of μCNTs in PVDF matrix is tremendously improved. The resulting PVDF/μCNTs nanocomposites were characterized by wide angle X-ray diffraction, Fourier transform infrared spectroscopy, differential scanning calorimetry, scanning electron microscopy, and transmission electron microscopy. It is found that μCNTs nucleate PVDF crystallization and enhance piezoelectric β phase with a concomitant decrease of α phase. This is particularly true for the nanocomposites including the μCNTs with higher unzipping degree, in which the mass crystallinity and content of β phase (F(β)) were enhanced, implied by the increased piezoelectric constant d(33). In addition, the increased storage modulus (E') tested by dynamic mechanical analysis confirmed that μCNTs were more effective than pristine MWNTs in terms of reinforcing polymers. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Frequency dependence of electrical properties of polyvinylidene fluoride/graphite electrode waste/natural carbon black composite

    Science.gov (United States)

    Insiyanda, D. R.; Indayaningsih, N.; Prihandoko, B.; Subhan, A.; Khaerudini, D. S.; Widodo, H.; Destyorini, F.; Chaer, A.

    2018-03-01

    Polyvinylidene fluoride (PVdF) is a semi-crystalline thermoplastic material with remarkably high piezoelectric coefficient and an attractive polymer matrix for micro-composite with superior mechanical and electrical properties. The conductive filler is obtained from Graphite Electrode Waste (GEW) and Natural Carbon Black (NCB). The variation of composite content (%) of PVdF/NCB/GEW were 100/0/0, 95/5/0, 95/0/5, 95/2.5/2.5. This experiment employed dry dispersion method for material mixing. The materials were then moulded using hot press machine with compression parameters of P = 5.5 MPa, T = 150 °C, t = 60 minutes, A = 5×5×(0.2 - 0.4) cm3. The electrical conductivity properties of pure PVdF, as well as PVdF/GEW, PVdF/NCB, and PVdF/NCB/GEW composites were investigated in a frequency range of 100 to 100000 Hz. The PVdF/GEW sample obtained the highest electrical conductivity. It is concluded that GEW and NCB can be incorporated into PVdF as a conductive filler to increase the conductivity of conductive material composite without solvent.

  17. Polarization tunable photogenerated carrier transfer of CH3NH3PbI3/polyvinylidene fluoride heterostructure

    Science.gov (United States)

    Yang, Kang; Deng, Zun-Yi; Feng, Hong-Jian

    2017-10-01

    The integration of ferroelectrics and organic-inorganic halide perovskites could be a promising way to facilitate the separation of electron-hole pairs and charge extraction for the application of solar cells. To explore the effect of the external ferroelectric layer on the CH3NH3PbI3 (MAPbI3) side, we perform first-principles calculations to study the charge transfer properties of the MAPbI3/polyvinylidene fluoride (PVDF) heterostructure. Our calculations demonstrate that the ferroelectric polarization pointing to the PVDF side can clearly facilitate the separation of photo-induced carriers and enhance charge extraction from MAPbI3, while opposite polarization direction hinders the charge extraction and collection. Notably, the carrier behavior at the interface is strongly tuned by the electric field associated with the ferroelectric polarization. In addition, excited state simulation confirms the tunable charge transfer of the MAPbI3/PVDF heterojunction. Therefore, the polarization-driven charge transfer mechanism provides a route for fabricating the ferroelectrics-based high-efficiency photovoltaics and switchable diode devices.

  18. Preparation of novel poly(vinylidene fluoride)/TiO2 photocatalysis membranes for use in direct contact membrane distillation

    Science.gov (United States)

    Li, Yukun; Dong, Shuying; Zhu, Liang

    2018-03-01

    Immobilization of TiO2 is a potential approach to obtain photocatalytic membranes that could eliminate concentration polarization in sewage disposal for direct contact membrane distillation (DCMD) process. A simple non-solvent-induced phase separation (NIPS) method was proposed to prepare poly(vinylidene fluoride) (PVDF) membrane, and the double-coating technology was further used to prepare the self-cleaning membranes with different TiO2 content. The effects of TiO2 nano-particles on membrane crystal form, morphology, porosity, pore size, pore size distribution, hydrophobicity, permeation, and photocatalytic efficiency were investigated, respectively. The flux of the prepared membranes is higher than the membrane (MS) provided by Membrane Solutions, LLC, in DCMD process. The contact angle between water and membrane could be increased 22° by introducing photocatalytic layer containing TiO2. During the photocatalytic test, 65.78-96.31% degrading rate of 15 mg/L Rhodamine B (RhB) was achieved. The relative flux of the membrane T-3 can be recovered to 0.96 in photocatalysis-membrane reactor for 8 h UV radiation. The fabricated membrane has great potential in high-salty dyeing wastewater treatment due to its high hydrophobicity and photocatalytic capability. [Figure not available: see fulltext.

  19. Improved compatibility between polystyrene and poly(vinylidene fluoride) by the addition of urea

    International Nuclear Information System (INIS)

    Melad, O.; Teim, O.A.; Sobeh, E.

    2005-01-01

    The viscosity behavior of dilute urea solution of dimethylformamide (Dmf) of Polystyrene-Poly(vinylidene fluoride) has been studied at 25 degree C. The results show that the polymer mixtures are incompatible in DMF solution in the absence of urea. The influence of urea addition on the degree of compatibility of the polymer mixture has been studied in terms of the compatibility parameters (A6/M, kbm , A [77] ,a and /?) respectively

  20. Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films

    KAUST Repository

    Hu, Weijin

    2014-04-24

    In this work, switching dynamics of poly(vinylidene fluoride- trifluoroethylene) [P(VDF-TrFE)] copolymer films are investigated over unprecedentedly wide ranges of temperature and electric field. Remarkably, domain switching of copolymer films obeys well the classical domain nucleation and growth model although the origin of ferroelectricity in organic ferroelectric materials inherently differs from the inorganic counterparts. A lower coercivity limit of 50 ...MV/m and 180 domain wall energy of 60 ...mJ/m 2 are determined for P(VDF-TrFE) films. Furthermore, we discover in copolymer films an anomalous temperature-dependent crossover behavior between two power-law scaling regimes of frequency-dependent coercivity, which is attributed to the transition between flow and creep motions of domain walls. Our observations shed new light on the switching dynamics of semi-crystalline ferroelectric polymers, and such understandings are critical for realizing their reliable applications.

  1. Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films

    KAUST Repository

    Hu, Weijin; Juo, Deng-Ming; You, Lu; Wang, Junling; Chen, Yi-Chun; Chu, Ying-Hao; Wu, Tao

    2014-01-01

    In this work, switching dynamics of poly(vinylidene fluoride- trifluoroethylene) [P(VDF-TrFE)] copolymer films are investigated over unprecedentedly wide ranges of temperature and electric field. Remarkably, domain switching of copolymer films obeys well the classical domain nucleation and growth model although the origin of ferroelectricity in organic ferroelectric materials inherently differs from the inorganic counterparts. A lower coercivity limit of 50 ...MV/m and 180 domain wall energy of 60 ...mJ/m 2 are determined for P(VDF-TrFE) films. Furthermore, we discover in copolymer films an anomalous temperature-dependent crossover behavior between two power-law scaling regimes of frequency-dependent coercivity, which is attributed to the transition between flow and creep motions of domain walls. Our observations shed new light on the switching dynamics of semi-crystalline ferroelectric polymers, and such understandings are critical for realizing their reliable applications.

  2. Photocatalytic Degradation of Oil using Polyvinylidene Fluoride/Titanium Dioxide Composite Membrane for Oily Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Rusli Ummi Nadiah

    2016-01-01

    Full Text Available Production of industrial wastewater is increasing as the oil and gas industry grows rapidly over the years. The constituents in the industrial wastewater such as organic and inorganic matters, dispersed and lubricant oil and metals which have high toxicity become the major concern to the environment and ecosystem. There are many technologies are being used for oil removal from industrial wastewater. However, there are still needs to find an effective technology to treat oily wastewater before in can be discharge safely to the environment. Membrane technology is an attractive separation technology to treat oily wastewater. The aim of this study is to fabricate polyvinylidene/titanium dioxide (PVDF/TiO2 composite membrane with further treatment using hot pressed method to enhance the adhesion between TiO2 with the membrane surfaces. In this study the structural and physical properties of fabricated membrane were conducted using X-ray diffraction (XRD and Fourier transform infrared spectroscopy (FTIR respectively. The photocatalytic degradation of oil was measured using UV-Vis Spectroscopy. The FTIR results confirmed that, hot pressed PVDF/TiO2 membrane TiO2 was successfully deposited onto PVDF membranes surface and XRD results shows that the XRD pattern of PVDF//TiO2 found that the crystalline structure was remained unchanged after hot pressed. Clear water was obtained after synthetic oily wastewater was exposed to visible light for at least 6 hours. In conclusion, PVDF/TiO2 composite membrane can be a potential candidate to degrade oil in oily wastewater and suggested to possess an excellent performance if perform simultaneously with membrane separation process.

  3. Effect of annealing on phase transition in poly(vinylidene fluoride)

    Indian Academy of Sciences (India)

    Here we report the crystallization of both and -phase PVDF films by varying preparation temperature using DMSO solvent. The -phase PVDF films were annealed at 70, 90, 110, 130 and 160°C for five hours. The changes in the phase contents in the PVDF at different annealing conditions have been described.

  4. Elastocaloric effect in poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) terpolymer

    Science.gov (United States)

    Yoshida, Yukihiro; Yuse, Kaori; Guyomar, Daniel; Capsal, Jean-Fabien; Sebald, Gael

    2016-06-01

    The elastocaloric properties of poly (vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] terpolymer were directly characterized using an infrared imaging camera. At a strain of 12%, a reversible adiabatic temperature variation of 2.15 °C was measured, corresponding to an isothermal entropy variation of 21.5 kJ m-3 K-1 or 11 J kg-1 K-1. In comparison with other elastocaloric materials, P(VDF-TrFE-CTFE) appears to represent a trade-off between the large required stresses in shape memory alloys and the large required strains in natural rubber. The internal energy of the P(VDF-TrFE-CTFE) polymer was found to be independent of the strain, resulting in complete conversion of the mechanical work into heat, as for pure elastomeric materials. The elastocaloric effect therefore originates from a pure entropic elasticity, which is likely to be related to the amorphous phase of the polymer only.

  5. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal

    International Nuclear Information System (INIS)

    Zeng, Guangyong; He, Yi; Zhan, Yingqing; Zhang, Lei; Pan, Yang; Zhang, Chunli; Yu, Zongxue

    2016-01-01

    Highlights: • A novel PVDF nanofiltration membrane was prepared by incorporation of A-HNTs. • HNTs dispersed well in membrane matrix after APTES modification. • The membrane exhibited excellent hydrophilicity and antifouling properties. • A high dye and heavy metal ions removal was realized by membrane separation. - Abstract: Membrane separation is an effective method for the removal of hazardous materials from wastewater. Halloysite nanotubes (HNTs) were functionalized with 3-aminopropyltriethoxysilane (APTES), and novel polyvinylidene fluoride (PVDF) nanofiltration membranes were prepared by blending with various concentrations of APTES grafted HNTs (A-HNTs). The morphology structure of the membranes were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). The contact angle (CA), pure water flux (PWF) and antifouling capacity of membranes were investigated in detail. In addition, the separation performance of membranes were reflected by the removal of dye and heavy metal ions in simulated wastewater. The results revealed that the hydrophilicity of A-HNTs blended PVDF membrane (A-HNTs@PVDF) was enhanced significantly. Owing to the electrostatic interaction between membrane surface and dye molecules, the dye rejection ratio of 3% A-HNTs@PVDF membrane reached 94.9%. The heavy metal ions rejection ratio and adsorption capacity of membrane were also improved with the addition of A-HNTs. More importantly, A-HNTs@PVDF membrane exhibited excellent rejection stability and reuse performances after several times fouling and washing tests. It can be expected that the present work will provide insight into a new method for membrane modification in the field of wastewater treatment.

  6. Preparation and Characterization of a Cross-linked Matrimid/Polyvinylidene Fluoride Composite Membrane for H2/N2 Separation

    Directory of Open Access Journals (Sweden)

    Mahmood Esmaeilipur

    2017-01-01

    Full Text Available A double layer composite membrane was fabricated by matrimid 5218 as a selective layer on polyvinylidene fluoride (PVDF, a porous asymmetric membrane, as a sublayer. The effect of chemical cross-linking of Matrimid 5218 by ethylenediamine (EDA was investigated on gas transport properties of the corresponding membrane. The permeability levels of hydrogen (H2 and nitrogen (N2 were measured through the fabricated composite membranes at 25°C under pressure range of 2-8 bar. Scanning electron microscopy (SEM was used for morphological observations of the composite membranes. The Matrimid membranes before and after cross-linking modification were characterized by the Fourier transform infrared (FTIR spectroscopy, X-ray diffraction (XRD and density measurement. The FTIR results showed the conversion of imide functional groups into amide through the crosslinking reaction in Matrimid. The XRD results demonstrated a reduction in d-spacing between the polymer chains through cross-linking reaction. Measuring the density of each membrane's partial selective layer and calculating the corresponding fractional free volume revealed an increase in the density and reduced free volumes in Matrimid through the cross-linking reaction. Moreover, by increasing the EDA concentration, the gas permeability in each membrane decreased significantly for nitrogen compared to hydrogen which could be related to lower gas diffusivity through chain packing due to cross-linking of the polymer. The H2/N2 selectivity at 2 bar increased through the cross-linking modification from 56.5 for the pure Matrimid to 79.4 for the composite membrane containing 12 wt% EDA. The effect of pressure on gas permeability through the composite membranes was investigated and the results found to be in agreement with the behavior of less soluble gases in the glassy polymers. Moreover, the H2/N2 selectivity decreased first at low EDA content (0-4 wt%, before reaching a constant value at 8 wt% EDA and

  7. Novel polyvinylidene fluoride nanofiltration membrane blended with functionalized halloysite nanotubes for dye and heavy metal ions removal

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Guangyong [State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); He, Yi, E-mail: heyi@swpu.edu.cn [State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); Zhan, Yingqing; Zhang, Lei; Pan, Yang; Zhang, Chunli; Yu, Zongxue [State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, Sichuan 610500 (China); College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, Sichuan 610500 (China)

    2016-11-05

    Highlights: • A novel PVDF nanofiltration membrane was prepared by incorporation of A-HNTs. • HNTs dispersed well in membrane matrix after APTES modification. • The membrane exhibited excellent hydrophilicity and antifouling properties. • A high dye and heavy metal ions removal was realized by membrane separation. - Abstract: Membrane separation is an effective method for the removal of hazardous materials from wastewater. Halloysite nanotubes (HNTs) were functionalized with 3-aminopropyltriethoxysilane (APTES), and novel polyvinylidene fluoride (PVDF) nanofiltration membranes were prepared by blending with various concentrations of APTES grafted HNTs (A-HNTs). The morphology structure of the membranes were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). The contact angle (CA), pure water flux (PWF) and antifouling capacity of membranes were investigated in detail. In addition, the separation performance of membranes were reflected by the removal of dye and heavy metal ions in simulated wastewater. The results revealed that the hydrophilicity of A-HNTs blended PVDF membrane (A-HNTs@PVDF) was enhanced significantly. Owing to the electrostatic interaction between membrane surface and dye molecules, the dye rejection ratio of 3% A-HNTs@PVDF membrane reached 94.9%. The heavy metal ions rejection ratio and adsorption capacity of membrane were also improved with the addition of A-HNTs. More importantly, A-HNTs@PVDF membrane exhibited excellent rejection stability and reuse performances after several times fouling and washing tests. It can be expected that the present work will provide insight into a new method for membrane modification in the field of wastewater treatment.

  8. Controlled Grafting of Poly(methyl methacrylate) Brushes on Poly(vinylidene fluoride) Powders by Surface-initiated Atom Transfer Radical Polymerization

    Institute of Scientific and Technical Information of China (English)

    TANG Zhaoqi; LI Wei; LIU Lanqin; HUANG Lei; ZHOU Jin; YU Haiyin

    2009-01-01

    Controlled grafting of well-defined polymer brushes of methyl methacrylate (MMA) on the poly(vinylidene fluoride) (PVDF) powders was carded out by the surface-initiated atom transfer radical polymerization (ATRP). The ATRP initiator was anchored on the PVDF surface by alkaline treatment, followed by UV-induced bromination; then methyl methacrylate (MMA) was grafted onto the brominated PVDF by the ATRP technique. The chemical composition changes of PVDF were characterized by Fourier transform-infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). FT-IR and XPS results clearly indicated the successful graft of poly(methyl methacrylate) onto the PVDF surface.

  9. Enhance the Pyroelectricity of Polyvinylidene Fluoride by Graphene-Oxide Doping

    Directory of Open Access Journals (Sweden)

    Yuh-Chung Hu

    2014-04-01

    Full Text Available The high quality properties and benefits of graphene-oxide have generated an active area of research where many investigations have shown potential applications in various technological fields. This paper proposes a methodology for enhancing the pyro-electricity of PVDF by graphene-oxide doping. The PVDF film with graphene-oxide is prepared by the sol-gel method. Firstly, PVDF and graphene-oxide powders are dispersed into dimethylformamide as solvent to form a sol solution. Secondly, the sol solution is deposited on a flexible ITO/PET substrate by spin-coating. Thirdly, the particles in the sol solution are polymerized through baking off the solvent to produce a gel in a state of a continuous network of PVDF and graphene-oxide. The final annealing process pyrolyzes the gel and form a β-phase PVDF film with graphene-oxide doping. A complete study on the process of the graphene oxide doping of PVDF is accomplished. Some key points about the process are addressed based on experiments. The solutions to some key issues are found in this work, such as the porosity of film, the annealing temperature limitation by the use of flexible PET substrate, and the concentrations of PVDF and graphene-oxide.

  10. Facile fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) nanodot arrays for organic ferroelectric memory

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Huajing [Department of Applied Physics, The Hong Kong Polytechnic University (PolyU) Hunghom, Kowloon (Hong Kong); Department of Chemistry, Tsinghua University, Beijing 100084 (China); Yan, Qingfeng, E-mail: yanqf@mail.tsinghua.edu.cn, E-mail: jiyan.dai@polyu.edu.hk; Geng, Chong; Li, Qiang [Department of Chemistry, Tsinghua University, Beijing 100084 (China); Chan, Ngai Yui; Au, Kit; Ng, Sheung Mei; Leung, Chi Wah; Wa Chan, Helen Lai; Dai, Jiyan, E-mail: yanqf@mail.tsinghua.edu.cn, E-mail: jiyan.dai@polyu.edu.hk [Department of Applied Physics, The Hong Kong Polytechnic University (PolyU) Hunghom, Kowloon (Hong Kong); Yao, Jianjun [Asylum Research, Oxford Instruments, Shanghai 200233 (China); Guo, Dong [Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-01-07

    Nano-patterned ferroelectric materials have attracted significant attention as the presence of two or more thermodynamically equivalent switchable polarization states can be employed in many applications such as non-volatile memory. In this work, a simple and effective approach for fabrication of highly ordered poly(vinylidene fluoride–trifluoroethylene) P(VDF-TrFE) nanodot arrays is demonstrated. By using a soft polydimethylsiloxane mold, we successfully transferred the 2D array pattern from the initial monolayer of colloidal polystyrene nanospheres to the imprinted P(VDF-TrFE) films via nanoimprinting. The existence of a preferred orientation of the copolymer chain after nanoimprinting was confirmed by Fourier transform infrared spectra. Local polarization switching behavior was measured by piezoresponse force microscopy, and each nanodot showed well-formed hysteresis curve and butterfly loop with a coercive field of ∼62.5 MV/m. To illustrate the potential application of these ordered P(VDF-TrFE) nanodot arrays, the writing and reading process as non-volatile memory was demonstrated at a relatively low voltage. As such, our results offer a facile and promising route to produce arrays of ferroelectric polymer nanodots with improved piezoelectric functionality.

  11. Facile fabrication of highly ordered poly(vinylidene fluoride-trifluoroethylene) nanodot arrays for organic ferroelectric memory

    International Nuclear Information System (INIS)

    Fang, Huajing; Yan, Qingfeng; Geng, Chong; Li, Qiang; Chan, Ngai Yui; Au, Kit; Ng, Sheung Mei; Leung, Chi Wah; Wa Chan, Helen Lai; Dai, Jiyan; Yao, Jianjun; Guo, Dong

    2016-01-01

    Nano-patterned ferroelectric materials have attracted significant attention as the presence of two or more thermodynamically equivalent switchable polarization states can be employed in many applications such as non-volatile memory. In this work, a simple and effective approach for fabrication of highly ordered poly(vinylidene fluoride–trifluoroethylene) P(VDF-TrFE) nanodot arrays is demonstrated. By using a soft polydimethylsiloxane mold, we successfully transferred the 2D array pattern from the initial monolayer of colloidal polystyrene nanospheres to the imprinted P(VDF-TrFE) films via nanoimprinting. The existence of a preferred orientation of the copolymer chain after nanoimprinting was confirmed by Fourier transform infrared spectra. Local polarization switching behavior was measured by piezoresponse force microscopy, and each nanodot showed well-formed hysteresis curve and butterfly loop with a coercive field of ∼62.5 MV/m. To illustrate the potential application of these ordered P(VDF-TrFE) nanodot arrays, the writing and reading process as non-volatile memory was demonstrated at a relatively low voltage. As such, our results offer a facile and promising route to produce arrays of ferroelectric polymer nanodots with improved piezoelectric functionality

  12. Development of highly porous flat sheet polyvinylidene fluoride (PVDF) membranes for membrane distillation

    KAUST Repository

    Alsaery, Salim A.

    2017-05-01

    With the increase of population every year, fresh water scarcity has rapidly increased and it is reaching a risky level, particularly in Africa and the Middle East. Desalination of seawater is an essential process for fresh water generation. One of the methods for desalination is membrane distillation (MD). MD process separates an aqueous liquid feed across a porous hydrophobic membrane to produce pure water via evaporation. Polyvinlidene fluoride (PVDF) membranes reinforced with a polyester fabric were fabricated as potential candidates for MD. Non-solvent induced phase separation coupled with steam treatment was used to prepare the PVDF membranes. A portion of the prepared membrane was coated with Teflon (AF2400) to increase its hydrophobicity. In the first study, the fabricated membranes were characterized using scanning electron microscopy and other techniques, and they were evaluated using direct contact MD (DCMD). The fabricated membranes showed a porous sponge-like structure with some macrovoids. The macrovoid formation and the spongy structure in the membrane cross-sections contributed significantly to a high permeate flux as they provide a large space for vapor water transport. The modified PVDF membranes with steaming and coating exhibited a permeate flux of around 40 L/h m2 (i.e. 27-30% increase to the control PVDF membrane) at temperatures of 60 °C (feed) and 20 °C (permeate). This increase in the permeate flux for the modified membranes was mainly attributed to its larger pore size on the bottom surface. In the second study, the control PVDF membrane was tested in two different module designs (i.e. semi-circular pipe and rectangular duct module designs). The semi-circular module design (turbulent regime) exhibited a higher permeate flux, 3-fold higher than that of the rectangular duct module design (laminar regime) at feed temperature of 60 °C. Furthermore, a heat energy balance was performed for each module design to determine the temperature

  13. Energy Storage via Polyvinylidene Fluoride Dielectric on the Counterelectrode of Dye-Sensitized Solar Cells.

    Science.gov (United States)

    Huang, Xuezhen; Zhang, Xi; Jiang, Hongrui

    2014-02-15

    To study the fundamental energy storage mechanism of photovoltaically self-charging cells (PSCs) without involving light-responsive semiconductor materials such as Si powder and ZnO nanowires, we fabricate a two-electrode PSC with the dual functions of photocurrent output and energy storage by introducing a PVDF film dielectric on the counterelectrode of a dye-sensitized solar cell. A layer of ultrathin Au film used as a quasi-electrode establishes a shared interface for the I - /I 3 - redox reaction and for the contact between the electrolyte and the dielectric for the energy storage, and prohibits recombination during the discharging period because of its discontinuity. PSCs with a 10-nm-thick PVDF provide a steady photocurrent output and achieve a light-to-electricity conversion efficiency ( η) of 3.38%, and simultaneously offer energy storage with a charge density of 1.67 C g -1 . Using this quasi-electrode design, optimized energy storage structures may be used in PSCs for high energy storage density.

  14. Spinnability and Characteristics of Polyvinylidene Fluoride (PVDF)-based Bicomponent Fibers with a Carbon Nanotube (CNT) Modified Polypropylene Core for Piezoelectric Applications.

    Science.gov (United States)

    Glauß, Benjamin; Steinmann, Wilhelm; Walter, Stephan; Beckers, Markus; Seide, Gunnar; Gries, Thomas; Roth, Georg

    2013-07-03

    This research explains the melt spinning of bicomponent fibers, consisting of a conductive polypropylene (PP) core and a piezoelectric sheath (polyvinylidene fluoride). Previously analyzed piezoelectric capabilities of polyvinylidene fluoride (PVDF) are to be exploited in sensor filaments. The PP compound contains a 10 wt % carbon nanotubes (CNTs) and 2 wt % sodium stearate (NaSt). The sodium stearate is added to lower the viscosity of the melt. The compound constitutes the fiber core that is conductive due to a percolation CNT network. The PVDF sheath's piezoelectric effect is based on the formation of an all-trans conformation β phase, caused by draw-winding of the fibers. The core and sheath materials, as well as the bicomponent fibers, are characterized through different analytical methods. These include wide-angle X-ray diffraction (WAXD) to analyze crucial parameters for the development of a crystalline β phase. The distribution of CNTs in the polymer matrix, which affects the conductivity of the core, was investigated by transmission electron microscopy (TEM). Thermal characterization is carried out by conventional differential scanning calorimetry (DSC). Optical microscopy is used to determine the fibers' diameter regularity (core and sheath). The materials' viscosity is determined by rheometry. Eventually, an LCR tester is used to determine the core's specific resistance.

  15. Design and Synthesis of SnO_2 Nanosheets/Nickel/Polyvinylidene Fluoride Ternary Composite as Free-standing, Flexible Electrode for Lithium Ion Batteries

    International Nuclear Information System (INIS)

    Zhang, Yan; Xiao, Qizhen; Lei, Gangtie; Li, Zhaohui; Li, Xiaojing

    2015-01-01

    In this report, we have designed a novel SnO_2 nanosheets/nickel/polyvinylidene fluoride ternary composite as anode materials for lithium ion batteries. The SnO_2 nanosheets are uniformly coated on the surface of nickel/polyvinylidene fluoride conductive fiber, as confirmed by XRD, SEM, and TEM characterizations. As an anode material for lithium ion batteries, this as-prepared ternary composite delivers a high capacity of 865.4 mAh g"−"1 at 200 mA g"−"1 after 60 cycles. Furthermore, the SnO_2 in this composite material exhibits a good capacity retention as well as rate capability. This result indicates the completely reversible reaction between Li_4_._4Sn and SnO_2, greatly improving the specific capacity of SnO_2. The ternary SnO_2/Ni/PVDF composite limits the volume expansion on lithium insertion, and buffer spaces during charge/discharge, resulting in the excellent cyclic performances.

  16. Effects of CO{sub 2} activation on electrochemical performance of microporous carbons derived from poly(vinylidene fluoride)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seul-Yi; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr

    2013-11-15

    In this work, we have prepared microporous carbons (MPCs) derived from poly(vinylidene fluoride) (PVDF), and the physical activation of MPCs using CO{sub 2} gas is subsequently carried out with various activation temperatures to investigate the electrochemical performance. PVDF is successfully converted into MPCs with a high specific surface area and well-developed micropores. After CO{sub 2} activation, the specific surface areas of MPCs (CA-MPCs) are enhanced by 12% compared with non-activated MPCs. With increasing activation temperature, the micropore size distributions of A-MPCs also become narrower and shift to larger pore size. It is also confirmed that the CO{sub 2} activation had developed the micropores and introduced the oxygen-containing groups to MPCs′ surfaces. From the results, the specific capacitances of the electrodes in electric double layer capacitors (EDLCs) based on CA-MPCs are distinctly improved through CO{sub 2} activation. The highest specific capacitance of the A-MPCs activated at 700 °C is about 125 F/g, an enhancement of 74% in comparison with NA-MPCs, at a discharge current of 2 A/g in a 6 M KOH electrolyte solution. We also found that micropore size of 0.67 nm has a specific impact on the capacitance behaviors, besides the specific surface area of the electrode samples. - Graphical abstract: The A-MPC samples with high specific surface area (ranging from 1030 to 1082 m{sup 2}/g), corresponding to micropore sizes of 0.67 and 0.72 nm, and with the amount of oxygen-containing groups ranging from 3.2% to 4.4% have been evaluated as electrodes for EDLC applications. . Display Omitted - Highlights: • Microporous carbons (MPCs) were synthesized without activation process. • Next, we carried out the CO{sub 2} activation of MPCs with activation temperatures. • It had developed the micropores and introduced the O-functional groups to MPCs. • The highest specific capacitance: 125 F/g, an increase of 74% compared to MPCs.

  17. Effects of CO2 activation on electrochemical performance of microporous carbons derived from poly(vinylidene fluoride)

    International Nuclear Information System (INIS)

    Lee, Seul-Yi; Park, Soo-Jin

    2013-01-01

    In this work, we have prepared microporous carbons (MPCs) derived from poly(vinylidene fluoride) (PVDF), and the physical activation of MPCs using CO 2 gas is subsequently carried out with various activation temperatures to investigate the electrochemical performance. PVDF is successfully converted into MPCs with a high specific surface area and well-developed micropores. After CO 2 activation, the specific surface areas of MPCs (CA-MPCs) are enhanced by 12% compared with non-activated MPCs. With increasing activation temperature, the micropore size distributions of A-MPCs also become narrower and shift to larger pore size. It is also confirmed that the CO 2 activation had developed the micropores and introduced the oxygen-containing groups to MPCs′ surfaces. From the results, the specific capacitances of the electrodes in electric double layer capacitors (EDLCs) based on CA-MPCs are distinctly improved through CO 2 activation. The highest specific capacitance of the A-MPCs activated at 700 °C is about 125 F/g, an enhancement of 74% in comparison with NA-MPCs, at a discharge current of 2 A/g in a 6 M KOH electrolyte solution. We also found that micropore size of 0.67 nm has a specific impact on the capacitance behaviors, besides the specific surface area of the electrode samples. - Graphical abstract: The A-MPC samples with high specific surface area (ranging from 1030 to 1082 m 2 /g), corresponding to micropore sizes of 0.67 and 0.72 nm, and with the amount of oxygen-containing groups ranging from 3.2% to 4.4% have been evaluated as electrodes for EDLC applications. . Display Omitted - Highlights: • Microporous carbons (MPCs) were synthesized without activation process. • Next, we carried out the CO 2 activation of MPCs with activation temperatures. • It had developed the micropores and introduced the O-functional groups to MPCs. • The highest specific capacitance: 125 F/g, an increase of 74% compared to MPCs

  18. Origin of piezoelectricity in an electrospun poly(vinylidene fluoride-trifluoroethylene) nanofiber web-based nanogenerator and nano-pressure sensor.

    Science.gov (United States)

    Mandal, Dipankar; Yoon, Sun; Kim, Kap Jin

    2011-06-01

    A single stage electrospinning process can give rise to preferentially oriented induced dipoles in poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] nanofibers. The piezoelectricity of as-electrospun P(VDF-TrFE) nanofiber webs opens up new possibilities for their use as a flexible nanogenerators and nano-pressure sensors. In this work, the origin of the piezoelectricity has been spotlighted by randomization of the induced dipoles at the Curie temperature and analyzed by polarized FT-IR spectroscopic techniques as well as by detecting the piezoelectric signal from a nano-pressure sensor. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    Science.gov (United States)

    Deng, Bo; Yu, Yang; Zhang, Bowu; Yang, Xuanxuan; Li, Linfan; Yu, Ming; Li, Jingye

    2011-02-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  20. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    Energy Technology Data Exchange (ETDEWEB)

    Deng Bo [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019, Jialuo Road, Jiading Dist., 201800 Shanghai (China); Yu Yang; Zhang Bowu; Yang Xuanxuan [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019, Jialuo Road, Jiading Dist., 201800 Shanghai (China); Graduate University of Chinese Academy of Sciences, No. 19, Yuquan Road, Shijingshan Dist., 100049 Beijing (China); Li Linfan; Yu Ming [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019, Jialuo Road, Jiading Dist., 201800 Shanghai (China); Li Jingye, E-mail: jingyeli@sinap.ac.c [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019, Jialuo Road, Jiading Dist., 201800 Shanghai (China)

    2011-02-15

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  1. Enhancement of stability for lithium oxygen batteries by employing electrolytes gelled by poly(vinylidene fluoride-co-hexafluoropropylene) and tetraethylene glycol dimethyl ether

    International Nuclear Information System (INIS)

    Zhang, Jinqiang; Sun, Bing; Xie, Xiuqiang; Kretschmer, Katja; Wang, Guoxiu

    2015-01-01

    Free-standing gel polymer electrolytes with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix plasticized with tetraethylene glycol dimethyl ether (TEGDME) were prepared and investigated. The as-prepared gel polymer electrolytes exhibited large operating window and acceptable ionic conductivity. When applied in lithium oxygen batteries, the gel polymer electrolyte could support a high initial discharge capacity of 2988 mAh g −1 when a carbon black electrode without catalyst was used as cathode. Furthermore, the battery with gel polymer electrolyte can last at least 50 cycles in the fixed capacity cycling, displaying an excellent stability. Detailed study reveals that the gelling process is essential for the cycling stability enhancement. With excellent electrochemical properties, the free-standing gel polymer electrolyte presented in this investigation has great application potentials in long-life lithium oxygen batteries.

  2. Graft polymerization of acrylic acid and methacrylic acid onto poly(vinylidene fluoride) powder in presence of metallic salt and sulfuric acid

    International Nuclear Information System (INIS)

    Deng Bo; Yu Yang; Zhang Bowu; Yang Xuanxuan; Li Linfan; Yu Ming; Li Jingye

    2011-01-01

    Poly(vinylidene fluoride) (PVDF) powder was grafted with acrylic acid (AAc) or methacrylic acid (MAA) by the pre-irradiation induced graft polymerization technique. The presence of graft chains was proven by FT-IR spectroscopy. The degree of grafting (DG) was calculated by the acid-base back titration method. The synergistic effect of acid and Mohr's salt on the grafting kinetics was examined. The results indicated that adding sulfuric acid and Mohr's salt simultaneously in AAc or MAA solutions led to a strong enhancement in the degree of grafting. The grafted PVDF powder was cast into microfiltration (MF) membranes using the phase inversion method and some properties of the obtained MF membranes were characterized.

  3. Poly(vinylidene fluoride) modification induced by gamma irradiation for application as ionic polymer-metal composite; Modificacao de poli(fluoreto de vinilideno) induzida por radiacao gama para aplicacao como composito ionomerico de metal-polimero

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Henrique Perez

    2011-07-01

    Gamma-radiation-induced grafting of styrene into poly(vinylidene fluoride) (PVDF) films with 0.125 mm thickness at doses from 1 to 100 kGy in the presence of a styrene/N,N- dimethylformamide (DMF) solution (1:1, v/v) and styrene/toluene (1:1, v/v) at dose rate of 5 kGy h-1 was carried out by simultaneous method under nitrogen atmosphere at room temperature, using gamma rays from a Co-60. After grafting reactions, the polymer was then sulfonated in chlorosulfonic acid/1,2-dichloroethane (2 and 10%) for 3 hours. The films were characterized before and after modification by calculating the degree of grafting (DOG), infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). DOG results show that grafting increases with dose, and varies enormously depending on the solvent used, with DOGs about 20 times greater in DMF than in toluene. It was possible to confirm the grafting of styrene by FT-IR due to the appearance of the new characteristic peaks and by the TG and DSC which exhibited changes in the thermal behavior of the grafted/sulfonated material. Sulfonated material was also characterized by ion exchange capacity (IEC) showed that both DOG and sulfonic acid concentration increase IEC values. Results showed that it is possible to obtain materials with ion exchange capacity of possible application as ionic polymer-metal composites. (author)

  4. Improved Dielectric Properties and Energy Storage Density of Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposite with Hydantoin Epoxy Resin Coated BaTiO3.

    Science.gov (United States)

    Luo, Hang; Zhang, Dou; Jiang, Chao; Yuan, Xi; Chen, Chao; Zhou, Kechao

    2015-04-22

    Energy storage materials are urgently demanded in modern electric power supply and renewable energy systems. The introduction of inorganic fillers to polymer matrix represents a promising avenue for the development of high energy density storage materials, which combines the high dielectric constant of inorganic fillers with supernal dielectric strength of polymer matrix. However, agglomeration and phase separation of inorganic fillers in the polymer matrix remain the key barriers to promoting the practical applications of the composites for energy storage. Here, we developed a low-cost and environmentally friendly route to modifying BaTiO3 (BT) nanoparticles by a kind of water-soluble hydantoin epoxy resin. The modified BT nanoparticles exhibited homogeneous dispersion in the ferroelectric polymer poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) matrix and strong interfacial adhesion with the polymer matrix. The dielectric constants of the nanocomposites increased significantly with the increase of the coated BT loading, while the dielectric loss of the nanocomposites was still as low as that of the pure P(VDF-HFP). The energy storage density of the nanocomposites was largely enhanced with the coated BT loading at the same electric field. The nanocomposite with 20 vol % BT exhibited an estimated maximum energy density of 8.13 J cm(-3), which was much higher than that of pure P(VDF-HFP) and other dielectric polymers. The findings of this research could provide a feasible approach to produce high energy density materials for practical application in energy storage.

  5. Analysis of FT-IR for dosimetric characterization of poly(vinylidene fluoride - hexafluoropropylene) irradiated with high doses of gamma radiation

    International Nuclear Information System (INIS)

    Liz, Otavio Souza Rocha; Medeiros, Adriana de Souza

    2011-01-01

    Polymeric materials when exposed to ionizing radiation undergo changes such as the crosslinking and chain oxidation. Recently, the optical absorption intensities in the ultraviolet visible region (273 nm) due to radio- induction of conjugated C=C bonds in P(VDF-TrFE) copolymers has been successfully used for high dose dosimetry purposes in gamma fields ranging from 0.1 to 200 kGy. In this context, the interest of performing a systematic investigation on another fluorinated copolymer of PVDF, the (Polyvinylidene fluoride - hexa fluoro propylene) [P(VDF- HFP)] has come to light, not only for UV-VIS range but also for the near and medium infrared ranges. In this investigation FTIR and UV-Vis spectra, acquired before and after irradiation, were used to investigate the relationship between optical absorbance and delivered gamma doses ranging from 100 to 3,000 kGy. The results indicate that the absorption band at 1729 cm-1, originated by the chain oxidation through the radioinduction of C=O bonds, presents an unambiguous behavior with the delivered gamma doses in a very large extension, ranging from 0 to 1,000 kGy. This results lead to conclude that P(VDF-HFP) copolymer shows excellent dosimetric properties which make it able to be investigated as a high dose dosimeter

  6. A fully packaged self-powered sensor based on near-field electrospun arrays of poly(vinylidene fluoride nano/micro fibers

    Directory of Open Access Journals (Sweden)

    Y.-K. Fuh

    2018-02-01

    Full Text Available Energy harvesting devices based on the triboelectric and piezoelectric principles have been widely developed to scavenge wasteful and tiny mechanical energy into usable electrical energy. In particular, triboelectric energy harvesting generators with relatively simpler structure and piezoelectric fiber-based counterpart with extremely light weight compositions showed a very promising application in the self-powered sensors. In this paper, a novel hybridization of graphenebased piezoelectric generator (GBPG and graphene-PET triboelectric generator (GPTG were simultaneously packaged. The integrated structure, graphene-based hybridized self-powered sensor (GHSPS, was demonstrated to be optically transparent and mechanically robust. For the piezoelectrically harvesting device, an in-situ poling and direct-write near-field electrospinning (NFES Poly(vinylidene fluoride (PVDF piezoelectric fibers were fabricated and integrated with a single layer chemical vapor deposition (CVD grown graphene. On the other hand for GPTG counterpart, two composite layers of a single layer graphene/PET simultaneously served as triboelectrically rubbing layers as well as bottom/top electrode. This GHSPS successfully superimposed both piezoelectric and triboelectric electricity and the synergistically higher output voltage/current/power were measured as ~6 V/280 nA/172 nW in one press-and-release cycle of finger induced motion. The proposed GHSPS showed a promising application in the field of self-powered sensors to be ubiquitously implemented in the future Industry 4.0 scenarios.

  7. Developing an Ear Prosthesis Fabricated in Polyvinylidene Fluoride by a 3D Printer with Sensory Intrinsic Properties of Pressure and Temperature

    Directory of Open Access Journals (Sweden)

    Ernesto Suaste-Gómez

    2016-03-01

    Full Text Available An ear prosthesis was designed in 3D computer graphics software and fabricated using a 3D printing process of polyvinylidene fluoride (PVDF for use as a hearing aid. In addition, the prosthesis response to pressure and temperature was observed. Pyroelectric and piezoelectric properties of this ear prosthesis were investigated using an astable multivibrator circuit, as changes in PVDF permittivity were observed according to variations of pressure and temperature. The results show that this prosthesis is reliable for use under different conditions of pressure (0 Pa to 16,350 Pa and temperature (2 °C to 90 °C. The experimental results show an almost linear and inversely proportional behavior between the stimuli of pressure and temperature with the frequency response. This 3D-printed ear prosthesis is a promising tool and has a great potentiality in the biomedical engineering field because of its ability to generate an electrical potential proportional to pressure and temperature, and it is the first time that such a device has been processed by the additive manufacturing process (3D printing. More work needs to be carried out to improve the performance, such as electrical stimulation of the nervous system, thereby extending the purpose of a prosthesis to the area of sensory perception.

  8. Flexible poly(ethylene carbonate)/garnet composite solid electrolyte reinforced by poly(vinylidene fluoride-hexafluoropropylene) for lithium metal batteries

    Science.gov (United States)

    He, Zijian; Chen, Long; Zhang, Bochen; Liu, Yongchang; Fan, Li-Zhen

    2018-07-01

    Solid-state electrolytes with high ionic conductivities, great flexibility, and easy processability are needed for high-performance solid-state rechargeable lithium batteries. In this work, we synthesize nanosized cubic Li6.25Al0.25La3Zr2O12 (LLZO) by solution combustion method and develop a flexible garnet-based composite solid electrolyte composed of LLZO, poly(ethylene carbonate) (PEC), poly(vinylidene fluoride-hexafluoropropylene) (P(VdF-HFP) and lithium bis(fluorosulfonyl)imide (LiFSI)). In the flexible composite solid electrolytes, LLZO nanoparticles, as ceramic matrix, have a positive effect on ionic conductivities and lithium ion transference number (tLi+). PEC, as a fast ion-conducting polymer, possesses high tLi+ inherently. P(VdF-HFP), as a binder, can strengthen mechanical properties. Consequently, the as-prepared composite solid electrolyte demonstrates high tLi+ (0.82) and superb thermal stability (remaining LLZO matrix after burning). All-solid-state LiFePO4|Li cells assembled with the flexible composite solid electrolyte deliver a high initial discharge specific capacity of 121.4 mAh g-1 and good cycling stability at 55 °C.

  9. Poly(vinylidene fluoride-co-hexafluoropropylene) phase inversion coating as a diffusion layer to enhance the cathode performance in microbial fuel cells

    KAUST Repository

    Yang, Wulin

    2014-12-01

    A low cost poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) phase inversion coating was developed as a cathode diffusion layer to enhance the performance of microbial fuel cells (MFCs). A maximum power density of 1430 ± 90 mW m-2 was achieved at a PVDF-HFP loading of 4.4 mg cm-2 (4:1 polymer:carbon black), with activated carbon as the oxygen reduction cathode catalyst. This power density was 31% higher than that obtained with a more conventional platinum (Pt) catalyst on carbon cloth (Pt/C) cathode with a poly(tetrafluoroethylene) (PTFE) diffusion layer (1090 ± 30 mW m-2). The improved performance was due in part to a larger oxygen mass transfer coefficient of 3 × 10-3 cm s-1 for the PVDF-HFP coated cathode, compared to 1.7 × 10-3 cm s -1 for the carbon cloth/PTFE-based cathode. The diffusion layer was resistant to electrolyte leakage up to water column heights of 41 ± 0.5 cm (4.4 mg cm-2 loading of 4:1 polymer:carbon black) to 70 ± 5 cm (8.8 mg cm-2 loading of 4:1 polymer:carbon black). This new type of PVDF-HFP/carbon black diffusion layer could reduce the cost of manufacturing cathodes for MFCs. © 2014 Elsevier B.V. All rights reserved.

  10. Ionic conductivity and electrochemical properties of nanocomposite polymer electrolytes based on electrospun poly(vinylidene fluoride-co-hexafluoropropylene) with nano-sized ceramic fillers

    Energy Technology Data Exchange (ETDEWEB)

    Raghavan, Prasanth; Zhao Xiaohui; Kim, Jae-Kwang; Manuel, James; Chauhan, Ghanshyam S. [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of); Ahn, Jou-Hyeon [Department of Chemical and Biological Engineering and Engineering Research Institute, Gyeongsang National University, 900 Gajwa-dong, Jinju 660-701 (Korea, Republic of)], E-mail: jhahn@gnu.ac.kr; Nah, Changwoon [Department of Polymer-Nano Science and Technology, Chonbuk National University, 664-14 Duckjin-dong, Jeonju 561-756 (Korea, Republic of)

    2008-12-30

    A series of nanocomposite polymer electrolytes (NCPEs) comprising nanoparticles of BaTiO{sub 3}, Al{sub 2}O{sub 3} or SiO{sub 2} were prepared by electrospinning technique. The nano-sized ceramic fillers were incorporated into poly(vinylidene fluoride-co-hexafluoropropylene) [P(VdF-HEP)] membranes during the electrospinning process. The resultant porous membranes are good absorbent of the liquid electrolyte and exhibit high electrolyte retention capacity. The presence of the ceramic nanoparticles has positive effect on the mechanical properties of the membranes. The ionic conductivity and the electrochemical stability window of the electrospun P(VdF-HFP)-based polymer are enhanced by the presence of the fillers. The cell Li/LiFePO{sub 4} based on the NCPE containing BaTiO{sub 3} delivers a discharge capacity of 164 mAh/g, which corresponds to 96.5% utilization of the active material. In comparison, the performance of Li/LiFePO{sub 4} cells with NCPEs containing Al{sub 2}O{sub 3} and SiO{sub 2} was observed to be lower with respective discharge capacities of 153 and 156 mAh/g. The enhanced performance of the BaTiO{sub 3}-based-NCPE is attributed mainly to its better interaction with the host polymer and compatibility with lithium metal.

  11. Preparation and Characterization of Novel Polyvinylidene Fluoride/2-Aminobenzothiazole Modified Ultrafiltration Membrane for the Removal of Cr(VI in Wastewater

    Directory of Open Access Journals (Sweden)

    Xiuju Wang

    2017-12-01

    Full Text Available Hexavalent chromium is one of the main heavy metal pollutants. As the environmental legislation becomes increasingly strict, seeking new technology to treat wastewater containing hexavalent chromium is becoming more and more important. In this research, a novel modified ultrafiltration membrane that could be applied to adsorb and purify water containing hexavalent chromium, was prepared by polyvinylidene fluoride (PVDF blending with 2-aminobenzothiazole via phase inversion. The membrane performance was characterized by evaluation of the instrument of membrane performance, infrared spectroscopy (FTIR, scanning electron microscope (SEM, and water contact angle measurements. The results showed that the pure water flux of the PVDF/2-aminobenzothiazole modified ultrafiltration membrane was 231.27 L/m2·h, the contact angle was 76.1°, and the adsorption capacity of chromium ion was 157.75 µg/cm2. The PVDF/2-aminobenzothiazole modified ultrafiltration membrane presented better adsorption abilities for chromium ion than that of the traditional PVDF membrane.

  12. Poly(vinylidene fluoride)/NH2-Treated Graphene Nanodot/Reduced Graphene Oxide Nanocomposites with Enhanced Dielectric Performance for Ultrahigh Energy Density Capacitor.

    Science.gov (United States)

    Cho, Sunghun; Lee, Jun Seop; Jang, Jyongsik

    2015-05-13

    This work describes a ternary nanocomposite system, composed of poly(vinylidene fluoride) (PVDF), NH2-treated graphene nanodots (GNDs), and reduced graphene oxides (RGOs), for use in high energy density capacitor. When the RGO sheets were added to PVDF matrix, the β-phase content of PVDF became higher than that of the pristine PVDF. The surface-treatment of GNDs with an ethylenediamine can promote the hydrogen bonding interactions between the GNDs and PVDF, which promote the formation of β-phase PVDF. This finding could be extended to combine the advantages of both RGO and NH2-treated GND for developing an effective and reliable means of preparing PVDF/NH2-treated GND/RGO nanocomposite. Relatively small amounts of NH2-treated GND/RGO cofillers (10 vol %) could make a great impact on the α → β phase transformation, dielectric, and ferroelectric properties of the ternary nanocomposite. The resulting PVDF/NH2-treated GND/RGO nanocomposite exhibited higher dielectric constant (ε' ≈ 60.6) and larger energy density (U(e) ≈ 14.1 J cm(-3)) compared with the pristine PVDF (ε' ≈ 11.6 and U(e) ≈ 1.8 J cm(-3)).

  13. Developing an Ear Prosthesis Fabricated in Polyvinylidene Fluoride by a 3D Printer with Sensory Intrinsic Properties of Pressure and Temperature.

    Science.gov (United States)

    Suaste-Gómez, Ernesto; Rodríguez-Roldán, Grissel; Reyes-Cruz, Héctor; Terán-Jiménez, Omar

    2016-03-04

    An ear prosthesis was designed in 3D computer graphics software and fabricated using a 3D printing process of polyvinylidene fluoride (PVDF) for use as a hearing aid. In addition, the prosthesis response to pressure and temperature was observed. Pyroelectric and piezoelectric properties of this ear prosthesis were investigated using an astable multivibrator circuit, as changes in PVDF permittivity were observed according to variations of pressure and temperature. The results show that this prosthesis is reliable for use under different conditions of pressure (0 Pa to 16,350 Pa) and temperature (2 °C to 90 °C). The experimental results show an almost linear and inversely proportional behavior between the stimuli of pressure and temperature with the frequency response. This 3D-printed ear prosthesis is a promising tool and has a great potentiality in the biomedical engineering field because of its ability to generate an electrical potential proportional to pressure and temperature, and it is the first time that such a device has been processed by the additive manufacturing process (3D printing). More work needs to be carried out to improve the performance, such as electrical stimulation of the nervous system, thereby extending the purpose of a prosthesis to the area of sensory perception.

  14. The effects of processing conditions on the surface morphology and hydrophobicity of polyvinylidene fluoride membranes prepared via vapor-induced phase separation

    Science.gov (United States)

    Peng, Yuelian; Fan, Hongwei; Ge, Ju; Wang, Shaobin; Chen, Ping; Jiang, Qi

    2012-12-01

    The present investigation reveals how the surface morphology and the hydrophobicity of polyvinylidene fluoride (PVDF) membranes, which were prepared via a vapor-induced phase separation method, were affected by the initial PVDF content in the casting solution and the air temperature. The surface morphology was characterized with scanning electron microscopy. A ternary phase diagram of PVDF/N, N-dimethylacetamide/water was constructed to explain the formation mechanism of the different morphologies. The results show that different membrane morphologies and hydrophobicities can be obtained by changing the processing conditions. Low air temperature and high PVDF contents facilitate the crystallization process, resulting in the formation of a porous skin and particle morphology, which increases the hydrophobicity of the surface. High air temperature and low PVDF contents are favorable for the formation of a net-like surface morphology via spinodal decomposition and lead to a superhydrophobic surface. Theoretical calculations were performed to testify that the net-like surface was more favorable for superhydrophobicity than the particle-based surface.

  15. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-induced surface copolymerization.

    Science.gov (United States)

    Chang, Yung; Chang, Wan-Ju; Shih, Yu-Ju; Wei, Ta-Chin; Hsiue, Ging-Ho

    2011-04-01

    Development of nonfouling membranes to prevent nonspecific protein adsorption and platelet adhesion is critical for many biomedical applications. It is always a challenge to control the surface graft copolymerization of a highly polar monomer from the highly hydrophobic surface of a fluoropolymer membrane. In this work, the blood compatibility of poly(vinylidene fluoride) (PVDF) membranes with surface-grafted electrically neutral zwitterionic poly(sulfobetaine methacrylate) (PSBMA), from atmospheric plasma-induced surface copolymerization, was studied. The effect of surface composition and graft morphology, electrical neutrality, hydrophilicity and hydration capability on blood compatibility of the membranes were determined. Blood compatibility of the zwitterionic PVDF membranes was systematically evaluated by plasma protein adsorption, platelet adhesion, plasma-clotting time, and blood cell hemolysis. It was found that the nonfouling nature and hydration capability of grafted PSBMA polymers can be effectively controlled by regulating the grafting coverage and charge balance of the PSBMA layer on the PVDF membrane surface. Even a slight charge bias in the grafted zwitterionic PSBMA layer can induce electrostatic interactions between proteins and the membrane surfaces, leading to surface protein adsorption, platelet activation, plasma clotting and blood cell hemolysis. Thus, the optimized PSBMA surface graft layer in overall charge neutrality has a high hydration capability and the best antifouling, anticoagulant, and antihemolytic activities when comes into contact with human blood. © 2011 American Chemical Society

  16. Organic fouling behavior of superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes functionalized with surface-tailored nanoparticles: Implications for organic fouling in membrane bioreactors

    KAUST Repository

    Liang, Shuai

    2014-08-01

    This study systematically investigates the organic fouling behavior of a superhydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membrane functionalized via post-fabrication tethering of surface-tailored silica nanoparticles to poly(methacrylic acid)-grafted PVDF membrane surface. Sodium alginate (SA), Suwannee River natural organic matter (SRNOM), and bovine serum albumin (BSA) were used as model organic foulants to investigate the antifouling behavior of the superhydrophilic membrane with combined-fouling (mixture of foulants) and individual-fouling (single foulant) tests. A membrane bioreactor (MBR) plant supernatant was also used to verify the organic antifouling property of the superhydrophilic membrane under realistic conditions. Foulant size distributions and foulant-membrane interfacial forces were measured to interpret the observed membrane fouling behavior. Molecular weight cutoff measurements confirmed that membrane functionalization did not adversely affect the intrinsic membrane selectivity. Both filtration tests with the synthetic foulant-mixture solution (containing SA, SRNOM, and BSA) and MBR plant supernatant demonstrated the reliability and durability of the antifouling property of the superhydrophilic membrane. The conspicuous reduction in foulant-membrane interfacial forces for the functionalized membrane further verified the antifouling properties of the superhydrophilic membrane, suggesting great potential for applications in wastewater treatment. © 2014 Elsevier B.V.

  17. Giant Faraday Rotation in Metal-Fluoride Nanogranular Films.

    Science.gov (United States)

    Kobayashi, N; Ikeda, K; Gu, Bo; Takahashi, S; Masumoto, H; Maekawa, S

    2018-03-21

    Magneto-optical Faraday effect is widely applied in optical devices and is indispensable for optical communications and advanced information technology. However, the bismuth garnet Bi-YIG is only the Faraday material since 1972. Here we introduce (Fe, FeCo)-(Al-,Y-fluoride) nanogranular films exhibiting giant Faraday effect, 40 times larger than Bi-YIG. These films have a nanocomposite structure, in which nanometer-sized Fe, FeCo ferromagnetic granules are dispersed in a Al,Y-fluoride matrix.

  18. Fire resistant films for aircraft applications

    Science.gov (United States)

    Kourtides, D. A.

    1983-01-01

    Alternative sandwich panel decorative films were investigated as replacements for the polyvinyl fluoride currently used in aircraft interiors. Candidate films were studied for flammability, smoke emission, toxic gas emission, flame spread, and suitability as a printing surface for the decorative acrylic ink system. Several of the candidate films tested were flame modified polyvinyl fluoride, polyvinylidene fluoride, polyimide, polyamide, polysulfone, polyphenylsulfone, polyethersulfone, polybenzimidazole, polycarbonate, polyparabanic acid, polyphosphazene, polyetheretherketon, and polyester. The films were evaluated as pure films only, films silk-screened with an acrylic ink, and films adhered to a phenolic fiberglass substrate. Films which exhibited the highest fire resistant properties included PEEK polyetheretherketon, Aramid polyamide, and ISO-BPE polyester.

  19. Surface modification of poly(vinylidene fluoride) hollow fibre membranes for biogas purification in a gas-liquid membrane contactor system.

    Science.gov (United States)

    Jin, Pengrui; Huang, Chuan; Li, Jiaxiang; Shen, Yadong; Wang, Liao

    2017-11-01

    The wetting of hollow fibre membranes decreases the performance of the liquid-gas membrane contactor for CO 2 capture in biogas upgrading. To solve this problem, in this work, a poly(vinylidene fluoride) (PVDF) hollow fibre membrane for a liquid-gas membrane contactor was coated with a superhydrophobic layer composed of a combination of hydrophobic SiO 2 nanoparticles and polydimethylsiloxane (PDMS) by the method of spray deposition. A rough layer of SiO 2 deposited on the PVDF membrane resulted in an enhanced surface hydrophobicity. The surface structure of the pristine PVDF significantly affected the homogeneity of the generated SiO 2 layer. A uniform surface coating on the PVDF upper layer resulted from the presence of micrometre and nanometre-sized roughness on the surface of the PVDF membrane, which was achieved with a SiO 2 concentration of 4.44 mg ml -1 (0.2 g/45 ml) in the coating solution. As a result, the water contact angle of the modified surface was recorded as 155 ± 3°, which is higher than that of the pristine surface. The high contact angle is advantageous for reducing the wetting of the membrane. Additional mass transfer resistance was introduced by the superhydrophobic layer. In addition, continuous CO 2 absorption tests were carried out in original and modified PVDF hollow fibre membrane contactors, using monoethanolamine (MEA) solution as the absorbent. A long-term stability test revealed that the modified PVDF hollow fibre membrane contactor was able to outperform the original membrane contactor and demonstrated outstanding long-term stability, suggesting that spray deposition is a promising approach to obtain superhydrophobic PVDF membranes for liquid-gas membrane absorption.

  20. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization

    International Nuclear Information System (INIS)

    Li Qian; Bi Qiuyan; Zhou Bo; Wang Xiaolin

    2012-01-01

    A zwitterionic polymer, poly(3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide) (poly(MPDSAH)) was successfully grafted in high density from the surface of poly(vinylidene fluoride) (PVDF) hollow fiber membrane via a two-step polymerization. Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) chains were firstly grafted from outside surface of PVDF membrane through atom transfer radical polymerization (ATRP) to provide the initiation sites for subsequent cerium (Ce (IV))-induced graft copolymerization of polyMPDSAH in the presence of N,N′-ethylene bisacrylamide (EBAA) as a cross-linking agent. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) confirmed that the EBAA could stimulate zwitterionic polymers grafting onto the membrane surface. The dense poly(MPDSAH) layers on the PVDF membrane surface were revealed by the scanning electron microscope (SEM). The mechanical property of PVDF membrane was improved by the zwitterionic surface layers. The gravimetry results indicated the grafting amount increased to 520 μg/cm 2 for a copolymerization time of more than 3 h. Static and dynamic water contact angle measurements showed that the surface hydrophilicity of the PVDF membranes was significantly enhanced. As the grafting amount reached 513 μg cm -2 , the value of contact angle dropped to 22.1° and the amount of protein adsorption decreased to zero. The cyclic experiments for BSA solution filtration demonstrated that the extent of protein fouling was significantly reduced and most of the fouling was reversible. The grafted polymer layer on the PVDF membrane showed a good stability during the membrane cleaning process. The experimental results concluded a good prospect in obtaining the sulfobetaine-modified PVDF membranes with high mechanical strength, good anti-protein-fouling performance, and long-term stability via the two-step polymerization.

  1. Design of poly(vinylidene fluoride)-g-p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) membrane via surface modification for enhanced fouling resistance and release property

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Guili [Nanyang Environment and Water Research Institute, Interdisciplinary Graduate School, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141 (Singapore); Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141 (Singapore); School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore); Chen, Wei Ning, E-mail: WNChen@ntu.edu.sg [School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459 (Singapore)

    2017-03-15

    Highlights: • PVDF modified membranes were designed by grafting PNIPAAm, PHEMA and their copolymer. • Fouling resistance and release property of membrane were both improved after modification. • Bacterial attachment and detachment were investigated to evaluate fouling release property. • Improvement of the antifouling property was justified by surface property analysis. • The copolymer modified membrane exhibited higher performance to release foulant. - Abstract: Thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAAm), hydrophilic polymer poly(hydroxyethyl methacrylate) (PHEMA) and copolymer p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) [P(HEMA-co-NIPAAm)] were synthesized onto poly(vinylidene fluoride) (PVDF) membrane via atom transfer radical polymerization (ATRP) in order to improve not only fouling resistance but also fouling release property. The physicochemical properties of membranes including hydrophilicity, morphology and roughness were examined by contact angle analyzer, scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. The antifouling property of membranes was improved remarkably after surface modification according to protein and bacterial adhesion testing, and filtration experiment. Minimum protein adsorption and bacterial adhesion were both obtained on PVDF-g-P(HEMA-co-NIPAAm) membrane, with reduction by 44% and 71% respectively compared to the pristine membrane. The minimum bacterial cells after detachment at 25 °C were observed on the PVDF-g-P(HEMA-co-NIPAAm) membrane with the detachment rate of 77%, indicating high fouling release property. The filtration testing indicated that the copolymer modified membrane exhibited high resistance to protein fouling and the foulant on the surface was released and removed easily by washing, suggesting high fouling release and easy-cleaning capacity. This study provides useful insight in the combined “fouling resistance” and “fouling release

  2. Electrospun poly(vinylidene fluoride) copolymer/octahydroxy-polyhedral oligomeric silsesquioxane nanofibrous mats as ionic liquid host: enhanced salt dissociation and its function in electrochromic device

    International Nuclear Information System (INIS)

    Zhou, Rui; Pramoda, Kumari Pallathadka; Liu, Wanshuang; Zhou, Dan; Ding, Guoqiang; He, Chaobin; Leong, Yew Wei; Lu, Xuehong

    2014-01-01

    Highlights: • The well dispersed POSS-OH promotes the dissociation of both LiClO 4 and BMIM + BF 4 − . • POSS-OH significantly increases the ionic conductivity and lithium transference number. • POSS-OH containing electrolyte improves the optical contrast of electrochromic device. - Abstract: Electrospun polymer nanofibrous mats loaded with ionic liquids (ILs) and lithium salts are promising non-volatile electrolytes owing to their high ionic conductivities. However, the large cations of ILs are difficult to diffuse into solid electrodes, whereas the lithium ions in ILs tend to form anionic complexes with the IL anions, reducing the number of free lithium ions. To address these issues, octa(3-hydroxy-3-methylbutyldimethylsiloxy) polyhedral oligomeric silsesquioxane (POSS-OH), which has large specific surface area and functionality number, is incorporated into electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) nanofibrous mats, and the mats are used to host LiClO 4 /1-butyl-3-methylimidazolium tetrafluoroborate (BMIM + BF 4 − ). It is found that POSS-OH can significantly increase both ionic conductivity and lithium transference number of the electrolytes owing to the Lewis acid-base interactions of POSS-OH with ClO 4 − and BF 4 − . The electrochromic device using the hybrid mat (with 5 wt% POSS-OH) loaded with LiClO 4 /BMIM + BF 4 − as the electrolyte shows significantly improved transmittance contrast and switching time, as a result of increased number of free lithium ions

  3. Design of poly(vinylidene fluoride)-g-p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) membrane via surface modification for enhanced fouling resistance and release property

    International Nuclear Information System (INIS)

    Zhao, Guili; Chen, Wei Ning

    2017-01-01

    Highlights: • PVDF modified membranes were designed by grafting PNIPAAm, PHEMA and their copolymer. • Fouling resistance and release property of membrane were both improved after modification. • Bacterial attachment and detachment were investigated to evaluate fouling release property. • Improvement of the antifouling property was justified by surface property analysis. • The copolymer modified membrane exhibited higher performance to release foulant. - Abstract: Thermo-sensitive polymer poly(N-isopropylacrylamide) (PNIPAAm), hydrophilic polymer poly(hydroxyethyl methacrylate) (PHEMA) and copolymer p(hydroxyethyl methacrylate-co-N-isopropylacrylamide) [P(HEMA-co-NIPAAm)] were synthesized onto poly(vinylidene fluoride) (PVDF) membrane via atom transfer radical polymerization (ATRP) in order to improve not only fouling resistance but also fouling release property. The physicochemical properties of membranes including hydrophilicity, morphology and roughness were examined by contact angle analyzer, scanning electron microscopy (SEM), and atomic force microscopy (AFM), respectively. The antifouling property of membranes was improved remarkably after surface modification according to protein and bacterial adhesion testing, and filtration experiment. Minimum protein adsorption and bacterial adhesion were both obtained on PVDF-g-P(HEMA-co-NIPAAm) membrane, with reduction by 44% and 71% respectively compared to the pristine membrane. The minimum bacterial cells after detachment at 25 °C were observed on the PVDF-g-P(HEMA-co-NIPAAm) membrane with the detachment rate of 77%, indicating high fouling release property. The filtration testing indicated that the copolymer modified membrane exhibited high resistance to protein fouling and the foulant on the surface was released and removed easily by washing, suggesting high fouling release and easy-cleaning capacity. This study provides useful insight in the combined “fouling resistance” and “fouling release

  4. Single-Step Fabrication Using a Phase Inversion Method of Poly(vinylidene fluoride) (PVDF) Activated Carbon Air Cathodes for Microbial Fuel Cells

    KAUST Repository

    Yang, Wulin

    2014-10-14

    Air cathodes used in microbial fuel cells (MFCs) need to have high catalytic activity for oxygen reduction, but they must also be easy to manufacture, inexpensive, and watertight. A simple one-step, phase inversion process was used here to construct an inexpensive MFC cathode using a poly(vinylidene fluoride) (PVDF) binder and an activated carbon catalyst. The phase inversion process enabled cathode preparation at room temperatures, without the need for additional heat treatment, and it produced for the first time a cathode that did not require a separate diffusion layer to prevent water leakage. MFCs using this new type of cathode produced a maximum power density of 1470 ± 50 mW m–2 with acetate as a substrate, and 230 ± 10 mW m–2 with domestic wastewater. These power densities were similar to those obtained using cathodes made using more expensive materials or more complex procedures, such as cathodes with a polytetrafluoroethylene (PTFE) binder and a poly(dimethylsiloxane) (PDMS) diffusion layer, or a Pt catalyst. Even though the PVDF cathodes did not have a diffusion layer, they withstood up to 1.22 ± 0.04 m of water head (∼12 kPa) without leakage, compared to 0.18 ± 0.02 m for cathodes made using PTFE binder and PDMS diffusion layer. The cost of PVDF and activated carbon ($3 m–2) was less than that of the stainless steel mesh current collector ($12 m–2). PVDF-based AC cathodes therefore are inexpensive, have excellent performance in terms of power and water leakage, and they can be easily manufactured using a single phase inversion process at room temperature.

  5. Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane surface with stably anti-protein-fouling performance via a two-step surface polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Li Qian; Bi Qiuyan; Zhou Bo [Membrane Technology and Engineering Research Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China); Wang Xiaolin, E-mail: xl-wang@tsinghua.edu.cn [Membrane Technology and Engineering Research Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084 (China)

    2012-03-01

    A zwitterionic polymer, poly(3-(methacryloylamino) propyl-dimethyl-(3-sulfopropyl) ammonium hydroxide) (poly(MPDSAH)) was successfully grafted in high density from the surface of poly(vinylidene fluoride) (PVDF) hollow fiber membrane via a two-step polymerization. Poly(2-hydroxyethyl methacrylate) (poly(HEMA)) chains were firstly grafted from outside surface of PVDF membrane through atom transfer radical polymerization (ATRP) to provide the initiation sites for subsequent cerium (Ce (IV))-induced graft copolymerization of polyMPDSAH in the presence of N,N Prime -ethylene bisacrylamide (EBAA) as a cross-linking agent. Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS) confirmed that the EBAA could stimulate zwitterionic polymers grafting onto the membrane surface. The dense poly(MPDSAH) layers on the PVDF membrane surface were revealed by the scanning electron microscope (SEM). The mechanical property of PVDF membrane was improved by the zwitterionic surface layers. The gravimetry results indicated the grafting amount increased to 520 {mu}g/cm{sup 2} for a copolymerization time of more than 3 h. Static and dynamic water contact angle measurements showed that the surface hydrophilicity of the PVDF membranes was significantly enhanced. As the grafting amount reached 513 {mu}g cm{sup -2}, the value of contact angle dropped to 22.1 Degree-Sign and the amount of protein adsorption decreased to zero. The cyclic experiments for BSA solution filtration demonstrated that the extent of protein fouling was significantly reduced and most of the fouling was reversible. The grafted polymer layer on the PVDF membrane showed a good stability during the membrane cleaning process. The experimental results concluded a good prospect in obtaining the sulfobetaine-modified PVDF membranes with high mechanical strength, good anti-protein-fouling performance, and long-term stability via the two-step polymerization.

  6. Hemocompatibility of poly(vinylidene fluoride) membrane grafted with network-like and brush-like antifouling layer controlled via plasma-induced surface PEGylation.

    Science.gov (United States)

    Chang, Yung; Shih, Yu-Ju; Ko, Chao-Yin; Jhong, Jheng-Fong; Liu, Ying-Ling; Wei, Ta-Chin

    2011-05-03

    In this work, the hemocompatibility of PEGylated poly(vinylidene fluoride) (PVDF) microporous membranes with varying grafting coverage and structures via plasma-induced surface PEGylation was studied. Network-like and brush-like PEGylated layers on PVDF membrane surfaces were achieved by low-pressure and atmospheric plasma treatment. The chemical composition, physical morphology, grafting structure, surface hydrophilicity, and hydration capability of prepared membranes were determined to illustrate the correlations between grafting qualities and hemocompatibility of PEGylated PVDF membranes in contact with human blood. Plasma protein adsorption onto different PEGylated PVDF membranes from single-protein solutions and the complex medium of 100% human plasma were measured by enzyme-linked immunosorbent assay (ELISA) with monoclonal antibodies. Hemocompatibility of the PEGylated membranes was evaluated by the antifouling property of platelet adhesion observed by scanning electron microscopy (SEM) and the anticoagulant activity of the blood coagulant determined by testing plasma-clotting time. The control of grafting structures of PEGylated layers highly regulates the PVDF membrane to resist the adsorption of plasma proteins, the adhesion of platelets, and the coagulation of human plasma. It was found that PVDF membranes grafted with brush-like PEGylated layers presented higher hydration capability with binding water molecules than with network-like PEGylated layers to improve the hemocompatible character of plasma protein and blood platelet resistance in human blood. This work suggests that the hemocompatible nature of grafted PEGylated polymers by controlling grafting structures gives them great potential in the molecular design of antithrombogenic membranes for use in human blood.

  7. Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO2

    International Nuclear Information System (INIS)

    You, Sheng-Jie; Semblante, Galilee Uy; Lu, Shao-Chung; Damodar, Rahul A.; Wei, Ta-Chin

    2012-01-01

    Highlights: ► Plasma and grafting parameters that maximized TiO 2 binding sites were found. ► PVDF hydrophilicity was vastly improved compared to other modification techniques. ► At least 1.5% TiO 2 and 30 min UV exposure were needed to attain full flux recovery. ► Photocatalytic membranes could remove up to 42% of 50 mg/l RB5 dye. - Abstract: Immobilization of TiO 2 is a promising approach that produces antifouling and photocatalytic membranes that could help advance wastewater treatment and re-use processes. In this study, poly(acrylic acid) (PAA) was plasma-grafted on commercial poly(vinylidene fluoride) (PVDF) to introduce functional groups on the membrane surface that can support the nanoparticles. It was found that plasma treatment at 100 W for 120 s followed by liquid grafting with 70% aqueous AA at 60 °C for 2 h maximized the number of TiO 2 binding sites. Membrane hydrophilicity was tremendously enhanced by the self-assembly of TiO 2 , following a direct proportionality to TiO 2 loading. The membrane with 0.5% TiO 2 loading maintained the highest pure water flux and the best protein antifouling property. UV irradiation triggered the photodegradation of strongly bound foulants, but at least 1.5% TiO 2 and 30 min cumulative irradiation were necessary to completely recover the membrane's original performance. The TiO 2 -modified membranes removed 30–42% of 50 mg/l aqueous Reactive Black 5 (RB5) dye. The fabricated membranes demonstrate huge potential for use in membrane reactors with high hydrophilicity, fouling mitigation, and photocatalytic capability.

  8. Graft copolymerization of N-vinyl-2-pyrrolidone onto pre-irradiated poly(vinylidene fluoride) powder

    International Nuclear Information System (INIS)

    Xu Chenqi; Huang Wei; Zhou Yongfeng; Yan Deyue; Chen Shutao; Huang Hua

    2012-01-01

    Graft copolymerization of N-vinyl-2-pyrrolidone (NVP) onto 60 Co γ-ray pre-irradiated poly (vinylidene fluoride) (PVDF) powder was investigated to find out the relationship between the degree of grafting (DG) and various factors, including monomer concentration, irradiation dose, reaction time, catalyst and so on. The DG can be calculated by comparing the amount of nitrogen element in the resulting copolymer (PVDF-g-PVP) powder with that in PVP on the basis of element analysis. The presence of PVP in the resulting PVDF powder was confirmed by the comparative studies of pristine PVDF and grafted PVDF powder through Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), thermo gravimetric analyzer (TGA) and differential scanning calorimetry (DSC), respectively. When the reaction was performed at the monomer concentration of 20% (vol.) and the absorbed dose of 40 kGy for 3 h in water, the max. DG of 17.7% was obtained. - Highlights: ► We modify pristine PVDF powders with NVP by the pre-irradiated graft polymerization. ► The various factors influencing the degree of grafting are investigated in detail. ► The optimal condition of graft polymerization is obtained. ► The polymerization is processed at 20% (vol.) of NVP and 40kGy for 3 hours in water. ► The maximum degree of grafting is 17.7 % at such a condition.

  9. Using a novel rigid-fluoride polymer to control the interfacial thickness of graphene and tailor the dielectric behavior of poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) nanocomposites.

    Science.gov (United States)

    Han, Xianghui; Chen, Sheng; Lv, Xuguang; Luo, Hang; Zhang, Dou; Bowen, Chris R

    2018-01-24

    Polymer nanocomposites based on conductive fillers for high performance dielectrics have attracted increasing attention in recent years. However, a number of physical issues are unclear, such as the effect of interfacial thickness on the dielectric properties of the polymer nanocomposites, which limits the enhancement of permittivity. In this research, two core-shell structured reduced graphene oxide (rGO)@rigid-fluoro-polymer conducting fillers with different shell thicknesses are prepared using a surface-initiated reversible-addition-fragmentation chain transfer polymerization method, which are denoted as rGO@PTFMS-1 with a thin shell and rGO@PTFMS-2 with a thick shell. A rigid liquid crystalline fluoride-polymer poly{5-bis[(4-trifluoro-methoxyphenyl)oxycarbonyl]styrene} (PTFMS) is chosen for the first time to tailor the shell thicknesses of rGO via tailoring the degree of polymerization. The effect of interfacial thickness on the dielectric behavior of the P(VDF-TrFE-CTFE) nanocomposites with rGO and modified rGO is studied in detail. The results demonstrate that the percolation threshold of the nanocomposites increased from 0.68 vol% to 1.69 vol% with an increase in shell thickness. Compared to the rGO@PTFMS-1/P(VDF-TrFE-CTFE) composites, the rGO@PTFMS-2/P(VDF-TrFE-CTFE) composites exhibited a higher breakdown strength and a lower dielectric constant, which can be interpreted by interfacial polarization and the micro-capacitor model, resulting from the insulating nature of the rigid-polymer shell and the change of rGO's morphology. The findings provide an innovative approach to tailor dielectric composites, and promote a deeper understanding of the influence of interfacial region thickness on the dielectric performance.

  10. High dielectric permittivity and improved mechanical and thermal properties of poly(vinylidene fluoride) composites with low carbon nanotube content: effect of composite processing on phase behavior and dielectric properties.

    Science.gov (United States)

    Kumar, G Sudheer; Vishnupriya, D; Chary, K Suresh; Patro, T Umasankar

    2016-09-23

    The composite processing technique and nanofiller concentration and its functionalization significantly alter the properties of polymer nanocomposites. To realize this, multi-walled carbon nanotubes (CNT) were dispersed in a poly(vinylidene fluoride) (PVDF) matrix at carefully selected CNT concentrations by two illustrious methods, such as solution-cast and melt-mixing. Notwithstanding the processing method, CNTs induced predominantly the γ-phase in PVDF, instead of the commonly obtained β-phase upon nanofiller incorporation, and imparted significant improvements in dielectric properties. Acid-treatment of CNT improved its dispersion and interfacial adhesion significantly with PVDF, and induced a higher γ-phase content and better dielectric properties in PVDF as compared to pristine CNT. Further, the γ-phase content was found to be higher in solution-cast composites than that in melt-mixed counterparts, most likely due to solvent-induced crystallization in a controlled environment and slow solvent evaporation in the former case. However, interestingly, the melt-mixed composites showed a significantly higher dielectric constant at the onset of the CNT networked-structure as compared to the solution-cast composites. This suggests the possible role of CNT breakage during melt-mixing, which might lead to higher space-charge polarization at the polymer-CNT interface, and in turn an increased number of pseudo-microcapacitors in these composites than the solution-cast counterparts. Notably, PVDF with 0.13 vol% (volume fraction, f c  = 0.0013) of acid-treated CNTs, prepared by melt-mixing, displayed the relative permittivity of ∼217 and capacitance of ∼5430 pF, loss tangent of ∼0.4 at 1 kHz and an unprecedented figure of merit of ∼10(5). We suggest a simple hypothesis for the γ-phase formation and evolution of the high dielectric constant in these composites. Further, the high-dielectric composite film showed marked improvements in mechanical and thermal

  11. Fluoride

    Science.gov (United States)

    Opalescence® ... Fluoride is used to prevent tooth decay. It is taken up by teeth and helps to strengthen ... and block the cavity-forming action of bacteria. Fluoride usually is prescribed for children and adults whose ...

  12. APPLICATION OF PIEZOELECTRIC MATERIAL FILM PVDF (Polyvinylidene Flouride AS LIQUID VISCOSITY SENSOR

    Directory of Open Access Journals (Sweden)

    Hananto F. S, Santoso D.R., Julius

    2012-03-01

    Research was done by taking 10 samples of oil and 3 different size ofPVDF film and a strain gage,that are: 1 cm x 3 cm (PVDF1; 1 cm x 2 cm (PVDF2; 1 cm x 1 cm (PVDF3. Results showed that the resolution of  PVDF1,  PVDF2 and PVDF3 are  4.6  mv/cPois;  3.1  mv/cPois and 1.5  mv/cPois respectively, while the strain gage produce a resolution of 1.2  mv/cPois. The average resolution of PVDF is 1.53 mv.cPois-1.cm-2, which means that every 1 cm2   PVDF film area and the increase of 1 cPois of viscosity of the material will produce 1.53 millivolts.

  13. Swift heavy ion irradiation effects in {alpha} poly(vinylidene fluoride); Etude des effets induits par les ions lourds energetiques dans le poly(fluorure de vinylidene)

    Energy Technology Data Exchange (ETDEWEB)

    Le Bouedec, A

    1999-11-29

    The goal of this study is to characteristic and to localised defects created in {alpha} Poly (vinylidene fluoride) after swift heavy ion irradiations. PVDF films are irradiated with several Swift Heavy Ions (SHI), in the electronic stopping power (dE/dx){sub e}, in order to study the influence of irradiation parameters (absorbed dose, ion). These irradiated films are studied by different analysis techniques such as FTIR, ESR (X and Q band) spectroscopies and DSC. The crystalline level of PVDF is about 50% and we follow it destruction and amorphization as the absorbed dose increase by DSC and FTIR studies. The variation of the various FTIR bands allow us to observe the unsaturations induced by SHI radiations. Two sets of defects are observed: those which yield is sensitive to an increase of (dE/dx){sub e} and those that are not. A spatial distribution of the various defects within the talent track is provided and defects that are difficult to create are the closest of the ion path. The different kind of radicals created after irradiations are studied by ESR spectroscopy. Alkyl, peroxy and polyenyl radicals are detected after SHI radiations like after electron or {gamma} irradiations. Their yield of creation is independent of (dE/dx){sub e} and their localised in the crystalline zone or/and at the interfacial zone between crystalline and amorphous one. An other kind of radicals is created only after SHI radiations that are specific of the SHI-polymer interaction. We observe that these radicals are localised on a carbon cluster, in the core of the latent track for low doses and highly sensitive at the (dE/dx){sub e} of the ion. (author)

  14. Effects of Interphase Modification and Biaxial Orientation on Dielectric Properties of Poly(ethylene terephthalate)/Poly(vinylidene fluoride-co-hexafluoropropylene) Multilayer Films.

    Science.gov (United States)

    Yin, Kezhen; Zhou, Zheng; Schuele, Donald E; Wolak, Mason; Zhu, Lei; Baer, Eric

    2016-06-01

    Recently, poly(vinylidene fluoride) (PVDF)-based multilayer films have demonstrated enhanced dielectric properties, combining high energy density and high dielectric breakdown strength from the component polymers. In this work, further enhanced dielectric properties were achieved through interface/interphase modulation and biaxial orientation for the poly(ethylene terephthalate)/poly(methyl methacrylate)/poly(vinylidene fluoride-co-hexafluoropropylene) [PET/PMMA/P(VDF-HFP)] three-component multilayer films. Because PMMA is miscible with P(VDF-HFP) and compatible with PET, the interfacial adhesion between PET and P(VDF-HFP) layers should be improved. Biaxial stretching of the as-extruded multilayer films induced formation of highly oriented fibrillar crystals in both P(VDF-HFP) and PET, resulting in improved dielectric properties with respect to the unstretched films. First, the parallel orientation of PVDF crystals reduced the dielectric loss from the αc relaxation in α crystals. Second, biaxial stretching constrained the amorphous phase in P(VDF-HFP) and thus the migrational loss from impurity ions was reduced. Third, biaxial stretching induced a significant amount of rigid amorphous phase in PET, further enhancing the breakdown strength of multilayer films. Due to the synergistic effects of improved interfacial adhesion and biaxial orientation, the PET/PMMA/P(VDF-HFP) 65-layer films with 8 vol % PMMA exhibited optimal dielectric properties with an energy density of 17.4 J/cm(3) at breakdown and the lowest dielectric loss. These three-component multilayer films are promising for future high-energy-density film capacitor applications.

  15. Fluoride Thin Films: from Exchange Bias to Multferroicity

    Science.gov (United States)

    Johnson, Trent A.

    This dissertation concerns research into the growth and characterization fluoride thin films by molecular beam epitaxy. After a discussion of relevant background material and experimental procedures in the first two chapters, we study exchange bias in magnetic multilayers incorporating the uniaxial antiferromagnet FeF2, grown to varying thicknesses, sandwiched between ferromagnetic Co layers with fixed thicknesses of 5 and 20 nm. Several bilayers with only the 20 nm thick Co layer were grown for comparative study. The samples were grown on Al2O3 (112¯0) substrates at room temperature. In-situ RHEED and x-ray diffraction indicated the films were polycrystalline. The films were determined to have low surface and interlayer roughness, as determined by AFM and x-ray reflectivity. After field-cooling to below the Neel temperature of FeF2 in a magnetic field of 1 kOe, magnetic hysteresis loops were measured as a function of temperature. We found that both layers had a negative exchange bias, with the exchange bias of the thinner layer larger than that of the thicker layer. In addition, the coercivity below the blocking temperature TB of the thinner layer was significantly larger than that of the thick layer, even though the coercivity of the two layers was the same for T > TB. The exchange bias effect, manifested by a shift in these hysteresis loops, showed a strong dependence on the thickness of the antiferromagnet. Anisotropic magnetoresistance measurements provided additional insight into the magnetization reversal mechanism within the ferromagnets. The thickness dependent exchange anisotropy of trilayer and bilayer samples is explained by adapting a random field model to the antiferromagnet/ferromagnet interface. Finally, We investigate the temperature dependent growth, as well as the magnetic and ferroelectric properties of thin films of the multiferroic compounds BaMF4, where M = Fe, Co, Ni. The films were grown to thicknesses of 50 or 100 nm on single crystal Al2

  16. Nanocomposite multilayer capacitors comprising BaTiO3@TiO2 and poly(vinylidene fluoride-hexafluoropropylene for dielectric-based energy storage

    Directory of Open Access Journals (Sweden)

    Mojtaba Rahimabady

    2014-04-01

    Full Text Available Multilayer dielectric capacitors were fabricated from nanocomposite precursor comprised of BaTiO3@TiO2 core–shell nanosized particles and poly(vinylidene fluoride–hexafluoropropylene (P(VDF–HFP polymer matrix (20 vol%. The multilayer capacitors showed very high discharge speed and high discharged energy density of around 2.5 J/cm3 at its breakdown field (~ 166 MV/m. The energy density of the nanocomposite multilayer capacitors was substantially higher than the energy density of commercially used power capacitors. Low cost, flexible structure, high discharge rate and energy density suggest that the nanocomposite multilayer capacitors are promising for energy storage applications in many power devices and systems.

  17. Potential application of microporous structured poly(vinylidene fluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwoven separators to high-voltage and high-power lithium-ion batteries

    International Nuclear Information System (INIS)

    Jeong, Hyun-Seok; Choi, Eun-Sun; Kim, Jong Hun; Lee, Sang-Young

    2011-01-01

    Highlights: → Microporous-structured PVdF-HFP/PET composite nonwoven separators for Li-batteries. → Well-developed microporous structure and liquid electrolyte wettability. → Provision of facile ion transport and suppressed growth of cell impedance. → Superior cell performance at high-voltages/high-current densities. - Abstract: We demonstrate potential application of a new composite non-woven separator, which is comprised of a phase inversion-controlled, microporous polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) gel polymer electrolyte and a polyethylene terephthalate (PET) non-woven support, to high-voltage and high-power lithium-ion batteries. In comparison to a commercialized polyethylene (PE) separator, the composite non-woven separator exhibits distinct improvements in microporous structure and liquid electrolyte wettability. Based on the understanding of the composite non-woven separator, cell performances of the separator at challenging charge/discharge conditions are investigated and discussed in terms of ion transport of the separator and AC impedance of the cell. The aforementioned advantageous features of the composite non-woven separator play a key role in providing facile ion transport and suppressing growth of cell impedance during cycling, which in turn contribute to superior cell performances at harsh charge/discharge conditions such as high voltages and high current densities.

  18. Improving Liquid Entry Pressure of Polyvinylidene Fluoride (PVDF Membranes by Exploiting the Role of Fabrication Parameters in Vapor-Induced Phase Separation VIPS and Non-Solvent-Induced Phase Separation (NIPS Processes

    Directory of Open Access Journals (Sweden)

    Faisal Abdulla AlMarzooqi

    2017-02-01

    Full Text Available Polyvinylidene fluoride (PVDF is a popular polymer material for making membranes for several applications, including membrane distillation (MD, via the phase inversion process. Non-solvent-induced phase separation (NIPS and vapor-induced phase separation (VIPS are applied to achieve a porous PVDF membrane with low mass-transfer resistance and high contact angle (hydrophobicity. In this work, firstly, the impacts of several preparation parameters on membrane properties using VIPS and NIPS were studied. Then, the performance of the selected membrane was assessed in a lab-scale direct-contact MD (DCMD unit. The parametric study shows that decreasing PVDF concentration while increasing both relative humidity (RH and exposure time increased the contact angle and bubble-point pore size (BP. Those trends were investigated further by varying the casting thickness. At higher casting thicknesses and longer exposure time (up to 7.5 min, contact angle (CA increased but BP significantly decreased. The latter showed a dominant trend leading to liquid entry pressure (LEP increase with thickness.

  19. Synthesis of hydrophilic carbon nanotubes by grafting poly(methyl methacrylate) via click reaction and its effect on poly(vinylidene fluoride)-carbon nanotube composite membrane properties1

    Science.gov (United States)

    Ma, Wenzhong; Zhao, Yuchen; Li, Yuxue; Zhang, Peng; Cao, Zheng; Yang, Haicun; Liu, Chunlin; Tao, Guoliang; Gong, Fanghong; Matsuyama, Hideto

    2018-03-01

    Surface modification of azide-decorated multiwalled carbon nanotubes (MWCNTs) with well-defined alkyne-terminated poly(methyl methacrylate) (PMMA) chains was accomplished via the combination of reversible addition fragmentation chain transfer (RAFT) and "click" chemistry. Successful attachment of PMMA onto MWCNT was confirmed by Fourier transform infrared spectroscopy, thermogravimetric analysis (TGA), gel permeation chromatography, Raman spectroscopy, and transmission electron microscopy. The highest grafting percentage (GP) of the PMMA chains (GP = 23.3%) was calculated using TGA. The effect of the PMMA-grafted-MWCNTs (MWCNTs-g-PMMA) content on the performance of the poly(vinylidene fluoride) (PVDF)-MWCNTs-g-PMMA composite membrane was studied. The MWCNTs-g-PMMA was found to be well dispersed in the PVDF composite membrane matrix because of the excellent compatibility between the PMMA and PVDF chains. The composite membranes showed improved porosity, hydrophilicity, water flux, β-PVDF content, and mechanical properties at an optimal amount of 2 wt% MWCNTs-g-PMMA incorporated in the PVDF membrane matrix. In contrast, the hydroxyl functionalized MWCNTs (MWCNTs-OH) showed limited enhancement in the water flux and mechanical strength, which is mainly due to the poor dispersion of MWCNT because of the weak interaction between the MWCNT and PVDF chains. This study reveals the excellent prospect of the MWCNT-based ultrafiltration membrane with enhanced properties in water treatment applications.

  20. Diffuso-Kinetics and Diffuso-Mechanics of Carbon Dioxide / Polyvinylidene Fluoride System under Explosive Gas Decompression: Identification of Key Diffuso-Elastic Couplings by Numerical and Experimental Confrontation

    Directory of Open Access Journals (Sweden)

    Grandidier Jean-Claude

    2015-02-01

    Full Text Available The work aims at identifying the key diffuso-elastic couplings which characterize a numerical tool developed to simulate the irreversible ‘Explosive Decompression Failure’ (XDF in semi-crystalline polymer. The model proposes to predict the evolution of the gas concentration and of the stress field in the polymer during the gas desorption [DOI: 10.1016/j.compositesa.2005.05.021]. Main difficulty is to couple thermal, mechanical and diffusive effects that occur simultaneously during the gas desorption. The couplings are splitting into two families: indirect coupling (i.e., phenomenology that is state variables (gas concentration, temperature, and pressure dependent. direct coupling, (i.e., diffuso-elastic coupling as polymer volume changes because of gas diffusion; The numerical prediction of the diffusion kinetics and of the volume strain (swelling of PVF2 (polyvinylidene fluoride under CO2 (carbon dioxide environment is concerned. The prediction is carried out by studying selected combinations of couplings for a broad range of CO2 pressures. The modeling relevance is evaluated by a comparison with experimental transport parameters analytically identify from solubility tests. A pertinent result of the present study is to have demonstrated the non-uniqueness of the coefficients of diffusion (D and solubility (Sg between the diffuso-elastic coupling (direct coupling and indirect coupling. Main conclusion is that it is necessary to consider concomitantly the two types of couplings, the indirect and the direct couplings.

  1. Cross-Linked Poly(vinylidene fluoride-co-hexafluoropropene (PVDF-co-HFP Gel Polymer Electrolyte for Flexible Li-Ion Battery Integrated with Organic Light Emitting Diode (OLED

    Directory of Open Access Journals (Sweden)

    Ilhwan Kim

    2018-04-01

    Full Text Available Here, we fabricate poly(vinylidene fluoride-co-hexafluoropropene (PVDF-co-HFP by electrospinning for a gel polymer electrolyte (GPE for use in flexible Li-ion batteries (LIBs. As a solvent, we use N-methyl-2-pyrrolidone (NMP, which helps produce the cross-linked morphology of PVDF-co-HFP separator, owing to its low volatility. The cross-linked PVDF-co-HFP separator shows an uptake rate higher than that of a commercialized polypropylene (PP separator. Moreover, the PVDF-co-HFP separator shows an ionic conductivity of 2.3 × 10−3 S/cm at room temperature, comparable with previously reported values. An LIB full-cell assembled with the PVDF-co-HFP-based GPE shows capacities higher than its counterpart with the commercialized PP separator, confirming that the cross-linked PVDF-co-HFP separator provides highly efficient ionic conducting pathways. In addition, we integrate a flexible LIB cell using the PVDF-co-HFP GPE with a flexible organic light emitting diode (OLED, demonstrating a fully flexible unit of LIB and OLED.

  2. 3D-printed poly(vinylidene fluoride)/carbon nanotube composites as a tunable, low-cost chemical vapour sensing platform

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, Z. C.; Christ, J. F.; Evans, K. A.; Arey, B. W.; Sweet, L. E.; Warner, M. G.; Erikson, R. L.; Barrett, C. A.

    2017-01-01

    We report the production of flexible, highly-conductive poly(vinylidene flouride) (PVDF) and multi-walled carbon nanotube (MWCNT) composites as filament feedstock for 3D-printing. This account further describes, for the first-time, fused deposition modelling (FDM) derived 3D-printed objects with chemiresistive properties in response to volatile organic compounds. The typically prohibitive thermal expansion and die swell characteristics of PVDF were minimized by the presence of MWCNTs in the composites enabling straightforward processing and printing. The nanotubes form a dispersed network as characterized by helium ion microscopy, contributing to excellent conductivity (1 x 10-2 S / cm). The printed composites contain little residual metal particulate relative to parts from commercial PLA-nanocomposite material visualized by micro X-ray computed tomography (μ-CT) and corroborated with thermogravimetric analysis. Printed sensing strips, with MWCNT loadings up to 15 % mass, function as reversible vapour sensors with the strongest responses arising with organic compounds capable of readily intercalating, and subsequently swelling the PVDF matrix (acetone and ethyl acetate). A direct correlation between MWCNT concentration and resistance change was also observed, with larger responses (up to 161 % after 3 minutes) generated with decreased MWCNT loadings. These findings highlight the utility of FDM printing in generating low-cost sensors that respond strongly and reproducibly to target vapours. Furthermore, the sensors can be easily printed in different geometries, expanding their utility to wearable form factors. The proposed formulation strategy may be tailored to sense diverse sets of vapour classes through structural modification of the polymer backbone and/or functionalization of the nanotubes within the composite.

  3. Surface modification of poly(vinylidene fluoride) membrane with hydrophilic and anti-fouling performance via a two-step polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gui-E; Sun, Li; Huang, Hui-Hong; Liu, Yan-Jun [Shanghai Institute of Technology, Shanghai (China); Xu, Zhen-Liang; Yang, Hu [East China University of Science and Technology, Shanghai (China)

    2015-12-15

    The surface modification of poly (vinylidene fluoride) (PVDF) membrane was performed via a two-step polymerization reactions. Poly (acrylic acid) (PAAc) was first grafted onto the membrane surface for the preparation of PVDF-g-PAAc membrane, and then poly (ethylene glycol) 200 (PEG 200) was immobilized on the membrane surface by the esterification reaction for the fabrication of PVDF-g-PEGA membrane. Attenuated total reflectance (ATR) FTIR, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), and protein adsorption, water flux, water content and dynamic contact angle were conducted to characterize the structures and performance of the resultant PVDF membranes. The experimental results showed that the adsorption of bovine serum albumin (BSA) on the PVDF-g-PEGA membrane decreased about 80% when the grafting ratio reached to 15 wt%, compared with the pristine PVDF membrane. Moreover, the water contact angle of the membrane dropped to 60.5o, while the membrane pore sizes remained little changed.

  4. How Chain Intermixing Dictates the Polymorphism of PVDF in Poly(vinylidene fluoride/Polymethylmethacrylate Binary System during Recrystallization: A Comparative Study on Core–Shell Particles and Latex Blend

    Directory of Open Access Journals (Sweden)

    Yue Li

    2017-09-01

    Full Text Available In the past few decades, Poly(vinylidene fluoride/Polymethylmethacrylate (PVDF/PMMA binary blend has attracted substantial attention in the scientific community due to possible intriguing mechanical, optical and ferroelectric properties that are closely related to its multiple crystal structures/phases. However, the effect of PMMA phase on the polymorphism of PVDF, especially the relationship between miscibility and polymorphism, remains an open question and is not yet fully understood. In this work, three series of particle blends with varied levels of miscibility between PVDF and PMMA were prepared via seeded emulsion polymerization: PVDF–PMMA core–shell particle (PVDF@PMMA with high miscibility; PVDF/PMMA latex blend with modest miscibility; and PVDF@c–PMMA (crosslinked PMMA core–shell particle with negligible miscibility. The difference in miscibility, and the corresponding morphology and polymorphism were systematically studied to correlate the PMMA/PVDF miscibility with PVDF polymorphism. It is of interest to observe that the formation of polar β/γ phase during melt crystallization could be governed in two ways: dipole–dipole interaction and fast crystallization. For PVDF@PMMA and PVDF/PMMA systems, in which fast crystallization was unlikely triggered, higher content of β/γ phase, and intense suppression of crystallization temperature and capacity were observed in PVDF@PMMA, because high miscibility favored a higher intensity of overall dipole–dipole interaction and a longer interaction time. For PVDF@c–PMMA system, after a complete coverage of PVDF seeds by PMMA shells, nearly pure β/γ phase was obtained owing to the fast homogeneous nucleation. This is the first report that high miscibility between PVDF and PMMA could favor the formation of β/γ phase.

  5. Evaluation of the antifouling and photocatalytic properties of poly(vinylidene fluoride) plasma-grafted poly(acrylic acid) membrane with self-assembled TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    You, Sheng-Jie, E-mail: sjyou@cycu.edu.tw [Department of Bioenvironmental Engineering, Chung Yuan Christian University, Chungli, Taiwan (China); R and D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan (China); Semblante, Galilee Uy [Department of Bioenvironmental Engineering, Chung Yuan Christian University, Chungli, Taiwan (China); R and D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan (China); Lu, Shao-Chung [Department of Civil Engineering, Chung Yuan Christian University, Chungli, Taiwan (China); Damodar, Rahul A. [Department of Bioenvironmental Engineering, Chung Yuan Christian University, Chungli, Taiwan (China); R and D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan (China); Wei, Ta-Chin [R and D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taiwan (China); Department of Chemical Engineering, Chung Yuan Christian University, Chungli, Taiwan (China)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer Plasma and grafting parameters that maximized TiO{sub 2} binding sites were found. Black-Right-Pointing-Pointer PVDF hydrophilicity was vastly improved compared to other modification techniques. Black-Right-Pointing-Pointer At least 1.5% TiO{sub 2} and 30 min UV exposure were needed to attain full flux recovery. Black-Right-Pointing-Pointer Photocatalytic membranes could remove up to 42% of 50 mg/l RB5 dye. - Abstract: Immobilization of TiO{sub 2} is a promising approach that produces antifouling and photocatalytic membranes that could help advance wastewater treatment and re-use processes. In this study, poly(acrylic acid) (PAA) was plasma-grafted on commercial poly(vinylidene fluoride) (PVDF) to introduce functional groups on the membrane surface that can support the nanoparticles. It was found that plasma treatment at 100 W for 120 s followed by liquid grafting with 70% aqueous AA at 60 Degree-Sign C for 2 h maximized the number of TiO{sub 2} binding sites. Membrane hydrophilicity was tremendously enhanced by the self-assembly of TiO{sub 2}, following a direct proportionality to TiO{sub 2} loading. The membrane with 0.5% TiO{sub 2} loading maintained the highest pure water flux and the best protein antifouling property. UV irradiation triggered the photodegradation of strongly bound foulants, but at least 1.5% TiO{sub 2} and 30 min cumulative irradiation were necessary to completely recover the membrane's original performance. The TiO{sub 2}-modified membranes removed 30-42% of 50 mg/l aqueous Reactive Black 5 (RB5) dye. The fabricated membranes demonstrate huge potential for use in membrane reactors with high hydrophilicity, fouling mitigation, and photocatalytic capability.

  6. Significantly Enhanced Dielectric Performances and High Thermal Conductivity in Poly(vinylidene fluoride)-Based Composites Enabled by SiC@SiO2 Core-Shell Whiskers Alignment.

    Science.gov (United States)

    He, Dalong; Wang, Yao; Song, Silong; Liu, Song; Deng, Yuan

    2017-12-27

    Design of composites with ordered fillers arrangement results in anisotropic performances with greatly enhanced properties along a specific direction, which is a powerful tool to optimize physical properties of composites. Well-aligned core-shell SiC@SiO 2 whiskers in poly(vinylidene fluoride) (PVDF) matrix has been achieved via a modified spinning approach. Because of the high aspect ratio of SiC whiskers, strong anisotropy and significant enhancement in dielectric constant were observed with permittivity 854 along the parallel direction versus 71 along the perpendicular direction at 20 vol % SiC@SiO 2 loading, while little increase in dielectric loss was found due to the highly insulating SiO 2 shell. The anisotropic dielectric behavior of the composite is perfectly understood macroscopically to have originated from anisotropic intensity of interfacial polarization based on an equivalent circuit model of two parallel RC circuits connected in series. Furthermore, finite element simulations on the three-dimensional distribution of local electric field, polarization, and leakage current density in oriented SiC@SiO 2 /PVDF composites under different applied electrical field directions unambiguously revealed that aligned core-shell SiC@SiO 2 whiskers with a high aspect ratio significantly improved dielectric performances. Importantly, the thermal conductivity of the composite was synchronously enhanced over 7 times as compared to that of PVDF matrix along the parallel direction at 20 vol % SiC@SiO 2 whiskers loading. This study highlights an effective strategy to achieve excellent comprehensive properties for high-k dielectrics.

  7. Robotic Tactile Sensors Fabricated from a Monolithic Silicon Integrated Circuit and a Piezoelectric Polyvinylidene Fluoride Thin Film

    Science.gov (United States)

    1991-12-01

    thi efecs could be accounted for. A high impedance switch network resulted in the aityto etally apply a fix&. ,zw the entire electrode array structure...sesrCmnipo-wil (if a I wo-itmetsitiial array of clusely spared : axels should be cajpable -it fundmental image seivsinm and thius. renile: iii ,fbIot Willh...is said to be piezoresistive. Piezoresistive tactile sensors incorporate this principle in tile design of tile sensor as the transducing material

  8. Highly durable piezo-electric energy harvester by a super toughened and flexible nanocomposite: effect of laponite nano-clay in poly(vinylidene fluoride)

    Science.gov (United States)

    Rahman, Wahida; Ghosh, Sujoy Kumar; Ranjan Middya, Tapas; Mandal, Dipankar

    2017-09-01

    A highly durable piezoelectric energy harvester is introduced by integrating the toughness and flexibility of a non-electrically poled, laponite nano-clay mineral-induced γ-phase (up to 98%) in a poly(vinylidene-fluoride) (PVDF) matrix by a simple solvent evaporation technique. Owing to a superior electromechanical coupling effect, PVDF/laponite nanocomposites retain excellent biomechanical energy harvesting capabilities under external vibration (as high as 6 V output voltage and 70 nA output current under a compressive force of 300 N) and charge storage properties under an external high electric field (maximum 0.8~ \\text{J} \\text{c}{{\\text{m}}-3} of discharged energy density at a breakdown strength of 302 MV m-1). As a proof of concept, the fabricated nanogenerator (NG) possesses a high output power density (~6.3 mW m-2) that directly drives several consumer electronics without using any storage system or batteries. It paves the way for potential applicability in next generation electronics, particularly as a self-powered device and to configure sustainable internet of things (IoT) sensor networks.

  9. Monitoring of diisopropyl fluorophosphate hydrolysis by fluoride-selective polymeric films using absorbance spectroscopy

    International Nuclear Information System (INIS)

    Ramanathan, Madhumati; Wang Lin; Wild, James R.; Meyeroff, Mark E.; Simonian, Aleksandr L.

    2010-01-01

    In this study, a novel system for the detection and quantification of organofluorophosphonates (OFP) has been developed by using an optical sensing polymeric membrane to detect the fluoride ions produced upon OFP hydrolysis. Diisopropyl fluorophosphate (DFP), a structural analogue of type G chemical warfare agents such as Sarin (GB) and Soman (GD), is used as the surrogate target analyte. An optical sensing fluoride ion selective polymeric film was formulated from plasticized PVC containing aluminum(III) octaethyl porphyrin and ETH 7075 chromoionophore (Al[OEP]-ETH 7075). Selected formulations were used to detect the fluoride ions produced by the catalytic hydrolysis of DFP by the enzyme organophosphate hydrolase (OPH, EC 3.1.8.1). The changes in absorbance that corresponded to the deprotonated state of chromoionophore within the film results from simultaneous coextraction of fluoride and protons as DFP hydrolysis takes place in the solution phase in contact with the film. The developed sensing system demonstrates excellent sensitivity for concentrations as low as 0.1 μM DFP.

  10. Monitoring of diisopropyl fluorophosphate hydrolysis by fluoride-selective polymeric films using absorbance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ramanathan, Madhumati [Materials Research and Education Center, Auburn University, Auburn, AL 36849 (United States); Wang Lin [Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109 (United States); Wild, James R. [Biochemistry and Biophysics Department, Texas A and M University Texas AgriLife Research Program, College Station, TX 77843-2128 (United States); Meyeroff, Mark E. [Department of Chemistry, University of Michigan, 930 North University, Ann Arbor, MI 48109 (United States); Simonian, Aleksandr L., E-mail: simonal@auburn.edu [Materials Research and Education Center, Auburn University, Auburn, AL 36849 (United States)

    2010-05-14

    In this study, a novel system for the detection and quantification of organofluorophosphonates (OFP) has been developed by using an optical sensing polymeric membrane to detect the fluoride ions produced upon OFP hydrolysis. Diisopropyl fluorophosphate (DFP), a structural analogue of type G chemical warfare agents such as Sarin (GB) and Soman (GD), is used as the surrogate target analyte. An optical sensing fluoride ion selective polymeric film was formulated from plasticized PVC containing aluminum(III) octaethyl porphyrin and ETH 7075 chromoionophore (Al[OEP]-ETH 7075). Selected formulations were used to detect the fluoride ions produced by the catalytic hydrolysis of DFP by the enzyme organophosphate hydrolase (OPH, EC 3.1.8.1). The changes in absorbance that corresponded to the deprotonated state of chromoionophore within the film results from simultaneous coextraction of fluoride and protons as DFP hydrolysis takes place in the solution phase in contact with the film. The developed sensing system demonstrates excellent sensitivity for concentrations as low as 0.1 {mu}M DFP.

  11. High throughput study of fuel cell proton exchange membranes: Poly(vinylidene fluoride)/acrylic polyelectrolyte blends and nanocomposites with zirconium

    Science.gov (United States)

    Zapata B., Pedro Jose

    Sustainability is perhaps one of the most heard buzzwords in the post-20 th century society; nevertheless, it is not without a reason. Our present practices for energy supply are largely unsustainable if we consider their environmental and social impact. In view of this unfavorable panorama, alternative sustainable energy sources and conversion approaches have acquired noteworthy significance in recent years. Among these, proton exchange membrane fuel cells (PEMFCs) are being considered as a pivotal building block in the transition towards a sustainable energy economy in the 21st century. The polyelectrolyte membrane or proton exchange membrane (PEM) is a vital component, as well as a performance-limiting factor, of the PEMFC. Consequently, the development of high-performance PEM materials is of utmost importance for the advance of the PEMFC field. In this work, alternative PEM materials based on semi-interpenetrated networks from blends of poly(vinyledene fluoride) (PVDF) (inert phase) and sulfonated crosslinked acrylic polyelectrolytes (PE) (proton-conducting phase), as well as tri-phase PVDF/PE/zirconium-based composites, are studied. To alleviate the burden resulting from the vast number of possible combinations of the different precursors utilized in the preparation of the membranes (PVDF: 5x, PE: 2x, Nanoparticle: 3x), custom high-throughput (HT) screening systems have been developed for their characterization. By coupling the data spaces obtained via these systems with the appropriate statistical and data analysis tools it was found that, despite not being directly involved in the proton transport process, the inert PVDF phase plays a major role on proton conductivity. Particularly, a univocal inverse correlation between the PVDF crystalline characteristics (i.e., crystallinity and crystallite size) and melt viscosity, and membrane proton conductivity was discovered. Membranes based on highly crystalline and viscous PVDF homopolymers exhibited reduced proton

  12. Anodic films grown on magnesium and magnesium alloys in fluoride solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ono, S. [Dept. of Applied Chemistry, Kogakuin Univ., Tokyo (Japan); Masuko, N. [Dept. of Metallurgical Engineering, Chiba Inst. of Tech., Narashino, Chiba (Japan)

    2003-07-01

    Formation behavior of anodic oxide films on magnesium in fluoride electrolytes was investigated with attention to the effects of anodizing voltage and aluminum content. In the range of voltage between 2 V and 100 V, porous film was formed in alkaline fluoride solution associated with high current density at around 5 V and at breakdown voltage. The critical voltage of breakdown to allow maximum current flow was approximately 60 V and relatively independent on substrate purity. The films formed at breakdown voltage showed a lava-like porous structure similar to those obtained on aluminum and other valve metals. Barrier films or semi-barrier films, which were composed of hydrated outer layer and relatively dense inner layer, were formed at the other voltages. In the case of AZ91D, the critical voltage increased to 70 V and peculiar phenomenon at 5 V was not observed, so that only barrier films were formed at less than the breakdown voltage. These phenomena can be explained by the effects of aluminum incorporation into the film to prevent dissolution and to promote passivation of magnesium. The depth profiles of constituent elements showed that aluminum distributed in whole depth of the film. (orig.)

  13. Application of fluoridated hydroxyapatite thin film coatings using KrF pulsed laser deposition.

    Science.gov (United States)

    Hashimoto, Yoshiya; Ueda, Mamoru; Kohiga, Yu; Imura, Kazuki; Hontsu, Shigeki

    2018-06-08

    Fluoridated hydroxyapatite (FHA) was investigated for application as an implant coating for titanium bone substitute materials in dental implants. A KrF pulsed excimer deposition technique was used for film preparation on a titanium plate. The compacts were ablated by laser irradiation at an energy density of 1 J/cm 2 on an area 1×1 mm 2 with the substrate at room temparature. Energydispersive spectrometric analysis of the FHA film revealed peaks of fluorine in addition to calcium and phosphorus. X-ray diffraction revealed the presence of crystalline FHA on the FHA film after a 10 h post annealing treatment at 450°C. The FHA film coating exhibited significant dissolution resistance to sodium phosphate buffer for up to 21 days, and favorable cell attachment of human mesenchymal stem cells compared with HA film. The results of this study suggest that FHA coatings are suitable for real-world implantation applications.

  14. Coating NiTi archwires with diamond-like carbon films: reducing fluoride-induced corrosion and improving frictional properties.

    Science.gov (United States)

    Huang, S Y; Huang, J J; Kang, T; Diao, D F; Duan, Y Z

    2013-10-01

    This study aims to coat diamond-like carbon (DLC) films onto nickel-titanium (NiTi) orthodontic archwires. The film protects against fluoride-induced corrosion and will improve orthodontic friction. 'Mirror-confinement-type electron cyclotron resonance plasma sputtering' was utilized to deposit DLC films onto NiTi archwires. The influence of a fluoride-containing environment on the surface topography and the friction force between the brackets and archwires were investigated. The results confirmed the superior nature of the DLC coating, with less surface roughness variation for DLC-coated archwires after immersion in a high fluoride ion environment. Friction tests also showed that applying a DLC coating significantly decreased the fretting wear and the coefficient of friction, both in ambient air and artificial saliva. Thus, DLC coatings are recommended to reduce fluoride-induced corrosion and improve orthodontic friction.

  15. Ultraviolet optical properties of aluminum fluoride thin films deposited by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hennessy, John, E-mail: john.j.hennessy@jpl.nasa.gov; Jewell, April D.; Balasubramanian, Kunjithapatham; Nikzad, Shouleh [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2016-01-15

    Aluminum fluoride (AlF{sub 3}) is a low refractive index material with promising optical applications for ultraviolet (UV) wavelengths. An atomic layer deposition process using trimethylaluminum and anhydrous hydrogen fluoride has been developed for the deposition of AlF{sub 3} at substrate temperatures between 100 and 200 °C. This low temperature process has resulted in thin films with UV-optical properties that have been characterized by ellipsometric and reflection/transmission measurements at wavelengths down to 200 nm. The optical loss for 93 nm thick films deposited at 100 °C was measured to be less than 0.2% from visible wavelengths down to 200 nm, and additional microstructural characterization demonstrates that the films are amorphous with moderate tensile stress of 42–105 MPa as deposited on silicon substrates. X-ray photoelectron spectroscopy analysis shows no signature of residual aluminum oxide components making these films good candidates for a variety of applications at even shorter UV wavelengths.

  16. Highly selective single-use fluoride ion optical sensor based on aluminum(III)-salen complex in thin polymeric film

    International Nuclear Information System (INIS)

    Badr, Ibrahim H.A.; Meyerhoff, Mark E.

    2005-01-01

    A highly selective optical sensor for fluoride ion based on the use of an aluminum(III)-salen complex as an ionophore within a thin polymeric film is described. The sensor is prepared by embedding the aluminum(III)-salen ionophore and a suitable lipophilic pH-sensitive indicator (ETH-7075) in a plasticized poly(vinyl chloride) (PVC) film. Optical response to fluoride occurs due to fluoride extraction into the polymer via formation of a strong complex with the aluminum(III)-salen species. Co-extraction of protons occurs simultaneously, with protonation of the indicator dye yielding the optical response at 529 nm. Films prepared using dioctylsebacate (DOS) are shown to exhibit better response (e.g., linear range, detection limit, and optical signal stability) compared to those prepared using ortho-nitrophenyloctyl ether (o-NPOE). Films formulated with aluminum(III)-salen and ETH-7075 indicator in 2 DOS:1 PVC, exhibit a significantly enhanced selectivity for fluoride over a wide range of lipophilic anions including salicylate, perchlorate, nitrate, and thiocyanate. The optimized films exhibit a sub-micromolar detection limit, using glycine-phosphate buffer, pH 3.00, as the test sample. The response times of the fluoride optical sensing films are in the range of 1-10 min depending on the fluoride ion concentration in the sample. The sensor exhibits very poor reversibility owing to a high co-extraction constant (log K = 8.5 ± 0.4), indicating that it can best be employed as a single-use transduction device. The utility of the aluminum(III)-salen based fluoride sensitive films as single-use sensors is demonstrated by casting polymeric films on the bottom of standard polypropylene microtiter plate wells (96 wells/plate). The modified microtiter plate optode format sensors exhibit response characteristics comparable to the classical optode films cast on quartz slides. The modified microtiter is utilized for the analysis of fluoride in diluted anti-cavity fluoride rinse

  17. Controlled fluoridation of amorphous carbon films deposited at reactive plasma conditions

    Directory of Open Access Journals (Sweden)

    Yoffe Alexander

    2015-09-01

    Full Text Available A study of the correlations between plasma parameters, gas ratios, and deposited amorphous carbon film properties is presented. The injection of a C4F8/Ar/N2 mixture of gases was successfully used in an inductively coupled plasma system for the preparation of amorphous carbon films with different fluoride doping at room-temperature, using silicon as a substrate. This coating was formed at low-pressure and low-energy using an inductively coupled plasma process. A strong dependence between the ratios of gases during deposition and the composition of the substrate compounds was shown. The values of ratios between Ar (or Ar+N2 and C4F8 - 1:1 and between N2 and Ar - 1:2 in the N2/Ar/C4F8 mixture were found as the best for low fluoridated coatings. In addition, an example of improving the etch-passivation in the Bosch procedure was described. Scanning electron microscopy with energy dispersive spectroscopy options, X-ray diffraction, and X-ray reflectivity were used for quantitative analysis of the deposited films.

  18. Multiferroic fluoride BaCoF4 Thin Films Grown Via Molecular Beam Epitaxy

    Science.gov (United States)

    Borisov, Pavel; Johnson, Trent; García-Castro, Camilo; Kc, Amit; Schrecongost, Dustin; Cen, Cheng; Romero, Aldo; Lederman, David

    Multiferroic materials exhibit exciting physics related to the simultaneous presence of multiple long-range orders, in many cases consisting of antiferromagnetic (AF) and ferroelectric (FE) orderings. In order to provide a new, promising route for fluoride-based multiferroic material engineering, we grew multiferroic fluoride BaCoF4 in thin film form on Al2O3 (0001) substrates by molecular beam epitaxy. The films grow with the orthorhombic b-axis out-of-plane and with three in-plane structural twin domains along the polar c-axis directions. The FE ordering in thin films was verified by FE remanent hysteresis loops measurements at T = 14 K and by room temperature piezoresponse force microscopy (PFM). An AF behavior was found below Neel temperature TN ~ 80 K, which is in agreement with the bulk properties. At lower temperatures two additional magnetic phase transitions at 19 K and 41 K were found. First-principles calculations demonstrated that the growth strain applied to the bulk BaCoF4 indeed favors two canted spin orders, along the b- and a-axes, respectively, in addition to the main AF spin order along the c-axis. Supported by FAME (Contract 2013-MA-2382), WV Research Challenge Grant (HEPC.dsr.12.29), and DMREF-NSF 1434897.

  19. Lattice-Stiffening Transition in Copolymer Films of Vinylidene Fluoride (70%) with Trifluoroethylene (30%)

    Energy Technology Data Exchange (ETDEWEB)

    Borca, C N [Department of Physics and Astronomy and the Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States); Adenwalla, S [Department of Physics and Astronomy and the Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States); Choi, Jaewu [Department of Physics and Astronomy and the Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States); Center for Advanced Microstructure and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, Louisiana 70806 (United States); Sprunger, P T [Center for Advanced Microstructure and Devices, Louisiana State University, 6980 Jefferson Highway, Baton Rouge, Louisiana 70806 (United States); Ducharme, Stephen [Department of Physics and Astronomy and the Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States); Robertson, Lee [High Flux Isotope Reactor (HFIR), Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Palto, S P [Institute of Crystallography, The Russian Academy of Sciences, 59 Leninsky Prospekt, 117333 Moscow, Russia (Russian Federation); Liu, Jianglai [Department of Physics and Astronomy and the Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States); Poulsen, Matt [Department of Physics and Astronomy and the Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0111 (United States); Fridkin, V M [Institute of Crystallography, The Russian Academy of Sciences, 59 Leninsky Prospekt, 117333 Moscow, Russia (Russian Federation)

    1999-11-29

    We report the discovery of a compressibility phase transition at 160 K in crystalline copolymer films of vinylidene fluoride (70% ) with trifluoroethylene (30% ). This phase transition is distinct from the known bulk ferroelectric-paraelectric phase transition at 353 K and surface ferroelectric phase transition at 295 K. The new phase transition is characterized by an increase in the effective Debye temperature from 48 to 245 K along the <010> direction as the temperature falls below 160 K. This phase transition is evident in neutron scattering, x-ray diffraction, angle-resolved photoemission, and in the dipole active phonon modes in electron energy-loss spectroscopy. (c) 1999 The American Physical Society.

  20. Formation of barrier-type anodic films on ZE41 magnesium alloy in a fluoride/glycerol electrolyte

    International Nuclear Information System (INIS)

    Hernández-López, J.M.; Němcová, A.; Zhong, X.L.; Liu, H.; Arenas, M.A.; Haigh, S.J.; Burke, M.G.; Skeldon, P.; Thompson, G.E.

    2014-01-01

    Highlights: • Barrier anodic films formed on ZE41 Mg alloy in glycerol/fluoride electrolyte. • Films contain oxygen and fluorine species; formation ratio ∼1.3 nm V −1 . • Nanocrystalline film structure, with MgO and MgF 2. • Zinc enrichment in alloy beneath anodic film. • Modified film formed above Mg-Zn-RE second phase. - Abstract: Barrier-type, nanocrystalline anodic films have been formed on a ZE41 magnesium alloy under a constant current density of 5 mA cm −2 in a glycerol/fluoride electrolyte, containing 5 vol.% of added water, at 293 K. The films contain magnesium, fluorine and oxygen as the major species, and lower amounts of alloying element species. The films grow at an efficiency of ∼0.8 to 0.9, with a formation ratio in the range of ∼1.2 to 1.4 nm V −1 at the matrix regions and with a ratio of ∼1.8 nm V −1 at Mg-Zn-RE second phase. At the former regions, rare earth species are enriched at the film surface and zinc is enriched in the alloy. A carbon- and oxygen-rich band within the film suggests that the films grow at the metal/film and film/electrolyte interfaces

  1. In-line X-ray lensless imaging with lithium fluoride film detectors

    International Nuclear Information System (INIS)

    Bonfigli, F.; Cecilia, A.; Bateni, S. Heidari; Nichelatti, E.; Pelliccia, D.; Somma, F.; Vagovic, P.; Vincenti, M.A.; Baumbach, T.; Montereali, R.M.

    2013-01-01

    In this work, we present preliminary in-line X-ray lensless projection imaging results at a synchrotron facility by using novel solid-state detectors based on non-destructive readout of photoluminescent colour centres in lithium fluoride thin films. The peculiarities of LiF radiation detectors are high spatial resolution on a large field of view, wide dynamic range, versatility and simplicity of use. These properties offered the opportunity to test a broadband X-ray synchrotron source for lensless projection imaging experiments at the TopoTomo beamline of the ANKA synchrotron facility by using a white beam spectrum (3–40 keV). Edge-enhancement effects were observed for the first time on a test object; they are discussed and compared with simulations, on the basis of the colour centre photoluminescence linear response found in the investigated irradiation conditions. -- Highlights: ► We performed broadband X-ray imaging at synchrotron by novel LiF imaging detectors. ► X-ray phase contrast experiments on LiF crystals and thin films were performed. ► Photoluminescent high-quality X-images on a LiF film only 1 μm thick were obtained. ► Edge-enhancement effects were detected and compared with simulations. ► A linearity of colour centre fluorescence response of LiF film was found

  2. Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2/Graphite lithium ion cells with poly(vinylidene fluoride) binder. I - Microstructural changes in the anode

    Science.gov (United States)

    Dietz Rago, Nancy; Bareño, Javier; Li, Jianlin; Du, Zhijia; Wood, David L.; Steele, Leigh Anna; Lamb, Joshua; Spangler, Scott; Grosso, Christopher; Fenton, Kyle; Bloom, Ira

    2018-05-01

    Cells based on NMC/graphite, containing poly(vinylidene difluoride) (PVDF) binders in the positive and negative electrodes, were systematically overcharged to 100, 120, 140, 160, 180, and 250% state-of-charge (SOC). At 250% SOC the cell vented. Scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) of the anodes showed several state-of-overcharge-dependent trends. Starting at 120% SOC, dendrites appeared and increased in concentration as the SOC increased. Dendrite morphology appeared to be dependent on whether the active material was on the "dull" or "shiny" side of the copper collector. Significantly more delamination of the active material from the collector was seen on the "shiny" side of the collector particularly at 180 and 250% SOC. Transition metals were detected at 120% SOC and increased in concentration as the SOC increased. There was considerable spatial heterogeneity in the microstructures across each laminate with several regions displaying complex layered structures.

  3. Comparison of topotactic fluorination methods for complex oxide films

    Science.gov (United States)

    Moon, E. J.; Choquette, A. K.; Huon, A.; Kulesa, S. Z.; Barbash, D.; May, S. J.

    2015-06-01

    We have investigated the synthesis of SrFeO3-αFγ (α and γ ≤ 1) perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride) as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO2.5 films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  4. Comparison of topotactic fluorination methods for complex oxide films

    Energy Technology Data Exchange (ETDEWEB)

    Moon, E. J., E-mail: em582@drexel.edu; Choquette, A. K.; Huon, A.; Kulesa, S. Z.; May, S. J., E-mail: smay@coe.drexel.edu [Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104 (United States); Barbash, D. [Centralized Research Facilities, Drexel University, Philadelphia, Pennsylvania 19104 (United States)

    2015-06-01

    We have investigated the synthesis of SrFeO{sub 3−α}F{sub γ} (α and γ ≤ 1) perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride) as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO{sub 2.5} films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  5. Comparison of topotactic fluorination methods for complex oxide films

    Directory of Open Access Journals (Sweden)

    E. J. Moon

    2015-06-01

    Full Text Available We have investigated the synthesis of SrFeO3−αFγ (α and γ ≤ 1 perovskite films using topotactic fluorination reactions utilizing poly(vinylidene fluoride as a fluorine source. Two different fluorination methods, a spin-coating and a vapor transport approach, were performed on as-grown SrFeO2.5 films. We highlight differences in the structural, compositional, and optical properties of the oxyfluoride films obtained via the two methods, providing insight into how fluorination reactions can be used to modify electronic and optical behavior in complex oxide heterostructures.

  6. Analysis of FT-IR for dosimetric characterization of poly(vinylidene fluoride - hexafluoropropylene) irradiated with high doses of gamma radiation; Analise de FT-IR para caracterizacao dosimetrica do poli(fluoreto de vinilideno - hexafluorpropileno) irradiado com altas doses de radiacao gama

    Energy Technology Data Exchange (ETDEWEB)

    Liz, Otavio Souza Rocha; Medeiros, Adriana de Souza [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte, MG (Brazil). Dept. de Engenharia Nuclear; Faria, Luiz Oliveira de, E-mail: farialo@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-10-26

    Polymeric materials when exposed to ionizing radiation undergo changes such as the crosslinking and chain oxidation. Recently, the optical absorption intensities in the ultraviolet visible region (273 nm) due to radio- induction of conjugated C=C bonds in P(VDF-TrFE) copolymers has been successfully used for high dose dosimetry purposes in gamma fields ranging from 0.1 to 200 kGy. In this context, the interest of performing a systematic investigation on another fluorinated copolymer of PVDF, the (Polyvinylidene fluoride - hexa fluoro propylene) [P(VDF- HFP)] has come to light, not only for UV-VIS range but also for the near and medium infrared ranges. In this investigation FTIR and UV-Vis spectra, acquired before and after irradiation, were used to investigate the relationship between optical absorbance and delivered gamma doses ranging from 100 to 3,000 kGy. The results indicate that the absorption band at 1729 cm-1, originated by the chain oxidation through the radioinduction of C=O bonds, presents an unambiguous behavior with the delivered gamma doses in a very large extension, ranging from 0 to 1,000 kGy. This results lead to conclude that P(VDF-HFP) copolymer shows excellent dosimetric properties which make it able to be investigated as a high dose dosimeter

  7. In vitro corrosion behavior of Ti-O film deposited on fluoride-treated Mg-Zn-Y-Nd alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, S.S.; Zhang, R.R. [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002 (China); Guan, S.K., E-mail: skguan@zzu.edu.cn [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002 (China); Ren, C.X.; Gao, J.H.; Lu, Q.B.; Cui, X.Z. [Materials Research Center, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450002 (China)

    2012-02-01

    In this paper, a new composite coating was fabricated on magnesium alloy by a two-step approach, to improve the corrosion resistance and biocompatibility of Mg-Zn-Y-Nd alloy. First, fluoride conversion layer was synthesized on magnesium alloy surface by immersion treatment in hydrofluoric acid and then, Ti-O film was deposited on the preceding fluoride layer by magnetron sputtering. FE-SEM images revealed a smooth and uniform surface consisting of aggregated nano-particles with average size of 100 nm, and a total coating thickness of {approx}1.5 {mu}m, including an outer Ti-O film of {approx}250 nm. The surface EDS and XRD data indicated that the composite coating was mainly composed of crystalline magnesium fluoride (MgF{sub 2}), and non-crystalline Ti-O. Potentiodynamic polarization tests revealed that the composite coated sample have a corrosion potential (E{sub corr}) of -1.60 V and a corrosion current density (I{sub corr}) of 0.17 {mu}A/cm{sup 2}, which improved by 100 mV and reduced by two orders of magnitude, compared with the sample only coated by Ti-O. EIS results showed a polarization resistance of 3.98 k{Omega} cm{sup 2} for the Ti-O coated sample and 0.42 k{Omega} cm{sup 2} for the composite coated sample, giving an improvement of about 100 times. After 72 h immersion in SBF, widespread damage and deep corrosion holes were observed on the Ti-O coated sample surface, while the integrity of composite coating remained well after 7 d. In brief, the data suggested that single Ti-O film on degradable magnesium alloys was apt to become failure prematurely in corrosion environment. Ti-O film deposited on fluoride-treated magnesium alloys might potentially meet the requirements for future clinical magnesium alloy stent application.

  8. In vitro corrosion behavior of Ti-O film deposited on fluoride-treated Mg-Zn-Y-Nd alloy

    International Nuclear Information System (INIS)

    Hou, S.S.; Zhang, R.R.; Guan, S.K.; Ren, C.X.; Gao, J.H.; Lu, Q.B.; Cui, X.Z.

    2012-01-01

    In this paper, a new composite coating was fabricated on magnesium alloy by a two-step approach, to improve the corrosion resistance and biocompatibility of Mg-Zn-Y-Nd alloy. First, fluoride conversion layer was synthesized on magnesium alloy surface by immersion treatment in hydrofluoric acid and then, Ti-O film was deposited on the preceding fluoride layer by magnetron sputtering. FE-SEM images revealed a smooth and uniform surface consisting of aggregated nano-particles with average size of 100 nm, and a total coating thickness of ∼1.5 μm, including an outer Ti-O film of ∼250 nm. The surface EDS and XRD data indicated that the composite coating was mainly composed of crystalline magnesium fluoride (MgF 2 ), and non-crystalline Ti-O. Potentiodynamic polarization tests revealed that the composite coated sample have a corrosion potential (E corr ) of -1.60 V and a corrosion current density (I corr ) of 0.17 μA/cm 2 , which improved by 100 mV and reduced by two orders of magnitude, compared with the sample only coated by Ti-O. EIS results showed a polarization resistance of 3.98 kΩ cm 2 for the Ti-O coated sample and 0.42 kΩ cm 2 for the composite coated sample, giving an improvement of about 100 times. After 72 h immersion in SBF, widespread damage and deep corrosion holes were observed on the Ti-O coated sample surface, while the integrity of composite coating remained well after 7 d. In brief, the data suggested that single Ti-O film on degradable magnesium alloys was apt to become failure prematurely in corrosion environment. Ti-O film deposited on fluoride-treated magnesium alloys might potentially meet the requirements for future clinical magnesium alloy stent application.

  9. Solvent influence upon structure & throughput of poly vinyledene fluoride thin film nano-patterns by imprint lithography

    Science.gov (United States)

    Sankar, M. S. Ravi; Gangineni, R. B.

    2018-04-01

    This work aims at understanding the solvent influence upon the throughput and structure of poly vinyledene fluoride (PVDF)nano-patterned films. The PVDF thin films are deposited by spin coating method using Dimethylsulfoxide (DMSO), Tetrahydrofuran (THF) and 2-butanone solvents. The nano-patterns are realized by imprinting SONY 700 MB CD aluminum constructions on PVDF thin filmsusing imprint lithography technique under ambient annealing temperature and pressure. Surface morphology &imprint pattern transfer quality is evaluated with Atomic force microscopy (AFM). Raman spectroscopy is used for evaluating the structural evolutions with respect to solvent & patterning.

  10. Effect of overcharge on Li(Ni0.5Mn0.3Co0.2)O2/graphite lithium ion cells with poly(vinylidene fluoride) binder. III - Chemical changes in the cathode

    Science.gov (United States)

    Bareño, Javier; Dietz Rago, Nancy; Dogan, Fulya; Graczyk, Donald G.; Tsai, Yifen; Naik, Seema R.; Han, Sang-Don; Lee, Eungje; Du, Zhijia; Sheng, Yangping; Li, Jianlin; Wood, David L.; Steele, Leigh Anna; Lamb, Joshua; Spangler, Scott; Grosso, Christopher; Fenton, Kyle; Bloom, Ira

    2018-05-01

    1.5 Ah pouch cells based on Li(Ni0.5Mn0.3Co0.2)O2 cathodes and graphite anodes, both containing poly (vinylidene fluoride) (PVDF) binders, were systematically overcharged to 100, 120, 140, 160, 180, and 250% state of charge (SOC), at which point they vented. The cells were subsequently discharged to 0% SOC and disassembled under an inert atmosphere for characterization. A combination of X-ray photoelectron spectroscopy (XPS), scanning-electron microscopy (SEM), energy-dispersive spectroscopy (EDS), 6Li SSNMR, and X-ray diffraction (XRD) analysis of the NMC532 cathodes indicates the formation of a thin C- and O-rich cathode electrolyte interphase layer, progressive Li loss above 140% SOC, and retention of the bulk crystal structure at all states of charge.

  11. The Effects of Ion-Assisted Deposition on the Mechanical, Physical, Chemical and Optical Properties of Magnesium Fluoride Thin Films.

    Science.gov (United States)

    Kennemore, Charles Milton, III

    1992-01-01

    This dissertation investigates the results of ion assisted deposition (IAD) on various properties of magnesium fluoride thin films deposited on room temperature substrates. MgF_2 films deposited in this manner have increased abrasion resistance and increased adhesion comparable to that found in films deposited at the usual substrate temperature of approximately 300 ^circC. IAD tends to drive the normal high tensile stress of non-IAD films to a more compressive state thereby reducing the overall stress. The IAD MgF _2 films have a higher index of refraction than non-IAD films, as high as 1.41, and the ultraviolet absorption edge in shifted to longer wavelengths beginning about 350 nm but no detectable absorption at visible wavelengths is seen in the films deposited with less than 250 eV bombardment energies. However, at higher IAD energies beginning at approximately 600 eV an absorption band is present in the red end of the visible spectrum making low energy bombardment the parameter of choice. Transmission electron microscopy and X-ray diffraction studies show that the IAD films have a more amorphous-like structure with fewer and smaller crystallites than non-IAD films deposited on either heated or unheated substrates. Rutherford backscattering spectroscopy (RBS) shows the bombarded films have fluorine depletion that roughly scales with the energy of bombardment with F:Mg ratios as low as 1.69 being found. Bombardment by fluorinated compounds, specifically C_2 F_6 and SF_6 , limit this depletion and in some instances super fluorinate the resulting compound. Additionally, RBS shows that IAD introduces a significant amount of oxygen throughout the film that is unaccountable as water take-up. X-ray photoelectron spectroscopy (XPS) indicates the presence of two compounds of oxygen that are attributed to MgO and Mg(OH)_2 or some oxy-fluoride complex similar to them and it is the introduction of these compounds which provide for the changes in the properties of IAD MgF_2

  12. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    Science.gov (United States)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  13. Reduced energy loss in poly(vinylidene fluoride) nanocomposites by filling with a small loading of core-shell structured BaTiO3/SiO2 nanofibers

    Science.gov (United States)

    Liu, Shaohui; Xue, Shuangxi; Shen, Bo; Zhai, Jiwei

    2015-07-01

    Homogeneous ceramic-polymer nanocomposites consisting of core-shell structured BaTiO3/SiO2 nanofibers and a p oly(vinylidene fluoride) (PVDF) polymer matrix have been prepared. The correlation between the energy discharged density and interfacial polarization is studied in PVDF nanocomposites by the measurements of the discharge performance and impedance spectroscopy. According to the results of dielectric constant, breakdown strength, and complex impedance analysis, coating SiO2 layers on the surface of BaTiO3 nanofibers can block the movement of charge carriers through the nanocomposites by playing a shielding role on the charge-rich inter layer, which resulted in weak Maxwell-Wagner-Sillars interfacial polarization and thus reduces the energy loss and improved the energy discharged density of the nanocomposites. The energy discharged density in the nanocomposite with 2.5 vol. % BaTiO3/SiO2 core-shell nanofibers is 6.28 J/cm3 at 3.3 MV/cm, which is over 11.94% higher than that of nanocomposite with BaTiO3 nanofibers at the same electric field.

  14. Universal dispersion model for characterization of optical thin films over wide spectral range: Application to magnesium fluoride

    Science.gov (United States)

    Franta, Daniel; Nečas, David; Giglia, Angelo; Franta, Pavel; Ohlídal, Ivan

    2017-11-01

    Optical characterization of magnesium fluoride thin films is performed in a wide spectral range from far infrared to extreme ultraviolet (0.01-45 eV) utilizing the universal dispersion model. Two film defects, i.e. random roughness of the upper boundaries and defect transition layer at lower boundary are taken into account. An extension of universal dispersion model consisting in expressing the excitonic contributions as linear combinations of Gaussian and truncated Lorentzian terms is introduced. The spectral dependencies of the optical constants are presented in a graphical form and by the complete set of dispersion parameters that allows generating tabulated optical constants with required range and step using a simple utility in the newAD2 software package.

  15. Fluoridated Water

    Science.gov (United States)

    ... Genetics Services Directory Cancer Prevention Overview Research Fluoridated Water On This Page What is fluoride, and where is it found? What is water fluoridation? When did water fluoridation begin in the ...

  16. Recovery of agricultural odors and odorous compounds from polyvinyl fluoride film bags

    Science.gov (United States)

    Accurate sampling methods are necessary when quantifying odor and volatile organic compound emissions at agricultural facilities. The commonly accepted methodology in the U.S. has been to collect odor samples in polyvinyl fluoride bags (PVF, brand name Tedlar®) and, subsequently, analyze with human ...

  17. Etching behavior of poly (vinylidene fluoride) thin films irradiated with ion beams. Effect of irradiated ions and pretreatment

    International Nuclear Information System (INIS)

    Yamaki, Tetsuya; Rohani, Rosiah; Koshikawa, Hiroshi; Takahashi, Shuichi; Hasegawa, Shin; Asano, Masaharu; Maekawa, Yasunari; Voss, Kay-Obbe; Neumann, Reinhard

    2008-01-01

    Poly (vinylidene fluoride) thin films irradiated with four kinds of ion beams were exposed to a 9M KOH aqueous solution after their storage in air for 30 or 90 days at different temperatures. According to the conductometry, the heating at 120degC was found to enhance the etch rate in the latent track without changing that in the bulk, thereby enabling us to obtain very high etching sensitivity for the preparation of nano-sized through-pores. The formation of hydroperoxides during this pretreatment should facilitate the introduction of the etching agent to improve etchability. Additionally, the irradiation of higher-LET ions, causing each track to contain more activated sites (like radicals), was preferable to achieve high sensitivity of the etching. (author)

  18. PVDF-PZT nanocomposite film based self-charging power cell.

    Science.gov (United States)

    Zhang, Yan; Zhang, Yujing; Xue, Xinyu; Cui, Chunxiao; He, Bin; Nie, Yuxin; Deng, Ping; Lin Wang, Zhong

    2014-03-14

    A novel PVDF-PZT nanocomposite film has been proposed and used as a piezoseparator in self-charging power cells (SCPCs). The structure, composed of poly(vinylidene fluoride) (PVDF) and lead zirconate titanate (PZT), provides a high piezoelectric output, because PZT in this nanocomposite film can improve the piezopotential compared to the pure PVDF film. The SCPC based on this nanocomposite film can be efficiently charged up by the mechanical deformation in the absence of an external power source. The charge capacity of the PVDF-PZT nanocomposite film based SCPC in 240 s is ∼0.010 μA h, higher than that of a pure PVDF film based SCPC (∼0.004 μA h). This is the first demonstration of using PVDF-PZT nanocomposite film as a piezoseparator for SCPC, and is an important step for the practical applications of SCPC for harvesting and storing mechanical energy.

  19. Effect of load, area of contact, and contact stress on the tribological properties of polyimide bonded graphite fluoride films

    Science.gov (United States)

    Fusaro, R. L.

    1981-01-01

    A pin-on-disk type of friction and wear apparatus was used to study the effect of load, contact stress and rider area of contact on the friction and wear properties of polyimide-bonded graphite fluoride films. Different rider area contacts were obtained by initially generating flats (with areas of 0.0035, 0.0071, 0.0145, and 0.0240 cm) on 0.476-cm radius hemispherically-tipped riders. Different projected contact stresses were obtained by applying loads of 2.5-to 58.8-N to the flats. Two film wear mechanisms were observed. The first was found to be a linear function of contact stress and was independent of rider area of contact. The second was found to increase exponentially as the stress increased. The second also appeared to be a function of rider contact area. Wear equations for each mechanism were empirically derived from the experimental data. In general, friction coefficients increased with increasing rider contact area and with sliding duration. This was related to the build-up of thick rider transfer films.

  20. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Piccinini, M., E-mail: massimo.piccinini@enea.it; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Vincenti, M. A.; Montereali, R. M. [ENEA, C.R. Frascati, UTAPRAD, Technical Unit for Development and Applications of Radiations, Via E. Fermi 45, 00044 Frascati (Rome) (Italy); Ambrosini, F. [University Sapienza-Roma I, Piazzale Aldo Moro 5, 00185 Rome (Italy); Nichelatti, E. [ENEA, C.R. Casaccia, UTTMAT, Technical Unit for Materials Technologies, Via Anguillarese 301, 00123 S. Maria di Galeria (Rome) (Italy)

    2015-06-29

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 10{sup 11} to 10{sup 15} protons/cm{sup 2}. The visible photoluminescence spectra of radiation-induced F{sub 2} and F{sub 3}{sup +} laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 10{sup 3} to about 10{sup 6 }Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  1. Photoluminescence of radiation-induced color centers in lithium fluoride thin films for advanced diagnostics of proton beams

    Science.gov (United States)

    Piccinini, M.; Ambrosini, F.; Ampollini, A.; Picardi, L.; Ronsivalle, C.; Bonfigli, F.; Libera, S.; Nichelatti, E.; Vincenti, M. A.; Montereali, R. M.

    2015-06-01

    Systematic irradiation of thermally evaporated 0.8 μm thick polycrystalline lithium fluoride films on glass was performed by proton beams of 3 and 7 MeV energies, produced by a linear accelerator, in a fluence range from 1011 to 1015 protons/cm2. The visible photoluminescence spectra of radiation-induced F2 and F3+ laser active color centers, which possess almost overlapping absorption bands at about 450 nm, were measured under laser pumping at 458 nm. On the basis of simulations of the linear energy transfer with proton penetration depth in LiF, it was possible to obtain the behavior of the measured integrated photoluminescence intensity of proton irradiated LiF films as a function of the deposited dose. The photoluminescence signal is linearly dependent on the deposited dose in the interval from 103 to about 106 Gy, independently from the used proton energies. This behavior is very encouraging for the development of advanced solid state radiation detectors based on optically transparent LiF thin films for proton beam diagnostics and two-dimensional dose mapping.

  2. On bistable states retention in ferroelectric Langmuir-Blodgett films

    Science.gov (United States)

    Geivandov, A. R.; Palto, S. P.; Yudin, S. G.; Fridkin, V. M.; Blinov, L. M.; Ducharme, S.

    2003-08-01

    A new insight into the nature of ferroelectricity is emerging from the study of ultra-thin ferroelectric films prepared of poly(vinylidene fluoride with trifluoroethylene) copolymer using Langmuir-Blodgett (LB) technique. Unique properties of these films indicate the existence of two-dimensional ferroelectricity. The retention of two polarized states in ferroelectric polymer LB films is studied using nonlinear dielectric spectroscopy. The technique is based on phase sensitive measurements of nonlinear dielectric spectroscopy. The amplitude of the current response at the 2nd harmonic of the applied voltage is proportional to the magnitude of the remnant polarization, while its phase gives the sign. We have found that 10 - 20 mm thick LB films can show fast switching time and long retention of the two polarized states. Nevertheless, LB films show a pronounced asymmetry in switching to the opposite states. Possible mechanisms of such behavior are discussed.

  3. 21 CFR 177.2510 - Polyvinylidene fluoride resins.

    Science.gov (United States)

    2010-04-01

    ... square inch of food-contact surface tested; and if the finished food-contact article is itself the....) (c) In accordance with good manufacturing practice, finished food-contact articles containing the... (CONTINUED) FOOD FOR HUMAN CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use Only...

  4. Does the copolymer poly(vinylidene cyanide-tricyanoethylene) possess piezoelectricity?

    Science.gov (United States)

    Wang, Zhi-Yin; Su, Ke-He; Xu, Qiong

    2012-10-01

    The geometry, energy, internal rotation barrier, dipole moment, and molecular polarizability of the α- and β-chain models of poly(vinylidene cyanide-tricyanoethylene) [P(VDCN-TrCN)] were studied with density functional theory at the B3PW91/6-31G(d) level. The effects of the chain length and the TrCN content on the copolymer chain stability, the chain conformation, and the electrical properties of P(VDCN-TrCN) were examined and compared with those of poly(vinylidene fluoride-trifluoroethylene) and PVDCN to gauge whether P(VDCN-TrCN) would be expected to possess substantial piezoelectricity. The results of this study showed that the stability of the β conformation increases and the energy difference per monomer unit between the β- and α-chains decreases with increasing TrCN. However, introducing TrCN into VDCN will not significantly enhance the radius of curvature of the P(VDCN-TrCN) chains. The average dipole moment per monomer unit in the β-chain is affected by the chain curvature and the TrCN content. The amount of piezoelectricity present in P(VDCN-TrCN) is slightly smaller than that in PVDCN, and is less than that in poly(vinylidene fluoride-trifluoroethylene).

  5. Influence of fluoride-detergent combinations on the visco-elasticity of adsorbed salivary protein films

    NARCIS (Netherlands)

    Veeregowda, Deepak H.; van der Mei, Henny C.; Busscher, Henk J.; Sharma, Prashant K.

    The visco-elasticity of salivary-protein films is related to mouthfeel, lubrication, biofilm formation, and protection against erosion and is influenced by the adsorption of toothpaste components. The thickness and the visco-elasticity of hydrated films (determined using a quartz crystal

  6. Optical spectroscopy and microscopy of radiation-induced light-emitting point defects in lithium fluoride crystals and films

    Science.gov (United States)

    Montereali, R. M.; Bonfigli, F.; Menchini, F.; Vincenti, M. A.

    2012-08-01

    Broad-band light-emitting radiation-induced F2 and F3+ electronic point defects, which are stable and laser-active at room temperature in lithium fluoride crystals and films, are used in dosimeters, tuneable color-center lasers, broad-band miniaturized light sources and novel radiation imaging detectors. A brief review of their photoemission properties is presented, and their behavior at liquid nitrogen temperatures is discussed. Some experimental data from optical spectroscopy and fluorescence microscopy of these radiation-induced point defects in LiF crystals and thin films are used to obtain information about the coloration curves, the efficiency of point defect formation, the effects of photo-bleaching processes, etc. Control of the local formation, stabilization, and transformation of radiation-induced light-emitting defect centers is crucial for the development of optically active micro-components and nanostructures. Some of the advantages of low temperature measurements for novel confocal laser scanning fluorescence microscopy techniques, widely used for spatial mapping of these point defects through the optical reading of their visible photoluminescence, are highlighted.

  7. Point defects in lithium fluoride films for micro-radiography, X-ray microscopy and photonic applications

    Energy Technology Data Exchange (ETDEWEB)

    Bonfigli, F.; Flora, F.; Marolo, T.; Montereali, R.M.; Baldacchini, G. [ENEA, UTS Tecnologie Fisiche Avanzate, C.R. Frascati, Via E. Fermi, 45, 00044 Frascati (Rome) (Italy); Faenov, A.Ya.; Pikuz, T.A. [MISDC of VNIIFTRI Mendeleevo, Moscow region, 141570 (Russian Federation); Nichelatti, E. [ENEA, UTS Tecnologie Fisiche Avanzate, C.R. Casaccia, Via Anguillarese, 301, 00060 Santa Maria di Galeria (Rome) (Italy); Reale, L. [Universita dell' Aquila e INFN, Dip. di Fisica, Coppito, L' Aquila (Italy)

    2005-01-01

    Point defects in lithium fluoride (LiF) have recently attracted renewed attention due the exciting results obtained in the realisation of miniaturised optical devices. Among light-emitting materials, LiF is of particular interest because it is almost not hygroscopic and can host, even at room temperature, stable color centers (CCs) that emit light in the visible and in the near infrared spectral range under optical excitation. The increasing demand for low-dimensionality photonic devices imposes the use of advanced irradiation methods for producing luminescent structures with high spatial resolution. An innovative irradiation technique to produce luminescent CCs in LiF crystals and films by using an extreme ultra-violet and soft X-ray laser-plasma source will be presented. This technique is capable to induce colored patterns with submicrometric spatial resolution on large areas in a short exposure time as compared with other irradiation methods. Luminescent regular arrays produced by this irradiation technique will be shown. Recently, the idea of using a LiF film as image detector for X-ray microscopy and micro-radiography based on optically-stimulated luminescence from CCs has been developed. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Unique negative permittivity of the pseudo conducting radial zinc oxide-poly(vinylidene fluoride) nanocomposite film: Enhanced dielectric and electromagnetic interference shielding properties

    Energy Technology Data Exchange (ETDEWEB)

    Aepuru, Radhamanohar [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India); Bhaskara Rao, B.V.; Kale, S.N. [Department of Applied Physics, Defence Institute of Advanced Technology, Pune 411025 (India); Panda, H.S., E-mail: himanshusp@diat.ac.in [Department of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025 (India)

    2015-11-01

    Flower like radial zinc oxide (RZnO) was prepared by using a facile solvothermal method and used to prepare poly(vinylidene fluoride) (PVDF) based nanocomposites. Structural informations of the samples are analyzed by X-ray diffraction and correlated with high resolution transmission electron microscopy along with high annular angular dark field scanning transmission electron microscopy (HAADF-STEM). For the first time, stability studies are carried out by solvent relaxation nuclear magnetic resonance experiments. Dielectric studies of the PVDF and PVDF-RZnO nanocomposites are reported over the wide range of frequency (0.01 Hz–1 MHz) and temperature (25–90 °C). Dielectric property of the PVDF-RZnO nanocomposites was significantly improved wrt filler percentage in PVDF. Unique negative permittivity was observed in the composites having higher filler content (>40 wt%) typically at low frequencies. First time, it is observed that the higher RZnO content in PVDF results the formation of pseudo conducting network and hence improved the electromagnetic shielding efficiency (85%) than PVDF and PVDF-commercial ZnO composites. - Highlights: • Radial ZnO-PVDF nanocomposites were fabricated by using solution casting. • Pseudo conducting network is confirmed through cryo-fracture morphology study. • Stability study of the nano fillers was performed in the polymer matrix. • Unique negative permittivity behavior of the nanocomposites was observed. • EMI shielding property of the radial ZnO-PVDF nanocomposites was performed.

  9. The structure and composition of lithium fluoride films grown by off-axis pulsed laser ablation

    International Nuclear Information System (INIS)

    Henley, S.J.; Ashfold, M.N.R.; Pearce, S.R.J.

    2003-01-01

    Alkali halide coatings have been reported to act as effective dipole layers to lower the surface work function and induce a negative electron affinity of diamond surfaces. Here, the results of the analysis of films grown on silicon and quartz substrates by 193 nm pulsed laser ablation from a commercially available sintered disk of LiF are reported. The morphology, composition and crystallinity of films grown are examined and suitable deposition parameters for optimising the growth are suggested. The ablation was shown to be very efficient at removing a large amount of material from the target, even at relatively low fluence. The morphology of the films produced was poor, however, with a high density of asperities categorised as either particulates produced by exfoliation, or as droplets produced by hydrodynamic sputtering. An improved morphology with smaller droplets and fewer particulates could be produced by mounting the substrate at an angle of 65 deg. to the axis of the ablation plume and using a fluence close to the measured ablation threshold of 1.2±0.1 J/cm 2 . The elemental composition of the films was shown to be indistinguishable from that of bulk LiF, despite evidence for significant recondensation of Li back onto the target. Films containing crystal grains oriented with the direction normal to the substrate surface were observed at substrate temperatures in excess of 300 deg. C. An improved extent of orientation was observed on the quartz substrates

  10. Surface properties of anatase TiO2 nanowire films grown from a fluoride-containing solution.

    Science.gov (United States)

    Berger, Thomas; Anta, Juan A; Morales-Flórez, Víctor

    2013-06-03

    Controlling the surface chemistry of nucleating seeds during wet-chemical synthesis allows for the preparation of morphologically well-defined nanostructures. Synthesis conditions play a key role in the surface properties, which directly affect the functional properties of the material. Therefore, it is important to establish post-synthesis treatments to facilitate the optimization of surface properties with respect to a specific application, without losing the morphological peculiarity of the nanostructure. We studied the surface properties of highly crystalline and porous anatase TiO2 nanowire (NW) electrodes, grown by chemical-bath deposition in fluoride-containing solutions, using a combined electrochemical and spectroscopic approach. As-deposited films showed low capacity for catechol adsorption and a poor photoelectrocatalytic activity for water oxidation. Mild thermal annealing at 200 °C resulted in a significant improvement of the electrode photoelectrocatalytic activity, whereas the bulk properties of the NWs (crystal structure, band-gap energy) remained unchanged. Enhancement of the functional properties of the material is discussed on the basis of adsorption capacity and electronic properties. The temperature-induced decrease of recombination centers, along with the concomitant increase of adsorption and reaction sites upon thermal annealing are called to be responsible for such improved performance. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Superhydrophobicity and regeneration of PVDF/SiO2 composite films

    Science.gov (United States)

    Liu, Tao; Li, Xianfeng; Wang, Daohui; Huang, Qinglin; Liu, Zhen; Li, Nana; Xiao, Changfa

    2017-02-01

    Superhydrophobicity of polymers is easily destroyed by careless touching due to the softness of microstructures. In this study, based on a well-constructed polyvinylidene fluoride (PVDF) surface, a novel superhydrophobic PVDF/SiO2 composite film was fabricated by adding hydrophobic SiO2 nanoparticle and solvent into a coagulation bath. The water contact angle of the composite film reached 162.3° and the sliding angle was as low as 1.5°. More importantly, the composite film could be regenerated only through immersing the composite film in the designed regeneration agent. The composition of the designed regeneration agent ensured that SiO2 nanoparticles were firmly adhered on the film surface even under the ultrasonic cleaning. Hence, the superhydrophobicity and self-cleaing property could be regenerated and maintained effectively, and moreover, these propeties could resist a proper pressure. In addition, after many rubbing-regenerating cycles, the regeneration method was still valid.

  12. Recovery of Agricultural Odors and Odorous Compounds from Polyvinyl Fluoride Film Bags

    Science.gov (United States)

    Parker, David B.; Perschbacher-Buser, Zena L.; Cole, N. Andy; Koziel, Jacek A.

    2010-01-01

    Accurate sampling methods are necessary when quantifying odor and volatile organic compound emissions at agricultural facilities. The commonly accepted methodology in the U.S. has been to collect odor samples in polyvinyl fluoride bags (PVF, brand name Tedlar®) and, subsequently, analyze with human panelists using dynamic triangular forced-choice olfactometry. The purpose of this research was to simultaneously quantify and compare recoveries of odor and odorous compounds from both commercial and homemade PVF sampling bags. A standard gas mixture consisting of p-cresol (40 μg m−3) and seven volatile fatty acids: acetic (2,311 μg m−3), propionic (15,800 μg m−3), isobutyric (1,686 μg m−3), butyric (1,049 μg m−3), isovaleric (1,236 μg m−3), valeric (643 μg m−3), and hexanoic (2,158 μg m−3) was placed in the PVF bags at times of 1 h, 1 d, 2 d, 3 d, and 7 d prior to compound and odor concentration analyses. Compound concentrations were quantified using sorbent tubes and gas chromatography/mass spectrometry. Odor concentration, intensity, and hedonic tone were measured using a panel of trained human subjects. Compound recoveries ranged from 2 to 40% after 1 h and 0 to 14% after 7 d. Between 1 h and 7 d, odor concentrations increased by 45% in commercial bags, and decreased by 39% in homemade bags. Minimal changes were observed in intensity and hedonic tone over the same time period. These results suggest that PVF bags can bias individual compound concentrations and odor as measured by dynamic triangular forced-choice olfactometry. PMID:22163671

  13. In Vitro and In Vivo Osteogenic Activity of Titanium Implants Coated by Pulsed Laser Deposition with a Thin Film of Fluoridated Hydroxyapatite

    Directory of Open Access Journals (Sweden)

    Luyuan Chen

    2018-04-01

    Full Text Available To enhance biocompatibility, osteogenesis, and osseointegration, we coated titanium implants, by krypton fluoride (KrF pulsed laser deposition, with a thin film of fluoridated hydroxyapatite (FHA. Coating was confirmed by scanning electron microscopy (SEM and scanning probe microscopy (SPM, while physicochemical properties were evaluated by attenuated reflectance Fourier transform infrared spectroscopy (ATR-FTIR. Calcium deposition, osteocalcin production, and expression of osteoblast genes were significantly higher in rat bone marrow mesenchymal stem cells seeded on FHA-coated titanium than in cells seeded on uncoated titanium. Implantation into rat femurs also showed that the FHA-coated material had superior osteoinductive and osseointegration activity in comparison with that of traditional implants, as assessed by microcomputed tomography and histology. Thus, titanium coated with FHA holds promise as a dental implant material.

  14. Swift heavy ions induced material reorganization on surface of barium fluoride thin films

    International Nuclear Information System (INIS)

    Pandey, Ratnesh K.; Kumar, Manvendra; Pandey, Avinash C.; Khan, Saif A.; Singh, Udai B.; Tripathi, Ambuj; Avasthi, D.K.

    2014-01-01

    Swift heavy ions induced thermal spike is found to result in a highly excited nanometric cylindrical zone in insulating materials. The resulting transient local melting (taking place on ps timescale) results in formation of a defect-rich or amorphous latent track. In the present work we are reporting evolution of lamellae structure on surface of BaF_2 thin films due to irradiation with 100 MeV Au"+"8 ions. These thin films of BaF_2 have been deposited on glass substrate using electron beam evaporation method and have a thickness of 200 nm. Irradiation was performed at liquid nitrogen temperature and at an angle of incidence of 15° shows the scanning electron microscopic (SEM) images of evolution of lamellae pattern. A cracking perpendicular to the beam direction at low fluences of 5x10"1"2 ions/cm"2 is observed, while at higher fluences of 2x10"1"3 ions/cm"2, the material started to shrink. After application of further high fluences up to 2x10"1"4 ions/cm"2, the BaF_2 layer was reorganized in form of lamellae having orientation as found for the cracks and normal to the beam direction. A self-organized phenomenon in SHI irradiated NiO layers, resulting in formation of 100-nm-thick and 1-µm-high NiO lamellae has also been observed. (author)

  15. Growth of BaTiO3-PVDF composite thick films by using aerosol deposition

    Science.gov (United States)

    Cho, Sung Hwan; Yoon, Young Joon

    2016-01-01

    Barium titanate (BaTiO3)-polyvinylidene fluoride (PVDF) composite thick films were grown by using aerosol deposition at room temperature with BaTiO3 and PVDF powders. To produce a uniform composition in ceramic and polymer composite films, which show a substantial difference in specific gravity, we used PVDF-coated BaTiO3 powders as the starting materials. An examination of the microstructure confirmed that the BaTiO3 were well distributed in the PVDF matrix in the form of a 0 - 3 compound. The crystallite size in the BaTiO3-PVDF composite thick films was 5 ˜ 50 times higher than that in pure BaTiO3 thick films. PVDF plays a role in suppressing the fragmentation of BaTiO3 powder during the aerosol deposition process and in controlling the relative permittivity.

  16. Enhancement of polar crystalline phase formation in transparent PVDF-CaF{sub 2} composite films

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Goo; Ha, Jong-Wook, E-mail: jongwook@krict.re.kr; Sohn, Eun-Ho; Park, In Jun; Lee, Soo-Bok

    2016-12-30

    Highlights: • The crystalline phase in transparent PVDF-CaF{sub 2} composite films was investigated. • CaF{sub 2} promoted the formation of polar crystalline phases in PVDF matrix. • Ordered γ-phase was obtained by thermal treatment of as-cast films at the vicinity of its melting temperature. - Abstract: We consider the influence of calcium fluoride (CaF{sub 2}) nanoparticles on the crystalline phase formation of poly(vinylidene fluoride) (PVDF) for the first time. The transparent PVDF-CaF{sub 2} composite films were prepared by casting on PET substrates using N,N-dimethylacetamide (DMAc) as a solvent. It was found that CaF{sub 2} promoted the formation of polar crystalline phase of PVDF in composites, whereas nonpolar α-phase was dominant in the neat PVDF film prepared at the same condition. The portion of polar crystalline phase increased in proportional to the weight fraction of CaF{sub 2} in the composite films up to 10 wt%. Further addition of CaF{sub 2} suppressed completely the α-phase formation. Polar crystalline phase observed in as-cast composite films was a mixture of β- and γ-polymorph structures. It was also shown that much ordered γ-phase could be obtained through thermal treatment of as-cast PVDF-CaF{sub 2} composite film at the temperatures above the melting temperature of the composite films, but below that of γ-phase.

  17. Temperature dependence of electronic transport property in ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.L.; Wang, J.L., E-mail: jlwang@mail.sitp.ac.cn; Tian, B.B.; Liu, B.L.; Zou, Y.H.; Wang, X.D.; Sun, S.; Sun, J.L., E-mail: jlsun@mail.sitp.ac.cn; Meng, X.J.; Chu, J.H.

    2014-10-15

    Highlights: • The ferroelectric polymer was fabricated by Langmuir–Blodgett method. • The electrons as the dominant injected carrier were conformed in the ferroelectric polymer films. • The leakage current conduction mechanisms in ferroelectric polymer were investigated. - Abstract: The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir–Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel–Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.

  18. Dielectric and Energy Storage Properties of the Heterogeneous P(VDF-HFP)/PC Composite Films

    Science.gov (United States)

    Zhao, Xiaojia; Peng, Guirong; Zhan, Zaiji

    2017-12-01

    Polymer-based materials with a high discharge energy and low energy loss have attracted considerable attention for energy storage applications. A new class of polymer-based composite films composed of amorphous polycarbonate (PC) and poly(vinylidene fluoride-hexafluoropropylene) [P(VDF-HFP)] has been fabricated by simply solution blending followed by thermal treatment under vacuum. The results show that the diameter of the spherical phase for PC and the melting temperature of P(VDF-HFP) increase, and the crystallinity and crystallization temperature of P(VDF-HFP) decrease with increasing PC content. The phase transition from the polar β phase to weak polarity γ phase is induced by PC addition. Moreover, the Curie temperature of the P(VDF-HFP)/PC composite films shifts to a lower temperature. With the addition of PC, the permittivity, polarization and discharge energy of the P(VDF-HFP)/PC composite films slightly decrease. However, the energy loss is significantly reduced.

  19. The effects of ultra-thin cerium fluoride film as the anode buffer layer on the electrical characteristics of organic light emitting diodes

    Science.gov (United States)

    Lu, Hsin-Wei; Tsai, Cheng-Che; Hong, Cheng-Shong; Kao, Po-Ching; Juang, Yung-Der; Chu, Sheng-Yuan

    2016-11-01

    In this study, the efficiency of organic light-emitting diodes (OLEDs) was enhanced by depositing a CeF3film as an ultra-thin buffer layer between the indium tin oxide (ITO) electrode and α-naphthylphenylbiphenyldiamine (NPB) hole transport layer, with the structure configuration ITO/CeF3 (0.5, 1, and 1.5 nm)/α-naphthylphenylbiphenyl diamine (NPB) (40 nm)/tris(8-hydroxyquinoline) aluminum (Alq3) (60 nm)/lithium fluoride (LiF) (1 nm)/Al (150 nm). The enhancement mechanism was systematically investigated via several approaches. The X-ray photoelectron spectroscopy and ultraviolet photoelectron spectroscopy results revealed the formation of the UV-ozone treated CeF3 film. The work function increased from 4.8 eV (standard ITO electrode) to 5.22 eV (0.5-nm-thick UV-ozone treated CeF3 film deposited on the ITO electrode). The surface roughness of the UV-ozone treated CeF3 film was smoother than that of the standard ITO electrode. Further, the UV-ozone treated CeF3 film increased both the surface energy and polarity, as determined from contact angle measurements. In addition, admittance spectroscopy measurements showed an increased capacitance and conductance of the OLEDs. Accordingly, the turn-on voltage decreased from 4.2 V to 3.6 V at 1 mA/cm2, the luminance increased from 7588 cd/m2 to 24760 cd/m2, and the current efficiency increased from 3.2 cd/A to 3.8 cd/A when the 0.5-nm-thick UV-ozone treated CeF3 film was inserted into the OLEDs.

  20. Fluoride analysis

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, C S

    1963-01-01

    The methods and procedures for the detection and estimation of fluoride are varied and numerous. The problems of sampling, contamination, and loss in sampling waters, plant and animal tissues and atmospheres are discussed, along with brief descriptors of methods most commonly used. Techniques for separating fluorides from matrixes are discussed, as well as gravimetric, calorimetric, and spectrophotometric analytical techniques.

  1. Piezoelectric polydimethylsiloxane films for MEMS transducers

    International Nuclear Information System (INIS)

    Wang, Jhih-Jhe; Hsu, Tsung-Hsing; Yeh, Che-Nan; Tsai, Jui-Wei; Su, Yu-Chuan

    2012-01-01

    We have successfully demonstrated the fabrication of piezoelectric polydimethylsiloxane (PDMS) films utilizing multilayer casting, stacking, surface coating and micro plasma discharge processes. To realize the desired electromechanical sensitivity, cellular PDMS structures with micrometer-sized voids are implanted with bipolar charges on the opposite inner surfaces. The implanted charge pairs function as dipoles, which respond promptly to diverse electromechanical stimulation. In the prototype demonstration, cellular PDMS films with various void geometries are fabricated and internally coated with a thin layer of polytetrafluoroethylene, which can help secure the implanted charges. An electric field up to 35 MV m −1 is applied across the fabricated PDMS films to ionize the air in the voids and to accelerate the resulting bipolar charges to bombard the opposite inner surfaces. The resulting charge-implanted, cellular PDMS films show a low effective elastic modulus (E) of about 500 kPa, and a piezoelectric coefficient (d 33 ) higher than 300 pC N −1 , which is more than ten times higher than those of common piezoelectric polymers (e.g. polyvinylidene fluoride). Furthermore, the piezoelectricity of the PDMS films can be tailored by adjusting the dimensions of the cellular structures. As such, the demonstrated piezoelectric PDMS films could potentially serve as flexible and sensitive electromechanical materials, and fulfill the needs of a variety of sensor and energy harvesting applications. (paper)

  2. Fluoridation Basics

    Science.gov (United States)

    ... return on investment for community water fluoridation (including productivity losses) ranged from $4 in small communities of ... National Center for Chronic Disease Prevention and Health Promotion Email Recommend Tweet YouTube Instagram Listen Watch RSS ...

  3. Electron irradiation effects on partially fluorinated polymer films: Structure-property relationships

    International Nuclear Information System (INIS)

    Nasef, Mohamed Mahmoud; Dahlan, Khairul Zaman M.

    2003-01-01

    The effects of electron beam irradiation on two partially fluorinated polymer films i.e. poly(vinylidene fluoride) (PVDF) and poly(ethylene-tetrafluoroethylene) copolymer (ETFE) are studied at doses ranging from 100 to 1200 kGy in air at room temperature. Chemical structure, thermal and mechanical properties of irradiated films are investigated. FTIR show that both PVDF and ETFE films undergo similar changes in their chemical structures including the formation of carbonyl groups and double bonding. The changes in melting and crystallisation temperatures (T m and T c ) in both irradiated films are functions of irradiation dose and reflect the disorder in the chemical structure caused by the competition between crosslinking and chain scission. The heat of melting (ΔH m ) and the degree of crystallinity (X c ) of PVDF films show no significant changes with the dose increase, whereas those of ETFE films are reduced rapidly after the first 100 kGy. The tensile strength of PVDF films is improved by irradiation compared to its rapid deterioration in ETFE films, which stemmed from the degradation prompted by the presence of radiation sensitive tetrafluoroethylene (TFE) comonomer units. The elongation at break of both films drops gradually with the dose increase indicating the formation of predominant crosslinked structures at high doses. However, the response of each polymer to crosslinking and main chain scission at various irradiation doses varies from PVDF to ETFE films

  4. Improving information density in ferroelectric polymer films by using nanoimprinted gratings

    Science.gov (United States)

    Martínez-Tong, Daniel E.; Soccio, Michela; Rueda, Daniel R.; Nogales, Aurora; García-Gutiérrez, Mari Cruz; Ezquerra, Tiberio A.

    2015-03-01

    The development of polymer non-volatile memories depends on the effective fabrication of devices with high density of information. Well-defined low aspect ratio nanogratings on thin films of poly(vinylidene fluoride-trifluoroethylene) copolymers can be fabricated by using Nanoimprint Lithography (NIL). By using these nanogratings, an improved management of writing and reading information can be reached as revealed by Piezoresponse Force Microscopy (PFM). Structural investigation by means of Grazing Incidence X-ray (GIX) scattering techniques indicates that the physical confinement generated by nanoimprint promotes the development of smaller and edge-on oriented crystals. Our results evidence that one-dimensional nanostructuring can be a straightforward approach to improve the control of the polarization in ferroelectric polymer thin films.

  5. Human exhaled air energy harvesting with specific reference to PVDF film

    Directory of Open Access Journals (Sweden)

    Manisha Rajesh Mhetre

    2017-02-01

    Full Text Available Spirometer is a medical equipment used to measure lung capacity of a human being. It leads to diagnosis of several diseases. The researchers worked on harvesting energy from human exhalation while carrying out measurements using spirometer. A prototype has been developed using piezoelectric material i.e. PVDF (polyvinylidene fluoride film as sensor. This paper presents the methodology and experimentation carried out for exhaled air energy harvesting using PVDF film. Experimental results obtained are encouraging. Measurements are also carried out on various subjects having different height, weight, age and gender. Data analysis shows variation in the energy harvested with different physical parameters and gender. Experimentation shows that voltage generated due to exhaled air is promising for harvesting.

  6. Mechanical and electro-mechanical properties of three-dimensional nanoporous graphene-poly(vinylidene fluoride composites

    Directory of Open Access Journals (Sweden)

    G. P. Zheng

    2016-09-01

    Full Text Available Three-dimensional nanoporous graphene monoliths are utilized to prepare graphene-poly(vinylidene fluoride nanocomposites with enhanced mechanical and electro-mechanical properties. Pre-treatment of the polymer (poly(vinylidene fluoride, PVDF with graphene oxides (GOs facilitates the formation of uniform and thin PVDF films with a typical thickness below 100 nm well coated at the graphene nano-sheets. Besides their excellent compressibility, ductility and mechanical strength, the nanoporous graphene-PVDF nanocomposites are found to possess high sensitivity in strain-dependent electrical conductivity. The improved mechanical and electro-mechanical properties are ascribed to the enhanced crystalline β phase in PVDF which possesses piezoelectricity. The mechanical relaxation analyses on the interfaces between graphene and PVDF reveal that the improved mechanical and electro-mechanical properties could result from the interaction between the –C=O groups in the nanoporous graphene and the –CF2 groups in PVDF, which also explains the important role of GOs in the preparation of the graphene-polymer nanocomposites with superior combined mechanical and electro-mechanical properties.

  7. Effect of electron beam irradiation on structural and thermal properties of gamma poly (vinylidene fluoride) (γ-PVDF) films

    Science.gov (United States)

    Tan, Zhongyang; Wang, Xuemei; Fu, Chao; Chen, Chunhai; Ran, Xianghai

    2018-03-01

    In this study, we successfully prepared the pure PVDF film containing almost exclusive γ-phase (γ-PVDF) using 15 wt% solution in N, N-dimethylformamide. These γ-PVDF films were irradiated by 3.0 MeV electron beam in vacuum at room temperature up to 358 kGy. The effect of the irradiation on the chemical structural and thermal properties of pristine and irradiated γ-PVDF films were detailedly investigated by FTIR, XRD and DSC, respectively. DSC results show that two single and different melting endotherms from the successive heating curves correspond to γ-phase and α-phase, respectively. FTIR results show that the characteristic absorption peaks corresponding to γ-phase do not shift, and the C˭C bond formation is not significantly observed in the irradiated γ-PVDF films until above 30 kGy. XRD results show that the crystal form of γ-PVDF is not influenced significantly by irradiation. All PVDF films exhibit a single melting endotherm, irrespective of the irradiation dose. Two superpositioned crystallization peaks were observed for PVDF films only irradiated at high dose of 232 and 358 kGy, which can be related to the fractionated crystallization of irradiated PVDF. The dependences of thermal characteristics on the irradiation dose were detailedly investigated by DSC in this study.

  8. Scandium fluorides

    International Nuclear Information System (INIS)

    Melnikov, P.; Nalin, M.; Messaddeq, Y.

    1997-01-01

    A new modification of scandium fluoride has been synthesised. The compound is deficient in fluorine, with the composition ScF 2.76 . It belongs to the tetragonal system, lattice parameters being a=3.792 and c=6.740 A and may be obtained at low temperatures by the decomposition of the precursor NH 4 ScF 4 . The reaction is topotactic, tetragonal parameters of the precursor are a=4.021 and c=6.744 A. Structural relationships with various fluorides and ammonium aminofluorides are discussed. This synthesis route with IR-assisted decomposition should be considered as a soft-chemistry approach. (orig.)

  9. Cellulose Nanofibril Film as a Piezoelectric Sensor Material.

    Science.gov (United States)

    Rajala, Satu; Siponkoski, Tuomo; Sarlin, Essi; Mettänen, Marja; Vuoriluoto, Maija; Pammo, Arno; Juuti, Jari; Rojas, Orlando J; Franssila, Sami; Tuukkanen, Sampo

    2016-06-22

    Self-standing films (45 μm thick) of native cellulose nanofibrils (CNFs) were synthesized and characterized for their piezoelectric response. The surface and the microstructure of the films were evaluated with image-based analysis and scanning electron microscopy (SEM). The measured dielectric properties of the films at 1 kHz and 9.97 GHz indicated a relative permittivity of 3.47 and 3.38 and loss tangent tan δ of 0.011 and 0.071, respectively. The films were used as functional sensing layers in piezoelectric sensors with corresponding sensitivities of 4.7-6.4 pC/N in ambient conditions. This piezoelectric response is expected to increase remarkably upon film polarization resulting from the alignment of the cellulose crystalline regions in the film. The CNF sensor characteristics were compared with those of polyvinylidene fluoride (PVDF) as reference piezoelectric polymer. Overall, the results suggest that CNF is a suitable precursor material for disposable piezoelectric sensors, actuators, or energy generators with potential applications in the fields of electronics, sensors, and biomedical diagnostics.

  10. Bottled Water and Fluoride

    Science.gov (United States)

    ... Private Wells Infant Formula Fluorosis Public Health Service Recommendation Water Operators & Engineers Water Fluoridation Additives Shortages of Fluoridation Additives Drinking Water Pipe Systems CDC-Sponsored Water Fluoridation Training Links to Other ...

  11. Other Fluoride Products

    Science.gov (United States)

    ... Private Wells Infant Formula Fluorosis Public Health Service Recommendation Water Operators & Engineers Water Fluoridation Additives Shortages of Fluoridation Additives Drinking Water Pipe Systems CDC-Sponsored Water Fluoridation Training Links to Other ...

  12. Electron irradiation effects on partially fluorinated polymer films: Structure-property relationships

    CERN Document Server

    Nasef, M M

    2003-01-01

    The effects of electron beam irradiation on two partially fluorinated polymer films i.e. poly(vinylidene fluoride) (PVDF) and poly(ethylene-tetrafluoroethylene) copolymer (ETFE) are studied at doses ranging from 100 to 1200 kGy in air at room temperature. Chemical structure, thermal and mechanical properties of irradiated films are investigated. FTIR show that both PVDF and ETFE films undergo similar changes in their chemical structures including the formation of carbonyl groups and double bonding. The changes in melting and crystallisation temperatures (T sub m and T sub c) in both irradiated films are functions of irradiation dose and reflect the disorder in the chemical structure caused by the competition between crosslinking and chain scission. The heat of melting (DELTA H sub m) and the degree of crystallinity (X sub c) of PVDF films show no significant changes with the dose increase, whereas those of ETFE films are reduced rapidly after the first 100 kGy. The tensile strength of PVDF films is improved b...

  13. Improving lithium-ion battery performances by adding fly ash from coal combustion on cathode film

    Energy Technology Data Exchange (ETDEWEB)

    Dyartanti, Endah Retno; Jumari, Arif, E-mail: arifjumari@yahoo.com; Nur, Adrian; Purwanto, Agus [Research Group of Battery & Advanced Material, Department of Chemical Engineering, Sebelas Maret University, Jl. Ir. Sutami 36 A Kentingan, Surakarta Indonesia 57126 (Indonesia)

    2016-02-08

    A lithium battery is composed of anode, cathode and a separator. The performance of lithium battery is also influenced by the conductive material of cathode film. In this research, the use of fly ash from coal combustion as conductive enhancer for increasing the performances of lithium battery was investigated. Lithium iron phosphate (LiFePO{sub 4}) was used as the active material of cathode. The dry fly ash passed through 200 mesh screen, LiFePO{sub 4} and acethylene black (AB), polyvinylidene fluoride (PVDF) as a binder and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to form slurry. The slurry was then coated, dried and hot pressed to obtain the cathode film. The ratio of fly ash and AB were varied at the values of 1%, 2%, 3%, 4% and 5% while the other components were at constant. The anode film was casted with certain thickness and composition. The performance of battery lithium was examined by Eight Channel Battery Analyzer, the composition of the cathode film was examined by XRD (X-Ray Diffraction), and the structure and morphology of the anode film was analyzed by SEM (Scanning Electron Microscope). The composition, structure and morphology of cathode film was only different when fly ash added was 4% of AB or more. The addition of 2% of AB on cathode film gave the best performance of 81.712 mAh/g on charging and 79.412 mAh/g on discharging.

  14. Polymer-ZnO nanocomposites foils and thin films for UV protection

    International Nuclear Information System (INIS)

    Shanshool, Haider Mohammed; Yahaya, Muhammad; Abdullah, Ibtisam Yahya; Yunus, Wan Mahmood Mat

    2014-01-01

    The damage of UV radiation on human eye and skin is extensively studied. In the present work, the nanocomposites foils and thin films have been prepared by using casting method and spin coating, respectively. Nanocomposites were prepared by mixing ZnO nanoparticles with Polymethyl methacrylate (PMMA) and Polyvinylidene fluoride (PVDF) as polymer matrix. Different contents of ZnO nanoparticles were used as filler in the nanocomposites. UV-Vis spectra showed very low transmittance in UV region that decreases with increase content of ZnO. PVDF/ZnO samples showed the lowest transmittance. The rough surface of PVDF was observed from SEM image. While a homogeneous dispersion of ZnO nanoparticles in PMMA were indicated by FESEM images

  15. Polymer-ZnO nanocomposites foils and thin films for UV protection

    Energy Technology Data Exchange (ETDEWEB)

    Shanshool, Haider Mohammed; Yahaya, Muhammad; Abdullah, Ibtisam Yahya [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia); Yunus, Wan Mahmood Mat [Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM, Serdang (Malaysia)

    2014-09-03

    The damage of UV radiation on human eye and skin is extensively studied. In the present work, the nanocomposites foils and thin films have been prepared by using casting method and spin coating, respectively. Nanocomposites were prepared by mixing ZnO nanoparticles with Polymethyl methacrylate (PMMA) and Polyvinylidene fluoride (PVDF) as polymer matrix. Different contents of ZnO nanoparticles were used as filler in the nanocomposites. UV-Vis spectra showed very low transmittance in UV region that decreases with increase content of ZnO. PVDF/ZnO samples showed the lowest transmittance. The rough surface of PVDF was observed from SEM image. While a homogeneous dispersion of ZnO nanoparticles in PMMA were indicated by FESEM images.

  16. Nanofiber Anisotropic Conductive Films (ACF) for Ultra-Fine-Pitch Chip-on-Glass (COG) Interconnections

    Science.gov (United States)

    Lee, Sang-Hoon; Kim, Tae-Wan; Suk, Kyung-Lim; Paik, Kyung-Wook

    2015-11-01

    Nanofiber anisotropic conductive films (ACF) were invented, by adapting nanofiber technology to ACF materials, to overcome the limitations of ultra-fine-pitch interconnection packaging, i.e. shorts and open circuits as a result of the narrow space between bumps and electrodes. For nanofiber ACF, poly(vinylidene fluoride) (PVDF) and poly(butylene succinate) (PBS) polymers were used as nanofiber polymer materials. For PVDF and PBS nanofiber ACF, conductive particles of diameter 3.5 μm were incorporated into nanofibers by electrospinning. In ultra-fine-pitch chip-on-glass assembly, insulation was significantly improved by using nanofiber ACF, because nanofibers inside the ACF suppressed the mobility of conductive particles, preventing them from flowing out during the bonding process. Capture of conductive particles was increased from 31% (conventional ACF) to 65%, and stable electrical properties and reliability were achieved by use of nanofiber ACF.

  17. Study on performance of composite polymer films doped with modified molecular sieve for lithium-ion batteries

    International Nuclear Information System (INIS)

    Zhang Yuqing; Zhang Guodong; Du Tingdong; Zhang Lizao

    2010-01-01

    To improve the tensile strength and ionic conductivity of composite polymer films for lithium-ion batteries, molecular sieves of MCM-41 modified with sulfated zirconia (SO 4 2- /ZrO 2 , SZ), denoted as MCM-41/SZ, were doped into a poly(vinylidene fluoride) (PVdF) matrix to fabricate MCM-41/SZ composite polymer films, denoted as MCM-41/SZ films. Examination by transmission electron microscope (TEM) shows that modified molecular sieves have lower aggregation and a more porous structure. Tensile strength tests were carried out to investigate the mechanical performance of MCM-41/SZ films, and then the electrochemical performance of batteries with MCM-41/SZ films as separators was tested. The results show that the tensile strength (σ t ) of MCM-41/SZ film was up to 7.8 MPa; the ionic conductivity of MCM-41/SZ film was close to 10 -3 S cm -1 at room temperature; and the coulombic efficiency of the assembled lithium-ion battery was 92% at the first cycle and reached as high as 99.99% after the 20th cycle. Meanwhile, the charge-discharge voltage plateau of the lithium-ion battery presented a stable state. Therefore, MCM-41/SZ films are a good choice as separators for lithium-ion batteries due to their high tensile strength and ionic conductivity.

  18. Fluoride absorption: independence from plasma fluoride levels

    International Nuclear Information System (INIS)

    Whitford, G.M.; Williams, J.L.

    1986-01-01

    The concept that there are physiologic mechanisms to homeostatically regulate plasma fluoride concentrations has been supported by results in the literature suggesting an inverse relationship between plasma fluoride levels and the absorption of the ion from the gastrointestinal tract of the rat. The validity of the relationship was questioned because of possible problems in the experimental design. The present work used four different methods to evaluate the effect of plasma fluoride levels on the absorption of the ion in rats: (i) the percentage of the daily fluoride intake that was excreted in the urine; (ii) the concentration of fluoride in femur epiphyses; (iii) the net areas under the time-plasma fluoride concentration curves after intragastric fluoride doses; and (iv) the residual amounts or fluoride in the gastrointestinal tracts after the intragastric fluoride doses. None of these methods indicated that plasma fluoride levels influence the rate or the degree or fluoride absorption. It was concluded that, unless extremely high plasma fluoride levels are involved (pharmacologic or toxic doses), the absorption of the ion is independent of plasma levels. The results provide further evidence that plasma fluoride concentrations are not homeostatically regulated

  19. Ab initio studies of polarization and piezoelectricity in vinylidene fluoride and BN-based polymers.

    Science.gov (United States)

    Nakhmanson, S M; Nardelli, M Buongiorno; Bernholc, J

    2004-03-19

    Highly piezoelectric and pyroelectric phases of boron-nitrogen-based polymers have been designed from first principles. They offer excellent electrical and structural properties, with up to 100% improvement in the piezoelectic response and an enhanced thermal stability with respect to polyvinylidene fluoride (PVDF). Since methods for their synthesis are readily available, these polymers are extremely promising for numerous technological applications, rivaling the properties of ferroelectric ceramics and superseding PVDF-based materials in high-performance devices.

  20. Dielectric, ferroelectric, and thermodynamic properties of silicone oil modified PVDF films for energy storage application

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Bingcheng; Wang, Xiaohui, E-mail: wxh@tsinghua.edu.cn, E-mail: llt-dms@mail.tsinghua.edu.cn; Li, Longtu, E-mail: wxh@tsinghua.edu.cn, E-mail: llt-dms@mail.tsinghua.edu.cn [State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Sun, Hui [Aero-Engine Control System Institute, Aviation Industry Corporation of China, Jiangsu, Wuxi 214063 (China)

    2016-06-13

    Silicone oil modified poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) films were fabricated by the blending, casting, and hot-molding methods. The dielectric constant was increased for the 7.4 wt. % and 17.0 wt. % silicone oil modified P(VDF-HFP) films, while the dielectric loss for all blend films are decreased. D-E loops of 7.4 wt. % and 17.0 wt. % silicone oil modified P(VDF-HFP) films become slimmer than the pristine P(VDF-HFP) films. The maximum discharged energy density of 10.3 J/cm{sup 3} was obtained in 7.4 wt. % silicone oil modified P(VDF-HFP) films at the external electric field of 398 kV/mm. The Gibbs energy, miscibility, and phase behavior of binary mixture of P(VDF-HFP) silicone oil were investigated using molecular simulations and the extended Flory–Huggins model revealing favorable interactions and compatibility between P(VDF-HFP) and silicone oil.

  1. Liquid-phase tuning of porous PVDF-TrFE film on flexible substrate for energy harvesting

    Science.gov (United States)

    Chen, Dajing; Chen, Kaina; Brown, Kristopher; Hang, Annie; Zhang, John X. J.

    2017-04-01

    Emerging wearable and implantable biomedical energy harvesting devices demand efficient power conversion, flexible structures, and lightweight construction. This paper presents Polyvinylidene fluoride-trifluoroethylene (PVDF-TrFE) micro-porous structures, which can be tuned to specific mechanical flexibilities and optimized for piezoelectric power conversion. Specifically, the water vapor phase separation method was developed to control microstructure formation, pore diameter, porosity, and mechanical flexibility. Furthermore, we investigated the effects of the piezoelectric layer to supporting layer Young's modulus ratio, through using both analytical calculation and experimentation. Both structure flexibility and stress-induced voltage were considered in the analyses. Specification of electromechanical coupling efficiency, made possible by carefully designed three-dimensional porous structures, was shown to increase the power output by five-fold relative to uncoupled structures. Therefore, flexible PVDF-TrFE films with tunable microstructures, paired with substrates of different rigidities, provide highly efficient designs of compact piezoelectric energy generating devices.

  2. High energy density and efficiency achieved in nanocomposite film capacitors via structure modulation

    Science.gov (United States)

    Zeng, Yi; Shen, Zhong-Hui; Shen, Yang; Lin, Yuanhua; Nan, Ce-Wen

    2018-03-01

    Flexible dielectric polymer films with high energy storage density and high charge-discharge efficiency have been considered as promising materials for electrical power applications. Here, we design hierarchical structured nanocomposite films using nonlinear polymer poly(vinylidene fluoride-HFP) [P(VDF-HFP)] with inorganic h-boron nitride (h-BN) nanosheets by electrospinning and hot-pressing methods. Our results show that the addition of h-BN nanosheets and the design of the hierarchical multilayer structure in the nanocomposites can remarkably enhance the charge-discharge efficiency and energy density. A high charge-discharge efficiency of 78% and an energy density of 21 J/cm3 can be realized in the 12-layered PVDF/h-BN nanocomposite films. Phase-field simulation results reveal that the spatial distribution of the electric field in these hierarchical structured films affects the charge-discharge efficiency and energy density. This work provides a feasible route, i.e., structure modulation, to improve the energy storage performances for nanocomposite films.

  3. A flexible tactile-feedback touch screen using transparent ferroelectric polymer film vibrators

    International Nuclear Information System (INIS)

    Ju, Woo-Eon; Moon, Yong-Ju; Park, Cheon-Ho; Choi, Seung Tae

    2014-01-01

    To provide tactile feedback on flexible touch screens, transparent relaxor ferroelectric polymer film vibrators were designed and fabricated in this study. The film vibrator can be integrated underneath a transparent cover film or glass, and can also produce acoustic waves that cause a tactile sensation on human fingertips. Poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene) [P(VDF-TrFE-CTFE)] polymer was used as the relaxor ferroelectric polymer because it produces a large strain under applied electric fields, shows a fast response, and has excellent optical transparency. The natural frequency of this tactile-feedback touch screen was designed to be around 200–240 Hz, at which the haptic perception of human fingertips is the most sensitive; therefore, the resonance of the touch screen at its natural frequency provides maximum haptic sensation. A multilayered relaxor ferroelectric polymer film vibrator was also demonstrated to provide the same vibration power at reduced voltage. The flexible P(VDF-TrFE-CTFE) film vibrators developed in this study are expected to provide tactile sensation not only in large-area flat panel displays, but also in flexible displays and touch screens. (papers)

  4. Fluoride varnish or fluoride mouth rinse?

    DEFF Research Database (Denmark)

    Keller, M K; Klausen, BJ; Twetman, S

    2016-01-01

    OBJECTIVE: In many Danish communities, school-based fluoride programs are offered to children with high caries risk in adjunct to tooth brushing. The purpose of this field trial was to compare the caries-preventive effectiveness of two different fluoride programs in 6-12 year olds. BASIC RESEARCH...... different schools were enrolled after informed consent and their class unit was randomly allocated to one of two fluoride programs. INTERVENTIONS: One group received a semi-annual fluoride varnish applications (FV) and the other group continued with an existing program with fluoride mouth rinses once per...... in caries development over two years among children participating in a school-based fluoride varnish or mouth rinse program....

  5. Calcium fluoride

    International Nuclear Information System (INIS)

    King, C.W.; Nestor, O.H.

    1989-01-01

    A new process for producing large, single, oriented crystals of calcium fluoride (CaF 2 ) has been developed which overcomes the limitations of current growing methods. This process has been reduced to practice and has yielded oriented crystals 17.5 x 17.5 x 5 cm 3 . Currently nearing completion is a system for producing 35 x 35 x 7.5 cm 3 single crystals. A scale up to one-meter-square is considered feasible. This crystal growing process makes possible the fabrication of very large CaF 2 windows. Suitability for very high power lasers, however, requires attention to properties beyond mere size. A process to generate higher purity growth stock (starting material) was also developed. The additional purification of the growth stock contributes to lower bulk absorption, the absence of color centers and increased radiation hardness. Also identified were several specific impurities which correlate with radiation hardness. A correlation was found between color centers induced by laser radiation and ionizing radiation. Other CaF 2 crystal properties such as tensile strength, absorption and laser damage thresholds were studied and are discussed

  6. The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride)

    DEFF Research Database (Denmark)

    Katsouras, Ilias; Asadi, Kamal; Li, Mengyuan

    2016-01-01

    with trifluoroethylene (P(VDF-TrFE)), which exhibit a negative longitudinal piezoelectric coefficient. Reported explanations exclusively consider contraction with applied electric field of either the crystalline or the amorphous part of these semi-crystalline polymers. To distinguish between these conflicting...

  7. Mn2(CO)10-photomediated synthesis of poly(vinylidene fluoride)-b-poly(styrene sulfonate)

    Czech Academy of Sciences Publication Activity Database

    Černoch, Peter; Petrova, Svetlana; Černochová, Zulfiya; Kim, J. S.; Simpson, C. P.; Asandei, A. D.

    2015-01-01

    Roč. 68, July (2015), s. 460-470 ISSN 0014-3057 R&D Projects: GA MŠk(CZ) LH14038 Institutional support: RVO:61389013 Keywords : polystyrenesulfonate * poly(neopentyl styrenesulfonate) * PVDF Subject RIV: CD - Macromolecular Chemistry Impact factor: 3.485, year: 2015

  8. Morphological, Thermal, Electrical and Electromechanical Properties of Polyvinylidene Fluoride (PVDF)-Functionalized Carbon Nanotube Composites (Preprint)

    Science.gov (United States)

    2012-03-01

    several times with deionized water and ethanol to remove undissolved chemicals. Finally the solution was filtered through 0.2 µm cellulose nitrate...was recorded for 3 times and average was used. To observe the morphology of the synthesized samples, FESEM (Quanta 3D ) was performed. Powder was...linear within elastic region and start going to plastic region with further increment in load. For testing electromechanical properties of these f-CNT

  9. Virus Disinfection in Water by Biogenic Silver Immobilized in Polyvinylidene Fluoride Membranes

    Energy Technology Data Exchange (ETDEWEB)

    B De Gusseme; T Hennebel; E Christiaens; H Saveyn; K Verbeken; J Fitts; N Boon; W Vertraete

    2011-12-31

    The development of innovative water disinfection strategies is of utmost importance to prevent outbreaks of waterborne diseases related to poor treatment of (drinking) water. Recently, the association of silver nanoparticles with the bacterial cell surface of Lactobacillus fermentum (referred to as biogenic silver or bio-Ag{sup 0}) has been reported to exhibit antiviral properties. The microscale bacterial carrier matrix serves as a scaffold for Ag{sup 0} particles, preventing aggregation during encapsulation. In this study, bio-Ag{sup 0} was immobilized in different microporous PVDF membranes using two different pre-treatments of bio-Ag{sup 0} and the immersion-precipitation method. Inactivation of UZ1 bacteriophages using these membranes was successfully demonstrated and was most probably related to the slow release of Ag{sup +} from the membranes. At least a 3.4 log decrease of viruses was achieved by application of a membrane containing 2500 mg bio-Ag{sup 0}{sub powder} m{sup -2} in a submerged plate membrane reactor operated at a flux of 3.1 L m{sup -2} h{sup -1}. Upon startup, the silver concentration in the effluent initially increased to 271 {mu}g L{sub -1} but after filtration of 31 L m{sup -2}, the concentration approached the drinking water limit (= 100 {mu}g L{sup -1}). A virus decline of more than 3 log was achieved at a membrane flux of 75 L m{sup -2} h{sup -1}, showing the potential of this membrane technology for water disinfection on small scale.

  10. An optimization of superhydrophobic polyvinylidene fluoride/zinc oxide materials using Taguchi method

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, Adel M.A., E-mail: madel@uqac.ca [Department of Metallurgical and Materials Engineering, Faculty of Petroleum and Mining Engineering, Suez Canal University, Box 43721, Suez (Egypt); Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE) and Canada Research Chair on Atmospheric Icing Engineering of Power Networks (INGIVRE) at Université du Québec a Chicoutimi, Québec (Canada); Jafari, Reza; Farzaneh, Masoud [Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE) and Canada Research Chair on Atmospheric Icing Engineering of Power Networks (INGIVRE) at Université du Québec a Chicoutimi, Québec (Canada)

    2014-01-01

    This article is focused on the preparation and characterization of PVDF/ZnO composite materials. The superhydrophobic surface was prepared through spray coating of a mixture of PVDF polymer and ZnO nanoparticles on aluminum substrate. Stearic acid was added to improve the dispersion of ZnO. Taguchi's design of experiment method using MINITAB15 was used to rank several factors that may affect the superhydrophobic properties in order to formulate the optimum conditions. The Taguchi orthogonal array L9 was applied with three level of consideration for each factor. ANOVA were carried out to identify the significant factors that affect the water contact angle. Confirmation tests were performed on the predicted optimum process parameters. The crystallinity and morphology of PVDF–ZnO membranes were determined by Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). The results of Taguchi method indicate that the ZnO and stearic acid contents were the parameters making significant contribution toward improvement in hydrophobicity of PVDF materials. As the content of ZnO nanoparticles increased, the values of water contact angle increased, ranging from 122° to 159°, while the contact angle hysteresis and sliding angle decreased to 3.5° and 2.5°, respectively. The SEM results show that hierarchical micro-nanostructure of ZnO plays an important role in the formation of the superhydrophobic surface. FTIR results showed that, in the absence or present ZnO nanoparticles, the crystallization of the PVDF occurred predominantly in the β-phase.

  11. Effect of annealing on phase transition in poly(vinylidene fluoride ...

    Indian Academy of Sciences (India)

    Administrator

    Laser Materials Development and Devices Division, Raja Ramanna Centre for Advanced Technology,. Indore 452 ... (DMSO) solvent, regardless of preparation temperature. .... The melting point, crystallization and phase transition of α-, β- and γ-phases of PVDF were observed from DSC curves during heating cycle of DSC.

  12. Change in properties of polyvinylidene fluoride under the action of ionizing radiation

    International Nuclear Information System (INIS)

    Khylabich, P.P.; Verkhovets, A.P.; Sirota, A.G.

    1982-01-01

    At present it may be considered demonstrated that the strength properties of amorphous-crystalline polymers are determined to a considerable extent by the proportion of load-bearing macrochains in the amorphous regions. In the case of unoriented polyethylene, it has been shown that radiochemical cross-linking is accompanied by an increase in the proportion of load-bearing chains. The increase in the proportion of load-bearing chains is displayed in an increase in the overall elastic modulus and breaking strength already at low absorbed radiation doses (5-10 Mrad). The number of molecular fragments which take part in the formation of new load-bearing chains is limited, since they should be located close to one another and have the necessary mobility. Therefore further irradiation leads to exhaustion of the molecular fragments which are able to form new load-bearing chains, although the process of polymer cross-linking is continued over a wide range of radiation doses. Cross-linking of the load-bearing chains is hindered by their lower mobility as compared with the other chains, but the rate of degradation remains as before. As a result, the ratio of the rate of degradation remains as before. As a result, the ratio of the rate of degradation to that of cross-linking for the load-bearing chains rises,and correspondingly the breaking strength of the polyethylene diminishes. On irradiation of highly oriented PE, a monotonic drop in breaking strength is observed. This is connected with the fact that orientation leads to a considerable decrease in the mobility of the macrochains in the amorphous regions, which also leads to an abrupt increase in the ratio of degradation to cross-linking on irradiation, and as a consequence to a decrease in the breaking strength of the polymer

  13. Preparation and characterization of poly(vinylidene fluoride) based composite electrolytes for electrochemical devices

    International Nuclear Information System (INIS)

    Karabelli, D.; Leprêtre, J.-C.; Cointeaux, L.; Sanchez, J.-Y.

    2013-01-01

    Highlights: • Macroporous PVdF based membranes for electrochemical applications were prepared with support materials. • Woven PET and PA fabrics and non-woven cellulose paper are used as support materials. • Porous structure of PVdF was obtained on the support material. • Interaction between the electrolyte solvent and the composite material played an important role on the mechanical properties. • Compared to the pure PVdF separators, enhanced mechanical strength was obtained for composite separators, without decreasing the ionic conductivity. -- Abstract: PVdF-based separators are very promising materials in electrochemical energy storage systems but they suffer from fairly poor mechanical properties. To overcome this drawback, composite PVdF separators were fabricated and characterized in electrolytes of Li-ion batteries and supercapacitors. Macroporous PVdF composite separators were prepared by phase inversion method using PA and PET, and non-woven cellulose as support layers. Ionic conductivity and thermomechanical analyses were performed using electrolytes of Li-ion batteries and supercapacitors. The composite approach allowed a tremendous increase of the mechanical performances of the separator (between 340 and 750 MPa) compared to the unreinforced PVdF separator (56 MPa), without compromising the ionic conductivities (up to 15.6 mS cm −1 )

  14. Virus disinfection in water by biogenic silver immobilized in polyvinylidene fluoride membranes

    Energy Technology Data Exchange (ETDEWEB)

    Gusseme, B.D.; Fitts, J.; Hennebel, T.; Christiaens, E.; Saveyn, H.; Verbeken, K.; Boon, N.; Verstraete, W.

    2011-03-01

    The development of innovative water disinfection strategies is of utmost importance to prevent outbreaks of waterborne diseases related to poor treatment of (drinking) water. Recently, the association of silver nanoparticles with the bacterial cell surface of Lactobacillus fermentum (referred to as biogenic silver or bio-Ag{sup 0}) has been reported to exhibit antiviral properties. The microscale bacterial carrier matrix serves as a scaffold for Ag{sup 0} particles, preventing aggregation during encapsulation. In this study, bio-Ag{sup 0} was immobilized in different microporous PVDF membranes using two different pre-treatments of bio-Ag{sup 0} and the immersion-precipitation method. Inactivation of UZ1 bacteriophages using these membranes was successfully demonstrated and was most probably related to the slow release of Ag{sup +} from the membranes. At least a 3.4 log decrease of viruses was achieved by application of a membrane containing 2500 mg bio-Ag{sub powder}{sup 0} m{sup -2} in a submerged plate membrane reactor operated at a flux of 3.1 L m{sup -2} h{sup -1}. Upon startup, the silver concentration in the effluent initially increased to 271 {micro}g L{sup -1} but after filtration of 31 L m{sup -2}, the concentration approached the drinking water limit (= 100 {micro}g L{sup -1}). A virus decline of more than 3 log was achieved at a membrane flux of 75 L m{sup -2} h{sup -1}, showing the potential of this membrane technology for water disinfection on small scale. In biogenic silver, silver nanoparticles are attached to a bacterial carrier matrix. Bio-Ag{sup 0} was successfully immobilized in PVDF membranes using immersion-precipitation. The antiviral activity of this material was demonstrated in a plate membrane reactor. The antimicrobial mechanism was most probably related to the slow release of Ag{sup +} ions. The membranes can be applied for treatment of limited volumes of contaminated water.

  15. Development of highly porous flat sheet polyvinylidene fluoride (PVDF) membranes for membrane distillation

    KAUST Repository

    Alsaery, Salim A.

    2017-01-01

    With the increase of population every year, fresh water scarcity has rapidly increased and it is reaching a risky level, particularly in Africa and the Middle East. Desalination of seawater is an essential process for fresh water generation. One

  16. Clay nanocomposites based on poly(vinylidene fluoride-co-hexafluoropropylene): Structure and properties

    KAUST Repository

    Kelarakis, Antonios; Hayrapetyan, Suren; Ansari, Seema; Fang, Jason; Estevez, Luis; Giannelis, Emmanuel P.

    2010-01-01

    of the polymer crystals. The degree of transformation depends on the nature of the clay surface modifier and scales with the strength of the interactions between the clay and the polymer. The nanocomposites exhibit significant increases in elongation to failure

  17. Photopiezoelectric Composites of Azobenzene-Functionalized Polyimides and Polyvinylidene Fluoride (Postprint)

    Science.gov (United States)

    2014-10-01

    as evident in the calculated chromophore number density (CND) as well as the measured absorption coeffi cient (α) over the range of azobenzene...Hiraoka , S. Kubo , J.-I. Mamiya , M. Kinoshita , T. Ikeda , A. Shishido , ACS Macro Lett. 2011 , 1 , 96 . [16] J. Cviklinski , A

  18. Story of Fluoridation

    Science.gov (United States)

    ... Home Health Info Health Topics Fluoride Share The Story of Fluoridation It started as an observation, that ... this time using photospectrographic analysis, a more sophisticated technology than that used by McKay. Churchill asked an ...

  19. Fluoride in diet

    Science.gov (United States)

    Diet - fluoride ... bones and teeth. Too much fluoride in the diet is very rare. Rarely, infants who get too ... of essential vitamins is to eat a balanced diet that contains a variety of foods from the ...

  20. Fluoride metabolism in plants

    Energy Technology Data Exchange (ETDEWEB)

    Peters, R; Shorthouse, M

    1964-04-04

    Grass seedlings exposed to inorganic fluoride solutions do not take up appreciable amounts of fluoride until concentrations of more than 1.0 mM (19 p.p.m.) are used. No formation of organic fluoride has been found, even with exposure to 15.75 mM fluoride, indicating that there is no formation of fluoroacetate or similar compounds. 8 references, 2 tables.

  1. Cratering Studies in Thin Plastic Films

    Science.gov (United States)

    Shu, A. J.; Bugiel, S.; Gruen, E.; Hillier, J.; Horanyi, M.; Munsat, T. L.; Srama, R.

    2013-12-01

    Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions and shape of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. LS-Dyna, a smoothed particle hydrodynamics (SPH) code from the Livermore Software Technology Corp. was chosen to simulate micrometeorite impacts. SPH is known to be well suited to the large deformities found in hypervelocity impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Material properties are accounted for using the Grüneisen Equation of State. The results of the SPH model can

  2. Unconventional fluoride conversion coating preparation and characterization

    Czech Academy of Sciences Publication Activity Database

    Drábiková, J.; Fintová, Stanislava; Tkacz, J.; Doležal, P.; Wasserbauer, J.

    2017-01-01

    Roč. 64, č. 6 (2017), s. 613-619 ISSN 0003-5599 Institutional support: RVO:68081723 Keywords : fluoride conversion coating * magnesium * corrosion Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 0.364, year: 2016 http://www.emeraldinsight.com/doi/abs/10.1108/ACMM-02-2017-1757

  3. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors.

    Science.gov (United States)

    Yao, Kui; Chen, Shuting; Rahimabady, Mojtaba; Mirshekarloo, Meysam Sharifzadeh; Yu, Shuhui; Tay, Francis Eng Hock; Sritharan, Thirumany; Lu, Li

    2011-09-01

    Although batteries possess high energy storage density, their output power is limited by the slow movement of charge carriers, and thus capacitors are often required to deliver high power output. Dielectric capacitors have high power density with fast discharge rate, but their energy density is typically much lower than electrochemical supercapacitors. Increasing the energy density of dielectric materials is highly desired to extend their applications in many emerging power system applications. In this paper, we review the mechanisms and major characteristics of electric energy storage with electrochemical supercapacitors and dielectric capacitors. Three types of in-house-produced ferroic nonlinear dielectric thin film materials with high energy density are described, including (Pb(0.97)La(0.02))(Zr(0.90)Sn(0.05)Ti(0.05))O(3) (PLZST) antiferroelectric ceramic thin films, Pb(Zn(1/3)Nb(2/3))O(3-)Pb(Mg(1/3)Nb(2/3))O(3-)PbTiO(3) (PZN-PMN-PT) relaxor ferroelectric ceramic thin films, and poly(vinylidene fluoride) (PVDF)-based polymer blend thin films. The results showed that these thin film materials are promising for electric storage with outstandingly high power density and fairly high energy density, comparable with electrochemical supercapacitors.

  4. Fluoride glass fiber optics

    CERN Document Server

    Aggarwal, Ishwar D

    1991-01-01

    Fluoride Glass Fiber Optics reviews the fundamental aspects of fluoride glasses. This book is divided into nine chapters. Chapter 1 discusses the wide range of fluoride glasses with an emphasis on fluorozirconate-based compositions. The structure of simple fluoride systems, such as BaF2 binary glass is elaborated in Chapter 2. The third chapter covers the intrinsic transparency of fluoride glasses from the UV to the IR, with particular emphasis on the multiphonon edge and electronic edge. The next three chapters are devoted to ultra-low loss optical fibers, reviewing methods for purifying and

  5. Hot plate annealing at a low temperature of a thin ferroelectric P(VDF-TrFE) film with an improved crystalline structure for sensors and actuators.

    Science.gov (United States)

    Mahdi, Rahman Ismael; Gan, W C; Abd Majid, W H

    2014-10-14

    Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE) thin films are measured as a function of different annealing temperatures (80 to 140 °C). It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc) has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE) thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.

  6. Effect of ZnO channel thickness on the device behaviour of nonvolatile memory thin film transistors with double-layered gate insulators of Al2O3 and ferroelectric polymer

    International Nuclear Information System (INIS)

    Yoon, Sung-Min; Yang, Shin-Hyuk; Ko Park, Sang-Hee; Jung, Soon-Won; Cho, Doo-Hee; Byun, Chun-Won; Kang, Seung-Youl; Hwang, Chi-Sun; Yu, Byoung-Gon

    2009-01-01

    Poly(vinylidene fluoride trifluoroethylene) and ZnO were employed for nonvolatile memory thin film transistors as ferroelectric gate insulator and oxide semiconducting channel layers, respectively. It was proposed that the thickness of the ZnO layer be carefully controlled for realizing the lower programming voltage, because the serially connected capacitor by the formation of a fully depleted ZnO channel had a critical effect on the off programming voltage. The fabricated memory transistor with Al/P(VDF-TrFE) (80 nm)/Al 2 O 3 (4 nm)/ZnO (5 nm) exhibits encouraging behaviour such as a memory window of 3.8 V at the gate voltage of -10 to 12 V, and 10 7 on/off ratio, and a gate leakage current of 10 -11 A.

  7. Piezoelectricity and ferroelectricity of cellular polypropylene electrets films characterized by piezoresponse force microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Miao, Hongchen; Sun, Yao; Zhou, Xilong; Li, Yingwei [LTCS and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); Li, Faxin, E-mail: lifaxin@pku.edu.cn [LTCS and Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871 (China); HEDPS and Center for Applied Physics and Technology, Peking University, Beijing (China)

    2014-08-14

    Cellular electrets polymer is a new ferroelectret material exhibiting large piezoelectricity and has attracted considerable attentions in researches and industries. Property characterization is very important for this material and current investigations are mostly on macroscopic properties. In this work, we conduct nanoscale piezoelectric and ferroelectric characterizations of cellular polypropylene (PP) films using piezoresponse force microscopy (PFM). First, both the single-frequency PFM and dual-frequency resonance-tracking PFM testings were conducted on the cellular PP film. The localized piezoelectric constant d{sub 33} is estimated to be 7–11pC/N by correcting the resonance magnification with quality factor and it is about one order lower than the macroscopic value. Next, using the switching spectroscopy PFM (SS-PFM), we studied polarization switching behavior of the cellular PP films. Results show that it exhibits the typical ferroelectric-like phase hysteresis loops and butterfly-shaped amplitude loops, which is similar to that of a poly(vinylidene fluoride) (PVDF) ferroelectric polymer film. However, both the phase and amplitude loops of the PP film are intensively asymmetric, which is thought to be caused by the nonzero remnant polarization after poling. Then, the D-E hysteresis loops of both the cellular PP film and PVDF film were measured by using the same wave form as that used in the SS-PFM, and the results show significant differences. Finally, we suggest that the ferroelectric-like behavior of cellular electrets films should be distinguished from that of typical ferroelectrics, both macroscopically and microscopically.

  8. Fluoride and Oral Health.

    Science.gov (United States)

    O'Mullane, D M; Baez, R J; Jones, S; Lennon, M A; Petersen, P E; Rugg-Gunn, A J; Whelton, H; Whitford, G M

    2016-06-01

    The discovery during the first half of the 20th century of the link between natural fluoride, adjusted fluoride levels in drinking water and reduced dental caries prevalence proved to be a stimulus for worldwide on-going research into the role of fluoride in improving oral health. Epidemiological studies of fluoridation programmes have confirmed their safety and their effectiveness in controlling dental caries. Major advances in our knowledge of how fluoride impacts the caries process have led to the development, assessment of effectiveness and promotion of other fluoride vehicles including salt, milk, tablets, toothpaste, gels and varnishes. In 1993, the World Health Organization convened an Expert Committee to provide authoritative information on the role of fluorides in the promotion of oral health throughout the world (WHO TRS 846, 1994). This present publication is a revision of the original 1994 document, again using the expertise of researchers from the extensive fields of knowledge required to successfully implement complex interventions such as the use of fluorides to improve dental and oral health. Financial support for research into the development of these new fluoride strategies has come from many sources including government health departments as well as international and national grant agencies. In addition, the unique role which industry has played in the development, formulation, assessment of effectiveness and promotion of the various fluoride vehicles and strategies is noteworthy. This updated version of 'Fluoride and Oral Health' has adopted an evidence-based approach to its commentary on the different fluoride vehicles and strategies and also to its recommendations. In this regard, full account is taken of the many recent systematic reviews published in peer reviewed literature.

  9. Private Well Water and Fluoride

    Science.gov (United States)

    ... Private Wells Infant Formula Fluorosis Public Health Service Recommendation Water Operators & Engineers Water Fluoridation Additives Shortages of Fluoridation Additives Drinking Water Pipe Systems CDC-Sponsored Water Fluoridation Training Links to Other ...

  10. High Performance Flexible Actuator of Urchin-Like ZnO Nanostructure/Polyvinylenefluoride Hybrid Thin Film with Graphene Electrodes for Acoustic Generator and Analyzer.

    Science.gov (United States)

    Cheong, Oug Jae; Lee, James S; Kim, Jae Hyun; Jang, Jyongsik

    2016-05-01

    A bass frequency response enhanced flexible polyvinylidene fluoride (PVDF) based thin film acoustic actuator is successfully fabricated. High concentrations of various zinc oxide (ZnO) is embedded in PVDF matrix, enhancing the β phase content and the dielectric property of the composite thin film. ZnO acts as a nucleation agent for the crystallization of PVDF. A chemical vapor deposition grown graphene is used as electrodes, enabling high electron mobility for the distortion free acoustic signals. The frequency response of the fabricated acoustic actuator is studied as a function of the film thickness and filler content. The optimized film has a thickness of 80 μm with 30 wt% filler content and shows 72% and 42% frequency response enhancement in bass and midrange compared to the commercial PVDF, respectively. Also, the total harmonic distortion decreases to 82% and 74% in the bass and midrange regions, respectively. Furthermore, the composite film shows a promising potential for microphone applications. Most of all, it is demonstrated that acoustic actuator performance is strongly influenced by degree of PVDF crystalline. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Investigation of the ferroelectric switching behavior of P(VDF-TrFE)-PMMA blended films for synaptic device applications

    International Nuclear Information System (INIS)

    Kim, E J; Kim, K A; Yoon, S M

    2016-01-01

    Synaptic plasticity can be mimicked by electronic synaptic devices. By using ferroelectric thin films as gate insulator for thin-film transistors (TFT), channel conductance can be defined as the synaptic plasticity, and gradually modulated by the variations in amounts of aligned ferroelectric dipoles. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)]-poly(methyl methacrylate) (PMMA) blended films are chosen and their switching kinetics are investigated by using the Kolmogorov-Avrami-Ishibashi model. The switching time for ferroelectric polarization is sensitively influenced by the amplitude of applied electric field and volumetric ratio of ferroelectric beta-phases in the P(VDF-TrFE)-PMMA films. The switching time of the P(VDF-TrFE) increases with decreasing the pulse amplitude and/or the ratio of ferroelectric beta-phases by incorporation of PMMA. The activation electric field is also found to increase as the increase in blended amount of PMMA. Synapse TFTs are fabricated using the P(VDF-TrFE)-PMMA as gate insulator and In-Ga-Zn-O active channels. The drain currents of the synapse TFTs gradually increased when the voltage pulse signals with given duration are repeatedly applied. This suggests that the synaptic weights can be modulated by the number of external pulse signals, and that the proposed synapse TFT can be applied for mimicking the operations of bio-synapses. (paper)

  12. Reversible Changes in Resistance of Perovskite Nickelate NdNiO3 Thin Films Induced by Fluorine Substitution.

    Science.gov (United States)

    Onozuka, Tomoya; Chikamatsu, Akira; Katayama, Tsukasa; Hirose, Yasushi; Harayama, Isao; Sekiba, Daiichiro; Ikenaga, Eiji; Minohara, Makoto; Kumigashira, Hiroshi; Hasegawa, Tetsuya

    2017-03-29

    Perovskite nickel oxides are of fundamental as well as technological interest because they show large resistance modulation associated with phase transition as a function of the temperature and chemical composition. Here, the effects of fluorine doping in perovskite nickelate NdNiO 3 epitaxial thin films are investigated through a low-temperature reaction with polyvinylidene fluoride as the fluorine source. The fluorine content in the fluorinated NdNiO 3-x F x films is controlled with precision by varying the reaction time. The fully fluorinated film (x ≈ 1) is highly insulating and has a bandgap of 2.1 eV, in contrast to NdNiO 3 , which exhibits metallic transport properties. Hard X-ray photoelectron and soft X-ray absorption spectroscopies reveal the suppression of the density of states at the Fermi level as well as the reduction of nickel ions (valence state changes from +3 to +2) after fluorination, suggesting that the strong Coulombic repulsion in the Ni 3d orbitals associated with the fluorine substitution drives the metal-to-insulator transition. In addition, the resistivity of the fluorinated films recovers to the original value for NdNiO 3 after annealing in an oxygen atmosphere. By application of the reversible fluorination process to transition-metal oxides, the search for resistance-switching materials could be accelerated.

  13. Electroactive Phase Induced Bi4Ti3O12-Poly(Vinylidene Difluoride) Composites with Improved Dielectric Properties

    Science.gov (United States)

    Bhardwaj, Sumit; Paul, Joginder; Chand, Subhash; Raina, K. K.; Kumar, Ravi

    2015-10-01

    Lead-free ceramic-polymer composite films containing Bi4Ti3O12 (BIT) nanocrystals as the active phase and poly(vinylidene difluoride) as the passive matrix were synthesized by spin coating. The films' structural, morphological, and dielectric properties were systemically investigated by varying the weight fraction of BIT. Formation of electroactive β and γ phases were strongly affected by the presence of BIT nanocrystals. Analysis was performed by Fourier-transform infrared and Raman spectroscopy. Morphological studies confirmed the homogeneous dispersion of BIT particles within the polymer matrix. The composite films had dielectric constants as high as 52.8 and low dielectric loss of 0.1 at 100 Hz when the BIT content was 10 wt.%. We suggest that the enhanced electroactive phase content of the polymer matrix and interfacial polarization may contribute to the improved dielectric performance of these composite films. Dielectric modulus analysis was performed to enable understanding of the dielectric relaxation process. Non-Debye-type relaxation behavior was observed for the composite films at high temperature.

  14. Fluoride Rinses, Gels and Foams

    DEFF Research Database (Denmark)

    Twetman, Svante; Keller, Mette K

    2016-01-01

    AIM: The aim of this conference paper was to systematically review the quality of evidence and summarize the findings of clinical trials published after 2002 using fluoride mouth rinses, fluoride gels or foams for the prevention of dental caries. METHODS: Relevant papers were selected after...... (6 on fluoride mouth rinse, 10 on fluoride gel and 3 on fluoride foam); 6 had a low risk of bias while 2 had a moderate risk. All fluoride measures appeared to be beneficial in preventing crown caries and reversing root caries, but the quality of evidence was graded as low for fluoride mouth rinse......, moderate for fluoride gel and very low for acidulated fluoride foam. No conclusions could be drawn on the cost-effectiveness. CONCLUSIONS: This review, covering the recent decade, has further substantiated the evidence for a caries-preventive effect of fluoride mouth rinse, fluoride gel and foam...

  15. Surface energy characteristics of zeolite embedded PVDF nanofiber films with electrospinning process

    Science.gov (United States)

    Kang, Dong Hee; Kang, Hyun Wook

    2016-11-01

    Electrospinning is a nano-scale fiber production method with various polymer materials. This technique allows simple fiber diameters control by changing the physical conditions such as applied voltage and polymer solution viscosity during the fabrication process. The electrospun polymer fibers form a thin porous film with high surface area to volume ratio. Due to these unique characteristics, it is widely used for many application fields such as photocatalyst, electric sensor, and antibacterial scaffold for tissue engineering. Filtration is one of the main applications of electrospun polymer fibers for specific application of filtering out dust particles and dehumidification. Most polymers which are commonly used in electrospinning are hard to perform the filtering and dehumidification simultaneously because of their low hygroscopic property. To overcome this obstacle, the desiccant polymers are developed such as polyacrylic acid and polysulfobetaine methacrylate. However, the desiccant polymers are generally expensive and need special solvent for electrospinning. An alternating way to solve these problems is mixing desiccant material like zeolite in polymer solution during an electrospinning process. In this study, the free surface energy characteristics of electrospun polyvinylidene fluoride (PVDF) film with various zeolite concentrations are investigated to control the hygroscopic property of general polymers. Fundamental physical property of wettability with PVDF shows hydrophobicity. The electrospun PVDF film with small weight ratio with higher than 0.1% of zeolite powder shows diminished contact angles that certifying the wettability of PVDF can be controlled using desiccant material in electrospinning process. To quantify the surface energy of electrospun PVDF films, sessile water droplets are introduced on the electrospun PVDF film surface and the contact angles are measured. The contact angles of PVDF film are 140° for without zeolite and 80° for with 5

  16. Film growth and alloy enrichment during anodizing AZ31 magnesium alloy in fluoride/glycerol electrolytes of a range of water contents

    Czech Academy of Sciences Publication Activity Database

    Němcová, A.; Galal, O.; Skeldon, P.; Kuběna, Ivo; Šmíd, Miroslav; Briand, E.; Vickridge, I.; Ganem, J.-J.; Habazaki, H.

    2016-01-01

    Roč. 219, NOV (2016), s. 28-37 ISSN 0013-4686 Institutional support: RVO:68081723 Keywords : magnesium * anodic film * enrichment Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 4.798, year: 2016

  17. Fluoride varnishes and enamel caries

    NARCIS (Netherlands)

    Bruyn, Hugo de

    1987-01-01

    Topical fluoride applications have the aim of increasing the fluoride uptake in enamel and consequently reducing caries. In the early ‘60s fluoride varnishes were introduced because they had a long contact period with the enamel which resulted in a higher fluoride uptake than from other topical

  18. Flexible free-standing TiO2/graphene/PVdF films as anode materials for lithium-ion batteries

    International Nuclear Information System (INIS)

    Ren, H.M.; Ding, Y.H.; Chang, F.H.; He, X.; Feng, J.Q.; Wang, C.F.; Jiang, Y.; Zhang, P.

    2012-01-01

    Highlights: ► Flexible TiO 2 /graphene electrode was prepared by a solvent evaporation technique. ► PVdF was used as substance to support the TiO 2 /graphene active materials. ► The flexible films can be employed as anode materials for Li-ion battery. - Abstract: Graphene composites were prepared by hydrothermal method using titanium dioxide (TiO 2 ) adsorbed graphene oxide (GO) sheets as precursors. Free-standing hybrid films for lithium-ion batteries were prepared by adding TiO 2 /graphene composites to the polyvinylidene fluoride (PVdF)/N-methyl-2-pyrrolidone (NMP) solution, followed by a solvent evaporation technique. These films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD), scanning electron microscopy (SEM) and various electrochemical techniques. Flexible films show an excellent cycling performance, which was attributed to the interconnected graphene conducting network, which depressed the increasing of electric resistance during the cycling.

  19. Physical and chemical changes induced by 70 MeV carbon ions in polyvinylidene difluoride (PVDF) polymer

    International Nuclear Information System (INIS)

    Virk, H.S.; Chandi, P.S.; Srivastava, A.K.

    2001-01-01

    Physical and chemical changes induced by 70 MeV carbon ions ( 12 C 5+ ) have been investigated in bulk polyvinylidene fluoride (PVDF) polymer. The induced changes have been studied with respect to their optical, chemical and structural response using UV-visible, FTIR and XRD techniques. The ion fluences ranging from 2.5x10 11 to 9x10 13 ions cm -2 have been used to study the irradiation effects. It has been observed that at the fluence of 9x10 13 ions cm -2 the PVDF sample became brittle and practically it was not possible to handle it for any further measurements. The recorded UV-visible spectra show that the optical absorption increases with increasing fluence, indicating maximum absorption at 200 nm. An interesting feature of UV-visible spectra is that dips change into peaks and vice versa with increase of fluence. In the FTIR spectra, development of new peaks at 1714 and 3692 cm -1 along with disappearance of peaks at 2363 and 3025 cm -1 and shifting of peak at 2984-2974 cm -1 have been observed due to high energy irradiation, indicating the chemical changes induced by 12 C 5+ . The diffraction pattern of PVDF indicates that this polymer is semi-crystalline in nature; a large decrease in the diffraction intensity indicates decrease in crystallinity. Increase in crystallite size has also been observed due to heavy ion irradiation

  20. The cariostatic mechanisms of fluoride

    OpenAIRE

    Kata Rošin-Grget; Kristina Peroš; Ivana Šutej; Krešimir Bašić

    2013-01-01

    This article discusses the possible cariostatic mechanisms of the action of fluoride. In the past, fluoride inhibition of caries was ascribed to reduced solubility of enamel due to incorporation of fluoride (F–) into the enamel minerals. The present evidence from clinical and laboratory studies suggests that the caries-preventive mode of action of fluoride is mainly topical. There is convincing evidence that fluoride has a major effect on demineralisation and remineralisation of dental hard t...

  1. Magnetic interactions through fluoride

    DEFF Research Database (Denmark)

    Pedersen, Kasper Steen; Sigrist, Marc; Weihe, Høgni

    2014-01-01

    support the parameter values and resolve |E| ≈ 0.04 cm(-1). The exchange coupling constant (J) is 1 order of magnitude smaller than that found in comparable systems with linear oxide bridging but comparable to typical magnitudes through cyanide, thus underlining the potential of fluoride complexes......The nature of the magnetic interaction through fluoride in a simple, dinuclear manganese(III) complex (1), bridged by a single fluoride ion in a perfectly linear fashion, is established by experiment and density functional theory. The magnitude of the antiferromagnetic exchange interaction...

  2. Preparation of bromine fluoride

    International Nuclear Information System (INIS)

    Domange, Pr; Duflo, J.

    1958-05-01

    This note addresses the preparation of bromine fluoride. It indicates the implemented process for the reaction, used products (fluorine and bromine), and column characteristics. It describes the operating mode. Apparatus drawing is provided

  3. Modeling and optimization aspects of radiation induced grafting of 4-vinylpyridene onto partially fluorinated films

    International Nuclear Information System (INIS)

    Nasef, Mohamed Mahmoud; Ahmad Ali, Amgad; Saidi, Hamdani; Ahmad, Arshad

    2014-01-01

    Modeling and optimization aspects of radiation induced grafting (RIG) of 4-vinylpyridine (4-VP) onto partially fluorinated polymers such as poly(ethylene-co-tetrafluoroethene) (ETFE) and poly(vinylidene fluoride) (PVDF) films were comparatively investigated using response surface method (RSM). The effects of independent parameters: absorbed dose, monomer concentration, grafting time and reaction temperature on the response, grafting yield (GY) were correlated through two quadratic models. The results of this work confirm that RSM is a reliable tool not only for optimization of the reaction parameters and prediction of GY in RIG processes, but also for the reduction of the number of the experiments, monomer consumption and absorbed dose leading to an improvement of the overall reaction cost. - Highlights: • Comparative study of radiation induced grafting of 4-VP onto PVDF and ETFE films. • Optimization of reaction parameters for both grafting systems was made using RSM. • Single factor design for both grafting systems was used as a reference. • Two quadratic regression models were developed for prediction of grafting yield. • RSM is an effective tool for handling grafting reactions under different conditions

  4. Water Fluoridation Statistics - Percent of PWS population receiving fluoridated water

    Data.gov (United States)

    U.S. Department of Health & Human Services — 2000-2014. Water Fluoridation Statistics is a biennial report of the percentage and number of people receiving fluoridated water from 2000 through 2014, originally...

  5. Water Fluoridation Statistics - Percent of PWS population receiving fluoridated water

    Data.gov (United States)

    U.S. Department of Health & Human Services — 2000-2014 Water Fluoridation Statistics is a biennial report of the percentage and number of people receiving fluoridated water from 2000 through 2014, originally...

  6. The cariostatic mechanisms of fluoride

    Directory of Open Access Journals (Sweden)

    Kata Rošin-Grget

    2013-11-01

    Full Text Available This article discusses the possible cariostatic mechanisms of the action of fluoride. In the past, fluoride inhibition of caries was ascribed to reduced solubility of enamel due to incorporation of fluoride (F– into the enamel minerals. The present evidence from clinical and laboratory studies suggests that the caries-preventive mode of action of fluoride is mainly topical. There is convincing evidence that fluoride has a major effect on demineralisation and remineralisation of dental hard tissue. The source of this fluoride could either be fluorapatite (formed due to the incorporation of fluoride into enamel or calcium fluoride (CaF2-like precipitates, which are formed on the enamel and in the plaque after application of topical fluoride. Calcium fluoride deposits are protected from rapid dissolution by a phosphate –protein coating of salivary origin. At lower pH, the coating is lost and an increased dissolution rate of calcium fluoride occurs. The CaF2, therefore, act as an efficient source of free fluoride ions during the cariogenic challenge. The current evidence indicates that fluoride has a direct and indirect effect on bacterial cells, although the in vivo implications of this are still not clear. Conclusion. A better understanding of the mechanisms of the action of fluoride is very important for caries prevention and control. The effectiveness of fluoride as a cariostatic agent depends on the availability of free fluoride in plaque during cariogenic challenge, i.e. during acid production. Thus, a constant supply of low levels of fluoride in biofilm/saliva/dental interference is considered the most beneficial in preventing dental caries.

  7. The cariostatic mechanisms of fluoride.

    Science.gov (United States)

    Rošin-Grget, Kata; Peroš, Kristina; Sutej, Ivana; Bašić, Krešimir

    2013-11-01

    This article discusses the possible cariostatic mechanisms of the action of fluoride. In the past, fluoride inhibition of caries was ascribed to reduced solubility of enamel due to incorporation of fluoride (F-) into the enamel minerals. The present evidence from clinical and laboratory studies suggests that the caries-preventive mode of action of fluoride is mainly topical. There is convincing evidence that fluoride has a major effect on demineralisation and remineralisation of dental hard tissue. The source of this fluoride could either be fluorapatite (formed due to the incorporation of fluoride into enamel) or calcium fluoride (CaF2)-like precipitates, which are formed on the enamel and in the plaque after application of topical fluoride. Calcium fluoride deposits are protected from rapid dissolution by a phosphate -protein coating of salivary origin. At lower pH, the coating is lost and an increased dissolution rate of calcium fluoride occurs. The CaF2, therefore, act as an efficient source of free fluoride ions during the cariogenic challenge. The current evidence indicates that fluoride has a direct and indirect effect on bacterial cells, although the in vivo implications of this are still not clear. A better understanding of the mechanisms of the action of fluoride is very important for caries prevention and control. The effectiveness of fluoride as a cariostatic agent depends on the availability of free fluoride in plaque during cariogenic challenge, i.e. during acid production. Thus, a constant supply of low levels of fluoride in biofilm/saliva/dental interference is considered the most beneficial in preventing dental caries. Copyright © 2013 by Academy of Sciences and Arts of Bosnia and Herzegovina.

  8. Fluoride and Water (For Parents)

    Science.gov (United States)

    ... risk of tooth decay" on the label. The Controversy Over Fluoride Opponents of water fluoridation have questioned ... Us Contact Us Partners Editorial Policy Permissions Guidelines Privacy Policy & Terms of Use Notice of Nondiscrimination Visit ...

  9. Fluoride resistance in Streptococcus mutans

    NARCIS (Netherlands)

    Liao, Ying

    2017-01-01

    Fluoride has been used as the most effective anti-caries agent for over five decades. It functions not only on the dental hard tissues, but also as an antimicrobial agent. It is known that oral bacteria are able to develop resistance to fluoride, which may affect the effectiveness of fluoride in

  10. Adjustable threshold-voltage in all-inkjet-printed organic thin film transistor using double-layer dielectric structures

    International Nuclear Information System (INIS)

    Wu, Wen-Jong; Lee, Chang-Hung; Hsu, Chun-Hao; Yang, Shih-Hsien; Lin, Chih-Ting

    2013-01-01

    An all-inkjet-printed organic thin film transistor (OTFT) with a double-layer dielectric structure is proposed and implemented in this study. By using the double-layer structure with different dielectric materials (i.e., polyvinylphenol with poly(vinylidene fluoride-co-hexafluoropropylene)), the threshold-voltage of OTFT can be adjusted. The threshold-voltage shift can be controlled by changing the composition of dielectric layers. That is, an enhancement-mode OTFT can be converted to a depletion-mode OTFT by selectively printing additional dielectric layers to form a high-k/low-k double-layer structure. The printed OTFT has a carrier mobility of 5.0 × 10 −3 cm 2 /V-s. The threshold-voltages of the OTFTs ranged between − 13 V and 10 V. This study demonstrates an additional design parameter for organic electronics manufactured using inkjet printing technology. - Highlights: • A double-layer dielectric organic thin film transistor, OTFT, is implemented. • The threshold voltage of OTFT can be configured by the double dielectric structure. • The composition of the dielectric determines the threshold voltage shift. • The characteristics of OTFTs can be adjusted by double dielectric structures

  11. Urinary fluoride excretion after application of fluoride varnish and use of fluoride toothpaste in young children

    DEFF Research Database (Denmark)

    Lockner, Frida; Twetman, Svante; Stecksén-Blicks, Christina

    2017-01-01

    BACKGROUND: The efficacy and safety of combined use of topical fluoride products are essential issues that must be monitored. AIM: To assess urinary excretion of fluoride after application of two different dental varnishes containing 2.26% fluoride in 3- to 4-year-old children and to compare...... the levels with and without parallel use of fluoride toothpaste. DESIGN: Fifteen healthy children were enrolled to a randomized crossover trial that was performed in two parts: Part I with twice-daily tooth brushing with fluoride toothpaste and Part II with twice-daily brushing with a non-fluoride toothpaste....... After a 1-week run-in period, 0.1 mL of the two fluoride varnishes (Duraphat and Profluorid Varnish) was topically applied in a randomized order. Baseline and experimental urine was collected during 6-h periods. The fluoride content was determined with an ion-sensitive electrode. RESULTS...

  12. Carbon film electrodes for super capacitor applications

    Science.gov (United States)

    Tan, Ming X.

    1999-01-01

    A microporous carbon film for use as electrodes in energy strorage devices is disclosed, which is made by the process comprising the steps of: (1) heating a polymer film material consisting essentially of a copolymer of polyvinylidene chloride and polyvinyl chloride in an inert atmosphere to form a carbon film; and (2) activating said carbon film to form said microporous carbon film having a density between about 0.7 g/cm.sup.2 and 1 g/cm.sup.2 and a gravimetric capacitance of about between 120 F/g and 315 F/g.

  13. Fluoride release from fluoride varnishes under acidic conditions.

    Science.gov (United States)

    Lippert, F

    2014-01-01

    The aim was to investigate the in vitro fluoride release from fluoride varnishes under acidic conditions. Poly(methyl methacrylate) blocks (Perspex, n=3 per group) were painted with 80 ± 5 mg fluoride varnish (n=10) and placed into artificial saliva for 30 min. Then, blocks were placed into either 1% citric acid (pH 2.27) or 0.3% citric acid (pH 3.75) solutions (n=3 per solution and varnish) for 30 min with the solutions being replaced every 5 min. Saliva and acid solutions were analyzed for fluoride content. Data were analyzed using three-way ANOVA (varnish, solution, time). The three-way interaction was significant (p>0.0001). Fluoride release and release patterns varied considerably between varnishes. Fluoride release in saliva varied by a factor of more than 10 between varnishes. Some varnishes (CavityShield, Nupro, ProFluorid, Vanish) showed higher fluoride release in saliva than during the first 5 min of acid exposure, whereas other varnishes (Acclean, Enamel-Pro, MI Varnish, Vella) showed the opposite behavior. There was little difference between acidic solutions. Fluoride release from fluoride varnishes varies considerably and also depends on the dissolution medium. Bearing in mind the limitations of laboratory research, the consumption of acidic drinks after fluoride varnish application should be avoided to optimize the benefit/risk ratio.

  14. Small molecule fluoride toxicity agonists.

    Science.gov (United States)

    Nelson, James W; Plummer, Mark S; Blount, Kenneth F; Ames, Tyler D; Breaker, Ronald R

    2015-04-23

    Fluoride is a ubiquitous anion that inhibits a wide variety of metabolic processes. Here, we report the identification of a series of compounds that enhance fluoride toxicity in Escherichia coli and Streptococcus mutans. These molecules were isolated by using a high-throughput screen (HTS) for compounds that increase intracellular fluoride levels as determined via a fluoride riboswitch reporter fusion construct. A series of derivatives were synthesized to examine structure-activity relationships, leading to the identification of compounds with improved activity. Thus, we demonstrate that small molecule fluoride toxicity agonists can be identified by HTS from existing chemical libraries by exploiting a natural fluoride riboswitch. In addition, our findings suggest that some molecules might be further optimized to function as binary antibacterial agents when combined with fluoride. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Fluoride retention by kaolin clay

    DEFF Research Database (Denmark)

    Kau, P. M. H.; Smith, D. W.; Binning, Philip John

    1997-01-01

    To evaluate the potential effectiveness of kaolin clay liners in storage of fluoride contaminated waste, an experimental study of the sorption and desorption behaviour of fluoride in kaolin clay was conducted. The degree of fluoride sorption by kaolin was found to depend on solution p......H and available fluoride concentration with equilibrium being achieved within 24 h. A site activation process involving the uptake of fluoride was also observed at the initial stages of sorption. This behaviour was attributed to a layer expansion process of the clay during sorption. The maximum fluoride sorption...... capacity was found to be 18.3 meq/100 g at pH 6 and 8.6 meq/100 g at pH 7. A competitive Langmuir sorption isotherm where sorption is dependant on both pH and fluoride concentration is employed to characterise the experimental sorption and desorption data. The sorption and desorption isotherms revealed...

  16. Fluoride and Oral Health

    DEFF Research Database (Denmark)

    O'Mullane, D M; Baez, R J; Jones, S

    2016-01-01

    and strategies is noteworthy. This updated version of ‘Fluoride and Oral Health’ has adopted an evidence-based approach to its commentary on the different fl uoride vehicles and strategies and also to its recommendations. In this regard, full account is taken of the many recent systematic reviews published...

  17. Electroactive β-crystalline phase inclusion and photoluminescence response of a heat-controlled spin-coated PVDF/TiO2 free-standing nanocomposite film for a nanogenerator and an active nanosensor

    Science.gov (United States)

    Mehebub Alam, Md; Sultana, Ayesha; Sarkar, Debabrata; Mandal, Dipankar

    2017-09-01

    The electroactive β-phase is most desirable due to its highest piezo-, pyro- and ferroelectric properties in poly(vinylidene fluoride) (PVDF). Induction of the β-phase is successfully accomplished in titanium dioxide (TiO2) nanoparticles (NPs) doped spin-coated PVDF nanocomposite (PNC) films. The optimized yields of β-phase and homogeneous ultra-smooth free-standing PNC film is utilized in a mechanical-energy harvesting application by fabricating a nanogenerator (NG) where the typical electrical poling step is not undertaken. Under a repeated human finger touch and release process, it delivers an open-circuit voltage of 5 V. Moreover, the physical sensing capabilities of the NG are examined through harvesting mechanical energy from mouse clicking of a laptop and wrist pulse detection, which indicates that it can also be used as a nanosensor. The blue photoluminescence centred at 444 nm, which was also observed in PNC films, makes us anticipate a new type of photonic application where the design feasibility of hybrid sensors, i.e. electromechanical and photonic combination, is also possible.

  18. A non-contact high resolution piezoelectric film based sensor for monitoring breathing during sleep

    Science.gov (United States)

    Johnston, Robert; Nakano, Katsuya; Fujita, Kento; Misaki, Shinya; Fujii, Hiroyuki; Misaki, Yukinori

    2017-07-01

    Currently, research for measuring human breathing during sleep is actively being conducted into using technologies that include piezoelectric, ultrasonic, microwave and infrared rays. But various problems have led to not many practical applications. As such, it was decided to develop a PVDF (PolyVinylidene DiFluoride) based non-contact high resolution sensor for monitoring a subject's breathing as they sleep. Development of the high resolution respiration sensor was possible through the use of PVDF piezoelectric film and the development of a new sensor configuration. Although there was already an existing respiration sensor research resulting product available, is weak signal strength made it very sensitive to noise and difficult to measure respiration accurately. As such, complicated circuits and signal processing were needed. A new high resolution breathing sensor was developed with greater signal strength and with just the use of some simple circuits and signal processing, was able to accurately measure subject breathing. Also due to the greater signal strength, it became possible to measure both heart rate and respiration rate simultaneously.

  19. Acoustic performance of dual-electrode electrostatic sound generators based on CVD graphene on polyimide film.

    Science.gov (United States)

    Lee, Kyoung-Ryul; Jang, Sung Hwan; Jung, Inhwa

    2018-08-10

    We investigated the acoustic performance of electrostatic sound-generating devices consisting of bi-layer graphene on polyimide film. The total sound pressure level (SPL) of the sound generated from the devices was measured as a function of source frequency by sweeping, and frequency spectra were measured at 1/3 octave band frequencies. The relationship between various operation conditions and total SPL was determined. In addition, the effects of changing voltage level, adding a DC offset, and using two pairs of electrodes were evaluated. It should be noted that two pairs of electrode operations improved sound generation by about 10 dB over all frequency ranges compared with conventional operation. As for the sound-generating capability, total SPL was 70 dBA at 4 kHz when an AC voltage of 100 V pp was applied with a DC offset of 100 V. Acoustic characteristics differed from other types of graphene-based sound generators, such as graphene thermoacoustic devices and graphene polyvinylidene fluoride devices. The effects of diameter and distance between electrodes were also studied, and we found that diameter greatly influenced the frequency response. We anticipate that the design information provided in this paper, in addition to describing key parameters of electrostatic sound-generating devices, will facilitate the commercial development of electrostatic sound-generating systems.

  20. A transmission and reflection coupled ultrasonic process tomography based on cylindrical miniaturized transducers using PVDF films

    Science.gov (United States)

    Gu, J.; Yang, H.; Fan, F.; Su, M.

    2017-12-01

    A transmission and reflection coupled ultrasonic process tomography has been developed, which is characterized by a proposed dual-mode (DM) reconstruction algorithm, as well as an adaptive search approach to determine an optimal image threshold during the image binarization. In respect of hardware, to improve the accuracy of time-of-flight (TOF) and extend the lowest detection limit of particle size, a cylindrical miniaturized transducer using polyvinylidene fluoride (PVDF) films is designed. Besides, the development of range-gating technique for the identification of transmission and reflection waves in scanning is discussed. A particle system with four iron particles is then investigated numerically and experimentally to evaluate these proposed methods. The sound pressure distribution in imaging area is predicted numerically, followed by the analysis of the relationship between the emitting surface width of transducer and particle size. After the processing of experimental data for effective waveform extraction and fusion, the comparison between reconstructed results from transmission-mode (TM), reflection-mode (RM), and dual-mode reconstructions is carried out and the latter manifests obvious improvements from the blurring reduction to the enhancement of particle boundary.

  1. Industrial fluoride pollution: chronic fluoride poisoning in Cornwall Island cattle

    Energy Technology Data Exchange (ETDEWEB)

    Krook, L.; Maylin, G.A.

    1979-04-01

    An aluminum plant on the south bank of the St. Lawrence River, southwest of Cornwall Island, Ontario, Canada, has emitted 0.816 metric tons of fluoride daily since 1973. Considerably higher amounts were emitted from 1959 to 1973. The plant was designated as the major source of fluoride emissions impacting on Cornwall Island. Cattle located on this island showed signs of chronic fluoride poisoning. This poisoning was manifested clinically by stunted growth and dental fluorosis to a degree of severe interference with drinking and mastication. This Cornwall Island herds study indicates that the established tolerance level of fluoride for performance of dairy and beef cattle is not valid since the tolerance level was set based on experiments with healthy calves which were exposed to dietary fluoride from 3 to 4 months of age and not on cattle which were chronically exposed to fluoride from conception to death. 56 references.

  2. MStern Blotting–High Throughput Polyvinylidene Fluoride (PVDF) Membrane-Based Proteomic Sample Preparation for 96-Well Plates*

    OpenAIRE

    Berger, Sebastian T.; Ahmed, Saima; Muntel, Jan; Cuevas Polo, Nerea; Bachur, Richard; Kentsis, Alex; Steen, Judith; Steen, Hanno

    2015-01-01

    We describe a 96-well plate compatible membrane-based proteomic sample processing method, which enables the complete processing of 96 samples (or multiples thereof) within a single workday. This method uses a large-pore hydrophobic PVDF membrane that efficiently adsorbs proteins, resulting in fast liquid transfer through the membrane and significantly reduced sample processing times. Low liquid transfer speeds have prevented the useful 96-well plate implementation of FASP as a widely used mem...

  3. MStern Blotting-High Throughput Polyvinylidene Fluoride (PVDF) Membrane-Based Proteomic Sample Preparation for 96-Well Plates.

    Science.gov (United States)

    Berger, Sebastian T; Ahmed, Saima; Muntel, Jan; Cuevas Polo, Nerea; Bachur, Richard; Kentsis, Alex; Steen, Judith; Steen, Hanno

    2015-10-01

    We describe a 96-well plate compatible membrane-based proteomic sample processing method, which enables the complete processing of 96 samples (or multiples thereof) within a single workday. This method uses a large-pore hydrophobic PVDF membrane that efficiently adsorbs proteins, resulting in fast liquid transfer through the membrane and significantly reduced sample processing times. Low liquid transfer speeds have prevented the useful 96-well plate implementation of FASP as a widely used membrane-based proteomic sample processing method. We validated our approach on whole-cell lysate and urine and cerebrospinal fluid as clinically relevant body fluids. Without compromising peptide and protein identification, our method uses a vacuum manifold and circumvents the need for digest desalting, making our processing method compatible with standard liquid handling robots. In summary, our new method maintains the strengths of FASP and simultaneously overcomes one of the major limitations of FASP without compromising protein identification and quantification. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Highly efficient hybrid energy generator: coupled organic photovoltaic device and randomly oriented electrospun poly(vinylidene fluoride) nanofiber.

    Science.gov (United States)

    Park, Boongik; Lee, Kihwan; Park, Jongjin; Kim, Jongmin; Kim, Ohyun

    2013-03-01

    A hybrid architecture consisting of an inverted organic photovoltaic device and a randomly-oriented electrospun PVDF piezoelectric device was fabricated as a highly-efficient energy generator. It uses the inverted photovoltaic device with coupled electrospun PVDF nanofibers as tandem structure to convert solar and mechanical vibrations energy to electricity simultaneously or individually. The power conversion efficiency of the photovoltaic device was also significantly improved up to 4.72% by optimized processes such as intrinsic ZnO, MoO3 and active layer. A simple electrospinning method with the two electrode technique was adopted to achieve a high voltage of - 300 mV in PVDF piezoelectric fibers. Highly-efficient HEG using voltage adder circuit provides the conceptual possibility of realizing multi-functional energy generator whenever and wherever various energy sources are available.

  5. The Effect of Chain Structures on the Crystallization Behavior and Membrane Formation of Poly(Vinylidene Fluoride Copolymers

    Directory of Open Access Journals (Sweden)

    Wenzhong Ma

    2014-05-01

    Full Text Available The crystallization behaviors of two copolymers of PVDF were studied, and the effect of copolymerized chains on the crystallization behavior was investigated. The results indicated that both copolymers had a lowered crystallization temperature and crystallinity. The crystallization rate was improved by the copolymer with symmetrical units in PVDF chains, but hindered by asymmetrical units, compared with the neat PVDF. The symmetrical units in PVDF chains favored the β-crystals with fiber-like structures. According to the solubility parameter rule, methyl salicylate (MS can be chosen as a diluent for PVDF copolymers. Both diluted systems had liquid-liquid (L-L regions in the phase diagrams, which was due to the lowered crystallization temperature.

  6. Investigations on the effects of electrode materials on the device characteristics of ferroelectric memory thin film transistors fabricated on flexible substrates

    Science.gov (United States)

    Yang, Ji-Hee; Yun, Da-Jeong; Seo, Gi-Ho; Kim, Seong-Min; Yoon, Myung-Han; Yoon, Sung-Min

    2018-03-01

    For flexible memory device applications, we propose memory thin-film transistors using an organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate insulator and an amorphous In-Ga-Zn-O (a-IGZO) active channel. The effects of electrode materials and their deposition methods on the characteristics of memory devices exploiting the ferroelectric field effect were investigated for the proposed ferroelectric memory thin-film transistors (Fe-MTFTs) at flat and bending states. It was found that the plasma-induced sputtering deposition and mechanical brittleness of the indium-tin oxide (ITO) markedly degraded the ferroelectric-field-effect-driven memory window and bending characteristics of the Fe-MTFTs. The replacement of ITO electrodes with metal aluminum (Al) electrodes prepared by plasma-free thermal evaporation greatly enhanced the memory device characteristics even under bending conditions owing to their mechanical ductility. Furthermore, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) was introduced to achieve robust bending performance under extreme mechanical stress. The Fe-MTFTs using PEDOT:PSS source/drain electrodes were successfully fabricated and showed the potential for use as flexible memory devices. The suitable choice of electrode materials employed for the Fe-MTFTs is concluded to be one of the most important control parameters for highly functional flexible Fe-MTFTs.

  7. Effect of (Cd:ZnS Particle Concentration and Photoexcitation on the Electrical and Ferroelectric Properties of (Cd:ZnS/P(VDF-TrFE Composite Films

    Directory of Open Access Journals (Sweden)

    Sebastian Engel

    2017-11-01

    Full Text Available The influence of semiconductor particle concentration and photoexcitation on the electrical and ferroelectric properties of ferroelectric-semiconductor-composites was investigated. For this purpose, 32 µm thin films of poly(vinylidene fluoride-co-trifluoroethylene with (Cd:ZnS particle concentrations of between 0 and 20 vol % were fabricated and characterized by scanning electron microscopy, Fourier transformed infrared spectroscopy, X-ray diffraction, and optical spectroscopy. It was shown that the particle concentration has only a negligible influence on the molecular structure of the polymer but strongly determines the optical properties of the composite. For (Cd:ZnS particle concentrations below 20 vol %, the I-V characteristics of the composites is only marginally affected by the particle concentration and the optical excitation of the composite material. On the contrary, a strong influence of both parameters on the ferro- and pyroelectric properties of the composite films was observed. For particle fractions that exhibit ferroelectric hysteresis, an increased remanent polarization and pyroelectric coefficient due to optical excitation was obtained. A theoretical approach that is based on a “three phase model” of the internal structure was developed to explain the observed results.

  8. Study of Impact Damage in PVA-ECC Beam under Low-Velocity Impact Loading Using Piezoceramic Transducers and PVDF Thin-Film Transducers.

    Science.gov (United States)

    Qi, Baoxin; Kong, Qingzhao; Qian, Hui; Patil, Devendra; Lim, Ing; Li, Mo; Liu, Dong; Song, Gangbing

    2018-02-24

    Compared to conventional concrete, polyvinyl alcohol fiber reinforced engineering cementitious composite (PVA-ECC) offers high-strength, ductility, formability, and excellent fatigue resistance. However, impact-induced structural damage is a major concern and has not been previously characterized in PVA-ECC structures. We investigate the damage of PVA-ECC beams under low-velocity impact loading. A series of ball-drop impact tests were performed at different drop weights and heights to simulate various impact energies. The impact results of PVA-ECC beams were compared with mortar beams. A combination of polyvinylidene fluoride (PVDF) thin-film sensors and piezoceramic-based smart aggregate were used for impact monitoring, which included impact initiation and crack evolution. Short-time Fourier transform (STFT) of the signal received by PVDF thin-film sensors was performed to identify impact events, while active-sensing approach was utilized to detect impact-induced crack evolution by the attenuation of a propagated guided wave. Wavelet packet-based energy analysis was performed to quantify failure development under repeated impact tests.

  9. Physiology and toxicity of fluoride

    Directory of Open Access Journals (Sweden)

    Dhar Vineet

    2009-01-01

    Full Text Available Fluoride has been described as an essential element needed for normal development and growth of animals and extremely useful for human beings. Fluoride is abundant in the environment and the main source of fluoride to humans is drinking water. It has been proved to be beneficial in recommended doses, and at the same time its toxicity at higher levels has also been well established. Fluoride gets accumulated in hard tissues of the body and has been know to play an important role in mineralization of bone and teeth. At high levels it has been known to cause dental and skeletal fluorosis. There are suggested effects of very high levels of fluoride on various body organs and genetic material. The purpose of this paper is to review the various aspects of fluoride and its importance in human life.

  10. Physiology and toxicity of fluoride.

    Science.gov (United States)

    Dhar, Vineet; Bhatnagar, Maheep

    2009-01-01

    Fluoride has been described as an essential element needed for normal development and growth of animals and extremely useful for human beings. Fluoride is abundant in the environment and the main source of fluoride to humans is drinking water. It has been proved to be beneficial in recommended doses, and at the same time its toxicity at higher levels has also been well established. Fluoride gets accumulated in hard tissues of the body and has been know to play an important role in mineralization of bone and teeth. At high levels it has been known to cause dental and skeletal fluorosis. There are suggested effects of very high levels of fluoride on various body organs and genetic material. The purpose of this paper is to review the various aspects of fluoride and its importance in human life.

  11. Magnesium fluoride recovery method

    International Nuclear Information System (INIS)

    Gay, R.L.; McKenzie, D.E.

    1989-01-01

    A method of obtaining magnesium fluoride substantially free from radioactive uranium from a slag formed in the production of metallic uranium by the reduction of depleted uranium tetrafluoride with metallic magnesium in a retort wherein the slag contains the free metals magnesium and uranium and also oxides and fluorides of the metals. The slag having a radioactivity level of at least about 7,000 rhoCi/gm. The method comprises the steps of: grinding the slag to a median particle size of about 200 microns; contacting the ground slag in a reaction zone with an acid having a strength of from about 0.5 to 1.5 N for a time of from about 4 to about 20 hours in the presence of a catalytic amount of iron; removing the liquid product; treating the particulate solid product; repeating the last two steps at least one more time to produce a solid residue consisting essentially of magnesium fluoride substantially free of uranium and having a residual radioactivity level of less than about 1000 rhoCi/gm

  12. Formation of nanotubes in poly (vinylidene fluoride): Application as solid polymer electrolyte in DSC fabricated using carbon counter electrode

    Energy Technology Data Exchange (ETDEWEB)

    Muthuraaman, B. [Department of Energy, University of Madras, Guindy campus, Chennai 600025 (India); Maruthamuthu, P., E-mail: pmaruthu@yahoo.com [Department of Energy, University of Madras, Guindy campus, Chennai 600025 (India)

    2011-09-01

    Highlights: > Incorporation of a {pi}-electron donor compound as dopant in poly(vinylidene fluoride) along with redox couple (I{sup -}/I{sub 3}{sup -}) which forms brush like nanotubes. > Investigations about the use of conducting carbon coated FTO as a durable counter electrode and its effects in DSC. > High charge separation and the channelized flow of electrons in the nanotubes in electrolyte favors stable performance. - Abstract: In the present work, we report the incorporation of 2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS) in poly(vinylidene fluoride) (PVDF) along with the redox couple (I{sup -}/I{sub 3}{sup -}). When ABTS, a {pi}-electron donor, is used to dope PVDF, the polymer composite forms brush-like nanotubes and has been successfully used as a solid polymer electrolyte in dye-sensitized solar cells. Under the given conditions, the electrolyte composition forms nanotubes while it is doped with ABTS, a {pi}-electron donor. With this new electrolyte, a dye-sensitized solar cell was fabricated using N3 dye adsorbed over TiO{sub 2} nanoparticles as the photoanode and conducting carbon cement coated FTO as counter electrode.

  13. Physiology and toxicity of fluoride

    OpenAIRE

    Dhar Vineet; Bhatnagar Maheep

    2009-01-01

    Fluoride has been described as an essential element needed for normal development and growth of animals and extremely useful for human beings. Fluoride is abundant in the environment and the main source of fluoride to humans is drinking water. It has been proved to be beneficial in recommended doses, and at the same time its toxicity at higher levels has also been well established. Fluoride gets accumulated in hard tissues of the body and has been know to play an important role in mineralizat...

  14. Flexible tension sensor based on poly(l-lactic acid) film with coaxial structure

    Science.gov (United States)

    Yoshida, Mitsunobu; Onishi, Katsuki; Tanimoto, Kazuhiro; Nishikawa, Shigeo

    2017-10-01

    We have developed a tension sensor with a coaxial structure using a narrow slit ribbon made of a uniaxially stretched poly(l-lactic acid) (PLLA) film for application to a wearable device. The tension sensor is produced as follows. We used tinsel wire as the center conductor of the sensor. The tinsel wire consists of a yarn of synthetic fibers arranged at the center, with a spirally wound rolled copper foil ribbon on the side surface. Next, slit ribbons obtained from a uniaxially oriented film of PLLA are wound helically on the side surface of the center conductor in the direction of a left-handed screw, at an angle of 45° to the central axis. The rolled copper foil is used as an outer conductor and covers the yarn without a gap. The prototype of the fabricated tension sensor has good flexibility, since the sensor is in the form of a filament and consists of a highly flexible material. For the 1 mm tension sensor, it was found that for a tension of 1 N, a charge of 14 pC was output. It was also found that the sensor maintained its room-temperature sensitivity up to 60 °C. Compared with an existing coaxial line sensor using poly(vinylidene fluoride) (PVDF), the sensor using PLLA does not exhibit pyroelectricity, meaning that no undesirable voltage is generated when in contact with body heat, which is a significant advantage as wearable sensors. The result has demonstrated the potential application of the PLLA film to wearable devices for detecting heartbeat and respiration.

  15. Oxide Semiconductor-Based Flexible Organic/Inorganic Hybrid Thin-Film Transistors Fabricated on Polydimethylsiloxane Elastomer.

    Science.gov (United States)

    Jung, Soon-Won; Choi, Jeong-Seon; Park, Jung Ho; Koo, Jae Bon; Park, Chan Woo; Na, Bock Soon; Oh, Ji-Young; Lim, Sang Chul; Lee, Sang Seok; Chu, Hye Yong

    2016-03-01

    We demonstrate flexible organic/inorganic hybrid thin-film transistors (TFTs) on a polydimethysilox- ane (PDMS) elastomer substrate. The active channel and gate insulator of the hybrid TFT are composed of In-Ga-Zn-O (IGZO) and blends of poly(vinylidene fluoride-trifluoroethylene) [P(VDF- TrFE)] with poly(methyl methacrylate) (PMMA), respectively. It has been confirmed that the fabri- cated TFT display excellent characteristics: the recorded field-effect mobility, sub-threshold voltage swing, and I(on)/I(off) ratio were approximately 0.35 cm2 V(-1) s(-1), 1.5 V/decade, and 10(4), respectively. These characteristics did not experience any degradation at a bending radius of 15 mm. These results correspond to the first demonstration of a hybrid-type TFT using an organic gate insulator/oxide semiconducting active channel structure fabricated on PDMS elastomer, and demonstrate the feasibility of a promising device in a flexible electronic system.

  16. Molecular mechanisms of fluoride toxicity.

    Science.gov (United States)

    Barbier, Olivier; Arreola-Mendoza, Laura; Del Razo, Luz María

    2010-11-05

    Halfway through the twentieth century, fluoride piqued the interest of toxicologists due to its deleterious effects at high concentrations in human populations suffering from fluorosis and in in vivo experimental models. Until the 1990s, the toxicity of fluoride was largely ignored due to its "good reputation" for preventing caries via topical application and in dental toothpastes. However, in the last decade, interest in its undesirable effects has resurfaced due to the awareness that this element interacts with cellular systems even at low doses. In recent years, several investigations demonstrated that fluoride can induce oxidative stress and modulate intracellular redox homeostasis, lipid peroxidation and protein carbonyl content, as well as alter gene expression and cause apoptosis. Genes modulated by fluoride include those related to the stress response, metabolic enzymes, the cell cycle, cell-cell communications and signal transduction. The primary purpose of this review is to examine recent findings from our group and others that focus on the molecular mechanisms of the action of inorganic fluoride in several cellular processes with respect to potential physiological and toxicological implications. This review presents an overview of the current research on the molecular aspects of fluoride exposure with emphasis on biological targets and their possible mechanisms of involvement in fluoride cytotoxicity. The goal of this review is to enhance understanding of the mechanisms by which fluoride affects cells, with an emphasis on tissue-specific events in humans. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  17. SDIO (Strategic Defense Initiative Office) Technical Information Management Center Bibliography of Unclassified Reports: January - December 1986.

    Science.gov (United States)

    1986-12-01

    Corp.Author: Stanford Univ., Edward L. Ginzton Lab., Stanford, CA94305 Index Terms: Piezoelectric Film Transducer Polyvinylidene Fluoride Phased Acoustic ...Graphite Nosetip Boundary Layer Transition Turbulent Flow Hypervelocity Radiation Pyrometer Pgs. 42 Classification: U Security Marks: Accession

  18. 49 CFR 173.163 - Hydrogen fluoride.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hydrogen fluoride. 173.163 Section 173.163... Hydrogen fluoride. (a) Hydrogen fluoride (hydrofluoric acid, anhydrous) must be packaged as follows: (1) In... filling ratio of 0.84. (b) A cylinder removed from hydrogen fluoride service must be condemned in...

  19. Growth of fluoride treated Kalanchoe pinnata plants

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, H N; Applegate, H G

    1962-01-01

    Kalanchoe pinnata plants can absorb fluoride through roots. The absorption is related to the amount of fluoride applied to the soil. There appeared to be a relationship between the amount of fluoride adsorbed and the subsequent growth of the plants. Plants which adsorbed the largest amounts of fluoride had the greatest increase in growth.

  20. FLUORIDE TOXICITY – A HARSH REALITY

    OpenAIRE

    Bandlapalli Pavani; Mandava Ragini; David Banji; Otilia J F Banji; N Gouri Pratusha

    2011-01-01

    There are many incidents of fluoride toxicity whether it is acute or chronic. Fluoride toxicity is an environmental hazard which arises from the upper layers of geological crust and is dissolved in water. Prolonged drinking of such water causes chronic fluoride toxicity. Use of fluoride containing compounds for various purposes such as dental products, metal, glass, refrigerator and chemical industries act as a source of fluoride poisoning and increase the risk of toxicity. This review reflec...

  1. Molten fluoride fuel salt chemistry

    International Nuclear Information System (INIS)

    Toth, L.M.; Del Cul, G.D.; Dai, S.; Metcalf, D.H.

    1995-01-01

    The chemistry of molten fluorides is traced from their development as fuels in the Molten Salt Reactor Experiment with important factors in their selection being discussed. Key chemical characteristics such as solubility, redox behavior, and chemical activity are explained as they relate to the behavior of molten fluoride fuel systems. Development requirements for fitting the current state of the chemistry to modern nuclear fuel system are described. It is concluded that while much is known about molten fluoride behavior which can be used effectively to reduce the amount of development required for future systems, some significant molten salt chemical questions must still be addressed. copyright American Institute of Physics 1995

  2. Strontium-90 fluoride data sheet

    Energy Technology Data Exchange (ETDEWEB)

    Fullam, H.T.

    1981-06-01

    This report is a compilation of available data and appropriate literature references on the properties of strontium-90 fluoride and nonradioactive strontium fluoride. The objective of the document is to compile in a single source pertinent data to assist potential users in the development, licensing, and use of /sup 90/SrF/sub 2/-fueled radioisotope heat sources for terrestrial power conversion and thermal applications. The report is an update of the Strontium-90 Fluoride Data Sheet (BNWL-2284) originally issued in April 1977.

  3. Integrated 3D printing and corona poling process of PVDF piezoelectric films for pressure sensor application

    Science.gov (United States)

    Kim, Hoejin; Torres, Fernando; Wu, Yanyu; Villagran, Dino; Lin, Yirong; Tseng, Tzu-Liang(Bill

    2017-08-01

    This paper presents a novel process to fabricate piezoelectric films from polyvinylidene fluoride (PVDF) polymer using integrated fused deposition modeling (FDM) 3D printing and corona poling technique. Corona poling is one of many effective poling processes that has received attention to activate PVDF as a piezoelectric responsive material. The corona poling process occurs when a PVDF polymer is exposed to a high electric field created and controlled through an electrically charged needle and a grid electrode under heating environment. FDM 3D printing has seen extensive progress in fabricating thermoplastic materials and structures, including PVDF. However, post processing techniques such as poling is needed to align the dipoles in order to gain piezoelectric properties. To further simplify the piezoelectric sensors and structures fabrication process, this paper proposes an integrated 3D printing process with corona poling to fabricate piezoelectric PVDF sensors without post poling process. This proposed process, named ‘Integrated 3D Printing and Corona poling process’ (IPC), uses the 3D printer’s nozzle and heating bed as anode and cathode, respectively, to create poling electric fields in a controlled heating environment. The nozzle travels along the programmed path with fixed distance between nozzle tip and sample’s top surface. Simultaneously, the electric field between the nozzle and bottom heating pad promotes the alignment of dipole moment of PVDF molecular chains. The crystalline phase transformation and output current generated by printed samples under different electric fields in this process were characterized by a Fourier transform infrared spectroscopy and through fatigue load frame. It is demonstrated that piezoelectric PVDF films with enhanced β-phase percentage can be fabricated using the IPC process. In addition, mechanical properties of printed PVDF was investigated by tensile testing. It is expected to expand the use of additive

  4. Beryllium production using beryllium fluoride

    International Nuclear Information System (INIS)

    Hubler, Carlos Henrique

    1993-01-01

    This work presents the beryllium production by thermal decomposition of the ammonium beryllium fluoride, followed by magnesium reduction, obtained in the small pilot plant of the Brazilian National Nuclear Energy Commission - Nuclear Engineering Institute

  5. Gold-coated silicon nanowire-graphene core-shell composite film as a polymer binder-free anode for rechargeable lithium-ion batteries

    Science.gov (United States)

    Kim, Han-Jung; Lee, Sang Eon; Lee, Jihye; Jung, Joo-Yun; Lee, Eung-Sug; Choi, Jun-Hyuk; Jung, Jun-Ho; Oh, Minsub; Hyun, Seungmin; Choi, Dae-Geun

    2014-07-01

    We designed and fabricated a gold (Au)-coated silicon nanowires/graphene (Au-SiNWs/G) hybrid composite as a polymer binder-free anode for rechargeable lithium-ion batteries (LIBs). A large amount of SiNWs for LIB anode materials can be prepared by metal-assisted chemical etching (MaCE) process. The Au-SiNWs/G composite film on current collector was obtained by vacuum filtration using an anodic aluminum oxide (AAO) membrane and hot pressing method. Our experimental results show that the Au-SiNWs/G composite has a stable reversible capacity of about 1520 mA h/g which was maintained for 20 cycles. The Au-SiNWs/G composite anode showed much better cycling performance than SiNWs/polyvinylidene fluoride (PVDF)/Super-P, SiNWs/G composite, and pure SiNWs anodes. The improved electrochemical properties of the Au-SiNWs/G composite anode material is mainly ascribed to the composite's porous network structure.

  6. Chronic Fluoride Toxicity: Dental Fluorosis

    OpenAIRE

    DenBesten, Pamela; Li, Wu

    2011-01-01

    Dental fluorosis occurs as a result of excess fluoride ingestion during tooth formation. Enamel fluorosis and primary dentin fluorosis can only occur when teeth are forming, and therefore fluoride exposure (as it relates to dental fluorosis) occurs during childhood. In the permanent dentition, this would begin with the lower incisors, which complete mineralization at approximately 2–3 years of age, and end after mineralization of the third molars. The white opaque appearance of fluorosed enam...

  7. Fluoride in groundwater: toxicological exposure and remedies.

    Science.gov (United States)

    Jha, S K; Singh, R K; Damodaran, T; Mishra, V K; Sharma, D K; Rai, Deepak

    2013-01-01

    Fluoride is a chemical element that is found most frequently in groundwater and has become one of the most important toxicological environmental hazards globally. The occurrence of fluoride in groundwater is due to weathering and leaching of fluoride-bearing minerals from rocks and sediments. Fluoride when ingested in small quantities (dental health by reducing dental caries, whereas higher concentrations (>1.5 mg/L) may cause fluorosis. It is estimated that about 200 million people, from among 25 nations the world over, may suffer from fluorosis and the causes have been ascribed to fluoride contamination in groundwater including India. High fluoride occurrence in groundwaters is expected from sodium bicarbonate-type water, which is calcium deficient. The alkalinity of water also helps in mobilizing fluoride from fluorite (CaF2). Fluoride exposure in humans is related to (1) fluoride concentration in drinking water, (2) duration of consumption, and (3) climate of the area. In hotter climates where water consumption is greater, exposure doses of fluoride need to be modified based on mean fluoride intake. Various cost-effective and simple procedures for water defluoridation techniques are already known, but the benefits of such techniques have not reached the rural affected population due to limitations. Therefore, there is a need to develop workable strategies to provide fluoride-safe drinking water to rural communities. The study investigated the geochemistry and occurrence of fluoride and its contamination in groundwater, human exposure, various adverse health effects, and possible remedial measures from fluoride toxicity effects.

  8. Effects of fluoride residue on thermal stability in Cu/porous low-k interconnects

    Energy Technology Data Exchange (ETDEWEB)

    Kobayashi, Y.; Ozaki, S.; Nakamura, T. [FUJITSU LABORATORIES Ltd., 10-1 Morinosato-Wakamiya, Atsugi, Kanagawa 243-0197 (Japan)

    2014-06-19

    We have investigated the effects of fluoride residue on the thermal stability of a Cu/barrier metal (BM)/porous low-k film (k < 2.3) structure. We confirmed that the Cu agglomerated more on a BM/inter layer dielectric (ILD) with a fluoride residue. To consider the effect of fluoride residue on Cu agglomeration, the structural state at the Cu/BM interface was evaluated with a cross-section transmission electron microscope (TEM) and atomic force microscope (AFM). In addition, the chemical bonding state at the Cu/BM interface was evaluated with the interface peeling-off method and X-ray photoelectron spectroscopy (XPS). Moreover, we confirmed the ionization of fluoride residue and oxidation of Cu with fluoride and moisture to clarify the effect of fluoride residue on Cu. Our experimental results indicated that the thermal stability in Cu/porous low-k interconnects was degraded by enhancement of Cu oxidation with fluoride ions diffusion as an oxidizing catalyst.

  9. Chronic fluoride toxicity: dental fluorosis.

    Science.gov (United States)

    Denbesten, Pamela; Li, Wu

    2011-01-01

    Dental fluorosis occurs as a result of excess fluoride ingestion during tooth formation. Enamel fluorosis and primary dentin fluorosis can only occur when teeth are forming, and therefore fluoride exposure (as it relates to dental fluorosis) occurs during childhood. In the permanent dentition, this would begin with the lower incisors, which complete mineralization at approximately 2-3 years of age, and end after mineralization of the third molars. The white opaque appearance of fluorosed enamel is caused by a hypomineralized enamel subsurface. With more severe dental fluorosis, pitting and a loss of the enamel surface occurs, leading to secondary staining (appearing as a brown color). Many of the changes caused by fluoride are related to cell/matrix interactions as the teeth are forming. At the early maturation stage, the relative quantity of amelogenin protein is increased in fluorosed enamel in a dose-related manner. This appears to result from a delay in the removal of amelogenins as the enamel matures. In vitro, when fluoride is incorporated into the mineral, more protein binds to the forming mineral, and protein removal by proteinases is delayed. This suggests that altered protein/mineral interactions are in part responsible for retention of amelogenins and the resultant hypomineralization that occurs in fluorosed enamel. Fluoride also appears to enhance mineral precipitation in forming teeth, resulting in hypermineralized bands of enamel, which are then followed by hypomineralized bands. Enhanced mineral precipitation with local increases in matrix acidity may affect maturation stage ameloblast modulation, potentially explaining the dose-related decrease in cycles of ameloblast modulation from ruffle-ended to smooth-ended cells that occur with fluoride exposure in rodents. Specific cellular effects of fluoride have been implicated, but more research is needed to determine which of these changes are relevant to the formation of fluorosed teeth. As further

  10. Acute toxicity of ingested fluoride.

    Science.gov (United States)

    Whitford, Gary Milton

    2011-01-01

    This chapter discusses the characteristics and treatment of acute fluoride toxicity as well as the most common sources of overexposure, the doses that cause acute toxicity, and factors that can influence the clinical outcome. Cases of serious systemic toxicity and fatalities due to acute exposures are now rare, but overexposures causing toxic signs and symptoms are not. The clinical course of systemic toxicity from ingested fluoride begins with gastric signs and symptoms, and can develop with alarming rapidity. Treatment involves minimizing absorption by administering a solution containing calcium, monitoring and managing plasma calcium and potassium concentrations, acid-base status, and supporting vital functions. Approximately 30,000 calls to US poison control centers concerning acute exposures in children are made each year, most of which involve temporary gastrointestinal effects, but others require medical treatment. The most common sources of acute overexposures today are dental products - particularly dentifrices because of their relatively high fluoride concentrations, pleasant flavors, and their presence in non-secure locations in most homes. For example, ingestion of only 1.8 ounces of a standard fluoridated dentifrice (900-1,100 mg/kg) by a 10-kg child delivers enough fluoride to reach the 'probably toxic dose' (5 mg/kg body weight). Factors that may influence the clinical course of an overexposure include the chemical compound (e.g. NaF, MFP, etc.), the age and acid-base status of the individual, and the elapsed time between exposure and the initiation of treatment. While fluoride has well-established beneficial dental effects and cases of serious toxicity are now rare, the potential for toxicity requires that fluoride-containing materials be handled and stored with the respect they deserve. Copyright © 2011 S. Karger AG, Basel.

  11. Irradiated multilayer film for primal meat packaging

    International Nuclear Information System (INIS)

    Lustig, S.; Schuetz, J.M.; Vicik, S.J.

    1987-01-01

    This patent deals with a heat-shrinkable, multilayer film suitable for use in fabricating bags for packaging primal and sub-primal meat cuts and processed meats. The multilayer film has a first outer layer of a first ethylene-vinyl acetate copolymer, a core layer of a polyvinylidene chloride-vinyl chloride copolymer containing between about 70 weight percent and about 90 weight percent vinylidene chloride as a barrier film, and a second outer layer of a second ethylene-vinyl acetate copolymer. The multilayer film is preferably made by co-extrusion of the layers, and then it is biaxially stretched. After biaxial stretching, the entire multilayer film is substantially uniformly irradiated to a dosage level of between about 2 megarads and about 3 megarads and heat-sealed in the form of a bag. The film is not significantly discoloured by the irradiation and the bag has improved toughness properties and heat-sealing characteristics

  12. Fluoride level in saliva after bonding orthodontic brackets with a fluoride containing adhesive

    NARCIS (Netherlands)

    Ogaard, B; Arends, J; Helseth, H; Dijkman, G; vanderKuijl, M

    The fluoride level in saliva is considered an important parameter in caries prevention. Elevation of the salivary fluoride level by a fluoride-releasing orthodontic bonding adhesive would most likely be beneficial in the prevention of enamel caries. In this study, the fluoride level in saliva was

  13. Electroactive and High Dielectric Folic Acid/PVDF Composite Film Rooted Simplistic Organic Photovoltaic Self-Charging Energy Storage Cell with Superior Energy Density and Storage Capability.

    Science.gov (United States)

    Roy, Swagata; Thakur, Pradip; Hoque, Nur Amin; Bagchi, Biswajoy; Sepay, Nayim; Khatun, Farha; Kool, Arpan; Das, Sukhen

    2017-07-19

    Herein we report a simplistic prototype approach to develop an organic photovoltaic self-charging energy storage cell (OPSESC) rooted with biopolymer folic acid (FA) modified high dielectric and electroactive β crystal enriched poly(vinylidene fluoride) (PVDF) composite (PFA) thin film. Comprehensive and exhaustive characterizations of the synthesized PFA composite films validate the proper formation of β-polymorphs in PVDF. Significant improvements of both β-phase crystallization (F(β) ≈ 71.4%) and dielectric constant (ε ≈ 218 at 20 Hz for PFA of 7.5 mass %) are the twosome realizations of our current study. Enhancement of β-phase nucleation in the composites can be thought as a contribution of the strong interaction of the FA particles with the PVDF chains. Maxwell-Wagner-Sillars (MWS) interfacial polarization approves the establishment of thermally stable high dielectric values measured over a wide temperature spectrum. The optimized high dielectric and electroactive films are further employed as an active energy storage material in designing our device named as OPSESC. Self-charging under visible light irradiation without an external biasing electrical field and simultaneous remarkable self-storage of photogenerated electrical energy are the two foremost aptitudes and the spotlight of our present investigation. Our as fabricated device delivers an impressively high energy density of 7.84 mWh/g and an excellent specific capacitance of 61 F/g which is superior relative to the other photon induced two electrode organic self-charging energy storage devices reported so far. Our device also proves the realistic utility with good recycling capability by facilitating commercially available light emitting diode.

  14. Pulsed laser induced heat transfer from a phthalocyanine-based thin film to a Bi, Al-substituted DyIG substrate: photothermal demagnetization observed by magnetic circular dichroism and numerical analysis.

    Science.gov (United States)

    Karasawa, Masanobu; Ishii, Kazuyuki

    2018-05-03

    We have investigated the demagnetization of a ferrimagnetic substrate, Bi, Al-substituted dysprosium iron garnet (Bi0.8Dy2.2Fe4.3Al0.7O12), based on selective pulsed laser irradiation of a molecular thin film consisting of μ-oxo-bis[hydroxyl{2,9(or 10),16(or 17),23(or 24)-tetra-tert-butylphthalocyanato}silicon] ((SiPc)2) and poly(vinylidene fluoride), and succeeded in reproducing photothermal energy transfer from a molecular thin film to an inorganic magnetic substrate in a submicrometer-order and a submicrosecond time scale using numerical analysis. After the instant temperature rise due to nanosecond pulsed laser irradiation of the (SiPc)2-based film, followed by heat transfer from the film to the neighboring magnetic substrate, demagnetization of the magnetic substrate was spectroscopically monitored by the decrease in its magnetic circular dichroism (MCD) intensity. The MCD intensity decreased with increasing pulsed laser energy, which reflects the fact that the submicrometer-order region of the substrate was demagnetized as a result of temperature rise reaching high Curie temperature. This heat transfer phenomenon resulting in the demagnetization of the magnetic substrate was numerically analyzed in a submicrometer-order and a submicrosecond time scale using the finite difference method: the demagnetized regions were calculated to be the same order of magnitude as those experimentally evaluated. These results would provide a more detailed understanding of photothermal energy transfer in organic-inorganic hybrid materials, which would be useful for developing photofunctional materials.

  15. Urinary fluoride excretion in preschool children after intake of fluoridated milk and use of fluoride-containing toothpaste

    DEFF Research Database (Denmark)

    Norman, M; Twetman, S; Hultgren Talvilahti, A

    2017-01-01

    Objective: To assess the urinary fluoride excretion in preschool children after drinking fluoridated milk with 0.185 mg F and 0.375 mg F and to study the impact of use of fluoride toothpaste. Basic research design: Double-blind cross-over study. Participants: Nine healthy children, 2.5-4.5 years...

  16. Water Fluoridation Reporting System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  17. ADSORPTIVE REMOVAL OF FLUORIDE FROM WATER USING ...

    African Journals Online (AJOL)

    Preferred Customer

    Currently available treatment methods for removal of excess fluoride from water are broadly divided into three ... the application of nanoparticles as sorbents for fluoride removal. Sundaram [26] studied the ... Characterization of adsorbent.

  18. No Calcium-Fluoride-Like Deposits Detected in Plaque Shortly after a Sodium Fluoride Mouthrinse

    OpenAIRE

    Vogel, G.L.; Tenuta, L.M.A.; Schumacher, G.E.; Chow, L.C.

    2010-01-01

    Plaque ‘calcium-fluoride-like’ (CaF2-like) and fluoride deposits held by biological/bacterial calcium fluoride (Ca-F) bonds appear to be the source of cariostatic concentrations of fluoride in plaque fluid. The aim of this study was to quantify the amounts of plaque fluoride held in these reservoirs after a sodium fluoride rinse. 30 and 60 min after a 228 μg/g fluoride rinse, plaque samples were collected from 11 volunteers. Each sample was homogenized, split into 2 aliquots (aliquots 1 and 2...

  19. Acute toxicity of uranium hexafluoride, uranyl fluoride and hydrogen fluoride

    International Nuclear Information System (INIS)

    Just, R.A.

    1988-01-01

    Uranium hexafluoride (UF 6 ) released into the atmosphere will react rapidly with moisture in the air to form the hydrolysis products uranyl fluoride (UO 2 F 2 ) and hydrogen fluoride (HF). Uranium compounds such as UF 6 and UO 2 F 2 exhibit both chemical toxicity and radiological effects, while HF exhibits only chemical toxicity. This paper describes the development of a methodology for assessing the human health consequences of a known acute exposure to a mixture of UF 6 , UO 2 F 2 , and HF. 4 refs., 2 figs., 5 tabs

  20. Effects of fluorides on plants

    Energy Technology Data Exchange (ETDEWEB)

    Yamazoe, F

    1975-11-01

    Fluorine compounds known to be air pollutants, such as hydrogen fluoride and silicon tetrachloride, are highly poisonous to plants even at ppm - ppb levels. As solid microparticles, acidic sodium fluoride and cryolite cause problems by adhering to plant leaves and absorbing into plant bodies. Plants are classified by their susceptibility to hydrogen fluoride: gladiolus, apricot, buckwheat, turnip and Vaccinium vitis-idaea are most susceptible showing slight injury at less than 5 ppb for 7-9 days; maize, pepper, and dahlia are fairly susceptible, followed by azalea, rose, lilac, and alfalfa, then by oak and tomato. Gladiolus is used as an indicator plant. The exposure factor for one species was known. The symptoms of plants exposed to gaseous fluorine compounds are described in detail at various concentrations. The causal mechanism of the injuries due to fluorine compounds is described in detail, with the method of determining the fluorine content of plant parts. 7 references.

  1. Photosynthesis of ammonium uranous fluoride

    International Nuclear Information System (INIS)

    El-Fekey, S.A.; Zaki, M.R.; Farah, M.Y.

    1975-01-01

    This study pertains to utilisation of solar energy for ethanol photosynthesis of ammonium uranous fluoride, that satisfies nuclear specifications needed for calcio- or magnesiothermy. Insolation in autumn using 4-10% ethanol in 5-20 g uranium/litre at initial pH 3.25 gave practically 99.8% yield in two hours, independant of 1.0 to 2.0 stoichiometric NH 4 F. With ultraviolet light, the yield varied between 30 and 60%, even after four hours irradiation. Stirring and heating to 60 0 C raised the tap density of the dried double fluorides from 1.48 at 30 0 C, to 1.85 g/cm 3 at 60 0 C. The texture increased also in fineness to 100% 50μ aggregates. The powders satisfy nuclear purity specifications. Thermograms indicated preferential decomposition of double fluoride at 375 0 C in controlled atmosphere to obtain nuclear pure anhydrous uranium tetrafluoride

  2. Anhydrous hydrogen fluoride electrolyte battery. [Patent application

    Science.gov (United States)

    Not Available

    1972-06-26

    It is an object of the invention to provide a primary cell or battery using ammonium fluoride--anhydrous hydrogen fluoride electrolyte having improved current and power production capabilities at low temperatures. It is operable at temperatures substantially above the boiling point of hydrogen fluoride. (GRA)

  3. Multiple Interfacial Fe3O4@BaTiO3/P(VDF-HFP) Core-Shell-Matrix Films with Internal Barrier Layer Capacitor (IBLC) Effects and High Energy Storage Density.

    Science.gov (United States)

    Zhou, Ling; Fu, Qiuyun; Xue, Fei; Tang, Xiahui; Zhou, Dongxiang; Tian, Yahui; Wang, Geng; Wang, Chaohong; Gou, Haibo; Xu, Lei

    2017-11-22

    Flexible nanocomposites composed of high dielectric constant fillers and polymer matrix have shown great potential for electrostatic capacitors and energy storage applications. To obtain the composited material with high dielectric constant and high breakdown strength, multi-interfacial composited particles, which composed of conductive cores and insulating shells and possessed the internal barrier layer capacitor (IBLC) effect, were adopted as fillers. Thus, Fe 3 O 4 @BaTiO 3 core-shell particles were prepared and loaded into the poly(vinylidene fluoride-co-hexafluoropropylene) (P(VDF-HFP)) polymer matrix. As the mass fraction of core-shell fillers increased from 2.5 wt % to 30 wt %, the dielectric constant of the films increased, while the loss tangent remained at a low level (capacitor model was also adopted to interpret the efficiency of IBLC effects on the suppressed loss tangent and the superior breakdown strength. This work explored an effective approach to prepare dielectric nanocomposites for energy storage applications experimentally and theoretically.

  4. SBIR-Long fluoride fiber

    Science.gov (United States)

    Jaeger, Raymond E.; Vacha, Lubos J.

    1987-08-01

    This report summarizes results obtained under a program aimed at developing new techniques for fabricating long lengths of heavy metal fluoride glass (HMFG) optical fiber. A new method for overcladding conventional HMFG preforms with a low melting oxide glass was developed, and improvements in the rotational casting method were made to increase preform length. The resulting composite glass canes consist of a fluoride glass overcoat layer to enhance strength and chemical durability. To show feasibility, prototype optical fiber preforms up to 1.6 cm in diameter with lengths of 22 cm were fabricated. These were drawn into optical fibers with lengths up to 900 meters.

  5. Comparison of the Remineralizing Effects of Sodium Fluoride and Bioactive Glass Using Bioerodible Gel Systems

    Directory of Open Access Journals (Sweden)

    Attiguppe Ramashetty Prabhakar

    2009-12-01

    Full Text Available Background and aims. A carious lesion is the accumulation of numerous episodes of de- and remineralization, rather than a unidirectional demineralization process. Tooth destruction can be arrested or reversed by the frequent delivery of fluoride or calcium/phosphorous ions to the tooth surface. The present study compared and evaluated the remineralization potential of sodium fluoride and bioactive glass delivered through a bioerodible gel system. Materials and methods. Longitudinal sections of artificial carious lesions, created at the gingivofacial surface of 64 primary maxillary incisors were photographed under a polarized light microscope and quantified for demineralization. The sections were repositioned into the tooth form and randomly mounted in sets of four that simulated an arch form. The teeth were divided into 4 groups: 1 sodium fluoride films, 2 bioactive glass films, 3 control films placed interproximally and 4 nontreatment group. Following exposure to artificial saliva for 30 days, the lesions were again photographed and quantified as above. The recorded values were statistically analyzed using Student’s paired t-test for intragroup comparison, one-way ANOVA and Post-Hoc Tukey’s test for pairwise comparison. Results. The sodium fluoride and bioactive gel groups showed significant remineralization compared with the control groups (P < 0.001. Conclusion. Bioerodible gel films can be used to deliver remineralizing agents to enhance remineralization.

  6. Silver diamine fluoride: a caries "silver-fluoride bullet".

    Science.gov (United States)

    Rosenblatt, A; Stamford, T C M; Niederman, R

    2009-02-01

    The antimicrobial use of silver compounds pivots on the 100-year-old application of silver nitrate, silver foil, and silver sutures for the prevention and treatment of ocular, surgical, and dental infections. Ag(+) kills pathogenic organisms at concentrations of linings, water purification systems, hospital gowns, and caries prevention. To distill the current best evidence relative to caries, this systematic review asked: Will silver diamine fluoride (SDF) more effectively prevent caries than fluoride varnish? A five-database search, reference review, and hand search identified 99 human clinical trials in three languages published between 1966 and 2006. Dual review for controlled clinical trials with the patient as the unit of observation, and excluding cross-sectional, animal, in vitro studies, and opinions, identified 2 studies meeting the inclusion criteria. The trials indicated that SDF's lowest prevented fractions for caries arrest and caries prevention were 96.1% and 70.3%, respectively. In contrast, fluoride varnish's highest prevented fractions for caries arrest and caries prevention were 21.3% and 55.7%, respectively. Similarly, SDF's highest numbers needed to treat for caries arrest and caries prevention were 0.8 (95% CI=0.5-1.0) and 0.9 (95% CI=0.4-1.1), respectively. For fluoride varnish, the lowest numbers needed to treat for caries arrest and prevention were 3.7 (95% CI=3.4-3.9) and 1.1 (95% CI=0.7-1.4), respectively. Adverse events were monitored, with no significant differences between control and experimental groups. These promising results suggest that SDF is more effective than fluoride varnish, and may be a valuable caries-preventive intervention. As well, the availability of a safe, effective, efficient, and equitable caries-preventive agent appears to meet the criteria of both the WHO Millennium Goals and the US Institute of Medicine's criteria for 21st century medical care.

  7. Accumulation of fluoride by plants and vegetables

    International Nuclear Information System (INIS)

    Njenga, L.W.; Kariuki, D.N.

    1994-01-01

    Fluoride in plant and vegetable samples has been determined using ion selective electrode. The analysis was carried out after ashing the sample on an open flame, adding perchloric acid and allowing the hydrogen fluoride to diffuse into sodium hydroxide layer.The results obtained show that kale and pumpkins can accumulate more than ten times their normal values of fluoride while plants were found to accumulate upto 100μg/g fluoride when exposed to highlevels of fluoride in water or soil. (author)

  8. Toxic effects of fluoride on organisms.

    Science.gov (United States)

    Zuo, Huan; Chen, Liang; Kong, Ming; Qiu, Lipeng; Lü, Peng; Wu, Peng; Yang, Yanhua; Chen, Keping

    2018-04-01

    Accumulation of excess fluoride in the environment poses serious health risks to plants, animals, and humans. This endangers human health, affects organism growth and development, and negatively impacts the food chain, thereby affecting ecological balance. In recent years, numerous studies focused on the molecular mechanisms associated with fluoride toxicity. These studies have demonstrated that fluoride can induce oxidative stress, regulate intracellular redox homeostasis, and lead to mitochondrial damage, endoplasmic reticulum stress and alter gene expression. This paper reviews the present research on the potential adverse effects of overdose fluoride on various organisms and aims to improve our understanding of fluoride toxicity. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Low temperature fluorination of Sr3Fe2O7−x with polyvinylidine fluoride: An X-ray powder diffraction and Mössbauer spectroscopy study

    International Nuclear Information System (INIS)

    Hancock, Cathryn A.; Herranz, Tirma; Marco, Jose F.; Berry, Frank J.; Slater, Peter R.

    2012-01-01

    Fluorination of the Ruddlesden Popper phase, Sr 3 Fe 2 O 7−x by heat treatment with polyvinylidine fluoride (PVDF) gives a range of novel oxide fluoride compounds. Fluorination with 1 mol equivalent PVDF leads to a filling of the normal Ruddlesden Popper structure anion sites and a material of composition Sr 3 Fe 2 O 5+x F 2−x (x≈0.28(4)) which contains both Fe 4+ and Fe 3+ . Increasing the amount of PVDF to 2 mol equivalent leads to an increase in anion content due to filling of half the interstitial sites within the structure, with iron being completely reduced to Fe 3+ leading to a composition Sr 3 Fe 2 O 4 F 4 . An increase in the amount of PVDF to ≈3 mol equivalent leads to a further increase in unit cell volume, attributed to complete filling of the interstitial sites and a composition Sr 3 Fe 2 O 3 F 6 . 57 Fe Mössbauer spectra in the temperature range 10–300 K demonstrated the complexity of the magnetic interactions in each of the three phases which reflect different local compositions of oxygen and fluorine around the iron ions thus influencing the superexchange pathways. - Graphical abstract: Low temperature (375 °C) fluorination of Sr 3 Fe 2 O 7−x with poly(vinylidene fluoride) leads to the production of three new Ruddlesden Popper oxide fluorides with progressive filling of the anion sites within the structure. Highlights: ► The fluorination of Sr 3 Fe 2 O 7−x using PVDF. ► The control of the fluorine content with amount of PVDF used. ► The synthesis of three new Fe based oxide fluorides. ► The identification of the structures of these oxide fluorides.

  10. Fluoride remediation using floating macrophytes

    Directory of Open Access Journals (Sweden)

    Naba Kumar Mondal

    2014-04-01

    Full Text Available Six aquatic macrophytes, such as Pistia stratiotes, Ceratophyllum demersum, Nymphoides indica, Lemna major, Azolla pinnata,and Eichhornia crassipes were considered for remove fluoride from aqueous solution. Five different concentrations (10, 30, 50, and 100 ppm of fluoride solution were taken in 1 L plastic container. Fixed weight (20 g of macrophytes along with 500 ml fluoride solution was taken in each plastic container for 72 hours observation. Results demonstrated all the macrophytes show highest fluoride removal during 24 h to 48 h, but after 72 h their efficiency reduced drastically. The species N. indica showed better removal efficiency than other experimental macrophytes. In general, pigment measurement data indicated higher concentration at 72 h. However, Pistia sp. showed higher concentration of pigmentation at intermediate time interval (48 h. Higher level of dry weight to fresh weight ratio was recorded for L. major and A. pinnata at all concentrations, excepting at 10 ppm. In addition, all macrophytes showed lower RGR at higher concentration. Isotherm study indicated that macrophyte C. demersum is a good fitted with Freundlich and Langmuir isotherm whereas L. major with Langmuir isotherm during 24 hours.

  11. Alimentary fluoride intake in preschool children

    Directory of Open Access Journals (Sweden)

    Lencova Erika

    2011-10-01

    Full Text Available Abstract Background The knowledge of background alimentary fluoride intake in preschool children is of utmost importance for introducing optimal and safe caries preventive measures for both individuals and communities. The aim of this study was to assess the daily fluoride intake analyzing duplicate samples of food and beverages. An attempt was made to calculate the daily intake of fluoride from food and swallowed toothpaste. Methods Daily alimentary fluoride intake was measured in a group of 36 children with an average age of 4.75 years and an average weight of 20.69 kg at baseline, by means of a double plate method. This was repeated after six months. Parents recorded their child's diet over 24 hours and collected duplicated portions of food and beverages received by children during this period. Pooled samples of food and beverages were weighed and solid food samples were homogenized. Fluoride was quantitatively extracted from solid food samples by a microdiffusion method using hexadecyldisiloxane and perchloric acid. The content of fluoride extracted from solid food samples, as well as fluoride in beverages, was measured potentiometrically by means of a fluoride ion selective electrode. Results Average daily fluoride intake at baseline was 0.389 (SD 0.054 mg per day. Six months later it was 0.378 (SD 0.084 mg per day which represents 0.020 (SD 0.010 and 0.018 (SD 0.008 mg of fluoride respectively calculated per kg bw/day. When adding the values of unwanted fluoride intake from the toothpaste shown in the literature (0.17-1.21 mg per day the estimate of the total daily intake of fluoride amounted to 0.554-1.594 mg/day and recalculated to the child's body weight to 0.027-0.077 mg/kg bw/day. Conclusions In the children studied, observed daily fluoride intake reached the threshold for safe fluoride intake. When adding the potential fluoride intake from swallowed toothpaste, alimentary intake reached the optimum range for daily fluoride intake

  12. Corrosion resistance of titanium-containing dental orthodontic wires in fluoride-containing artificial saliva

    International Nuclear Information System (INIS)

    Lee, T.-H.; Wang, C.-C.; Huang, T.-K.; Chen, L.-K.; Chou, M.-Y.; Huang, H.-H.

    2009-01-01

    This study was to investigate the corrosion resistance of different Ti-containing dental orthodontic wires (including Ni-Ti, Ni-Ti-Cu, Ti-Mo-Zr-Sn, and Ti-Nb alloys) in acidic fluoride-containing artificial saliva using cyclic potentiodynamic polarization curve measurements. Different NaF concentrations (0%, 0.2%, and 0.5%), simulating the fluoride contents in commercial toothpastes, were added to the artificial saliva. Surface characterization was analyzed using X-ray photoelectron spectrometry. Cyclic potentiodynamic polarization curves showed that the presence of fluoride ions, especially 0.5% NaF, was detrimental to the protective ability of the TiO 2 -based film on the Ti-containing wires. This might lead to a decrease in the corrosion resistance of the tested alloys, i.e. an increase in the corrosion rate and anodic current density and a decrease in the passive film breakdown potential. Among the tested Ti-containing wires, the Ni-Ti and Ni-Ti-Cu wires containing mainly TiO 2 on surface film were more susceptible to fluoride-enhanced corrosion, while the Ti-Mo-Zr-Sn and Ti-Nb wires containing MoO 3 /ZrO 2 /SnO and Nb 2 O 5 , respectively, along with TiO 2 on surface film were pitting corrosion resistant and showed a lower susceptibility to fluoride-enhanced corrosion. The difference in corrosion resistance of the tested commercial Ti-containing dental orthodontic wires was significantly dependent on the passive film characteristics on wires' surface.

  13. Corrosion resistance of titanium-containing dental orthodontic wires in fluoride-containing artificial saliva

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.-H. [Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Wang, C.-C. [Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan County 736, Taiwan (China); Huang, T.-K. [College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Chen, L.-K. [Department of Dentistry, Taipei City Hospital, Taipei 115, Taiwan (China); Chou, M.-Y. [Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan (China); Department of Dentistry, Chung Shan Medical University Hospital, Taichung 402, Taiwan (China); Huang, H.-H., E-mail: hhhuang@ym.edu.t [Department of Dentistry, Taipei City Hospital, Taipei 115, Taiwan (China); Department of Dentistry, National Yang-Ming University, Taipei 112, Taiwan (China); Institute of Oral Biology, National Yang-Ming University, Taipei 112, Taiwan (China)

    2009-11-20

    This study was to investigate the corrosion resistance of different Ti-containing dental orthodontic wires (including Ni-Ti, Ni-Ti-Cu, Ti-Mo-Zr-Sn, and Ti-Nb alloys) in acidic fluoride-containing artificial saliva using cyclic potentiodynamic polarization curve measurements. Different NaF concentrations (0%, 0.2%, and 0.5%), simulating the fluoride contents in commercial toothpastes, were added to the artificial saliva. Surface characterization was analyzed using X-ray photoelectron spectrometry. Cyclic potentiodynamic polarization curves showed that the presence of fluoride ions, especially 0.5% NaF, was detrimental to the protective ability of the TiO{sub 2}-based film on the Ti-containing wires. This might lead to a decrease in the corrosion resistance of the tested alloys, i.e. an increase in the corrosion rate and anodic current density and a decrease in the passive film breakdown potential. Among the tested Ti-containing wires, the Ni-Ti and Ni-Ti-Cu wires containing mainly TiO{sub 2} on surface film were more susceptible to fluoride-enhanced corrosion, while the Ti-Mo-Zr-Sn and Ti-Nb wires containing MoO{sub 3}/ZrO{sub 2}/SnO and Nb{sub 2}O{sub 5}, respectively, along with TiO{sub 2} on surface film were pitting corrosion resistant and showed a lower susceptibility to fluoride-enhanced corrosion. The difference in corrosion resistance of the tested commercial Ti-containing dental orthodontic wires was significantly dependent on the passive film characteristics on wires' surface.

  14. Negative optical absorption and up-energy conversion in dendrites of nanostructured silver grafted with α/β-poly(vinylidene fluoride) in small hierarchical structures

    Science.gov (United States)

    Phule, A. D.; Ram, S.; Shinde, S. K.; Choi, J. H.; Tyagi, A. K.

    2018-04-01

    We report that a negative optical absorption arises in a sharp band at 325 nm (energy hν2) in a nanostructured silver (n-Ag) doped poly(vinylidene fluoride) (PVF2) in a hybrid nanocomposite of films (∼100 μm thickness). Two polymorphs α- and β-PVF2 are co-stretched through the n-Ag crystallites in dendrites of hierarchical structures. A critical 0.5 wt% n-Ag dosage promotes this band of extinction coefficient to be enhanced by as much as 2.009 × 103, i.e. a 30% value in the Ag-surface plasmon band 350-650 nm (hν1). An electron donor Ag (4d105s1) bonds to an electron accepter moiety CF2 of PVF2, it tunes a dielectric field and sets up an up-energy conversion of the plasmon band. The FESEM and HRTEM images reveal fcc-Ag dendrites entangled with in-built PVF2 surface layers (2-3 nm thickness). The IR phonon bands show how a α → β-PVF2 transformation propagates onto a nascent n-Ag surface and how it is raised-up in small steps of 0.1 wt% and up to 5.0 wt%. In a model scheme, we illustrate how a rigid core-shell of a capsule conducts a new transfer mechanism of the energy to a cold surface plasmon (core) in a coherent collision, so as to balance a net value hν2 = h(ν3 - ν1). It absorbs light in a weak band at 210 nm (hν3) in a π → π* electron transition in the Cdbnd C bonds of the PVF2 (shell), and results in a negative absorption in a coherent excitation of the energy-carriers. A light-emitter on absorption over a wide range of wavelengths (200-650 nm) offers a unique type of energy-converter.

  15. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins.

    Science.gov (United States)

    Li, Sanshu; Smith, Kathryn D; Davis, Jared H; Gordon, Patricia B; Breaker, Ronald R; Strobel, Scott A

    2013-11-19

    Fluorine is an abundant element and is toxic to organisms from bacteria to humans, but the mechanisms by which eukaryotes resist fluoride toxicity are unknown. The Escherichia coli gene crcB was recently shown to be regulated by a fluoride-responsive riboswitch, implicating it in fluoride response. There are >8,000 crcB homologs across all domains of life, indicating that it has an important role in biology. Here we demonstrate that eukaryotic homologs [renamed FEX (fluoride exporter)] function in fluoride export. FEX KOs in three eukaryotic model organisms, Neurospora crassa, Saccharomyces cerevisiae, and Candida albicans, are highly sensitized to fluoride (>200-fold) but not to other halides. Some of these KO strains are unable to grow in fluoride concentrations found in tap water. Using the radioactive isotope of fluoride, (18)F, we developed an assay to measure the intracellular fluoride concentration and show that the FEX deletion strains accumulate fluoride in excess of the external concentration, providing direct evidence of FEX function in fluoride efflux. In addition, they are more sensitive to lower pH in the presence of fluoride. These results demonstrate that eukaryotic FEX genes encode a previously unrecognized class of fluoride exporter necessary for survival in standard environmental conditions.

  16. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    Science.gov (United States)

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  17. Groundwater fluoride contamination: A reappraisal

    Directory of Open Access Journals (Sweden)

    Amlan Banerjee

    2015-03-01

    Full Text Available Dissolution of fluorite (CaF2 and/or fluorapatite (FAP [Ca5(PO43F], pulled by calcite precipitation, is thought to be the dominant mechanism responsible for groundwater fluoride (F− contamination. Here, one dimensional reactive–transport models are developed to test this mechanism using the published dissolution and precipitation rate kinetics for the mineral pair FAP and calcite. Simulation results correctly show positive correlation between the aqueous concentrations of F− and CO32− and negative correlation between F− and Ca2+. Results also show that precipitation of calcite, contrary to the present understanding, slows down the FAP dissolution by 106 orders of magnitude compared to the FAP dissolution by hydrolysis. For appreciable amount of fluoride contamination rock–water interaction time must be long and of order 106 years.

  18. Effects of hydrogen fluoride on plants

    Energy Technology Data Exchange (ETDEWEB)

    Yamazoe, F

    1970-07-15

    Symptoms of fluorosis in plants are chlorotic markings around the tip or edges of young leaves. Examples of damage to plants and livestock by fluorides are listed, including the retarded growth of silkworms fed on mulberry leaves polluted by more than 30 ppm fluorides. Plants can be classified into six groups according to their resistance to hydrogen fluoride. Threshold values of the fluoride concentration range from 5-10 ppb for the plants. Gladiolus is normally employed as a plant indicator for hydrogen fluoride and silkworms as indicator insects. The relationship between plant damage by fluorides and exposure time, density, soil, fertilizer, meteorology and location are examined. Several preventive measures are listed, including the spraying of water or lime on plant leaves. It is concluded that the establishment of an environmental standard is difficult because of the extremely high sensitivity of the plants to the gas. 8 references.

  19. Thermodynamic data for uranium fluorides

    International Nuclear Information System (INIS)

    Leitnaker, J.M.

    1983-03-01

    Self-consistent thermodynamic data have been tabulated for uranium fluorides between UF 4 and UF 6 , including UF 4 (solid and gas), U 4 F 17 (solid), U 2 F 9 (solid), UF 5 (solid and gas), U 2 F 10 (gas), and UF 6 (solid, liquid, and gas). Included are thermal function - the heat capacity, enthalpy, and free energy function, heats of formation, and vaporization behavior

  20. Fluoride removal from aqueous solution by pumice: case study on ...

    African Journals Online (AJOL)

    EJIRO

    conditions, the fluoride removal efficiency from Kuhbonan water by 2.8 mg/L fluoride was 74.64%. Eventually ... industrial wastewater containing fluoride is a key ..... solution using silica ceramic: Adsorption kinetics and equilibrium studies.

  1. Purification process of uranium hexafluoride containing traces of plutonium fluoride and/or neptunium fluoride

    International Nuclear Information System (INIS)

    Aubert, J.; Bethuel, L.; Carles, M.

    1983-01-01

    In this process impure uranium hexafluoride is contacted with a metallic fluoride chosen in the group containing lead fluoride PbF 2 , uranium fluorides UFsub(4+x) (0 3 at a temperature such as plutonium and/or neptunium are reduced and pure uranium hexafluoride is recovered. Application is made to uranium hexafluoride purification in spent fuel reprocessing [fr

  2. Fluoride ions vs removal technologies: A study

    OpenAIRE

    Singh, Jagvir; Singh, Prashant; Singh, Anuradha

    2016-01-01

    Literature reported that drinking water is a precious and scarce resource and it has to be protected and kept free from any kind of contamination. Further, it has to be used carefully without wasting. Literature also reported that fluoride bearing rocks are abundant in India, as a result, fluoride leaches out and contaminates the adjacent water and soil resources. A high concentration of fluoride ions in ground water increases up to more than 30 mg/L. This high concentration of fluoride ions ...

  3. Formation of Defect-Free Latex Films on Porous Fiber Supports

    KAUST Repository

    Lively, Ryan P.

    2011-09-28

    We present here the creation of a defect-free polyvinylidene chloride barrier layer on the lumen-side of a hollow fiber sorbent. Hollow fiber sorbents have previously been shown to be promising materials for enabling low-cost CO 2 capture, provided a defect-free lumen-side barrier layer can be created. Film experiments examined the effect of drying rate, latex age, substrate porosity (porous vs nonporous), and substrate hydrophobicity/ hydrophilicity. Film studies show that in ideal conditions (i.e., slow drying, fresh latex, and smooth nonporous substrate), a defect-free film can be formed, whereas the other permutations of the variables investigated led to defective films. These results were extended to hollow fiber sorbents, and despite using fresh latex and relatively slow drying conditions, a defective lumen-side layer resulted. XRD and DSC indicate that polyvinylidene chloride latex develops crystallinity over time, thereby inhibiting proper film formation as confirmed by SEM and gas permeation. This and other key additional challenges associated with the porous hollow fiber substrate vs the nonporous flat substrate were overcome. By employing a toluene-vapor saturated drying gas (a swelling solvent for polyvinylidene chloride) a defect-free lumen-side barrier layer was created, as investigated by gas and water vapor permeation. © 2011 American Chemical Society.

  4. Gramicidin D enhances the antibacterial activity of fluoride

    OpenAIRE

    Nelson, James W.; Zhou, Zhiyuan; Breaker, Ronald R.

    2014-01-01

    Fluoride is a toxic anion found in many natural environments. One of the major bacterial defenses against fluoride is the cell envelope, which limits passage of the membrane-impermeant fluoride anion. Accordingly, compounds that enhance the permeability of bacterial membranes to fluoride should also enhance fluoride toxicity. In this study, we demonstrate that the pore-forming antibiotic gramicidin D increases fluoride uptake in B. subtilis and that the antibacterial activity of this compound...

  5. Urinary fluoride output in children following the use of a dual-fluoride varnish formulation

    Directory of Open Access Journals (Sweden)

    Kelly Polido Kaneshiro Olympio

    2009-06-01

    Full Text Available OBJECTIVE: This study evaluated the bioavailability of fluoride after topical application of a dual-fluoride varnish commercially available in Brazil, when compared to DuraphatTM. MATERIAL AND METHODS: The urinary fluoride output was evaluated in seven 5-year-old children after application of the fluoride varnishes, in two different phases. In the first phase (I, children received topical application of the fluoride varnish Duofluorid XII (2.92% fluorine, calcium fluoride + 2.71% fluorine, sodium fluoride, FGM TM. After 1-month interval (phase II, the same amount (0.2 mL of the fluoride varnish Duraphat (2.26% fluorine, sodium fluoride, ColgateTM was applied. Before each application all the volunteers brushed their teeth with placebo dentifrice for 7 days. Urinary collections were carried out 24 h prior up to 48 h after the applications. Fluoride intake from the diet was also estimated. Fluoride concentration in diet samples and urine was analyzed with the fluoride ion-specific electrode and a miniature calomel reference electrode coupled to a potentiometer. Data were tested by ANOVA and Tukey's post hoc test (p<0.05. RESULTS: There were significant differences in the urinary fluoride output between phases I and II. The use of Duofluorid XII did not significantly increase the urinary fluoride output, when compared to baseline levels. The application of Duraphat caused a transitory increase in the urinary fluoride output, returning to baseline levels 48 h after its use. CONCLUSIONS: The tested varnish formulation, which has been shown to be effective in in vitro studies, also can be considered safe.

  6. Fluoride barriers in Nb/Pb Josephson junctions

    Science.gov (United States)

    Asano, H.; Tanabe, K.; Michikami, O.; Igarashi, M.; Beasley, M. R.

    1985-03-01

    Josephson tunnel junctions are fabricated using a new class of artificial barriers, metal fluorides (Al fluoride and Zr fluoride). These fluoride barriers are deposited on the surface of a Nb base electrode, which are previously cleaned using a CF4 cleaning process, and covered by a Pb counterelectrode. The junctions with both Al fluoride and Zr fluoride barriers exhibit good tunneling characteristics and have low specific capacitance. In the case of Zr fluoride, it is observed that reasonable resistances are obtained even at thickness greater than 100 A. This phenomenon might be explained by tunneling via localized states in Zr fluoride.

  7. FLUORIDE LEVELS IN COMMERCIALLY AVAILABLE RICE IN ...

    African Journals Online (AJOL)

    Preferred Customer

    2013-05-05

    May 5, 2013 ... Rice is one of the commonly consumed cereals for more than half of the ... also used as flour, for making rice wine, as ingredient for beer and liquor, ... Fluoride is a necessary element to human health, and a moderate amount of fluoride intake ... For Ethiopian red rice (ERR) Fogera was selected to collect.

  8. Biomonitoring Equivalents for interpretation of urinary fluoride.

    Science.gov (United States)

    Aylward, L L; Hays, S M; Vezina, A; Deveau, M; St-Amand, A; Nong, A

    2015-06-01

    Exposure to fluoride is widespread due to its natural occurrence in the environment and addition to drinking water and dental products for the prevention of dental caries. The potential health risks of excess fluoride exposure include aesthetically unacceptable dental fluorosis (tooth mottling) and increased skeletal fragility. Numerous organizations have conducted risk assessments and set guidance values to represent maximum recommended exposure levels as well as recommended adequate intake levels based on potential public health benefits of fluoride exposure. Biomonitoring Equivalents (BEs) are estimates of the average biomarker concentrations corresponding to such exposure guidance values. The literature on daily urinary fluoride excretion rates as a function of daily fluoride exposure was reviewed and BE values corresponding to the available US and Canadian exposure guidance values were derived for fluoride in urine. The derived BE values range from 1.1 to 2.1mg/L (1.2-2.5μg/g creatinine). Concentrations of fluoride in single urinary spot samples from individuals, even under exposure conditions consistent with the exposure guidance values, may vary from the predicted average concentrations by several-fold due to within- and across-individual variation in urinary flow and creatinine excretion rates and due to the rapid elimination kinetics of fluoride. Thus, the BE values are most appropriately applied to screen population central tendency estimates for biomarker concentrations rather than interpretation of individual spot sample concentrations. Copyright © 2015. Published by Elsevier Inc.

  9. Fluoride ions vs removal technologies: A study

    Directory of Open Access Journals (Sweden)

    Jagvir Singh

    2016-11-01

    Full Text Available Literature reported that drinking water is a precious and scarce resource and it has to be protected and kept free from any kind of contamination. Further, it has to be used carefully without wasting. Literature also reported that fluoride bearing rocks are abundant in India, as a result, fluoride leaches out and contaminates the adjacent water and soil resources. A high concentration of fluoride ions in ground water increases up to more than 30 mg/L. This high concentration of fluoride ions causes many harmful and dangerous effects on our datum. Fluoride ions in larger quantities i.e. 20–80 mg/day taken over a period of 10–20 years result in crippling and skeletal fluorosis, severely damaging the bone. In the present scenario, there is a continuously increasing worldwide concern for the development of fluoride treatment technologies. Possibilities of reducing the high fluorine content in groundwater are by defluorination process/dilution with the surface water which is a very simple technique but the addition of Ca2+ ions to a solution in contact with fluorite when experimented in distilled water caused an appreciable decrease in fluoride concentration. In this review article, we emphasized the relationship between high concentrations of fluoride ions and their compounds and their health impact.

  10. Diethylenetriaminium hexafluoridotitanate(IV fluoride

    Directory of Open Access Journals (Sweden)

    J. Lhoste

    2008-11-01

    Full Text Available The title compound, (C6H21N4[TiF6]F, was synthesized by the reaction of TiO2, tris(2-aminoethylamine, HF and ethanol at 463 K in a microwave oven. The crystal structure consists of two crystallographically independent [TiF6]2− anions, two fluoride anions and two triply-protonated tris(2-aminoethylamine cations. The Ti atoms are coordinated by six F atoms within slightly distorted octahedra. The anions and cations are connected by intermolecular N—H...F hydrogen bonds.

  11. Thermodynamic data for uranium fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Leitnaker, J.M.

    1983-03-01

    Self-consistent thermodynamic data have been tabulated for uranium fluorides between UF/sub 4/ and UF/sub 6/, including UF/sub 4/ (solid and gas), U/sub 4/F/sub 17/ (solid), U/sub 2/F/sub 9/ (solid), UF/sub 5/ (solid and gas), U/sub 2/F/sub 10/ (gas), and UF/sub 6/ (solid, liquid, and gas). Included are thermal function - the heat capacity, enthalpy, and free energy function, heats of formation, and vaporization behavior.

  12. Niobium electrodeposition from molten fluorides

    International Nuclear Information System (INIS)

    Sartori, A.F.

    1987-01-01

    Niobium electrodeposition from molten alkali fluorides has been studied aiming the application of this technic to the processes of electrorefining and galvanotechnic of this metal. The effects of current density, temperature, niobium concentration in the bath, electrolysis time, substrate nature, ratio between anodic and cathodic areas, electrodes separation and the purity of anodes were investigated in relation to the cathodic current efficiency, electrorefining, electroplating and properties of the deposit and the electrolytic solution. The work also gives the results of the conctruction and operation of a pilot plant for refractory metals electrodeposition and shows the electrorefining and electroplating compared to those obtained at the laboratory scale. (author) [pt

  13. Measurement of fluoride in bone

    International Nuclear Information System (INIS)

    Mernagh, J.R.; Harrision, J.E.; Hancock, R.; McNeill, K.G.

    1977-01-01

    The fluorine concentration in bone biopsy samples was measured by neutron activation analysis. The fluorine content was expressed in terms of the calcium content. Samples were irradiated in a reactor to induce the 19 F(n,γ) 20 F and 48 Ca(n,γ) 49 Ca reactions and after rapid transport from the reactor the resulting activities were measured with a Ge(Li) detector. Reproducibility was better than 10% for the F/Ca ratio. The detection limit for F is 50 μg. This nondestructive technique will be used to assess the effect of fluoride therapy on bone metabolism of patients with idiopathic osteoporosis. (author)

  14. Determination of Fluoride in Different Toothpaste Formulations

    International Nuclear Information System (INIS)

    Kamau, N.G.; Njoroge, M.; Njau, M.

    1998-01-01

    Fluoride ion selective electrode was used to determine fluoride ion concentrations in seven brands of toothpaste. These were the only available formulations found in Kenya. The brands were classified into three groups-fluoridated, non fluoridated or not indicated. However, there was no independent indication of their quantitative composition. The analysed brands had fluoride content between 0.0033% and 0.096%. These values compared favourably with those obtained elsewhere. The calculated lowest limit of detection (LLD) was 0.01 ppmF- . The mean calibration curve gave a slope of of -50.0mV. which was not significantly different from the theoretical value of 5.88mV at 23 degrees celsius at 95% confidence level

  15. Inhibition of cellular oxidation by fluoride

    Energy Technology Data Exchange (ETDEWEB)

    Borei, H

    1945-01-01

    An attempt has been made to investigate the inhibition by fluoride of the oxidative processes which occur in the cell by way of the cytochrome oxidase-cytochrome system. Some chemical and physical properties of the fluoride ion are discussed, together with certain quantitative methods for the determination of fluoride. An exhaustive review of the literature concerning the effect of fluoride on enzymic processes has been compiled. The experiments have shown that the point of the attack by fluoride is to be found among the cytochromes. The inhibitory mechanism appears to be such that the haemoprotein is prevented from taking part in the preceding and succeeding links in the reaction chain. The blocking action leaves the prosthetic group of the haemoprotein completely unchanged. The experimental results indicate the formation of a fluorophosphoprotein complex, analogous to that found in the case of enolase. Magnesium may possibly play a part in this process.

  16. Inducing β Phase Crystallinity in Block Copolymers of Vinylidene Fluoride with Methyl Methacrylate or Styrene

    Directory of Open Access Journals (Sweden)

    Nahal Golzari

    2017-07-01

    Full Text Available Block copolymers of poly(vinylidene fluoride (PVDF with either styrene or methyl methacrylate (MMA were synthesized and analyzed with respect to the type of the crystalline phase occurring. PVDF with iodine end groups (PVDF-I was prepared by iodine transfer polymerization either in solution with supercritical CO2 or in emulsion. To activate all iodine end groups Mn2(CO10 is employed. Upon UV irradiation Mn(CO5 radicals are obtained, which abstract iodine from PVDF-I generating PVDF radicals. Subsequent polymerization with styrene or methyl methacrylate (MMA yields block copolymers. Size exclusion chromatography and NMR results prove that the entire PVDF-I is converted. XRD, FT-IR, and differential scanning calorimetry (DSC analyses allow for the identification of crystal phase transformation. It is clearly shown that the original α crystalline phase of PVDF-I is changed to the β crystalline phase in case of the block copolymers. For ratios of the VDF block length to the MMA block length ranging from 1.4 to 5 only β phase material was detected.

  17. Single-Step Fabrication Using a Phase Inversion Method of Poly(vinylidene fluoride) (PVDF) Activated Carbon Air Cathodes for Microbial Fuel Cells

    KAUST Repository

    Yang, Wulin; He, Weihua; Zhang, Fang; Hickner, Michael A.; Logan, Bruce E.

    2014-01-01

    Air cathodes used in microbial fuel cells (MFCs) need to have high catalytic activity for oxygen reduction, but they must also be easy to manufacture, inexpensive, and watertight. A simple one-step, phase inversion process was used here to construct

  18. Preparation and performance of a novel gel polymer electrolyte based on poly(vinylidene fluoride)/graphene separator for lithium ion battery

    International Nuclear Information System (INIS)

    Liu, Jiuqing; Wu, Xiufeng; He, Junying; Li, Jie; Lai, Yanqing

    2017-01-01

    Poly(vinylidenefluoride)/graphene (PVDF/graphene) gel polymer electrolyte is prepared via non-solvent induced phase separation (NIPS) technique for lithium ion battery application. The effect of graphene on the ion conductivity is investigated by AC impedance measurement. The relationship among the chemical structure, PVDF crystallinity, the graphene on macroporous formation and the ion conductivity are investigated. The results indicate that the graphene disperses homogenously in PVDF, and it also increases the porosity and decreases the crystallinity of the PVDF. At the same time, the unique structure increases the liquid uptake capability of PVDF/graphene polymer electrolyte. The ionic conductivity of the PVDF/graphene polymer electrolyte increases significantly from 1.85 mS cm"−"1 in pristine PVDF to 3.61 mS cm"−"1 with 0.002 wt% graphene. It is found that graphene not only increases the ionic conductivity but also markedly enhances the rate capability and the cycling performances of coin cell. This study shows that PVDF/graphene gel polymer electrolyte is a very promising material for lithium ion batteries.

  19. Lead free Bi0.5Na0.5TiO3 (BNT) and polyvinylidene fluoride (PVDF) based nanocomposite for energy storage applications

    Science.gov (United States)

    Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Kar, Manoranjan

    2018-05-01

    Novel ceramic-polymer nanocomposites have great potential for electrical energy storage applications due to its high energy storage density. In the present work, BNT and PVDF based flexible polymer nanocomposites (BNT-PVDF) with different volume fraction (ϕ = 0, 5, 10, 15) were fabricated by solution casting method. Enhancement in beta phase of PVDF polymer matrix with the volume fraction (ϕ = 5, 10, 15) of BNT has been confirmed by X-ray diffraction (XRD) technique as well as Fourier transform infrared (FTIR) spectroscopy analysis. The enhancement of β phase increases as compared to (α) phases with volume fraction (ϕ) of nanofiller (BNT) in the matrix (PVDF) due to internal stress at the interface as well as structural modification of PVDF matrix. BNT-PVDF nanocomposites (with ϕ=10) showed a high dielectric constant (ɛr ≈ 78) relative to pure PVDF (ɛr ≈ 10) at 100 Hz. In addition to this, it exhibits relaxor type ferroelectric behavior with energy storage efficiency up to 77% for the volume fraction (ϕ) of 10.

  20. Studies on the comparative effect of sodium fluoride on collagen ...

    African Journals Online (AJOL)

    Fluoride is an essential element for the normal development and growth of human beings. The main source of fluoride for humans is the intake of groundwater. At high levels, fluoride causes dental and skeletal fluorosis. In this study, control and sodium fluoride (NaF) treated groups of rats had significant (p < 0.05) higher ...

  1. Dimerization Products of Chloroprene are Background Contaminants Emitted from ALTEF (Polyvinylidene Difluoride) Gas Sampling Bags.

    Science.gov (United States)

    Kwak, Jae; Fan, Maomian; Martin, Jennifer A; Ott, Darrin K; Grigsby, Claude C

    2017-01-01

    Gas sampling bags have been used for collecting air samples. Tedlar bags are most commonly used, but bleed background chemicals such as N,N-dimethylacetamide and phenol. It is often necessary to remove the contaminant by flushing the bags with pure nitrogen or air. In this study, we identified four chloroprene dimerization products as background contaminants emitted from ALTEF bags that are made of a proprietary polyvinylidene difluoride (PVDF). No monomer chloroprene was detected in the bags analyzed. All of the dimers gradually increased once bags were filled with nitrogen due to diffusion from the bag surface. Flushing the bags with nitrogen reduced their concentrations, but was not effective for removing the contaminants. When the bags that had been flushed with nitrogen 5 times were left for 24 h, they increased again, indicating that the dimers were constantly emitted from the ALTEF bag surface. To our knowledge, these compounds have never been demonstrated in ALTEF or other PVDF bags. Our finding indicates that ALTEF might be incorporated with Neoprene (chloroprene-based polymer) during its manufacturing process.

  2. A procedure for Alcian blue staining of mucins on polyvinylidene difluoride membranes.

    Science.gov (United States)

    Dong, Weijie; Matsuno, Yu-ki; Kameyama, Akihiko

    2012-10-16

    The isolation and characterization of mucins are critically important for obtaining insight into the molecular pathology of various diseases, including cancers and cystic fibrosis. Recently, we developed a novel membrane electrophoretic method, supported molecular matrix electrophoresis (SMME), which separates mucins on a polyvinylidene difluoride (PVDF) membrane impregnated with a hydrophilic polymer. Alcian blue staining is widely used to visualize mucopolysaccharides and acidic mucins on both blotted membranes and SMME membranes; however, this method cannot be used to stain mucins with a low acidic glycan content. Meanwhile, periodic acid-Schiff staining can selectively visualize glycoproteins, including mucins, but is incompatible with glycan analysis, which is indispensable for mucin characterizations. Here we describe a novel staining method, designated succinylation-Alcian blue staining, for visualizing mucins on a PVDF membrane. This method can visualize mucins regardless of the acidic residue content and shows a sensitivity 2-fold higher than that of Pro-Q Emerald 488, a fluorescent periodate Schiff-base stain. Furthermore, we demonstrate the compatibility of this novel staining procedure with glycan analysis using porcine gastric mucin as a model mucin.

  3. Evaluation of toxic action of fluorides on agricultural plants

    Directory of Open Access Journals (Sweden)

    V. N. Grishko

    2007-03-01

    Full Text Available The toxicity of potassium fluoride, sodium fluoride and ammonium fluoride for pea, maize, oat and onion was studied. It was found that the level of the toxic influence had grown with increase of fluoride concentration in the media of growth (from 5 to 100 mg of F–/l. By increase of the toxic influence the agricultural crops are disposed in the following row: oat < onion < maize < pea. Ammonium fluoride demonstrates lesser toxicity, than potassium and sodium fluorides. Under low concentrations of fluoride compounds (5 and 10 mg of F–/l stimulation of roots growth is noted only for the oat.

  4. Physiologic Conditions Affect Toxicity of Ingested Industrial Fluoride

    Directory of Open Access Journals (Sweden)

    Richard Sauerheber

    2013-01-01

    Full Text Available The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings.

  5. Physiologic conditions affect toxicity of ingested industrial fluoride.

    Science.gov (United States)

    Sauerheber, Richard

    2013-01-01

    The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity from ingestion is distinct from fully soluble toxic industrial fluorides. The toxicity of fluoride is determined by environmental conditions and the positive cations present. At a pH typical of gastric juice, fluoride is largely protonated as hydrofluoric acid HF. Industrial fluoride ingested from treated water enters saliva at levels too low to affect dental caries. Blood levels during lifelong consumption can harm heart, bone, brain, and even developing teeth enamel. The widespread policy known as water fluoridation is discussed in light of these findings.

  6. Current status of fluoride volatility method development

    Energy Technology Data Exchange (ETDEWEB)

    Uhlir, J.; Marecek, M.; Skarohlid, J. [UJV - Nuclear Research Institute, Research Centre Rez, CZ-250 68 Husinec - Rez 130 (Czech Republic)

    2013-07-01

    The Fluoride Volatility Method is based on a separation process, which comes out from the specific property of uranium, neptunium and plutonium to form volatile hexafluorides whereas most of fission products (mainly lanthanides) and higher transplutonium elements (americium, curium) present in irradiated fuel form nonvolatile tri-fluorides. Fluoride Volatility Method itself is based on direct fluorination of the spent fuel, but before the fluorination step, the removal of cladding material and subsequent transformation of the fuel into a powdered form with a suitable grain size have to be done. The fluorination is made with fluorine gas in a flame fluorination reactor, where the volatile fluorides (mostly UF{sub 6}) are separated from the non-volatile ones (trivalent minor actinides and majority of fission products). The subsequent operations necessary for partitioning of volatile fluorides are the condensation and evaporation of volatile fluorides, the thermal decomposition of PuF{sub 6} and the finally distillation and sorption used for the purification of uranium product. The Fluoride Volatility Method is considered to be a promising advanced pyrochemical reprocessing technology, which can mainly be used for the reprocessing of oxide spent fuels coming from future GEN IV fast reactors.

  7. Application of Titanium Compounds to Reduce Fluoride Ion in Water Resources with High Fluoride Ion Contents

    Directory of Open Access Journals (Sweden)

    Fariborz Riahi

    2005-06-01

    Full Text Available The present work describes studies on the sorption of fluoride ions from water by titanium compounds used in water treatment to reduce fluoride content in water resources. There are different methods of reducing fluoride ion in water, each associated with specific problems such as secondary contamination, environmental contamination, high costs, or the need for primary and secondary treatment. In this study, application of titanium sulfate and Metatitanic acid produced from titanium ore concentrate (ileminite is investigated in the removal of fluoride ion and the possibility of complete purification of fluorine containing wastewater is examined to determine the optimal conditions. Metatitanic acid has a great sorption property for fluoride ion. Also titanium sulfate is a suitable and more effective material for this purpose. Efficiency of this material in reducing fluoride ion content is 99.9% and it is possible to refresh sorbet material for reuse without problems arising from Ti+4 ion contamination.

  8. New Insight on the Response of Bacteria to Fluoride

    OpenAIRE

    Breaker, R.R.

    2012-01-01

    Fluoride has been used for decades to prevent caries and it is well established that this anion can inhibit the growth of bacteria. However, the precise effects that fluoride has on bacteria and the mechanisms that bacteria use to overcome fluoride toxicity have largely remained unexplored. Recently, my laboratory reported the discovery of biological systems that bacteria use to sense fluoride and reduce fluoride toxicity. These sensors and their associated genes are very widespread in biolog...

  9. Physiologic Conditions Affect Toxicity of Ingested Industrial Fluoride

    OpenAIRE

    Richard Sauerheber

    2013-01-01

    The effects of calcium ion and broad pH ranges on free fluoride ion aqueous concentrations were measured directly and computed theoretically. Solubility calculations indicate that blood fluoride concentrations that occur in lethal poisonings would decrease calcium below prevailing levels. Acute lethal poisoning and also many of the chronic effects of fluoride involve alterations in the chemical activity of calcium by the fluoride ion. Natural calcium fluoride with low solubility and toxicity ...

  10. Potential fluoride toxicity from oral medicaments: A review

    OpenAIRE

    Rizwan Ullah; Muhammad Sohail Zafar; Nazish Shahani

    2017-01-01

    The beneficial effects of fluoride on human oral health are well studied. There are numerous studies demonstrating that a small amount of fluoride delivered to the oral cavity decreases the prevalence of dental decay and results in stronger teeth and bones. However, ingestion of fluoride more than the recommended limit leads to toxicity and adverse effects. In order to update our understanding of fluoride and its potential toxicity, we have described the mechanisms of fluoride metabolism, tox...

  11. Eukaryotic resistance to fluoride toxicity mediated by a widespread family of fluoride export proteins

    OpenAIRE

    Li, Sanshu; Smith, Kathryn D.; Davis, Jared H.; Gordon, Patricia B.; Breaker, Ronald R.; Strobel, Scott A.

    2013-01-01

    Although fluoride is plentiful in the environment and is commonly used at high concentrations in oral hygiene products, little has been known about how biological systems overcome the toxic effects of this anion. We demonstrate that a protein called FEX in many fungi is essential for cell survival in the presence of high fluoride concentrations. The protein is required for the rapid expulsion of cytoplasmic fluoride, indicating that many eukaryotic species that carry FEX genes likely avoid fl...

  12. No calcium-fluoride-like deposits detected in plaque shortly after a sodium fluoride mouthrinse.

    Science.gov (United States)

    Vogel, G L; Tenuta, L M A; Schumacher, G E; Chow, L C

    2010-01-01

    Plaque 'calcium-fluoride-like' (CaF(2)-like) and fluoride deposits held by biological/bacterial calcium fluoride (Ca-F) bonds appear to be the source of cariostatic concentrations of fluoride in plaque fluid. The aim of this study was to quantify the amounts of plaque fluoride held in these reservoirs after a sodium fluoride rinse. 30 and 60 min after a 228 microg/g fluoride rinse, plaque samples were collected from 11 volunteers. Each sample was homogenized, split into 2 aliquots (aliquots 1 and 2), centrifuged, and the recovered plaque fluid combined and analyzed using microelectrodes. The plaque mass from aliquot 1 was retained. The plaque mass from aliquot 2 was extracted several times with a solution having the same fluoride, calcium and pH as the plaque fluid in order to extract the plaque CaF(2)-like deposits. The total fluoride in both aliquots was then determined. In a second experiment, the extraction completeness was examined by applying the above procedure to in vitro precipitates containing known amounts of CaF(2)-like deposits. Nearly identical fluoride concentrations were found in both plaque aliquots. The extraction of the CaF(2)-like precipitates formed in vitro removed more than 80% of these deposits. The results suggest that either CaF(2)-like deposits were not formed in plaque or, if these deposits had been formed, they were rapidly lost. The inability to form persistent amounts of CaF(2)-like deposits in plaque may account for the relatively rapid loss of plaque fluid fluoride after the use of conventional fluoride dentifrices or rinses. (c) 2010 S. Karger AG, Basel.

  13. Fluoride releasing and enamel demineralization around orthodontic brackets by fluoride-releasing composite containing nanoparticles.

    Science.gov (United States)

    Melo, Mary A S; Morais, Weslanny A; Passos, Vanara F; Lima, Juliana P M; Rodrigues, Lidiany K A

    2014-05-01

    Fluoride-containing materials have been suggested to control enamel demineralization around orthodontic brackets during the treatment with fixed appliances. The improvement of their properties has been made through innovations, such as the application of nanotechnology by incorporation of nanofillers. This in vitro study evaluated the capacity of fluoride releasing and enamel demineralization inhibition of fluoride-releasing nanofilled cement around orthodontic brackets using an artificial caries biofilm model. Forty bovine enamel discs were selected by evaluating surface microhardness and randomized into four groups (n = 10): non-fluoride-releasing microfilled composite, fluoride-releasing microfilled composite, resin-modified glass ionomer cement (RMGI), and fluoride-releasing nanofilled composite (FN). After brackets bonding in each disc, the specimens were subjected to a cariogenic challenge through a Streptococcus mutans biofilm model. After the experimental period, the biofilm formed around the brackets was collected for fluoride analysis and the mineral loss around the brackets was determined by integrated demineralization via cross-sectional microhardness measurement at 20 and 70 μm from the bracket margin. Additionally, samples of each group were subjected to energy-dispersive X-ray spectroscopy (EDX) analysis examined under a scanning electron microscopy (SEM). ANOVA followed by Tukey test were applied for fluoride concentration and mineral loss data, respectively. At both distances, only RMGI statistically differed from the other groups presenting the lowest demineralization, although there was a trend to a lower demineralization of enamel around brackets in FN group. Similar condition was found to fluoride concentration and EDX/SEM analysis. Under the cariogenic exposure condition of this study, the fluoride-releasing nanofilled material had similar performance to fluoride-releasing microfilled materials. The presence of nanofillers in the fluoride

  14. Fluoride exposure and indicators of thyroid functioning in the Canadian population: implications for community water fluoridation.

    Science.gov (United States)

    Barberio, Amanda M; Hosein, F Shaun; Quiñonez, Carlos; McLaren, Lindsay

    2017-10-01

    There are concerns that altered thyroid functioning could be the result of ingesting too much fluoride. Community water fluoridation (CWF) is an important source of fluoride exposure. Our objectives were to examine the association between fluoride exposure and (1) diagnosis of a thyroid condition and (2) indicators of thyroid functioning among a national population-based sample of Canadians. We analysed data from Cycles 2 and 3 of the Canadian Health Measures Survey (CHMS). Logistic regression was used to assess associations between fluoride from urine and tap water samples and the diagnosis of a thyroid condition. Multinomial logistic regression was used to examine the relationship between fluoride exposure and thyroid-stimulating hormone (TSH) level (low/normal/high). Other available variables permitted additional exploratory analyses among the subset of participants for whom we could discern some fluoride exposure from drinking water and/or dental products. There was no evidence of a relationship between fluoride exposure (from urine and tap water) and the diagnosis of a thyroid condition. There was no statistically significant association between fluoride exposure and abnormal (low or high) TSH levels relative to normal TSH levels. Rerunning the models with the sample constrained to the subset of participants for whom we could discern some source(s) of fluoride exposure from drinking water and/or dental products revealed no significant associations. These analyses suggest that, at the population level, fluoride exposure is not associated with impaired thyroid functioning in a time and place where multiple sources of fluoride exposure, including CWF, exist. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Effect of ageing in the electrolyte and water on porous anodic films on zirconium

    Energy Technology Data Exchange (ETDEWEB)

    Muratore, F.; Hashimoto, T.; Skeldon, P., E-mail: peter.skeldon@manchester.ac.uk; Thompson, G.E.

    2011-06-15

    Highlights: Porous anodic films are formed on zirconium consisting of nanotubes embedded in a fluoride-rich matrix. {yields}Ageing in the formation electrolyte transforms the films from porous to nanotubular. Ageing causes losses of zirconium and fluorine, due to dissolution of the matrix. Ageing in water has negligible influence on the film composition and the film morphology. - Abstract: The present study demonstrates the significant influence of ageing in the formation electrolyte on the morphology and composition of anodic films grown on zirconium in 0.35 M ammonium fluoride in glycerol. Ageing after anodizing, by immersion in the electrolyte for 1 h, is shown to promote a transition from a porous to a nanotubular morphology, due to the dissolution of the fluoride-rich intratubular material in which the nanotubes are embedded. The morphological change is accompanied by a significant loss of zirconium and fluorine from the film. In contrast, ageing in deionized water has little influence on the films.

  16. Method for identifying particulate fluoride compounds

    Energy Technology Data Exchange (ETDEWEB)

    Tufts, B J

    1960-01-01

    A method is described for identifying particulates containing fluorides and other complex fluorine compounds such as fluorosilicate in samples collected on membrane filters. The filter is treated with lead chloride to precipitate lead chlorofluoride at each fluoride-containing spot. This microspot is identified by examination in a light microscope. Sulfate and phosphate, which also precipitate if present, can be distinguished and do not interfere. Calibrations are given for the fluorides and the more insoluble salts, relating the original particle size to the reaction site size. Thus, the mass of the particles can be calculated. Results of some field tests in an area of fluoride pollution are given, and compared with standard testing procedures.

  17. Removal of fluoride from aqueous nitric acid

    International Nuclear Information System (INIS)

    Pruett, D.J.; Howerton, W.B.; Mailen, J.C.

    1981-06-01

    Several methods for removing fluoride from aqueous nitric acid were investigated and compared with the frequently used aluminum nitrate-calcium nitrate (Ca 2+ -Al 3+ ) chemical trap-distillation system. Zirconium oxynitrate solutions were found to be superior in preventing volatilization of fluoride during distillation of the nitric acid, producing decontamination factors (DFs) on the order of 2 x 10 3 (vs approx. 500 for the Ca 2+ -Al 3+ system). Several other metal nitrate systems were tested, but they were less effective. Alumina and zirconia columns proved highly effective in removing HF from HF-HNO 3 vapors distilled through the columns; fluoride DFs on the order of 10 6 and 10 4 , respectively, were obtained. A silica gel column was very effective in adsorbing HF from HF-HNO 3 solutions, producing a fluoride DF of approx. 10 4

  18. Spectrophotometric determination of fluoride with alizarin complexone

    Energy Technology Data Exchange (ETDEWEB)

    Marczenko, Z; Lenarczyk, L [Politechnika Warszawska (Poland)

    1976-01-01

    The modification of direct spectrophotometric method of fluoride determination by alizarin complexone has been developed. It was shown that the lanthanum alizarin complexone chelate is more convenient than that of cerium (3). The influence of acetone, dioxane and dimethyl sulphoxide in water solution on the increase of sensitivity of the method and the rate of colour reaction has been determined. The optimal pH ranges for the reaction with lanthanum and cerium (3) have been estimated. Some amines having a large molecule are useful for extraction of blue fluoride complex with isobutanol. Dioctylamine was applied in a new extraction spectrophotometric procedure of fluoride determination. Conditions in reagent have been established. Both variants of the method have been applied to the fluoride determination in several chemicals. The obtained results show a good precision and accuracy.

  19. Fluoride method for silicon determination i silicovadium

    International Nuclear Information System (INIS)

    Komarnitskaya, N.N.; Sergeev, K.I.; Shamraj, Z.Ya.

    1977-01-01

    The method used was based on formation of a silicon-potassium fluoride-sodium sediment in strongly acid medium in the presence of excess potassium chloride which decreased the sediment solubility. The sediment was dissolved in hot water to titrate the resultant hydrofluoric acid with a caustic potash solution in the presence of phenolphthalein. Gravity hydrochloric and volumetric fluoride methods were used to compare the results of silicon estimation

  20. Fluoride removal from water by nano filtration

    International Nuclear Information System (INIS)

    Bejaoui, Imen; Mnif, Amine; Hamrouni, Bechir

    2009-01-01

    As any oligo element, fluoride is necessary and beneficial for human health to low concentrations, but an excess amount of fluoride ions in drinking water has been known to cause undesirable effects, especially tooth and bones fluoro sis. The maximum acceptable concentration of fluoride in drinking water was fixed by the World Health Organization according to the climate in the range of 1 mg.L -1 to 1,2 mg.L -1 . Many methods have been used to remove fluoride from water such as precipitation, adsorption, electrocoagulation and membrane processes. Technologies using membrane processes are being used in many applications, particularly for brackish water desalination. Nano filtration seems to be the best process for a good selective defluorination of fluorinated waters. The main objective of this work was to investigate the retention of fluoride anions by nano filtration. The first part of this study deals with the characterisation of the NF HL2514TF membrane. The influence of various experimental parameters such as initial fluoride content, feed pressure, permeate flux, ionic strength, type of cation associated to fluoride and pH were studied in the second part. Results show that the retention order for the salts tested was TR(Na 2 SO 4 ) > TR(CaCl 2 ) > TR(NaCl), showing a retention sequence inversely proportional to the salt diffusion coefficients in water. It was also shown that charge effects could not be neglected, and a titration experiments confirmed that the NF membrane carry a surplus of negatively charged groups. Fluoride retention exceeds 60 pour cent, and increases with increasing concentration, where the rejection mechanism is related to the dielectric effects. Speigler-Kedem model was applied to experimental results in the aim to determine phenomenological parametersσand P s respectively, the reflexion coefficient of the membrane and the solute permeability of ions. The convective and diffusive parts of the mass transfer were quantified with

  1. Recovery of fluoride ion selective electrode

    International Nuclear Information System (INIS)

    Monteiro, R.P.G.

    1988-01-01

    A recovery procedure of fluoride ion selective electrode based upon the body radiography of inactive electrode and introduction of suitable internal regeneration solution, is developed. The recovered electrode was tested in standard solutions of fluoride ions (10 sup5) to 10 -1M showing as good performance as the new one. The fluor determination by potentiometric measurements with selective electrode is used in nuclear fuel cycle for quality control of thorium and uranium mixed oxide pellets and pellets of uranium dioxides. (author) [pt

  2. Fluoride loaded polymeric nanoparticles for dental delivery.

    Science.gov (United States)

    Nguyen, Sanko; Escudero, Carlos; Sediqi, Nadia; Smistad, Gro; Hiorth, Marianne

    2017-06-15

    The overall aim of the present paper was to develop fluoride loaded nanoparticles based on the biopolymers chitosan, pectin, and alginate, for use in dental delivery. First, the preparation of nanoparticles in the presence of sodium fluoride (NaF) as the active ingredient by ionic gelation was investigated followed by an evaluation of their drug entrapment and release properties. Chitosan formed stable, spherical, and monodisperse nanoparticles in the presence of NaF and tripolyphoshate as the crosslinker, whereas alginate and pectin were not able to form any definite nanostructures in similar conditions. The fluoride loading capacity was found to be 33-113ppm, and the entrapment efficiency 3.6-6.2% for chitosan nanoparticles prepared in 0.2-0.4% (w/w) NaF, respectively. A steady increase in the fluoride release was observed for chitosan nanoparticles prepared in 0.2% NaF both in pH5 and 7 until it reached a maximum at time point 4h and maintained at this level for at least 24h. Similar profiles were observed for formulations prepared in 0.4% NaF; however the fluoride was released at a higher level at pH5. The low concentration, but continuous delivery of fluoride from the chitosan nanoparticles, with possible expedited release in acidic environment, makes these formulations highly promising as dental delivery systems in the protection against caries development. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Well Waters Fluoride in Enugu, Nigeria

    Directory of Open Access Journals (Sweden)

    ISI Ogbu

    2012-03-01

    Full Text Available Abnormal fluoride levels in drinking water have been associated with adverse health effects. To determine the fluoride content of well waters in Enugu, southeastern Nigeria, water samples from 50 artisan wells chosen by multistage sampling procedure from the 5 zones of Enugu municipality were analyzed in duplicates for their fluoride content. The zonal mean values were 0.60, 0.70, 0.62, 0.62, and 0.63 mg/L for Abakpa Nike, Achara Layout, Obiagu/ Ogui, Trans Ekulu and Uwani, respectively (p<0.05. The mean value for the whole city was 0.63 mg/L. Although, the mean level of fluoride recorded in this study is currently within safe limits (1.5 mg/L, WHO 2011, it is important to monitor continuously the fluoride content of well waters in the municipality in view of the increasing industrial activities going on in the city and heavy reliance on well water for domestic purposes and the widespread use of consumer products containing fluoride.

  4. THE USE OF FLUORIDE AND ITS EFFECT ON HEALTH

    Directory of Open Access Journals (Sweden)

    Domen Kanduti

    2016-07-01

    Full Text Available Appropriate oral health care is fundamental for any individual’s health. Dental caries is still one of the major public health problems. The most effective way of caries prevention is the use of fluoride. Fluoride occurs naturally in our environment and is always present in our lives. However, the concentration differs from area to area. Exposure can occur through diet, respiration and fluoride supplements. During pregnancy, the placenta acts as a barrier. The fluoride, therefore, crosses the placenta in low concentrations. Drinking water in Slovenia is not fluoridated; the amount of naturally present fluoride is very low. Fluoride can be toxic in extremely high concentrations. The most important effect of fluoride on caries incidence is through its role in the process of remineralisation and demineralisation of tooth enamel. The European Academy of Paediatric Dentistry (EAPD recommends a preventive topical use of fluoride supplements because of their cariostatic effect. 

  5. Chemisorption of uranium hexa-fluoride on sodium fluoride pellets

    Energy Technology Data Exchange (ETDEWEB)

    Kalburgi, A K; Sanyal, A; Puranik, V D; Bhattacharjee, B [Chemical Technology Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    This paper comprises kinetics of chemical reaction or rather chemisorption of uranium hexafluoride gas on sodium fluoride pellets. The chemisorption is essentially irreversible at room temperature, while the process reverses at high temperature above 280 deg C. This chemisorption process was experimentally conducted in static condition at room temperature and its kinetics was studied. In the experiments, practically pure UF{sub 6} was used and the effects of gas pressure and weight of NaF pellets, were studied. In this heterogenous reaction, in which diffusion through ash layer is followed by chemical reaction, the reaction part is instantaneous and is first order with respect to gas concentration. Since the process of chemisorption is not only pure chemical reaction but also gas diffusion through ash layer, the rate constant depreciates with the percentage loading of UF{sub 6} on NaF pellets. The kinetic equation for the above process has been established for a particular size of NaF pellets and pellet porosity. (author). 5 refs., 3 figs., 3 tabs.

  6. Fluoride release and recharge abilities of contemporary fluoride-containing restorative materials and dental adhesives.

    Science.gov (United States)

    Dionysopoulos, Dimitrios; Koliniotou-Koumpia, Eugenia; Helvatzoglou-Antoniades, Maria; Kotsanos, Nikolaos

    2013-01-01

    The aim of this study was to evaluate the fluoride release of five fluoride-releasing restorative materials and three dental adhesives, before and after NaF solution treatment. Five restorative materials (Fuji IX GP, GC Corp.; Ketac N100, 3M ESPE; Dyract Extra, Dentsply; Beautifil II, Shofu Inc.; Wave, SDI) and three dental adhesives (Stae, SDI; Fluorobond II - Shofu Inc.; Prime & Bond NT, Dentsply) were investigated before and after NaF solution treatment. A fluoride ion-selective electrode was to measure fluoride concentrations. During the 86-day period before NaF solution treatment, Fuji IX GP released the highest amount of fluoride among the restorative materials while Prime & Bond NT was the highest among the dental adhesives. After NaF solution treatment, Fuji IX GP again ranked the highest in fluoride release among the restorative materials while Fluorobond II ranked the highest among dental adhesives. It was concluded that the compositions and setting mechanisms of fluoride-containing dental materials influenced their fluoride release and recharge abilities.

  7. Effect of titanium tetrafluoride, amine fluoride and fluoride varnish on enamel erosion in vitro

    NARCIS (Netherlands)

    Vieira, A; Ruben, JL; Huysmans, MCDNJM

    2005-01-01

    This study aimed at evaluating the effect of 1 and 4% titanium tetrafluoride (TiF4) gels, amine fluoride (AmF) 1 and 0.25% and a fluoride varnish (FP) on the prevention of dental erosion. Two experimental groups served as controls, one with no pretreatment and another one pre-treated with a

  8. Daily Fluoride Intake from Iranian Green Tea: Evaluation of Various Flavorings on Fluoride Release

    Directory of Open Access Journals (Sweden)

    Afshin Maleki

    2016-01-01

    Full Text Available With increased awareness of the health benefits of the compounds in green tea, especially polyphenols, its consumption is rising. The main purpose of this study is to determine the effect of different additives on the released fluoride into tea liquor and also daily fluoride intake. The concentrations of fluoride, nitrate, sulfate, and chloride were measured in 15 different flavored green teas (Refah-Lahijan. The fluoride and other anion concentrations were measured by ion chromatography method. The data were analyzed with Statistical Package for the Social Sciences version 16.0. The results showed that the minimum and maximum concentrations of fluoride in the green tea infusions were 0.162 mg/L (cinnamon-flavored green tea and 3.29 mg/L (bagged peach-flavored green tea, respectively. The mean concentration of fluoride in the green tea leaves was 52 mg/kg, and approximately 89% of the fluoride was released from the green tea leaves into the infusions after brewing. The fluoride concentrations varied significantly among the examined green teas ( P 0.05. Finally, drinking of the studied green teas cannot make a significant contribution to the daily dietary intake of F for consumers.

  9. Fluoride release, recharge and flexural properties of polymethylmethacrylate containing fluoridated glass fillers.

    Science.gov (United States)

    Al-Bakri, I A; Swain, M V; Naoum, S J; Al-Omari, W M; Martin, E; Ellakwa, A

    2014-06-01

    The purpose of this study was to investigate the effect of fluoridated glass fillers on fluoride release, recharge and the flexural properties of modified polymethylmethacrylate (PMMA). Specimens of PMMA denture base material with various loading of fluoridated glass fillers (0%, 1%, 2.5%, 5% and 10% by weight) were prepared. Flexural properties were evaluated on rectangular specimens (n = 10) aged in deionized water after 24 hours, 1 and 3 months. Disc specimens (n = 10) were aged for 43 days in deionized water and lactic acid (pH 4.0) and fluoride release was measured at numerous intervals. After ageing, specimens were recharged and fluoride re-release was recorded at 1, 3 and 7 days after recharge. Samples containing 2.5%, 5% and 10% glass fillers showed significantly (p glass fillers specimens. All experimental specimens exhibited fluoride release in both media. The flexural strength of specimens decreased in proportion to the percentage filler inclusion with the modulus of elasticity values remaining within ISO Standard 1567. The modified PMMA with fluoridated glass fillers has the ability to release and re-release fluoride ion. Flexural strength decreased as glass filler uploading increased. © 2014 Australian Dental Association.

  10. Fluoride release and cariostatic potential of orthodontic adhesives with and without daily fluoride rinsing.

    NARCIS (Netherlands)

    Chin, M.Y.; Sandham, A.; Rumachik, E.N.; Ruben, J.L.; Huysmans, M.C.D.N.J.M.

    2009-01-01

    INTRODUCTION: In this study, we aimed to evaluate the fluoride-release profiles and caries lesion development in an enamel model with brackets cemented with 4 orthodontic adhesives with and without daily fluoride exposure. METHODS: Four orthodontic adhesives (Ketac Cem mu, 3M ESPE, Seefeld, Germany;

  11. Fluoride release and cariostatic potential of orthodontic adhesives with and without daily fluoride rinsing

    NARCIS (Netherlands)

    Chin, Yeen; Sandham, John; Rumachik, Elena N.; Ruben, Jan L.; Huysmans, Marie-Charlotte D. N. J. M.

    2009-01-01

    Introduction: In this study, we aimed to evaluate the fluoride-release profiles and caries lesion development in an enamel model with brackets cemented with 4 orthodontic adhesives with and without daily fluoride exposure. Methods: Four orthodontic adhesives (Ketac Cem mu, 3M ESPE, Seefeld, Germany;

  12. Desorption/ablation of lithium fluoride induced by extreme ultraviolet laser radiation

    Directory of Open Access Journals (Sweden)

    Blejchař Tomáš

    2016-06-01

    Full Text Available The availability of reliable modeling tools and input data required for the prediction of surface removal rate from the lithium fluoride targets irradiated by the intense photon beams is essential for many practical aspects. This study is motivated by the practical implementation of soft X-ray (SXR or extreme ultraviolet (XUV lasers for the pulsed ablation and thin film deposition. Specifically, it is focused on quantitative description of XUV laser-induced desorption/ablation from lithium fluoride, which is a reference large band-gap dielectric material with ionic crystalline structure. Computational framework was proposed and employed here for the reconstruction of plume expansion dynamics induced by the irradiation of lithium fluoride targets. The morphology of experimentally observed desorption/ablation craters were reproduced using idealized representation (two-zone approximation of the laser fluence profile. The calculation of desorption/ablation rate was performed using one-dimensional thermomechanic model (XUV-ABLATOR code taking into account laser heating and surface evaporation of the lithium fluoride target occurring on a nanosecond timescale. This step was followed by the application of two-dimensional hydrodynamic solver for description of laser-produced plasma plume expansion dynamics. The calculated plume lengths determined by numerical simulations were compared with a simple adiabatic expansion (blast-wave model.

  13. Electrodeposition of some metals and niobium superconducting alloys from molten fluorides

    International Nuclear Information System (INIS)

    Cohen, U.

    1978-01-01

    The major goal of this thesis was to study the feasibility of electrodeposition from molten fluorides of the pure elements niobium, aluminium, tin, germanium and silicon, and the niboium superconducting intermetallic compounds with these elements, and to prepare and study films of these materials in the form of coherent and uniform coatings. Decomposition potential measurements with a gold anode were carried out on the alkali fluoride solvent and the fluoride salt solutions of niobium, aluminum, tin, and germanium to provide important initial thermodynamic data. Attempts to codeposit niobium and aluminum invariably failed, niobium being the exclusive deposit in all cases. Codeposition of niobium--tin alloys was demonstrated. Of the four intermetallic compounds of the niobium--germanium system, three were obtained as single-phase coatings. The superconducting compound (A15 phase) was not successfully electrodeposited in a single-phase form. It was obtained, however, in phase-mixture coatings. Application of alternating square wave pulses produced substantial changes in the morphology of niobium deposits. Silicon electrocrystallization epitaxy (ECE) was demonstrated for the first time. Uniform, coherent, and well adherent coatings of polycrystalline Si with a grain diameter of up to 40 to 50 μm were plated onto nonalloying metal substrates, such as silver and tungsten.These processes offer some attractive features for both integrated circuit technology and silicon solar cell fabrication. Aluminum, tin, and germanium were also electrodeposited from molten fluorides

  14. Oral fluoride levels 1 h after use of a sodium fluoride rinse: effect of sodium lauryl sulfate.

    Science.gov (United States)

    Vogel, Gerald L; Schumacher, Gary E; Chow, Laurence C; Tenuta, Livia M A

    2015-01-01

    Increasing the concentration of free fluoride in oral fluids is an important goal in the use of topical fluoride agents. Although sodium lauryl sulfate (SLS) is a common dentifrice ingredient, the influence of this ion on plaque fluid and salivary fluid fluoride has not been examined. The purpose of this study was to investigate the effect of SLS on these parameters and to examine the effect of this ion on total (or whole) plaque fluoride, an important source of plaque fluid fluoride after a sufficient interval following fluoride administration, and on total salivary fluoride, a parameter often used as a surrogate measure of salivary fluid fluoride. Ten subjects accumulated plaque for 48 h before rinsing with a 12 mmol/l NaF (228 µg/g F) rinse containing or not containing 0.5% (w/w) SLS. SLS had no statistically significant effect on total plaque and total saliva fluoride but significantly increased salivary fluid and plaque fluid fluoride (by 147 and 205%, respectively). These results suggest that the nonfluoride components of topical agents can be manipulated to improve the fluoride release characteristics from oral fluoride reservoirs and that statistically significant change may be observed in plaque fluid and salivary fluid fluoride concentrations that may not be observed in total plaque and total saliva fluoride concentrations.

  15. Widespread genetic switches and toxicity resistance proteins for fluoride.

    Science.gov (United States)

    Baker, Jenny L; Sudarsan, Narasimhan; Weinberg, Zasha; Roth, Adam; Stockbridge, Randy B; Breaker, Ronald R

    2012-01-13

    Most riboswitches are metabolite-binding RNA structures located in bacterial messenger RNAs where they control gene expression. We have discovered a riboswitch class in many bacterial and archaeal species whose members are selectively triggered by fluoride but reject other small anions, including chloride. These fluoride riboswitches activate expression of genes that encode putative fluoride transporters, enzymes that are known to be inhibited by fluoride, and additional proteins of unknown function. Our findings indicate that most organisms are naturally exposed to toxic levels of fluoride and that many species use fluoride-sensing RNAs to control the expression of proteins that alleviate the deleterious effects of this anion.

  16. Nanofiber production of poly (vinylidene fluoride) / hexaferrite, obtained by Blow Spinning Technique

    International Nuclear Information System (INIS)

    Dias, G.C.; Zadorosny, L.; Malmonge, J.A.; Malmonge, L.F.

    2014-01-01

    In this study, fibrous films of poly (vinylidene fluoride) - PVDF with barium hexaferrite particles were obtained by Solution Blow Spinning technique. In such technique, the polymer solution is injected through an inner nozzle which experiences the action of an accelerated flux of gas that drags and stretches the jet solution forming the nanofibers. The films were obtained from solutions of PVDF/DMF (30% w/v), which was incorporated into barium hexaferrite particles in proportions of 1, 3 and 5% (w / w). The results of the micrographs revealed the formation of a fibrous film with good dispersion of the particles. Xray analyzes showed the predominance of the β crystalline phase of PVDF. The increase of the amount of particles induces the appearance of a characteristic peak of PVDF. EDX measurements confirmed the presence of particles in the films. (author)

  17. Influence of the method of fluoride administration on toxicity and fluoride concentrations in Japanese quail

    Science.gov (United States)

    Fleming, W.J.; Schuler, C.A.

    1988-01-01

    Young Japanese quail (Coturnix japonica) were administered NaF for 16 d either in their diet or by esophageal intubation. Based on the total fluoride ion (Emg F-) intake over the l6-d experimental period, fluoride administered by intubation was at least six times more toxic than that fed in the diet. Dietary concentrations of 1,000 ppm F- (Emg F- for 16 d = approx. 144) produced no mortality, whereas intubated doses produced 73% or greater mortality in all groups administered 54 mg F- /kg/d or more (Emg F- for 16 d _ approx. 23 mg). GraphIc companson of the regression of log F- ppm in femurs/mg F- intake showed that fluoride levels in the femurs of quail administered fluoride by intubation were higher than in those administered fluoride in the diet.

  18. A high resolution cross section transmission electron microscopy study of epitaxial rare earth fluoride/GaAs(111) interfaces prepared by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Chien, C.J.; Bravman, J.C.

    1990-01-01

    The authors report the HRXTEM study of epitaxial rare earth fluoride/GaAs(111) interfaces. Such interfaces are of interest because they are the starting point for growth of buried epitaxial rare earth/rare earth fluoride sandwich structures which exhibit interesting and non bulk-like magnetic properties. Also, the optical transitions in ultrathin epitaxial NdF 3 films may be influenced by strain and defects in the NdF 3 film and the nature of the interface to GaAs. The authors find that the rare earth fluoride/GaAs interfaces are semi-coherent but chemically abrupt with the transition taking place within 3 Angstrom. However, the interface is physically rough and multiple monolayer steps in the GaAs surface tend to tilt boundaries in the fluoride. The origin of these steps is believed to be thermal etching of the GaAs during the heat- cleaning stage prior to epitaxy. The surface of the fluoride film is much smoother than the initial GaAs surface indicating planarization during epitaxy

  19. Fabrication of a polyvinylidene difluoride fiber with a metal core and its application as directional air flow sensor

    Science.gov (United States)

    Bian, Yixiang; Liu, Rongrong; Hui, Shen

    2016-09-01

    We fabricated a sensitive air flow detector that mimic the sensing mechanism found at the tail of some insects. [see Y. Yang, A. Klein, H. Bleckmann and C. Liu, Appl. Phys. Lett. 99(2) (2011); J. J. Heys, T. Gedeon, B. C. Knott and Y. Kim, J. Biomech. 41(5), 977 (2008); J. Tao and X. Yu, Smart Mat. Struct. 21(11) (2012)]. Our bionic airflow sensor uses a polyvinylidene difluoride (PVDF) microfiber with a molybdenum core which we produced with the hot extrusion tensile method. The surface of the fiber is partially coated with conductive silver adhesive that serve as surface electrodes. A third electrode, the metal core is used to polarize polyvinylidene difluoride (PVDF) under the surface electrodes. The cantilever beam structure of the prepared symmetric electrodes of metal core piezoelectric fiber (SMPF) is used as the artificial hair airflow sensor. The surface electrodes are used to measure output voltage. Our theoretical and experimental results show that the SMPF responds fast to air flow changes, the output charge has an exponential correlation with airflow velocity and a cosine relation with the direction of airflow. Our bionic airflow sensor with directional sensing ability can also measure air flow amplitude. [see H. Droogendijk, R. G. P. Sanders and G. J. M. Krijnen, New J. Phys. 15 (2013)]. By using two surface electrodes, our sensing circuit further improves sensitivity.

  20. Emissions of fluorides from welding processes.

    Science.gov (United States)

    Szewczyńska, Małgorzata; Pągowska, Emilia; Pyrzyńska, Krystyna

    2015-11-01

    The levels of fluoride airborne particulates emitted from welding processes were investigated. They were sampled with the patented IOM Sampler, developed by J. H. Vincent and D. Mark at the Institute of Occupational Medicine (IOM), personal inhalable sampler for simultaneous collection of the inhalable and respirable size fractions. Ion chromatography with conductometric detection was used for quantitative analysis. The efficiency of fluoride extraction from the cellulose filter of the IOM sampler was examined using the standard sample of urban air particle matter SRM-1648a. The best results for extraction were obtained when water and the anionic surfactant N-Cetyl-N-N-N-trimethylammonium bromide (CTAB) were used in an ultrasonic bath. The limits of detection and quantification for the whole procedure were 8μg/L and 24μg/L, respectively. The linear range of calibration was 0.01-10mg/L, which corresponds to 0.0001-0.1mg of fluorides per m(3) in collection of a 20L air sample. The concentration of fluorides in the respirable fraction of collected air samples was in the range of 0.20-1.82mg/m(3), while the inhalable fraction contained 0.23-1.96mg/m(3) of fluorides during an eight-hour working day in the welding room. Copyright © 2015. Published by Elsevier B.V.

  1. Thermodynamic data-base for metal fluorides

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others

    2001-05-01

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project.

  2. Thermodynamic data-base for metal fluorides

    International Nuclear Information System (INIS)

    Yoo, Jae Hyung; Lee, Byung Gik; Kang, Young Ho and others

    2001-05-01

    This study is aimed at collecting useful data of thermodynamic properties of various metal fluorides. Many thermodynamic data for metal fluorides are needed for the effective development, but no report of data-base was published. Accordingly, the objective of this report is to rearrange systematically the existing thermodynamic data based on metal fluorides and is to use it as basic data for the development of pyrochemical process. The physicochemical properties of various metal fluorides and metals were collected from literature and such existing data base as HSC code, TAPP code, FACT code, JANAF table, NEA data-base, CRC handbook. As major contents of the thermodynamic data-base, the physicochemical properties such as formation energy, viscosity, density, vapor pressure, etc. were collected. Especially, some phase diagrams of eutectic molten fluorides are plotted and thermodynamic data of liquid metals are also compiled. In the future, the technical report is to be used as basic data for the development of the pyrochemical process which is being carried out as a long-term nuclear R and D project

  3. Gramicidin D enhances the antibacterial activity of fluoride.

    Science.gov (United States)

    Nelson, James W; Zhou, Zhiyuan; Breaker, Ronald R

    2014-07-01

    Fluoride is a toxic anion found in many natural environments. One of the major bacterial defenses against fluoride is the cell envelope, which limits passage of the membrane-impermeant fluoride anion. Accordingly, compounds that enhance the permeability of bacterial membranes to fluoride should also enhance fluoride toxicity. In this study, we demonstrate that the pore-forming antibiotic gramicidin D increases fluoride uptake in Bacillus subtilis and that the antibacterial activity of this compound is potentiated by fluoride. Polymyxin B, another membrane-targeting antibiotic with a different mechanism of action, shows no such improvement. These results, along with previous findings, indicate that certain compounds that destabilize bacterial cell envelopes can enhance the toxicity of fluoride. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Potential fluoride toxicity from oral medicaments: A review

    Directory of Open Access Journals (Sweden)

    Rizwan Ullah

    2017-08-01

    Full Text Available The beneficial effects of fluoride on human oral health are well studied. There are numerous studies demonstrating that a small amount of fluoride delivered to the oral cavity decreases the prevalence of dental decay and results in stronger teeth and bones. However, ingestion of fluoride more than the recommended limit leads to toxicity and adverse effects. In order to update our understanding of fluoride and its potential toxicity, we have described the mechanisms of fluoride metabolism, toxic effects, and management of fluoride toxicity. The main aim of this review is to highlight the potential adverse effects of fluoride overdose and poorly understood toxicity. In addition, the related clinical significance of fluoride overdose and toxicity has been discussed.

  5. Potential fluoride toxicity from oral medicaments: A review.

    Science.gov (United States)

    Ullah, Rizwan; Zafar, Muhammad Sohail; Shahani, Nazish

    2017-08-01

    The beneficial effects of fluoride on human oral health are well studied. There are numerous studies demonstrating that a small amount of fluoride delivered to the oral cavity decreases the prevalence of dental decay and results in stronger teeth and bones. However, ingestion of fluoride more than the recommended limit leads to toxicity and adverse effects. In order to update our understanding of fluoride and its potential toxicity, we have described the mechanisms of fluoride metabolism, toxic effects, and management of fluoride toxicity. The main aim of this review is to highlight the potential adverse effects of fluoride overdose and poorly understood toxicity. In addition, the related clinical significance of fluoride overdose and toxicity has been discussed.

  6. comparative study of fluoride in alcornea cordifolia and commercial

    African Journals Online (AJOL)

    Quantum

    2013-07-31

    Jul 31, 2013 ... fluoride than the tender stem. Hence, the hard stem is a cheap source of fluoride when compared to commercial ... The importance of addition of 10% zinc .... 1st edition, Prentice Hall, Education Limited, Publisher, Edinburgh.

  7. State and National Water Fluoridation System (Public Water Systems)

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Water Fluoridation Reporting System (WFRS) has been developed to provide tools to assist states in managing fluoridation programs. WFRS is designed to track all...

  8. Development and evaluation of two PVD-coated β-titanium orthodontic archwires for fluoride-induced corrosion protection.

    Science.gov (United States)

    Krishnan, Vinod; Krishnan, Anand; Remya, R; Ravikumar, K K; Nair, S Asha; Shibli, S M A; Varma, H K; Sukumaran, K; Kumar, K Jyothindra

    2011-04-01

    The present research was aimed at developing surface coatings on β titanium orthodontic archwires capable of protection against fluoride-induced corrosion. Cathodic arc physical vapor deposition PVD (CA-PVD) and magnetron sputtering were utilized to deposit thin films of titanium aluminium nitride (TiAlN) and tungsten carbide/carbon (WC/C) coatings on β titanium orthodontic archwires. Uncoated and coated specimens were immersed in a high fluoride ion concentration mouth rinse, following a specially designed cycle simulating daily use. All specimens thus obtained were subjected to critical evaluation of parameters such as electrochemical corrosion behaviour, surface analysis, mechanical testing, microstructure, element release, and toxicology. The results confirm previous research that β titanium archwires undergo a degradation process when in contact with fluoride mouth rinses. The study confirmed the superior nature of the TiAlN coating, evident as many fewer changes in properties after fluoride treatment when compared with the WC/C coating. Thus, coating with TiAlN is recommended in order to reduce the corrosive effects of fluorides on β titanium orthodontic archwires. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. A simple and colorimetric fluoride receptor and its fluoride-responsive organogel

    Energy Technology Data Exchange (ETDEWEB)

    Yu Xudong, E-mail: 081022009@fudan.edu.cn [College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080 (China); Li Yajuan [College of Science, Hebei University of Science and Technology, Yuhua Road 70, Shijiazhuang 050080 (China); Yin Yaobing; Yu Decai [College of Science, Hebei University of Engineering, 199 South street of Guangming, Handan 056038 (China)

    2012-08-01

    In this paper, a new p-nitrophenylhydrozine-based anion receptor 1 containing cholesterol group had been designed and synthesized. It could selectively recognize fluoride among different anions tested with color changes from pale yellow to red for visual detection. Simultaneously, it could gel in cyclohexane, and the gel was also fluoride-responsive. When treated with TBAF (tetra-n-butylammonium fluoride), the gel could undergo gel-sol transition accompanied by color, morphology and surface changes. The binding mechanism had been investigated by UV-vis and {sup 1}HNMR (proton nuclear magnetic resonance spectra) titrations. From SEM (scanning electron microscope), SAXS (small-angle X-ray scattering), IR (Infrared Spectroscopy) and CA (contact angle) experiments, it was indicated that the addition of F{sup -} could destroy the molecule assembly of host 1 in the gel state, thus resulting in the gel-to-sol transition due to the binding site competition effect. To the best of our knowledge, this was the simplest fluoride-responsive organogel with high selectivity. Highlights: Black-Right-Pointing-Pointer A novel kind receptor for selective recognition of fluoride had been designed. Black-Right-Pointing-Pointer Its organogel was also fluoride-responsive. Black-Right-Pointing-Pointer This is the simplest fluoride-responsive organogel with high selectivity.

  10. FLUORIDE: A REVIEW OF USE AND EFFECTS ON HEALTH.

    Science.gov (United States)

    Kanduti, Domen; Sterbenk, Petra; Artnik, Barbara

    2016-04-01

    Appropriate oral health care is fundamental for any individual's health. Dental caries is still one of the major public health problems. The most effective way of caries prevention is the use of fluoride. The aim of our research was to review the literature about fluoride toxicity and to inform physicians, dentists and public health specialists whether fluoride use is expedient and safe. Data we used in our review were systematically searched and collected from web pages and documents published from different international institutions. Fluoride occurs naturally in our environment but we consume it in small amounts. Exposure can occur through dietary intake, respiration and fluoride supplements. The most important factor for fluoride presence in alimentation is fluoridated water. Methods, which led to greater fluoride exposure and lowered caries prevalence, are considered to be one of the greatest accomplishments in the 20th century`s public dental health. During pregnancy, the placenta acts as a barrier. The fluoride, therefore, crosses the placenta in low concentrations. Fluoride can be transmitted through the plasma into the mother's milk; however, the concentration is low. The most important action of fluoride is topical, when it is present in the saliva in the appropriate concentration. The most important effect of fluoride on caries incidence is through its role in the process of remineralization and demineralization of tooth enamel. Acute toxicity can occur after ingesting one or more doses of fluoride over a short time period which then leads to poisoning. Today, poisoning is mainly due to unsupervised ingestion of products for dental and oral hygiene and over-fluoridated water. Even though fluoride can be toxic in extremely high concentrations, it`s topical use is safe. The European Academy of Paediatric Dentistry (EAPD) recommends a preventive topical use of fluoride supplements because of their cariostatic effect.

  11. The effective use of fluorides in public health

    DEFF Research Database (Denmark)

    Jones, Sheila; Burt, Brian A; Petersen, Poul Erik

    2005-01-01

    , systematic reviews summarizing these extensive databases have indicated that water fluoridation and fluoride toothpastes both substantially reduce the prevalence and incidence of dental caries. We present four case studies that illustrate the use of fluoride in modern public health practice, focusing on......Dental caries remain a public health problem for many developing countries and for underprivileged populations in developed countries. This paper outlines the historical development of public health approaches to the use of fluoride and comments on their effectiveness. Early research...

  12. Towards Rational Design of Functional Fluoride and Oxyfluoride Materials from First Principles

    Science.gov (United States)

    Charles, Nenian

    Complex transition metal compounds (TMCs) research has produced functional materials with a range of properties, including ferroelectricity, colossal magnetoresistance, nonlinear optical activity and high-temperature superconductivity. Conventional routes to tune properties in transition metal oxides, for example, have relied primarily on cation chemical substitution and interfacial effects in thin film heterostructures. In heteroanionic TMCs, exhibiting two chemically distinct anions coordinating the same or different cations, engineering of the anion sub-lattice for property control is a promising alternative approach. The presence of multiple anions provides additional design variables, such as anion order, that are absent in homoanionic counterparts. The more complex structural and chemical phase space of heteroanionic materials provides a unique opportunity to realize enhanced or unanticipated electronic, optical, and magnetic responses. Although there is growing interest in heteroanionic materials, and synthetic and characterization advances are occurring for these materials, the crystal-chemistry principles for realizing structural and property control are only slowing emerging. This dissertation employs anion engineering to investigate phenomena in transition metal fluorides and oxyfluorides compounds using first principles density functional theory calculations. Oxyfluorides are particularly intriguing owing their tendency to stabilize highly ordered anion sublattices as well as the potential to combine the advantageous properties of transition metal oxides and fluorides. This work 1) addresses the challenges of studying fluorides and oxyfluorides using first principles calculations; 2) evaluates the feasibility of using external stimuli, such as epitaxial strain and hydrostatic pressure, to control properties of fluorides and oxyfluorides; and 3) formulates a computational workflow based on multiple levels of theory and computation to elucidate structure

  13. Fluoride in dental biofilm and saliva

    DEFF Research Database (Denmark)

    Larsen, Line Staun

    Dette ph.d.-projekt bidrager med ny viden om fordelingen af fluorid i dental biofilm og saliva. For at udforske koncentrationen af fluorid i naturlig (in vivo) biofilmvæske, biofilmsediment og i saliva, blev der udført to meget forskellige kliniske studier. Resultaterne fra tværsnitsstudiet (Studie...... I), hos en stor gruppe mennesker (n=42) der konsulterede en tandklinik for behandling, bekræfter tidligere viden, at der findes en naturlig biologisk variation i fluoridkoncentrationerne i biofilm fra forskellige intra-orale regioner samt mellem biofilmvæske, biofilmsediment og saliva...... fluoridkoncentrationer i underkæbefronten, intermediære koncentrationer i alle tre overkæberegioner og de laveste koncentrationer i underkæbemolarregionerne. Begge studier viser at biofilmsedimentet indeholder størstedelen af fluorid i biofilm. Set i et bredere perspektiv viser fundene at der er et omvendt forhold...

  14. Effect of atmospheric fluoride on plant metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Suketa, Y; Yamamoto, T

    1971-05-01

    Studies on the relationship between the exposure factor and foliar deposition of fluoride, or foliar burn, are introduced. Photosynthesis is adversely affected by atmospheric fluoride. The photosynthesis of a strawberry deteriorated by 50% when the strawberry was exposed to 48 ppb hydrofluoric acid for one hour. The effect of fluoride on the respiratory organs of plants is also reported. Soy beans exposed to 0.03 ppm HF had metabolic abnormalities. The total sugar quantity of leaves decreased from 242-253 mg/100 g to 111-141 mg/100 g and the non-reduced sugar/reduced sugar ratio decreased from 4.6-8.7 to 0.8-1.6. 30 references, 3 figures, 14 tables.

  15. Uranyl fluoride luminescence in acidic aqueous solutions

    International Nuclear Information System (INIS)

    Beitz, J.V.; Williams, C.W.

    1996-01-01

    Luminescence emission spectra and decay rates are reported for uranyl species in acidic aqueous solutions containing HF or added NaF. The longest luminescence lifetime, 0.269 ± 0.006 ms, was observed from uranyl in 1 M HF + 1 M HClO 4 at 296 K and decreased with increasing temperature. Based on a luminescence dynamics model that assumes equilibrium among electronically excited uranyl fluoride species and free fluoride ion, this long lived uranyl luminescence in aqueous solution is attributed primarily to UO 2 F 2 . Studies on the effect of added LiNO 3 or Na 2 WO 4 ·2H 2 O showed relatively weak quenching of uranyl fluoride luminescence which suggests that high sensitivity determination of the UF 6 content of WF 6 gas should be feasible via uranyl luminescence analysis of hydrolyzed gas samples of impure WF 6

  16. Purification method for calcium fluoride containing uranium

    International Nuclear Information System (INIS)

    Ogami, Takeshi

    1998-01-01

    Calcium fluoride (CaF 2 ) containing uranium is heated in an electrolytic bath having a cathode and an anode to form a molten salt, and the molten salt is electrolytically reduced to form metal uranium deposited on the surface of the cathode. The calcium fluoride molten salt separated by the deposition of generated metal uranium on the surface of the cathode is solidified by cooling. The solidified calcium fluoride is recovered. When metal uranium is deposited on the surface of the cathode by the electrolytic reduction of the molten salt, impurities such as plutonium and neptunium are also deposited on the surface of the anodes entrained by the metal uranium. Impurities having high vapor pressures such as americium and strontium are evaporated and removed from the molten salts. Then, nuclides such as uranium can thus be separated and recovered, and residual CaF 2 can be recovered in a state easily storable and reutilizable. (T.M.)

  17. HOUSEHOLD PURIFICATION OF FLUORIDE CONTAMINATED MAGADI (TRONA)

    DEFF Research Database (Denmark)

    Nielsen, Joan Maj; Dahi, Elian

    1997-01-01

    Purification of fluoride contaminated magadi is studied using bone char sorption and calcium precipitation. The bone char treatment is found to be workable both in columns and in batches where the magadi is dissolved in water prior to treatment. The concentrations in the solutions were 89 g magadi....../L and 95 and 400 mg F/L respectively in natural and synthetic solutions. The fluoride removal capacities observed were 4.6 mg F/g bone char for the column system and 2.7 mg F/g bone char for the batch system in case of synthetic magadi solution. It is however concluded that the batch system is the best...... treatment method. A procedure for purification of fluoride contaminated magadi at household level is described....

  18. Preparation of uranium ingots from double fluorides

    International Nuclear Information System (INIS)

    Le Boulbin, E.

    1967-05-01

    A simple method has been developed for the preparation of uranium double fluorides and has given a new impetus to the study of the reduction of these compounds with a view to obtaining very pure uranium ingots. This reduction can be carried out using calcium or magnesium as the reducing agent, this latter metal being very interesting from the practical point of view. A comparative study of the heat balances of the reduction processes for the double fluorides and for uranium tetrafluoride has shown that reduction of the double fluorides is possible. The exact experimental conditions for these reductions have been determined. Our study has shown in particular that the reduction of the double salt UF 4 , CaF 2 by magnesium leads to the production of small (20 to 500 g) samples of high-purity uranium with a yield of 99 per cent. (author) [fr

  19. Fluoride levels in commercially available rice in Ethiopia | Tegegne ...

    African Journals Online (AJOL)

    Alkaline fusion was used for sample preparation of six varieties for both the raw rice and rice cooked with tap water and fluoridated water. Fluoride levels ranged from 0.1-5.5 mg/kg in raw rice sample. Rice which was cooked with different fluoride levels of water showed increment depending on the method of cooking.

  20. Health effects of fluoride pollution caused by coal burning

    Energy Technology Data Exchange (ETDEWEB)

    Ando, M.; Tadano, M.; Yamamoto, S.; Tamura, K.; Chen, X. [Regional Environment Division, National Institute for Environmental Studies, Tsukuba, 305-0083 Ibaraki (Japan); Asanuma, S. [Japan Institute of Rural Medicine, Usuda, Nagano (Japan); Watanabe, T. [Saku Central Hospital, Usuda, Nagano (Japan); Kondo, T. [Matsumoto Dental College, Shiojiri, Nagano (Japan); Sakurai, S. [Otsuma Women' s University, Tama, Tokyo (Japan); Ji, R.; Liang, C.; Cao, S. [Institute of Environmental Health and Engineering, Beijing (China); Hong, Z. [Shanxi Maternity and Children' s Hospital, Taiyuan (China)

    2001-04-23

    Recently a huge amount of fluoride in coal has been released into indoor environments by the combustion of coal and fluoride pollution seems to be increasing in some rural areas in China. Combustion of coal and coal bricks is the primary source of gaseous and aerosol fluoride and these forms of fluoride can easily enter exposed food products and the human respiratory tract. Major human fluoride exposure was caused by consumption of fluoride contaminated food, such as corn, chilies and potatoes. For each diagnostic syndrome of dental fluorosis, a log-normal distribution was observed on the logarithm of urinary fluoride concentration in students in China. Urinary fluoride content was found to be a primary health indicator of the prevalence of dental fluorosis in the community. In the fluorosis areas, osteosclerosis in skeletal fluorosis patients was observed with a high prevalence. A biochemical marker of bone resorption, urinary deoxypyridinoline content was much higher in residents in China than in residents in Japan. It was suggested that bone resorption was stimulated to a greater extent in residents in China and fluoride may stimulate both bone resorption and bone formation. Renal function especially glomerular filtration rate was very sensitive to fluoride exposure. Inorganic phosphate concentrations in urine were significantly lower in the residents in fluorosis areas in China than in non-fluorosis area in China and Japan. Since airborne fluoride from the combustion of coal pollutes extensively both the living environment and food, it is necessary to reduce fluoride pollution caused by coal burning.

  1. Fluoride removal performance of phosphoric acid treated lime ...

    African Journals Online (AJOL)

    Fluoride in drinking water above permissible levels is responsible for dental and skeletal fluorosis. In this study, removal of fluoride ions from water using phosphoric acid treated lime was investigated in continuous and point-of-use system operations. In the continuous column operations, fluoride removal performance was ...

  2. Fluoride removal from aqueous solution by pumice: case study on ...

    African Journals Online (AJOL)

    The fluoride removal from synthetic water by pumice was studied at batch experiments in this study. The effect of pH, contact time, fluoride concentration and adsorbent dose on the fluoride sequestration was investigated. The optimum conditions were studied on Kuhbonan water as a case study. The results showed that ...

  3. Coprecipitation of iron and silver with barium fluoride

    International Nuclear Information System (INIS)

    Kopilova, N.V.; Khamidov, B.O.; Kashina, Z.A.; Ikrami, D.D.

    1986-01-01

    Distribution of trace contaminants of iron and silver at coprecipitation of barium fluoride is studied in present work. It is defined that iron almost completely coprecipitated with barium fluoride in wide range of ph 5.5-12. Silver coprecipitated with barium fluoride in ph range 4-7. The value of coprecipitation varies from 94% to 100%.

  4. Fabrication of dense panels in lithium fluoride

    International Nuclear Information System (INIS)

    Farcy, P.; Roger, J.; Pointud, R.

    1958-04-01

    The authors report a study aimed at the fabrication of large and dense lithium fluoride panels. This sintered lithium fluoride is then supposed to be used for the construction of barriers of protection against a flow of thermal neutrons. They briefly present the raw material which is used under the form of chamotte obtained through a pre-sintering process which is also described. Grain size measurements and sample preparation are indicated. Shaping, drying, and thermal treatment are briefly described, and characteristics of the sintered product are indicated

  5. Corrosion behavior of Ti and TI6Al4V in citrate buffers containing fluoride ions

    Directory of Open Access Journals (Sweden)

    Anelise Marlene Schmidt

    2010-03-01

    Full Text Available The effect of fluoride ions concentration on the electrochemical behavior of Ti grade 2 and Ti6Al4V in citrate buffers was studied. Open circuit potential (OCP measurements and voltammetric studies of the samples in the fluoride containing citrate buffers revealed a dissolution process when the pH falls below 5.0 and the NaF content is higher than 0.01 M. However, in citrate pH 7.6 the materials showed a passive behavior even in 0.1 M NaF. Some micrographs of Ti grade 2 obtained after longer immersion times in citrate pH 5.0 with 0.01 M NaF showed a surface attack. EIS (Electrochemical Impedance Sprectroscopy data obtained at the OCP revealed that the film resistance decreases when the immersion time is increased in pH 5.0 containing 0.1 M NaF. In the citrate pH 7.6 the EIS data indicated a two-layer model of an oxide film consisting of a more compact inner layer and a porous outer layer. On the other hand, the EIS results in citrate pH 4.0 change significantly when the fluoride ions concentration increases from 0.01 to 0.05 M. The electrochemical data revealed that the corrosion behavior of Ti grade 2 and Ti6Al4V in the citrate buffers depends on the pH, the fluoride content and the exposure time.

  6. Comparative evaluation of fluoride release from PRG-composites and compomer on application of topical fluoride: An in-vitro study

    Directory of Open Access Journals (Sweden)

    Dhull K

    2009-03-01

    Full Text Available Aims and Objective: To determine the fluoride release from Giomer and Compomer, using different topical fluoride regimes, and to compare the amount of fluoride release from giomer with that of compomer. Materials and Method: Forty-eight specimens of each giomer and compomer were divided into four treatment groups, namely, control group, fluoridated dentifrice (500 ppm once daily group, fluoridated dentifrice (500 ppm twice daily group, fluoridated dentifrice (500 ppm once daily + fluoridated mouthwash (225 ppm group. Each specimen was suspended in demineralizing solution for six hours and remineralizing solution for 18 hours. Fluoride release was measured in both the demineralizing solution and remineralizing solution daily for seven days. Total daily fluoride release for each specimen was calculated by adding the amount released in the demineralizing solution to that released in remineralizing solution. Results and Conclusion: The fluoride release (ppm was found to be more in Giomer when compared to Compomer. The fluoride released from Giomer and Compomer was significantly greater in the acidic demineralizing solution than in the neutral remineralizing solution. It was found that increasing fluoride exposure significantly increased fluoride release from the giomer and compomer. It was found that the fluoride release from the subgroups of giomer and compomer was in the following order: fluoridated dentifrice twice daily > fluoridated dentifrice once daily + fluoridated mouthwash > fluoridated dentifrice once daily > control group. It was found that the giomer showed a greater fluoride uptake than the compomer.

  7. Review on fluoride-releasing restorative materials--fluoride release and uptake characteristics, antibacterial activity and influence on caries formation.

    Science.gov (United States)

    Wiegand, Annette; Buchalla, Wolfgang; Attin, Thomas

    2007-03-01

    The purpose of this article was to review the fluoride release and recharge capabilities, and antibacterial properties, of fluoride-releasing dental restoratives, and discuss the current status concerning the prevention or inhibition of caries development and progression. Information from original scientific full papers or reviews listed in PubMed (search term: fluoride release AND (restorative OR glass-ionomer OR compomer OR polyacid-modified composite resin OR composite OR amalgam)), published from 1980 to 2004, was included in the review. Papers dealing with endodontic or orthodontic topics were not taken into consideration. Clinical studies concerning secondary caries development were only included when performed in split-mouth design with an observation period of at least three years. Fluoride-containing dental materials show clear differences in the fluoride release and uptake characteristics. Short- and long-term fluoride releases from restoratives are related to their matrices, setting mechanisms and fluoride content and depend on several environmental conditions. Fluoride-releasing materials may act as a fluoride reservoir and may increase the fluoride level in saliva, plaque and dental hard tissues. However, clinical studies exhibited conflicting data as to whether or not these materials significantly prevent or inhibit secondary caries and affect the growth of caries-associated bacteria compared to non-fluoridated restoratives. Fluoride release and uptake characteristics depend on the matrices, fillers and fluoride content as well as on the setting mechanisms and environmental conditions of the restoratives. Fluoride-releasing materials, predominantly glass-ionomers and compomers, did show cariostatic properties and may affect bacterial metabolism under simulated cariogenic conditions in vitro. However, it is not proven by prospective clinical studies whether the incidence of secondary caries can be significantly reduced by the fluoride release of

  8. Risk perception, psychological heuristics and the water fluoridation controversy.

    Science.gov (United States)

    Perrella, Andrea M L; Kiss, Simon J

    2015-04-29

    Increasingly, support for water fluoridation has come under attack. We seek an explanation, focusing on the case of Waterloo, Ontario, where a 2010 referendum overturned its water fluoridation program. In particular, we test whether individuals perceive the risks of water fluoridation based not on 'hard' scientific evidence but on heuristics and cultural norms. A sample of 376 residents in Waterloo were surveyed in June 2012 using random digit dialing. We use factor analysis, OLS regression, as well as t-tests to evaluate a survey experiment to test the credibility hypothesis. Perceptions of fluoride as a risk are lower among those who perceive fluoride's benefits (B = .473, p < 0.001) and those whose cultural view is 'egalitarian' (B = .156, p < 0.05). The experiment shows a lower level of perception of fluoride's benefits among respondents who are told that water fluoridation is opposed by a national advocacy group (Group A) compared to those who are told that the government and the World Health Organization support fluoridation (Group B) (t = 1.6547, p < 0.05), as well as compared to the control group (t = 1.8913, p < 0.05). There is no difference between Group B and the control, possibly because people's already general support for fluoridation is less prone to change when told that other public organizations also support fluoridation. Public health officials should take into account cultural norms and perceptions when individuals in a community appear to rise up against water fluoridation, with implications for other public health controversies.

  9. Estimation of atmospheric fluoride by limed filter papers

    International Nuclear Information System (INIS)

    Smith, D.R.

    1988-09-01

    The limed filter paper method of static sampling of atmospheric fluoride is reviewed in this report. Use of the technique, in conjunction with precise measurement of the absorbed fluoride and calibration with dynamic air sampling techniques, to estimate atmospheric fluoride levels, is considered to give only qualitative data (± 50%). The limed filter paper method is site specific due to variations in meteorological conditions. Its main value is to indicate seasonal and annual trends in fluoride exposure of vegetation. Subject to these considerations, the lower and upper limits of atmospheric fluoride exposure and the applicability to atmospheric fluoride estimation under routine or emergency fluoride release conditions are discussed, with special emphasis on the limiting factors

  10. FLUORIDE CONTENT OF COMMERCIALLY AVAILABLE SOY MILK PRODUCTS IN THAILAND.

    Science.gov (United States)

    Rirattanapong, Opas; Rirattanapong, Praphasri

    2016-01-01

    Abstract. In Thailand, the consumption of soy milk products is common but there is limited data about their fluoride content. The purpose of this study was to es- timate the fluoride content of soy milk products available in Thailand. Fluoride content was determined for 76 brands of soy milk using a F-ion-specific electrode. The fluoride concentrations ranged from 0.01 to 3.78 μg/ml. The fluoride content was not related to sugar content, soy bean content or the sterilization process. Among 3 brands of soy milk containing tea powder extract, the fluoride content was high (1.25 to 3.78 μg/ml). Most brands of soy milk tested in our study had fluoride content below the optimal daily intake but brands containing tea powder extract if consumed by children may increase their risk for fluorosis.

  11. New Insight on the Response of Bacteria to Fluoride

    Science.gov (United States)

    Breaker, R.R.

    2012-01-01

    Fluoride has been used for decades to prevent caries and it is well established that this anion can inhibit the growth of bacteria. However, the precise effects that fluoride has on bacteria and the mechanisms that bacteria use to overcome fluoride toxicity have largely remained unexplored. Recently, my laboratory reported the discovery of biological systems that bacteria use to sense fluoride and reduce fluoride toxicity. These sensors and their associated genes are very widespread in biology, which has implications for a number of issues that are central to the use of fluoride for dental care. Below I provide a summary of our findings, comment on some of the key prospects for expanding our understanding of fluoride's effects on biology, and propose some future uses of this knowledge. PMID:22327376

  12. New insight on the response of bacteria to fluoride.

    Science.gov (United States)

    Breaker, R R

    2012-01-01

    Fluoride has been used for decades to prevent caries and it is well established that this anion can inhibit the growth of bacteria. However, the precise effects that fluoride has on bacteria and the mechanisms that bacteria use to overcome fluoride toxicity have largely remained unexplored. Recently, my laboratory reported the discovery of biological systems that bacteria use to sense fluoride and reduce fluoride toxicity. These sensors and their associated genes are very widespread in biology, which has implications for a number of issues that are central to the use of fluoride for dental care. Below I provide a summary of our findings, comment on some of the key prospects for expanding our understanding of fluoride's effects on biology, and propose some future uses of this knowledge. Copyright © 2012 S. Karger AG, Basel.

  13. Adverse effects of fluoride towards thyroid hormone metabolism

    Directory of Open Access Journals (Sweden)

    Enggar Abdullah Idris MZ

    2008-03-01

    Full Text Available An easily ionized fluoride compound like Sodium Fluoride (NaF has been used thus far as a dental caries prevention substance. However, fluoride ions also have a negative effect because it is very toxic. Several types of research on the effect of fluoride on guinea pigs and human beings indicate the presence synthesis obstruction of T3 and T4 that causes declined production, known as hypothyroidism. Hypothyroidism condition may obstruct tissue growth process and metabolism so as to impact various body organ systems. Preventive efforts against hypothyroidism caused by fluoride include avoiding diffusible fluoride compound intake, like NaF, in a long run systemic use, whereas efforts to overcome fluoride intoxication include consuming food that is rich in calcium, vitamin D, and antioxidant.

  14. Fluoride concentration in urine after silver diamine fluoride application on tooth enamel

    Science.gov (United States)

    Sari, D. L.; Bahar, A.; Gunawan, H. A.; Adiatman, M.; Rahardjo, A.; Maharani, D. A.; Toptanci, I. R.; Yavuz, I.

    2017-08-01

    Silver Diammine Fluoride (SDF), which contains fluoride, is known to inhibit tooth enamel demineralization and increase fluoride concentrations in saliva and urine. The aim of this study is to analyze the fluoride concentration in urine after application of SDF on tooth enamel. Urine from four subjects was collected prior to, 30 minutes after, and two and three hours after the application of SDF, and an ion-selective electrode was used to measure the fluoride concentrations. There was no significant difference between time 1 and time 2, time 1 and time 3, time 1 and time 4, time 2 and 3 (p > 0.05), and there was a significant difference between time 2 and time 4 as well as time 3 and time 4 (p < 0.05). There was a decrease in the concentration of fluoride ions in urine from the baseline to 30 minutes after application, and an increase from baseline to two and three hours after the application of SDF.

  15. Diffusion of fluoride in bovine enamel

    International Nuclear Information System (INIS)

    Flim, G.J.; Arends, J.; Kolar, Z.

    1976-01-01

    The uptake of 18 F and the penetration of both F and 18 F in bovine enamel was investigated. Sodium fluoride solutions buffered at pH 7 were employed. The uptake of 18 F was measured by a method described by R. Duckworth and M. Braden, Archs. Oral. Biol., 12(1967), pp. 217-230. The penetration concentration profiles of fluoride (F, 18 F) in the enamel were measured by a sectioning technique. The 18 F uptake in enamel was proportional to approximately tsup(3/4); t being the uptake time. The 18 F concentration as a function of the position in the enamel can be described by: c*(x,t) = c 0 *(t)exp[-α*(t)x]. After correction for the initial fluoride concentration in enamel, for unlabelled fluoride the same dependency is obtained. A model based on simultaneous diffusion and chemical reaction in the pores and diffusion into the hydroxyapatite crystallites will be presented. The results show that diffusion coefficients of the pores are approximately equal to 10 -10 cm 2 s -1 and in the apatite crystallites approximately equal to 10 -17 cm 2 s -1 . The limitations and the approximations of the model are discussed

  16. CORRELATION AMONG FLUORIDE AND METALS IN IRRIGATION ...

    African Journals Online (AJOL)

    Preferred Customer

    The levels of fluoride and selected metals in Ethiopian Rift Valley soils and irrigation water in the nearby sources were ... exhaust fumes, process waters and waste from various industrial processes [1]. The uses of ... into four sub-systems: Lake Rudolf, Chew Bahir, the Main Ethiopian Rift (MER) and the Afar. The seismically ...

  17. Uranium fluorides analysis. Titanium spectrophotometric determination

    International Nuclear Information System (INIS)

    Anon.

    Titanium determination in uranium hexafluoride in the range 0.7 to 100 microgrammes after transformation of uranium fluoride in sulfate. Titanium is separated by extraction with N-benzoylphenylhydroxylamine, reextracted by hydrochloric-hydrofluoric acid. The complex titanium-N-benzoylphenylhydroxylamine is extracted by chloroform. Spectrophotometric determination at 400 nm [fr

  18. IMPACT OF FLUORIDE ON DENTAL HEALTH QUALITY.

    Science.gov (United States)

    Medjedovic, Eida; Medjedovic, Senad; Deljo, Dervis; Sukalo, Aziz

    2015-12-01

    Fluoride is natural element that strengthens teeth and prevents their decay. Experts believe that the best way to prevent cavities is the use of fluoride from multiple sources. Studies even show that in some cases, fluoride can stop already started damage of the teeth. In children younger than 6 years fluoride is incorporated into the enamel of permanent teeth, making the teeth more resistant to the action of bacterial and acids in food. The aim of this study is to determine the effects of improving the health status of teeth after six months treatment with the use of topical fluoridation 0.5% NaF, and the level and quality of the impact of treatment with chemical 0.5% NaF on the dental health of children at age from 8 to 15 years, in relation to gender and chronological age. This study included school children aged 8 to 15 years who visited health and dental services dependent in Mostar. It is obvious that after the implementation of treatment with 5% NaF by the method of topical fluoridation, health status of subjects from the experimental group significantly improved, so that at the final review 89.71% or 61 subjects of the experimental group had healthy (cured teeth), tooth with dental caries only 5.88% or 4 respondents tooth with dental caries and filling 4.41% or 3 respondents, extracted baby tooth 14.71% or 10 respondents, while for 13.24% of respondents was identified state with still unerupted teeth. Our findings are indirectly confirmed that the six-month treatment of fluoridation with 5% NaF, contributed to statistically significant improvement in overall oral health of the experimental group compared to the control group which was not treated by any dental treatment. It can be concluded that there is a statistically significant difference in the evaluated parameters of oral health of children in the control group compared to the studied parameters of oral health the experimental group of children at the final dental examination.

  19. Remarkable improvement of the wear resistance of poly(vinylidene difluoride) by incorporating polyimide powder and carbon nanofibers

    Science.gov (United States)

    Min, Chunying; Liu, Dengdeng; Shen, Chen; Zhang, Qiaqia; Shen, Xiaojuan; Zhang, Kan

    2017-10-01

    Poly(vinylidene difluoride) (PVDF) composites reinforced via adding different fillers have attracted wide attention in the field of dielectric materials, but few have been reported in the tribological area. In this paper, the effect of polyimide (PI) powder and carbon nanofibers (CF) as reinforcement phases on the friction and wear performance of PVDF composites has been investigated. It was found that PI powder enhances the mechanical and tribological properties of PVDF and especially as the content of the PI powder reaches 5 wt%. In addition, CF and PI exhibited synergistic effect on the tribological properties of PVDF. With PVDF containing 5 wt% PI powder and 20 wt% CF, the friction and wear behavior of the PVDF composite showed the best performance. PVDF, PI powder and CF can form a consistent network structure, which prevents the polymer molecular chains from moving or deformation, decreasing the wear loss of PVDF composites.

  20. Oral fluoride retention after professional topical application in children with caries activity: comparison between 1.23% fluoride foam and fluoride gel

    Directory of Open Access Journals (Sweden)

    Cecília Claudia Costa Ribeiro

    2008-01-01

    Full Text Available Objective: This study evaluated fluoride retention in the saliva of children with caries activity after topical fluoride application in the form of gel and foam. Methods: A cross-sectional, blind and randomized study, conducted with ten caries-active children aged between 8 and 10 years, in two stage, with a washout interval of two weeks between them. The treatments consisted of: a application of 2mL acidulated phosphate fluoride of the gel type in a mold and b application of 2mL acidulated phosphate fluoride of the foam type in a mold. After the washout, the treatments were inverted. Non-stimulated saliva was collected from the children at the times of 5, 15, 30 and 60 minutes after topical fluoride application. For statistical analysis the Student’s-t test was used, with a level of significance of 5%. Results: Saliva analysis was performed using a fluoride-specific electrode (ISE25F/ Radiometer, Copenhagen, Denmark at the Aquatic Science Center of the Federal University of Marana, which revealed differences after 5 minutes (p=0.0055 and 15 minutes (p=0.0208. The topical application of fluoride in the gel form revealed a higher concentration of fluoride in the saliva. Conclusion: There were differences in the retention of fluoride in the saliva of children with caries activity after the topical application of fluoride gel and the topical application of fluoride foam after 5 and 15 minutes of their application. The topical application of fluoride foam is recommended, on the basis of the lower probability of toxicity during its use.

  1. Fluoride-releasing restorative materials and secondary caries.

    Science.gov (United States)

    Hicks, John; Garcia-Godoy, Franklin; Donly, Kevin; Flaitz, Catherine

    2003-03-01

    Secondary caries is responsible for 60 percent of all replacement restorations in the typical dental practice. Risk factors for secondary caries are similar to those for primary caries development. Unfortunately, it is not possible to accurately predict which patients are at risk for restoration failure. During the past several decades, fluoride-releasing dental materials have become a part of the dentist's armamentarium. Considerable fluoride is released during the setting reaction and for periods up to eight years following restoration placement. This released fluoride is readily taken up by the cavosurface tooth structure, as well as the enamel and root surfaces adjacent to the restoration. Resistance against caries along the cavosurface and the adjacent smooth surface has been shown in both in vitro and in vivo studies. Fluoride-releasing dental materials provide for improved resistance against primary and secondary caries in coronal and root surfaces. Plaque and salivary fluoride levels are elevated to a level that facilitates remineralization. In addition, the fluoride released to dental plaque adversely affects the growth of lactobacilli and mutans streptococci by interference with bacterial enzyme systems. Fluoride recharging of these dental materials is readily achieved with fluoridated toothpastes, fluoride mouthrinses, and other sources of topical fluoride. This allows fluoride-releasing dental materials to act as intraoral fluoride reservoirs. The improvement in the properties of dental materials with the ability to release fluoride has improved dramatically in the past decade, and it is anticipated that in the near future the vast majority of restorative procedures will employ fluoride-releasing dental materials as bonding agents, cavity liners, luting agents, adhesives for orthodontic brackets, and definitive restoratives.

  2. Water fluoridation in 40 Brazilian cities: 7 year analysis

    Directory of Open Access Journals (Sweden)

    Suzely Adas Saliba MOIMAZ

    2013-01-01

    Full Text Available Objectives Fluoride levels in the public water supplies of 40 Brazilian cities were analyzed and classified on the basis of risk/benefit balance. Material and Methods Samples were collected monthly over a seven-year period from three sites for each water supply source. The samples were analyzed in duplicate in the laboratory of the Center for Research in Public Health - UNESP using an ion analyzer coupled to a fluoride-specific electrode. Results A total of 19,533 samples were analyzed, of which 18,847 were artificially fluoridated and 686 were not artificially fluoridated. In samples from cities performing water fluoridation, 51.57% (n=9,720 had fluoride levels in the range of 0.55 to 0.84 mg F/L; 30.53% (n=5,754 were below 0.55 mg F/L and 17.90% (n=3,373 were above 0.84 mg F/L (maximum concentration=6.96 mg F/L. Most of the cities performing fluoridation that had a majority of samples with fluoride levels above the recommended parameter had deep wells and more than one source of water supply. There was some variability in the fluoride levels of samples from the same site and between collection sites in the same city. Conclusions The majority of samples from cities performing fluoridation had fluoride levels within the range that provides the best combination of risks and benefits, minimizing the risk of dental fluorosis while preventing dental caries. The conduction of studies about water distribution systems is suggested in cities with high natural fluoride concentrations in order to optimize the use of natural fluoride for fluoridation costs and avoid the risk of dental fluorosis.

  3. Effects of fluoridated milk on root dentin remineralization.

    Directory of Open Access Journals (Sweden)

    Wolfgang H Arnold

    Full Text Available The prevalence of root caries is increasing with greater life expectancy and number of retained teeth. Therefore, new preventive strategies should be developed to reduce the prevalence of root caries. The aim of this study was to investigate the effects of fluoridated milk on the remineralization of root dentin and to compare these effects to those of sodium fluoride (NaF application without milk.Thirty extracted human molars were divided into 6 groups, and the root cementum was removed from each tooth. The dentin surface was demineralized and then incubated with one of the following six solutions: Sodium chloride NaCl, artificial saliva, milk, milk+2.5 ppm fluoride, milk+10 ppm fluoride and artificial saliva+10 ppm fluoride. Serial sections were cut through the lesions and investigated with polarized light microscopy and quantitative morphometry, scanning electron microscopy (SEM and energy-dispersive X-ray spectroscopy (EDS. The data were statistically evaluated using a one-way ANOVA for multiple comparisons.The depth of the lesion decreased with increasing fluoride concentration and was the smallest after incubation with artificial saliva+10 ppm fluoride. SEM analysis revealed a clearly demarcated superficial remineralized zone after incubation with milk+2.5 ppm fluoride, milk+10 ppm fluoride and artificial saliva+10 ppm fluoride. Ca content in this zone increased with increasing fluoride content and was highest after artificial saliva+10 ppm fluoride incubation. In the artificial saliva+10 ppm fluoride group, an additional crystalline layer was present on top of the lesion that contained elevated levels of F and Ca.Incubation of root dentin with fluoridated milk showed a clear effect on root dentin remineralization, and incubation with NaF dissolved in artificial saliva demonstrated a stronger effect.

  4. Fluoride uptake into the developing enamel and dentine of sheep incisors following daily ingestion of fluoridated milk or water

    International Nuclear Information System (INIS)

    Cuttress, T.W.; Suckling, G.W.; Gao, J.; Coote, G.E.

    1996-01-01

    The caries preventive action of fluoride is common knowledge, although some of the mechanisms involved remain equivocal. At present, raised local levels of fluoride at, or in, the surface of tooth enamel is the most commonly accepted explanation of the anti-cariogenic action of fluoride. However, fluoride incorporated as fluorapatite into the tooth during its formation remains a possible alternative or complementary anti-cariogenic mechanism. If so, regular ingestion of fluoride during tooth formation is beneficial. Although use of fluoridated water is the preferred method in public health programmes, access to suitable potable water is required, and often this in not feasible. Fresh, preserved, or dried cow's milk products are widely used as nutritional and dietary items in most populations, particularly for young children. Milk is a practical, controllable means for regular delivery of fluoride. Processing of milk is commonly centralised and uses standardised conditions, allowing easy supplementation of fluoride for distribution to communities. The purpose of this study was to resolve the question of availability of fluoride ingested in milk compared with fluoride ingested in water by measuring fluoride deposition in the developing permanent incisors of young sheep. Incisors were analysed using a proton microprobe. (author). 18 refs., 1 tabs., 3 figs

  5. Water Fluoridation: A Critical Review of the Physiological Effects of Ingested Fluoride as a Public Health Intervention

    Science.gov (United States)

    2014-01-01

    Fluorine is the world's 13th most abundant element and constitutes 0.08% of the Earth crust. It has the highest electronegativity of all elements. Fluoride is widely distributed in the environment, occurring in the air, soils, rocks, and water. Although fluoride is used industrially in a fluorine compound, the manufacture of ceramics, pesticides, aerosol propellants, refrigerants, glassware, and Teflon cookware, it is a generally unwanted byproduct of aluminium, fertilizer, and iron ore manufacture. The medicinal use of fluorides for the prevention of dental caries began in January 1945 when community water supplies in Grand Rapids, United States, were fluoridated to a level of 1 ppm as a dental caries prevention measure. However, water fluoridation remains a controversial public health measure. This paper reviews the human health effects of fluoride. The authors conclude that available evidence suggests that fluoride has a potential to cause major adverse human health problems, while having only a modest dental caries prevention effect. As part of efforts to reduce hazardous fluoride ingestion, the practice of artificial water fluoridation should be reconsidered globally, while industrial safety measures need to be tightened in order to reduce unethical discharge of fluoride compounds into the environment. Public health approaches for global dental caries reduction that do not involve systemic ingestion of fluoride are urgently needed. PMID:24719570

  6. Studies on influence of zinc immersion and fluoride on nickel electroplating on magnesium alloy AZ91D

    International Nuclear Information System (INIS)

    Zhang Ziping; Yu Gang; Ouyang Yuejun; He Xiaomei; Hu Bonian; Zhang Jun; Wu Zhenjun

    2009-01-01

    The effect of zinc immersion and the role of fluoride in nickel plating bath were mainly investigated in nickel electroplating on magnesium alloy AZ91D. The state of zinc immersion, the composition of zinc film and the role of fluoride in nickel plating bath were explored from the curves of open circuit potential (OCP) and potentiodynamic polarization, the images of scanning electron microscopy (SEM) and the patterns of energy dispersive X-ray (EDX). Results show that the optimum zinc film mixing small amount of Mg(OH) 2 and MgF 2 is obtained by zinc immersion for 30-90 s. The corrosion potential of magnesium alloy substrate attached zinc film will be increased in nickel plating bath and the quantity of MgF 2 sandwiched between magnesium alloy substrate and nickel coating will be reduced, which contributed to produce nickel coating with good performance. Fluoride in nickel plating bath serves as an activator of nickel anodic dissolution and corrosion inhibitor of magnesium alloy substrate. 1.0-1.5 mol dm -3 of F - is the optimum concentration range for dissolving nickel anode and protecting magnesium alloy substrate from over-corrosion in nickel plating bath. The nickel coating with good adhesion and high corrosion resistance on magnesium alloy AZ91D is obtained by the developed process of nickel electroplating. This nickel layer can be used as the rendering coating for further plating on magnesium alloys.

  7. The electrochemical performance and mechanism of cobalt (II) fluoride as anode material for lithium and sodium ion batteries

    International Nuclear Information System (INIS)

    Tan, Jinli; Liu, Li; Guo, Shengping; Hu, Hai; Yan, Zichao; Zhou, Qian; Huang, Zhifeng; Shu, Hongbo; Yang, Xiukang; Wang, Xianyou

    2015-01-01

    Highlights: •The as-prepared CoF 2 shows excellent electrochemical performance as anode material for lithium ion batteries. •The Li insertion/extraction mechanism of CoF 2 below 1.2 V was firstly proposed. •The electrochemical performance of CoF 2 as anode material in sodium ion batteries was firstly studied. -- Abstract: Cobalt (II) fluoride begins to enter into the horizons of people along with the research upsurge of metal fluorides. It is very significative and theoretically influential to make certain its electrochemical reaction mechanism. In this work, we discover a new and unrevealed reversible interfacial intercalation mechanism reacting below 1.2 V for cobalt (II) fluoride electrode material, which contributes a combined discharge capacity of about 400 mA h g −1 with the formation of SEI film at the initial discharge process. A highly reversible storage capacity of 120 mA h g −1 is observed when the cell is cycled over the voltage of 0.01-1.2 V at 0.2 C, and the low-potential voltage reaction process has a significant impact for the whole electrochemical process. Electrochemical analyses suggest that pure cobalt (II) fluoride shows better electrochemical performance when it is cycled at 3.2-0.01 V compared to the high range (1.0-4.5 V). So, we hold that cobalt (II) fluoride is more suitable to serve as anode material for lithium ion batteries. In addition, we also try to reveal the relevant performance and reaction mechanism, and realize the possibility of cobalt (II) fluoride as anode material for sodium ion batteries

  8. Corrosion inhibition of magnesium heated in wet air, by surface fluoridation

    International Nuclear Information System (INIS)

    Caillat, R.; Darras, R.; Leclercq, D.

    1960-01-01

    The maximum temperature (350 deg. C) of magnesium corrosion resistance in wet air may be raised to 490-500 deg. C by the formation of a superficial fluoride film. This can be obtained by two different ways: either by addition of hydrofluoric acid to the corroding medium in a very small proportion such as 0,003 mg/litre; at atmospheric pressure, or by dipping the magnesium in a dilute aqueous solution of nitric and hydrofluoric acids at room temperature before exposing it to the corroding atmosphere. In both cases the corrosion inhibition is effective over a very long time, even several thousand hours. (author) [fr

  9. Chemical effects in the stopping cross sections of protons in rare earth fluorides

    International Nuclear Information System (INIS)

    Miranda, J.; Pineda, J.C.

    2007-01-01

    Stopping cross sections were measured for 0.5-0.7 MeV protons impinging on selected rare earth fluorides using energy differences of ions backscattered by thin films. The surface approximation was employed to determine the stopping cross sections. Consideration of chemical effects through the enthalpy of formation of the target compounds, as suggested by Bauer and Semrad (Nucl. Instr. and Meth. B 182 (2001) 62), allows a much better agreement with the electronic stopping predictions of the SRIM code, the Montenegro et al. universal formula and the tables by Janni

  10. Community water fluoridation on the Internet and social media.

    Science.gov (United States)

    Mertz, Aaron; Allukian, Myron

    2014-01-01

    In the United States, 95 percent of teens and 85 percent of adults use the Internet. Two social media outlets, Facebook and Twitter, reach more than 150 billion users. This study describes anti-fluoridation activity and dominance on the Internet and social media, both of which are community water fluoridation (CWF) information sources. Monthly website traffic to major fluoridation websites was determined from June 2011 to May 2012. Facebook, Twitter, and YouTube fluoridation activity was categorized as "proCWF" or "anti-CWF." Twitter's anti-CWF tweets were further subcategorized by the argument used against CWF. Anti-CWF website traffic was found to exceed proCWF activity five- to sixty-fold. Searching "fluoride" and "fluoridation" on Facebook resulted in 88 to 100 percent anti-CWF groups and pages; "fluoridation" on Twitter and YouTube resulted in 64 percent anti-CWF tweets and 99 percent anti-CWF videos, respectively. "Cancer, " "useless, " and "poisonous" were the three major arguments used against fluoridation. Anti-fluoridation information significantly dominates the Internet and social media. Thousands of people are being misinformed daily about the safety, health, and economic benefits of fluoridation.

  11. Toxicity of fluoride to microorganisms in biological wastewater treatment systems.

    Science.gov (United States)

    Ochoa-Herrera, Valeria; Banihani, Qais; León, Glendy; Khatri, Chandra; Field, James A; Sierra-Alvarez, Reyes

    2009-07-01

    Fluoride is a common contaminant in a variety of industrial wastewaters. Available information on the potential toxicity of fluoride to microorganisms implicated in biological wastewater treatment is very limited. The objective of this study was to evaluate the inhibitory effect of fluoride towards the main microbial populations responsible for the removal of organic constituents and nutrients in wastewater treatment processes. The results of short-term batch bioassays indicated that the toxicity of sodium fluoride varied widely depending on the microbial population. Anaerobic microorganisms involved in various metabolic steps of anaerobic digestion processes were found to be very sensitive to the presence of fluoride. The concentrations of fluoride causing 50% metabolic inhibition (IC(50)) of propionate- and butyrate-degrading microorganisms as well as mesophilic and thermophilic acetate-utilizing methanogens ranged from 18 to 43 mg/L. Fluoride was also inhibitory to nitrification, albeit at relatively high levels (IC(50)=149 mg/L). Nitrifying bacteria appeared to adapt rapidly to fluoride, and a near complete recovery of their metabolic activity was observed after only 4d of exposure to high fluoride levels (up to 500 mg/L). All other microbial populations evaluated in this study, i.e., glucose fermenters, aerobic glucose-degrading heterotrophs, denitrifying bacteria, and H(2)-utilizing methanogens, tolerated fluoride at very high concentrations (>500 mg/L).

  12. Effects of different amine fluoride concentrations on enamel remineralization.

    Science.gov (United States)

    Naumova, E A; Niemann, N; Aretz, L; Arnold, W H

    2012-09-01

    The aim of this study was to investigate the effects of decreasing fluoride concentrations on repeated demineralizing challenges on human enamel. In 24 teeth, 3mm×3mm windows were prepared on the buccal and lingual sides and treated in a cycling demineralization-remineralization model. Remineralization was achieved with 100, 10 and 0.1 ppm fluoride from anime fluoride. Coronal sections were cut through the artificial lesions, and three sections per tooth were investigated using polarized light microscopy and scanning electron microscopy with quantitative element analysis. The morphology of the lesions was studied, and the extensions of the superficial layer and the body of the lesion were measured. Using element analysis, the Ca, P and F content were determined. The body of the lesion appeared remineralized after application of 100 ppm fluoride, while remineralization of the lesion was less successful after application of 10 and 0.1 ppm fluoride. The thickness of the superficial layer increased with decreasing fluoride concentrations, and also the extension of the body of the lesion increased. Ca and P content increased with increasing fluoride concentrations. The effectiveness of fluoride in enamel remineralization increased with increasing fluoride concentration. A consistently higher level of fluoride in saliva should be a goal in caries prevention. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Laboratory investigations into the potential anticaries efficacy of fluoride varnishes.

    Science.gov (United States)

    Lippert, Frank; Hara, Anderson Takeo; Martinez-Mier, Esperanza Angeles; Zero, Domenick T

    2014-01-01

    The purpose of this study was to investigate the potential anticaries efficacy of fluoride varnishes (FVs) by studying their ability to reharden and deliver fluoride to carious lesions and to release fluoride into saliva. Enamel carious lesions were created and allocated to 24 groups (11 FVs with two FV incubation times and two control groups) based on Knoop microhardness test values. FVs were applied to lesions, which were incubated in artificial saliva for two or six hours, with saliva being renewed hourly. FV was removed and lesions were remineralized in artificial saliva for 22 hours. Microhardness was measured and enamel fluoride uptake (EFU) was determined. Saliva samples (six-hour groups) were analyzed to determine fluoride release characteristics. Data were analyzed using analysis of variance. FVs differed considerably in their ability to reharden and deliver fluoride to carious lesions and in their fluoride release characteristics. Little consistency was found between investigated study variables for virtually all tested FVs. For example, a particular FV showed the highest EFU and fluoride release values but the lowest rehardening value. A longer FV contact time led to increased EFU for five of the 11 FVs. Some FVs delivered more fluoride to lesions in two hours than others did in six hours. Fluoride varnishes differ greatly in their in vitro anticaries efficacy.

  14. Advanced Environmentally Resistant Lithium Fluoride Mirror Coatings for the Next Generation of Broadband Space Observatories

    Science.gov (United States)

    Fleming, Brian; Quijada, Manuel A.; Hennessy, John; Egan, Arika; Del Hoyo, Javier G.

    2017-01-01

    Recent advances in the physical vapor deposition (PVD) of protective fluoride films have raised the far-ultraviolet (FUV: 912-1600 A) reflectivity of aluminum-based mirrors closer to the theoretical limit. The greatest gains, at more than 20%, have come for lithium fluoride-protected aluminum, which has the shortest wavelength cutoff of any conventional overcoat. Despite the success of the NASA FUSE mission, the use of lithium fluoride (LiF)-based optics is rare, as LiF is hygroscopic and requires handling procedures that can drive risk. With NASA now studying two large mission concepts for astronomy, Large UV-Optical-IR Surveyor (LUVOIR) and the Habitable Exoplanet Imaging Mission (HabEx), which mandate throughput down to 1000 , the development of LiF-based coatings becomes crucial. This paper discusses steps that are being taken to qualify these new enhanced LiF-protected aluminum (eLiF) mirror coatings for flight. In addition to quantifying the hygroscopic degradation, we have developed a new method of protecting eLiF with an ultrathin (10-20 A) capping layer of a nonhygroscopic material to increase durability. We report on the performance of eLiF-based optics and assess the steps that need to be taken to qualify such coatings for LUVOIR, HabEx, and other FUV-sensitive space missions.

  15. Chemical etching of fission tracks in ethylene-tetrafluoroethylene copolymer

    International Nuclear Information System (INIS)

    Komaki, Y.; Tsujimura, S.; Seguchi, T.

    1979-01-01

    The chemical etching of fission tracks in ethylene-tetrafluoroethylene copolymer was studied. Etched holes 3000 to 4000 A in diameter were recognized by electron microscopy for a film bombarded by fission fragments in oxygen and etched in a 12N sodium hydroxide solution at 125 0 C. The radial etching rate at 125 0 C was 6 to 8 A/hr, which is less than 17 A/hr for polyvinylidene fluoride in the same sodium hydroxide concentration at 85 0 C. The smaller rate is a reflection of the larger chemical resistivity of ethylene-tetrafluoroethylene copolymer than polyvinylidene fluoride. (author)

  16. Spatial distribution mapping of drinking water fluoride levels in Karnataka, India: fluoride-related health effects.

    Science.gov (United States)

    Chowdhury, Chitta R; Shahnawaz, Khijmatgar; Kumari, Divya; Chowdhury, Avidyuti; Bedi, Raman; Lynch, Edward; Harding, Stewart; Grootveld, Martin

    2016-11-01

    (1) To estimate the concentrations of fluoride in drinking water throughout different zones and districts of the state of Karnataka. (2) To investigate the variation of fluoride concentration in drinking water from different sources, and its relationships to daily temperature and rainfall status in the regional districts. (3) To develop an updated fluoride concentration intensity map of the state of Karnataka, and to evaluate these data in the context of fluoride-related health effects such as fluorosis and their prevalence. Aqueous standard solutions of 10, 100 and 1,000 ppm fluoride (F - ) were prepared with analytical grade Na + /F - and a buffer; TISAB II was incorporated in both calibration standard and analysis solutions in order to remove the potentially interfering effects of trace metal ions. This analysis was performed using an ion-selective electrode (ISE), and mean determination readings for n = 5 samples collected at each Karnataka water source were recorded. The F - concentration in drinking water in Karnataka state was found to vary substantially, with the highest mean values recorded being in the north-eastern zone (1.61 ppm), and the lowest in the south-western one (only 0.41 ppm). Analysis of variance (ANOVA) demonstrated that there were very highly significant 'between-zone' and 'between-districts-within-zones' sources of variation (p water source F - levels within this state. The southern part of Karnataka has low levels of F - in its drinking water, and may require fluoridation treatment in order to mitigate for dental caries and further ailments related to fluoride deficiency. However, districts within the north-eastern region have contrastingly high levels of fluoride, an observation which has been linked to dental and skeletal fluorosis. This highlights a major requirement for interventional actions in order to ensure maintenance of the recommended range of fluoride concentrations (0.8-1.5 ppm) in Karnataka's drinking water

  17. The Effect of Calcium Pre-Rinse on Salivary Fluoride After 900 ppm Fluoride Mouthwash: A Randomized Clinical Trial

    Directory of Open Access Journals (Sweden)

    Nahid Ramazani

    2013-01-01

    Full Text Available Objective: Calcium fluoride deposit during fluoride application. Uptake and retention of fluoride by saliva depends generally on the concentration of calcium. In this study, the ef-fect of calcium pre-rinse on salivary fluoride concentration after a 900 ppm fluoride mouthwash was investigated.Materials and Methods: This cross-over double-blind randomized clinical trial was con-ducted in a girls' dormitory in Zahedan University of Medical Sciences, southeast Iran. In this study, 42 female dental students were chosen using simple randomization. During the first phase, 21 subjects (group A used fluoride rinse (F regimen and the remaining (group B used calcium pre-rinse followed immediately by fluoride rinse (Ca + F regi-men. In the second phase, participants rinsed using the mouthwashes not previously used. Prior to each phase prophylaxis was performed and no fluoridated product was used dur-ing a two-week interval between the phases. Salivary samples were taken immediately be-fore (baseline, 1 and 12 hours after rinsing. The salivary fluoride concentration was de-termined using fluoride sensitive electrode. Repeated measures ANOVA was used for sta-tistical analysis and the significance level was set at P<0.05.Results: There was significant difference between fluoride concentrations at different time points (P< 0.001. Significant differences were observed when the different time points of two regimens were examined. In contrast to this, the baseline before using F regimen and the baseline before using Ca + F regimen did not show any significance (P= 0.070.Conclusion: Pre-rinsing with calcium before fluoride is recommended because of signifi-cant increases in salivary fluoride concentration.

  18. Fluoridation and tooth wear in Irish adults.

    LENUS (Irish Health Repository)

    Burke, F M

    2010-10-01

    The aim of this study was to determine the prevalence of tooth wear in adults in Ireland and its relationship with water fluoridation. The National Survey of Adult Oral Health was conducted in 2000\\/2001. Tooth wear was determined using a partial mouth examination assessing the upper and lower anterior teeth. A total of 2456 subjects were examined. In this survey, increasing levels and severity of tooth wear were associated with ageing. Men were more affected by tooth wear and were more likely to be affected by severe tooth wear than women. It was found that age, and gender were significant predictors of tooth wear (P < 0.01). Overall, there was no significant relationship between fluoridation and tooth wear in this study.

  19. Production of sintered porous metal fluoride pellets

    Science.gov (United States)

    Anderson, L.W.; Stephenson, M.J.

    1973-12-25

    Porous pellets characterized by a moderately reactive crust and a softer core of higher reactivity are produced by forming agglomerates containing a metal fluoride powder and a selected amount ofwater. The metal fluoride is selected to be sinterable and essentially non-reactive with gaseous fluorinating agents. The agglomerates are contacted with a gaseous fluorinating agent under controlled conditions whereby the heat generated by localized reaction of the agent and water is limited to values effccting bonding by localized sintering. Porous pellets composed of cryolite (Na/sub 3/AlF/sub 6/) can be used to selectively remove trace quantities of niobium pentafluoride from a feed gas consisting predominantly of uranium hexafluoride. (Official Gazette)

  20. Sulfochlorphenol S as reagent for direct photometric determination of fluorides

    International Nuclear Information System (INIS)

    Dzhashi, D.O.; Dedkova, V.P.; Savvin, S.B.

    1978-01-01

    The system of zirconium-sulfochlorphenol S-fluoride was studied by the spectrophotometry method. The effect of pH, temperature and time on the formation of zirconium complexes with sulfochlorphenol S was investigated. A comparison of the above method of determining fluorides with other methods (using alizarinecomplexonate, quinalizarincomplexonate, cerium chelates, lanthanum, arsenazo 3) is presented. The sensitivity of determining fluorides with arsenazo 3 is lower than that with sulfochlorphenol S. The molar absorption coefficient is 3x10 4 , the reaction of determining fluorides with the aid of sulfochlorphenol S is highly selective. The method was used to determine fluorides in the supply water, zirconium solutions and electrolyzer cell. The range of concentration determination for fluorides is 0-3 μg/25 ml