WorldWideScience

Sample records for polytropic champagne flows

  1. Flow analysis from PIV in engraved champagne tasting glasses: flute versus coupe

    Science.gov (United States)

    Beaumont, Fabien; Liger-Belair, Gérard; Polidori, Guillaume

    2015-08-01

    Glass shape, and especially its open aperture, is suspected to play an important role as concerns the kinetics of CO2 and flavor release during champagne tasting. In recent years, much interest has been devoted to depict each and every parameter involved in the release of gaseous CO2 from glasses poured with champagne. One cannot understand the bubbling and aromatic exhalation events in champagne tasting, however, without studying the flow-mixing mechanisms inside the glass. Indeed, a key assumption is that a causal link may exist between flow structures created in the wine due to bubble motion and the process of CO2 release and flavor exhalation. In the present work, two quite emblematic types of champagne drinking vessels are studied. The particle image velocimetry technique has been used in order to reveal the velocity field of the liquid due to the ascending bubble-driven flow for both glasses poured with champagne. The contribution of glass shape on the flow patterns and CO2 release in both glasses are discussed by the use of experimental results. The results show that the continuous flow of ascending bubbles strongly modifies the mixing and convection conditions of the surrounding liquid medium whose behavior is strongly glass shape dependent.

  2. Cracking of charged polytropes with generalized polytropic equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan); Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan)

    2017-02-15

    We discuss the occurrence of cracking in charged anisotropic polytropes with generalized polytropic equation of state through two different assumptions; (i) by carrying out local density perturbations under a conformally flat condition (ii) by perturbing anisotropy, polytropic index and charge parameters. For this purpose, we consider two different definitions of polytropes that exist in literature. We conclude that under local density perturbations scheme cracking does not appear in both types of polytropes and stable configuration is observed, while with the second type of perturbation cracking appears in both types of polytropes under certain conditions. (orig.)

  3. Stationary spiral flow in polytropic stellar models

    Science.gov (United States)

    Pekeris, C. L.

    1980-01-01

    It is shown that, in addition to the static Emden solution, a self-gravitating polytropic gas has a dynamic option in which there is stationary flow along spiral trajectories wound around the surfaces of concentric tori. The motion is obtained as a solution of a partial differential equation which is satisfied by the meridional stream function, coupled with Poisson's equation and a Bernoulli-type equation for the pressure (density). The pressure is affected by the whole of the Bernoulli term rather than by the centrifugal part only, which acts for a rotating model, and it may be reduced down to zero at the center. The spiral type of flow is illustrated for an incompressible fluid (n = 0), for which an exact solution is obtained. The features of the dynamic constant-density model are discussed as a basis for future comparison with the solution for compressible models. PMID:16592825

  4. On the losses of dissolved CO(2) during champagne serving.

    Science.gov (United States)

    Liger-Belair, Gérard; Bourget, Marielle; Villaume, Sandra; Jeandet, Philippe; Pron, Hervé; Polidori, Guillaume

    2010-08-11

    Pouring champagne into a glass is far from being consequenceless with regard to its dissolved CO(2) concentration. Measurements of losses of dissolved CO(2) during champagne serving were done from a bottled Champagne wine initially holding 11.4 +/- 0.1 g L(-1) of dissolved CO(2). Measurements were done at three champagne temperatures (i.e., 4, 12, and 18 degrees C) and for two different ways of serving (i.e., a champagne-like and a beer-like way of serving). The beer-like way of serving champagne was found to impact its concentration of dissolved CO(2) significantly less. Moreover, the higher the champagne temperature is, the higher its loss of dissolved CO(2) during the pouring process, which finally constitutes the first analytical proof that low temperatures prolong the drink's chill and helps it to retain its effervescence during the pouring process. The diffusion coefficient of CO(2) molecules in champagne and champagne viscosity (both strongly temperature-dependent) are suspected to be the two main parameters responsible for such differences. Besides, a recently developed dynamic-tracking technique using IR thermography was also used in order to visualize the cloud of gaseous CO(2) which flows down from champagne during the pouring process, thus visually confirming the strong influence of champagne temperature on its loss of dissolved CO(2).

  5. Cracking of anisotropic cylindrical polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2017-06-15

    We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)

  6. CO2 volume fluxes outgassing from champagne glasses: the impact of champagne ageing.

    Science.gov (United States)

    Liger-Belair, Gérard; Villaume, Sandra; Cilindre, Clara; Jeandet, Philippe

    2010-02-15

    It was demonstrated that CO(2) volume fluxes outgassing from a flute poured with a young champagne (elaborated in 2007) are much higher than those outgassing from the same flute poured with an older champagne (elaborated in the early 1990s). The difference in dissolved-CO(2) concentrations between the two types of champagne samples was found to be a crucial parameter responsible for differences in CO(2) volume fluxes outgassing from one champagne to another. Nevertheless, it was shown that, for a given identical dissolved-CO(2) concentration in both champagne types, the CO(2) volume flux outgassing from the flute poured with the old champagne is, in average, significantly lower than that outgassing from the flute poured with the young one. Therefore, CO(2) seems to "escape" more easily from the young champagne than from the older one. The diffusion coefficient of CO(2) in both champagne types was pointed as a key parameter to thoroughly determine in the future, in order to unravel our experimental observation. Copyright 2009 Elsevier B.V. All rights reserved.

  7. A synchronized particle image velocimetry and infrared thermography technique applied to convective mass transfer in champagne glasses

    Science.gov (United States)

    Beaumont, Fabien; Liger-Belair, Gérard; Bailly, Yannick; Polidori, Guillaume

    2016-05-01

    In champagne glasses, it was recently suggested that ascending bubble-driven flow patterns should be involved in the release of gaseous carbon dioxide (CO2) and volatile organic compounds. A key assumption was that the higher the velocity of the upward bubble-driven flow patterns in the liquid phase, the higher the volume fluxes of gaseous CO2 desorbing from the supersaturated liquid phase. In the present work, simultaneous monitoring of bubble-driven flow patterns within champagne glasses and gaseous CO2 escaping above the champagne surface was performed, through particle image velocimetry and infrared thermography techniques. Two quite emblematic types of champagne drinking vessels were investigated, namely a long-stemmed flute and a wide coupe. The synchronized use of both techniques proved that the cloud of gaseous CO2 escaping above champagne glasses strongly depends on the mixing flow patterns found in the liquid phase below.

  8. On cracking of charged anisotropic polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M. [Division of Science and Technology, University of Education, Township Campus, Lahore-54590 (Pakistan); Mardan, S.A., E-mail: azam.math@ue.edu.pk, E-mail: syedalimardanazmi@yahoo.com [Department of Mathematics, University of the Management and Technology, C-II, Johar Town, Lahore-54590 (Pakistan)

    2017-01-01

    Recently in [1], the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways ( i ) by perturbing polytropic constant, anisotropy and charge parameter ( ii ) by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide range of parameters in both cases. Also, our results are reduced to [2] in the absence of charge.

  9. Six secrets of champagne

    Science.gov (United States)

    Liger-Belair, Gérard

    2015-12-01

    Popping open a bottle of champagne is one of life's great delights, but how much do you really know about the science behind this greatest of wines? Gérard Liger-Belair reveals his six favourite champagne secrets.

  10. The cometary H II regions of DR 21: Bow shocks or champagne flows or both?

    Science.gov (United States)

    Immer, K.; Cyganowski, C.; Reid, M. J.; Menten, K. M.

    2014-03-01

    We present deep Very Large Array H66α radio recombination line (RRL) observations of the two cometary H II regions in DR 21. With these sensitive data, we test the "hybrid" bow shock/champagne flow model previously proposed for the DR 21 H II regions. The ionized gas down the tail of the southern H II region is redshifted by up to ~30 km s-1 with respect to the ambient molecular gas, as expected in the hybrid scenario. The RRL velocity structure, however, reveals the presence of two velocity components in both the northern and southern H II regions. This suggests that the ionized gas is flowing along cone-like shells, swept-up by stellar winds. The observed velocity structure of the well-resolved southern H II region is most consistent with a picture that combines a stellar wind with stellar motion (as in bow shock models) along a density gradient (as in champagne flow models). The direction of the implied density gradient is consistent with that suggested by maps of dust continuum and molecular line emission in the DR 21 region. The image cubes are only available as a FITS file at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A39Table 2, Fig. 4, and Appendices A and B are available in electronic form at http://www.aanda.org

  11. Electromagnetic effects on cracking of anisotropic polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, Muhammad; Sadiq, Sobia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-10-15

    In this paper, we study the electromagnetic effects on the stability of a spherically symmetric anisotropic fluid distribution satisfying two polytropic equations of state and construct the corresponding generalized Tolman-Oppenheimer-Volkoff equations. We apply perturbations on matter variables via the polytropic constant as well as the polytropic index and formulate the force distribution function. It is found that the compact object is stable for a feasible choice of perturbed polytropic index in the presence of charge. (orig.)

  12. A polytropic model of a critical two-phase flow in a bed of spherical particles

    Directory of Open Access Journals (Sweden)

    Tairov Emir

    2017-01-01

    Full Text Available The paper is concerned with a model of isenthalpic flow of vapor-water mixture in a fixed bed of solid particles. The mixture expansion process is considered to be polytropic. Similarly to the known problem of gas dynamics of a granular bed we obtained the relationships for calculation of a critical mass velocity. The results of the calculation based on a theoretical model are compared with the experimental data obtained in the packed beds of steel balls, 2 mm and 4 mm in diameter.

  13. Carbon dioxide and ethanol release from champagne glasses, under standard tasting conditions.

    Science.gov (United States)

    Liger-Belair, Gérard; Beaumont, Fabien; Bourget, Marielle; Pron, Hervé; Parvitte, Bertrand; Zéninari, Virginie; Polidori, Guillaume; Cilindre, Clara

    2012-01-01

    A simple glass of champagne or sparkling wine may seem like the acme of frivolity to most people, but in fact, it may rather be considered as a fantastic playground for any fluid physicist or physicochemist. In this chapter, results obtained concerning various steps where the CO₂ molecule plays a role (from its ingestion in the liquid phase during the fermentation process to its progressive release in the headspace above the tasting glass) are gathered and synthesized to propose a self-consistent and global overview of how gaseous and dissolved CO₂ impact champagne and sparkling wine science. Some recent investigations, conducted through laser tomography techniques, on ascending bubbles and ascending-bubble-driven flow patterns found in champagne glasses are reported, which illustrate the fine interplay between ascending bubbles and the fluid around under standard tasting conditions. The simultaneous monitoring of gaseous CO₂ and ethanol in the headspace of both a flute and a coupe filled with champagne was reported, depending on whether or not the glass shows effervescence. Both gaseous CO₂ and ethanol were found to be enhanced by the presence of ascending bubbles, thus confirming the close link between ascending bubbles, ascending-bubble-driven flow patterns, and the release of gaseous CO₂ and volatile organic compounds. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Polytropic index of ions in the Earth magnetosheath

    Science.gov (United States)

    Pang, X.; Cao, J.; Deng, Z.

    2017-12-01

    Useing the data of Cluster from 2001 to 2009, the polytropic index of the magnetosheath ions are calculated by the method of homogeneous MHD Bernoulli integral (MBI). The spatial distribution of ion polytropic index and modulation by low frequency MHD disturbances (4-18 mHz) are studied. The main results are as follows: The magnetosheath is a turbulent system in which the polytropic index of ions ranges from -2 to 3. The distribution of ion polytropic index is dependent on the electromagnetic energy flux perpendicular to the streamline. The median polytropic index of ions in the magnetosheath is 0.960, 0.965, and 0.974 for perpendicular electromagnetic energy ratio δE×Belectromagnetic energy between neighboring streamflow tubes, the magnetosheath ions are isothermal. However, when δE×B increases, the isobaric polytropic process starts to emerge. The median polytropic indexes of ions in the GSE X-Y plane of the equatorial magnetosheath decreases from the magnetopause to the bow shock. The magnetosheath ions are basically between isothermal and adiabatic in the inner magnetosheath (near the magnetopause), around isothermal in the middle magnetosheath, and between isothermal and isobaric in the outer magnetosheath. The spatial distributions of the correlation coefficient between the perturbed ion number density and parallel magnetic field CC_δnδB|| have a good correlation with the distribution of polytropic index. The quasi-perpendicular disturbances are basically mirror-like modes (DrEarth line. The polytropic indexes in the inner and middle magnetosheath modulated by mirror-like mode disturbances (CC_δnδB||<0) are between 0.9 and 1.2. The quasi-parallel propagating low frequency disturbances are predominantly slow modes in the inner magnetosheath and Alfvén modes in the middle and outer magnetosheath. For the samples with quasi-perpendicular propagating disturbances, the polytropic process is basically between isothermal and isobaric except near the

  15. Anisotropic charged generalized polytropic models

    Science.gov (United States)

    Nasim, A.; Azam, M.

    2018-06-01

    In this paper, we found some new anisotropic charged models admitting generalized polytropic equation of state with spherically symmetry. An analytic solution of the Einstein-Maxwell field equations is obtained through the transformation introduced by Durgapal and Banerji (Phys. Rev. D 27:328, 1983). The physical viability of solutions corresponding to polytropic index η =1/2, 2/3, 1, 2 is analyzed graphically. For this, we plot physical quantities such as radial and tangential pressure, anisotropy, speed of sound which demonstrated that these models achieve all the considerable physical conditions required for a relativistic star. Further, it is mentioned here that previous results for anisotropic charged matter with linear, quadratic and polytropic equation of state can be retrieved.

  16. Champagne Heat Pump

    Science.gov (United States)

    Jones, Jack A.

    2004-01-01

    The term champagne heat pump denotes a developmental heat pump that exploits a cycle of absorption and desorption of carbon dioxide in an alcohol or other organic liquid. Whereas most heat pumps in common use in the United States are energized by mechanical compression, the champagne heat pump is energized by heating. The concept of heat pumps based on other absorption cycles energized by heat has been understood for years, but some of these heat pumps are outlawed in many areas because of the potential hazards posed by leakage of working fluids. For example, in the case of the water/ammonia cycle, there are potential hazards of toxicity and flammability. The organic-liquid/carbon dioxide absorption/desorption cycle of the champagne heat pump is similar to the water/ammonia cycle, but carbon dioxide is nontoxic and environmentally benign, and one can choose an alcohol or other organic liquid that is also relatively nontoxic and environmentally benign. Two candidate nonalcohol organic liquids are isobutyl acetate and amyl acetate. Although alcohols and many other organic liquids are flammable, they present little or no flammability hazard in the champagne heat pump because only the nonflammable carbon dioxide component of the refrigerant mixture is circulated to the evaporator and condenser heat exchangers, which are the only components of the heat pump in direct contact with air in habitable spaces.

  17. [The magic bubbles of champagne].

    Science.gov (United States)

    Skovenborg, Erik

    2014-12-08

    The effervescence of champagne is due to 4.8 l of CO2-gas dissolved at a pressure of five bars. The velocity of an uncontrolled cork (60 km/h) may cause serious eye injuries. The fizz of champagne is mediated by carbonic anhydrase IV located in the membrane of sour-sensing cells. The association between alcohol intake, cardiovascular disease and all-cause mortality follows a J-shaped curve with the nadir at consumption levels of one drink/day. Polyphenols present in champagne increase spatial working memory in aged rodents and induce a neuroprotective effect against oxidative neuronal injury.

  18. Champagne : objet de culte, objet de lutte

    OpenAIRE

    Brochot, Aline

    2015-01-01

    Irrésistiblement aujourd’hui, le seul mot de champagne suffit à évoquer à la fois un vin, symbole universel de la fête et du luxe, et son espace de production. Oubliée la Champagne, cette grande plaine qui, en d’autres temps, fut qualifiée de « pouilleuse » et qui est devenue, grâce à des transformations radicales, l’une des plus riches du pays. Désormais, pour beaucoup, c’est l’étendue du vignoble qui marque l’étendue de la région et « La Champagne, c’est le champagne et le champagne c’est l...

  19. Champagne – branding and marketing of a luxury product

    OpenAIRE

    Santala, Laura

    2016-01-01

    This thesis will discuss the brand of champagne and its status as a luxury product. The aim is to find out how the luxury label might have affected the success of champagne and how it is marketed and branded. Champagne is one of the strongest brands in the wine industry throughout the history. It was branded already in the 19th century as the drink of the royals and today, is protected not by only the Comité Champagne, but also EU legislation. As a luxury product, champagne marketing rel...

  20. Champagne Patterns and Lake Nyos

    Science.gov (United States)

    Science Teacher, 2005

    2005-01-01

    Carbon dioxide bubbles in a glass of champagne rise to the surface in fine threads, which are made of bubble groupings that change over time. Researchers from French and Brazilian universities have produced a new model that accounts for the patterns in strings of bubbles in champagne and other effervescent fluids. The research appears in Physical…

  1. Typology and Financial Performance of Champagne Makers According to Distribution Channel

    OpenAIRE

    Declerck, Francis

    2005-01-01

    A typology of strategies related to the distribution channels used by Champagne makers is established. Champagne makers' operating profit depends on their distribution network, which affects selling prices. Based on a sample of 20 Champagne makers ("Maisons de Champagne"), economic and financial performance indicators for Champagne makers are analyzed with reference to the type of distribution channel.

  2. Solution of Riemann problem for ideal polytropic dusty gas

    International Nuclear Information System (INIS)

    Nath, Triloki; Gupta, R.K.; Singh, L.P.

    2017-01-01

    Highlights : • A direct approach is used to solve the Riemann problem for dusty ideal polytropic gas. • An analytical solution to the Riemann problem for dusty gas flow is obtained. • The existence and uniqueness of the solution in dusty gas is discussed. • Properties of elementary wave solutions of Riemann problem are discussed. • Effect of mass fraction of solid particles on the solution is presented. - Abstract: The Riemann problem for a quasilinear hyperbolic system of equations governing the one dimensional unsteady flow of an ideal polytropic gas with dust particles is solved analytically without any restriction on magnitude of the initial states. The elementary wave solutions of the Riemann problem, that is shock waves, rarefaction waves and contact discontinuities are derived explicitly and their properties are discussed, for a dusty gas. The existence and uniqueness of the solution for Riemann problem in dusty gas is discussed. Also the conditions leading to the existence of shock waves or simple waves for a 1-family and 3-family curves in the solution of the Riemann problem are discussed. It is observed that the presence of dust particles in an ideal polytropic gas leads to more complex expression as compared to the corresponding ideal case; however all the parallel results remain same. Also, the effect of variation of mass fraction of dust particles with fixed volume fraction (Z) and the ratio of specific heat of the solid particles and the specific heat of the gas at constant pressure on the variation of velocity and density across the shock wave, rarefaction wave and contact discontinuities are discussed.

  3. Gravitational collapse of conventional polytropic cylinder

    Science.gov (United States)

    Lou, Yu-Qing; Hu, Xu-Yao

    2017-07-01

    In reference to general polytropic and conventional polytropic hydrodynamic cylinders of infinite length with axial uniformity and axisymmetry under self-gravity, the dynamic evolution of central collapsing mass string in free-fall dynamic accretion phase is re-examined in details. We compare the central mass accretion rate and the envelope mass infall rate at small radii. Among others, we correct mistakes and typos of Kawachi & Hanawa (KH hereafter) and in particular prove that their key asymptotic free-fall solution involving polytropic index γ in the two power exponents is erroneous by analytical analyses and numerical tests. The correct free-fall asymptotic solutions at sufficiently small \\hat{r} (the dimensionless independent self-similar variable) scale as {˜ } -|ln \\hat{r}|^{1/2} in contrast to KH's ˜ -|ln \\hat{r}|^{(2-γ )/2} for the reduced bulk radial flow velocity and as {˜ } \\hat{r}^{-1}|ln \\hat{r}|^{-1/2} in contrast to KH's {˜ } \\hat{r}^{-1} |ln \\hat{r}|^{-(2-γ )/2} for the reduced mass density. We offer consistent scenarios for numerical simulation code testing and theoretical study on dynamic filamentary structure formation and evolution as well as pertinent stability properties. Due to unavoidable Jeans instabilities along the cylinder, such collapsing massive filaments or strings can further break up into clumps and segments of various lengths as well as clumps embedded within segments and evolve into chains of gravitationally collapsed objects (such as gaseous planets, brown dwarfs, protostars, white dwarfs, neutron stars, black holes in a wide mass range, globular clusters, dwarf spheroidals, galaxies, galaxy clusters and even larger mass reservoirs etc.) in various astrophysical and cosmological contexts as articulated by Lou & Hu recently. As an example, we present a model scheme for comparing with observations of molecular filaments for forming protostars, brown dwarfs and gaseous planets and so forth.

  4. Do expert ratings or economic models explain champagne prices?

    DEFF Research Database (Denmark)

    Bentzen, Jan Børsen; Smith, Valdemar

    2008-01-01

    Champagne is bought with low frequency and many consumers most likely do not have or seek full information on the quality of champagne. Some consumers may rely on the reputation of particular brands, e.g. "Les Grandes Marques", some consumers choose to gain information from sensory ratings...... of champagne. The aim of this paper is to analyse the champagne prices on the Scandinavian markets by applying a hedonic price function in a comparative framework with minimal models using sensory ratings....

  5. Two Quantum Polytropic Cycles

    Science.gov (United States)

    Arias-Hernández, L. A.; Morales-Serrano, A. F.

    2002-11-01

    In this work we follow the Bender et al paper [1] to study the quantum analogues of the Stirling and Ericsson polytropic cycles. In the context of the classical thermodynamics, the Stirling and Ericsson cycles correspond to reversible heat engines with two isothermal processes joined by two polytropic branches which occur in a device called regenerator. If this device is an ideal one, the efficiency of these cycles is the Carnot efficiency. Here, we introduce the quantum analogues of the Stirling and Ericsson cycles, the first one based on a double square potential well with a finite potential barrier, since in this system the tunnel effect could be the analogue to the regeneration classical process, therefore the isochoric quantum branches would really correspond to an internal energy storage, and the last one with an unknown system where the isobaric quantum processes don't induce changes in its quantum state. With these systems the quantum engines have cycles consisting of polytropic and isothermal quantum processes analogues to the corresponding classical processes. We show that in both cases the quantum cycles have an efficiency given by ηCQM = 1 - EC/EH, which is the same expression for the quantum analogue of the Carnot cycle studied by Bender.

  6. Evaporation of droplets in a Champagne wine aerosol

    Science.gov (United States)

    Ghabache, Elisabeth; Liger-Belair, Gérard; Antkowiak, Arnaud; Séon, Thomas

    2016-04-01

    In a single glass of champagne about a million bubbles nucleate on the wall and rise towards the surface. When these bubbles reach the surface and rupture, they project a multitude of tiny droplets in the form of a particular aerosol holding a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in idealized champagnes, the key features of the champagne aerosol are identified. In particular, we show that film drops, critical in sea spray for example, are here nonexistent. We then demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. There, conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of flavor release during sparkling wine tasting, a major issue for the sparkling wine industry.

  7. Unraveling different chemical fingerprints between a champagne wine and its aerosols.

    Science.gov (United States)

    Liger-Belair, Gérard; Cilindre, Clara; Gougeon, Régis D; Lucio, Marianna; Gebefügi, Istvan; Jeandet, Philippe; Schmitt-Kopplin, Philippe

    2009-09-29

    As champagne or sparkling wine is poured into a glass, the myriad of ascending bubbles collapse and radiate a multitude of tiny droplets above the free surface into the form of very characteristic and refreshing aerosols. Ultrahigh-resolution MS was used as a nontargeted approach to discriminate hundreds of surface active compounds that are preferentially partitioning in champagne aerosols; thus, unraveling different chemical fingerprints between the champagne bulk and its aerosols. Based on accurate exact mass analysis and database search, tens of these compounds overconcentrating in champagne aerosols were unambiguously discriminated and assigned to compounds showing organoleptic interest or being aromas precursors. By drawing a parallel between the fizz of the ocean and the fizz in Champagne wines, our results closely link bursting bubbles and flavor release; thus, supporting the idea that rising and collapsing bubbles act as a continuous paternoster lift for aromas in every glass of champagne.

  8. Evaporation of droplets in a Champagne wine aerosol

    Science.gov (United States)

    Ghabache, Elisabeth; Liger-Belair, Gérard; Antkowiak, Arnaud; Séon, Thomas

    2016-01-01

    In a single glass of champagne about a million bubbles nucleate on the wall and rise towards the surface. When these bubbles reach the surface and rupture, they project a multitude of tiny droplets in the form of a particular aerosol holding a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in idealized champagnes, the key features of the champagne aerosol are identified. In particular, we show that film drops, critical in sea spray for example, are here nonexistent. We then demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. There, conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of flavor release during sparkling wine tasting, a major issue for the sparkling wine industry. PMID:27125240

  9. White Dwarf Stars as Polytropic Gas Spheres

    OpenAIRE

    Nouh, M. I.; Saad, A. S.; Elkhateeb, M. M.; Korany, B.

    2014-01-01

    Due to the highly degeneracy of electrons in white dwarf stars, we expect that the relativistic effects play very important role in these stars. In the present article, we study the properties of the condensed matter in white dwarfs using Newtonian and relativistic polytropic fluid sphere. Two polytropic indices (namely n=3 and n=1.5) are proposed to investigate the physical characteristics of the models. We solve the Lane-Emden equations numerically.. The results show that the relativistic e...

  10. AUTOMATION OF CHAMPAGNE WINES PROCESS IN SPARKLING WINE PRESSURE TANK

    OpenAIRE

    E. V. Lukyanchuk; V. A. Khobin; V. A. Khobin

    2016-01-01

    The wine industry is now successfully solved the problem for the implementation of automation receiving points of grapes, crushing and pressing departments installation continuous fermentation work, blend tanks, production lines ordinary Madeira continuously working plants for ethyl alcohol installations champagne wine in continuous flow, etc. With the development of automation of technological progress productivity winemaking process develops in the following areas: organization of complex a...

  11. Can Aldi sell a dessert called “Champagner Sorbet”?

    NARCIS (Netherlands)

    Moerland - Dahrendorf, Anke

    2017-01-01

    Since “Champagne” is a protected designation of origin (PDO) under EU law, it is not self-evident whether a product that is not Champagne but which contains Champagne can use the protected term in its trade name.

  12. Preliminary thermodynamic study of regenerative Otto based cycles with zero NOx emissions operating with adiabatic and polytropic expansion

    International Nuclear Information System (INIS)

    Garcia, Ramon Ferreiro; Carril, Jose Carbia; Romero Gomez, Javier; Romero Gomez, Manuel

    2016-01-01

    Highlights: • Efficient polytropic expansion based Otto cycle. • Thermal efficiency is due to the inherent regeneration. • Low temperature combustion with zero NOx emissions. - Abstract: The aim of the paper is to demonstrate that a regenerative Otto cycle with adiabatic or polytropic expansion can achieve improved performance over traditional Otto engines, even exceeding the Carnot factor. Thus, the work deals with a novel regenerative Otto based internal combustion engine which differs from the conventional Otto thermal cycles in that the process of heat conversion into mechanical work is performed obeying a polytropic path function instead of the conventional adiabatic expansion without regeneration. Design characteristics concern the fact that combustion at constant volume is carried out undergoing large air excess so that the top combustion temperature is significantly lower than in conventional Otto cycles and consequently NOx emissions are neglected. Furthermore, during the polytropic expansion based path function, heat is absorbed by being submitted to a controlled heat flow rate, to achieve the desired polytropic expansion. The analysis of the regenerative Otto based on polytropic expansion is presented and results are compared with a regenerative Otto based on the adiabatic expansion and CF. The results show that a relevant advantage of the proposed regenerative Otto with polytropic expansion over the regenerative Otto cycle with adiabatic expansion involves performance enhancement within a wide range of combustion pressures, temperatures and regeneration capacities. Thus, thermal efficiency and specific work as function of the top combustion pressure ranges are of 71.95–58.43% and 143.5–173.6 kJ/kg respectively, when combustion pressures vary between 105 kPa and 200 kPa and CF is 60.8% (lower than the thermal efficiency). The successful results involving a compact engine structure, technically and economically viable, promises a new generation

  13. The physics behind the fizz in champagne and sparkling wines

    Science.gov (United States)

    Liger-Belair, G.

    2012-02-01

    Bubbles in a glass of champagne may seem like the acme of frivolity to most of people, but in fact they may rather be considered as a fantastic playground for any physicist. Actually, the so-called effervescence process, which enlivens champagne and sparkling wines tasting, is the result of the fine interplay between CO2 dissolved gas molecules, tiny air pockets trapped within microscopic particles during the pouring process, and some both glass and liquid properties. Results obtained concerning the various steps where the CO2 molecule plays a role (from its ingestion in the liquid phase during the fermentation process to its progressive release in the headspace above the tasting glass as bubbles collapse) are gathered and synthesized to propose a self-consistent and global overview of how gaseous and dissolved CO2 impact champagne and sparkling wine science. Physicochemical processes behind the nucleation, rise, and burst of gaseous CO2 bubbles found in glasses poured with champagne and sparkling wines are depicted. Those phenomena observed in close-up through high-speed photography are often visually appealing. I hope that your enjoyment of champagne will be enhanced after reading this fully illustrated review dedicated to the science hidden right under your nose each time you enjoy a glass of champagne.

  14. Interacting polytropic gas model of phantom dark energy in non-flat universe

    International Nuclear Information System (INIS)

    Karami, K.; Ghaffari, S.; Fehri, J.

    2009-01-01

    By introducing the polytropic gas model of interacting dark energy, we obtain the equation of state for the polytropic gas energy density in a non-flat universe. We show that for an even polytropic index by choosing K>Ba (3)/(n) , one can obtain ω Λ eff <-1, which corresponds to a universe dominated by phantom dark energy. (orig.)

  15. Modeling the Losses of Dissolved CO(2) from Laser-Etched Champagne Glasses.

    Science.gov (United States)

    Liger-Belair, Gérard

    2016-04-21

    Under standard champagne tasting conditions, the complex interplay between the level of dissolved CO2 found in champagne, its temperature, the glass shape, and the bubbling rate definitely impacts champagne tasting by modifying the neuro-physicochemical mechanisms responsible for aroma release and flavor perception. On the basis of theoretical principles combining heterogeneous bubble nucleation, ascending bubble dynamics, and mass transfer equations, a global model is proposed, depending on various parameters of both the wine and the glass itself, which quantitatively provides the progressive losses of dissolved CO2 from laser-etched champagne glasses. The question of champagne temperature was closely examined, and its role on the modeled losses of dissolved CO2 was corroborated by a set of experimental data.

  16. Determination of the Trans-resveratrol content of Champagne wines by reversed-phase HPLC

    Directory of Open Access Journals (Sweden)

    Philippe Jeandet

    2006-06-01

    Full Text Available Levels of trans-resveratrol in Champagne wines were determined by the use of reversed-phase HPLC with UV and fluorometric detection after liquid-liquid extraction with ethyl acetate. Resveratrol concentrations in Champagne wines range from 20 to 77 μg/L except for the Champagne rosé in which resveratrol reaches several hundred micrograms per litre. The resveratrol content of Champagne wines was also shown to decrease with aging on lees.

  17. Study of conformally flat polytropes with tilted congruence

    Science.gov (United States)

    Sharif, M.; Sadiq, Sobia

    This paper is aimed to study the modeling of spherically symmetric spacetime in the presence of anisotropic dissipative fluid configuration. This is accomplished for an observer moving relative to matter content using two cases of polytropic equation-of-state under conformally flat condition. We formulate the corresponding generalized Tolman-Oppenheimer-Volkoff equation, mass equation, as well as energy conditions for both cases. The conformally flat condition is imposed to find an expression for anisotropy which helps to study spherically symmetric polytropes. Finally, Tolman mass is used to analyze stability of the resulting models.

  18. From bubble bursting to droplet evaporation in the context of champagne aerosols

    Science.gov (United States)

    Seon, Thomas; Ghabache, Elisabeth; Antkowiak, Arnaud; Liger-Belair, Gerard

    2015-11-01

    As champagne or sparkling wine is poured into a glass, a myriad of ascending bubbles collapse and therefore radiate a multitude of tiny droplets above the free surface into the form of very characteristic and refreshing aerosols. Because these aerosols have been found to hold the organoleptic ``essence'' of champagne they are believed to play a crucial role in the flavor release in comparison with that from a flat wine for example. Based on the model experiment of a single bubble bursting in idealized champagnes, the velocity, radius and maximum height of the first jet drop following bubble collapse have been characterized, with varying bubble size and liquid properties in the context of champagne aerosols. Using the experimental results and simple theoretical models for drop and surface evaporation, we show that bubble bursting aerosols drastically enhance the transfer of liquid in the atmosphere with respect to a flat liquid surface. Contrary to popular opinion, we exhibit that small bubbles are negative in terms of aroma release, and we underline bubble radii enabling to optimize the droplet height and evaporation in the whole range of champagne properties. These results pave the road to the fine tuning of champagne aroma diffusion, a major issue of the sparkling wine industry.

  19. (N+1)-dimensional Lorentzian evolving wormholes supported by polytropic matter

    Energy Technology Data Exchange (ETDEWEB)

    Cataldo, Mauricio [Universidad del Bio-Bio, Departamento de Fisica, Facultad de Ciencias, Concepcion (Chile); Arostica, Fernanda; Bahamonde, Sebastian [Universidad de Concepcion, Departamento de Fisica, Concepcion (Chile)

    2013-08-15

    In this paper we study (N+1)-dimensional evolving wormholes supported by energy satisfying a polytropic equation of state. The considered evolving wormhole models are described by a constant redshift function and generalizes the standard flat Friedmann-Robertson-Walker spacetime. The polytropic equation of state allows us to consider in (3+1)-dimensions generalizations of the phantom energy and the generalized Chaplygin gas sources. (orig.)

  20. Understanding Consumer Preferences for Australian Sparkling Wine vs. French Champagne

    Directory of Open Access Journals (Sweden)

    Julie Culbert

    2016-07-01

    Full Text Available Sparkling wine represents a small but significant proportion of the Australian wine industry’s total production. Yet, Australia remains a significant importer of French Champagne. This study investigated consumer preferences for Australian sparkling wine vs. French Champagne and any compositional and/or sensorial bases for these preferences. A range of French and Australian sparkling wines were analyzed by MIR spectroscopy to determine if sparkling wines could be differentiated according to country of origin. A subset of wines, comprising two French Champagnes, a French sparkling wine and three Australian sparkling wines, were selected for (i descriptive analysis to characterize their sensory profiles and (ii acceptance tests to determine consumer liking (n = 95 Australian wine consumers. Significant differences were observed between liking scores; on average, the $70 French Champagne was liked least and the $12 Australian sparkling wine liked most, but segmentation (based on individual liking scores identified clusters comprising consumers with distinct wine preferences. Interestingly, when consumers were shown wine bottle labels, they considered French wines to be more expensive than Australian wines, demonstrating a clear country of origin influence.

  1. AUTOMATION OF CHAMPAGNE WINES PROCESS IN SPARKLING WINE PRESSURE TANK

    Directory of Open Access Journals (Sweden)

    E. V. Lukyanchuk

    2016-08-01

    Full Text Available The wine industry is now successfully solved the problem for the implementation of automation receiving points of grapes, crushing and pressing departments installation continuous fermentation work, blend tanks, production lines ordinary Madeira continuously working plants for ethyl alcohol installations champagne wine in continuous flow, etc. With the development of automation of technological progress productivity winemaking process develops in the following areas: organization of complex avtomatization sites grape processing with bulk transportation of the latter; improving the quality and durability of wines by the processing of a wide applying wine cold and heat, as well as technical and microbiological control most powerful automation equipment; the introduction of automated production processes of continuous technical champagne, sherry wine and cognac alcohol madery; the use of complex automation auxiliary production sites (boilers, air conditioners, refrigeration unitsand other.; complex avtomatization creation of enterprises, and sites manufactory bottling wines. In the wine industry developed more sophisticated schemes of automation and devices that enable the transition to integrated production automation, will create, are indicative automated enterprise serving for laboratories to study of the main problems of automation of production processes of winemaking.

  2. Champagne Groove Lipectomy: A Safe Technique to Contour the Upper Abdomen in Abdominoplasty.

    Science.gov (United States)

    Brooks, Ron; Nguyen, Jonathan; Chowdhry, Saeed; Tutela, John Paul; Kelishadi, Sean; Yonick, David; Choo, Joshua; Wilhelmi, Bradon J

    2017-01-01

    Objective: Combined liposuction and abdominoplasty, or lipoabdominoplasty, is particularly helpful in sculpting a more aesthetically pleasing abdominal contour, particularly in the supraumbilical midline groove. This groove, coined the "champagne groove" by one of our patients, is a frequently sought-after attribute by patients. However, liposuction adds time and cost to an already costly abdominoplasty. We sought to create this groove without the addition of liposuction, utilizing what we call a champagne groove lipectomy. This study reports on our champagne groove lipectomy technique and compares our complication rates with those reported in the literature for standard abdominoplasty techniques. Methods: This is a retrospective review of a single surgeon's experience at our institution over a 6-year period (2007-2012). A total of 74 patients undergoing consecutive abdominoplasty were studied, all female nonsmokers. Two groups were recognized: 64 of 74 patients underwent abdominoplasty, partial belt lipectomy, and champagne groove lipectomy, while 10 of 74 patients underwent fleur-de-lis abdominoplasty without champagne groove lipectomy. Results: Overall, 10 of 74 patients (13.5%) suffered some type of complication, which compares favorably with reported rates in the literature. The majority of complications were related to delayed wound healing or superficial wound dehiscence. Among those patients who underwent champagne groove lipectomy, complications occurred in 6 of 64 patients (9.3%), versus 4 of 10 (40%) patients undergoing fleur-de-lis abdominoplasty. Conclusions: Champagne groove lipectomy is a cost-effective alternative to lipoabdominoplasty for achieving an aesthetically pleasing upper midline abdominal contour, with complication rates comparing favorably with those reported in the literature.

  3. Calculation of the form of an equilibrium poloidal magnetic field contained in a polytropic star

    International Nuclear Information System (INIS)

    Brundrit, G.B.; Miketinac, M.J.

    1976-01-01

    This program is designed to integrate the exact equations which determine the distribution of the density of a self-gravitating, axisymmetric polytrope of infinite conductivity containing a poloidal magnetic field. In addition, other properties of an equilibrium configuration such as mass, volume and radius are calculated. The program can also provide at very small extra cost the rates of change of the density with respect to changes of the polytropic index n and the parameter lambda which characterizes the poloidal magnetic field. Mathematically, the problem can be formulated as a boundary value problem for three coupled equations, two of which are second order, non-linear, two-dimensional partial differential equations. The solution is obtained numerically by an adaptation of the Stoeckl's finite difference-finite expansion method. In fact, the present program is a major modification of the program TOROID. The numerical scheme developed in the program is valid for all polytropes whose polytropic index n is greater than or equal to one. The other parameter of the theory, lambda, is unrestricted, i.e. the program permits the study of stars whose matnetic energy is a 'sizeable' percentage of their gravitational energy. Also, the program, with minor modifications, could be used for calculating equilibrium configurations of (a) (uniformly or non-uniformly) rotating polytropes pervaded by poloidal magnetic fields or (b) (rotation) polytropes containing poloidal magnetic fields. However, the greatest use of the present program is expected to arise in attempts to construct equilibrium configurations of polytropes containing mixed poloidal toroidal magnetic fields. (Auth.)

  4. Relationship between lipid distribution and geochemical environment within Champagne Pool, Waiotapu, New Zealand

    NARCIS (Netherlands)

    Kaur, G.; Mountain, B.W.; Hopmans, E.C.; Pancost, R.D.

    2011-01-01

    The lipid biomarkers associated with various geothermal facies within Champagne Pool were investigated and compared with previous microbiological characterisation. Biomarker analysis revealed two distinct microbial communities spanning the margin of Champagne Pool: the first in the subaqueous domal

  5. Reconstructing an interacting holographic polytropic gas model in a non-flat FRW universe

    International Nuclear Information System (INIS)

    Karami, K; Abdolmaleki, A

    2010-01-01

    We study the correspondence between the interacting holographic dark energy and the polytropic gas model of dark energy in a non-flat FRW universe. This correspondence allows one to reconstruct the potential and the dynamics for the scalar field of the polytropic model, which describe accelerated expansion of the universe.

  6. Reconstructing an interacting holographic polytropic gas model in a non-flat FRW universe

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K; Abdolmaleki, A, E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran Street, Sanandaj (Iran, Islamic Republic of)

    2010-05-01

    We study the correspondence between the interacting holographic dark energy and the polytropic gas model of dark energy in a non-flat FRW universe. This correspondence allows one to reconstruct the potential and the dynamics for the scalar field of the polytropic model, which describe accelerated expansion of the universe.

  7. Kinetics of CO(2) fluxes outgassing from champagne glasses in tasting conditions: the role of temperature.

    Science.gov (United States)

    Liger-Belair, Gérard; Villaume, Sandra; Cilindre, Clara; Jeandet, Philippe

    2009-03-11

    Measurements of CO(2) fluxes outgassing from a flute poured with a standard Champagne wine initially holding about 11 g L(-1) of dissolved CO(2) were presented, in tasting conditions, all along the first 10 min following the pouring process. Experiments were performed at three sets of temperature, namely, 4 degrees C, 12 degrees C, and 20 degrees C, respectively. It was demonstrated that the lower the champagne temperature, the lower CO(2) volume fluxes outgassing from the flute. Therefore, the lower the champagne temperature, the lower its progressive loss of dissolved CO(2) concentration with time, which constitutes the first analytical proof that low champagne temperatures prolong the drink's chill and helps retains its effervescence. A correlation was also proposed between CO(2) volume fluxes outgassing from the flute poured with champagne and its continuously decreasing dissolved CO(2) concentration. Finally, the contribution of effervescence to the global kinetics of CO(2) release was discussed and modeled by the use of results developed over recent years. The temperature dependence of the champagne viscosity was found to play a major role in the kinetics of CO(2) outgassing from a flute. On the basis of this bubbling model, the theoretical influence of champagne temperature on CO(2) volume fluxes outgassing from a flute was discussed and found to be in quite good accordance with our experimental results.

  8. La physique des bulles de champagne Une première approche des processus physico-chimiques liés à l'effervescence des vins de Champagne

    Science.gov (United States)

    Liger-Belair, G.

    2002-07-01

    People have long been fascinated by bubbles and foams dynamics, and since the pioneering work of Leonardo da Vinci in the early 16th century, this subject has generated a huge bibliography. However, only very recently, much interest was devoted to bubbles in Champagne wines. Small bubbles rising through the liquid, as well as a bubble ring (the so-called collar) at the periphery of a flute poured with champagne are the hallmark of this traditionally festive wine, and even there is no scientific evidence yet to connect the quality of a champagne with its effervescence, people nevertheless often make a connection between them. Therefore, since the last few years, a better understanding of the numerous parameters involved in the bubbling process has become an important stake in the champagne research area. Otherwise, in addition to these strictly enological reasons, we also feel that the area of bubble dynamics could benefit from the simple but close observation of a glass poured with champagne. In this study, our first results concerning the close observation of the three main steps of a champagne bubble's life are presented, that is, the bubble nucleation on tiny particles stuck on the glass wall (Chap. 2), the bubble ascent through the liquid (Chap. 3), and the bursting of bubbles at the free surface, which constitutes the most intriguing and visually appealing step (Chap. 4). Our results were obtained in real consuming conditions, that is, in a classical crystal flute poured with a standard commercial champagne wine. Champagne bubble nucleation proved to be a fantastic everyday example to illustrate the non-classical heterogeneous bubble nucleation process in a weakly supersaturated liquid. Contrary to a generally accepted idea, nucleation sites are not located on irregularities of the glass itself. Most of nucleation sites are located on tiny hollow and roughly cylindrical exogenous fibres coming from the surrounding air or remaining from the wiping process

  9. Structure and chemical composition of layers adsorbed at interfaces with champagne.

    Science.gov (United States)

    Aguié-Béghin, V; Adriaensen, Y; Péron, N; Valade, M; Rouxhet, P; Douillard, R

    2009-11-11

    The structure and the chemical composition of the layer adsorbed at interfaces involving champagne have been investigated using native champagne, as well as ultrafiltrate (UFch) and ultraconcentrate (UCch) obtained by ultrafiltration with a 10(4) nominal molar mass cutoff. The layer adsorbed at the air/liquid interface was examined by surface tension and ellipsometry kinetic measurements. Brewster angle microscopy demonstrated that the layer formed on polystyrene by adsorption or drop evaporation was heterogeneous, with a domain structure presenting similarities with the layer adsorbed at the air/liquid interface. The surface chemical composition of polystyrene with the adlayer was determined by X-ray photoelectron spectroscopy (XPS). The contribution of champagne constituents varied according to the liquid (native, UFch, and UCch) and to the procedure of adlayer formation (evaporation, adsorption, and adsorption + rinsing). However, their chemical composition was not significantly influenced either by ultrafiltration or by the procedure of deposition on polystyrene. Modeling this composition in terms of classes of model compounds gave approximately 35% (w/w) of proteins and 65% (w/w) of polysaccharides. In the adlayer, the carboxyl groups or esters represent about 18% of carbon due to nonpolypeptidic compounds, indicating the presence of either uronic acids in the complex structure of pectic polysaccharides or of polyphenolic esters. This structural and chemical information and its relationship with the experimental procedures indicate that proteins alone cannot be used as a realistic model for the macromolecules forming the adsorption layer of champagne. Polysaccharides, the other major macromolecular components of champagne wine, are assembled with proteins at the interfaces, in agreement with the heterogeneous character of the adsorbed layer at interfaces.

  10. Sinuous oscillations and steady warps of polytropic disks

    International Nuclear Information System (INIS)

    Balmforth, N.J.; Spiegel, E.A.

    1995-05-01

    In an asymptotic development of the equations governing the equilibria and linear stability of rapidly rotating polytropes we employed the slender aspect of these objects to reduce the three-dimensional partial differential equations to a somewhat simpler, ordinary integro-differential form. The earlier calculations dealt with isolated objects that were in centrifugal balance, that is the centrifugal acceleration of the configuration was balanced largely by self gravity with small contributions from the pressure gradient. Another interesting situation is that in which the polytrope rotates subject to externally imposed gravitational fields. In astrophysics, this is common in the theory of galactic dynamics because disks are unlikely to be isolated objects. The dark halos associated with disks also provide one possible explanation of the apparent warping of many galaxies. If the axis of the highly flattened disk is not aligned with that of the much less flattened halo, then the resultant torque of the halo gravity on the disk might provide a nonaxisymmetric distortion or disk warp. Motivated by these possibilities we shall here build models of polytropic disks of small but finite thickness which are subjected to prescribed, external gravitational fields. First we estimate how a symmetrical potential distorts the structure of the disk, then we examine its sinuous oscillations to confirm that they freely decay, hence suggesting that a warp must be externally forced. Finally, we consider steady warps of the disk plane when the axis of the disk does not coincide with that of the halo

  11. Moderate Champagne consumption promotes an acute improvement in acute endothelial-independent vascular function in healthy human volunteers.

    Science.gov (United States)

    Vauzour, David; Houseman, Emily J; George, Trevor W; Corona, Giulia; Garnotel, Roselyne; Jackson, Kim G; Sellier, Christelle; Gillery, Philippe; Kennedy, Orla B; Lovegrove, Julie A; Spencer, Jeremy P E

    2010-04-01

    Epidemiological studies have suggested an inverse correlation between red wine consumption and the incidence of CVD. However, Champagne wine has not been fully investigated for its cardioprotective potential. In order to assess whether acute and moderate Champagne wine consumption is capable of modulating vascular function, we performed a randomised, placebo-controlled, cross-over intervention trial. We show that consumption of Champagne wine, but not a control matched for alcohol, carbohydrate and fruit-derived acid content, induced an acute change in endothelium-independent vasodilatation at 4 and 8 h post-consumption. Although both Champagne wine and the control also induced an increase in endothelium-dependent vascular reactivity at 4 h, there was no significant difference between the vascular effects induced by Champagne or the control at any time point. These effects were accompanied by an acute decrease in the concentration of matrix metalloproteinase (MMP-9), a significant decrease in plasma levels of oxidising species and an increase in urinary excretion of a number of phenolic metabolites. In particular, the mean total excretion of hippuric acid, protocatechuic acid and isoferulic acid were all significantly greater following the Champagne wine intervention compared with the control intervention. Our data suggest that a daily moderate consumption of Champagne wine may improve vascular performance via the delivery of phenolic constituents capable of improving NO bioavailability and reducing matrix metalloproteinase activity.

  12. Polytropic and Chaplygin f(T)-gravity models

    International Nuclear Information System (INIS)

    Karami, K; Abdolmaleki, A

    2012-01-01

    We reconstruct different f(T)-gravity models corresponding to a set of dark energy scenarios containing the polytropic, the standard Chaplygin and the generalized Chaplygin gas models. We also derive the equation of state parameter of the selected f(T)-gravity models and obtain the necessary conditions for crossing the phantom-divide line.

  13. The ion polytropic coefficient in a collisionless sheath containing hot ions

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Binbin; Xiang, Nong, E-mail: xiangn@ipp.ac.cn; Ou, Jing [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Center for Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031 (China)

    2016-08-15

    The fluid approach has been widely used to study plasma sheath dynamics. For a sheath containing hot ions whose temperature is greater than the electron's, how to truncate the fluid hierarchy chain equations while retaining to the fullest extent of the kinetic effects is always a difficult problem. In this paper, a one-dimensional, collisionless sheath containing hot ions is studied via particle-in-cell simulations. By analyzing the ion energy equation and taking the kinetic effects into account, we have shown that the ion polytropic coefficient in the vicinity of the sheath edge is approximately constant so that the state equation with the modified polytropic coefficient can be used to close the hierarchy chain of the ion fluid equations. The value of the polytropic coefficient strongly depends on the hot ion temperature and its concentration in the plasma. The semi-analytical model is given to interpret the simulation results. As an application, the kinetic effects on the ion saturation current density in the probe theory are discussed.

  14. Tidal Love numbers and moment-Love relations of polytropic stars

    Science.gov (United States)

    Yip, Kenny L. S.; Leung, P. T.

    2017-12-01

    The physical significance of tidal deformation in astronomical systems has long been known. The recently discovered universal I-Love-Q relations, which connect moment of inertia, quadrupole tidal Love number and spin-induced quadrupole moment of compact stars, also underscore the special role of tidal deformation in gravitational wave astronomy. Motivated by the observation that such relations also prevail in Newtonian stars and crucially depend on the stiffness of a star, we consider the tidal Love numbers of Newtonian polytropic stars whose stiffness is characterized by a polytropic index n. We first perturbatively solve the Lane-Emden equation governing the profile of polytropic stars through the application of the scaled delta expansion method and then formulate perturbation series for the multipolar tidal Love number about the two exactly solvable cases with n = 0 and n = 1, respectively. Making use of these two series to form a two-point Padé approximant, we find an approximate expression of the quadrupole tidal Love number, whose error is less than 2.5 × 10-5 per cent (0.39 per cent) for n ∈ [0, 1] (n ∈ [0, 3]). Similarly, we also determine the mass moments for polytropic stars accurately. Based on these findings, we are able to show that the I-Love-Q relations are in general stationary about the incompressible limit irrespective of the equation of state of a star. Moreover, for the I-Love-Q relations, there is a secondary stationary point near n ≈ 0.4444, thus showing the insensitivity to n for n ∈ [0, 1]. Our investigation clearly tracks the universality of the I-Love-Q relations from their validity for stiff stars such as neutron stars to their breakdown for soft stars.

  15. Clinical Significance of the Champagne Bottle Neck Sign in the Extracranial Carotid Arteries of Patients with Moyamoya Disease.

    Science.gov (United States)

    Yasuda, C; Arakawa, S; Shimogawa, T; Kanazawa, Y; Sayama, T; Haga, S; Morioka, T

    2016-05-26

    The champagne bottle neck sign represents a rapid reduction in the extracranial ICA diameters and is a characteristic feature of Moyamoya disease. However, the clinical significance of the champagne bottle neck sign is unclear. We investigated the relationship between the champagne bottle neck sign and the clinical and hemodynamic stages of Moyamoya disease. We analyzed 14 patients with Moyamoya disease before revascularization (5 men, 9 women; age, 43.2 ± 19.3 years). The ratio of the extracranial ICA and common carotid artery diameters was determined using carotid ultrasonography or cerebral angiography; a ratio of champagne bottle neck sign-positive. The clinical disease stage was determined using the Suzuki angiographic grading system. CBF and cerebral vasoreactivity also were measured. The ICA/common carotid artery ratio (expressed as median [interquartile range]) decreased as the clinical stage advanced (stages I-II, 0.71 [0.60-0.77]; stages III-IV, 0.49 [0.45-0.57]; stages V-VI, 0.38 [0.34-0.47]; P champagne bottle neck sign-positive arteries were classified as Suzuki stage ≥III, 73% were symptomatic, and 89% exhibited reduced cerebral vasoreactivity. In contrast, all champagne bottle neck sign-negative arteries were Suzuki stage ≤III, 67% were asymptomatic, and all showed preserved cerebral vasoreactivity. The champagne bottle neck sign was related to advanced clinical stage, clinical symptoms, and impaired cerebral vasoreactivity. Thus, detection of the champagne bottle neck sign might be useful in determining the clinical and hemodynamic stages of Moyamoya disease. © 2016 American Society of Neuroradiology.

  16. Anisotropic charged physical models with generalized polytropic equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Nasim, A.; Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2018-01-15

    In this paper, we found the exact solutions of Einstein-Maxwell equations with generalized polytropic equation of state (GPEoS). For this, we consider spherically symmetric object with charged anisotropic matter distribution. We rewrite the field equations into simple form through transformation introduced by Durgapal (Phys Rev D 27:328, 1983) and solve these equations analytically. For the physically acceptability of these solutions, we plot physical quantities like energy density, anisotropy, speed of sound, tangential and radial pressure. We found that all solutions fulfill the required physical conditions. It is concluded that all our results are reduced to the case of anisotropic charged matter distribution with linear, quadratic as well as polytropic equation of state. (orig.)

  17. N,S,O-Heterocycles in Aged Champagne Reserve Wines and Correlation with Free Amino Acid Concentrations.

    Science.gov (United States)

    Le Menn, Nicolas; Marchand, Stephanie; de Revel, Gilles; Demarville, Dominique; Laborde, Delphine; Marchal, Richard

    2017-03-22

    Champagne regulations allow winegrowers to stock still wines to compensate for quality shifts in vintages, mainly due to climate variations. According to their technical requirements and house style, Champagne producers use these stored wines in their blends to enhance complexity. The presence of lees and aging at low pH (2.95-3.15), as in Champagne wines, lead to several modifications in wine composition. These conditions, combined with extended aging, result in the required environment for the Maillard chemical reaction, involving aromatic molecules, including sulfur, oxygen, and nitrogen heterocycles (such as thiazole, furan, and pyrazine derivatives), which may have a sensory impact on wine. Some aromatic heterocycles in 50 monovarietal wines aged from 1 to 27 years provided by Veuve Clicquot Ponsardin Champagne house were determined by the SPME-GC-MS method. The most interesting result highlighted a strong correlation between certain heterocycle concentrations and wine age. The second revealed a correlation between heterocyclic compound and free amino acid concentrations measured in the wines, suggesting that these compounds are potential aromatic precursors when wine is aged on lees and, thus, potential key compounds in the bouquet of aged Champagnes. The principal outcome of these assays was to reveal, for the first time, that aromatic heterocycle concentrations in Champagne base wines are correlated with wine age.

  18. Performance evaluation of the Champagne source reconstruction algorithm on simulated and real M/EEG data.

    Science.gov (United States)

    Owen, Julia P; Wipf, David P; Attias, Hagai T; Sekihara, Kensuke; Nagarajan, Srikantan S

    2012-03-01

    In this paper, we present an extensive performance evaluation of a novel source localization algorithm, Champagne. It is derived in an empirical Bayesian framework that yields sparse solutions to the inverse problem. It is robust to correlated sources and learns the statistics of non-stimulus-evoked activity to suppress the effect of noise and interfering brain activity. We tested Champagne on both simulated and real M/EEG data. The source locations used for the simulated data were chosen to test the performance on challenging source configurations. In simulations, we found that Champagne outperforms the benchmark algorithms in terms of both the accuracy of the source localizations and the correct estimation of source time courses. We also demonstrate that Champagne is more robust to correlated brain activity present in real MEG data and is able to resolve many distinct and functionally relevant brain areas with real MEG and EEG data. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Multi-method characterization of a landslide in Champagne vineyards: the case study of the Jacotines landslide (Marne, France)

    Science.gov (United States)

    Nicolas, Bollot; Guillaume, Pierre; Gilles, Grandjean

    2014-05-01

    Key words : landslide, Champagne vineyards , geomorphology, geophysical data, superficial structure The Champagne region is strongly impacted by landslides. Usually inactive, these landslides suffer from partial reactivations leading to important damages, especially when they occur in the vineyards. In the Marne valley, and particularly in the center of Champagne vineyards area (Reuil), the Jacotines site is representative of such landslides since it presents typical surface characteristics widely observed in the region. However, its size, and especially its internal structure, can't be deduced from the surface analysis only. The aim of this work is to combine surface patterns analysis, geophysical data and borehole data to produce an interpretative model of the landslide. Preliminary geomorphological cartography was used for determining the influence of the landslide. From this information, geophysical investigations were carried out to image the internal structure of the landslide. Geophysical data fusion (combination of seismic and geoelectrical tomograms) was used to estimate the mechanical behavior and the fissuring pattern of the slope. Three transverse and longitudinal tomograms were used to define an heterogeneous area between 20 and 50 meters depth and a weathered zone from 0 to 10-20 meters depth. A 60 meters depth borehole on the main transverse tomogram found the shear plane and clarified the structure of the heterogeneous area as well as the uppermost weathered layer composed by debris flows resulting from partial reactivations processes.

  20. Cosmological perturbations in the ΛCDM-like limit of a polytropic dark matter model

    Science.gov (United States)

    Kleidis, K.; Spyrou, N. K.

    2017-10-01

    It has recently been proposed that both dark matter (DM) and dark energy (DE) can be treated as a single component when they are considered in the context of a polytropic DM fluid with thermodynamical content. Depending on only one free parameter, that is, the polytropic exponent, - 0.103 law of conventional statistical physics. As a consequence, peculiar velocities in this model slightly increase instead of being redshifted away by cosmic expansion. This result might comprise a convenient probe of the polytropic DM model with Γ = 0. Even more importantly, however, upon consideration of scale-invariant metric perturbations, the spectrum of their rest-mass density counterparts exhibits an effective power-law dependence on the (physical) wavenumber, kph, of the form kph3+nseff, with the associated scalar spectral index, nseff, being equal to nseff = 0.970. This theoretical value reproduces the corresponding observational Planck result, that is, nsobs = 0.968 ± 0.006.

  1. Polytropic solutions of a perfect fluid in spatial n-dimensions

    International Nuclear Information System (INIS)

    Luiz, Fabricio Casarejos Lopes; Rocha, Jaime F. Villas da

    2005-01-01

    We found all the solutions of a polytropic state equation for a n-dimensional metric associated to a perfect fluid. Some of them represent gravitational collapse with black hole or naked singularity formation. We found also an accelerating cosmological model. (author)

  2. More on the losses of dissolved CO(2) during champagne serving: toward a multiparameter modeling.

    Science.gov (United States)

    Liger-Belair, Gérard; Parmentier, Maryline; Cilindre, Clara

    2012-11-28

    Pouring champagne into a glass is far from being inconsequential with regard to the dissolved CO(2) concentration found in champagne. Three distinct bottle types, namely, a magnum bottle, a standard bottle, and a half bottle, were examined with regard to their loss of dissolved CO(2) during the service of successively poured flutes. Whatever the bottle size, a decreasing trend is clearly observed with regard to the concentration of dissolved CO(2) found within a flute (from the first to the last one of a whole service). Moreover, when it comes to champagne serving, the bottle size definitely does matter. The higher the bottle volume, the better its buffering capacity with regard to dissolved CO(2) found within champagne during the pouring process. Actually, for a given flute number in a pouring data series, the concentration of dissolved CO(2) found within the flute was found to decrease as the bottle size decreases. The impact of champagne temperature (at 4, 12, and 20 °C) on the losses of dissolved CO(2) found in successively poured flutes for a given standard 75 cL bottle was also examined. Cold temperatures were found to limit the decreasing trend of dissolved CO(2) found within the successively poured flutes (from the first to the last one of a whole service). Our experimental results were discussed on the basis of a multiparameter model that accounts for the major physical parameters that influence the loss of dissolved CO(2) during the service of a whole bottle type.

  3. CO2 diffusion in champagne wines: a molecular dynamics study.

    Science.gov (United States)

    Perret, Alexandre; Bonhommeau, David A; Liger-Belair, Gérard; Cours, Thibaud; Alijah, Alexander

    2014-02-20

    Although diffusion is considered as the main physical process responsible for the nucleation and growth of carbon dioxide bubbles in sparkling beverages, the role of each type of molecule in the diffusion process remains unclear. In the present study, we have used the TIP5P and SPC/E water models to perform force field molecular dynamics simulations of CO2 molecules in water and in a water/ethanol mixture respecting Champagne wine proportions. CO2 diffusion coefficients were computed by applying the generalized Fick's law for the determination of multicomponent diffusion coefficients, a law that simplifies to the standard Fick's law in the case of champagnes. The CO2 diffusion coefficients obtained in pure water and water/ethanol mixtures composed of TIP5P water molecules were always found to exceed the coefficients obtained in mixtures composed of SPC/E water molecules, a trend that was attributed to a larger propensity of SPC/E water molecules to form hydrogen bonds. Despite the fact that the SPC/E model is more accurate than the TIP5P model to compute water self-diffusion and CO2 diffusion in pure water, the diffusion coefficients of CO2 molecules in the water/ethanol mixture are in much better agreement with the experimental values of 1.4 - 1.5 × 10(-9) m(2)/s obtained for Champagne wines when the TIP5P model is employed. This difference was deemed to rely on the larger propensity of SPC/E water molecules to maintain the hydrogen-bonded network between water molecules and form new hydrogen bonds with ethanol, although statistical issues cannot be completely excluded. The remarkable agreement between the theoretical CO2 diffusion coefficients obtained within the TIP5P water/ethanol mixture and the experimental data specific to Champagne wines makes us infer that the diffusion coefficient in these emblematic hydroalcoholic sparkling beverages is expected to remain roughly constant whathever their proportions in sugars, glycerol, or peptides.

  4. Gravitational instability of polytropic spheres containing region of trapped null geodesics: a possible explanation of central supermassive black holes in galactic halos

    Energy Technology Data Exchange (ETDEWEB)

    Stuchlík, Zdeněk; Schee, Jan; Toshmatov, Bobir; Hladík, Jan; Novotný, Jan, E-mail: zdenek.stuchlik@fpf.slu.cz, E-mail: jan.schee@fpf.slu.cz, E-mail: bobir.toshmatov@fpf.slu.cz, E-mail: jan.hladik@fpf.slu.cz, E-mail: jan.novotny@fpf.slu.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)

    2017-06-01

    We study behaviour of gravitational waves in the recently introduced general relativistic polytropic spheres containing a region of trapped null geodesics extended around radius of the stable null circular geodesic that can exist for the polytropic index N > 2.138 and the relativistic parameter, giving ratio of the central pressure p {sub c} to the central energy density ρ{sub c}, higher than σ = 0.677. In the trapping zones of such polytropes, the effective potential of the axial gravitational wave perturbations resembles those related to the ultracompact uniform density objects, giving thus similar long-lived axial gravitational modes. These long-lived linear perturbations are related to the stable circular null geodesic and due to additional non-linear phenomena could lead to conversion of the trapping zone to a black hole. We give in the eikonal limit examples of the long-lived gravitational modes, their oscillatory frequencies and slow damping rates, for the trapping zones of the polytropes with N element of (2.138,4). However, in the trapping polytropes the long-lived damped modes exist only for very large values of the multipole number ℓ > 50, while for smaller values of ℓ the numerical calculations indicate existence of fast growing unstable axial gravitational modes. We demonstrate that for polytropes with N ≥ 3.78, the trapping region is by many orders smaller than extension of the polytrope, and the mass contained in the trapping zone is about 10{sup −3} of the total mass of the polytrope. Therefore, the gravitational instability of such trapping zones could serve as a model explaining creation of central supermassive black holes in galactic halos or galaxy clusters.

  5. Effervescence in champagne and sparkling wines: From grape harvest to bubble rise

    Science.gov (United States)

    Liger-Belair, Gérard

    2017-01-01

    Bubbles in a glass of champagne may seem like the acme of frivolity to most of people, but in fact they may rather be considered as a fantastic playground for any fluid physicist. Under standard tasting conditions, about a million bubbles will nucleate and rise if you resist drinking from your flute. The so-called effervescence process, which enlivens champagne and sparkling wines tasting, is the result of the complex interplay between carbon dioxide (CO2) dissolved in the liquid phase, tiny air pockets trapped within microscopic particles during the pouring process, and some both glass and liquid properties. In this tutorial review, the journey of yeast-fermented CO2 is reviewed (from its progressive dissolution in the liquid phase during the fermentation process, to its progressive release in the headspace above glasses). The most recent advances about the physicochemical processes behind the nucleation, and rise of gaseous CO2 bubbles, under standard tasting conditions, have been gathered hereafter. Let's hope that your enjoyment of champagne will be enhanced after reading this tutorial review dedicated to the unsuspected physics hidden right under your nose each time you enjoy a glass of bubbly.

  6. A Generalized Method for the Comparable and Rigorous Calculation of the Polytropic Efficiencies of Turbocompressors

    Science.gov (United States)

    Dimitrakopoulos, Panagiotis

    2018-03-01

    The calculation of polytropic efficiencies is a very important task, especially during the development of new compression units, like compressor impellers, stages and stage groups. Such calculations are also crucial for the determination of the performance of a whole compressor. As processors and computational capacities have substantially been improved in the last years, the need for a new, rigorous, robust, accurate and at the same time standardized method merged, regarding the computation of the polytropic efficiencies, especially based on thermodynamics of real gases. The proposed method is based on the rigorous definition of the polytropic efficiency. The input consists of pressure and temperature values at the end points of the compression path (suction and discharge), for a given working fluid. The average relative error for the studied cases was 0.536 %. Thus, this high-accuracy method is proposed for efficiency calculations related with turbocompressors and their compression units, especially when they are operating at high power levels, for example in jet engines and high-power plants.

  7. Chemical messages in 170-year-old champagne bottles from the Baltic Sea: Revealing tastes from the past.

    Science.gov (United States)

    Jeandet, Philippe; Heinzmann, Silke S; Roullier-Gall, Chloé; Cilindre, Clara; Aron, Alissa; Deville, Marie Alice; Moritz, Franco; Karbowiak, Thomas; Demarville, Dominique; Brun, Cyril; Moreau, Fabienne; Michalke, Bernhard; Liger-Belair, Gérard; Witting, Michael; Lucio, Marianna; Steyer, Damien; Gougeon, Régis D; Schmitt-Kopplin, Philippe

    2015-05-12

    Archaeochemistry as the application of the most recent analytical techniques to ancient samples now provides an unprecedented understanding of human culture throughout history. In this paper, we report on a multiplatform analytical investigation of 170-y-old champagne bottles found in a shipwreck at the bottom of the Baltic Sea, which provides insight into winemaking practices used at the time. Organic spectroscopy-based nontargeted metabolomics and metallomics give access to the detailed composition of these wines, revealing, for instance, unexpected chemical characteristics in terms of small ion, sugar, and acid contents as well as markers of barrel aging and Maillard reaction products. The distinct aroma composition of these ancient champagne samples, first revealed during tasting sessions, was later confirmed using state-of-the-art aroma analysis techniques. After 170 y of deep sea aging in close-to-perfect conditions, these sleeping champagne bottles awoke to tell us a chapter of the story of winemaking and to reveal their extraordinary archaeometabolome and elemental diversity in the form of chemical signatures related to each individual step of champagne production.

  8. Missense mutation in exon 2 of SLC36A1 responsible for champagne dilution in horses.

    Directory of Open Access Journals (Sweden)

    Deborah Cook

    2008-09-01

    Full Text Available Champagne coat color in horses is controlled by a single, autosomal-dominant gene (CH. The phenotype produced by this gene is valued by many horse breeders, but can be difficult to distinguish from the effect produced by the Cream coat color dilution gene (CR. Three sires and their families segregating for CH were tested by genome scanning with microsatellite markers. The CH gene was mapped within a 6 cM region on horse chromosome 14 (LOD = 11.74 for theta = 0.00. Four candidate genes were identified within the region, namely SPARC [Secreted protein, acidic, cysteine-rich (osteonectin], SLC36A1 (Solute Carrier 36 family A1, SLC36A2 (Solute Carrier 36 family A2, and SLC36A3 (Solute Carrier 36 family A3. SLC36A3 was not expressed in skin tissue and therefore not considered further. The other three genes were sequenced in homozygotes for CH and homozygotes for the absence of the dilution allele (ch. SLC36A1 had a nucleotide substitution in exon 2 for horses with the champagne phenotype, which resulted in a transition from a threonine amino acid to an arginine amino acid (T63R. The association of the single nucleotide polymorphism (SNP with the champagne dilution phenotype was complete, as determined by the presence of the nucleotide variant among all 85 horses with the champagne dilution phenotype and its absence among all 97 horses without the champagne phenotype. This is the first description of a phenotype associated with the SLC36A1 gene.

  9. Monitoring gaseous CO2 and ethanol above champagne glasses: flute versus coupe, and the role of temperature.

    Directory of Open Access Journals (Sweden)

    Gérard Liger-Belair

    Full Text Available In champagne tasting, gaseous CO(2 and volatile organic compounds progressively invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Simultaneous quantification of gaseous CO(2 and ethanol was monitored through micro-gas chromatography (μGC, all along the first 15 minutes following pouring, depending on whether a volume of 100 mL of champagne was served into a flute or into a coupe. The concentration of gaseous CO(2 was found to be significantly higher above the flute than above the coupe. Moreover, a recently developed gaseous CO(2 visualization technique based on infrared imaging was performed, thus confirming this tendency. The influence of champagne temperature was also tested. As could have been expected, lowering the temperature of champagne was found to decrease ethanol vapor concentrations in the headspace of a glass. Nevertheless, and quite surprisingly, this temperature decrease had no impact on the level of gaseous CO(2 found above the glass. Those results were discussed on the basis of a multiparameter model which describes fluxes of gaseous CO(2 escaping the liquid phase into the form of bubbles.

  10. Monitoring gaseous CO2 and ethanol above champagne glasses: flute versus coupe, and the role of temperature.

    Science.gov (United States)

    Liger-Belair, Gérard; Bourget, Marielle; Pron, Hervé; Polidori, Guillaume; Cilindre, Clara

    2012-01-01

    In champagne tasting, gaseous CO(2) and volatile organic compounds progressively invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Simultaneous quantification of gaseous CO(2) and ethanol was monitored through micro-gas chromatography (μGC), all along the first 15 minutes following pouring, depending on whether a volume of 100 mL of champagne was served into a flute or into a coupe. The concentration of gaseous CO(2) was found to be significantly higher above the flute than above the coupe. Moreover, a recently developed gaseous CO(2) visualization technique based on infrared imaging was performed, thus confirming this tendency. The influence of champagne temperature was also tested. As could have been expected, lowering the temperature of champagne was found to decrease ethanol vapor concentrations in the headspace of a glass. Nevertheless, and quite surprisingly, this temperature decrease had no impact on the level of gaseous CO(2) found above the glass. Those results were discussed on the basis of a multiparameter model which describes fluxes of gaseous CO(2) escaping the liquid phase into the form of bubbles.

  11. Nucléation, ascension et éclatement d'une bulle de champagne

    Science.gov (United States)

    Liger-Belair, G.

    2006-03-01

    People have long been fascinated by bubbles and foams dynamics, and since the pioneering work of Leonardo da Vinci in the early 16th century, this subject has generated a huge bibliography. However, only quite recently, much interest was devoted to bubbles in Champagne wines and carbonated beverages. Since the time of the benedictine monk dom Pierre Perignon (1638-1715), champagne is the wine of celebration. This fame is largely linked to the elegance of its effervescence and foaming properties. In this book, the latest results about the chemical physics behind the bubbling properties of Champagne and sparkling wines are collected and fully illustrated. The first chapter is devoted to the history of champagne and to a presentation of the tools of the physical chemistry of interfaces needed for a whole comprehension of the book. Then, the three main steps of a fleeting champagne bubble's life are presented in chronological order, that is, the bubble nucleation on the glass wall (Chap.2), the bubble ascent and growth through the liquid matrix (Chap.3), and the bursting of bubbles at the liquid surface (Chap.4), which constitutes the most intriguing, functional, and visually appealing step. L'objectif général de ce travail consacré à l'étude des processus physicochimiques liés à l'effervescence des vins de Champagne était de décortiquer les différentes étapes de la vie d'une bulle de champagne en conditions réelles de consommation, dans une flûte. Nous résumons ci-après les principaux résultats obtenus pour chacune des étapes de la vie de la bulle, depuis sa naissance sur les parois d'une flûte, jusqu'à son éclatement en surface. Nucléation À l'aide d'une caméra rapide munie d'un objectif de microscope, nous avons pu mettre à mal une idée largement répandue. Ce ne sont pas les anfractuosités de la surface du verre ou de la flûte qui sont responsable de la nucléation hétérogène des bulles, mais des particules adsorbées sur les parois du

  12. New characterization aspects of carbonate accumulation horizons in Chalky Champagne (NE of the Paris Basin, France)

    Science.gov (United States)

    Linoir, Damien; Thomachot-Schneider, Céline; Gommeaux, Maxime; Fronteau, Gilles; Barbin, Vincent

    2016-05-01

    The soil profiles of the Champagne area (NE of Paris Basin, France) occasionally show carbonate accumulation horizons (CAHs). From the top to the bottom, these soil profiles include a rendic leptosol horizon, a Quaternary cryoturbated paleosol (QCP), and a chalky substratum. The CAHs are located in the top part of the QCP. This study is aimed at highlighting the specific characteristics of CAHs compared to other soil profile horizons using geophysics, geochemistry, micromorphology, and mercury injection porosimetry. It is the first essential step for understanding the impact of CAHs on water transfers into the Champagne soil profiles. Our analyses show that Champagne CAHs are not systematically characterized by a typical induration unlike generally put forward in the regional literature. They are more porous and heterogeneous than their parent material (QCP). Carbonate accumulation horizons are also characterized by singular colorimetric parameters that are linked to their geochemical specific content, even if they bear a signature of the initial QCP before the pedogenic modification.

  13. A Comparison between Physics-based and Polytropic MHD Models for Stellar Coronae and Stellar Winds of Solar Analogs

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, O. [Lowell Center for Space Science and Technology, University of Massachusetts, Lowell, MA 01854 (United States)

    2017-02-01

    The development of the Zeeman–Doppler Imaging (ZDI) technique has provided synoptic observations of surface magnetic fields of low-mass stars. This led the stellar astrophysics community to adopt modeling techniques that have been used in solar physics using solar magnetograms. However, many of these techniques have been neglected by the solar community due to their failure to reproduce solar observations. Nevertheless, some of these techniques are still used to simulate the coronae and winds of solar analogs. Here we present a comparative study between two MHD models for the solar corona and solar wind. The first type of model is a polytropic wind model, and the second is the physics-based AWSOM model. We show that while the AWSOM model consistently reproduces many solar observations, the polytropic model fails to reproduce many of them, and in the cases where it does, its solutions are unphysical. Our recommendation is that polytropic models, which are used to estimate mass-loss rates and other parameters of solar analogs, must first be calibrated with solar observations. Alternatively, these models can be calibrated with models that capture more detailed physics of the solar corona (such as the AWSOM model) and that can reproduce solar observations in a consistent manner. Without such a calibration, the results of the polytropic models cannot be validated, but they can be wrongly used by others.

  14. Observational tests for H II region models - A 'champagne party'

    Energy Technology Data Exchange (ETDEWEB)

    Alloin, D; Tenorio-Tagle, G

    1979-09-01

    Observations of several neighboring H II regions associated with a molecular cloud were performed in order to test the champagne model of H II region-molecular cloud interaction leading to the supersonic expansion of molecular cloud gas. Nine different positions in the Gum 61 nebula were observed using an image dissector scanner attached to a 3.6-m telescope, and it is found that the area corresponds to a low excitation, high density nebula, with electron densities ranging between 1400 and 2800/cu cm and larger along the boundary of the ionized gas. An observed increase in pressure and density located in an interior region of the nebula is interpreted in terms of an area between two rarefaction waves generated together with a strong isothermal shock, responsible for the champagne-like streaming, by a pressure discontinuity between the ionized molecular cloud in which star formation takes place and the intercloud gas. It is noted that a velocity field determination would provide the key in understanding the evolution of such a region.

  15. Small amplitude waves and linear firehose and mirror instabilities in rotating polytropic quantum plasma

    Science.gov (United States)

    Bhakta, S.; Prajapati, R. P.; Dolai, B.

    2017-08-01

    The small amplitude quantum magnetohydrodynamic (QMHD) waves and linear firehose and mirror instabilities in uniformly rotating dense quantum plasma have been investigated using generalized polytropic pressure laws. The QMHD model and Chew-Goldberger-Low (CGL) set of equations are used to formulate the basic equations of the problem. The general dispersion relation is derived using normal mode analysis which is discussed in parallel, transverse, and oblique wave propagations. The fast, slow, and intermediate QMHD wave modes and linear firehose and mirror instabilities are analyzed for isotropic MHD and CGL quantum fluid plasmas. The firehose instability remains unaffected while the mirror instability is modified by polytropic exponents and quantum diffraction parameter. The graphical illustrations show that quantum corrections have a stabilizing influence on the mirror instability. The presence of uniform rotation stabilizes while quantum corrections destabilize the growth rate of the system. It is also observed that the growth rate stabilizes much faster in parallel wave propagation in comparison to the transverse mode of propagation. The quantum corrections and polytropic exponents also modify the pseudo-MHD and reverse-MHD modes in dense quantum plasma. The phase speed (Friedrichs) diagrams of slow, fast, and intermediate wave modes are illustrated for isotropic MHD and double adiabatic MHD or CGL quantum plasmas, where the significant role of magnetic field and quantum diffraction parameters on the phase speed is observed.

  16. Champagne for France's second low level [radioactive] waste disposal facility

    International Nuclear Information System (INIS)

    Chevrier, G.P.

    1992-01-01

    Located in the southern Champagne region, France's new million m 3 low level radioactive waste near surface repository, the Centre de l'Aube, will by 1995 completely take over from the country's first repository, Centre de la Manche (capacity 500 000 m 3 ), which has been operating since 1969. The design of the repository is described. (Author)

  17. Champagne for France's second low level [radioactive] waste disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Chevrier, G P [ANDRA, Fontenay aux Roses (France)

    1992-10-01

    Located in the southern Champagne region, France's new million m[sup 3] low level radioactive waste near surface repository, the Centre de l'Aube, will by 1995 completely take over from the country's first repository, Centre de la Manche (capacity 500 000 m[sup 3]), which has been operating since 1969. The design of the repository is described. (Author).

  18. Rapidly rotating general relativistic stars. Pt. 2. Differentially rotating polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Komatsu, Hidemi [Tokyo Univ. (Japan). Faculty of Science; Eriguchi, Yoshiharu [Tokyo Univ. (Japan). Dept. of Astronomy; Hachisu, Izumi [Kyoto Univ. (Japan). Dept. of Aeronautical Engineering

    1989-07-01

    We have applied the numerical method which was developed for Newtonian gravity to general relativistic, differentially rotating bodies including ring-like structures. A number of equilibrium structures are obtained for two different polytropic indices N=1/2 and N=3/2, because the various proposed equations of state for the nuclear density region fall into the range N=1/2 to 3/2 from the viewpoint of its softness. (author).

  19. Development and application of a fully implicit fluid dynamics code for multiphase flow

    International Nuclear Information System (INIS)

    Morii, Tadashi; Ogawa, Yumi

    1996-01-01

    Multiphase flow frequently occurs in a progression of accidents of nuclear reactor severe core damage. The CHAMPAGNE code has been developed to analyze thermohydraulic behavior of multiphase and multicomponent fluid, which requires for its characterization more than one set of velocities, temperatures, masses per unit volume, and so forth at each location in the calculation domain. Calculations of multiphase flow often show physical and numerical instability. The effect of numerical stabilization obtained by the upwind differencing and the fully implicit techniques gives one a convergent solution more easily than other techniques. Several results calculated by the CHAMPAGNE code are explained

  20. Effervescence in champagne and sparkling wines: From bubble bursting to droplet evaporation

    Science.gov (United States)

    Séon, T.; Liger-Belair, G.

    2017-01-01

    When a bubble reaches an air-liquid interface, it ruptures, projecting a multitude of tiny droplets in the air. Across the oceans, an estimated 1018 to 1020 bubbles burst every second, and form the so called sea spray, a major player in earth's climate system. At a smaller scale, in a glass of champagne about a million bubbles nucleate on the wall, rise towards the surface and burst, giving birth to a particular aerosol that holds a concentrate of wine aromas. Based on the model experiment of a single bubble bursting in simple liquids, we depict each step of this effervescence, from bubble bursting to drop evaporation. In particular, we propose simple scaling laws for the jet velocity and the top drop size. We unravel experimentally the intricate roles of bubble shape, capillary waves, gravity, and liquid properties in the jet dynamics and the drop detachment. We demonstrate how damping action of viscosity produces faster and smaller droplets and more generally how liquid properties enable to control the bubble bursting aerosol characteristics. In this context, the particular case of Champagne wine aerosol is studied in details and the key features of this aerosol are identified. We demonstrate that compared to a still wine, champagne fizz drastically enhances the transfer of liquid into the atmosphere. Conditions on bubble radius and wine viscosity that optimize aerosol evaporation are provided. These results pave the way towards the fine tuning of aerosol characteristics and flavor release during sparkling wine tasting, a major issue of the sparkling wine industry.

  1. News Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

    Science.gov (United States)

    2011-01-01

    Particle Physics: ATLAS unveils mural at CERN Prize: Corti Trust invites essay entries Astrophysics: CERN holds cosmic-ray conference Researchers in Residence: Lord Winston returns to school Music: ATLAS scientists record physics music Conference: Champagne flows at Reims event Competition: Students triumph at physics olympiad Teaching: Physics proves popular in Japanese schools Forthcoming Events

  2. Information-entropic method for studying the stability bound of nonrelativistic polytropic stars within modified gravity theories

    Science.gov (United States)

    Wibisono, C.; Sulaksono, A.

    We study the stability of nonrelativistic polytropic stars within two modified gravity theories, i.e. beyond Horndeski gravity and Eddington-inspired Born-Infeld theories, using the configuration entropy method. We use the spatially localized bounded function of energy density as solutions from stellar effective equations to construct the corresponding configuration entropy. We use the same argument as the one used by Gleiser and coworkers [M. Gleiser and D. Sowinski, Phys. Lett. B 727 (2013) 272; M. Gleiser and N. Jiang, Phys. Rev. D 92 (2015) 044046] that the stars are stable if there is a peak in configuration entropy as a function of adiabatic index curve. Specifically, the boundary between stable and unstable regions which corresponds to Chandrasekhar stability bound is indicated from the existence of the maximum peak while the most stable polytropic stars are indicated by the minimum peak in the corresponding curve. We have found that the values of critical adiabatic indexes of Chandrasekhar stability bound and the most stable polytropic stars predicted by the nonrelativistic limits of beyond Horndeski gravity and Eddington-inspired Born-Infeld theories are different to those predicted by general relativity where the corresponding differences depend on the free parameters of both theories.

  3. Emden-Chandrasekhar axisymmetric, solid-body rotating polytropes. Pt. 1. Exact solutions for the special cases N = 0, 1 and 5

    Energy Technology Data Exchange (ETDEWEB)

    Caimmi, R [Padua Univ. (Italy). Ist. di Astronomia

    1980-08-01

    The basic theory on polytropes is revisited and EC polytropes are defined. The first-order approximation theory of Chandrasekhar (1933a, b, c) and Chandrasekhar and Lebovitz (1962) is reviewed, refined and extended in such a way that better results are obtained without involving hard analytical or numerical techniques. A more precise equation is given in defining non-outer equipotential surfaces, and a new method is adopted in determining the explicit expression of the gravitational potential.

  4. A complex-plane strategy for computing rotating polytropic models - Numerical results for strong and rapid differential rotation

    International Nuclear Information System (INIS)

    Geroyannis, V.S.

    1990-01-01

    In this paper, a numerical method, called complex-plane strategy, is implemented in the computation of polytropic models distorted by strong and rapid differential rotation. The differential rotation model results from a direct generalization of the classical model, in the framework of the complex-plane strategy; this generalization yields very strong differential rotation. Accordingly, the polytropic models assume extremely distorted interiors, while their boundaries are slightly distorted. For an accurate simulation of differential rotation, a versatile method, called multiple partition technique is developed and implemented. It is shown that the method remains reliable up to rotation states where other elaborate techniques fail to give accurate results. 11 refs

  5. Lane-Emden equation with inertial force and general polytropic dynamic model for molecular cloud cores

    Science.gov (United States)

    Li, DaLei; Lou, Yu-Qing; Esimbek, Jarken

    2018-01-01

    We study self-similar hydrodynamics of spherical symmetry using a general polytropic (GP) equation of state and derive the GP dynamic Lane-Emden equation (LEE) with a radial inertial force. In reference to Lou & Cao, we solve the GP dynamic LEE for both polytropic index γ = 1 + 1/n and the isothermal case n → +∞; our formalism is more general than the conventional polytropic model with n = 3 or γ = 4/3 of Goldreich & Weber. For proper boundary conditions, we obtain an exact constant solution for arbitrary n and analytic variable solutions for n = 0 and n = 1, respectively. Series expansion solutions are derived near the origin with the explicit recursion formulae for the series coefficients for both the GP and isothermal cases. By extensive numerical explorations, we find that there is no zero density at a finite radius for n ≥ 5. For 0 ≤ n 0 for monotonically decreasing density from the origin and vanishing at a finite radius for c being less than a critical value Ccr. As astrophysical applications, we invoke our solutions of the GP dynamic LEE with central finite boundary conditions to fit the molecular cloud core Barnard 68 in contrast to the static isothermal Bonnor-Ebert sphere by Alves et al. Our GP dynamic model fits appear to be sensibly consistent with several more observations and diagnostics for density, temperature and gas pressure profiles.

  6. Unveiling CO2 heterogeneous freezing plumes during champagne cork popping.

    Science.gov (United States)

    Liger-Belair, Gérard; Cordier, Daniel; Honvault, Jacques; Cilindre, Clara

    2017-09-14

    Cork popping from clear transparent bottles of champagne stored at different temperatures (namely, 6, 12, and 20 °C) was filmed through high-speed video imaging in the visible light spectrum. During the cork popping process, a plume mainly composed of gaseous CO 2 with traces of water vapour freely expands out of the bottleneck through ambient air. Most interestingly, for the bottles stored at 20 °C, the characteristic grey-white cloud of fog classically observed above the bottlenecks of champagne stored at lower temperatures simply disappeared. It is replaced by a more evanescent plume, surprisingly blue, starting from the bottleneck. We suggest that heterogeneous freezing of CO 2 occurs on ice water clusters homogeneously nucleated in the bottlenecks, depending on the saturation ratio experienced by gas-phase CO 2 after adiabatic expansion (indeed highly bottle temperature dependent). Moreover, and as observed for the bottles stored at 20 °C, we show that the freezing of only a small portion of all the available CO 2 is able to pump the energy released through adiabatic expansion, thus completely inhibiting the condensation of water vapour found in air packages adjacent to the gas volume gushing out of the bottleneck.

  7. Unraveling the evolving nature of gaseous and dissolved carbon dioxide in champagne wines: a state-of-the-art review, from the bottle to the tasting glass.

    Science.gov (United States)

    Liger-Belair, Gérard; Polidori, Guillaume; Zéninari, Virginie

    2012-06-30

    In champagne and sparkling wine tasting, the concentration of dissolved CO(2) is indeed an analytical parameter of high importance since it directly impacts the four following sensory properties: (i) the frequency of bubble formation in the glass, (ii) the growth rate of rising bubbles, (iii) the mouth feel, and (iv) the nose of champagne, i.e., its so-called bouquet. In this state-of-the-art review, the evolving nature of the dissolved and gaseous CO(2) found in champagne wines is evidenced, from the bottle to the glass, through various analytical techniques. Results obtained concerning various steps where the CO(2) molecule plays a role (from its ingestion in the liquid phase during the fermentation process to its progressive release in the headspace above the tasting glass) are gathered and synthesized to propose a self-consistent and global overview of how gaseous and dissolved CO(2) impact champagne and sparkling wine science. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Superfluid hydrodynamics of polytropic gases: dimensional reduction and sound velocity

    International Nuclear Information System (INIS)

    Bellomo, N; Mazzarella, G; Salasnich, L

    2014-01-01

    Motivated by the fact that two-component confined fermionic gases in Bardeen–Cooper–Schrieffer–Bose–Einstein condensate (BCS–BEC) crossover can be described through an hydrodynamical approach, we study these systems—both in the cigar-shaped configuration and in the disc-shaped one—by using a polytropic Lagrangian density. We start from the Popov Lagrangian density and obtain, after a dimensional reduction process, the equations that control the dynamics of such systems. By solving these equations we study the sound velocity as a function of the density by analyzing how the dimensionality affects this velocity. (paper)

  9. Is there pain in champagne? Semantic involvement of words within words during sense-making

    NARCIS (Netherlands)

    van Alphen, P.M.; van Berkum, J.J.A.

    2010-01-01

    In an ERP experiment, we examined whether listeners, when making sense of spoken utterances, take into account the meaning of spurious words that are embedded in longer words, either at their onsets (e.g., pie in pirate) or at their offsets (e.g., pain in champagne). In the experiment, Dutch

  10. Monitoring gas-phase CO2 in the headspace of champagne glasses through combined diode laser spectrometry and micro-gas chromatography analysis.

    Science.gov (United States)

    Moriaux, Anne-Laure; Vallon, Raphaël; Parvitte, Bertrand; Zeninari, Virginie; Liger-Belair, Gérard; Cilindre, Clara

    2018-10-30

    During Champagne or sparkling wine tasting, gas-phase CO 2 and volatile organic compounds invade the headspace above glasses, thus progressively modifying the chemical space perceived by the consumer. Gas-phase CO 2 in excess can even cause a very unpleasant tingling sensation perturbing both ortho- and retronasal olfactory perception. Monitoring as accurately as possible the level of gas-phase CO 2 above glasses is therefore a challenge of importance aimed at better understanding the close relationship between the release of CO 2 and a collection of various tasting parameters. Here, the concentration of CO 2 found in the headspace of champagne glasses served under multivariate conditions was accurately monitored, all along the 10 min following pouring, through a new combined approach by a CO 2 -Diode Laser Sensor and micro-gas chromatography. Our results show the strong impact of various tasting conditions (volume dispensed, intensity of effervescence, and glass shape) on the release of gas-phase CO 2 above the champagne surface. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Stability of Thin Shell Wormholes in Born-Infeld Theory Supported by Polytropic Phantom Energy

    Energy Technology Data Exchange (ETDEWEB)

    Eid, Ali [Cairo University, Giza (Egypt)

    2017-02-15

    In the framework of the Darmois-Israel formalism, the dynamical equations of motion of spherically-symmetric thin-shell wormholes supported by a polytropic phantom energy in Einstein-Born-Infeld theory are constructed. A stability analysis of the spherically-symmetric thin-shell wormhole by using the standard potential method is carried out. The existence of stable, static solutions depends on the values of some parameters.

  12. [Patients' satisfaction and waiting time in oncology day care centers in Champagne-Ardenne].

    Science.gov (United States)

    Debreuve-Theresette, A; Jovenin, N; Stona, A C; Kraïem-Leleu, M; Burde, F; Parent, D; Hettler, D; Rey, J B

    2015-12-01

    Quality of life of patients suffering from cancer may be influenced by the way healthcare is organized and by patient experiences. Nowadays, chemotherapy is often provided in day care centers. This study aimed to assess patient waiting time and satisfaction in oncology day care centers in Champagne-Ardenne, France. This cross-sectional survey involved all patients receiving ambulatory chemotherapy during a one-week period in day care centers of Champagne-Ardenne public and private healthcare institutions participating in the study. Sociodemographic, medical and outpatient data were collected. Patient satisfaction was measured using the Out-Patsat35 questionnaire. Eleven (out of 16) oncology day care centers and 441 patients participated in the study. Most of the patients were women (n=252, 57.1%) and the mean age was 61±12 years. The mean satisfaction score was 82±14 (out of 100) and the mean waiting time between the assigned appointment time and administration of chemotherapy was 97±60 min. This study has shown that waiting times are important. However, patients are satisfied with the healthcare organization, especially regarding nursing support. Early preparation of chemotherapy could improve these parameters. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Champagne experiences various rhythmical bubbling regimes in a flute.

    Science.gov (United States)

    Liger-Belair, Gérard; Tufaile, Alberto; Jeandet, Philippe; Sartorelli, José-Carlos

    2006-09-20

    Bubble trains are seen rising gracefully from a few points on the glass wall (called nucleation sites) whenever champagne is poured into a glass. As time passes during the gas-discharging process, the careful observation of some given bubble columns reveals that the interbubble distance may change suddenly, thus revealing different rhythmical bubbling regimes. Here, it is reported that the transitions between the different bubbling regimes of some nucleation sites during gas discharging is a process which may be ruled by a strong interaction between tiny gas pockets trapped inside the nucleation site and/or also by an interaction between the tiny bubbles just blown from the nucleation site.

  14. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand.

    Science.gov (United States)

    Hug, Katrin; Maher, William A; Stott, Matthew B; Krikowa, Frank; Foster, Simon; Moreau, John W

    2014-01-01

    Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid) resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand). Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic), and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur concentration reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  15. Perception of the nuclear industry by general practitioner in Champagne-Ardennes (France); Perception du nucleaire par le medecin generaliste en region Champagne-Ardenne

    Energy Technology Data Exchange (ETDEWEB)

    Bouet, P; Goasguen, P; Lewicki, M; Petit, J F; Villette, M

    1990-06-01

    In the case of a nuclear accident, the general practitioners should be the relay in the population information. In order to confront their knowledge and sensitivity with the nuclear industry problems, the authors have conducted an inquiry near to 144 general practitioners in Champagne-Ardennes area, in the immediate neighbourhood of nuclear facilities (CHOOZ, Nogent-sur-Seine, Gravelines) or not. Four subjects are studied: -their perception of the nuclear industry in the environment problems - their knowledge in nuclear physics - their knowledge about the nuclear power plant - their attitude in front of a radiation accident. The authors show that their education and knowledges about the nuclear industry is insufficient and propose several solutions in order to cope with these difficulties.

  16. Cyclic and heteroclinic flows near general static spherically symmetric black holes: semi-cyclic flows - addendum and corrigendum

    Energy Technology Data Exchange (ETDEWEB)

    Azreg-Ainou, Mustapha [Baskent University, Engineering Faculty, Ankara (Turkey)

    2017-01-15

    We present new accretion solutions of a polytropic perfect fluid onto an f(R)-gravity de Sitter-like black hole. We consider two f(R)-gravity models and obtain finite-period cyclic flows oscillating between the event and cosmological horizons as well as semi-cyclic critical flows executing a two-way motion from and back to the same horizon. Besides the generalizations and new solutions presented in this work, a corrigendum to Eur. Phys. J. C (2016) 76:280 is provided. (orig.)

  17. Complex-plane strategy for computing rotating polytropic models - efficiency and accuracy of the complex first-order perturbation theory

    International Nuclear Information System (INIS)

    Geroyannis, V.S.

    1988-01-01

    In this paper, a numerical method is developed for determining the structure distortion of a polytropic star which rotates either uniformly or differentially. This method carries out the required numerical integrations in the complex plane. The method is implemented to compute indicative quantities, such as the critical perturbation parameter which represents an upper limit in the rotational behavior of the star. From such indicative results, it is inferred that this method achieves impressive improvement against other relevant methods; most important, it is comparable to some of the most elaborate and accurate techniques on the subject. It is also shown that the use of this method with Chandrasekhar's first-order perturbation theory yields an immediate drastic improvement of the results. Thus, there is no neeed - for most applications concerning rotating polytropic models - to proceed to the further use of the method with higher order techniques, unless the maximum accuracy of the method is required. 31 references

  18. Phenolic acid intake, delivered via moderate champagne wine consumption, improves spatial working memory via the modulation of hippocampal and cortical protein expression/activation.

    Science.gov (United States)

    Corona, Giulia; Vauzour, David; Hercelin, Justine; Williams, Claire M; Spencer, Jeremy P E

    2013-11-10

    While much data exist for the effects of flavonoid-rich foods on spatial memory in rodents, there are no such data for foods/beverages predominantly containing hydroxycinnamates and phenolic acids. To address this, we investigated the effects of moderate Champagne wine intake, which is rich in these components, on spatial memory and related mechanisms relative to the alcohol- and energy-matched controls. In contrast to the isocaloric and alcohol-matched controls, supplementation with Champagne wine (1.78 ml/kg BW, alcohol 12.5% vol.) for 6 weeks led to an improvement in spatial working memory in aged rodents. Targeted protein arrays indicated that these behavioral effects were paralleled by the differential expression of a number of hippocampal and cortical proteins (relative to the isocaloric control group), including those involved in signal transduction, neuroplasticity, apoptosis, and cell cycle regulation. Western immunoblotting confirmed the differential modulation of brain-derived neurotrophic factor, cAMP response-element-binding protein (CREB), p38, dystrophin, 2',3'-cyclic-nucleotide 3'-phosphodiesterase, mammalian target of rapamycin (mTOR), and Bcl-xL in response to Champagne supplementation compared to the control drink, and the modulation of mTOR, Bcl-xL, and CREB in response to alcohol supplementation. Our data suggest that smaller phenolics such as gallic acid, protocatechuic acid, tyrosol, caftaric acid, and caffeic acid, in addition to flavonoids, are capable of exerting improvements in spatial memory via the modulation in hippocampal signaling and protein expression. Changes in spatial working memory induced by the Champagne supplementation are linked to the effects of absorbed phenolics on cytoskeletal proteins, neurotrophin expression, and the effects of alcohol on the regulation of apoptotic events in the hippocampus and cortex.

  19. Dynamical 3-Space Gravity Theory: Effects on Polytropic Solar Models

    Directory of Open Access Journals (Sweden)

    May R. D.

    2011-01-01

    Full Text Available Numerous experiments and observations have confirmed the existence of a dynamical 3-space, detectable directly by light-speed anisotropy experiments, and indirectly by means of novel gravitational effects, such as bore hole g anomalies, predictable black hole masses, flat spiral-galaxy rotation curves, and the expansion of the universe, all without dark matter and dark energy. The dynamics for this 3-space follows from a unique generalisation of Newtonian gravity, once that is cast into a velocity formalism. This new theory of gravity is applied to the solar model of the sun to compute new density, pressure and temperature profiles, using polytrope modelling of the equation of state for the matter. These results should be applied to a re-analysis of solar neutrino production, and to stellar evolution in general.

  20. 30% of abatement of coldness needs + free re-heating at the skating rink of Chalons-en-Champagne; 30% de reduction des besoins de froid + rechauffage gratuit a la patinoire de Chalon-en-Champagne

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2005-12-01

    The skating rink of Chalons-en-Champagne (France) is equipped with a air treatment system based on the use of a sensible energy transfer battery which reduces by 30% the coldness needs for dehumidification. This process uses part of the heat released by the condensers to generate ice. The result is a 30% reduction of the installed power and a 40% reduction of energy consumptions with respect to standard air treatment solutions. (J.S.)

  1. Brushed Target on Rock 'Champagne' in Gusev Crater

    Science.gov (United States)

    2005-01-01

    NASA's Mars Exploration Rover Spirit took this microscopic image of a target called 'Bubbles' on a rock called 'Champagne' after using its rock abrasion tool to brush away a coating of dust. The circular brushed area is about 5 centimeters (2 inches) across. This rock is different from rocks out on the plains of Gusev Crater but is similar to other rocks in this area of the 'Columbia Hills' in that it has higher levels of phosphorus. Plagioclase, a mineral commonly found in igneous rocks, is also present in these rocks, according to analysis with the minature thermal emission spectrometer. By using the alpha particle X-ray spectrometer to collect data over multiple martian days, or sols, scientists are also beginning to get measurements of trace elements in these rocks. Spirit took the images that are combined into this mosaic on sol 354 (Dec. 30, 2004).

  2. Abraded Target on Rock 'Champagne' in Gusev Crater

    Science.gov (United States)

    2005-01-01

    NASA's Mars Exploration Rover Spirit took this microscopic image of a target called 'Bubbles' on a rock called 'Champagne' after using its rock abrasion tool to grind a hole through the rock's outer surface. The circular area where the rock's interior is exposed is about 5 centimeters (2 inches) across. This rock is different from rocks out on the plains of Gusev Crater but is similar to other rocks in this area of the 'Columbia Hills' in that it rich in phosphorus. Plagioclase, a mineral commonly found in igneous rocks, is also present in these rocks, according to analysis with Spirit's miniature thermal emission spectrometer. By using the rover's alpha particle X-ray spectrometer to collect data for multiple martian days, or sols, scientists are also beginning to get measurements of trace elements in the rocks. Spirit took the images that are combined into this mosaic on sol 358 (Jan. 3, 2005).

  3. Chemosensory characterization of Chardonnay and Pinot Noir base wines of Champagne. Two very different varieties for a common product.

    Science.gov (United States)

    Herrero, Paula; Sáenz-Navajas, Pilar; Culleré, Laura; Ferreira, Vicente; Chatin, Amelie; Chaperon, Vincent; Litoux-Desrues, François; Escudero, Ana

    2016-09-15

    Five different methodologies were applied for the quantitative analysis of 86 volatile molecules in 32 Chardonnay and 30 Pinot Noir Champagne white base wines. Sensory characterization was carried out by descriptive analysis. Pinot Noir wines had more constitutive compounds while Chardonnay wines had more discriminant compounds. Only four compounds predominated in Chardonnay wines: 4-vinylphenol, guaiacol, sotolon and 4-methyl-4-mercapto-2-pentanone. Correlation studies and PLSR models were calculated with sensory and chemical variables. For Pinot Noir wines, they were not as revealing as for Chardonnay base wines. Sulfur-related compounds were suggested to be involved in tropical fruit, dried fruit and citric sensory notes. This family of compounds seemed to be responsible for discriminant sensory terms in Champagne base wines. Fermentative compounds (aromatic buffer) were found at significantly higher levels in Pinot Noir wines, which would explain the fact that these wines were more difficult to describe in comparison with Chardonnay base wines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Determination of the autolysis of champagne yeast by using 14C-labelled yeast

    International Nuclear Information System (INIS)

    Molnar, I.; Oura, E.; Suomalainen, H.

    1980-01-01

    The degree of autolysis of 14 C-labelled Champagne Hautvillers yeast was studied in the function of different temperatures of storage. A linear relationship was found between the length of the storage and the degree of autolysis. The rate of autolysis increased with raising the temperature of storage. The raising of the temperature by 10 deg C was followed by a 6-7% increase in the rate of autolysis. Shaking up the yeast sediment at 20-day intervals raised the rate of autolysis by 1.5-4.2%. (author)

  5. Microbial contributions to coupled arsenic and sulfur cycling in the acid-sulfide hot spring Champagne Pool, New Zealand

    Directory of Open Access Journals (Sweden)

    Katrin eHug

    2014-11-01

    Full Text Available Acid-sulfide hot springs are analogs of early Earth geothermal systems where microbial metal(loid resistance likely first evolved. Arsenic is a metalloid enriched in the acid-sulfide hot spring Champagne Pool (Waiotapu, New Zealand. Arsenic speciation in Champagne Pool follows reaction paths not yet fully understood with respect to biotic contributions and coupling to biogeochemical sulfur cycling. Here we present quantitative arsenic speciation from Champagne Pool, finding arsenite dominant in the pool, rim and outflow channel (55-75% total arsenic, and dithio- and trithioarsenates ubiquitously present as 18-25% total arsenic. In the outflow channel, dimethylmonothioarsenate comprised ≤9% total arsenic, while on the outflow terrace thioarsenates were present at 55% total arsenic. We also quantified sulfide, thiosulfate, sulfate and elemental sulfur, finding sulfide and sulfate as major species in the pool and outflow terrace, respectively. Elemental sulfur reached a maximum at the terrace. Phylogenetic analysis of 16S rRNA genes from metagenomic sequencing revealed the dominance of Sulfurihydrogenibium at all sites and an increased archaeal population at the rim and outflow channel. Several phylotypes were found closely related to known sulfur- and sulfide-oxidizers, as well as sulfur- and sulfate-reducers. Bioinformatic analysis revealed genes underpinning sulfur redox transformations, consistent with sulfur speciation data, and illustrating a microbial role in sulfur-dependent transformation of arsenite to thioarsenate. Metagenomic analysis also revealed genes encoding for arsenate reductase at all sites, reflecting the ubiquity of thioarsenate and a need for microbial arsenate resistance despite anoxic conditions. Absence of the arsenite oxidase gene, aio, at all sites suggests prioritization of arsenite detoxification over coupling to energy conservation. Finally, detection of methyl arsenic in the outflow channel, in conjunction with

  6. Sulfur redox chemistry governs diurnal antimony and arsenic cycles at Champagne Pool, Waiotapu, New Zealand

    Science.gov (United States)

    Ullrich, Maria K.; Pope, James G.; Seward, Terry M.; Wilson, Nathaniel; Planer-Friedrich, Britta

    2013-07-01

    Champagne Pool, a sulfidic hot spring in New Zealand, exhibits distinct diurnal variations in antimony (Sb) and arsenic (As) concentrations, with daytime high and night-time low concentrations. To identify the underlying mobilization mechanisms, five sites along the drainage channel of Champagne Pool were sampled every 2 h during a 24 h period. Temporal variations in elemental concentrations and Sb, As, and sulfur (S) speciation were monitored in the discharging fluid. Total trace element concentrations in filtered and unfiltered samples were analyzed using ICP-MS, and Sb, As and S species were determined by IC-ICP-MS. Sulfur speciation in the drainage channel was dominated by thiosulfate and sulfide at night, while sulfate dominated during the day. The distinct diurnal changes suggest that the transformations are caused by phototrophic sulfur-oxidizing bacteria. These bacteria metabolize thiosulfate and sulfide in daylight to form sulfate and, as suggested by modeling with PhreeqC, elemental sulfur. Sulfide consumption during the day results in undersaturation of antimony sulfides, which triggers the additional release of dissolved Sb. For As, diurnal cycles were much more pronounced in speciation than in total concentrations, with di- and trithioarsenate forming at night due to excess sulfide, and monothioarsenate forming from arsenite and elemental sulfur during the day. Sulfur speciation was thus found to control Sb and As in terms of both solubility and speciation.

  7. Unveiling the Interplay Between Diffusing CO2 and Ethanol Molecules in Champagne Wines by Classical Molecular Dynamics and (13)C NMR Spectroscopy.

    Science.gov (United States)

    Bonhommeau, David A; Perret, Alexandre; Nuzillard, Jean-Marc; Cilindre, Clara; Cours, Thibaud; Alijah, Alexander; Liger-Belair, Gérard

    2014-12-18

    The diffusion coefficients of carbon dioxide (CO2) and ethanol (EtOH) in carbonated hydroalcoholic solutions and Champagne wines are evaluated as a function of temperature by classical molecular dynamics (MD) simulations and (13)C NMR spectroscopy measurements. The excellent agreement between theoretical and experimental diffusion coefficients suggest that ethanol is the main molecule, apart from water, responsible for the value of the CO2 diffusion coefficients in typical Champagne wines, a result that could likely be extended to most sparkling wines with alike ethanol concentrations. CO2 and EtOH hydrodynamical radii deduced from viscometry measurements by applying the Stokes-Einstein relationship are found to be mostly constant and in close agreement with MD predictions. The reliability of our approach should be of interest to physical chemists aiming to model transport phenomena in supersaturated aqueous solutions or water/alcohol mixtures.

  8. Determination of the autolysis of champagne yeast by using /sup 14/C-labelled yeast

    Energy Technology Data Exchange (ETDEWEB)

    Molnar, I [Orszagos Szoeleszeti es Boraszati Kutatointezet, Budapest (Hungary); Oura, E; Suomalainen, H [Research Laboratories of the State Alcohol Monopoly, Helsinki (Finland)

    1980-01-01

    The degree of autolysis of /sup 14/C-labelled Champagne Hautvillers yeast was studied in the function of different temperatures of storage. A linear relationship was found between the length of the storage and the degree of autolysis. The rate of autolysis increased with raising the temperature of storage. The raising of the temperature by 10 deg C was followed by a 6-7% increase in the rate of autolysis. Shaking up the yeast sediment at 20-day intervals raised the rate of autolysis by 1.5-4.2%.

  9. Perception of the nuclear industry by general practitioner in Champagne-Ardennes (France)

    International Nuclear Information System (INIS)

    Bouet, P.; Goasguen, P.; Lewicki, M.; Petit, J.F.; Villette, M.

    1990-06-01

    In the case of a nuclear accident, the general practitioners should be the relay in the population information. In order to confront their knowledge and sensitivity with the nuclear industry problems, the authors have conducted an inquiry near to 144 general practitioners in Champagne-Ardennes area, in the immediate neighbourhood of nuclear facilities (CHOOZ, Nogent-sur-Seine, Gravelines) or not. Four subjects are studied: -their perception of the nuclear industry in the environment problems - their knowledge in nuclear physics - their knowledge about the nuclear power plant - their attitude in front of a radiation accident. The authors show that their education and knowledges about the nuclear industry is insufficient and propose several solutions in order to cope with these difficulties

  10. Capillary fringe and tritium and nitrogen tracing history in the Senonian chalk of Champagne

    International Nuclear Information System (INIS)

    Ballif, J.L.

    1998-01-01

    In the middle of Champagne-Ardenne area, a chalky zone is located, directly on top of which lies the soil and in which the water table is relatively close the soil; which allows for capillary direction to the surface horizons and the renewal of water reserve. After the presentation of the hydrological characteristics, the total porosity of chalk, the pores distribution, the capillary attraction is shown by the hydrological comportment of the soil and the upper part of the unsaturated zone of chalk. In the homogeneous rock, the tritium and nitrogen transfers reveal the historical tracks. (authors)

  11. Simple methods for predicting gas leakage flows through cracks

    International Nuclear Information System (INIS)

    Ewing, D.J.F.

    1989-01-01

    This report presents closed-form approximate analytical formulae with which the flow rate out of a through-wall crack can be estimated. The crack is idealised as a rough, tapering, wedgeshaped channel and the fluid is idealised as an isothermal or polytropically-expanding perfect gas. In practice, uncertainties about the wall friction factor dominate over uncertainties caused by the fluid-dynamics simplifications. The formulae take account of crack taper and for outwardly-diverging cracks they predict flows within 12% of mathematically more accurate one-dimensional numerical models. Upper and lower estimates of wall friction are discussed. (author)

  12. Solar wind acceleration in a prescribed flow geometry

    International Nuclear Information System (INIS)

    Biernat, H.; Koemle, N.; Lichtenegger, H.

    1985-01-01

    It is known that the flow tubes above coronal holes diverge stronger than radial and that the magnetic field lines may be considerably curved near the border of the holes. The authors investigate the consequences of such a magnetic field geometry on the flow of the solar wind plasma in the vicinity of the Sun. For this purpose the one-dimensional conservation equations are solved along prescribed flow tubes. A temperature profile based on observational data (EUV rocket-observations) is used in the calculations. In an alternative approach the temperature is determined by a polytropic index, which is assumed to be variable. The authors study how both curvature and non-radial divergence of the flow tubes modify the velocity, the density, and the energy balance of the solar wind plasma. (Auth.)

  13. A pitfall of piecewise-polytropic equation of state inference

    Science.gov (United States)

    Raaijmakers, Geert; Riley, Thomas E.; Watts, Anna L.

    2018-05-01

    The only messenger radiation in the Universe which one can use to statistically probe the Equation of State (EOS) of cold dense matter is that originating from the near-field vicinities of compact stars. Constraining gravitational masses and equatorial radii of rotating compact stars is a major goal for current and future telescope missions, with a primary purpose of constraining the EOS. From a Bayesian perspective it is necessary to carefully discuss prior definition; in this context a complicating issue is that in practice there exist pathologies in the general relativistic mapping between spaces of local (interior source matter) and global (exterior spacetime) parameters. In a companion paper, these issues were raised on a theoretical basis. In this study we reproduce a probability transformation procedure from the literature in order to map a joint posterior distribution of Schwarzschild gravitational masses and radii into a joint posterior distribution of EOS parameters. We demonstrate computationally that EOS parameter inferences are sensitive to the choice to define a prior on a joint space of these masses and radii, instead of on a joint space interior source matter parameters. We focus on the piecewise-polytropic EOS model, which is currently standard in the field of astrophysical dense matter study. We discuss the implications of this issue for the field.

  14. Critical rotation of general-relativistic polytropic models revisited

    Science.gov (United States)

    Geroyannis, V.; Karageorgopoulos, V.

    2013-09-01

    We develop a perturbation method for computing the critical rotational parameter as a function of the equatorial radius of a rigidly rotating polytropic model in the "post-Newtonia approximation" (PNA). We treat our models as "initial value problems" (IVP) of ordinary differential equations in the complex plane. The computations are carried out by the code dcrkf54.f95 (Geroyannis and Valvi 2012 [P1]; modified Runge-Kutta-Fehlberg code of fourth and fifth order for solving initial value problems in the complex plane). Such a complex-plane treatment removes the syndromes appearing in this particular family of IVPs (see e.g. P1, Sec. 3) and allows continuation of the numerical integrations beyond the surface of the star. Thus all the required values of the Lane-Emden function(s) in the post-Newtonian approximation are calculated by interpolation (so avoiding any extrapolation). An interesting point is that, in our computations, we take into account the complete correction due to the gravitational term, and this issue is a remarkable difference compared to the classical PNA. We solve the generalized density as a function of the equatorial radius and find the critical rotational parameter. Our computations are extended to certain other physical characteristics (like mass, angular momentum, rotational kinetic energy, etc). We find that our method yields results comparable with those of other reliable methods. REFERENCE: V.S. Geroyannis and F.N. Valvi 2012, International Journal of Modern Physics C, 23, No 5, 1250038:1-15.

  15. PECASE - Multi-Scale Experiments and Modeling in Wall Turbulence

    Science.gov (United States)

    2014-12-23

    transition to turbulence in pipe flow have been characterized by the creation of puffs and slugs [Wygnanski and Champagne , 1973]. Puffs have been identified...Fluid Mech., 568:55–76, 2006. I. J. Wygnanski and F. H. Champagne . On transition in a pipe. Part 1: The origin of puffs and slugs and the flow in a

  16. Dependence of energy characteristics of ascending swirling air flow on velocity of vertical blowing

    Science.gov (United States)

    Volkov, R. E.; Obukhov, A. G.; Kutrunov, V. N.

    2018-05-01

    In the model of a compressible continuous medium, for the complete Navier-Stokes system of equations, an initial boundary problem is proposed that corresponds to the conducted and planned experiments and describes complex three-dimensional flows of a viscous compressible heat-conducting gas in ascending swirling flows that are initiated by a vertical cold blowing. Using parallelization methods, three-dimensional nonstationary flows of a polytropic viscous compressible heat-conducting gas are constructed numerically in different scaled ascending swirling flows under the condition when gravity and Coriolis forces act. With the help of explicit difference schemes and the proposed initial boundary conditions, approximate solutions of the complete system of Navier-Stokes equations are constructed as well as the velocity and energy characteristics of three-dimensional nonstationary gas flows in ascending swirling flows are determined.

  17. Line profile studies of hydrodynamical models of cometary compact H II regions

    International Nuclear Information System (INIS)

    Zhu, Feng-Yao; Zhu, Qing-Feng

    2015-01-01

    We simulate the evolution of cometary H II regions based on several champagne flow models and bow shock models, and calculate the profiles of the [Ne II] fine-structure line at 12.81 μm, the H30α recombination line and the [Ne III] fine-structure line at 15.55 μm for these models at different inclinations of 0°, 30° and 60°. We find that the profiles in the bow shock models are generally different from those in the champagne flow models, but the profiles in the bow shock models with lower stellar velocity (≤ 5 km s −1 ) are similar to those in the champagne flow models. In champagne flow models, both the velocity of peak flux and the flux weighted central velocities of all three lines point outward from molecular clouds. In bow shock models, the directions of these velocities depend on the speed of stars. The central velocities of these lines are consistent with the stellar motion in the high stellar speed cases, but they are opposite directions from the stellar motion in the low speed cases. We notice that the line profiles from the slit along the symmetrical axis of the projected 2D image of these models are useful for distinguishing bow shock models from champagne flow models. It is also confirmed by the calculation that the flux weighted central velocity and the line luminosity of the [Ne III] line can be estimated from the [Ne II] line and the H30α line. (paper)

  18. Information-entropic stability bound for compact objects: Application to Q-balls and the Chandrasekhar limit of polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Gleiser, Marcelo, E-mail: mgleiser@dartmouth.edu; Sowinski, Damian, E-mail: Damian.Sowinski.GR@dartmouth.edu

    2013-11-25

    Spatially-bound objects across diverse length and energy scales are characterized by a binding energy. We propose that their spatial structure is mathematically encoded as information in their momentum modes and described by a measure known as configurational entropy (CE) [1]. Investigating solitonic Q-balls and stars with a polytropic equation of state P=Kρ{sup γ}, we show that objects with large binding energy have low CE, whereas those at the brink of instability (zero binding energy) have near maximal CE. In particular, we use the CE to find the critical charge allowing for classically stable Q-balls and the Chandrasekhar limit for white dwarfs (γ=4/3) with an accuracy of a few percent.

  19. Champagne flutes and brandy snifters: modelling protostellar outflow-cloud chemical interfaces

    Science.gov (United States)

    Rollins, R. P.; Rawlings, J. M. C.; Williams, D. A.; Redman, M. P.

    2014-10-01

    A rich variety of molecular species has now been observed towards hot cores in star-forming regions and in the interstellar medium. An increasing body of evidence from millimetre interferometers suggests that many of these form at the interfaces between protostellar outflows and their natal molecular clouds. However, current models have remained unable to explain the origin of the observational bias towards wide-angled `brandy snifter' shaped outflows over narrower `champagne flute' shapes in carbon monoxide imaging. Furthermore, these wide-angled systems exhibit unusually high abundances of the molecular ion HCO+. We present results from a chemodynamic model of such regions where a rich chemistry arises naturally as a result of turbulent mixing between cold, dense molecular gas and the hot, ionized outflow material. The injecta drives a rich and rapid ion-neutral chemistry in qualitative and quantitative agreement with the observations. The observational bias towards wide-angled outflows is explained naturally by the geometry-dependent ion injection rate causing rapid dissociation of CO in the younger systems.

  20. The generalized second law of thermodynamics for the interacting polytropic dark energy in non-flat FRW universe enclosed by the apparent horizon

    International Nuclear Information System (INIS)

    Karami, K.; Ghaffari, S.

    2010-01-01

    We investigate the validity of the generalized second law of thermodynamics in a non-flat FRW universe containing the interacting polytropic dark energy with cold dark matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for this model under thermal equilibrium with the Hawking radiation, the generalized second law is always satisfied throughout the history of the universe for any spatial curvature, independently of the deceleration parameter.

  1. The generalized second law of thermodynamics for the interacting polytropic dark energy in non-flat FRW universe enclosed by the apparent horizon

    Energy Technology Data Exchange (ETDEWEB)

    Karami, K., E-mail: KKarami@uok.ac.i [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of); Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Ghaffari, S. [Department of Physics, University of Kurdistan, Pasdaran St., Sanandaj (Iran, Islamic Republic of)

    2010-05-03

    We investigate the validity of the generalized second law of thermodynamics in a non-flat FRW universe containing the interacting polytropic dark energy with cold dark matter. The boundary of the universe is assumed to be enclosed by the dynamical apparent horizon. We show that for this model under thermal equilibrium with the Hawking radiation, the generalized second law is always satisfied throughout the history of the universe for any spatial curvature, independently of the deceleration parameter.

  2. QUIPS: Time-dependent properties of quasi-invariant self-gravitating polytropes

    International Nuclear Information System (INIS)

    Munier, A.; Feix, M.R.

    1983-01-01

    Quasi-invariance, a method based on group tranformations, is used to obtain time-dependent solutions for the expansion and/or contraction of a self-gravitating sphere of perfect gas with polytopic index n. Quasi-invariance transforms the equations of hydrodynamics into ''dual equations'' exhibiting extra terms such as a friction, a mass source or sink term, and a centripetal/centrifugal force. The search for stationary solutions in this ''dual space'' leads to a new class of time-dependent solutions, the QUIP (for Quasi-invariant polytrope), which generalizes Emden's static model and introduces a characteristic frequency a related to Jean's frequency. The second order differential equation describing the solution is integrated numerically. A critical point is seen always to exist for nnot =3. Solutions corresponding in the ''dual space'' to a time-dependent generalization of Eddington's standard model (n = 3) are discussed. These solutions conserve both the total mass and the energy. A transition between closed and open structures is seen to take place at a particular frequency a/sub c/. For n = 3, no critical point arises in the ''dual space'' due to the self-similar motion of the fluid. A new time-dependent mass-radius relation and a generalized Betti-Ritter relation are obtained. Conclusions about the existence of a minimum Q-factor are presented

  3. [An epidemiologic survey of the prevalence of dental caries in 6-15-year-old children in Champagne-Ardennes].

    Science.gov (United States)

    Brisset, L; Jacquelin, L F

    1989-03-01

    An epidemiological survey of dental caries in Champagne-Ardennes was conducted on a representative sample of 507 schoolchildren aged 6 to 15 years. The dft, DMFT and DMFS indices were analyzed in urban and rural zones. Although slightly lower, they were quite similar to the indices obtained at the national level. The DMFT and DMFS comparison between girls and boys showed the existence of various critical periods where a sudden and important increase in carious lesions was observed. The analysis of the indices assessing the periodontal conditions underlined the necessity of improving the oral education and hygiene.

  4. LATOUCHE, Serge. Cornelius Castoriadis ou l’autonomie radical. Colección: Les précurseurs de la décoissance. Neuvy-en-Champagne. Le passager Clandestin. ISBN: 978-2-36935-008-8.

    Directory of Open Access Journals (Sweden)

    EMILIANO ALDEGANI

    2015-06-01

    Full Text Available LATOUCHE, Serge. Cornelius Castoriadis ou l’autonomie radical.Colección: Les précurseurs de la décoissance. Neuvy-en-Champagne. Le passager Clandestin. ISBN: 978-2-36935-008-8.

  5. Influence of Grape Berry Maturity on Juice and Base Wine Composition and Foaming Properties of Sparkling Wines from the Champagne Region.

    Science.gov (United States)

    Liu, Pin-He; Vrigneau, Céline; Salmon, Thomas; Hoang, Duc An; Boulet, Jean-Claude; Jégou, Sandrine; Marchal, Richard

    2018-06-06

    In sparkling wine cool-climate regions like Champagne, it is sometimes necessary to pick the healthy grape clusters that have a relatively low maturity level to avoid the deleterious effects of Botrytis cinerea . In such conditions, we know that classical oenological parameters (sugars, pH, total acidity) may change but there is little information concerning the impact of grape berry maturity on wine proteins and foaming properties. Therefore, healthy grapes (Chardonnay and Pinot meunier) in 2015 and 2016 were picked at different maturity levels within the range of common industrial maturity for potential alcohol content 8⁻11% v/v in the Champagne region. Base wine protein content and foamability, and oenological parameters in grape juice and their corresponding base wines, were investigated. The results showed that base wine protein contents (analyzed by the Bradford method and by electrophoresis) and foamability were higher when the grapes were riper. The Pearson’s correlation test found significant positive correlations ( r = 0.890⁻0.997, p < 0.05) between Chardonnay grape berry maturity degree (MD) and base wine foamability in both vintages. Strong correlations between MD and most of the oenological parameters in grape juice and base wine were also found for the two cultivars. Under the premise of guaranteed grape health, delaying harvest date is an oenological decision capable of improving base wine protein content and foamability.

  6. Contribution of piezometric measurement to knowledge and management of low water levels: examples on the chalk aquifer in the Champagne Ardennes region

    Directory of Open Access Journals (Sweden)

    P. Stollsteiner

    2015-04-01

    Full Text Available This article is based on a BRGM study on piezometric indicators, threshold values of discharge and groundwater levels for the assessment of potentially-exploitable water resources of chalky watersheds. A method for estimating low water levels based on groundwater levels is presented from three examples representing chalk aquifers with different cycles: annual, combined and interannual. The first is located in Picardy and the two others in the Champagne-Ardennes region. Piezometers with annual cycles, used in these examples, are supposed to be representative of the aquifer hydro-dynamics. Except for multi-annual systems, the analysis between discharge measurements at a hydrometric station and groundwater levels measured at a piezometer representative of the main aquifer, leads to relatively precise and satisfactory relationships within a chalky context. These relationships may be useful for monitoring, validation, extension or reconstruction of the low water flow data. On the one hand, they allow definition of the piezometric levels corresponding to the different alert thresholds of river discharges. On the other hand, they clarify the proportions of low surface water flow from runoff or drainage of the aquifer. Finally, these correlations give an assessment of the minimum flow for the coming weeks. However, these correlations cannot be used to optimize the value of the exploitable water resource because it seems to be difficult to integrate the value of the effective rainfall that could occur during the draining period. Moreover, in the case of multi-annual systems, the solution is to attempt a comprehensive system modelling and, if it is satisfactory, using the simulated values to get rid of parasites or running the model for forecasting purposes.

  7. Contribution of piezometric measurement to knowledge and management of low water levels: examples on the chalk aquifer in the Champagne Ardennes region

    Science.gov (United States)

    Stollsteiner, P.; Bessiere, H.; Nicolas, J.; Allier, D.; Berthet, O.

    2015-04-01

    This article is based on a BRGM study on piezometric indicators, threshold values of discharge and groundwater levels for the assessment of potentially-exploitable water resources of chalky watersheds. A method for estimating low water levels based on groundwater levels is presented from three examples representing chalk aquifers with different cycles: annual, combined and interannual. The first is located in Picardy and the two others in the Champagne-Ardennes region. Piezometers with annual cycles, used in these examples, are supposed to be representative of the aquifer hydro-dynamics. Except for multi-annual systems, the analysis between discharge measurements at a hydrometric station and groundwater levels measured at a piezometer representative of the main aquifer, leads to relatively precise and satisfactory relationships within a chalky context. These relationships may be useful for monitoring, validation, extension or reconstruction of the low water flow data. On the one hand, they allow definition of the piezometric levels corresponding to the different alert thresholds of river discharges. On the other hand, they clarify the proportions of low surface water flow from runoff or drainage of the aquifer. Finally, these correlations give an assessment of the minimum flow for the coming weeks. However, these correlations cannot be used to optimize the value of the exploitable water resource because it seems to be difficult to integrate the value of the effective rainfall that could occur during the draining period. Moreover, in the case of multi-annual systems, the solution is to attempt a comprehensive system modelling and, if it is satisfactory, using the simulated values to get rid of parasites or running the model for forecasting purposes.

  8. The Cold Gas-Dynamic Spray and Characterization of Microcrystalline Austenitic Stainless Steel

    Science.gov (United States)

    2014-09-01

    the operational availability of the component, both of which are major concerns in the Navy today. P.F. Leyman and V.K. Champagne have...the gas flow was found utilizing the same equation as Champagne [19].   6x x xp g p p p p dT hT T dt c D   (15) where Tpx is the temperature...Deposition Process: Fundamentals and Applications, V. K. Champagne , Ed., Boca Raton, FL, Woodhead, 2007, pp. 43–61. [2] K. Spencer and M. -X. Zhang

  9. A nonclassical Radau collocation method for solving the Lane-Emden equations of the polytropic index 4.75 ≤ α < 5

    Science.gov (United States)

    Tirani, M. D.; Maleki, M.; Kajani, M. T.

    2014-11-01

    A numerical method for solving the Lane-Emden equations of the polytropic index α when 4.75 ≤ α ≤ 5 is introduced. The method is based upon nonclassical Gauss-Radau collocation points and Freud type weights. Nonclassical orthogonal polynomials, nonclassical Radau points and weighted interpolation are introduced and are utilized in the interval [0,1]. A smooth, strictly monotonic transformation is used to map the infinite domain x ∈ [0,∞) onto a half-open interval t ∈ [0,1). The resulting problem on the finite interval is then transcribed to a system of nonlinear algebraic equations using collocation. The method is easy to implement and yields very accurate results.

  10. Kefir and champagne vinegar to defeat bacterial vaginosis in woman, avoiding oral metronidazole, clindamycin and bothersome douchings

    Directory of Open Access Journals (Sweden)

    Piotr Brzezinski

    2018-02-01

    Full Text Available Scope ouf our study is to treat with natural remedies vaginitis in woman, when it has been detected the disease originates from bacterical assault (Gardnerella vaginalis and/or Streptococca spp. in order to avoid the administration of perilous antibiotics and elicit sexual desire and eliminate pain during urination in the woman who has suffered from this disease after 4-5 days only. We have to proceed with the preliminary phase of a simplest test (the ammin whiff test and determine the type of vaginitis and thus treat it using champagne or cider vinegar to adjust mucosal pH and kefir, a fermented beverage, that is extremely rich in mesophyllic bacteria, apt to reveal an important and suggestive function regard vaginal microbes.

  11. Natural oxygenation of Champagne wine during ageing on lees: A metabolomics picture of hormesis.

    Science.gov (United States)

    Roullier-Gall, Chloé; Witting, Michael; Moritz, Franco; Gil, Ryan B; Goffette, Delphine; Valade, Michel; Schmitt-Kopplin, Philippe; Gougeon, Régis D

    2016-07-15

    The oxygenation of Champagne wine after 4 and 6 years of aging on lees in bottle was investigated by FTICR-MS and UPLC-Q-TOF-MS. Three levels of permeability were considered for the stoppers, ranging from 0.2 to 1.8 mg/L/year of oxygen transfer rate. Our results confirmed a good repeatability of ultra-high resolution FTICR-MS, both in terms of m/z and coefficient of variation of peak intensities among biological replicates. Vintages appeared to be the most discriminated features, and metabolite annotations suggested that the oldest wines (2006) were characterized by a higher sensitivity towards oxygenation. Within each vintage, the oxygenation mechanisms appeared to be different for low and high ingresses of oxygen, in agreement with the hormesis character of wine oxygenation. In the particular case of single variety wines and for a given level of stopper permeability, our results also showed that variety discrimination could be easily achieved among wines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Champagne Pool (New Zealand) Thermophiles Yield Insights into the Evolution of Microbial Arsenic Resistance

    Science.gov (United States)

    Hug, K.; Krikowa, F.; Morgan, X.; Maher, W. A.; Stott, M. B.; Moreau, J. W.

    2011-12-01

    Arsenic is a highly toxic metalloid typically enriched in geothermal waters due to aqueous weathering of arsenic-bearing minerals. Investigation of enzymatic pathways by which thermophilic microorganisms cope with toxic arsenic levels may yield insights into the evolution of arsenic resistance mechanisms on the early Earth. At Wai-O-Tapu in the Taupo Volcanic Zone on the North Island of New Zealand, hot springs with temperatures of 30-90°C and elemental sulfur concentrations (expressed as equivalent sulfate) from 340 to 850 mg/l establish a range of environmental conditions. Total arsenic concentrations varied from 0.083 mg/l to 56 mg/l. Arsenic speciation analysis elucidated various biogeochemical arsenic transformations occurring within different springs. For example, in the Alum Cliff spring oxidizing conditions (Eh = 225 mV) were expected to stabilize dissolved arsenate (AsO43-). However, HPLC-ICPMS analyses yielded dissolved arsenate and arsenite (AsO33-) concentrations of 0.25 mg/l versus 43.3 mg/l, respectively, and point towards microbial arsenate reduction as the likely mechanism for arsenic redox transformation. 16S rRNA gene cloning of Alum Cliff DNA showed a predominantly archaeal population with the dominant clone "AC1_A1" most closely related (99% sequence similarity, NCBI BLAST°) to the uncultured Sulfolobus clone "ChP_97P" found in Champagne Pool (Childs et al., 2008). The closest isolated relative to AC1_A1 is Sulfolobus tokodaii str. TW with a sequence similarity of 94%. Arsenic speciation measurements from the Alum Cliff spring suggest that clone AC1_A1 features the arsenate reduction resistance mechanism, and we hypothesize therefore that an arsC (homolog or analog) provides this functionality. The organic arsenic species monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA), detected via HPLC-ICPMS at concentrations ranging from 1 μg/l to 12 μg/l in various springs, may also implicate microbial methyl-group transfers as an active

  13. Numerical Results for a Polytropic Cosmology Interpreted as a Dust Universe Producing Gravitational Waves

    Science.gov (United States)

    Klapp, J.; Cervantes-Cota, J.; Chauvet, P.

    1990-11-01

    RESUMEN. A nivel cosmol6gico pensamos que se ha estado prodticiendo radiaci6n gravitacional en cantidades considerables dentro de las galaxias. Si los eventos prodnctores de radiaci6n gravitatoria han venido ocurriendo desde Ia epoca de Ia formaci6n de las galaxias, cuando menos, sus efectos cosmol6gicos pueden ser tomados en cuenta con simplicidad y elegancia al representar la producci6n de radiaci6n y, por consiguiente, su interacci6n con materia ordinaria fenomenol6gicamente a trave's de una ecuaci6n de estado politr6pica, como lo hemos mostrado en otros trabajos. Presentamos en este articulo resultados nunericos de este modelo. ABSTRACT A common believe in cosmology is that gravitational radiation in considerable quantities is being produced within the galaxies. Ifgravitational radiation production has been running since the galaxy formation epoch, at least, its cosmological effects can be assesed with simplicity and elegance by representing the production of radiation and, therefore, its interaction with ordinary matter phenomenologically through a polytropic equation of state as shown already elsewhere. We present in this paper the numerical results of such a model. K words: COSMOLOGY - GRAVITATION

  14. The champagne toast position isolates the supraspinatus better than the Jobe test: an electromyographic study of shoulder physical examination tests.

    Science.gov (United States)

    Chalmers, Peter N; Cvetanovich, Gregory L; Kupfer, Noam; Wimmer, Markus A; Verma, Nikhil N; Cole, Brian J; Romeo, Anthony A; Nicholson, Gregory P

    2016-02-01

    While Jobe's test is widely used, it does not isolate supraspinatus activity. Our purpose was to examine the electromyographic (EMG) activity within the supraspinatus and deltoid with resisted abduction to determine the shoulder position that best isolates the activity of the supraspinatus. We performed EMG analysis of the supraspinatus, anterior head of the deltoid, and middle head of the deltoid in 10 normal volunteers. We measured EMG activity during resisted shoulder abduction in the scapular plane to both manual resistance and a standardized load in varying degrees of abduction and rotation. To determine which position best isolates supraspinatus activity, the ratio of supraspinatus to deltoid activity (S:D) was calculated for each position. Results were analyzed with a repeated-measures analysis of variance with Bonferroni correction. The posterior deltoid was excluded as it serves mostly to extend and externally rotate. Our study confirmed Jobe's findings of maximal supraspinatus activity at 90° of abduction. However, decreasing abduction significantly increased S:D for both resisted manual testing and testing against a standardized load (P = .002 and .001, respectively). The greatest S:D ratio (4.6 ± 3.4 for standardized load testing) was seen at the "champagne toast" position, i.e., 30° of abduction, mild external rotation, 30° of flexion, and 90° of elbow flexion. The smallest ratio (0.8 ± 0.6) was seen at Jobe's position. Testing of abduction strength in the champagne toast position, i.e., 30° of abduction, mild external rotation, and 30° of flexion, better isolates the activity of the supraspinatus from the deltoid than Jobe's "empty can" position. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. GRAVITATIONAL INSTABILITY OF ROTATING, PRESSURE-CONFINED, POLYTROPIC GAS DISKS WITH VERTICAL STRATIFICATION

    International Nuclear Information System (INIS)

    Kim, Jeong-Gyu; Kim, Woong-Tae; Seo, Young Min; Hong, Seung Soo

    2012-01-01

    We investigate the gravitational instability (GI) of rotating, vertically stratified, pressure-confined, polytropic gas disks using a linear stability analysis as well as analytic approximations. The disks are initially in vertical hydrostatic equilibrium and bounded by a constant external pressure. We find that the GI of a pressure-confined disk is in general a mixed mode of the conventional Jeans and distortional instabilities, and is thus an unstable version of acoustic-surface-gravity waves. The Jeans mode dominates in weakly confined disks or disks with rigid boundaries. On the other hand, when the disk has free boundaries and is strongly pressure confined, the mixed GI is dominated by the distortional mode that is surface-gravity waves driven unstable under their own gravity and thus incompressible. We demonstrate that the Jeans mode is gravity-modified acoustic waves rather than inertial waves and that inertial waves are almost unaffected by self-gravity. We derive an analytic expression for the effective sound speed c eff of acoustic-surface-gravity waves. We also find expressions for the gravity reduction factors relative to a razor-thin counterpart that are appropriate for the Jeans and distortional modes. The usual razor-thin dispersion relation, after correcting for c eff and the reduction factors, closely matches the numerical results obtained by solving a full set of linearized equations. The effective sound speed generalizes the Toomre stability parameter of the Jeans mode to allow for the mixed GI of vertically stratified, pressure-confined disks.

  16. Cyclic and heteroclinic flows near general static spherically symmetric black holes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Ayyesha K.; Jamil, Mubasher [National University of Sciences and Technology(NUST), Department of Mathematics, School of Natural Sciences (SNS), Islamabad (Pakistan); Azreg-Ainou, Mustapha [Baskent University, Engineering Faculty, Ankara (Turkey); Faizal, Mir [University of Lethbridge, Department of Physics and Astronomy, Alberta (Canada); University of Waterloo, Department of Physics and Astronomy, Waterloo, ON (Canada)

    2016-05-15

    We investigate the Michel-type accretion onto a static spherically symmetric black hole. Using a Hamiltonian dynamical approach, we show that the standard method employed for tackling the accretion problem has masked some properties of the fluid flow. We determine new analytical solutions that are neither transonic nor supersonic as the fluid approaches the horizon(s); rather, they remain subsonic for all values of the radial coordinate. Moreover, the three-velocity vanishes and the pressure diverges on the horizon(s), resulting in a flow-out of the fluid under the effect of its own pressure. This is in favor of the earlier prediction that pressure-dominant regions form near the horizon. This result does not depend on the form of the metric and it applies to a neighborhood of any horizon where the time coordinate is timelike. For anti-de Sitter-like f(R) black holes we discuss the stability of the critical flow and determine separatrix heteroclinic orbits. For de Sitter-like f(R) black holes, we construct polytropic cyclic, non-homoclinic, physical flows connecting the two horizons. These flows become non-relativistic for Hamiltonian values higher than the critical value, allowing for a good estimate of the proper period of the flow. (orig.)

  17. Impact of initial lipid content and oxygen supply on alcoholic fermentation in champagne-like musts.

    Science.gov (United States)

    Ochando, Thomas; Mouret, Jean-Roch; Humbert-Goffard, Anne; Sablayrolles, Jean-Marie; Farines, Vincent

    2017-08-01

    Available nitrogen, lipids, or oxygen are nutrients with major impact on the kinetics of winemaking fermentation. Assimilable nitrogen is usually the growth-limiting nutrient which availability determines the fermentation rate and therefore the fermentation duration. In some particular cases, as in Champagne, grape musts have high available nitrogen content and low turbidity, i.e., below 50 Nephelometric Turbidity Unit (NTU). In the case of low turbidity, the availability of lipids, particularly phytosterols, becomes limiting. In this situation, control of oxygenation, which is necessary for lipid synthesis by yeast, is particularly crucial during fermentation. To mimic and understand these situations, a synthetic medium simulating the average composition of a Champagne must was used. This medium contained phytosterol (mainly β-sitosterol) concentrations ranging from 0 to 8mg/L corresponding to turbidity between 10 and 90 NTU. Population reached during the stationary phase and the maximum fermentation rate are conditioned by the initial phytosterol concentration determining the amount of nitrogen consumption. An early loss of viability was observed when the lipid concentrations were very low. For example, the viability continuously decreased during the stationary phase to a final value of 50% for an initial phytosterol concentration of 1mg/L. In some fermentations, 10mg/L oxygen were added at the end of the growth phase to combine the effects of initial content of phytosterols in the musts and the de novo synthesis of ergosterol and unsaturated fatty acids induced by oxygen addition. Effect of oxygen supply on the fermentation kinetics was particularly significant for media with low phytosterol contents. For example, the maximum fermentation rate was increased by 1.4-fold and the fermentation time was 70h shorter with oxygen addition in the medium containing 2mg/L of phytosterols. As a consequence of the oxygen supply, for the media containing 3, 5 and 8mg/L of

  18. Wind-type flows in astrophysical jets. III. Temporal evolution of perturbations and the formation of shocks

    International Nuclear Information System (INIS)

    Trussoni, E.; Ferrari, A.; Rosner, R.; Tsinganos, K.

    1988-01-01

    The temporal evolution of disturbances in a spherically symmetric polytropic wind from a central object is studied. Such disturbances may be due to localized momentum addition/subtraction, as, for example, by MHD waves, heating/cooling mechanisms in the outflow, or localized deviations from spherical symmetric expansion. The evolution of an initial perturbed state to a continuous or discontinuous final equilibrium state, as predicted by previous analytic calculations for stationary flows, is followed. It is shown that some of the predicted discontinuous equilibrium states are not physically accessible, while the attainment of the remaining equilibrium states depends on both the temporal and the spatial parameters characterizing the perturbation. The results are derived for solar conditions, but in fact can be applied to outflows in other astrophysical systems. In particular, applications to the solar wind and flows in astrophysical jets are discussed. 32 references

  19. Modelling and transient simulation of water flow in pipelines using WANDA Transient software

    Directory of Open Access Journals (Sweden)

    P.U. Akpan

    2017-09-01

    Full Text Available Pressure transients in conduits such as pipelines are unsteady flow conditions caused by a sudden change in the flow velocity. These conditions might cause damage to the pipelines and its fittings if the extreme pressure (high or low is experienced within the pipeline. In order to avoid this occurrence, engineers usually carry out pressure transient analysis in the hydraulic design phase of pipeline network systems. Modelling and simulation of transients in pipelines is an acceptable and cost effective method of assessing this problem and finding technical solutions. This research predicts the pressure surge for different flow conditions in two different pipeline systems using WANDA Transient simulation software. Computer models were set-up in WANDA Transient for two different systems namely; the Graze experiment (miniature system and a simple main water riser system based on some initial laboratory data and system parameters. The initial laboratory data and system parameters were used for all the simulations. Results obtained from the computer model simulations compared favourably with the experimental results at Polytropic index of 1.2.

  20. Rainfall simulations to study the types of groundcover on surface runoff and soil erosion in Champagne vineyards in France

    Science.gov (United States)

    Xavier, Morvan; Christophe, Naisse; Issa Oumarou, Malam; Jean-François, Desprats; Anne, Combaud; Olivier, Cerdan

    2015-04-01

    In the literature, grass cover is often considered to be one of the best methods of limiting runoff in the vineyards; But results can vary, especially when the plot area is Champagne vineyards in France, was to quantify the influence of the cultivation practices in the inter-rows of vines and determine the influence of the density of the grass cover in the wheel tracks on the surface runoff and soil erosion in experimental plots of 0.25 m2 under simulated rainfall. Three types of ground cover were studied. In the bark-and-vine-prunings plots, the runoff coefficient ranged from 1.3 to 4.0% and soil losses were <1 g/m²/h. In the bare soil plot, the highest runoff coefficient of the study was found (80.0%) and soil losses reached 7.4 g/m²/h. In the grass cover plots, the runoff coefficient and amount of eroded soil were highly variable: the runoff coefficients ranged from 0.4 to 77.0%, and soil losses were between less than 1 and 13.4 g/m²/h. Soil type, soil moisture, slope and agricultural practices did not account for the variability. In fact, the density of grass cover in the wheel tracks explained a portion of this variability. The lack of grass in the centre of the inter-row allowed for a preferential flow and created an erosion line in the wheel tracks where the soil was compacted. This study showed that grass cover in a vineyard was not necessarily sufficient to reduce surface runoff and prevent soil erosion. To be effective, the grass cover must be dense enough in the wheel tracks of agricultural machinery to avoid runoff coefficients close to those achieved with bare soil.

  1. Parameter scaling toward high-energy density in a quasi-steady flow Z-pinch

    Science.gov (United States)

    Hughes, M. C.; Shumlak, U.; Nelson, B. A.; Golingo, R. P.; Claveau, E. L.; Doty, S. A.; Forbes, E. G.; Kim, B.; Ross, M. P.

    2016-10-01

    Sheared axial flows are utilized by the ZaP Flow Z-Pinch Experiment to stabilize MHD instabilities. The pinches formed are 50 cm long with radii ranging from 0.3 to 1.0 cm. The plasma is generated in a coaxial acceleration region, similar to a Marshall gun, which provides a steady supply of plasma for approximately 100 us. The power to the plasma is partially decoupled between the acceleration and pinch assembly regions through the use of separate power supplies. Adiabatic scaling of the Bennett relation gives targets for future devices to reach high-energy density conditions or fusion reactors. The applicability of an adiabatic assumption is explored and work is done experimentally to clarify the plasma compression process, which may be more generally polytropic. The device is capable of a much larger parameter space than previous machine iterations, allowing flexibility in the initial conditions of the compression process to preserve stability. This work is supported by DoE FES and NNSA.

  2. Analyses for experiment on sodium-water reaction temperature by the CHAMPAGNE code

    International Nuclear Information System (INIS)

    Yoshioka, Naoki; Kishida, Masako; Yamada, Yumi

    2000-03-01

    In this work, analyses on sodium-water reaction temperature in the new SWAT-1(SWAT-1R) test were completed by the CHAMPAGNE code in order to understand void and velocity distribution in sodium system, which was difficult to be measured in experiments. The application method of the RELAP5/Mod2 code was investigated to LMFBR steam generator (SG) blow down analysis, too. The following results were obtained. (1) Analyses on sodium-water reaction temperature in the SWAT-1R test. 1) Analyses were carried out for the SWAT-1R test under the condition water leak rate 600 g/s by treating the pressure loss coefficient, the interface friction coefficient and the coefficient related to reaction rate as parameters. The effect and mechanism of each parameter on the shape of reaction zone were well understood by these analyses. 2) The void and velocity distribution in sodium system were estimated by use of the most suitable parameters. These analytical results are expected to be useful for planning of the SWAT-1R test and evaluation of test result. (2) Investigation of the RELAP5/Mod2 code. 1) The items to be improved in the RELAP5/Mod2 code were clarified to apply this code to the FBR SG blow down analysis. 2) One of these items was an addition of the shell-side (sodium-side) model. A sodium-side model was designed and added to the RELAP5/Mod2 code. Test calculations were carried out by this improved code and the basic function of this code was confirmed. (author)

  3. Effect of grape juice press fractioning on polysaccharide and oligosaccharide compositions of Pinot meunier and Chardonnay Champagne base wines.

    Science.gov (United States)

    Jégou, Sandrine; Hoang, Duc An; Salmon, Thomas; Williams, Pascale; Oluwa, Solomen; Vrigneau, Céline; Doco, Thierry; Marchal, Richard

    2017-10-01

    Press fractioning is an important step in the production of sparkling base wines to segregate the grape juices with different qualities. Grape juice fractions were collected during the pressing cycle at industrial and laboratory scales. The Pinot meunier and Chardonnay Champagne base wines obtained from the free-run juice and the squeezed juices exhibited strong differences from the beginning to the last step of pressing cycle for numerous enological parameters. Significant changes in polysaccharide (PS) and oligosaccharide (OS) base wine composition and concentration were found as the pressing cycle progressed. During the pressing cycle, the total PS concentration decreased by 31% (from 244 to 167mg/L) and 32% (from 201 to 136mg/L) in the Pinot meunier and Chardonnay wines respectively. The wine OS amounts varied between 97 and 139mg/L. The polysaccharide rich in arabinose and galactose (39-54%) and mannoproteins (38-55%) were the major PS in the base wines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. HII regions in collapsing massive molecular clouds

    International Nuclear Information System (INIS)

    Yorke, H.W.; Bodenheimer, P.; Tenorio-Tagle, G.

    1982-01-01

    Results of two-dimensional numerical calculations of the evolution of HII regions associated with self-gravitating, massive molecular clouds are presented. Depending on the location of the exciting star, a champagne flow can occur concurrently with the central collapse of a nonrotating cloud. Partial evaporation of the cloud at a rate of about 0.005 solar masses/yr results. When 100 O-stars are placed at the center of a freely falling cloud of 3x10 5 solar masses no evaporation takes place. Rotating clouds collapse to disks and the champagne flow can evaporate the cloud at a higher rate (0.01 solar masses/yr). It is concluded that massive clouds containing OB-stars have lifetimes of no more than 10 7 yr. (Auth.)

  5. A dynamic response model for pressure sensors in continuum and high Knudsen number flows with large temperature gradients

    Science.gov (United States)

    Whitmore, Stephen A.; Petersen, Brian J.; Scott, David D.

    1996-01-01

    This paper develops a dynamic model for pressure sensors in continuum and rarefied flows with longitudinal temperature gradients. The model was developed from the unsteady Navier-Stokes momentum, energy, and continuity equations and was linearized using small perturbations. The energy equation was decoupled from momentum and continuity assuming a polytropic flow process. Rarefied flow conditions were accounted for using a slip flow boundary condition at the tubing wall. The equations were radially averaged and solved assuming gas properties remain constant along a small tubing element. This fundamental solution was used as a building block for arbitrary geometries where fluid properties may also vary longitudinally in the tube. The problem was solved recursively starting at the transducer and working upstream in the tube. Dynamic frequency response tests were performed for continuum flow conditions in the presence of temperature gradients. These tests validated the recursive formulation of the model. Model steady-state behavior was analyzed using the final value theorem. Tests were performed for rarefied flow conditions and compared to the model steady-state response to evaluate the regime of applicability. Model comparisons were excellent for Knudsen numbers up to 0.6. Beyond this point, molecular affects caused model analyses to become inaccurate.

  6. Physicochemical and microbiological characteristics of minimally processed 'Champagne' oranges (Citrus reticulata × Citrus sinensis in different packgings

    Directory of Open Access Journals (Sweden)

    Juliana da Silva Agostini

    2013-03-01

    Full Text Available The objective of this study was to investigate the influence of the level of minimal processing and modified atmosphere on the quality of 'Champagne' orange stored under refrigeration. The fruits were subjected to the following processing: a whole fruit without flavedo; b whole fruit without flavedo and albedo; and c segmented into wedges and packed as follows: uncoated packaging (control; polyethylene film; PVC film; gelatin-based edible films (3%; and polyesthyrene translucent plastic container with a lid. The minimally processed oranges were stored at 5 ± 1°C for 8 days and were subjected to physicochemical and microbiological analyses every two days. Greater weight loss occurred in fruits without flavedo and segmented, uncoated, and coated with the edible gelatin film During storage, there was a slight increase in Total Soluble Solids (TSS for the treatments with greater weight loss and reduction in acidity and ascorbic acid, regardless of the packaging type. The microbial counts did not exceed the acceptable limits in the treatments; however, higher counts were observed at the end of storage. The minimally processed fruit packed in lidded polystyrene containers and polyethylene and PVC films kept their overall fresh visual appearance with a few physicochemical and microbiological changes up to the 8th day of storage.

  7. [Systematic hearing screening for newborns in the Champagne-Ardennes region: 32,500 births in 2 years of experience].

    Science.gov (United States)

    Schmidt, P; Leveque, M; Danvin, J-B; Leroux, B; Chays, A

    2007-09-01

    To report a Universal Newborn Hearing Screening (UNHS) program developed in the Champagne-Ardennes region in 2004-2005. A team of ENT specialists and pediatricians set up a UNHS program designed to reduce the age of diagnosis and care of bilateral congenital deafness. The program was mainly based on automated acoustic otoacoustic emissions and a strict follow-up by the Regional Neonatal Screening Center. In 2004 and 2005, 29,944 neonates from 30,518 births were screened (98.11%). Of the neonates screened, 409 (1.38%) failed the test and were referred. The average retest delay was 2 weeks. Eleven were lost to follow-up, 371 (94%) had a successful second test on one or both ears, 27 (7%) failed the test a second time and had a diagnosis of ABR. Twenty-four cases of bilateral deafness were identified early, 14 of which had no risk factors. One of the children lost to follow-up was actually deaf, which was diagnosed at 18 months of age. Since the beginning of the UNHS program, the average age of diagnosis was lowered to less than 3 months. Our experience tends to demonstrate that UNHS is possible and the program allows an early diagnosis of bilateral congenital hearing loss.

  8. Sources and behavior of perchlorate ions (ClO4-) in chalk aquifer of Champagne-Ardenne, France: preliminary results

    Science.gov (United States)

    Cao, Feifei; Jaunat, Jessy; Ollivier, Patrick; Cancès, Benjamin; Morvan, Xavier; Hubé, Daniel; Devos, Alain; Devau, Nicolas; Barbin, Vincent; Pannet, Pierre

    2018-06-01

    Perchlorate (ClO4-) is an environmental contaminant of growing concern due to its potential human health effects and widespread occurrence in surface water and groundwater. Analyses carried out in France have highlighted the presence of ClO4- in drinking water of Champagne-Ardenne (NW of France), with two potential sources suspected: a military source related to the First World War and an agricultural source related to the past use of Chilean nitrates. To determine the sources of ClO4- in groundwater, major and trace elements, 2H and 18O, ClO3- and ClO4- ions and a list of 39 explosives were analyzed from 35 surface water and groundwater sampling points in the east of the city of Reims. ClO4- ions were found in almost all sampling points (32 out of 35) with a max value of 33 µg L-1. ClO4- concentrations were highest in groundwater ranging from 0.7 to 33 µg L-1 (average value of about 6.2 µg L-1) against from 4 µg L-1) were collected near a military camp, where huge quantities of ammunitions have been used, stored and destroyed during and after the First World War.

  9. 27 CFR 4.21 - The standards of identity.

    Science.gov (United States)

    2010-04-01

    ... of the wine within a closed container, tank or bottle. (2) Champagne is a type of sparkling light... characteristics attributed to champagne as made in the champagne district of France. (3)(i) A sparkling light wine having the taste, aroma, and characteristics generally attributed to champagne but not otherwise...

  10. Riemann quasi-invariants

    International Nuclear Information System (INIS)

    Pokhozhaev, Stanislav I

    2011-01-01

    The notion of Riemann quasi-invariants is introduced and their applications to several conservation laws are considered. The case of nonisentropic flow of an ideal polytropic gas is analysed in detail. Sufficient conditions for gradient catastrophes are obtained. Bibliography: 16 titles.

  11. The influence of molecular complexity on expanding flows of ideal and dense gases

    NARCIS (Netherlands)

    Harinck, J.; Guardone, A.; Colonna, P.

    2009-01-01

    This paper presents an investigation about the effect of the complexity of a fluid molecule on the fluid dynamic quantities sound speed, velocity, and Mach number in isentropic expansions. Ideal-gas and dense-gas expansions are analyzed, using the polytropic ideal gas and Van der Waals thermodynamic

  12. U.S. Army Toxic Metal Reduction Program: Demonstrating Alternatives to Hexavalent Chromium and Cadmium in Surface Finishing

    Science.gov (United States)

    2014-11-18

    only) Medium Cal: M242 25mm Bushmaster, M230 30mm, GAU-12 25mm, 30mm Bushmaster II, EAPS 50mm POC: Vic Champagne , ARL, victor.k.champagne.civ...Shielding for Electronic Shelters) POC: Vic Champagne , ARL, victor.k.champagne.civ@mail.mil Cold Spray – Portable System and Internal Diameter

  13. Physicochemical and microbiological characteristics of minimally processed 'Champagne' oranges (Citrus reticulata × Citrus sinensis in different packgings Características físico-químicas e microbiológicas de laranjas 'Champagne' (Citrus reticulata x Citrus sinensis minimamente processadas em diferentes embala

    Directory of Open Access Journals (Sweden)

    Juliana da Silva Agostini

    2013-03-01

    Full Text Available The objective of this study was to investigate the influence of the level of minimal processing and modified atmosphere on the quality of 'Champagne' orange stored under refrigeration. The fruits were subjected to the following processing: a whole fruit without flavedo; b whole fruit without flavedo and albedo; and c segmented into wedges and packed as follows: uncoated packaging (control; polyethylene film; PVC film; gelatin-based edible films (3%; and polyesthyrene translucent plastic container with a lid. The minimally processed oranges were stored at 5 ± 1°C for 8 days and were subjected to physicochemical and microbiological analyses every two days. Greater weight loss occurred in fruits without flavedo and segmented, uncoated, and coated with the edible gelatin film During storage, there was a slight increase in Total Soluble Solids (TSS for the treatments with greater weight loss and reduction in acidity and ascorbic acid, regardless of the packaging type. The microbial counts did not exceed the acceptable limits in the treatments; however, higher counts were observed at the end of storage. The minimally processed fruit packed in lidded polystyrene containers and polyethylene and PVC films kept their overall fresh visual appearance with a few physicochemical and microbiological changes up to the 8th day of storage.Objetivou-se com este trabalho determinar a influência do nível de processamento mínimo e atmosfera modificada na qualidade de laranja 'Champagne' minimamente processada armazenada sob refrigeração. Laranjas submetidas aos seguintes processos: a remoção do albedo; b remoção do albedo e flavedo; c segmentada em gomos, foram acondicionadas em embalagem sem revestimento (controle, com filme de polietileno, com filme de PVC, com revestimento comestível de gelatina a 3% e em pote plástico com tampa de poliestireno. O armazenamento dos frutos foi realizado a 5 ± 1 °C por oito dias, sendo submetidos a análises f

  14. HIGHLIGHTS OF ROMANIAN AND FRENCH WINE MARKETS: THE EXAMPLE OF FRENCH CHAMPAGNE MARKET

    Directory of Open Access Journals (Sweden)

    Jubenot Marie-Noelle

    2014-12-01

    Full Text Available The market is a dynamic market in which the European Union plays a leading role as the main producer and exporter of vine products. In this area, four countries with strong agricultural and viticultural tradition dominate the market: France, Italy, Spain and Germany. But among the new eastern EU members, countries as Romania, with a favorable geography and climate and also a viticultural tradition, some may also play a more prominent role. Romania is part of the top 12 wine-producing countries, however Romania penalty to export large-scale production of wine. In contrast, France is the main producer and exporter of wine country. This situation is primarily due to the strategic choice of a very strong geographic labelisation of wine production and the emphasis on quality and even the excellence of its products, in particular thanks to a promotion policy. Two major non-exclusive solutions seem to emerge for Romania. On the one hand, it can copy to a certain extent the French solution by leveraging labelisation its wines. The French wine market is also the reference of the European Union in particular as regards the creation of the label: Appellation of Origin (PDO. The example of champagne is, in this context, remarkable. This product alone largely not only the volume and value of exports of wines, but also the volume and value of exports of all agricultural products. It can also try to increase its exports to emerging countries outside the European Union. Non-European areas are both a promise of growing opportunities in a context of economic crisis or post-crises and a threat to the European wine sector: in particular we think about America, Asia and Oceania. Indeed, the main third countries also wine producers are trying to increase their market share. This explains the new measures taken by the European authorities aimed at deep modernizing European wine sector.

  15. The Nogent-sur-Seine nuclear power plant, at the service of a safe, competitive and CO2-free power generation in the heart of the Champagne-Ardenne region

    International Nuclear Information System (INIS)

    2010-01-01

    In less than 20 years, Electricite de France (EDF) has built up a competitive park of 58 nuclear power plants, with no equivalent elsewhere, which represents an installed power of 63.1 GW (85% of EDF's power generation). Inside this nuclear park, the national power generation centre of Nogent-sur-Seine comprises two production units of 1300 MW each (2600 MW as a whole). The facility generated 14.35 billion kWh in 2009, i.e. 2.8% of the French national power generation and about 1.5 times the energy consumed in the Champagne-Ardenne region. This brochure presents the life of the power plant under various aspects: power generation, safety priority and culture, maintenance investments, respect of the environment, long-term fuel and wastes management, local economical involvement, transparency and public information, key figures and dates. (J.S.)

  16. Uranium series geochemistry in aquifers: quantification of transport mechanisms of uranium and daughter products: the chalk aquifer (Champagne, France)

    International Nuclear Information System (INIS)

    Hubert, A.

    2005-09-01

    With the increase of contaminant flux of radionuclides in surface environment (soil, river, aquifer...), there is a need to understand and model the processes that control the distribution of uranium and its daughter products during transport within aquifers. We have used U-series disequilibria as an analogue for the transport of uranium and its daughter products in aquifer to understand such mechanisms. The measurements of uranium ( 234 U et 238 U), thorium ( 230 Th et 232 Th), 226 Ra and 222 Rn isotopes in the solid and liquid phases of the chalk aquifer in Champagne (East of France) allows us to understand the processes responsible for fractionation within the uranium decay chain. Fractionations are induced by physical and chemical properties of the elements (leaching, adsorption) but also by radioactive properties (recoil effect during α-decay). For the first time a comprehensive sampling of the solid phase has been performed, allowing quantifying mechanisms responsible for the long term evolution of the aquifer. A non steady state 1D model has been developed which takes into account leaching, adsorption processes as well as radioactive filiation and α-recoil effect. Retardation coefficients have been calculated for uranium, thorium and radium. The aquifer is characterised by a double porosity, and the contribution of fracture and matrix porosity on the water/rock interaction processes has been estimated. (author)

  17. Fermilab History and Archives Project | Building the Energy

    Science.gov (United States)

    filled with off-shift workers and other well-wishers as the champagne was broken out. The events leading the beam slightly. Director Leon Lederman pours champagne for Linda Klamp as she "spreads the news" on Sunday, July 3 Director Leon Lederman pours champagne for Linda Klamp as she "

  18. 27 CFR 24.278 - Tax credit for certain small domestic producers.

    Science.gov (United States)

    2010-04-01

    ... champagne and other sparkling wine) removed during that year for consumption or sale. This credit applies... gallons of wine (other than champagne and other sparkling wine) removed for consumption or sale by an... production of formula wine. Production of champagne and other sparkling wines is included for purposes of...

  19. Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France

    Energy Technology Data Exchange (ETDEWEB)

    Chopin, E.I.B. [GEGENA EA 3795, University of Reims Champagne-Ardenne, 2 esplanade Roland Garros, 51100 Reims (France)], E-mail: edithchopin@softhome.net; Marin, B.; Mkoungafoko, R.; Rigaux, A. [GEGENA EA 3795, University of Reims Champagne-Ardenne, 2 esplanade Roland Garros, 51100 Reims (France); Hopgood, M.J. [Department of Soil Science, School of Human and Environmental Sciences, University of Reading, Whiteknights, Reading, RG6 6DW (United Kingdom); Delannoy, E.; Cances, B.; Laurain, M. [GEGENA EA 3795, University of Reims Champagne-Ardenne, 2 esplanade Roland Garros, 51100 Reims (France)

    2008-12-15

    Soil and Vitis vinifera L. (coarse and fine roots, leaves, berries) concentration and geochemical partitioning of Cu, Pb and Zn were determined in a contaminated calcareous Champagne plot to assess their mobility and transfer. Accumulation ratios in roots remained low (0.1-0.4 for Cu and Zn, <0.05 for Pb). Differences between elements resulted from vegetation uptake strategy and soil partitioning. Copper, significantly associated with the oxidisable fraction (27.8%), and Zn with the acid soluble fraction (33.3%), could be mobilised by rhizosphere acidification and oxidisation, unlike Pb, essentially contained in the reducible fraction (72.4%). Roots should not be considered as a whole since the more reactive fine roots showed higher accumulation ratios than coarse ones. More sensitive response of fine roots, lack of correlation between chemical extraction results and vegetation concentrations, and very limited translocation to aerial parts showed that fine root concentrations should be used when assessing bioavailability. - Soil Cu, Pb and Zn concentration and partitioning were combined to accumulation ratio to study the transfer of trace element from soil to Vitis vinifera L. roots and aerial parts in a contaminated vineyard plot.

  20. Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France

    International Nuclear Information System (INIS)

    Chopin, E.I.B.; Marin, B.; Mkoungafoko, R.; Rigaux, A.; Hopgood, M.J.; Delannoy, E.; Cances, B.; Laurain, M.

    2008-01-01

    Soil and Vitis vinifera L. (coarse and fine roots, leaves, berries) concentration and geochemical partitioning of Cu, Pb and Zn were determined in a contaminated calcareous Champagne plot to assess their mobility and transfer. Accumulation ratios in roots remained low (0.1-0.4 for Cu and Zn, <0.05 for Pb). Differences between elements resulted from vegetation uptake strategy and soil partitioning. Copper, significantly associated with the oxidisable fraction (27.8%), and Zn with the acid soluble fraction (33.3%), could be mobilised by rhizosphere acidification and oxidisation, unlike Pb, essentially contained in the reducible fraction (72.4%). Roots should not be considered as a whole since the more reactive fine roots showed higher accumulation ratios than coarse ones. More sensitive response of fine roots, lack of correlation between chemical extraction results and vegetation concentrations, and very limited translocation to aerial parts showed that fine root concentrations should be used when assessing bioavailability. - Soil Cu, Pb and Zn concentration and partitioning were combined to accumulation ratio to study the transfer of trace element from soil to Vitis vinifera L. roots and aerial parts in a contaminated vineyard plot

  1. Molecular Indicators of Chronic Stress in a Model Pinniped - The Northern Elephant Seal

    Science.gov (United States)

    2015-09-30

    Pinniped - The Northern Elephant Seal Cory Champagne , Jane Kyudyakov, & Dorian Houser National Marine Mammal Foundation 2240 Shelter Island Dr, Suite...in studies of stress and its impacts ( Champagne et al, 2012). Measurements will be conducted in juvenile elephant seals that reliably haul out each...their large adipose stores) and a reduced amino acid release (potentially resulting from a protein sparing adaptation during fasting; Champagne et

  2. Association Between Fish Oil Consumption and the Incidence of Mental Health Issues Among Active Duty Military Personnel

    Science.gov (United States)

    2016-03-01

    Champagne , 2012). The 14 study, which is still currently ongoing with a completion date of 2020, consists of 72 men and women from age 18–40...leads to improved cognitive response, satiety, and fitness levels ( Champagne , 2012). F. SUMMARY For every article published saying omega-3 is...optimal warrior performance. Military Medicine, 179(11), 176–180. Retrieved from publications.amsus.org Champagne , C. (2012). The Optimum Omega-3 (003

  3. Chemical Genetic Screens for TDP-43 Modifiers and ALS Drug Discovery

    Science.gov (United States)

    2015-03-01

    Champagne , and Pierre Drapeau. 25th international symposium on ALS/MND (5-7 December 2014) Patten SA, Vaccaro A, Drapeau P, Kabashi E, Parker JA...transgenic mice produced with TDP- 43 genomic fragments. Brain 134, 2610-2626 (2011). 6 Kabashi, E., Champagne , N., Brustein, E. & Drapeau, P. In the...swim of things: recent insights to neurogenetic disorders from zebrafish. Trends Genet 26, 373-381 (2010). 7 Kabashi, E., Brustein, E., Champagne , N

  4. Risky Business: Reducing Moral Hazard in Airlift Operations

    Science.gov (United States)

    2015-01-01

    compared to USAF standards.43 McCarty was con- cerned about airlift transporting unnecessary items like champagne and ice that would normally move by...ice and champagne to Dien Bien Phu.44 Further con- firmation exists in the fact that upon his promotion to brigadier general, de Castries’ new rank...and congratulatory bottle of champagne were airdropped to him but fell instead into Viet Minh hands.45 Certainly not all airlifts into Dien Bien Phu

  5. Variability of Hormonal Stress Markers and Stress Responses in a Large Cross-Sectional Sample of Elephant Seals

    Science.gov (United States)

    2015-09-30

    regulation in a captive dolphin population PI: Cory Champagne This project examines roles of CBG and rT3 in the sister study on the Navy captive...bottlenose dolphin population. Molecular indicators of chronic stress in a model pinniped - the northern elephant seal. PI: Cory Champagne This...Khudyakov J.I., C.D. Champagne , L. Preeyanon, R.M. Ortiz, D.E. Crocker. 2015. Muscle transcriptome response to ACTH administration in a free-ranging

  6. Processing-Microstructure-Property Relationships for Cold Spray Powder Deposition of Al-Cu Alloys

    Science.gov (United States)

    2015-06-01

    Champagne [18]. The simulations were completed to compare the simulated particle exit velocities versus the measured particle exit velocities. In...620 m/s to 670 m/s [39]. V. Champagne states that for pure aluminum, an acceptable critical velocity for the deposition of pure aluminum is anything...Materials and Processess, vol. 168, no. 5, pp. 53–55, May 2010. [3] V. K. Champagne and P. F. Leyman, “Cold Spray Process Development for the Reclamation

  7. The Origins of Operational Depth in the First World War

    Science.gov (United States)

    2016-05-26

    consisted of two major phases: the local attacks in the winter of 1914-1915 and the allied offensives of Artois from 9 May to 18 June 1915 and Champagne ...the next campaigns despite the inability to neutralize the second line of defense. In September during the Champagne and Artois Offensives, the...French attempted two combined and simultaneous army sized attacks in concert with the 1st English army. The French attacked in Champagne along a thirty

  8. Evaluation of Littoral Combat Ships for Open-Ocean Anti-Submarine Warfare

    Science.gov (United States)

    2016-03-01

    known. Source: R. R. Hill, R. G. Carl, and L. E. Champagne , “Using Agent-Based Simulation to Empirically Examine Search Theory Using a Historical Case...coverage over a small area. Source: R. R. Hill, R. G. Carl, and L. E. Champagne , “Using Agent-Based Simulation to Empirically Examine Search Theory...Defense Tech, May 30. Hill, R R, R G Carl, and L E Champagne . “Using agent-based simulation to empirically examine search theory using a

  9. Corrosion And Thermal Processing In Cold Gas Dynamic Spray Deposited Austenitic Stainless Steel Coatings

    Science.gov (United States)

    2016-06-01

    Champagne have demonstrated this use of the cold spray technique in the repair of helicopter mast supports in U.S. Army aircraft, with over 50...Process: Fundamentals and Applications, Champagne , V. K., Ed., Woodhead, Boca Raton, FL Chap. 3. [3] Schiel, J. F., 2014, “The cold gas-dynamic spray... Champagne , V. K., Ed., Woodhead, Boca Raton, FL Chap. 2. [15] Han, W., Meng, X. M., Zhang, J. B., and Zhao, J., 2012, “Elastic modulus of 304 stainless

  10. Uranium series geochemistry in aquifers: quantification of transport mechanisms of uranium and daughter products: the chalk aquifer (Champagne, France); Desequilibres des series de l'uranium dans les aquiferes: quantification des mecanismes de transport de l'uranium et de ses descendants: cas de l'aquifere de la craie (Champagne, France)

    Energy Technology Data Exchange (ETDEWEB)

    Hubert, A

    2005-09-15

    With the increase of contaminant flux of radionuclides in surface environment (soil, river, aquifer...), there is a need to understand and model the processes that control the distribution of uranium and its daughter products during transport within aquifers. We have used U-series disequilibria as an analogue for the transport of uranium and its daughter products in aquifer to understand such mechanisms. The measurements of uranium ({sup 234}U et {sup 238}U), thorium ({sup 230}Th et {sup 232}Th), {sup 226}Ra and {sup 222}Rn isotopes in the solid and liquid phases of the chalk aquifer in Champagne (East of France) allows us to understand the processes responsible for fractionation within the uranium decay chain. Fractionations are induced by physical and chemical properties of the elements (leaching, adsorption) but also by radioactive properties (recoil effect during {alpha}-decay). For the first time a comprehensive sampling of the solid phase has been performed, allowing quantifying mechanisms responsible for the long term evolution of the aquifer. A non steady state 1D model has been developed which takes into account leaching, adsorption processes as well as radioactive filiation and {alpha}-recoil effect. Retardation coefficients have been calculated for uranium, thorium and radium. The aquifer is characterised by a double porosity, and the contribution of fracture and matrix porosity on the water/rock interaction processes has been estimated. (author)

  11. Considerations for Integrating Women into Closed Occupations in the U.S. Special Operations Forces

    Science.gov (United States)

    2015-05-01

    dysregulation can result in altered stress reactivity to subsequent life stressors and can be inherited by the next generation (Francis et al., 1999; Champagne ...of Management Reviews, Vol. 11, No. 2, 2009, pp. 223–246. Champagne , F. A., D. D. Francis, A. Mar, and M. J. Meaney, “Variations in Maternal Care in...Substance-Abusing Women,” Harvard Review of Psychiatry, Vol. 17, No. 2, 2009, pp. 103-119. Francis, D. D., F. A. Champagne , D. Liu, and M. J. Meaney

  12. Hereditary Neuropathies

    Science.gov (United States)

    ... calf muscles (having the appearance of an inverted champagne glass) or scoliosis (curvature of the spine). The ... calf muscles (having the appearance of an inverted champagne glass) or scoliosis (curvature of the spine). The ...

  13. Beyond Hangovers: Understanding Alcohol's Impact on Your Health

    Science.gov (United States)

    ... a villain. And what wedding concludes without a champagne toast? Alcohol is part of our culture—it ... and a waitress comes around with glasses of champagne. You drink one, then another, maybe even a ...

  14. Association between Champagne Bottle Neck Sign of Internal Carotid Artery and Ipsilateral Hemorrhagic Stroke in Patients with Moyamoya Disease.

    Science.gov (United States)

    Wang, Jian; Chen, Gong; Yang, Yongbo; Zhang, Bing; Jia, Zhongzhi; Gu, Peiyuan; Wei, Dong; Ji, Jing; Hu, Weixing; Zhao, Xihai

    2018-06-15

    To assess the association between champagne bottle neck sign (CBNS) in carotid artery and intracranial hemorrhage in patients with moyamoya disease (MMD). From January 2016 to December 2017, a total of 76 consecutive patients with MMD without definite risk factors associated intracranial hemorrhage who underwent preoperative angiography were included in this retrospective study. CBNS was defined as luminal diameter of internal carotid artery (ICA)/common carotid artery (CCA) ≤ 0.5 on angiographic imaging. The right and left cerebral hemisphere in each patient was separately identified as hemorrhagic and none-hemorrhagic. The association between CBNS and intracranial hemorrhage was analyzed. Of 76 MMD patients, intracranial hemorrhage was found in 44 (28.9%) hemispheres of 152 and 6.8% (3/44) had multiple events. Compared carotid arteries without intracranial hemorrhage in the ipsilateral hemispheres, those with intracranial hemorrhage in the ipsilateral hemispheres had significantly smaller luminal diameter ratio of ICA/CCA (0.49 ± 0.11 vs. 0.55 ± 0.12, p < 0.01) and higher prevalence of CBNS (63.7% vs. 41.7%, p = 0.01). For hemispheres with intracranial hemorrhage, those with ipsilateral carotid artery CBNS had significantly higher prevalence of hemorrhage at posterior territories than those without (57.1% vs. 23.1%, p=0.05). Logistic regression revealed that CBNS was significantly associated with ipsilateral intracranial hemorrhage before (OR, 2.45; 95% CI, 1.19-5.05; p=0.02) and after (OR, 3.43; 95% CI, 1.50-7.87; p<0.01) adjusted for female, lenticulostriate anastomosis, and choroidal anastomosis. CBNS is significantly associated with intracranial hemorrhage at ipsilateral hemisphere in MMD patients, particularly for intracranial hemorrhage at posterior territories. Copyright © 2018. Published by Elsevier Inc.

  15. Eye Injuries at Home

    Science.gov (United States)

    ... by the Numbers — Infographic Five Steps to Safer Champagne Celebrations Eye Injuries at Home Leer en Español: ... that can splatter hot grease or oil. Opening champagne bottles during a celebration. Drilling or hammering screws ...

  16. Functional approach to the problem of self-gravitating systems: Conditions of integrability

    International Nuclear Information System (INIS)

    Filippi, Simonetta; Ruffini, Remo; Sepulveda, Alonso

    2002-01-01

    Using a functional method based on the introduction of a velocity potential to solve the Euler, continuity and Poisson equations, a new analytic study of the equilibrium of self-gravitating rotating systems with a polytropic equation of state has permitted the formulation of the conditions of integrability. For the polytropic index n=1 in the incompressible case (∇·v(vector sign)=0), we are able to find the conditions for solving the problem of the equilibrium of polytropic self-gravitating systems that rotate and have nonuniform vorticity. This work contains the conditions which give analytic and quasi-analytic solutions for the equilibrium of polytropic stars and galactic systems in Newtonian gravity. In special cases, explicit analytic solutions are presented

  17. Air quality impact of a pair of 150 MW gas turbines pre-installation study on the Champagne-sur-Oise site

    Energy Technology Data Exchange (ETDEWEB)

    Daganaud, A

    1994-12-31

    In the framework of a project for the installation of two gas turbines at the CHAMPAGNE-SUR-OISE power plant, EDF-CNET (Centre National de l`Equipement Thermique) is required to submit an impact report, which includes the present contribution. The purpose of the study was to perform atmospheric dispersion calculations to assess the sulphur dioxide and nitrogen oxide ground concentration levels liable to be incurred by such installations under specified operating conditions. Using the Gaussian dispersion model MULTIPOL, numerical simulations were performed over a 10-year period, based on the chronological stations. The ``fallout`` calculations were performed with an hourly time step over a 1200 point grid covering a 40 x 40 km zone around the plant. The resulting pollution is expressed for each point in terms of annual mean concentrations and daily and hourly mean concentration distributions. Main results are presented as pollution maps, which can then be easily checked against current regulatory values. Two scenarios were simulated : year-long full power operation, which is a fictitious bounding case scenario, and operation about 12 hours per day on 20 to 25 days per year, during the coldest winter periods, which is the most probable scenario. Pollution liable to result from this type of installation was found to be extremely slight. At the most exposed points of the site, the mean SO{sub 2} and NO{sub 2} concentrations obtained for all operating days were only 3{mu}g/m{sup 3} and hourly peaks amounted at most to a few tens of {mu}g/m{sup 3}. Such values remain well below the stipulated limits for these pollutants and the future guide values determined by the European authorities. Increasing the existing very low background level by this specific amount should consequently raise no problems. (Author). 18 figs., 3 annexes., 12 refs.

  18. Six host range variants of the xenotropic/polytropic gammaretroviruses define determinants for entry in the XPR1 cell surface receptor

    Directory of Open Access Journals (Sweden)

    Kozak Christine A

    2009-10-01

    Full Text Available Abstract Background The evolutionary interactions between retroviruses and their receptors result in adaptive selection of restriction variants that can allow natural populations to evade retrovirus infection. The mouse xenotropic/polytropic (X/PMV gammaretroviruses rely on the XPR1 cell surface receptor for entry into host cells, and polymorphic variants of this receptor have been identified in different rodent species. Results We screened a panel of X/PMVs for infectivity on rodent cells carrying 6 different XPR1 receptor variants. The X/PMVs included 5 well-characterized laboratory and wild mouse virus isolates as well as a novel cytopathic XMV-related virus, termed Cz524, isolated from an Eastern European wild mouse-derived strain, and XMRV, a xenotropic-like virus isolated from human prostate cancer. The 7 viruses define 6 distinct tropisms. Cz524 and another wild mouse isolate, CasE#1, have unique species tropisms. Among the PMVs, one Friend isolate is restricted by rat cells. Among the XMVs, two isolates, XMRV and AKR6, differ from other XMVs in their PMV-like restriction in hamster cells. We generated a set of Xpr1 mutants and chimeras, and identified critical amino acids in two extracellular loops (ECLs that mediate entry of these different viruses, including 3 residues in ECL3 that are involved in PMV entry (E500, T507, and V508 and can also influence infectivity by AKR6 and Cz524. Conclusion We used a set of natural variants and mutants of Xpr1 to define 6 distinct host range variants among naturally occurring X/PMVs (2 XMV variants, 2 PMVs, 2 different wild mouse variants. We identified critical amino acids in XPR1 that mediate entry of these viruses. These gammaretroviruses and their XPR1 receptor are thus highly functionally polymorphic, a consequence of the evolutionary pressures that favor both host resistance and virus escape mutants. This variation accounts for multiple naturally occurring virus resistance phenotypes and

  19. Explosively Bonded Gun Tube Liner Development

    Science.gov (United States)

    2015-04-01

    the particles are not heated significantly, thus their properties are not changed during the process. For a more thorough discussion, see Champagne .17...MD): Army Research Laboratory (US); 2006 Sep. Report No.: ARL-TR-3889. 17. Champagne V, editor. The cold spray materials deposition process

  20. Collecting Unsolicited User-Generated Change Requests

    Science.gov (United States)

    2015-12-01

    change requests, although the core principles of the steps apply equally to non- software change requests ( Champagne and April, 2014:pp 6-9). The...Capabilities Integration and Development System (JCIDS). JCIDS Manual. Washington: CJCS, 12 February 2015. Champagne , Roger and Alain April. “Software

  1. Alcohol Calorie Calculator

    Science.gov (United States)

    ... 4 80 Red Wine Dry White 4 75 Dry white wine Sweet 4 105 Sweet Wine Sherry 2 75 Sherry Wine Port 2 90 Port Wine Champagne 4 84 champagne Vermouth, sweet 3 140 vermouth, sweet Vermouth, dry 3 105 vermouth, dry Cocktails Martini 3.5 ...

  2. Collaborative Research to Optimize Warfighter Nutrition (CROWN)

    Science.gov (United States)

    2014-09-01

    10.1002/oby.20075. PMID: 23592679 2. Margolis LM, Rood J, Champagne C, Young AJ, Castellani JW. Energy balance and body composition during US Army... Champagne , C., Carpentieri, D. M., Cummings, C. M., Young, A. J., Montain, S. J., & Scisco, J. L. (2014, November). Using an environmental

  3. On the Physics of Fizziness: How liquid properties control bursting bubble aerosol production?

    Science.gov (United States)

    Ghabache, Elisabeth; Antkowiak, Arnaud; Josserand, Christophe; Seon, Thomas

    2014-11-01

    Either in a champagne glass or at the oceanic scales, the tiny capillary bubbles rising at the surface burst in ejecting myriads of droplets. Focusing on the ejected droplets produced by a single bubble, we investigate experimentally how liquid properties and bubble size affect their characteristics: number, ejection velocities, sizes and ejection heights. These results allow us to finely tune the bursting bubble aerosol production. In the context of champagne industry, aerosols play a major role by spreading wine aroma above the glass. We demonstrate that this champagne fizz can be enhanced by selecting the wine viscosity and the bubble size, thanks to specially designed glass.

  4. Initiative régionale de recherche visant à lutter contre le tabagisme ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Institution. Instituto de Ciencia y Tecnologia Regional. Pays d' institution. Argentine. Site internet. http://www.icter.com.ar. Chargé(e) de projet. Beatriz Marcet Champagne. Chargé(e) de projet. Beatriz Marcet Champagne. Institution. Interamerican Heart Foundation, Inc. Pays d' institution. États-Unis d'Amérique. Site internet.

  5. Mobilization of endogenous retroviruses in mice after infection with an exogenous retrovirus.

    Science.gov (United States)

    Evans, Leonard H; Alamgir, A S M; Owens, Nick; Weber, Nick; Virtaneva, Kimmo; Barbian, Kent; Babar, Amenah; Malik, Frank; Rosenke, Kyle

    2009-03-01

    Mammalian genomes harbor a large number of retroviral elements acquired as germ line insertions during evolution. Although many of the endogenous retroviruses are defective, several contain one or more intact viral genes that are expressed under certain physiological or pathological conditions. This is true of the endogenous polytropic retroviruses that generate recombinant polytropic murine leukemia viruses (MuLVs). In these recombinants the env gene sequences of exogenous ecotropic MuLVs are replaced with env gene sequences from an endogenous polytropic retrovirus. Although replication-competent endogenous polytropic retroviruses have not been observed, the recombinant polytropic viruses are capable of replicating in numerous species. Recombination occurs during reverse transcription of a virion RNA heterodimer comprised of an RNA transcript from an endogenous polytropic virus and an RNA transcript from an exogenous ecotropic MuLV RNA. It is possible that homodimers corresponding to two full-length endogenous RNA genomes are also packaged. Thus, infection by an exogenous virus may result not only in recombination with endogenous sequences, but also in the mobilization of complete endogenous retrovirus genomes via pseudotyping within exogenous retroviral virions. We report that the infection of mice with an ecotropic virus results in pseudotyping of intact endogenous viruses that have not undergone recombination. The endogenous retroviruses infect and are integrated into target cell genomes and subsequently replicate and spread as pseudotyped viruses. The mobilization of endogenous retroviruses upon infection with an exogenous retrovirus may represent a major interaction of exogenous retroviruses with endogenous retroviruses and may have profound effects on the pathogenicity of retroviral infections.

  6. Nonequilibrium process of self-gravitating N-body systems and quasi-equilibrium structure using normalized q-expectation values for Tsallis' generalized entropy

    International Nuclear Information System (INIS)

    Komatsu, Nobuyoshi; Kiwata, Takahiro; Kimura, Shigeo

    2010-01-01

    To clarify the nonequilibrium processes of self-gravitating systems, we examine a system enclosed in a spherical container with reflecting walls, by N-body simulations. To simulate nonequilibrium processes, we consider loss of energy through the reflecting wall, i.e., a particle reflected at a non-adiabatic wall is cooled to mimic energy loss. We also consider quasi-equilibrium structures of stellar polytropes to compare with the nonequilibrium process, where the quasi-equilibrium structure is obtained from an extremum-state of Tsallis' entropy. Consequently, we numerically show that, with increasing cooling rates, the dependence of the temperature on energy, i.e., the ε-T curve, varies from that of microcanonical ensembles (or isothermal spheres) to a common curve. The common curve appearing in the nonequilibrium process agrees well with an ε-T curve for a quasi-equilibrium structure of the stellar polytrope, especially for the polytrope index n ∼ 5. In fact, for n > 5, the stellar polytrope within an adiabatic wall exhibits gravothermal instability [Taruya, Sakagami, Physica A, 322 (2003) 285]. The present study indicates that the stellar polytrope with n ∼ 5 likely plays an important role in quasi-attractors of the nonequilibrium process in self-gravitating systems with non-adiabatic walls.

  7. Endogenous retroviruses mobilized during friend murine leukemia virus infection.

    Science.gov (United States)

    Boi, Stefano; Rosenke, Kyle; Hansen, Ethan; Hendrick, Duncan; Malik, Frank; Evans, Leonard H

    2016-12-01

    We have demonstrated in a mouse model that infection with a retrovirus can lead not only to the generation of recombinants between exogenous and endogenous gammaretrovirus, but also to the mobilization of endogenous proviruses by pseudotyping entire polytropic proviral transcripts and facilitating their infectious spread to new cells. However, the frequency of this occurrence, the kinetics, and the identity of mobilized endogenous proviruses was unclear. Here we find that these mobilized transcripts are detected after only one day of infection. They predominate over recombinant polytropic viruses early in infection, persist throughout the course of disease and are comprised of multiple different polytropic proviruses. Other endogenous retroviral elements such as intracisternal A particles (IAPs) were not detected. The integration of the endogenous transcripts into new cells could result in loss of transcriptional control and elevated expression which may facilitate pathogenesis, perhaps by contributing to the generation of polytropic recombinant viruses. Published by Elsevier Inc.

  8. Perturbation theory in Lagrangian hydrodynamics for a cosmological fluid with velocity dispersion

    International Nuclear Information System (INIS)

    Tatekawa, Takayuki; Suda, Momoko; Maeda, Kei-ichi; Morita, Masaaki; Anzai, Hiroki

    2002-01-01

    We extensively develop a perturbation theory for nonlinear cosmological dynamics, based on the Lagrangian description of hydrodynamics. We solve the hydrodynamic equations for a self-gravitating fluid with pressure, given by a polytropic equation of state, using a perturbation method up to second order. This perturbative approach is an extension of the usual Lagrangian perturbation theory for a pressureless fluid, in view of the inclusion of the pressure effect, which should be taken into account on the occurrence of velocity dispersion. We obtain the first-order solutions in generic background universes and the second-order solutions in a wider range of a polytropic index, whereas our previous work gives the first-order solutions only in the Einstein-de Sitter background and the second-order solutions for the polytropic index 4/3. Using the perturbation solutions, we present illustrative examples of our formulation in one- and two-dimensional systems, and discuss how the evolution of inhomogeneities changes for the variation of the polytropic index

  9. Characteristics of transonic spherical symmetric accretion flow in Schwarzschild-de Sitter and Schwarzschild anti-de Sitter backgrounds, in pseudo-general relativistic paradigm

    Science.gov (United States)

    Ghosh, Shubhrangshu; Banik, Prabir

    2015-07-01

    In this paper, we present a complete work on steady state spherically symmetric Bondi type accretion flow in the presence of cosmological constant (Λ) in both Schwarzschild-de Sitter (SDS) and Schwarzschild anti-de Sitter (SADS) backgrounds considering an isolated supermassive black hole (SMBH), with the inclusion of a simple radiative transfer scheme, in the pseudo-general relativistic paradigm. We do an extensive analysis on the transonic behavior of the Bondi type accretion flow onto the cosmological BHs including a complete analysis of the global parameter space and the stability of flow, and do a complete study of the global family of solutions for a generic polytropic flow. Bondi type accretion flow in SADS background renders multiplicity in its transonic behavior with inner "saddle" type and outer "center" type sonic points, with the transonic solutions forming closed loops or contours. There is always a limiting value for ∣Λ∣ up to which we obtain valid stationary transonic solutions, which correspond to both SDS and SADS geometries; this limiting value moderately increases with the increasing radiative efficiency of the flow, especially correspond to Bondi type accretion flow in SADS background. Repulsive Λ suppresses the Bondi accretion rate by an order of magnitude for relativistic Bondi type accretion flow for a certain range in temperature, and with a marginal increase in the Bondi accretion rate if the corresponding accretion flow occurs in SADS background. However, for a strongly radiative Bondi type accretion flow with high mass accretion rate, the presence of cosmological constant do not much influence the corresponding Bondi accretion rate of the flow. Our analysis show that the relic cosmological constant has a substantial effect on Bondi type accretion flow onto isolated SMBHs and their transonic solutions beyond length-scale of kiloparsecs, especially if the Bondi type accretion occurs onto the host supergiant ellipticals or central

  10. "Atmospheric Measurements by Ultra-Light SpEctrometer" (AMULSE) dedicated to vertical profile measurements of greenhouse gases (CO2, CH4) under stratospheric balloons: instrumental development and field application.

    Science.gov (United States)

    Maamary, Rabih; Joly, Lilian; Decarpenterie, Thomas; Cousin, Julien; Dumelié, Nicolas; Grouiez, Bruno; Albora, Grégory; Chauvin, Nicolas; Miftah-El-Khair, Zineb; Legain, Dominique; Tzanos, Diane; Barrié, Joel; Moulin, Eric; Ramonet, Michel; Bréon, François-Marie; Durry, Georges

    2016-04-01

    Human activities disrupt natural biogeochemical cycles such as the carbon and contribute to an increase in the concentrations of the greenhouse gases (carbone dioxide and methane) in the atmosphere. The current atmospheric transport modeling (the vertical trade) still represents an important source of uncertainty in the determination of regional flows of greenhouse gases, which means that a good knowledge of the vertical distribution of CO2 is necessary to (1) make the link between the ground measurements and spatial measurements that consider an integrated concentration over the entire column of the atmosphere, (2) validate and if possible improve CO2 transport model to make the link between surface emissions and observed concentration. The aim of this work is to develop a lightweight instrument (based on mid-infrared laser spectrometry principles) for in-situ measuring at high temporal/spatial resolution (5 Hz) the vertical profiles of the CO2 and the CH4 using balloons (meteorological and BSO at high precision levels (costs and logistics flights. These laser spectrometers are built on recent instrumental developments. Several flights were successfully done in the region Champagne-Ardenne and in Canada recently. Aknowledgments: The authors acknowledge financial supports from CNES, CNRS défi instrumental and the region Champagne-Ardenne.

  11. Alternative thermodynamic cycle for the Stirling machine

    Science.gov (United States)

    Romanelli, Alejandro

    2017-12-01

    We develop an alternative thermodynamic cycle for the Stirling machine, where the polytropic process plays a central role. Analytical expressions for pressure and temperatures of the working gas are obtained as a function of the volume and the parameter that characterizes the polytropic process. This approach achieves closer agreement with the experimental pressure-volume diagram and can be adapted to any type of Stirling engine.

  12. The fundamentals of stellar astrophysics

    International Nuclear Information System (INIS)

    Collins, G.W. II.

    1989-01-01

    A broad overview of theoretical stellar astrophysics is presented in a textbook intended for graduate students. Chapters are devoted to fundamental principles, assumptions, theorems, and polytropes; energy sources and sinks; the flow of energy through the star and the construction of stellar models; the theory of stellar evolution; relativistic stellar structure; the structure of distorted stars; stellar pulsation and oscillation. Also discussed are the flow of radiation through the stellar atmosphere, the solution of the radiative-transfer equation, the environment of the radiation field, the construction of a stellar model atmosphere, the formation and shape of spectral lines, LTE breakdown, illuminated and extended stellar atmospheres, and the transfer of polarized radiation. Diagrams, graphs, and sample problems are provided. 164 refs

  13. The speed of sound in a gas–vapour bubbly liquid

    Science.gov (United States)

    Prosperetti, Andrea

    2015-01-01

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model. PMID:26442146

  14. The speed of sound in a gas-vapour bubbly liquid.

    Science.gov (United States)

    Prosperetti, Andrea

    2015-10-06

    In addition to the vapour of the liquid, bubbles in cavitating flows usually contain also a certain amount of permanent gas that diffuses out of the liquid as they grow. This paper presents a simplified linear model for the propagation of monochromatic pressure waves in a bubbly liquid with these characteristics. Phase change effects are included in detail, while the gas is assumed to follow a polytropic law. It is shown that even a small amount of permanent gas can have a major effect on the behaviour of the system. Particular attention is paid to the low-frequency range, which is of special concern in flow cavitation. Numerical results for water and liquid oxygen illustrate the implications of the model.

  15. Study of charged stellar structures in f(R, T) gravity

    Science.gov (United States)

    Sharif, M.; Siddiqa, Aisha

    2017-12-01

    This paper explores charged stellar structures whose pressure and density are related through polytropic equation of state ( p=ωρ^{σ}; ω is polytropic constant, p is pressure, ρ denotes density and σ is polytropic exponent) in the scenario of f(R,T) gravity (where R is the Ricci scalar and T is the trace of energy-momentum tensor). The Einstein-Maxwell field equations are solved together with the hydrostatic equilibrium equation for f(R,T)=R+2λ T where λ is the coupling constant, also called model parameter. We discuss different features of such configurations (like pressure, mass and charge) using graphical behavior for two values of σ. It is found that the effects of model parameter λ on different quantities remain the same for both cases. The energy conditions are satisfied and stellar configurations are stable in each case.

  16. The Guderley problem revisited

    International Nuclear Information System (INIS)

    Ramsey, Scott D.; Kamm, James R.; Bolstad, John H.

    2009-01-01

    The self-similar converging-diverging shock wave problem introduced by Guderley in 1942 has been the source of numerous investigations since its publication. In this paper, we review the simplifications and group invariance properties that lead to a self-similar formulation of this problem from the compressible flow equations for a polytropic gas. The complete solution to the self-similar problem reduces to two coupled nonlinear eigenvalue problems: the eigenvalue of the first is the so-called similarity exponent for the converging flow, and that of the second is a trajectory multiplier for the diverging regime. We provide a clear exposition concerning the reflected shock configuration. Additionally, we introduce a new approximation for the similarity exponent, which we compare with other estimates and numerically computed values. Lastly, we use the Guderley problem as the basis of a quantitative verification analysis of a cell-centered, finite volume, Eulerian compressible flow algorithm.

  17. Secular stability of rotating stars

    International Nuclear Information System (INIS)

    Imamura, J.N.; Friedman, J.L.; Durisen, R.H.

    1984-01-01

    In this work, the authors calculate the secular stability limits of rotating polytropes to nonaxisymmetric perturbations of low m. Polytropic indices ranging from 1 to 3 and several angular momentum distributions are considered. Results are most conveniently presented in terms of the t-parameter, defined as the ratio of the rotational kinetic energy to the absolute value of the gravitational energy of the fluid. Previous work on polytropes considered only the m = 2 mode, which is unstable for values of the t-parameter greater than 0.14 +- 0.01 for the n values n = 1.5 and 3 and the angular momentum distributions tested (see Durisen and Imamura 1981). The GRR secular stability limit of the m - 2 mode for the Maclaurin spheroids (n = 0) was determined by Chandrasekhar (1970). GRR stability limits of higher m modes for the Maclaurin spheroids were located approximately by Comins (1979a,b) and more precisely by Friedman (1983). 16 references, 2 tables

  18. Secular stability of rotating stars

    International Nuclear Information System (INIS)

    Imamura, J.N.; Friedman, J.L.; Durisen, R.H.

    1984-01-01

    In this work, we calculate the secular stability limits of rotating polytropes to nonaxisymmetric perturbations of low m. We consider polytropic indices ranging from 1 to 3 and several angular momentum distributions. Results are most conveniently presented in terms of the t-parameter, defined as the ratio of the rotational kinetic energy to the absolute value of the gravitational energy of the fluid. Previous work on polytropes considered only the m = 2 mode, which is unstable for values of the t-parameter greater than 0.14 +- 0.01 for the n values n = 1.5 and 3 and the angular momentum distributions tested (see Durisen and Imamura 1981). The GRR secular stability limit of the m = 2 mode for the Maclaurin spheroids (n = O) was determined by Chandrasekhar (1970). GRR stability limits of higher m modes for the Maclaurin spheroids were located approximately by Comins (1979a,b) and more precisely by Friedman (1983)

  19. Accretion onto a charged higher-dimensional black hole

    International Nuclear Information System (INIS)

    Sharif, M.; Iftikhar, Sehrish

    2016-01-01

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  20. Accretion onto a charged higher-dimensional black hole

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Iftikhar, Sehrish [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-03-15

    This paper deals with the steady-state polytropic fluid accretion onto a higher-dimensional Reissner-Nordstroem black hole. We formulate the generalized mass flux conservation equation, energy flux conservation and relativistic Bernoulli equation to discuss the accretion process. The critical accretion is investigated by finding the critical radius, the critical sound velocity, and the critical flow velocity. We also explore gas compression and temperature profiles to analyze the asymptotic behavior. It is found that the results for the Schwarzschild black hole are recovered when q = 0 in four dimensions. We conclude that the accretion process in higher dimensions becomes slower in the presence of charge. (orig.)

  1. Accretion onto a noncommutative geometry inspired black hole

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Ghosh, Sushant G. [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Jamia Millia Islamia, Multidisciplinary Centre for Advanced Research and Studies (MCARS), New Delhi (India); University of KwaZulu-Natal, Astrophysics and Cosmology Research Unit, School of Mathematics, Statistics and Computer Science, Durban (South Africa)

    2017-09-15

    The spherically symmetric accretion onto a noncommutative (NC) inspired Schwarzschild black hole is treated for a polytropic fluid. The critical accretion rate M, sonic speed a{sub s} and other flow parameters are generalized for the NC inspired static black hole and compared with the results obtained for the standard Schwarzschild black holes. Also explicit expressions for gas compression ratios and temperature profiles below the accretion radius and at the event horizon are derived. This analysis is a generalization of Michel's solution to the NC geometry. Owing to the NC corrected black hole, the accretion flow parameters also have been modified. It turns out that M ∼ M{sup 2} is still achievable but r{sub s} seems to be substantially decreased due to the NC effects. They in turn do affect the accretion process. (orig.)

  2. Isothermality of the gas in the Coma cluster

    International Nuclear Information System (INIS)

    Hughes, J.P.; Yamashita, K.; Okumura, Y.; Tsunemi, H.; Matsuoka, M.

    1988-01-01

    The high-quality X-ray spectrum of the Coma cluster observed by the Japanese satelite Tenma in conjunction with imaging data from the Einstein Observatory was used to explore the temperature distribution of the cluster gas. It is found that pure polytropic models are inadequate to describe this temperature distribution. Instead, a hybrid model is proposed consisting of a central isothermal region surrounded by a polytropic distribution. It is shown that as much as 75 percent of the global emission may come from the isothermal component. 30 references

  3. Riemann solvers for multi-component gas mixtures with temperature dependent heat capacities

    International Nuclear Information System (INIS)

    Beccantini, A.

    2001-01-01

    This thesis represents a contribution to the development of upwind splitting schemes for the Euler equations for ideal gaseous mixtures and their investigation in computing multidimensional flows in irregular geometries. In the preliminary part we develop and investigate the parameterization of the shock and rarefaction curves in the phase space. Then, we apply them to perform some field-by-field decompositions of the Riemann problem: the entropy-respecting one, the one which supposes that genuinely-non-linear (GNL) waves are both shocks (shock-shock one) and the one which supposes that GNL waves are both rarefactions (rarefaction-rarefaction one). We emphasize that their analysis is fundamental in Riemann solvers developing: the simpler the field-by-field decomposition, the simpler the Riemann solver based on it. As the specific heat capacities of the gases depend on the temperature, the shock-shock field-by-field decomposition is the easiest to perform. Then, in the second part of the thesis, we develop an upwind splitting scheme based on such decomposition. Afterwards, we investigate its robustness, precision and CPU-time consumption, with respect to some of the most popular upwind splitting schemes for polytropic/non-polytropic ideal gases. 1-D test-cases show that this scheme is both precise (exact capturing of stationary shock and stationary contact) and robust in dealing with strong shock and rarefaction waves. Multidimensional test-cases show that it suffers from some of the typical deficiencies which affect the upwind splitting schemes capable of exact capturing stationary contact discontinuities i.e the developing of non-physical instabilities in computing strong shock waves. In the final part, we use the high-order multidimensional solver here developed to compute fully-developed detonation flows. (author)

  4. Riemann solvers for multi-component gas mixtures with temperature dependent heat capacities; Solveurs de riemann pour des melanges de gaz parfaits avec capacites calorifiques dependant de la temperature

    Energy Technology Data Exchange (ETDEWEB)

    Beccantini, A

    2001-07-01

    This thesis represents a contribution to the development of upwind splitting schemes for the Euler equations for ideal gaseous mixtures and their investigation in computing multidimensional flows in irregular geometries. In the preliminary part we develop and investigate the parameterization of the shock and rarefaction curves in the phase space. Then, we apply them to perform some field-by-field decompositions of the Riemann problem: the entropy-respecting one, the one which supposes that genuinely-non-linear (GNL) waves are both shocks (shock-shock one) and the one which supposes that GNL waves are both rarefactions (rarefaction-rarefaction one). We emphasize that their analysis is fundamental in Riemann solvers developing: the simpler the field-by-field decomposition, the simpler the Riemann solver based on it. As the specific heat capacities of the gases depend on the temperature, the shock-shock field-by-field decomposition is the easiest to perform. Then, in the second part of the thesis, we develop an upwind splitting scheme based on such decomposition. Afterwards, we investigate its robustness, precision and CPU-time consumption, with respect to some of the most popular upwind splitting schemes for polytropic/non-polytropic ideal gases. 1-D test-cases show that this scheme is both precise (exact capturing of stationary shock and stationary contact) and robust in dealing with strong shock and rarefaction waves. Multidimensional test-cases show that it suffers from some of the typical deficiencies which affect the upwind splitting schemes capable of exact capturing stationary contact discontinuities i.e the developing of non-physical instabilities in computing strong shock waves. In the final part, we use the high-order multidimensional solver here developed to compute fully-developed detonation flows. (author)

  5. Studies of the impact of gas turbines in the Paris region

    Energy Technology Data Exchange (ETDEWEB)

    Millancourt, B

    1993-02-01

    Studies of the impact of gas turbines in the Paris region: Assessment of the current air quality on the Vitry/Seine, Vaires/Marne and Champagne/Oise sites. Environmental impact assessments concerning gas turbines must include an air quality evaluation of the sites used as reference state (`zero point`). The criteria selected are based on terms covered by the regulations in force, i.e., firstly: - the annual mean and median (for SO{sub 2}); - the frequency with which the limit is exceeded during one year (for SO{sub 2} and NO{sub 2}) and, secondly, the characteristics of pollution peaks which could occur during periods in which the gas turbines are in operation: the amplitude of hourly peaks and the times at which these peaks occur. These factors were determined, when available files contained adequate information, for the three potential sites at Vitry, Vaires and Champagne/Oise using data from three multi-parameter stations in the AIRPARIF network (Creteil, Vitry/Seine and Champs/Marne) and that from the ``strong acidity`` network used to monitor the atmosphere around the Champagne/Oise power plant. (author). 6 annexes. tabs.

  6. Gasdynamics of H II regions. V. The interaction of weak R ionization fronts with dense clouds

    Energy Technology Data Exchange (ETDEWEB)

    Tenorio-Tagle, G; Bedijn, P J

    1981-06-01

    The interaction of weak R-type ionization fronts with a density enhancement is calculated numerically as a function of time within the framework of the champagne model of the evolution of H II regions. Calculations are performed under the assumption of plane-parallel geometry for various relative densities of the cloud in which the exciting star is formed and a second cloud with which an ionization front from the first cloud interacts. The supersonic ionization front representing the outer boundary of an H II region experiencing the champagne phase is found to either evolve into a D-type front or remain of type R, depending on the absolute number of photons leaving the H II region that undergoes the champagne phase. Recombinations in the ionized gas eventually slow the ionization front, however photon fluxes allow it to speed up again, resulting in oscillatory propagation of the front. Front-cloud interactions are also shown to lead to the development of a backward-facing shock, a forward-facing shock, and a density maximum in the ionized gas. The results can be used to explain the origin of bright rims in H II regions.

  7. Champagne og naiv dekadence

    DEFF Research Database (Denmark)

    Bjerre, Thomas Ærvold

    2007-01-01

    Portrætartikel om den amerikanske forfatter F. Scott Fitzgerald i anledningen af den danske udgivelse af De smukke og fortabte. Udgivelsesdato: 24. august......Portrætartikel om den amerikanske forfatter F. Scott Fitzgerald i anledningen af den danske udgivelse af De smukke og fortabte. Udgivelsesdato: 24. august...

  8. Ion heating and energy partition at the heliospheric termination shock: hybrid simulations and analytical model

    Energy Technology Data Exchange (ETDEWEB)

    Gary, S Peter [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory; Wu, Pin [BOSTON UNIV.; Schwadron, N A [BOSTON UNIV.; Lee, M [UNIV OF NEW HAMPSHIRE

    2009-01-01

    The Los Alamos hybrid simulation code is used to examine heating and the partition of dissipation energy at the perpendicular heliospheric termination shock in the presence of pickup ions. The simulations are one-dimensional in space but three-dimensional in field and velocity components, and are carried out for a range of values of pickup ion relative density. Results from the simulations show that because the solar wind ions are relatively cold upstream, the temperature of these ions is raised by a relatively larger factor than the temperature of the pickup ions. An analytic model for energy partition is developed on the basis of the Rankine-Hugoniot relations and a polytropic energy equation. The polytropic index {gamma} used in the Rankine-Hugoniot relations is varied to improve agreement between the model and the simulations concerning the fraction of downstream heating in the pickup ions as well as the compression ratio at the shock. When the pickup ion density is less than 20%, the polytropic index is about 5/3, whereas for pickup ion densities greater than 20%, the polytropic index tends toward 2.2, suggesting a fundamental change in the character of the shock, as seen in the simulations, when the pickup ion density is large. The model and the simulations both indicate for the upstream parameters chosen for Voyager 2 conditions that the pickup ion density is about 25% and the pickup ions gain the larger share (approximately 90%) of the downstream thermal pressure, consistent with Voyager 2 observations near the shock.

  9. An Exact, Compressible One-Dimensional Riemann Solver for General, Convex Equations of State

    Energy Technology Data Exchange (ETDEWEB)

    Kamm, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-03-05

    This note describes an algorithm with which to compute numerical solutions to the one- dimensional, Cartesian Riemann problem for compressible flow with general, convex equations of state. While high-level descriptions of this approach are to be found in the literature, this note contains most of the necessary details required to write software for this problem. This explanation corresponds to the approach used in the source code that evaluates solutions for the 1D, Cartesian Riemann problem with a JWL equation of state in the ExactPack package [16, 29]. Numerical examples are given with the proposed computational approach for a polytropic equation of state and for the JWL equation of state.

  10. Standing shocks in adiabatic black hole accretion of rotating matter

    International Nuclear Information System (INIS)

    Abramowicz, M.A.; Chakrabarti, S.K.

    1988-08-01

    We present all the solutions for stationary, axially symmetric, transonic, adiabatic flows with polytropic, rotating fluid configurations of small transverse thickness, in an arbitrarily chosen potential. Special attention is paid to the formation of the standing shocks in the case of black hole accretion and winds. We point out the possibility of three types of shocks depending upon three extreme physical conditions at the shocks. These are: Rankine-Hugoniot shocks, isentropic compression waves, and isothermal shocks. We write down the shock conditions for these three cases and discuss briefly the physical situations under which these shocks may form. A complete discussion on the properties of these shocks will be presented elsewhere. (author). 21 refs, 4 figs

  11. [S IV] IN THE NGC 5253 SUPERNEBULA: IONIZED GAS KINEMATICS AT HIGH RESOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    Beck, Sara C. [Department of Physics and Astronomy, Tel Aviv University, Ramat Aviv (Israel); Lacy, John H. [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Turner, Jean L. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095-1547 (United States); Kruger, Andrew; Richter, Matt [Department of Physics, University of California at Davis, Davis, CA 95616 (United States); Crosthwaite, Lucian P., E-mail: sara@wise.tau.ac.il [Northrop Grumman Aerospace Systems, San Diego, CA 92127 (United States)

    2012-08-10

    The nearby dwarf starburst galaxy NGC 5253 hosts a deeply embedded radio-infrared supernebula excited by thousands of O stars. We have observed this source in the 10.5 {mu}m line of S{sup +3} at 3.8 km s{sup -1} spectral and 1.''4 spatial resolution, using the high-resolution spectrometer TEXES on the IRTF. The line profile cannot be fit well by a single Gaussian. The best simple fit describes the gas with two Gaussians, one near the galactic velocity with FWHM 33.6 km s{sup -1} and another of similar strength and FWHM 94 km s{sup -1} centered {approx}20 km s{sup -1} to the blue. This suggests a model for the supernebula in which gas flows toward us out of the molecular cloud, as in a 'blister' or 'champagne flow' or in the H II regions modelled by Zhu.

  12. Modeling and Simulation of the Hydrogenation of α-Methylstyrene on Catalytically Active Metal Foams as Tubular Reactor Packing

    Directory of Open Access Journals (Sweden)

    Farzad Lali

    2016-01-01

    Full Text Available This work presents a one-dimensional reactor model for a tubular reactor packed with a catalytically active foam packing with a pore density of 30 PPI in cocurrent upward flow in the example of hydrogenation reaction of α-methylstyrene to cumene. This model includes material, enthalpy, and momentum balances as well as continuity equations. The model was solved within the parameter space applied for experimental studies under assumption of a bubbly flow. The method of orthogonal collocation on finite elements was applied. For isothermal and polytropic processes and steady state conditions, axial profiles for concentration, temperature, fluid velocities, pressure, and liquid holdup were computed and the conversions for various gas and liquid flow rates were validated with experimental results. The obtained results were also compared in terms of space time yield and catalytic activity with experimental results and stirred tank and also with random packed bed reactor. The comparison shows that the application of solid foams as reactor packing is advantageous compared to the monolithic honeycombs and random packed beds.

  13. Characterization of initiation and detonation by Lagrange gage techniques. Final report

    International Nuclear Information System (INIS)

    Cowperthwaite, M.

    1983-08-01

    The work on reactive flow Lagrange analysis (RFLA) was concerned with Lagrange particle velocity histories that exhibit double maxima similar to those recorded in RX26 and PBX9404. Conditions for particle velocity histories to exhibit extrema were formulated in terms of envelopes formed by Lagrange pressure histories. Lagrange analysis of the flow produced by the expansion of a detonation wave at a free surface was proposed to extend the determination of the release adiabat of detonation products from the Chapman-Jouguet (CJ) state to zero pressure. Solutions were constructed for steady-state nonideal detonation waves propagating in polytropic explosive with two reacting components. Overdriven detonation was treated both as a reactive discontinuity and as a Zeldovich-von Neumann-Doering (ZND) wave. The Rankine-Hugoniot (RH) jump conditions were used to calculate the first and second derivatives on the detonation velocity versus particle velocity Hugoniot at the CJ point. Methods of differential geometry were used to determine the conditions that allow the flow equations and RH boundary conditions to admit similarity solutions for overdriven detonation waves

  14. Adjustment of nitrogen fertilization to the needs of plants and limitations posed by the risk of nitrate accumulation and pollution of the soil and subsoil

    Energy Technology Data Exchange (ETDEWEB)

    Muller, J C

    1980-01-01

    In chalky Champagne, nitrogen balance is study to adjust availability to plant response. For this, it is necessary to know some parameters whose measurement is obtained progressively; plants exportation, nitrogen transformations in terms of transport processes in soil system, kinetic of mineralization of soil organic nitrogen, plants residus and agricultural waste waters. Lysimeters with rotation of Champagne (wheat, sugarbeet, potatoes...) are used to measure losses of nitrogen and follow transport of nitrates by mean of soil solution captors. Comparisons with field results, lysimeters results and laboratory experimentations are used to adjust an experimental model. Two examples show: 1) Nitrogen fertilizer requirement for wheat. 2) Possibility of maximum application for agricultural waste waters.

  15. Cosmic-ray-modified stellar winds. III. A numerical iterative approach

    International Nuclear Information System (INIS)

    Ko, C.M.; Jokipii, J.R.; Webb, G.M.

    1988-01-01

    A numerical iterative method is used to determine the modification of a stellar wind flow with a termination shock by the galactic cosmic rays. A two-fluid model consisting of cosmic rays and thermal stellar wind gas is used in which the cosmic rays are coupled to the background flow via scattering with magnetohydrodynamic waves or irregularities. A polytropic model is used to describe the thermal stellar wind gas, and the cosmic-rays are modeled as a hot, low-density gas with negligible mass flux. The positive galactic cosmic-ray pressure gradient serves to brake the outflowing stellar wind gas, and the cosmic rays modify the location of the critical point of the wind, the location of the shock, the wind fluid velocity profile, and the thermal gas entropy constants on both sides of the shock. The transfer of energy to the cosmic rays results in an outward radial flux of cosmic-ray energy. 21 references

  16. Protoearth mass shedding and the origin of the moon

    Science.gov (United States)

    Boss, A. P.

    1986-01-01

    Darwin's (1980) theory of lunar formation from the earth by means of a rotationally driven dynamic fission instability is presently considered in view of viscous shear's maintenance of solid body rotation throughout the protoearth's accretion phase. Assuming the appropriateness of a polytropic account of the protoearth, it is unlikely that dynamic fission could have occurred; instantaneous spin-up following a giant impact would instead have led to mass shedding. The dynamical phenomenon of mass shedding is here explored on the basis of numerical models for a self-gravitating, axisymmetric, polytropic and dissipative protoearth. It is concluded that mass shedding from the protoearth mantle after a giant impact and explosion could have contributed substantial matter to a lunar disk.

  17. The role of the dynamic pressure in stationary heat conduction of a rarefied polyatomic gas

    Energy Technology Data Exchange (ETDEWEB)

    Arima, Takashi, E-mail: arima@kanagawa-u.ac.jp [Department of Mechanical Engineering, Faculty of Engineering, Kanagawa University, Yokohama 221-8686 (Japan); Barbera, Elvira, E-mail: ebarbera@unime.it [Department of Mathematics and Computer Science, University of Messina, V.le F. D' Alcontres 31, 98166 Messina (Italy); Brini, Francesca, E-mail: francesca.brini@unibo.it [Department of Mathematics, University of Bologna, via Saragozza 8, 40123 Bologna (Italy); Sugiyama, Masaru, E-mail: sugiyama@nitech.ac.jp [Graduate School of Engineering, Nagoya Institute of Technology, Nagoya 466-8555 (Japan)

    2014-07-18

    The effect of the dynamic pressure (non-equilibrium pressure) on stationary heat conduction in a rarefied polyatomic gas at rest is elucidated by the theory of extended thermodynamics. It is shown that this effect is observable in a non-polytropic gas. Numerical studies are presented for a para-hydrogen gas as a typical example. - Highlights: • Heat transfer problem in polyatomic rarefied gases is studied in different domains. • Non-zero dynamic pressure is predicted in non-polytropic gases. • The effect of dynamic pressure can be observed indirectly in an experiment. • The case of para-hydrogen is analyzed as an example. • Navier–Stokes, Fourier, and Extended Thermodynamics predictions are compared.

  18. Social and cultural activities

    CERN Multimedia

    2008-01-01

    Club news : Record Club, Ski Club, Dancing Club, Orienteering Club, CERN Women's Club, Concerts Club, Russian Cultural Circle, Yachting Club. Conference : Voyage au coeur d'une flûte de champagne. Exhibition.

  19. Solar wind heating by an embedded quasi-isothermal pick-up ion fluid

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    Full Text Available It is well known that the solar wind plasma consists of primary ions of solar coronal origin and secondary ions of interstellar origin. Interstellar H-atoms penetrate into the inner heliosphere and when ionized there are converted into secondary ions. These are implanted into the magnetized solar wind flow and are essentially enforced to co-move with this flow. By nonlinear interactions with wind-entrained Alfvén waves the latter are processed in the co-moving velocity space. This pick-up process, however, also causes actions back upon the original solar wind flow, leading to a deceleration, as well as a heating of the solar wind plasma. The resulting deceleration is not only due to the loading effect, but also due to the action of the pressure gradient. To calculate the latter, it is important to take into account the stochastic acceleration that suffers at their convection out of the inner heliosphere by the quasi-linear interactions with MHD turbulences. Only then can the presently reported VOYAGER observations of solar wind decelerations and heatings in the outer heliosphere be understood in terms of the current, most likely values of interstellar gas parameters. In a consistent view of the thermodynamics of the solar wind plasma, which is composed of secondary ions and solar wind protons, we also derive that the latter are globally heated at their motion to larger solar distances. The arising heat transfer is due to the action of suprathermal ions which drive MHD waves that are partially absorbed by solar wind protons and thereby establish their observed quasi-polytropy. We obtain a quantitative expression for the solar wind proton pressure as a function of solar distance. This expression clearly shows the change from an adiabatic to a quasi-polytropic behaviour with a decreasing polytropic index at increasing distances, as has been observed by the VOYAGERS. This also allows one to calculate the average percentage of the intitial energy

  20. Solar wind heating by an embedded quasi-isothermal pick-up ion fluid

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2002-10-01

    Full Text Available It is well known that the solar wind plasma consists of primary ions of solar coronal origin and secondary ions of interstellar origin. Interstellar H-atoms penetrate into the inner heliosphere and when ionized there are converted into secondary ions. These are implanted into the magnetized solar wind flow and are essentially enforced to co-move with this flow. By nonlinear interactions with wind-entrained Alfvén waves the latter are processed in the co-moving velocity space. This pick-up process, however, also causes actions back upon the original solar wind flow, leading to a deceleration, as well as a heating of the solar wind plasma. The resulting deceleration is not only due to the loading effect, but also due to the action of the pressure gradient. To calculate the latter, it is important to take into account the stochastic acceleration that suffers at their convection out of the inner heliosphere by the quasi-linear interactions with MHD turbulences. Only then can the presently reported VOYAGER observations of solar wind decelerations and heatings in the outer heliosphere be understood in terms of the current, most likely values of interstellar gas parameters. In a consistent view of the thermodynamics of the solar wind plasma, which is composed of secondary ions and solar wind protons, we also derive that the latter are globally heated at their motion to larger solar distances. The arising heat transfer is due to the action of suprathermal ions which drive MHD waves that are partially absorbed by solar wind protons and thereby establish their observed quasi-polytropy. We obtain a quantitative expression for the solar wind proton pressure as a function of solar distance. This expression clearly shows the change from an adiabatic to a quasi-polytropic behaviour with a decreasing polytropic index at increasing distances, as has been observed by the VOYAGERS. This also allows one to calculate the average percentage of the intitial energy

  1. Fulltext PDF

    Indian Academy of Sciences (India)

    college network for biodiversity ... regional affiliation in the nomenclature of a commodity such as Champagne wine or Darjeeling tea. Of late, protection of integrated circuits, databases, etc. is also sought. .... development and documentation.

  2. Champagne for the cryogenics teams

    CERN Multimedia

    2005-01-01

    Christmas has come early for the LHC as a complete sector of the cryogenic distribution line has been operating at 10 degrees Kelvin (-263°C) for the past two weeks, just a few degrees above the machine's nominal operating temperature.

  3. Heliospheric pick-up ions influencing thermodynamics and dynamics of the distant solar wind

    Directory of Open Access Journals (Sweden)

    H. J. Fahr

    2002-01-01

    Full Text Available Neutral interstellar H-atoms penetrate into the inner heliosphere and upon the event of ionization are converted into pick-up ions (PUIs. The magnetized solar wind flow incorporates these ions into the plasma bulk and enforces their co-motion. By nonlinear interactions with wind-entrained Alfvén waves, these ions are then processed in the comoving velocity space. The complete pick-up process is connected with forces acting back to the original solar wind ion flow, thereby decelerating and heating the solar wind plasma. As we show here, the resulting deceleration cannot be treated as a pure loading effect, but requires adequate consideration of the action of the pressure of PUI-scattered waves operating by the PUI pressure gradient. Hereby, it is important to take into proper account the stochastic acceleration which PUIs suffer from at their convection out of the inner heliosphere by quasi-linear interactions with MHD turbulences. Only then can the presently reported VOYAGER observations of solar wind decelerations and heatings in the outer heliosphere be understood in view of the most likely values of interstellar gas parameters, such as an H-atom density of 0.12 cm-3 . Solar wind protons (SWPs appear to be globally heated in their motion to larger solar distances. Ascribing the needed heat transfer to the action of suprathermal PUIs, which drive MHD waves that are partly absorbed by SWPs, in order to establish the observed SWP polytropy, we can obtain a quantitative expression for the solar wind proton pressure as a function of solar distance. This expression clearly shows the change from an adiabatic to a quasi-polytropic SWP behaviour with a decreasing polytropic index at increasing distances. This also allows one to calculate the average percentage of initial pick-up energy fed into the thermal proton energy. In a first order evaluation of this expression, we can estimate that about 10% of the initial PUI injection energy is eventually

  4. Crystallization: Key thermodynamic, kinetic and hydrodynamic aspects

    Indian Academy of Sciences (India)

    Crystallization is extensively used in different industrial applications, ... In batch crystallization, a crystalline product with uniform size and shape is desirable, .... y concentration, metastable zone width. C hoi. G. J at. Urbana-Champagne,. USA.

  5. Aspherical Supernovae: Effects on Early Light Curves

    Science.gov (United States)

    Afsariardchi, Niloufar; Matzner, Christopher D.

    2018-04-01

    Early light from core-collapse supernovae, now detectable in high-cadence surveys, holds clues to a star and its environment just before it explodes. However, effects that alter the early light have not been fully explored. We highlight the possibility of nonradial flows at the time of shock breakout. These develop in sufficiently nonspherical explosions if the progenitor is not too diffuse. When they do develop, nonradial flows limit ejecta speeds and cause ejecta–ejecta collisions. We explore these phenomena and their observational implications using global, axisymmetric, nonrelativistic FLASH simulations of simplified polytropic progenitors, which we scale to representative stars. We develop a method to track photon production within the ejecta, enabling us to estimate band-dependent light curves from adiabatic simulations. Immediate breakout emission becomes hidden as an oblique flow develops. Nonspherical effects lead the shock-heated ejecta to release a more constant luminosity at a higher, evolving color temperature at early times, effectively mixing breakout light with the early light curve. Collisions between nonradial ejecta thermalize a small fraction of the explosion energy; we will address emission from these collisions in a subsequent paper.

  6. A dynamic counterpart of Lamb vector in viscous compressible aerodynamics

    International Nuclear Information System (INIS)

    Liu, L Q; Wu, J Z; Shi, Y P; Zhu, J Y

    2014-01-01

    The Lamb vector is known to play a key role in incompressible fluid dynamics and vortex dynamics. In particular, in low-speed steady aerodynamics it is solely responsible for the total force acting on a moving body, known as the vortex force, with the classic two-dimensional (exact) Kutta–Joukowski theorem and three-dimensional (linearized) lifting-line theory as the most famous special applications. In this paper we identify an innovative dynamic counterpart of the Lamb vector in viscous compressible aerodynamics, which we call the compressible Lamb vector. Mathematically, we present a theorem on the dynamic far-field decay law of the vorticity and dilatation fields, and thereby prove that the generalized Lamb vector enjoys exactly the same integral properties as the Lamb vector does in incompressible flow, and hence the vortex-force theory can be generalized to compressible flow with exactly the same general formulation. Moreover, for steady flow of polytropic gas, we show that physically the force exerted on a moving body by the gas consists of a transverse force produced by the original Lamb vector and a new longitudinal force that reflects the effects of compression and irreversible thermodynamics. (paper)

  7. Inauguration of Proton Synchrotron

    CERN Multimedia

    1960-01-01

    On 5 February 1960, the Proton Synchrotron (PS) was formally inaugurated. The great Danish physicist, Niels Bohr, releases a bottle of champagne against a shielding block to launch the PS on its voyage in physics.

  8. Qualitative explanations for red giant formation

    International Nuclear Information System (INIS)

    Bhaskar, R.; Nigam, A.

    1991-01-01

    Recent research on giant formation has focused on the need for qualitative explanations. The explanations have the following general, qualitative form: the polytrope n assumes a certain value, that makes (d ln r)/(d ln z) take on a very large value; large increases in r can then be explained in terms of small changes in the variable z. This form is applicable to all the explanations current in the literature: they all have (1) either implicitly or explicitly, both a hydrostatic component and a luminosity-opacity component, and (2) a reliance on singular solutions. Dimensional analysis reveals that power laws that assume the polytrope n to 5 are identical in both the hydrostatic and luminosity-based explanations. 12 refs

  9. Glycaemic control of Type 1 diabetes in clinical practice early in the 21st century

    DEFF Research Database (Denmark)

    McKnight, J A; Wild, S H; Lamb, M J E

    2015-01-01

    diabetes from the following countries (or regions): Western Australia, Austria, Denmark, England, Champagne-Ardenne (France), Germany, Epirus, Thessaly and Thessaloniki (Greece), Galway (Ireland), several Italian regions, Latvia, Rotterdam (The Netherlands), Otago (New Zealand), Norway, Northern Ireland...

  10. Social and cultural activities

    CERN Multimedia

    Clubs; Euroscience

    2008-01-01

    Club news: Cricket Club, Volleyball Club, Pétanque, Fitness Club, Concerts Club, CERN Women's Club. Café des sciences. Exhibition : Ladakh & Rupshu - Royaumes du silence. Conference : Voyage au coeur d'une flûte de champagne.

  11. Flow patterns in vertical two-phase flow

    International Nuclear Information System (INIS)

    McQuillan, K.W.; Whalley, P.B.

    1985-01-01

    This paper is concerned with the flow patterns which occur in upwards gas-liquid two-phase flow in vertical tubes. The basic flow patterns are described and the use of flow patter maps is discussed. The transition between plug flow and churn flow is modelled under the assumption that flooding of the falling liquid film limits the stability of plug flow. The resulting equation is combined with other flow pattern transition equations to produce theoretical flow pattern maps, which are then tested against experimental flow pattern data. Encouraging agreement is obtained

  12. Exoplanet's Figure and Its Interior

    Science.gov (United States)

    Mian, Zhang; Cheng-li, Huang

    2018-01-01

    Along with the development of the observing technology, the observation and study on the exoplanets' oblateness and apsidal precession have achieved significant progress. The oblateness of an exoplanet is determined by its interior density profile and rotation period. Between its Love number k2 and core size exists obviously a negative correlation. So oblateness and k2 can well constrain its interior structure. Starting from the Lane-Emden equation, the planet models based on different polytropic indices are built. Then the flattening factors are obtained by solving the Wavre's integro-differential equation. The result shows that the smaller the polytropic index, the faster the rotation, and the larger the oblateness. We have selected 469 exoplanets, which have simultaneously the observed or estimated values of radius, mass, and orbit period from the NASA (National Aeronautics and Space Administration) Exoplanet Archive, and calculated their flattening factors under the two assumptions: tidal locking and fixed rotation period of 10.55 hours. The result shows that the flattening factors are too small to be detected under the tidal locking assumption, and that 28% of exoplanets have the flattening factors larger than 0.1 under the fixed rotation period of 10.55 hours. The Love numbers under the different polytropic models are solved by the Zharkov's approach, and the relation between k2 and core size is discussed.

  13. Linking Backbarrier Lacustrine Stratigraphy with Spatial Dynamics of Shoreline Retreat in a Rapidly Subsiding Region of the Mississippi River Delta

    Science.gov (United States)

    Dietz, M.; Liu, K. B.; Bianchette, T. A.; Yao, Q.

    2017-12-01

    The shoreline along the northern Gulf of Mexico is rapidly retreating as coastal features of abandoned Mississippi River delta complexes erode and subside. Bay Champagne is located in the Caminada-Moreau headland, a region of shoreline west of the currently active delta that has one of the highest rates of retreat and land loss. As a result, this site has transitioned from a stable, circular inland lake several kilometers from the shore to a frequently perturbed, semi-circular backbarrier lagoon, making it ideal to study the environmental effects of progressive land loss. Analyses of clastic layers in a series of sediment cores collected at this site over the past decade indicate the lake was less perturbed in the past and has become increasingly more sensitive to marine incursion events caused by tropical cyclones. Geochemical and pollen analyses of these cores also reveal profound changes in environmental and chemical conditions in Bay Champagne over the past century as the shoreline has retreated. Through relating stratigraphy to spatial changes observed from satellite imagery, this study attempts to identify the tipping point at which Bay Champagne began the transition from an inland lake to a backbarrier environment, and to determine the rate at which this transition occurred. Results will be used to develop a model of the environmental transition experienced by a rapidly retreating coastline and to predict how other regions of the Mississippi River deltaic system could respond to future shoreline retreat.

  14. Practicing Fireworks Safety

    Science.gov (United States)

    ... Numbers — Infographic Five Steps to Safer Champagne Celebrations Fireworks Eye Safety Leer en Español: Lesiones oculares causadas ... professionals this year. Real People, Real Injuries from Fireworks Stacy: Woman’s Vision Saved After Devastating Fireworks Injury ...

  15. A global conformal extension theorem for perfect fluid Bianchi space-times

    International Nuclear Information System (INIS)

    Luebbe, Christian; Tod, Paul

    2008-01-01

    A global extension theorem is established for isotropic singularities in polytropic perfect fluid Bianchi space-times. When an extension is possible, the limiting behaviour of the physical space-time near the singularity is analysed

  16. Flow chemistry vs. flow analysis.

    Science.gov (United States)

    Trojanowicz, Marek

    2016-01-01

    The flow mode of conducting chemical syntheses facilitates chemical processes through the use of on-line analytical monitoring of occurring reactions, the application of solid-supported reagents to minimize downstream processing and computerized control systems to perform multi-step sequences. They are exactly the same attributes as those of flow analysis, which has solid place in modern analytical chemistry in several last decades. The following review paper, based on 131 references to original papers as well as pre-selected reviews, presents basic aspects, selected instrumental achievements and developmental directions of a rapidly growing field of continuous flow chemical synthesis. Interestingly, many of them might be potentially employed in the development of new methods in flow analysis too. In this paper, examples of application of flow analytical measurements for on-line monitoring of flow syntheses have been indicated and perspectives for a wider application of real-time analytical measurements have been discussed. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Using Crossflow for Flow Measurements and Flow Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.; Chudnovsky, L.; Lopeza, A. [Advanced Measurement and Analysis Group Inc., Ontario (Canada); Park, M. H. [Sungjin Nuclear Engineering Co., Ltd., Gyeongju (Korea, Republic of)

    2016-10-15

    Ultrasonic Cross Correlation Flow Measurements are based on a flow measurement method that is based on measuring the transport time of turbulent structures. The cross correlation flow meter CROSSFLOW is designed and manufactured by Advanced Measurement and Analysis Group Inc. (AMAG), and is used around the world for various flow measurements. Particularly, CROSSFLOW has been used for boiler feedwater flow measurements, including Measurement Uncertainty Recovery (MUR) reactor power uprate in 14 nuclear reactors in the United States and in Europe. More than 100 CROSSFLOW transducers are currently installed in CANDU reactors around the world, including Wolsung NPP in Korea, for flow verification in ShutDown System (SDS) channels. Other CROSSFLOW applications include reactor coolant gross flow measurements, reactor channel flow measurements in all channels in CANDU reactors, boiler blowdown flow measurement, and service water flow measurement. Cross correlation flow measurement is a robust ultrasonic flow measurement tool used in nuclear power plants around the world for various applications. Mathematical modeling of the CROSSFLOW agrees well with laboratory test results and can be used as a tool in determining the effect of flow conditions on CROSSFLOW output and on designing and optimizing laboratory testing, in order to ensure traceability of field flow measurements to laboratory testing within desirable uncertainty.

  18. Flow analysis of HANARO flow simulated test facility

    International Nuclear Information System (INIS)

    Park, Yong-Chul; Cho, Yeong-Garp; Wu, Jong-Sub; Jun, Byung-Jin

    2002-01-01

    The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial critical in February, 1995. Many experiments should be safely performed to activate the utilization of the NANARO. A flow simulated test facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate core channels. This test facility must simulate similar flow characteristics to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the test facility. The computational flow analysis has been performed for the verification of flow structure and similarity of this test facility assuming that flow rates and pressure differences of the core channel are constant. The shapes of flow orifices were determined by the trial and error method based on the design requirements of core channel. The computer analysis program with standard k - ε turbulence model was applied to three-dimensional analysis. The results of flow simulation showed a similar flow characteristic with that of the HANARO and satisfied the design requirements of this test facility. The shape of flow orifices used in this numerical simulation can be adapted for manufacturing requirements. The flow rate and the pressure difference through core channel proved by this simulation can be used as the design requirements of the flow system. The analysis results will be verified with the results of the flow test after construction of the flow system. (author)

  19. Turbine flow meter response in two-phase flows

    International Nuclear Information System (INIS)

    Shim, W.J.; Dougherty, T.J.; Cheh, H.Y.

    1996-01-01

    The purpose of this paper is to suggest a simple method of calibrating turbine flow meters to measure the flow rates of each phase in a two-phase flow. The response of two 50.8 mm (2 inch) turbine flow meters to air-water, two-phase mixtures flowing vertically in a 57 mm I.D. (2.25 inch) polycarbonate tube has been investigated for both upflow and downflow. The flow meters were connected in series with an intervening valve to provide an adjustable pressure difference between them. Void fractions were measured by two gamma densitometers, one upstream of the flow meters and the other downstream. The output signal of the turbine flow meters was found to depend only on the actual volumetric flow rate of the gas, F G , and liquid, F L , at the location of the flow meter

  20. Supporting English Language Arts Standards within the Context of Early Singing Experiences

    Science.gov (United States)

    Nordquist, Alice L.

    2015-01-01

    Music teachers may integrate a variety of English language arts content standards into their curriculum to enhance students' music experiences while also supporting their language development. John M. Feierabend and Melanie Champagne's picture book adaptation of "My Aunt Came Back" lends itself to multiple singing and discussion…

  1. EEG Source Reconstruction using Sparse Basis Function Representations

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Hansen, Lars Kai

    2014-01-01

    -validation this approach is more automated than competing approaches such as Multiple Sparse Priors (Friston et al., 2008) or Champagne (Wipf et al., 2010) that require manual selection of noise level and auxiliary signal free data, respectively. Finally, we propose an unbiased estimator of the reproducibility...

  2. Taxonomic studies of the Penicillium glabrum complex and the description of a new species P. subericola

    DEFF Research Database (Denmark)

    Barreto, M. C.; Houbraken, J.; Samson, R. A.

    2011-01-01

    A mycological survey of fungi, present in several stages of the manufacturing of cork discs for champagne stoppers in Portugal, was made. Sixty-nine strains belonging to the Glabra series of the genus Penicillium were isolated and subsequently grouped according to their partial β-tubulin gene...

  3. Investigations on flow reversal in stratified horizontal flow

    International Nuclear Information System (INIS)

    Staebler, T.; Meyer, L.; Schulenberg, T.; Laurien, E.

    2005-01-01

    The phenomena of flow reversal in stratified flows are investigated in a horizontal channel with application to the Emergency Core Cooling System (ECCS) in Pressurized Water Reactors (PWR). In case of a Loss-of-Coolant-Accident (LOCA), coolant can be injected through a secondary pipe within the feeding line of the primary circuit, the so called hot leg, counter-currently to the steam flow. It is essential that the coolant reaches the reactor core to prevent overheating. Due to high temperatures in such accident scenarios, steam is generated in the core, which escapes from the reactor vessel through the hot leg. In case of sufficiently high steam flow rates, only a reduced amount of coolant or even no coolant will be delivered to the reactor core. The WENKA test facility at the Institute for Nuclear and Energy Technologies (IKET) at Forschungszentrum Karlsruhe is capable to investigate the fluid dynamics of two-phase flows in such scenarios. Water and air flow counter-currently in a horizontal channel made of clear acrylic glass to allow full optical access. Flow rates of water and air can be varied independently within a wide range. Once flow reversal sets in, a strong hysteresis effect must be taken into account. This was quantified during the present investigations. Local experimental data are needed to expand appropriate models on flow reversal in horizontal two-phase flow and to include them into numerical codes. Investigations are carried out by means of Particle Image Velocimetry (PIV) to obtain local flow velocities without disturbing the flow. Due to the wavy character of the flow, strong reflections at the interfacial area must be taken into account. Using fluorescent particles and an optical filter allows eliminating the reflections and recording only the signals of the particles. The challenges in conducting local investigations in stratified wavy flows by applying optical measurement techniques are discussed. Results are presented and discussed allowing

  4. Flow regimes

    International Nuclear Information System (INIS)

    Kh'yuitt, G.

    1980-01-01

    An introduction into the problem of two-phase flows is presented. Flow regimes arizing in two-phase flows are described, and classification of these regimes is given. Structures of vertical and horizontal two-phase flows and a method of their identification using regime maps are considered. The limits of this method application are discussed. The flooding phenomena and phenomena of direction change (flow reversal) of the flow and interrelation of these phenomena as well as transitions from slug regime to churn one and from churn one to annular one in vertical flows are described. Problems of phase transitions and equilibrium are discussed. Flow regimes in tubes where evaporating liquid is running, are described [ru

  5. Visualization study of flow in axial flow inducer.

    Science.gov (United States)

    Lakshminarayana, B.

    1972-01-01

    A visualization study of the flow through a three ft dia model of a four bladed inducer, which is operated in air at a flow coefficient of 0.065, is reported in this paper. The flow near the blade surfaces, inside the rotating passages, downstream and upstream of the inducer is visualized by means of smoke, tufts, ammonia filament, and lampblack techniques. Flow is found to be highly three dimensional, with appreciable radial velocity throughout the entire passage. The secondary flows observed near the hub and annulus walls agree with qualitative predictions obtained from the inviscid secondary flow theory.

  6. Rotating flow

    CERN Document Server

    Childs, Peter R N

    2010-01-01

    Rotating flow is critically important across a wide range of scientific, engineering and product applications, providing design and modeling capability for diverse products such as jet engines, pumps and vacuum cleaners, as well as geophysical flows. Developed over the course of 20 years' research into rotating fluids and associated heat transfer at the University of Sussex Thermo-Fluid Mechanics Research Centre (TFMRC), Rotating Flow is an indispensable reference and resource for all those working within the gas turbine and rotating machinery industries. Traditional fluid and flow dynamics titles offer the essential background but generally include very sparse coverage of rotating flows-which is where this book comes in. Beginning with an accessible introduction to rotating flow, recognized expert Peter Childs takes you through fundamental equations, vorticity and vortices, rotating disc flow, flow around rotating cylinders and flow in rotating cavities, with an introduction to atmospheric and oceanic circul...

  7. Oscillation of large air bubble cloud

    International Nuclear Information System (INIS)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K.

    2001-01-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  8. Adiabatic Expansion of Electron Gas in a Magnetic Nozzle

    Science.gov (United States)

    Takahashi, Kazunori; Charles, Christine; Boswell, Rod; Ando, Akira

    2018-01-01

    A specially constructed experiment shows the near perfect adiabatic expansion of an ideal electron gas resulting in a polytropic index greater than 1.4, approaching the adiabatic value of 5 /3 , when removing electric fields from the system, while the polytropic index close to unity is observed when the electrons are trapped by the electric fields. The measurements were made on collisionless electrons in an argon plasma expanding in a magnetic nozzle. The collision lengths of all electron collision processes are greater than the scale length of the expansion, meaning the system cannot be in thermodynamic equilibrium, yet thermodynamic concepts can be used, with caution, in explaining the results. In particular, a Lorentz force, created by inhomogeneities in the radial plasma density, does work on the expanding magnetic field, reducing the internal energy of the electron gas that behaves as an adiabatically expanding ideal gas.

  9. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  10. A Century on the Mississippi: A History of the Memphis District, U.S. Army Corps of Engineers, 1876-1976

    Science.gov (United States)

    1976-01-01

    and Tongue OrnamenlCd with Jelly noned Turkey, Champagne Jelly Cream wllh IIpple Jelly nOlUD Mutton Country Ham Turkey Tongue CONDIMENTS Corned...Engineers. Vol. CXIII (1948) , pp. 1-15. McCormick , Robert R. " Steamboat Years." Memphis Public Library. Reprint of an Address Given Over the

  11. Refrigeration. Two-Phase Flow. Flow Regimes and Pressure Drop

    DEFF Research Database (Denmark)

    Knudsen, Hans-Jørgen Høgaard

    2002-01-01

    The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature.......The note gives the basic definitions used in two-phase flow. Flow regimes and flow regimes map are introduced. The different contributions to the pressure drop are stated together with an imperical correlation from the litterature....

  12. Three-dimensional model of corotating streams in the solar wind 3. Magnetohydrodynamic streams

    International Nuclear Information System (INIS)

    Pizzo, V.J.

    1982-01-01

    The focus of this paper is two-fold: (1) to examine how the presence of the spiral magnetic field affects the evolution of interplanetary corotating solar wind streams, and (2) to ascertain the nature of secondary large-scale phenomena likely to be associated with streams having a pronounced three-dimensional (3-D) structure. The dynamics are presumed to be governed by the nonlinear polytropic, single-fluid, 3-D MHD equations. Solutions are obtained with an explicit, Eulerian, finite differences technique that makes use of a simple form of artificial diffusion for handling shocks. For smooth axisymmetric flows, the picture of magnetically induced meridional motions previously established by linear models requires only minor correction. In the case of broad 3-D streams input near the sun, inclusion of the magnetic field is found to retard the kinematic steepening at the stream front substantially but to produce little deviation from planar flow. For the more realistic case of initially sharply bounded streams, however, it becomes essential to account for magnetic effects in the formulation. Whether a full 3-D treatment is required depends upon the latitudinal geometry of the stream

  13. Flow visualization

    CERN Document Server

    Merzkirch, Wolfgang

    1974-01-01

    Flow Visualization describes the most widely used methods for visualizing flows. Flow visualization evaluates certain properties of a flow field directly accessible to visual perception. Organized into five chapters, this book first presents the methods that create a visible flow pattern that could be investigated by visual inspection, such as simple dye and density-sensitive visualization methods. It then deals with the application of electron beams and streaming birefringence. Optical methods for compressible flows, hydraulic analogy, and high-speed photography are discussed in other cha

  14. On intermittent flow characteristics of gas–liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Thaker, Jignesh; Banerjee, Jyotirmay, E-mail: jbaner@gmail.com

    2016-12-15

    Highlights: • Unified correlations for intermittent flow characteristics are developed. • Influence of inflow conditions on intermittent flow characteristics is analysed. • Developed correlations can be used for effective design of piping components. - Abstract: Flow visualisation experiments are reported for intermittent regime of gas–liquid two-phase flow. Intermittent flow characteristics, which include plug/slug frequency, liquid plug/slug velocity, liquid plug/slug length, and plug/slug bubble length are determined by image processing of flow patterns captured at a rate of 1600 frames per second (FPS). Flow characteristics are established as a function of inlet superficial velocity of both the phases (in terms of Re{sub SL} and Re{sub SG}). The experimental results are first validated with the existing correlations for slug flow available in literature. It is observed that the correlations proposed in literature for slug flow do not accurately predict the flow characteristics in the plug flow regime. The differences are clearly highlighted in this paper. Based on the measured database for both plug and slug flow regime, modified correlations for the intermittent flow regime are proposed. The correlations reported in the present paper, which also include plug flow characteristics will aid immensely to the effective design and optimization of operating conditions for safer operation of two-phase flow piping systems.

  15. Transformation of Commercial Flows into Physical Flows of Electricity – Flow Based Method

    Directory of Open Access Journals (Sweden)

    M. Adamec

    2009-01-01

    Full Text Available We are witnesses of large – scale electricity transport between European countries under the umbrella of the UCTE organization. This is due to the inabilyof generators to satisfy the growing consumption in some regions. In this content, we distinguish between two types of flow. The first type is physical flow, which causes costs in the transmission grid, whilst the second type is commercial flow, which provides revenues for the market participants. The old methods for allocating transfer capacity fail to take this duality into account. The old methods that allocate transmission border capacity to “virtual” commercial flows which, in fact, will not flow over this border, do not lead to optimal allocation. Some flows are uselessly rejected and conversely, some accepted flows can cause congestion on another border. The Flow Based Allocation method (FBA is a method which aims to solve this problem.Another goal of FBA is to ensure sustainable development of expansion of transmission capacity. Transmission capacity is important, because it represents a way to establish better transmission system stability, and it provides a distribution channel for electricity to customers abroad. For optimal development, it is necessary to ensure the right division of revenue allocation among the market participants.This paper contains a brief description of the FBA method. Problems of revenue maximization and optimal revenue distribution are mentioned. 

  16. Quasiequilibrium models for triaxially deformed rotating compact stars

    International Nuclear Information System (INIS)

    Huang Xing; Markakis, Charalampos; Sugiyama, Noriyuki; Uryu, Koji

    2008-01-01

    Quasiequilibrium models of rapidly rotating triaxially deformed stars are computed in general relativistic gravity, assuming a conformally flat spatial geometry (Isenberg-Wilson-Mathews formulation) and a polytropic equation of state. Highly deformed solutions are calculated on the initial slice covered by spherical coordinate grids, centered at the source, in all angular directions up to a large truncation radius. Constant rest mass sequences are calculated from nearly axisymmetric to maximally deformed triaxial configurations. Selected parameters are to model (proto-) neutron stars; the compactness is M/R=0.001, 0.1, 0.14, and 0.2 for polytropic index n=0.3 and M/R=0.001, 0.1, 0.12, and 0.14 for n=0.5, where M/R refers to that of a nonrotating spherical star having the same rest mass. We confirmed that the triaxial solutions exist for these parameters as in the case of Newtonian polytropes. However, it is also found that the triaxial sequences become shorter for higher compactness, and those disappear at a certain large compactness for the n=0.5 case. In the scenario of the contraction of proto-neutron stars being subject to strong viscosity and rapid cooling, it is plausible that, once the viscosity driven secular instability sets in during the contraction, the proto-neutron stars are always maximally deformed triaxial configurations, as long as the compactness and the equation of state parameters allow such triaxial sequences. Detection of gravitational waves from such sources may be used as another probe for the nuclear equation of state.

  17. Airfoil flow instabilities induced by background flow oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Selerowicz, W.C.; Szumowski, A.P. [Technical Univ. Warsaw (Poland)

    2002-04-01

    The effect of background flow oscillations on transonic airfoil (NACA 0012) flow was investigated experimentally. The oscillations were generated by means of a rotating plate placed downstream of the airfoil. Owing to oscillating chocking of the flow caused by the plate, the airfoil flow periodically accelerated and decelerated. This led to strong variations in the surface pressure and the airfoil loading. The results are presented for two angles of attack, {alpha}=4 and {alpha}=8.5 , which correspond to the attached and separated steady airfoil flows, respectively. (orig.)

  18. Electromagnetic application device for flow rate/flow speed control

    International Nuclear Information System (INIS)

    Yoshioka, Senji.

    1994-01-01

    Electric current and magnetic field are at first generated in a direction perpendicular to a flow channel of a fluid, and forces generated by electromagnetic interaction of the current and the magnetic field are combined and exerted on the fluid, to control the flow rate and the flow speed thereby decreasing flowing pressure loss. In addition, an electric current generation means and a magnetic field generation means integrated together are disposed to a structural component constituting the flow channel, and they are combined to attain the aimed effect. The current generating means forms a potential difference by supplying electric power to a pair of electrodes as a cathode and an anode by using structures disposed along the channel, to generate an electric field or electric current in a direction perpendicular to the flow channel. The magnetic field generating means forms a counter current (reciprocal current) by using structures disposed along the flow channel, to generate synthesized or emphasized magnetic field. The fluid can be applied with a force in the direction of the flowing direction by the electromagnetic interaction of the electric current and the magnetic field, thereby capable of propelling the fluid. Accordingly, the flowrate/flowing speed can be controlled inside of the flow channel and flowing pressure loss can be decreased. (N.H.)

  19. Evaluation of flow hood measurements for residential register flows; TOPICAL

    International Nuclear Information System (INIS)

    Walker, I.S.; Wray, C.P.; Dickerhoff, D.J.; Sherman, M.H.

    2001-01-01

    Flow measurement at residential registers using flow hoods is becoming more common. These measurements are used to determine if the HVAC system is providing adequate comfort, appropriate flow over heat exchangers and in estimates of system energy losses. These HVAC system performance metrics are determined by using register measurements to find out if individual rooms are getting the correct airflow, and in estimates of total air handler flow and duct air leakage. The work discussed in this paper shows that commercially available flow hoods are poor at measuring flows in residential systems. There is also evidence in this and other studies that flow hoods can have significant errors even when used on the non-residential systems they were originally developed for. The measurement uncertainties arise from poor calibrations and the sensitivity of exiting flow hoods to non-uniformity of flows entering the device. The errors are usually large-on the order of 20% of measured flow, which is unacceptably high for most applications. Active flow hoods that have flow measurement devices that are insensitive to the entering airflow pattern were found to be clearly superior to commercially available flow hoods. In addition, it is clear that current calibration procedures for flow hoods may not take into account any field application problems and a new flow hood measurement standard should be developed to address this issue

  20. Cultivo hidropônico de lisianto para flor de corte em sistema de fluxo laminar de nutrientes Hydroponic growth of lisianthus as cut flower under nutrient film technique

    Directory of Open Access Journals (Sweden)

    Fernanda Alice Antonello Londero Backes

    2007-11-01

    Full Text Available O objetivo deste trabalho foi avaliar as características produtivas e comerciais do cultivo de quatro cultivares de lisianto (Eustoma grandiflorum em três soluções nutritivas em sistema de fluxo laminar de nutrientes (NFT. Utilizou-se o delineamento em blocos casualizados, em esquema fatorial 4x3, com três repetições. Os tratamentos foram compostos de quatro cultivares (Echo Champagne, Mariachi Pure White, Balboa Yellow e Ávila Blue Rim e três soluções nutritivas (Teste, Steiner modificada e Barbosa. O sistema NFT é uma alternativa viável para o cultivo de lisianto nas soluções Barbosa e Teste. A cultivar Echo Champagne foi superior quanto ao ciclo, período em produção, altura da haste floral, número de folhas, diâmetro de botão e produção de massa fresca e seca, enquanto a cultivar Mariachi Pure White se destacou quanto ao período em produção. A cultivar Ávila Blue Rim apresentou maior período de produção, número de flores e produção de massa de matéria fresca e seca, enquanto a cultivar Balboa Yellow apresentou maior período em produção e diâmetro de botão.The objective of this work was to evaluate yield and commercial traits of lisianthus (Eustoma grandiflorum flowers growth in nutrient film technique (NFT. The experimental design was in randomized blocks, in factorial scheme (4x3, with three replicates. The treatments were four cultivars (Echo Champagne, Mariachi Pure White, Balboa Yellow and Ávila Blue Rim and three nutrient solutions (Test, modified Steiner and Barbosa. The NFT system is a feasible alternative for the growth of lisianthus in Barbosa and Test solutions. The cultivar Echo Champagne was superior for cycle, length of production, height of flower stem, number of leaves, diameter of the bud flower and fresh and dry weight production, while the cultivar Mariachi Pure White was superior for length of production. The cultivar Ávila Blue Rim showed good length of production, number of flowers

  1. Exact anisotropic sphere with polytropic equation of state

    Indian Academy of Sciences (India)

    We express the system of Einstein field equations as a new system of differential ... solar-mass and radii of ∼ (10–15) km give density values that exceed by far the ground .... The gravitational potential Z is regular at the origin and well.

  2. Experimental Flow Characterization of a Flow Diverting Device

    Science.gov (United States)

    Sparrow, Eph; Chow, Ricky; Campbell, Gary; Divani, Afshin; Sheng, Jian

    2012-11-01

    Flow diverters, such as the Pipeline Embolization Device, are a new class of endovascular devices for the treatment of intracranial aneurysms. While clinical studies have demonstrated safety and efficacy, their impact on intra-aneurysmal flow is not confirmed experimentally. As such, optimization of the flow diversion behavior is not currently possible. A quasi-3D PIV technique was developed and applied in various glass models at Re = 275 and 550 to determine the changes to flow characteristics due to the deployment of a flow diverter across the aneurysm neck. Outcomes such as mean velocity, wall shear stress, and others metrics will be presented. Glass models with varying radii of curvature and aneurysm locations will be examined. Experiments were performed in a fully index-matched flow facility using ~10 μm diameter polystyrene particles doped with Rhodium 6G dye. The particles were illuminated with a 532nm laser sheet and observed with a CCD camera and a 592nm +/-43 nm bandpass filter. A quasi 3D flow field was reconstructed from multiple orthogonal planes (spaced 0.4mm apart) encompassing the entire glass model. Wall stresses were evaluated from the near-wall flow viscous stresses.

  3. Flow shapes and higher harmonics in anisotropic transverse collective flow

    Energy Technology Data Exchange (ETDEWEB)

    Argintaru, Danut; Baban, Valerica [Constanta Maritime University, Faculty of Navigation and Naval Transport, Constanta (Romania); Besliu, Calin; Jipa, Alexandru; Grossu, Valeriu [University of Bucharest, Faculty of Physics, Bucharest (Romania); Esanu, Tiberiu; Cherciu, Madalin [Institute of Space Sciences Bucharest-Magurele, Bucharest (Romania)

    2017-01-15

    In this paper we show that by using a jet-finder algorithm (the Anti-k{sub T} one) on UrQMD/C simulated (Au+Au at 4, 10 and 15A GeV) collisions, we can identify different flow shape structures (single flow stream events, two flow streams events, three flow streams events, etc.) and order the bulk of events in equivalence flow shape classes. Considering these flow streams as the main directions of anisotropic transverse flow, we show that the Fourier coefficients v{sub n} of anisotropic flow are better emphasized when we analyze the different event flow shape classes than when the events are mixed. Also, if we do not know the real orientation of the reaction plane, we can use as reference the Flow stream 1 - the main particle flow stream - orientation (Ψ{sub Flowstream} {sub 1}) to highlight the initial shape of the participant nuclear matter in a central to peripheral collision, and the orientation of the participant plane of order n. (orig.)

  4. Flow Rate Measurement in Multiphase Flow Rig: Radiotracer and Conventional

    International Nuclear Information System (INIS)

    Nazrul Hizam Yusoff; Noraishah Othman; Nurliyana Abdullah; Amirul Syafiq Mohd Yunos; Rasif Mohd Zain; Roslan Yahya

    2015-01-01

    Applications of radiotracer technology are prevalent throughout oil refineries worldwide, and this industry is one of the main users and beneficiaries of the technology. Radioactive tracers have been used to a great extent in many applications i.e. flow rate measurement, RTD, plant integrity evaluation and enhancing oil production in oil fields. Chemical and petrochemical plants are generally continuously operating and technically complex where the radiotracer techniques are very competitive and largely applied for troubleshooting inspection and process analysis. Flow rate measurement is a typical application of radiotracers. For flow measurements, tracer data are important, rather than the RTD models. Research is going on in refining the existing methods for single phase flow measurement, and in developing new methods for multiphase flow without sampling. The tracer techniques for single phase flow measurements are recognized as ISO standards. This paper presents technical aspect of laboratory experiments, which have been carried out using Molybdenum-99 - Mo99 (radiotracer) to study and determine the flow rate of liquid in multiphase flow rig. The multiphase flow rig consists of 58.7 m long and 20 cm diameter pipeline that can accommodate about 0.296 m 3 of liquid. Tap water was used as liquid flow in pipeline and conventional flow meters were also installed at the flow rig. The flow rate results; radiotracer and conventional flow meter were compared. The total count method was applied for radiotracer technique and showed the comparable results with conventional flow meter. (author)

  5. Rupture of esophagus by compressed air.

    Science.gov (United States)

    Wu, Jie; Tan, Yuyong; Huo, Jirong

    2016-11-01

    Currently, beverages containing compressed air such as cola and champagne are widely used in our daily life. Improper ways to unscrew the bottle, usually by teeth, could lead to an injury, even a rupture of the esophagus. This letter to editor describes a case of esophageal rupture caused by compressed air.

  6. Online traffic flow model applying dynamic flow-density relation

    International Nuclear Information System (INIS)

    Kim, Y.

    2002-01-01

    This dissertation describes a new approach of the online traffic flow modelling based on the hydrodynamic traffic flow model and an online process to adapt the flow-density relation dynamically. The new modelling approach was tested based on the real traffic situations in various homogeneous motorway sections and a motorway section with ramps and gave encouraging simulation results. This work is composed of two parts: first the analysis of traffic flow characteristics and second the development of a new online traffic flow model applying these characteristics. For homogeneous motorway sections traffic flow is classified into six different traffic states with different characteristics. Delimitation criteria were developed to separate these states. The hysteresis phenomena were analysed during the transitions between these traffic states. The traffic states and the transitions are represented on a states diagram with the flow axis and the density axis. For motorway sections with ramps the complicated traffic flow is simplified and classified into three traffic states depending on the propagation of congestion. The traffic states are represented on a phase diagram with the upstream demand axis and the interaction strength axis which was defined in this research. The states diagram and the phase diagram provide a basis for the development of the dynamic flow-density relation. The first-order hydrodynamic traffic flow model was programmed according to the cell-transmission scheme extended by the modification of flow dependent sending/receiving functions, the classification of cells and the determination strategy for the flow-density relation in the cells. The unreasonable results of macroscopic traffic flow models, which may occur in the first and last cells in certain conditions are alleviated by applying buffer cells between the traffic data and the model. The sending/receiving functions of the cells are determined dynamically based on the classification of the

  7. Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications

    OpenAIRE

    Jang, Jaesung; Wereley, Steven

    2007-01-01

    The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both wal...

  8. Investigation of the mixture flow rates of oil-water two-phase flow using the turbine flow meter

    International Nuclear Information System (INIS)

    Li Donghui; Feng Feifei; Wu Yingxiang; Xu Jingyu

    2009-01-01

    In this work, the mixture flow rate of oil-water flows was studied using the turbine flow-meter. The research emphasis focuses on the effect of oil viscosity and input fluids flow rates on the precision of the meter. Experiments were conducted to measure the in-situ mixture flow rate in a horizontal pipe with 0.05m diameter using seven different viscosities of white oil and tap water as liquid phases. Results showed that both oil viscosity and input oil fraction exert a remarkable effect on measured results, especially when the viscosity of oil phase remained in the area of high value. In addition, for metering mixture flow rate using turbine flow-meter, the results are not sensitive to two-phase flow pattern according to the experimental data.

  9. Radiotracer techniques for measuring fluid flow and calibrating flow meters

    International Nuclear Information System (INIS)

    Cooper, E.L.

    1987-08-01

    Radiotracer techniques can be used to measure accurately both gas and liquid flow rates under operating conditions in a wide range of flow systems. They are ideally suited for calibrating flow meters as well as for measuring unmetered flows in industrial plants. Applications of these techniques range from measuring the flows of fuels and process fluids for energy and mass balance studies to measuring the flows of liquid and airborne effluents for pollution control. This report describes the various radiotracer techniques which can be used to measure fluid flows. The range of application and inherent accuracy of each technique is discussed

  10. Tidal Love Numbers of Neutron Stars

    International Nuclear Information System (INIS)

    Hinderer, Tanja

    2008-01-01

    For a variety of fully relativistic polytropic neutron star models we calculate the star's tidal Love number k 2 . Most realistic equations of state for neutron stars can be approximated as a polytrope with an effective index n ∼ 0.5-1.0. The equilibrium stellar model is obtained by numerical integration of the Tolman-Oppenheimer-Volkhov equations. We calculate the linear l = 2 static perturbations to the Schwarzschild spacetime following the method of Thorne and Campolattaro. Combining the perturbed Einstein equations into a single second-order differential equation for the perturbation to the metric coefficient g tt and matching the exterior solution to the asymptotic expansion of the metric in the star's local asymptotic rest frame gives the Love number. Our results agree well with the Newtonian results in the weak field limit. The fully relativistic values differ from the Newtonian values by up to ∼24%. The Love number is potentially measurable in gravitational wave signals from inspiralling binary neutron stars.

  11. The effects of finite mass, adiabaticity, and isothermality in nonlinear plasma wave studies

    Science.gov (United States)

    Hellberg, Manfred A.; Verheest, Frank; Mace, Richard L.

    2018-03-01

    The propagation of arbitrary amplitude ion-acoustic solitons is investigated in a plasma containing cool adiabatic positive ions and hot electrons or negative ions. The latter can be described by polytropic pressure-density relations, both with or without the retention of inertial effects. For analytical tractability, the resulting Sagdeev pseudopotential needs to be expressed in terms of the hot negative species density, rather than the electrostatic potential. The inclusion of inertia is found to have no qualitative effect, but yields quantitative differences that vary monotonically with the mass ratio and the polytropic index. This result contrasts with results for analogous problems involving three species, where it was found that inertia could yield significant qualitative differences. Attention is also drawn to the fact that in the literature there are numerous papers in which species are assumed to behave adiabatically, where the isothermal assumption would be more appropriate. Such an assumption leads to quantitative errors and, in some instances, even qualitative gaps for "reverse polarity" solitons.

  12. Microphysics in the Gamma-Ray Burst Central Engine

    Energy Technology Data Exchange (ETDEWEB)

    Janiuk, Agnieszka, E-mail: agnes@cft.edu.pl [Center for Theoretical Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2017-03-01

    We calculate the structure and evolution of a gamma-ray burst central engine where an accreting torus has formed around the newly born black hole. We study the general relativistic, MHD models and we self-consistently incorporate the nuclear equation of state. The latter accounts for the degeneracy of relativistic electrons, protons, and neutrons, and is used in the dynamical simulation, instead of a standard polytropic γ -law. The EOS provides the conditions for the nuclear pressure in the function of density and temperature, which evolve with time according to the conservative MHD scheme. We analyze the structure of the torus and outflowing winds, and compute the neutrino flux emitted through the nuclear reaction balance in the dense and hot matter. We also estimate the rate of transfer of the black-hole rotational energy to the bipolar jets. Finally, we elaborate on the nucleosynthesis of heavy elements in the accretion flow and the wind, through computations of the thermonuclear reaction network. We discuss the possible signatures of the radioactive element decay in the accretion flow. We suggest that further detailed modeling of the accretion flow in the GRB engine, together with its microphysics, may be a valuable tool to constrain the black-hole mass and spin. It can be complementary to the gravitational wave analysis if the waves are detected with an electromagnetic counterpart.

  13. Gaseous slip flow analysis of a micromachined flow sensor for ultra small flow applications

    Science.gov (United States)

    Jang, Jaesung; Wereley, Steven T.

    2007-02-01

    The velocity slip of a fluid at a wall is one of the most typical phenomena in microscale gas flows. This paper presents a flow analysis considering the velocity slip in a capacitive micro gas flow sensor based on pressure difference measurements along a microchannel. The tangential momentum accommodation coefficient (TMAC) measurements of a particular channel wall in planar microchannels will be presented while the previous micro gas flow studies have been based on the same TMACs on both walls. The sensors consist of a pair of capacitive pressure sensors, inlet/outlet and a microchannel. The main microchannel is 128.0 µm wide, 4.64 µm deep and 5680 µm long, and operated under nearly atmospheric conditions where the outlet Knudsen number is 0.0137. The sensor was fabricated using silicon wet etching, ultrasonic drilling, deep reactive ion etching (DRIE) and anodic bonding. The capacitance change of the sensor and the mass flow rate of nitrogen were measured as the inlet-to-outlet pressure ratio was varied from 1.00 to 1.24. The measured maximum mass flow rate was 3.86 × 10-10 kg s-1 (0.019 sccm) at the highest pressure ratio tested. As the pressure difference increased, both the capacitance of the differential pressure sensor and the flow rate through the main microchannel increased. The laminar friction constant f sdot Re, an important consideration in sensor design, varied from the incompressible no-slip case and the mass sensitivity and resolution of this sensor were discussed. Using the current slip flow formulae, a microchannel with much smaller mass flow rates can be designed at the same pressure ratios.

  14. Flow lab.: flow visualization and simulation

    International Nuclear Information System (INIS)

    Park, Chung Kyun; Cho, Won Jin; Hahn, Pil Soo

    2005-01-01

    The experimental setups for flow visualization and processes identification in laboratory scale (so called Flow Lab.) has developed to get ideas and answer fundamental questions of flow and migration in geologic media. The setup was made of a granite block of 50x50cm scale and a transparent acrylate plate. The tracers used in this experiments were tritiated water, anions, and sorbing cations as well as an organic dye, eosine, to visualize migration paths. The migration plumes were taken with a digital camera as a function of time and stored as digital images. A migration model was also developed to describe and identify the transport processes. Computer simulation was carried out not only for the hydraulic behavior such as distributions of pressure and flow vectors in the fracture but also for the migration plume and the elution curves

  15. Numerical simulation of internal flow in mixed-flow waterjet propulsion

    International Nuclear Information System (INIS)

    Wu, T T; Pan, Z Y; Zhang, D Q; Jia, Y Y

    2012-01-01

    In order to reveal the internal flow characteristic of a mixed-flow waterjet propulsion, a mixed-flow waterjet propulsion under different conditions was simulated based on multi-reference frame(MRF), the standard k − ε turbulent model and SIMPLEC algorithm. The relationship between pump performance instability and internal flow was obtained. The numerical results showed that characteristic instability occurred at 0.65-0.67Q BEP , the reason is that the backflow on the vaned diffuser hub-side blocks the downstream flow from the impeller. Therefore, the flow separates on the pressure surface of the impeller outlet and a strong vortex is generated, then the characteristic instability appeared due to the instability of internal flow. Backflow was found in diffuser passage at 0.65 Q BEP and 0.85 Q BEP , as flow rate decreases, the backflow region and velocity increases. Pressure fluctuation at diffuser inlet and diffuser passages was severe at at 0.65 Q BEP . According to the numerical simulation, the mixed-flow waterjet propulsion has characteristic instability at partial flow rate condition.

  16. Flow visualisation study of spiral flow in the aorta-renal bifurcation.

    Science.gov (United States)

    Fulker, David; Javadzadegan, Ashkan; Li, Zuming; Barber, Tracie

    2017-10-01

    The aim of this study was to analyse the flow dynamics in an idealised model of the aorta-renal bifurcation using flow visualisation, with a particular focus on the effect of aorta-to-renal flow ratio and flow spirality. The recirculation length was longest when there was low flow in the renal artery and smaller in the presence of spiral flow. The results also indicate that patients without spiral flow or who have low flow in the renal artery due to the presence of stenosis may be susceptible to heightened development of atherosclerotic lesions.

  17. A flow meter for ultrasonically measuring the flow velocity of fluids

    DEFF Research Database (Denmark)

    2015-01-01

    The invention regards a flow meter for ultrasonically measuring the flow velocity of fluids comprising a duct having a flow channel with an internal cross section comprising variation configured to generate at least one acoustic resonance within the flow channel for a specific ultrasonic frequency......, and at least two transducers for generating and sensing ultrasonic pulses, configured to transmit ultrasonic pulses at least at said specific ultrasonic frequency into the flow channel such that the ultrasonic pulses propagate through a fluid flowing in the flow channel, wherein the flow meter is configured...

  18. Ferrofluid-in-oil two-phase flow patterns in a flow-focusing microchannel

    Science.gov (United States)

    Sheu, T. S.; Chen, Y. T.; Lih, F. L.; Miao, J. M.

    This study investigates the two-phase flow formation process of water-based Fe3O4 ferrofluid (dispersed phase) in a silicon oil (continuous phase) flow in the microfluidic flow-focusing microchannel under various operational conditions. With transparent PDMS chip and optical microscope, four main two-phase flow patterns as droplet flow, slug flow, ring flow and churn flow are observed. The droplet shape, size, and formation mechanism were also investigated under different Ca numbers and intended to find out the empirical relations. The paper marks an original flow pattern map of the ferrofluid-in-oil flows in the microfluidic flow-focusing microchannels. The flow pattern transiting from droplet flow to slug flow appears for an operational conditions of QR < 1 and Lf / W < 1. The power law index that related Lf / W to QR was 0.36 in present device.

  19. Augmentation of forced flow boiling heat transfer by introducing air flow into subcooled water flow

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ohtake, H.; Yuasa, T.; Matsushita, N.

    2001-01-01

    The effect of air injection into a subcooled water flow on boiling heat transfer and a critical heat flux (CHF) was examined experimentally. Experiments were conducted in the range of subcooling of 50 K, a superficial velocity of water and air Ul = 0.17 ∼ 3.4 and Ug = 0 ∼ 15 m/s, respectively. A test heat transfer surface was a 5 mm wide, 40 mm long and 0.5 mm thick stainless steel sheet embedded on the bottom wall of a 10 mm high and 20 mm wide rectangular flow channel. Nine times enhancement of the heat transfer coefficient in the non-boiling region was attained at the most by introducing an air flow into a water single-phase flow. The heat transfer improvement was prominent when the water flow rate was low and the air introduction was large. The present results of the non-boiling heat transfer were well correlated with the Lockhart-Martinelli parameter X tt ; h TP /h L0 = 5.0(1/ X tt ) 0.5 . The air introduction has some effect on the augmentation of heat transfer in the boiling region, however, the two-phase flow effect was little and the boiling was dominant in the fully developed boiling region. The CHF was improved a little by the air introduction in the high water flow region. However, that was rather greatly reduced in the low flow region. Even so, the general trend by the air introduction was that qCHF increased as the air introduction was increased. The heat transfer augmentation in the non-boiling region was attained by less power increase than that in the case that only the water flow rate was increased. From the aspect of the power consumption and the heat transfer enhancement, the small air introduction in the low water flow rate region seemed more profitable, although the air introduction in the high water flow rate region and also the large air introduction were still effective in the augmentation of the heat transfer in the non-boiling region. (author)

  20. Nakedly singular non-vacuum gravitating equilibrium states

    Science.gov (United States)

    Woszczyna, Andrzej; Kutschera, Marek; Kubis, Sebastian; Czaja, Wojciech; Plaszczyk, Piotr; Golda, Zdzisław A.

    2016-01-01

    Non-vacuum static spherically symmetric spacetimes with central point-like repulsive gravity sources are investigated. Both the symmetries of spacetime and the degree of irregularity of curvature invariants, are the same as for the Schwarzschild case. The equilibrium configurations are modelled using the neutron star polytrope equation of state.

  1. Mechanics of occurrence of critical flow in compressible two-phase flow

    International Nuclear Information System (INIS)

    Katto, Yoshiro; Sudo, Yukio

    1976-01-01

    Fundamental framework of mechanics for the occurrence of critical flow is investigated, following the principle that the critical flow appears as a limit in a continuous change of state of flow along a nozzle (or a pipe) and should be derived only from simultaneous mechanical equations concerned with the flow. Mathematical procedures with which the critical flow: (i) the single phase flow of an arbitrary fluid, unrestricted by the equation of state of ideal gas, where the number of simultaneous equations is equal to the number of independent variables, and (ii) the one-component, separated two-phase flow under saturated condition, where the number of equations exceeds that of variables. In each case, interesting mechanism of leading to the occurrence of a limiting state of flow at a definite cross-section in a nozzle (incl. a pipe) is clarified, and a definite state of flow at the critical cross-section is also determined. Then, the analysis is extended to the critical flow which should appear in the completely isolated and the homogeneously dispersed, two-component, two-phase flow (composed of a compressible and an incompressible substance). It is found that the analyses of these special flow patterns provide several supplementary information to the mechanics of critical flow. (auth.)

  2. Performance of a vanadium redox flow battery with and without flow fields

    International Nuclear Information System (INIS)

    Xu, Q.; Zhao, T.S.; Zhang, C.

    2014-01-01

    Highlights: • The performances of a VRFB with/without flow fields are compared. • The respective maximum power efficiency occurs at different flow rates. • The battery with flow fields Exhibits 5% higher energy efficiency. - Abstract: A flow field is an indispensable component for fuel cells to macroscopically distribute reactants onto electrodes. However, it is still unknown whether flow fields are also required in all-vanadium redox flow batteries (VRFBs). In this work, the performance of a VRFB with flow fields is analyzed and compared with the performance of a VRFB without flow fields. It is demonstrated that the battery with flow fields has a higher discharge voltage at higher flow rates, but exhibits a larger pressure drop. The maximum power-based efficiency occurs at different flow rates for the both batteries with and without flow fields. It is found that the battery with flow fields Exhibits 5% higher energy efficiency than the battery without flow fields, when operating at the flow rates corresponding to each battery's maximum power-based efficiency. Therefore, the inclusion of flow fields in VRFBs can be an effective approach for improving system efficiency

  3. Review of Constructed Subsurface Flow vs. Surface Flow Wetlands

    International Nuclear Information System (INIS)

    HALVERSON, NANCY

    2004-01-01

    The purpose of this document is to use existing documentation to review the effectiveness of subsurface flow and surface flow constructed wetlands in treating wastewater and to demonstrate the viability of treating effluent from Savannah River Site outfalls H-02 and H-04 with a subsurface flow constructed wetland to lower copper, lead and zinc concentrations to within National Pollutant Discharge Elimination System (NPDES) Permit limits. Constructed treatment wetlands are engineered systems that have been designed and constructed to use the natural functions of wetlands for wastewater treatment. Constructed wetlands have significantly lower total lifetime costs and often lower capital costs than conventional treatment systems. The two main types of constructed wetlands are surface flow and subsurface flow. In surface flow constructed wetlands, water flows above ground. Subsurface flow constructed wetlands are designed to keep the water level below the top of the rock or gravel media, thus minimizing human and ecological exposure. Subsurface flow wetlands demonstrate higher rates of contaminant removal per unit of land than surface flow (free water surface) wetlands, therefore subsurface flow wetlands can be smaller while achieving the same level of contaminant removal. Wetlands remove metals using a variety of processes including filtration of solids, sorption onto organic matter, oxidation and hydrolysis, formation of carbonates, formation of insoluble sulfides, binding to iron and manganese oxides, reduction to immobile forms by bacterial activity, and uptake by plants and bacteria. Metal removal rates in both subsurface flow and surface flow wetlands can be high, but can vary greatly depending upon the influent concentrations and the mass loading rate. Removal rates of greater than 90 per cent for copper, lead and zinc have been demonstrated in operating surface flow and subsurface flow wetlands. The constituents that exceed NPDES limits at outfalls H-02 a nd H

  4. A Comparison of Grid-based and SPH Binary Mass-transfer and Merger Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Motl, Patrick M. [Indiana University Kokomo, School of Sciences, P.O. Box 9003, Kokomo, IN 46903-9004 (United States); Frank, Juhan; Clayton, Geoffrey C.; Tohline, Joel E. [Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Baton Rouge, LA 70803-4001 (United States); Staff, Jan [College of Science and Math, University of Virgin Islands, St. Thomas, United States Virgin Islands 00802 (United States); Fryer, Christopher L.; Even, Wesley [Center for Theoretical Astrophysics/CCS-2, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Diehl, Steven, E-mail: pmotl@iuk.edu [TLT-Turbo GmbH, Gleiwitzstrasse 7, 66482 Zweibrücken (Germany)

    2017-04-01

    There is currently a great amount of interest in the outcomes and astrophysical implications of mergers of double degenerate binaries. In a commonly adopted approximation, the components of such binaries are represented by polytropes with an index of n  = 3/2. We present detailed comparisons of stellar mass-transfer and merger simulations of polytropic binaries that have been carried out using two very different numerical algorithms—a finite-volume “grid” code and a smoothed-particle hydrodynamics (SPH) code. We find that there is agreement in both the ultimate outcomes of the evolutions and the intermediate stages if the initial conditions for each code are chosen to match as closely as possible. We find that even with closely matching initial setups, the time it takes to reach a concordant evolution differs between the two codes because the initial depth of contact cannot be matched exactly. There is a general tendency for SPH to yield higher mass transfer rates and faster evolution to the final outcome. We also present comparisons of simulations calculated from two different energy equations: in one series, we assume a polytropic equation of state and in the other series an ideal gas equation of state. In the latter series of simulations, an atmosphere forms around the accretor, which can exchange angular momentum and cause a more rapid loss of orbital angular momentum. In the simulations presented here, the effect of the ideal equation of state is to de-stabilize the binary in both SPH and grid simulations, but the effect is more pronounced in the grid code.

  5. 16 CFR 1507.11 - Party poppers.

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Party poppers. 1507.11 Section 1507.11... FIREWORKS DEVICES § 1507.11 Party poppers. Party poppers (also known by other names such as “Champagne Party Poppers,” and “Party Surprise Poppers,”) shall not contain more than 0.25 grains of pyrotechnic...

  6. Bubbles & Squat

    DEFF Research Database (Denmark)

    Højbjerre Larsen, Signe

    , a new concept called ‘Bubbles & Squat’, where fitness training is combined with Champagne and a live DJ. One of the invitations for this event describes how “we spice up your friday training with live DJ and lots of refreshing bubbles, to make sure that you are ready for the weekend (...).” Before New...

  7. Systematic systemics

    DEFF Research Database (Denmark)

    Cabell, Kenneth R.; Valsiner, Jaan

    2014-01-01

    to stand in for the psyche of all human beings. The rat had no aesthetic attitudes towards the mazes he or she was forced “to run”, nor sophisticated ideas about investment of one’s behavioral capacities for the sake of future gains. The rat did not drink champagne, show herself in fashion shows, construct...

  8. Modelling information flow along the human connectome using maximum flow.

    Science.gov (United States)

    Lyoo, Youngwook; Kim, Jieun E; Yoon, Sujung

    2018-01-01

    The human connectome is a complex network that transmits information between interlinked brain regions. Using graph theory, previously well-known network measures of integration between brain regions have been constructed under the key assumption that information flows strictly along the shortest paths possible between two nodes. However, it is now apparent that information does flow through non-shortest paths in many real-world networks such as cellular networks, social networks, and the internet. In the current hypothesis, we present a novel framework using the maximum flow to quantify information flow along all possible paths within the brain, so as to implement an analogy to network traffic. We hypothesize that the connection strengths of brain networks represent a limit on the amount of information that can flow through the connections per unit of time. This allows us to compute the maximum amount of information flow between two brain regions along all possible paths. Using this novel framework of maximum flow, previous network topological measures are expanded to account for information flow through non-shortest paths. The most important advantage of the current approach using maximum flow is that it can integrate the weighted connectivity data in a way that better reflects the real information flow of the brain network. The current framework and its concept regarding maximum flow provides insight on how network structure shapes information flow in contrast to graph theory, and suggests future applications such as investigating structural and functional connectomes at a neuronal level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Ultrasonic flow meter

    NARCIS (Netherlands)

    Lötters, Joost Conrad; Snijders, G.J.; Volker, A.W.F.

    2014-01-01

    The invention relates to an ultrasonic flow meter comprising a flow tube for the fluid whose flow rate is to be determined. The flow meter comprises a transmitting element for emitting ultrasonic waves, which is provided on the outer jacket of the flow tube. A receiving element, which is provided on

  10. Critical flow rate in a single phase flow. Blocking concept

    International Nuclear Information System (INIS)

    Giot, Michel

    1978-01-01

    After referring to the phenomena accompanying the appearance of a critical flow rate in a nozzle and presenting equations governing single phase flows, the critical condition is defined. Several particular cases are then examined; the horizontal and vertical isentropic flow, Fanno's flow and Raleigh's and the isothermal flow. The entropy deviation is calculated on either side of a normal impact. To conclude, the link existing between the concepts of critical flow and the propagation rate of small perturbations is demonstrated. To do so, the method of perturbations, that of Prandtl and that of characteristic directions are applied in turn [fr

  11. Flow regime classification in air-magnetic fluid two-phase flow.

    Science.gov (United States)

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  12. High rate of destruction of molecular clouds by hot stars

    International Nuclear Information System (INIS)

    Heydari-Malayeri, M.; Lortet, M.C.; Deharveng, L.

    1980-01-01

    Tenorio-Tagle (1979) first proposed the idea of a third dynamical phase, the champagne phase, following the formation and expansion phases of an HII region. The champagne phase begins when the high pressure gas of an HII region formed inside a molecular cloud reaches the edge of the cloud and bursts into the lower pressure, low density, intercloud medium. One important implication of the model is the prediction of an enormous enhancement of the rate of erosion of the molecular cloud by the ionising radiation of hot stars, which begins as soon as the process of the decrease of the gas density between the star and the cloud is started. The proportion of hydrogen molecules eroded by ionising photons may reach about 10 -2 . The mass eroded may exceed the mass of the ionised gas in the case where the ionisation front reaching the edge of the cloud is of D-type. Additional mechanisms (for instance stellar winds), if at work, may even increase the efficiency of the mechanism. (Auth.)

  13. EDH 'Millionaire' in PS Division

    CERN Multimedia

    2001-01-01

    Christmas cheer! Left to right: Gerard Lobeau receives a bottle of Champagne from Derek Mathieson and Jurgen De Jonghe in recognition of EDH's millionth document. At 14:33 on Monday 3 December a technician in PS division, Gerard Lobeau, unwittingly became part of an important event in the life of CERN's Electronic Document Handling system (EDH). While ordering some pieces of aluminum for one of the PS's 10Mhz RF cavities, he created EDH document number 1,000,000. To celebrate the event Derek Mathieson (EDH Project Leader) and Jurgen De Jonghe (Original EDH Project Leader) presented Mr Lobeau with a bottle of champagne. As with 93% of material requests, Mr Lobeau's order was delivered within 24 hours. 'I usually never win anything' said Mr Lobeau as he accepted his prize, 'I initially though there may have been a problem with EDH when the document number had so many zeros in it, and was then surprised to get a phone call from you a few minutes later.' The EDH team had been monitoring the EDH document number ...

  14. Flooding and flow reversal of two-phase annular flow

    International Nuclear Information System (INIS)

    Asahi, Y.

    1978-01-01

    The flooding and flow reversal conditions of two-phase annular flow are mathematically defined in terms of a characteristic function representing a force balance. Sufficiently below the flooding point in counter-current flow, the interface is smooth and the characteristic equation reduces to the Nusselt relationship. Just below flooding point and above the flow reversal point in cocurrent flow, the interface is 'wavy', so that the interfacial shear effect plays an important role. The theoretical analysis is compared with experimental results by others. It is suggested that the various length effects which have been experimentally observed may be accounted for by the spatial variation of the droplet entrainment. (Auth.)

  15. Flow area optimization in point to area or area to point flows

    International Nuclear Information System (INIS)

    Ghodoossi, Lotfollah; Egrican, Niluefer

    2003-01-01

    This paper deals with the constructal theory of generation of shape and structure in flow systems connecting one point to a finite size area. The flow direction may be either from the point to the area or the area to the point. The formulation of the problem remains the same if the flow direction is reversed. Two models are used in optimization of the point to area or area to point flow problem: cost minimization and revenue maximization. The cost minimization model enables one to predict the shape of the optimized flow areas, but the geometric sizes of the flow areas are not predictable. That is, as an example, if the area of flow is a rectangle with a fixed area size, optimization of the point to area or area to point flow problem by using the cost minimization model will only predict the height/length ratio of the rectangle not the height and length itself. By using the revenue maximization model in optimization of the flow problems, all optimized geometric aspects of the interested flow areas will be derived as well. The aim of this paper is to optimize the point to area or area to point flow problems in various elemental flow area shapes and various structures of the flow system (various combinations of elemental flow areas) by using the revenue maximization model. The elemental flow area shapes used in this paper are either rectangular or triangular. The forms of the flow area structure, made up of an assembly of optimized elemental flow areas to obtain bigger flow areas, are rectangle-in-rectangle, rectangle-in-triangle, triangle-in-triangle and triangle-in-rectangle. The global maximum revenue, revenue collected per unit flow area and the shape and sizes of each flow area structure have been derived in optimized conditions. The results for each flow area structure have been compared with the results of the other structures to determine the structure that provides better performance. The conclusion is that the rectangle-in-triangle flow area structure

  16. Experimental study on flow pattern and heat transfer of inverted annular flow

    International Nuclear Information System (INIS)

    Takenaka, Nobuyuki; Akagawa, Koji; Fujii, Terushige; Nishida, Koji

    1990-01-01

    Experimental results are presented on flow pattern and heat transfer in the regions from inverted annular flow to dispersed flow in a vertical tube using freon R-113 as a working fluid at atmospheric pressure to discuss the correspondence between them. Axial distributions of heat transfer coefficient are measured and flow patterns are observed. The heat transfer characteristics are divided into three regions and a heat transfer characteristics map is proposed. The flow pattern changes from inverted annular flow (IAF) to dispersed flow (DF) through inverted slug flow (ISF) for lower inlet velocities and through agitated inverted annular flow (AIAF) for higher inlet velocities. A flow pattern map is obtained which corresponds well with the heat transfer characteristic map. (orig.)

  17. Flow regimes

    International Nuclear Information System (INIS)

    Liles, D.R.

    1982-01-01

    Internal boundaries in multiphase flow greatly complicate fluid-dynamic and heat-transfer descriptions. Different flow regimes or topological configurations can have radically dissimilar interfacial and wall mass, momentum, and energy exchanges. To model the flow dynamics properly requires estimates of these rates. In this paper the common flow regimes for gas-liquid systems are defined and the techniques used to estimate the extent of a particular regime are described. Also, the current computer-code procedures are delineated and introduce a potentially better method is introduced

  18. Simulation of gas compressible flow by free surface water flow

    International Nuclear Information System (INIS)

    Altafini, C.R.; Silva Ferreira, R.T. da

    1981-01-01

    The analogy between the water flow with a free surface and the compressible fluid flow, commonly called hydraulic analogy, is analyzed and its limitations are identified. The water table is the equipment used for this simulation, which allows the quatitative analysis of subsonic and supersonic flow with a low cost apparatus. The hydraulic analogy is applied to subsonic flow around circular cylinders and supersonic flow around cones. The results are compared with available theoretical and experimental data and a good agreement is achieved. (Author) [pt

  19. The LHC's Next Big Mystery

    Science.gov (United States)

    Lincoln, Don

    2015-01-01

    When the sun rose over America on July 4, 2012, the world of science had radically changed. The Higgs boson had been discovered. Mind you, the press releases were more cautious than that, with "a new particle consistent with being the Higgs boson" being the carefully constructed phrase of the day. But, make no mistake, champagne corks…

  20. Spræng boblen

    DEFF Research Database (Denmark)

    Hendricks, Vincent Fella

    Hvad har en dansk Justin Bieber look-a-like, Dovne Robert og frokostfrikadeller – eller mangel på samme – i landets børnehaver til fælles? De kan forstås og forklares med bobleteori. Bortset fra de af slagsen, der laves af sæbe eller findes i champagne, forbindes bobler typisk med situationer i...

  1. Experimental study on flow pattern transitions for inclined two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Nam Yee; Lee, Jae Young [Handong Univ., Pohang (Korea, Republic of); Kim, Man Woong [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2007-07-01

    In this paper, experimental data on flow pattern transition of inclination angles from 0-90 are presented. A test section is constructed 2 mm long and I.D 1inch using transparent material. The test section is supported by aluminum frame that can be placed with any arbitrary inclined angles. The air-water two-phase flow is observed at room temperature and atmospheric condition using both high speed camera and void impedance meter. The signal is sampled with sampling rate 1kHz and is analyzed under fully-developed condition. Based on experimental data, flow pattern maps are made for various inclination angles. As increasing the inclination angels from 0 to 90, the flow pattern transitions on the plane jg-jf are changed, such as stratified flow to plug flow or slug flow or plug flow to bubbly flow. The transition lines between pattern regimes are moved or sometimes disappeared due to its inclined angle.

  2. Advanced porous electrodes with flow channels for vanadium redox flow battery

    Science.gov (United States)

    Bhattarai, Arjun; Wai, Nyunt; Schweiss, Ruediger; Whitehead, Adam; Lim, Tuti M.; Hng, Huey Hoon

    2017-02-01

    Improving the overall energy efficiency by reducing pumping power and improving flow distribution of electrolyte, is a major challenge for developers of flow batteries. The use of suitable channels can improve flow distribution through the electrodes and reduce flow resistance, hence reducing the energy consumption of the pumps. Although several studies of vanadium redox flow battery have proposed the use of bipolar plates with flow channels, similar to fuel cell designs, this paper presents the use of flow channels in the porous electrode as an alternative approach. Four types of electrodes with channels: rectangular open channel, interdigitated open cut channel, interdigitated circular poked channel and cross poked circular channels, are studied and compared with a conventional electrode without channels. Our study shows that interdigitated open channels can improve the overall energy efficiency up to 2.7% due to improvement in flow distribution and pump power reduction while interdigitated poked channel can improve up to 2.5% due to improvement in flow distribution.

  3. Dynamics of lava flow - Thickness growth characteristics of steady two-dimensional flow

    Science.gov (United States)

    Park, S.; Iversen, J. D.

    1984-01-01

    The thickness growth characteristics of flowing lava are investigated using a heat balance model and a two-dimensional model for flow of a Bingham plastic fluid down an inclined plane. It is found that yield strength plays a crucial role in the thickening of a lava flow of given flow rate. To illustrate this point, downstream thickness profiles and yield strength distributions were calculated for flows with mass flow rates of 10,000 and 100,000 kg/m-sec. Higher flow rates led to slow cooling rates which resulted in slow rate of increase of yield strength and thus greater flow lengths.

  4. The study on flow characteristics of butterfly valve using flow visualization

    International Nuclear Information System (INIS)

    Yang, S. M.; Hong, S. D.; Song, D. S.; Park, J. K.; Park, J. I.; Shin, S. K.; Kim, H. J.

    2005-01-01

    Flow visualization of butterfly valve is tested for four types(15 deg., 30 .deg., 45 .deg., and 90 .deg.) of valve opening angle. The inner flow characteristics of valve are studied. The flow variation was measured using a high speed camera which takes 500 frames per second with 1024 x 1024 pixels. These captured images were used for calculation to analyze two dimensional flow velocity of the valve. The smaller opening angle, the more increasing the differential pressure of a butterfly valve. Therefore, we know that the complex flow is occurred by increasing the differential pressure. And it is found that the flowing backward is more increased according to the increase of the opening angle of a butterfly valve. However, its flow pattern is similar to a simple pipe flow when the opening angle is 90 .deg.

  5. Cloud-processed 4D CMR flow imaging for pulmonary flow quantification

    Energy Technology Data Exchange (ETDEWEB)

    Chelu, Raluca G., E-mail: ralucachelu@hotmail.com [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Wanambiro, Kevin W. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Radiology, Aga Khan University Hospital, Nairobi (Kenya); Hsiao, Albert [Department of Radiology, University of California, San Diego, CA (United States); Swart, Laurens E. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Voogd, Teun [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Hoven, Allard T. van den; Kranenburg, Matthijs van [Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Coenen, Adriaan [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Boccalini, Sara [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Radiology, University Hospital, Genoa (Italy); Wielopolski, Piotr A. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Vogel, Mika W. [MR Applications and Workflow – Europe, GE Healthcare B.V. Hoevelaken (Netherlands); Krestin, Gabriel P. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Vasanawala, Shreyas S. [Department of Radiology, Stanford University, Stanford, CA (United States); Budde, Ricardo P.J. [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Roos-Hesselink, Jolien W. [Department of Cardiology, Erasmus MC, Rotterdam (Netherlands); Nieman, Koen [Department of Radiology, Erasmus MC, Rotterdam (Netherlands); Department of Cardiology, Erasmus MC, Rotterdam (Netherlands)

    2016-10-15

    Highlights: • With 4D flow, any plane of interest can be interactively chosen for quantitative measurements. • Anatomical and flow data are obtained during an approximately 10-min free-breathing scan. • 4D CMR flow measurements correlated well with the 2D PC ones. • Eddy current correction is important for good results with 4D flow. - Abstract: Objectives: In this study, we evaluated a cloud-based platform for cardiac magnetic resonance (CMR) four-dimensional (4D) flow imaging, with fully integrated correction for eddy currents, Maxwell phase effects, and gradient field non-linearity, to quantify forward flow, regurgitation, and peak systolic velocity over the pulmonary artery. Methods: We prospectively recruited 52 adult patients during one-year period from July 2014. The 4D flow and planar (2D) phase-contrast (PC) were acquired during same scanning session, but 4D flow was scanned after injection of a gadolinium-based contrast agent. Eddy-currents were semi-automatically corrected using the web-based software. Flow over pulmonary valve was measured and the 4D flow values were compared against the 2D PC ones. Results: The mean forward flow was 92 (±30) ml/cycle measured with 4D flow and 86 (±29) ml/cycle measured with 2D PC, with a correlation of 0.82 and a mean difference of −6 ml/cycle (−41–29). For the regurgitant fraction the correlation was 0.85 with a mean difference of −0.95% (−17–15). Mean peak systolic velocity measured with 4D flow was 92 (±49) cm/s and 108 (±56) cm/s with 2D PC, having a correlation of 0.93 and a mean difference of 16 cm/s (−24–55). Conclusion: 4D flow imaging post-processed with an integrated cloud-based application accurately quantifies pulmonary flow. However, it may underestimate the peak systolic velocity.

  6. Cloud-processed 4D CMR flow imaging for pulmonary flow quantification

    International Nuclear Information System (INIS)

    Chelu, Raluca G.; Wanambiro, Kevin W.; Hsiao, Albert; Swart, Laurens E.; Voogd, Teun; Hoven, Allard T. van den; Kranenburg, Matthijs van; Coenen, Adriaan; Boccalini, Sara; Wielopolski, Piotr A.; Vogel, Mika W.; Krestin, Gabriel P.; Vasanawala, Shreyas S.; Budde, Ricardo P.J.; Roos-Hesselink, Jolien W.; Nieman, Koen

    2016-01-01

    Highlights: • With 4D flow, any plane of interest can be interactively chosen for quantitative measurements. • Anatomical and flow data are obtained during an approximately 10-min free-breathing scan. • 4D CMR flow measurements correlated well with the 2D PC ones. • Eddy current correction is important for good results with 4D flow. - Abstract: Objectives: In this study, we evaluated a cloud-based platform for cardiac magnetic resonance (CMR) four-dimensional (4D) flow imaging, with fully integrated correction for eddy currents, Maxwell phase effects, and gradient field non-linearity, to quantify forward flow, regurgitation, and peak systolic velocity over the pulmonary artery. Methods: We prospectively recruited 52 adult patients during one-year period from July 2014. The 4D flow and planar (2D) phase-contrast (PC) were acquired during same scanning session, but 4D flow was scanned after injection of a gadolinium-based contrast agent. Eddy-currents were semi-automatically corrected using the web-based software. Flow over pulmonary valve was measured and the 4D flow values were compared against the 2D PC ones. Results: The mean forward flow was 92 (±30) ml/cycle measured with 4D flow and 86 (±29) ml/cycle measured with 2D PC, with a correlation of 0.82 and a mean difference of −6 ml/cycle (−41–29). For the regurgitant fraction the correlation was 0.85 with a mean difference of −0.95% (−17–15). Mean peak systolic velocity measured with 4D flow was 92 (±49) cm/s and 108 (±56) cm/s with 2D PC, having a correlation of 0.93 and a mean difference of 16 cm/s (−24–55). Conclusion: 4D flow imaging post-processed with an integrated cloud-based application accurately quantifies pulmonary flow. However, it may underestimate the peak systolic velocity.

  7. Boolean logic analysis for flow regime recognition of gas–liquid horizontal flow

    International Nuclear Information System (INIS)

    Ramskill, Nicholas P; Wang, Mi

    2011-01-01

    In order to develop a flowmeter for the accurate measurement of multiphase flows, it is of the utmost importance to correctly identify the flow regime present to enable the selection of the optimal method for metering. In this study, the horizontal flow of air and water in a pipeline was studied under a multitude of conditions using electrical resistance tomography but the flow regimes that are presented in this paper have been limited to plug and bubble air–water flows. This study proposes a novel method for recognition of the prevalent flow regime using only a fraction of the data, thus rendering the analysis more efficient. By considering the average conductivity of five zones along the central axis of the tomogram, key features can be identified, thus enabling the recognition of the prevalent flow regime. Boolean logic and frequency spectrum analysis has been applied for flow regime recognition. Visualization of the flow using the reconstructed images provides a qualitative comparison between different flow regimes. Application of the Boolean logic scheme enables a quantitative comparison of the flow patterns, thus reducing the subjectivity in the identification of the prevalent flow regime

  8. How is flow experienced and by whom? Testing flow among occupations.

    Science.gov (United States)

    Llorens, Susana; Salanova, Marisa; Rodríguez, Alma M

    2013-04-01

    The aims of this paper are to test (1) the factorial structure of the frequency of flow experience at work; (2) the flow analysis model in work settings by differentiating the frequency of flow and the frequency of its prerequisites; and (3) whether there are significant differences in the frequency of flow experience depending on the occupation. A retrospective study among 957 employees (474 tile workers and 483 secondary school teachers) using multigroup confirmatory factorial analyses and multiple analyses of variance suggested that on the basis of the flow analysis model in work settings, (1) the frequency of flow experience has a two-factor structure (enjoyment and absorption); (2) the frequency of flow experience at work is produced when both challenge and skills are high and balanced; and (3) secondary school teachers experience flow more frequently than tile workers. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Internal Flow of a High Specific-Speed Diagonal-Flow Fan (Rotor Outlet Flow Fields with Rotating Stall

    Directory of Open Access Journals (Sweden)

    Norimasa Shiomi

    2003-01-01

    Full Text Available We carried out investigations for the purpose of clarifying the rotor outlet flow fields with rotating stall cell in a diagonal-flow fan. The test fan was a high–specific-speed (ns=1620 type of diagonal-flow fan that had 6 rotor blades and 11 stator blades. It has been shown that the number of the stall cell is 1, and its propagating speed is approximately 80% of its rotor speed, although little has been known about the behavior of the stall cell because a flow field with a rotating stall cell is essentially unsteady. In order to capture the behavior of the stall cell at the rotor outlet flow fields, hot-wire surveys were performed using a single-slant hotwire probe. The data obtained by these surveys were processed by means of a double phase-locked averaging technique, which enabled us to capture the flow field with the rotating stall cell in the reference coordinate system fixed to the rotor. As a result, time-dependent ensemble averages of the three-dimensional velocity components at the rotor outlet flow fields were obtained. The behavior of the stall cell was shown for each velocity component, and the flow patterns on the meridional planes were illustrated.

  10. Pramana – Journal of Physics | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Nevertheless it remains true, I believe, that analytical mathematical entities like polytropes are fundamental as aids for understanding what the computers churn out. How close are we to seeing a book with the title `The Last Word on the Study of Stellar Structure'? Not very, although much has been learned in 70 years.

  11. Flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion

    International Nuclear Information System (INIS)

    Yuan, Hongsheng; Tan, Sichao; Zhuang, Nailiang; Lan, Shu

    2016-01-01

    Highlights: • Flow and heat transfer experiment in transitional flow regime under rolling motion. • Increases of average friction factor and Nu were found. • Periodic breakdown of laminar flow contributes to the increase. • Nonlinear variation of pressure drop or Nu with Re also contributes to the increase. • Effect of critical Reynolds number shift was discussed. - Abstract: Flow and heat transfer characteristics under rolling motion are extremely important to thermohydraulic analysis of offshore nuclear reactors. An experimental study was conducted in a heated rectangular channel to investigate flow and heat transfer in laminar–turbulent transitional flow regime under rolling motion. The results showed that the average friction factor and Nusselt number are higher than that of the corresponding steady flow as the flow rate fluctuates in transitional flow regime. Larger relative flow rate fluctuation was observed under larger rolling amplitude or higher rolling frequency. In the same manner, larger increases of average friction factor and Nusselt number were achieved under larger rolling amplitude or higher rolling frequency. The increases were mainly caused by the flow rate fluctuation through periodic breakdown of laminar flow and development of turbulence in laminar–turbulent transitional flow regime. First, turbulence, which enhances the rate of momentum and energy exchange, occurs near the crest of flow rate wave even the flow is still in laminar flow regime according to the average Reynolds number. Second, as a result of rapid increases of the friction and heat transfer with Reynolds number in transitional flow regime, the increases of the friction and the heat transfer near the crest of flow rate wave are larger than the decreases of them near the trough of flow rate wave, which also contributes to increases of average friction and heat transfer. Additionally, the effect of critical Reynolds number shift under unsteady flow and heating

  12. A solution algorithm for fluid-particle flows across all flow regimes

    Science.gov (United States)

    Kong, Bo; Fox, Rodney O.

    2017-09-01

    Many fluid-particle flows occurring in nature and in technological applications exhibit large variations in the local particle volume fraction. For example, in circulating fluidized beds there are regions where the particles are close-packed as well as very dilute regions where particle-particle collisions are rare. Thus, in order to simulate such fluid-particle systems, it is necessary to design a flow solver that can accurately treat all flow regimes occurring simultaneously in the same flow domain. In this work, a solution algorithm is proposed for this purpose. The algorithm is based on splitting the free-transport flux solver dynamically and locally in the flow. In close-packed to moderately dense regions, a hydrodynamic solver is employed, while in dilute to very dilute regions a kinetic-based finite-volume solver is used in conjunction with quadrature-based moment methods. To illustrate the accuracy and robustness of the proposed solution algorithm, it is implemented in OpenFOAM for particle velocity moments up to second order, and applied to simulate gravity-driven, gas-particle flows exhibiting cluster-induced turbulence. By varying the average particle volume fraction in the flow domain, it is demonstrated that the flow solver can handle seamlessly all flow regimes present in fluid-particle flows.

  13. Load flow optimization and optimal power flow

    CERN Document Server

    Das, J C

    2017-01-01

    This book discusses the major aspects of load flow, optimization, optimal load flow, and culminates in modern heuristic optimization techniques and evolutionary programming. In the deregulated environment, the economic provision of electrical power to consumers requires knowledge of maintaining a certain power quality and load flow. Many case studies and practical examples are included to emphasize real-world applications. The problems at the end of each chapter can be solved by hand calculations without having to use computer software. The appendices are devoted to calculations of line and cable constants, and solutions to the problems are included throughout the book.

  14. Study on boiling heat transfer of subcooled flow under oscillatory flow condition

    International Nuclear Information System (INIS)

    Ohtake, Hiroyasu; Yamazaki, Satoshi; Koizumi, Yasuo

    2004-01-01

    The Onset of Nucleate Boiling, the point of Net Vapor Generation and Critical Heat Flux on subcooled flow boiling under oscillatory flow, focusing on liquid velocity, amplitude and frequency of oscillatory flow were investigated experimentally and analytically. Experiments were conducted using a copper thin-film and subcooled water in a range of the liquid velocity from 0.27 to 4.07 m/s at 0.10MPa. The liquid subcooling was 20K. Frequency of oscillatory flow was 2 and 4 Hz, respectively; amplitude of oscillatory flow was 25 and 50% in a ratio of main flow rate, respectively. Temperatures at Onset of Nuclear Boiling and Critical Heat Flux obtained in the experiments decreased with the oscillatory flow. The decrease of liquid velocity by oscillatory flow caused the ONB and the CHF to decrease. On the other hand, heat flux at Net Vapor Generation decreased with oscillatory flow; the increase of liquid velocity by oscillatory flow caused the NVG to decrease. (author)

  15. Measurements of flow-rate transients in one-phase liquid flow

    International Nuclear Information System (INIS)

    Mueller-Roos, J.

    1975-01-01

    A report is given on a method to determine flow-rate transients in a one-phase flow. Periodic temperature signals are superposed on the flow, from which flow times are calculated through correlation each over a half period. The evaluation is carried out according to the digitalization 'off-line' on a large computer. Rate peaks of over 100% within 1.9 s were qualitatively and quantitatively well represented. (orig./LH) [de

  16. Flow visualization of two-phase flows using photochromic dye activation method

    International Nuclear Information System (INIS)

    Kawaji, M.; Ahmad, W.; DeJesus, J.M.; Sutharshan, B.; Lorencez, C.; Ojha, M.

    1993-01-01

    A non-intrusive flow visualization technique based on light activation of photochromic dye material has been used to obtain velocity profiles in gas-liquid flows including annular, slug and stratified flows. The preliminary results revealed several important two-phase flow mechanisms that have not been clearly seen previously. (orig.)

  17. Radioisotopic flow scanning for portal blood flow and portal hypertension

    International Nuclear Information System (INIS)

    Hesdorffer, C.S.; Bezwoda, W.R.; Danilewitz, M.D.; Esser, J.D.; Tobias, M.

    1987-01-01

    The use of a simple, noninvasive, isotope scanning technique for the determination of relative portal blood flow and detection of portal hypertension is described. Using this technique the presence of portal hypertension was demonstrated in seven of nine patients known to have elevated portal venous pressure. By contrast, esophageal varices were demonstrated in only five of these patients, illustrating the potential value of the method. Furthermore, this technique has been adapted to the study of portal blood flow in patients with myeloproliferative disorders with splenomegaly but without disturbances in hepatic architecture. Results demonstrate that the high relative splenic flow resulting from the presence of splenomegaly may in turn be associated with elevated relative portal blood flow and portal hypertension. The theoretic reasons for the development of flow-related portal hypertension and its relationship to splenic blood flow are discussed

  18. Water flow experiments and analyses on the cross-flow type mercury target model with the flow guide plates

    CERN Document Server

    Haga, K; Kaminaga, M; Hino, R

    2001-01-01

    A mercury target is used in the spallation neutron source driven by a high-intensity proton accelerator. In this study, the effectiveness of the cross-flow type mercury target structure was evaluated experimentally and analytically. Prior to the experiment, the mercury flow field and the temperature distribution in the target container were analyzed assuming a proton beam energy and power of 1.5 GeV and 5 MW, respectively, and the feasibility of the cross-flow type target was evaluated. Then the average water flow velocity field in the target mock-up model, which was fabricated from Plexiglass for a water experiment, was measured at room temperature using the PIV technique. Water flow analyses were conducted and the analytical results were compared with the experimental results. The experimental results showed that the cross-flow could be realized in most of the proton beam path area and the analytical result of the water flow velocity field showed good correspondence to the experimental results in the case w...

  19. Rheology of dense granular flows in two dimensions: Comparison of fully two-dimensional flows to unidirectional shear flow

    Science.gov (United States)

    Bhateja, Ashish; Khakhar, Devang V.

    2018-06-01

    We consider the rheology of steady two-dimensional granular flows, in different geometries, using discrete element method-based simulations of soft spheres. The flow classification parameter (ψ ), which defines the local flow type (ranging from pure rotation to simple shear to pure extension), varies spatially, to a significant extent, in the flows. We find that the material behaves as a generalized Newtonian fluid. The μ -I scaling proposed by Jop et al. [Nature (London) 441, 727 (2006), 10.1038/nature04801] is found to be valid in both two-dimensional and unidirectional flows, as observed in previous studies; however, the data for each flow geometry fall on a different curve. The results for the two-dimensional silo flow indicate that the viscosity does not depend directly on the flow type parameter, ψ . We find that the scaling based on "granular fluidity" [Zhang and Kamrin, Phys. Rev. Lett. 118, 058001 (2017), 10.1103/PhysRevLett.118.058001] gives good collapse of the data to a single curve for all the geometries. The data for the variation of the solid faction with inertial number show a reasonable collapse for the different geometries.

  20. Effect of wall wettability on flow characteristics of gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Uematsu, Junichi; Abe, Kazuya; Hazuku, Tatsuya; Takamasa, Tomoji; Hibiki, Takashi

    2007-01-01

    To evaluate the effect of surface wettability in pipe wall on flow characteristics in a vertical upward gas-liquid to-phase flow, visualization study was performed using three test pipes, namely an acrylic pipe, a hydrophilic pipe, a hydrophobic pipe. Such basic flow characteristics as flow patterns and void fraction were investigated in these three pipes. In the hydrophilic pipe, the slug flow-to-churn flow transition boundary was shifted to higher gas velocity condition at a given liquid velocity, whereas the churn flow-to-annular flow transition boundary was shifted to lower gas velocity condition at a given liquid velocity. In the hydrophobic pipe, the inverted-churn flow regime was observed in the region where the churn flow regime was observed in the acrylic pipe, whereas the droplet flow regime was observed in the region where the annular flow regime was observed in the acrylic pipe. At high-gas flow rate condition, the mean void fraction in the hydrophobic pipe took relatively higher value to that in the acrylic pipe. (author)

  1. Flow Diode and Method for Controlling Fluid Flow Origin of the Invention

    Science.gov (United States)

    Dyson, Rodger W (Inventor)

    2015-01-01

    A flow diode configured to permit fluid flow in a first direction while preventing fluid flow in a second direction opposite the first direction is disclosed. The flow diode prevents fluid flow without use of mechanical closures or moving parts. The flow diode utilizes a bypass flowline whereby all fluid flow in the second direction moves into the bypass flowline having a plurality of tortuous portions providing high fluidic resistance. The portions decrease in diameter such that debris in the fluid is trapped. As fluid only travels in one direction through the portions, the debris remains trapped in the portions.

  2. Intelligent Flow Control Valve

    Science.gov (United States)

    Kelley, Anthony R (Inventor)

    2015-01-01

    The present invention is an intelligent flow control valve which may be inserted into the flow coming out of a pipe and activated to provide a method to stop, measure, and meter flow coming from the open or possibly broken pipe. The intelligent flow control valve may be used to stop the flow while repairs are made. Once repairs have been made, the valve may be removed or used as a control valve to meter the amount of flow from inside the pipe. With the addition of instrumentation, the valve may also be used as a variable area flow meter and flow controller programmed based upon flowing conditions. With robotic additions, the valve may be configured to crawl into a desired pipe location, anchor itself, and activate flow control or metering remotely.

  3. Biomolecular Nano-Flow-Sensor to Measure Near-Surface Flow

    Directory of Open Access Journals (Sweden)

    Noji Hiroyuki

    2009-01-01

    Full Text Available Abstract We have proposed and experimentally demonstrated that the measurement of the near-surface flow at the interface between a liquid and solid using a 10 nm-sized biomolecular motor of F1-ATPase as a nano-flow-sensor. For this purpose, we developed a microfluidic test-bed chip to precisely control the liquid flow acting on the F1-ATPase. In order to visualize the rotation of F1-ATPase, several hundreds nanometer-sized particle was immobilized at the rotational axis of F1-ATPase to enhance the rotation to be detected by optical microscopy. The rotational motion of F1-ATPase, which was immobilized on an inner surface of the test-bed chip, was measured to obtain the correlation between the near-surface flow and the rotation speed of F1-ATPase. As a result, we obtained the relationship that the rotation speed of F1-ATPase was linearly decelerated with increasing flow velocity. The mechanism of the correlation between the rotation speed and the near-surface flow remains unclear, however the concept to use biomolecule as a nano-flow-sensor was proofed successfully. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9479-3 contains supplementary material, which is available to authorized users. Click here for file

  4. Signal flow analysis

    CERN Document Server

    Abrahams, J R; Hiller, N

    1965-01-01

    Signal Flow Analysis provides information pertinent to the fundamental aspects of signal flow analysis. This book discusses the basic theory of signal flow graphs and shows their relation to the usual algebraic equations.Organized into seven chapters, this book begins with an overview of properties of a flow graph. This text then demonstrates how flow graphs can be applied to a wide range of electrical circuits that do not involve amplification. Other chapters deal with the parameters as well as circuit applications of transistors. This book discusses as well the variety of circuits using ther

  5. Separation of flow

    CERN Document Server

    Chang, Paul K

    2014-01-01

    Interdisciplinary and Advanced Topics in Science and Engineering, Volume 3: Separation of Flow presents the problem of the separation of fluid flow. This book provides information covering the fields of basic physical processes, analyses, and experiments concerning flow separation.Organized into 12 chapters, this volume begins with an overview of the flow separation on the body surface as discusses in various classical examples. This text then examines the analytical and experimental results of the laminar boundary layer of steady, two-dimensional flows in the subsonic speed range. Other chapt

  6. Map of fluid flow in fractal porous medium into fractal continuum flow.

    Science.gov (United States)

    Balankin, Alexander S; Elizarraraz, Benjamin Espinoza

    2012-05-01

    This paper is devoted to fractal continuum hydrodynamics and its application to model fluid flows in fractally permeable reservoirs. Hydrodynamics of fractal continuum flow is developed on the basis of a self-consistent model of fractal continuum employing vector local fractional differential operators allied with the Hausdorff derivative. The generalized forms of Green-Gauss and Kelvin-Stokes theorems for fractional calculus are proved. The Hausdorff material derivative is defined and the form of Reynolds transport theorem for fractal continuum flow is obtained. The fundamental conservation laws for a fractal continuum flow are established. The Stokes law and the analog of Darcy's law for fractal continuum flow are suggested. The pressure-transient equation accounting the fractal metric of fractal continuum flow is derived. The generalization of the pressure-transient equation accounting the fractal topology of fractal continuum flow is proposed. The mapping of fluid flow in a fractally permeable medium into a fractal continuum flow is discussed. It is stated that the spectral dimension of the fractal continuum flow d(s) is equal to its mass fractal dimension D, even when the spectral dimension of the fractally porous or fissured medium is less than D. A comparison of the fractal continuum flow approach with other models of fluid flow in fractally permeable media and the experimental field data for reservoir tests are provided.

  7. Reverse Flow Engine Core Having a Ducted Fan with Integrated Secondary Flow Blades

    Science.gov (United States)

    Kisska, Michael K. (Inventor); Princen, Norman H. (Inventor); Kuehn, Mark S. (Inventor); Cosentino, Gary B. (Inventor)

    2014-01-01

    Secondary air flow is provided for a ducted fan having a reverse flow turbine engine core driving a fan blisk. The fan blisk incorporates a set of thrust fan blades extending from an outer hub and a set of integral secondary flow blades extending intermediate an inner hub and the outer hub. A nacelle provides an outer flow duct for the thrust fan blades and a secondary flow duct carries flow from the integral secondary flow blades as cooling air for components of the reverse flow turbine engine.

  8. Stream function method for computing steady rotational transonic flows with application to solar wind-type problems

    International Nuclear Information System (INIS)

    Kopriva, D.A.

    1982-01-01

    A numerical scheme has been developed to solve the quasilinear form of the transonic stream function equation. The method is applied to compute steady two-dimensional axisymmetric solar wind-type problems. A single, perfect, non-dissipative, homentropic and polytropic gas-dynamics is assumed. The four equations governing mass and momentum conservation are reduced to a single nonlinear second order partial differential equation for the stream function. Bernoulli's equation is used to obtain a nonlinear algebraic relation for the density in terms of stream function derivatives. The vorticity includes the effects of azimuthal rotation and Bernoulli's function and is determined from quantities specified on boundaries. The approach is efficient. The number of equations and independent variables has been reduced and a rapid relaxation technique developed for the transonic full potential equation is used. Second order accurate central differences are used in elliptic regions. In hyperbolic regions a dissipation term motivated by the rotated differencing scheme of Jameson is added for stability. A successive-line-overrelaxation technique also introduced by Jameson is used to solve the equations. The nonlinear equation for the density is a double valued function of the stream function derivatives. The velocities are extrapolated from upwind points to determine the proper branch and Newton's method is used to iteratively compute the density. This allows accurate solutions with few grid points

  9. Secular instability of axisymmetric rotating stars to gravitational radiation reaction

    International Nuclear Information System (INIS)

    Managan, R.A.

    1985-01-01

    A generalization of the Eulerian variational principle derived by Ipser and Managan, for nonaxisymmetric neutral modes of axisymmetric fluid configurations, is developed. The principle provides a variational basis for calculating the frequencies of nonaxisymmetric normal modes proportional to e/sup i/(sigmat + mphi). A modified form of this principle, valid for sigma near 0, is also developed. The latter principle is used to locate the points where the frequency of a nonaxisymmetric normal mode of an axisymmetric rotating fluid configuration passes through zero. lt is at these points that the configuration becomes secularly unstable to gravitational radiation reaction (GRR). This is demonstrated directly by including the GRR potential and showing that the imaginary part of sigma passes through zero and becomes negative at these points. The imaginary part of the frequency is used to estimate the e-folding time of the mode. This variational principle is applied to sequences of rotating polytropes. The sequences are constructed using four rotation laws at each value of the polytropic index n = 0.5, 1.0, 1.5, 2.0, and 3.0. The values of (T/W)/sub m/, the ratio of the rotational kinetic energy to the magnitude of the gravitational potential energy at the onset of instability, and timescales for the modes with m = 2, 3, and 4 are estimated for each sequence. The value of (T/W) 2 is largely independent of the equation of state and rotation law. For m > 2, (T/W)/sub m/ decreases as the equation of state becomes softer, i.e., as the polytropic index n increases, and increases as the amount of differential rotation increases. The most striking result of this behavior occurs for uniform rotation

  10. Critical heat flux and flow pattern for water flow in annular geometry

    International Nuclear Information System (INIS)

    Park, Jae Wook; Baek, Won Pil; Chang, Soon Heung

    1996-01-01

    An experimental study on critical heat flux (CHF) and two-phase flow visualization has been performed for water flow in internally-heated, vertical, concentric annuli under near atmospheric pressure. Tests have been done under stable forced-circulation, upward and downward flow conditions with three test sections of relatively large gap widths (heated length = 0.6 m, inner diameter = 19 mm, outer diameter = 29, 35 and 51 mm). The outer wall of the test section was made up of the transparent Pyrex tube to allow the observation of flow patterns near the CHF occurrence. The CHF mechanism was changed in the order of flooding, churn-to-annular flow transition, and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. Observed parametric trends are consistent with the previous understanding except that the CHF for downward flow is considerably lower than that for upward flow

  11. Dynamic Modeling Strategy for Flow Regime Transition in Gas-Liquid Two-Phase Flows

    Directory of Open Access Journals (Sweden)

    Xia Wang

    2012-12-01

    Full Text Available In modeling gas-liquid two-phase flows, the concept of flow regimes has been widely used to characterize the global interfacial structure of the flows. Nearly all constitutive relations that provide closures to the interfacial transfers in two-phase flow models, such as the two-fluid model, are flow regime dependent. Current nuclear reactor safety analysis codes, such as RELAP5, classify flow regimes using flow regime maps or transition criteria that were developed for steady-state, fully-developed flows. As two-phase flows are dynamic in nature, it is important to model the flow regime transitions dynamically to more accurately predict the two-phase flows. The present work aims to develop a dynamic modeling strategy to determine flow regimes in gas-liquid two-phase flows through introduction of interfacial area transport equations (IATEs within the framework of a two-fluid model. The IATE is a transport equation that models the interfacial area concentration by considering the creation of the interfacial area, fluid particle (bubble or liquid droplet disintegration, boiling and evaporation, and the destruction of the interfacial area, fluid particle coalescence and condensation. For flow regimes beyond bubbly flows, a two-group IATE has been proposed, in which bubbles are divided into two groups based on their size and shapes, namely group-1 and group-2 bubbles. A preliminary approach to dynamically identify the flow regimes is discussed, in which discriminators are based on the predicted information, such as the void fraction and interfacial area concentration. The flow regime predicted with this method shows good agreement with the experimental observations.

  12. Performance analysis of flow lines with non-linear flow of material

    CERN Document Server

    Helber, Stefan

    1999-01-01

    Flow line design is one of the major tasks in production management. The decision to install a set of machines and buffers is often highly irreversible. It determines both cost and revenue to a large extent. In order to assess the economic impact of any possible flow line design, production rates and inventory levels have to be estimated. These performance measures depend on the allocation of buffers whenever the flow of material is occasionally disrupted, for example due to machine failures or quality problems. The book describes analytical methods that can be used to evaluate flow lines much faster than with simulation techniques. Based on these fast analytical techniques, it is possible to determine a flow line design that maximizes the net present value of the flow line investment. The flow of material through the line may be non-linear, for example due to assembly operations or quality inspections.

  13. Flowing dusty plasma experiments: generation of flow and measurement techniques

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  14. Introduction to compressible fluid flow

    CERN Document Server

    Oosthuizen, Patrick H

    2013-01-01

    IntroductionThe Equations of Steady One-Dimensional Compressible FlowSome Fundamental Aspects of Compressible FlowOne-Dimensional Isentropic FlowNormal Shock WavesOblique Shock WavesExpansion Waves - Prandtl-Meyer FlowVariable Area FlowsAdiabatic Flow with FrictionFlow with Heat TransferLinearized Analysis of Two-Dimensional Compressible FlowsHypersonic and High-Temperature FlowsHigh-Temperature Gas EffectsLow-Density FlowsBibliographyAppendices

  15. Low-frequency linear waves and instabilities in uniform and stratified plasmas: the role of kinetic effects

    Directory of Open Access Journals (Sweden)

    K. M. Ferrière

    2004-01-01

    Full Text Available We review the basic approximations underlying magnetohydrodynamic (MHD theory, with special emphasis on the closure approximations, i.e. the approximations used in any fluid approach to close the hierarchy of moment equations. We then present the main closure models that have been constructed for collisionless plasmas in the large-scale regime, and we describe our own mixed MHD-kinetic model, which is designed to study low-frequency linear waves and instabilities in collisionless plasmas. We write down the full dispersion relation in a new, general form, which gathers all the specific features of our MHD-kinetic model into four polytropic indices, and which can be applied to standard adiabatic MHD and to double-adiabatic MHD through a simple change in the expressions of the polytropic indices. We study the mode solutions and the stability properties of the full dispersion relation in each of these three theories, first in the case of a uniform plasma, and then in the case of a stratified plasma. In both cases, we show how the results are affected by the collisionless nature of the plasma.

  16. JPRS Report, Science & Technology, Europe, Economic Competitiveness

    Science.gov (United States)

    1992-01-30

    development groups: food products, construction/housing, health and transportation. These areas make up a large part of the export products Denmark...Champagne Ardenne 11.86 12.75 5.52 15.55 13.63 26.64 14.05 100 Franche - Comte 0.74 1.40 4.85 9.31 2.34 76.38 3.15 1.83 100 ne- de-France 1.34

  17. Le ministre du Commerce international du Canada rencontre des ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    17 juil. 2017 ... La promotion de l'entrepreneuriat, la façon dont le commerce peut profiter aux femmes et à leur famille, et la création d'emplois pour les plus vulnérables étaient au coeur de la discussion en table ronde du ministre du Commerce international du Canada, l'honorable François-Philippe Champagne, et des ...

  18. Et eller andet med sprog

    DEFF Research Database (Denmark)

    Adamsen, Billy; Nielsen, Charlotte Marie Bisgaard; Dam Christensen, Mie

    2012-01-01

    bedre sted, intet mindre. - Jeg frygter at de kommer til at kede sig på et reklamebureau med fx at lave kampagner og drikke champagne. Så jeg prøver at tale dem fra det. De skal finde ud af, hvem de er og hvad de gerne vil bruge deres liv på. Rådgiver for statsministeren Billy Adamsen har en phd i...

  19. Quantification of complex blood flow using real-time in vivo vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Haugaard, Per

    2010-01-01

    A quantitative method for distinguishing complex from non-complex flow patterns in ultrasound is presented. A new commercial BK Medical ultrasound scanner uses the Transverse Oscillation vector flow technique for visualising flow patterns in real-time. In vivo vector flow data of the blood flow...... patterns of the common carotid artery and the carotid bulb were obtained simultaneously as the basis for quantifying complex flow. The carotid bifurcation of two healthy volunteers were scanned. The presence of complex flow patterns from eight cardiac cycles were evaluated by three experts in medical...... for automatic detection of complex flow patterns....

  20. Effect of mean flow on the interaction between turbulence and zonal flow

    International Nuclear Information System (INIS)

    Uzawa, Ken; Kishimoto, Yasuaki; Li Jiquan

    2006-01-01

    The effects of an external mean flow on the generation of zonal flow in drift wave turbulence are theoretically studied in terms of a modulational instability analysis. A dispersion relation for the zonal flow instability having complex frequency ω q =Ω q +iγ q is derived, which depends on the external mean flow's amplitude |φ f | and radial wave number k f . As an example, we chose an ion temperature gradient (ITG) turbulence-driven zonal flow as the mean flow acting on an electron temperature gradient (ETG) turbulence-zonal flow system. The growth rate of the zonal flow γ q is found to be suppressed, showing a relation γ q =γ q0 (1 - α|φ f | 2 k f 2 ), where γ q0 is the growth rate in the absence of mean flow and α is a positive numerical constant. This formula is applicable to a strong shearing regime where the zonal flow instability is stabilized at α|φ f 2 |k f 2 ≅ 1. Meanwhile, the suppression is accompanied by an increase of the real frequency |Ω q |. The underlying physical mechanism of the suppression is discussed. (author)

  1. Effect of surface wettability on flow patterns in vertical gas-liquid two-phase flow

    International Nuclear Information System (INIS)

    Nakamura, D.

    2005-01-01

    To examine the effect of the surface characteristics on the flow regime in two-phase flow, visualization study was performed using three test pipes, namely a no-coating pipe, a water-attracting coating pipe, a water-shedding coating pipe. Three flow regime maps were obtained based on the visual observation in the three pipes. In the water-attracting coating pipe, the slug flow-to-churn flow transition boundary was shifted to higher gas velocity at a given liquid velocity, whereas the churn flow-to-annular flow transition boundary was shifted to lower gas velocity at a given liquid velocity. In the water shedding coating pipe, the inverted-churn flow regime was observed in the region where the churn flow regime was to be observed in a no-coating pipe, whereas the droplet flow regime was observed in the region where the annular flow regime was to be observed in a no-coating pipe. The criteria for the slug flow-to-inverted-churn flow transition and the inverted-churn flow-to-droplet flow transition were modeled by force balance approaches. The modeled transition criteria could predict the observed flow transition boundaries reasonably well. (authors)

  2. Redox flow batteries with serpentine flow fields: Distributions of electrolyte flow reactant penetration into the porous carbon electrodes and effects on performance

    Science.gov (United States)

    Ke, Xinyou; Prahl, Joseph M.; Alexander, J. Iwan D.; Savinell, Robert F.

    2018-04-01

    Redox flow batteries with flow field designs have been demonstrated to boost their capacities to deliver high current density and power density in medium and large-scale energy storage applications. Nevertheless, the fundamental mechanisms involved with improved current density in flow batteries with serpentine flow field designs have been not fully understood. Here we report a three-dimensional model of a serpentine flow field over a porous carbon electrode to examine the distributions of pressure driven electrolyte flow penetrations into the porous carbon electrodes. We also estimate the maximum current densities associated with stoichiometric availability of electrolyte reactant flow penetrations through the porous carbon electrodes. The results predict reasonably well observed experimental data without using any adjustable parameters. This fundamental work on electrolyte flow distributions of limiting reactant availability will contribute to a better understanding of limits on electrochemical performance in flow batteries with serpentine flow field designs and should be helpful to optimizing flow batteries.

  3. Revealing flow behaviors of metallic glass based on activation of flow units

    Energy Technology Data Exchange (ETDEWEB)

    Ge, T. P.; Wang, W. H.; Bai, H. Y., E-mail: hybai@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)

    2016-05-28

    Atomic level flow plays a critical role in the mechanical behavior of metallic glass (MG) while the connection between the flow and the heterogeneous microstructure of the glass remains unclear. We describe the heterogeneity of MGs as the elastic matrix with “inclusions” of nano-scale liquid-like flow units, and the plastic flow behavior of MGs is considered to be accommodated by the flow units. We show that the model can explain the various deformation behaviors, the transformation from inhomogeneous deformation to homogeneous flow upon strain rate or temperature, and the deformation map in MGs, which might provide insights into the flow mechanisms in glasses and inspiration for improving the plasticity of MGs.

  4. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  5. A consistent thermodynamics of the MHD wave-heated two-fluid solar wind

    Directory of Open Access Journals (Sweden)

    I. V. Chashei

    2003-07-01

    Full Text Available We start our considerations from two more recent findings in heliospheric physics: One is the fact that the primary solar wind protons do not cool off adiabatically with distance, but appear to be heated. The other one is that secondary protons, embedded in the solar wind as pick-up ions, behave quasi-isothermal at their motion to the outer heliosphere. These two phenomena must be physically closely connected with each other. To demonstrate this we solve a coupled set of enthalpy flow conservation equations for the two-fluid solar wind system consisting of primary and secondary protons. The coupling of these equations comes by the heat sources that are relevant, namely the dissipation of MHD turbulence power to the respective protons at the relevant dissipation scales. Hereby we consider both the dissipation of convected turbulences and the dissipation of turbulences locally driven by the injection of new pick-up ions into an unstable mode of the ion distribution function. Conversion of free kinetic energy of freshly injected secondary ions into turbulence power is finally followed by partial reabsorption of this energy both by primary and secondary ions. We show solutions of simultaneous integrations of the coupled set of differential thermodynamic two-fluid equations and can draw interesting conclusions from the solutions obtained. We can show that the secondary proton temperature with increasing radial distance asymptotically attains a constant value with a magnitude essentially determined by the actual solar wind velocity. Furthermore, we study the primary proton temperature within this two-fluid context and find a polytropic behaviour with radially and latitudinally variable polytropic indices determined by the local heat sources due to dissipated turbulent wave energy. Considering latitudinally variable solar wind conditions, as published by McComas et al. (2000, we also predict latitudinal variations of primary proton temperatures at

  6. Flow Control Device Evaluation for an Internal Flow with an Adverse Pressure Gradient

    Science.gov (United States)

    Jenkins, Luther N.; Gorton, Susan Althoff; Anders, Scott G.

    2002-01-01

    The effectiveness of several active and passive devices to control flow in an adverse pressure gradient with secondary flows present was evaluated in the 15 Inch Low Speed Tunnel at NASA Langley Research Center. In this study, passive micro vortex generators, micro bumps, and piezoelectric synthetic jets were evaluated for their flow control characteristics using surface static pressures, flow visualization, and 3D Stereo Digital Particle Image Velocimetry. Data also were acquired for synthetic jet actuators in a zero flow environment. It was found that the micro vortex generator is very effective in controlling the flow environment for an adverse pressure gradient, even in the presence of secondary vortical flow. The mechanism by which the control is effected is a re-energization of the boundary layer through flow mixing. The piezoelectric synthetic jet actuators must have sufficient velocity output to produce strong longitudinal vortices if they are to be effective for flow control. The output of these devices in a laboratory or zero flow environment will be different than the output in a flow environment. In this investigation, the output was higher in the flow environment, but the stroke cycle in the flow did not indicate a positive inflow into the synthetic jet.

  7. Brayton rotating units for space reactor power systems

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Bruno M.; El-Genk, Mohamed S. [Institute for Space and Nuclear Power Studies and Chemical and Nuclear Engineering Dept., The Univ. of New Mexico, Albuquerque, NM 87131 (United States)

    2009-09-15

    Designs and analyses models of centrifugal-flow compressor and radial-inflow turbine of 40.8kW{sub e} Brayton Rotating Units (BRUs) are developed for 15 and 40 g/mole He-Xe working fluids. Also presented are the performance results of a space power system with segmented, gas cooled fission reactor heat source and three Closed Brayton Cycle loops, each with a separate BRU. The calculated performance parameters of the BRUs and the reactor power system are for shaft rotational speed of 30-55 krpm, reactor thermal power of 120-471kW{sub th}, and turbine inlet temperature of 900-1149 K. With 40 g/mole He-Xe, a power system peak thermal efficiency of 26% is achieved at rotation speed of 45 krpm, compressor and turbine inlet temperatures of 400 and 1149 K and 0.93 MPa at exit of the compressor. The corresponding system electric power is 122.4kW{sub e}, working fluid flow rate is 1.85 kg/s and the pressure ratio and polytropic efficiency are 1.5% and 86.3% for the compressor and 1.42% and 94.1% for the turbine. For the same nominal electrical power of 122.4kW{sub e}, decreasing the molecular weight of the working fluid (15 g/mole) decreases its flow rate to 1.03 kg/s and increases the system pressure to 1.2 MPa. (author)

  8. Flow measurement in bubbly and slug flow regimes using the electromagnetic flowmeter developed

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Ahn, Yeh Chan; Seo, Kyung Woo; Kim, Moo Hwan

    2002-01-01

    In order to investigate the characteristics of electromagnetic flowmeter in two-phase flow, an AC electromagnetic flowmeter was designed and manufactured. In various flow conditions, the signals and noises from the flowmeter were obtained and analyzed by comparison with the observed flow patterns with a high speed CCD camera. The experiment with the void simulators in which rod shaped non-conducting material was used was carried out to investigate the effect of the bubble position and the void fraction on the flowmeter. Based on the results from the void simulator, two-phase flow experiments encompassed from bubbly to slug flow regime were conducted. The simple relation ΔU TP = ΔU SP /(1-α) was verified with measurements of the potential difference and the void fraction. Due to the lack of homogeneity in a real two-phase flow, the discrepancy between the relation and the present measurement was slightly increased with void fraction and also liquid volumetric flux j f . Whereas there is no difference in the shape of the raw signal between single-phase flow and bubbly flow, the signal amplitude for bubbly flow is higher than that for single-phase flow at the same water flow rate, since the passage area of the water flow is reduced. In the case of slug flow, the phase and the amplitude of the flowmeter output show dramatically the flow characteristics around each slug bubble and the position of a slug bubble itself. Therefore, the electromagnetic flowmeter shows a good possibility of being useful for identifying the flow regimes

  9. A new method to measure flow in professional tasks – A FLOW-W questionnaire (FLOW at Work

    Directory of Open Access Journals (Sweden)

    Wolfigiel Beata

    2017-06-01

    Full Text Available The aim of the article is to present a new Polish tool for measuring the flow experience in professional tasks - a FLOW-W Questionnaire. The questionnaire was inspired by Csikszentmihalyi’s (1990 flow theory and flow in Bakker’s work (2008. On its basis a set of positions was established, on which subsequently an exploratory (study 1, N = 101 and confirmatory (study 2, N = 275 factor analysis was conducted. The analysis showed the possibility of a uni- or bifactorial solution. After checking the theoretical and empirical validity of both solutions, the unifactorial solution was adopted. The validity of the questionnaire was examined, i.a. by correlations with theoretically related variables: work engagement with the UWES questionnaire (Szabowska-Walaszczyk, Zawadzka, Wojtaś, 2011 and affect at work (Zalewska, 2002. The studies showed a significant positive correlation between flow at work and work engagement (0.84 and between flow and positive affect (0.74. The reliability of the questionnaire is very high; α = 0.96. The tool has very good psychometric properties.

  10. Zero-G two phase flow regime modeling in adiabatic flow

    International Nuclear Information System (INIS)

    Reinarts, T.R.; Best, F.R.; Wheeler, M.; Miller, K.M.

    1993-01-01

    Two-phase flow, thermal management systems are currently being considered as an alternative to conventional, single phase systems for future space missions because of their potential to reduce overall system mass, size, and pumping power requirements. Knowledge of flow regime transitions, heat transfer characteristics, and pressure drop correlations is necessary to design and develop two-phase systems. This work is concerned with microgravity, two-phase flow regime analysis. The data come from a recent sets of experiments. The experiments were funded by NASA Johnson Space Center (JSC) and conducted by NASA JSC with Texas A ampersand M University. The experiment was on loan to NASA JSC from Foster-Miller, Inc., who constructed it with funding from the Air Force Phillips Laboratory. The experiment used R12 as the working fluid. A Foster-Miller two phase pump was used to circulate the two phase mixture and allow separate measurements of the vapor and liquid flow streams. The experimental package was flown 19 times for 577 parabolas aboard the NASA KC-135 aircraft which simulates zero-G conditions by its parabolic flight trajectory. Test conditions included bubbly, slug and annular flow regimes in 0-G. The superficial velocities of liquid and vapor have been obtained from the measured flow rates and are presented along with the observed flow regimes and several flow regime transition predictions. None of the predictions completely describe the transitions as indicated by the data

  11. Worker Flows and Job Flows in Danish Manufacturing 1980-91

    DEFF Research Database (Denmark)

    Albæk, Karsten; Sørensen, B.

    1998-01-01

    We map turnover of workers and jobs in Danish manufacturing over the 1980 to 1991 period, using information about all individual manufacturing plants. We examine the relation between worker flows and job flows and we study separations from and hires to existing jobs ('replacement hiring') in detail....... Our results reveal large heterogeneity among workers as well as plants, even adjusting for the level of job flows. The cyclical properties of worker reallocation point to worker flow dynamics being driven by workers quitting in upturns to find better jobs, rather than by plants upgrading the labour...

  12. Optimal Power Flow Control by Rotary Power Flow Controller

    Directory of Open Access Journals (Sweden)

    KAZEMI, A.

    2011-05-01

    Full Text Available This paper presents a new power flow model for rotary power flow controller (RPFC. RPFC injects a series voltage into the transmission line and provides series compensation and phase shifting simultaneously. Therefore, it is able to control the transmission line impedance and the active power flow through it. An RPFC is composed mainly of two rotary phase shifting transformers (RPST and two conventional (series and shunt transformers. Structurally, an RPST consists of two windings (stator and rotor windings. The rotor windings of the two RPSTs are connected in parallel and their stator windings are in series. The injected voltage is proportional to the vector sum of the stator voltages and so its amplitude and angle are affected by the rotor position of the two RPSTs. This paper, describes the steady state operation and single-phase equivalent circuit of the RPFC. Also in this paper, a new power flow model, based on power injection model of flexible ac transmission system (FACTS controllers, suitable for the power flow analysis is introduced. Proposed model is used to solve optimal power flow (OPF problem in IEEE standard test systems incorporating RPFC and the optimal settings and location of the RPFC is determined.

  13. Hydrodynamics of piston-driven laminar pulsating flow: Part 2. Fully developed flow

    International Nuclear Information System (INIS)

    Aygun, Cemalettin; Aydin, Orhan

    2014-01-01

    Highlights: • The piston-driven laminar pulsating flow in a pipe is studied. • Fully developed flow is examined analytically, numerically and experimentally. • An increase in F results an increase in the amplitude of the centerline velocity. • The characters of the radial velocity profiles critically depend on both the frequency and the phase angle. • The near/off-wall flow reversals are observed for F = 105, 226 and 402. - Abstract: Piston-driven pulsating flow is a specific type of pressure-driven pulsating flows. In this study, piston-driven laminar pulsating flow in a pipe is studied. This study mainly exists of two parts: developing flow and fully developed flow. In this part, hydrodynamically fully developed flow is examined analytically, numerically and experimentally. A constant value of the time-averaged Reynolds number is considered, Re = 1000. In the theoretical studies, both analytical and numerical, an inlet velocity profile representing the experimental case, i.e., the piston driven flow, is assumed. In the experiments, in the hydrodynamically fully developed region, radial velocity distribution and pressure drop are obtained using hot-wire anemometer and pressure transmitter, respectively. The effect pulsation frequency on the friction coefficient as well as velocity profiles are obtained. A good agreement is observed among analytical, numerical and experimental results

  14. Flow visualization

    International Nuclear Information System (INIS)

    Weinstein, L.M.

    1991-01-01

    Flow visualization techniques are reviewed, with particular attention given to those applicable to liquid helium flows. Three techniques capable of obtaining qualitative and quantitative measurements of complex 3D flow fields are discussed including focusing schlieren, particle image volocimetry, and holocinematography (HCV). It is concluded that the HCV appears to be uniquely capable of obtaining full time-varying, 3D velocity field data, but is limited to the low speeds typical of liquid helium facilities. 8 refs

  15. Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements

    Science.gov (United States)

    Trefny, C. J.

    1985-01-01

    Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.

  16. Single-phase flow and flow boiling of water in horizontal rectangular microchannels

    OpenAIRE

    Mirmanto

    2013-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University The current study is part of a long term experimental project devoted to investigating single-phase flow pressure drop and heat transfer, flow boiling pressure drop and heat transfer, flow boiling instability and flow visualization of de-ionized water flow in microchannels. The experimental facility was first designed and constructed by S. Gedupudi (2009) and in the present study; ...

  17. Vortical flows

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jie-Zhi [Peking Univ., Beijing (China). College of Engineering; Ma, Hui-Yang [Univ. of Chinese Academy of Sciences, Beijing (China). Dept. of Physics; Zhou, Ming-De [Arizona Univ., Tucson, AZ (United States). Dept. of Aerospace and Mechanical Engineering

    2015-11-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.

  18. Vortical flows

    International Nuclear Information System (INIS)

    Wu, Jie-Zhi; Ma, Hui-Yang; Zhou, Ming-De

    2015-01-01

    This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.

  19. A feasability study of color flow doppler vectorization for automated blood flow monitoring.

    Science.gov (United States)

    Schorer, R; Badoual, A; Bastide, B; Vandebrouck, A; Licker, M; Sage, D

    2017-12-01

    An ongoing issue in vascular medicine is the measure of the blood flow. Catheterization remains the gold standard measurement method, although non-invasive techniques are an area of intense research. We hereby present a computational method for real-time measurement of the blood flow from color flow Doppler data, with a focus on simplicity and monitoring instead of diagnostics. We then analyze the performance of a proof-of-principle software implementation. We imagined a geometrical model geared towards blood flow computation from a color flow Doppler signal, and we developed a software implementation requiring only a standard diagnostic ultrasound device. Detection performance was evaluated by computing flow and its determinants (flow speed, vessel area, and ultrasound beam angle of incidence) on purposely designed synthetic and phantom-based arterial flow simulations. Flow was appropriately detected in all cases. Errors on synthetic images ranged from nonexistent to substantial depending on experimental conditions. Mean errors on measurements from our phantom flow simulation ranged from 1.2 to 40.2% for angle estimation, and from 3.2 to 25.3% for real-time flow estimation. This study is a proof of concept showing that accurate measurement can be done from automated color flow Doppler signal extraction, providing the industry the opportunity for further optimization using raw ultrasound data.

  20. A transit-time flow meter for measuring milliliter per minute liquid flow

    DEFF Research Database (Denmark)

    Yang, Canqian; Kymmel, Mogens; Søeberg, Henrik

    1988-01-01

    A transit-time flow meter, using periodic temperature fluctuations as tracers, has been developed for measuring liquid flow as small as 0.1 ml/min in microchannels. By injecting square waves of heat into the liquid flow upstream with a tiny resistance wire heater, periodic temperature fluctuation....... This flow meter will be used to measure and control the small liquid flow in microchannels in flow injection analysis. Review of Scientific Instruments is copyrighted by The American Institute of Physics....... are generated downstream. The fundamental frequency phase shift of the temperature signal with respect to the square wave is found to be a linear function of the reciprocal mean velocity of the fluid. The transit-time principle enables the flow meter to have high accuracy, better than 0.2%, and good linearity...

  1. Review of zonal flows

    International Nuclear Information System (INIS)

    Diamond, P.H.; Itoh, S.-I.; Itoh, K.; Hahm, T.S.

    2004-10-01

    A comprehensive review of zonal flow phenomena in plasmas is presented. While the emphasis is on zonal flows in laboratory plasmas, zonal flows in nature are discussed as well. The review presents the status of theory, numerical simulation and experiments relevant to zonal flows. The emphasis is on developing an integrated understanding of the dynamics of drift wave - zonal flow turbulence by combining detailed studies of the generation of zonal flows by drift waves, the back-interaction of zonal flows on the drift waves, and the various feedback loops by which the system regulates and organizes itself. The implications of zonal flow phenomena for confinement in, and the phenomena of fusion devices are discussed. Special attention is given to the comparison of experiment with theory and to identifying direction for progress in future research. (author)

  2. Debris flow-induced topographic changes: effects of recurrent debris flow initiation.

    Science.gov (United States)

    Chen, Chien-Yuan; Wang, Qun

    2017-08-12

    Chushui Creek in Shengmu Village, Nantou County, Taiwan, was analyzed for recurrent debris flow using numerical modeling and geographic information system (GIS) spatial analysis. The two-dimensional water flood and mudflow simulation program FLO-2D were used to simulate debris flow induced by rainfall during typhoon Herb in 1996 and Mindulle in 2004. Changes in topographic characteristics after the debris flows were simulated for the initiation of hydrological characteristics, magnitude, and affected area. Changes in topographic characteristics included those in elevation, slope, aspect, stream power index (SPI), topographic wetness index (TWI), and hypsometric curve integral (HI), all of which were analyzed using GIS spatial analysis. The results show that the SPI and peak discharge in the basin increased after a recurrence of debris flow. The TWI was higher in 2003 than in 2004 and indicated higher potential of landslide initiation when the slope of the basin was steeper. The HI revealed that the basin was in its mature stage and was shifting toward the old stage. Numerical simulation demonstrated that the parameters' mean depth, maximum depth, affected area, mean flow rate, maximum flow rate, and peak flow discharge were increased after recurrent debris flow, and peak discharge occurred quickly.

  3. Usefulness of DC power flow for active power flow analysis with flow controlling devices

    NARCIS (Netherlands)

    Van Hertem, D.; Verboomen, J.; Purchala, K.; Belmans, R.; Kling, W.L.

    2006-01-01

    DC power flow is a commonly used tool for contingency analysis. Recently, due to its simplicity and robustness, it also becomes increasingly used for the real-time dispatch and techno-economic analysis of power systems. It is a simplification of a full power flow looking only at active power.

  4. Effect of flow conditions on flow accelerated corrosion in pipe bends

    International Nuclear Information System (INIS)

    Mazhar, H.; Ching, C.Y.

    2015-01-01

    Flow Accelerated Corrosion (FAC) in piping systems is a safety and reliability problem in the nuclear industry. In this study, the pipe wall thinning rates and development of surface roughness in pipe bends are compared for single phase and two phase annular flow conditions. The FAC rates were measured using the dissolution of test sections cast from gypsum in water with a Schmidt number of 1280. The change in location and levels of maximum FAC under single phase and two phase flow conditions are examined. The comparison of the relative roughness indicates a higher effect for the surface roughness in single phase flow than in two phase flow. (author)

  5. Critical heat flux and flow pattern for water flow in annular geometry

    International Nuclear Information System (INIS)

    Park, J.-W.; Baek, W.-P.; Chang, S.H.

    1997-01-01

    An experimental study on critical heat flux (CHF) and two-phase flow visualization has been performed for water flow in internally-heated, vertical, concentric annuli under near atmospheric pressure. Tests have been done under stable forced-circulation, upward and downward flow conditions with three test sections of relatively large gap widths (heated length = 0.6 m, inner diameter 19 mm, outer diameter = 29, 35 and 51 mm). The outer wall of the test section was made up of the transparent Pyrex tube to allow the observation of flow patterns near the CHF occurrence. The CHF mechanism was changed in the order of flooding, churn-to-annular flow transition and local dryout under a large bubble in churn flow as the flow rate was increased from zero to higher values. Observed parametric trends are consistent with the previous understanding except that the CHF for downward flow is considerably lower than that for the upward flow. In addition to the experiment, selected CHF correlations for annuli are assessed based on 1156 experimental data from various sources. The Doerffer et al. (1994); Barnett (1966); Jannsen and Kervinen (1963); Levitan and Lantsman (1977) correlations show reasonable predictions for wide parameter ranges, among which the Doerffer et al. (1994) correlation shows the widest parameter ranges and a possibility of further improvement. However, there is no correlation predicting the low-pressure, low-flow CHF satisfactorily. (orig.)

  6. Numerical simulation of flow field in the China advanced research reactor flow-guide tank

    International Nuclear Information System (INIS)

    Xu Changjiang

    2002-01-01

    The flow-guide tank in China advanced research reactor (CARR) acts as a reactor inlet coolant distributor and play an important role in reducing the flow-induced vibration of the internal components of the reactor core. Numerical simulations of the flow field in the flow-guide tank under different conceptual designing configurations are carried out using the PHOENICS3.2. It is seen that the inlet coolant is well distributed circumferentially into the flow-guide tank with the inlet buffer plate and the flow distributor barrel. The maximum cross-flow velocity within the flow-guide tank is reduced significantly, and the reduction of flow-induced vibration of reactor internals is expected

  7. Eddy-current flow rate meter for measuring sodium flow rates

    International Nuclear Information System (INIS)

    Knaak, J.

    1976-01-01

    For safety reasons flow rate meters for monitoring coolant flow rates are inserted in the core of sodium-cooled fast breeder reactors. These are so-called eddy-current flow rate meters which can be mounted directly above the fuel elements. In the present contribution the principle of measurement, the mechanical construction and the circuit design of the flow rate measuring device are described. Special problems and their solution on developing the measuring system are pointed out. Finally, results of measurement and experience with the apparatus in several experiments are reported, where also further possibilities of application were tested. (orig./TK) [de

  8. Arterial secondary blood flow patterns visualized with vector flow ultrasound

    DEFF Research Database (Denmark)

    Pedersen, Mads Møller; Pihl, Michael Johannes; Hansen, Jens Munk

    2011-01-01

    This study presents the first quantification and visualisation of secondary flow patterns with vector flow ultrasound. The first commercial implementation of the vector flow method Transverse Oscillation was used to obtain in-vivo, 2D vector fields in real-time. The hypothesis of this study...... was that the rotational direction is constant within each artery. Three data sets of 10 seconds were obtained from three main arteries in healthy volunteers. For each data set the rotational flow patterns were identified during the diastole. Each data set contains a 2D vector field over time and with the vector angles...

  9. Flow development through HP & LP turbines, Part II: Effects of the hub endwall secondary sealing air flow on the turbine's mainstream flow

    Science.gov (United States)

    Hu, Jialin; Du, Qiang; Liu, Jun; Wang, Pei; Liu, Guang; Liu, Hongrui; Du, Meimei

    2017-08-01

    Although many literatures have been focused on the underneath flow and loss mechanism, very few experiments and simulations have been done under the engines' representative working conditions or considering the real cavity structure as a whole. This paper aims at realizing the goal of design of efficient turbine and scrutinizing the velocity distribution in the vicinity of the rim seal. With the aid of numerical method, a numerical model describing the flow pattern both in the purge flow spot and within the mainstream flow path is established, fluid migration and its accompanied flow mechanism within the realistic cavity structure (with rim seal structure and considering mainstream & secondary air flow's interaction) is used to evaluate both the flow pattern and the underneath flow mechanism within the inward rotating cavity. Meanwhile, the underneath flow and loss mechanism are also studied in the current paper. The computational results show that the sealing air flow's ingestion and ejection are highly interwound with each other in both upstream and downstream flow of the rim seal. Both the down-stream blades' potential effects as well as the upstream blades' wake trajectory can bring about the ingestion of the hot gas flow within the cavity, abrupt increase of the static pressure is believed to be the main reason. Also, the results indicate that sealing air flow ejected through the rear cavity will cause unexpected loss near the outlet section of the blades in the downstream of the HP rotor passages.

  10. Experimental study of the influence of flow passage subtle variation on mixed-flow pump performance

    Science.gov (United States)

    Bing, Hao; Cao, Shuliang

    2014-05-01

    In the mixed-flow pump design, the shape of the flow passage can directly affect the flow capacity and the internal flow, thus influencing hydraulic performance, cavitation performance and operation stability of the mixed-flow pump. However, there is currently a lack of experimental research on the influence mechanism. Therefore, in order to analyze the effects of subtle variations of the flow passage on the mixed-flow pump performance, the frustum cone surface of the end part of inlet contraction flow passage of the mixed-flow pump is processed into a cylindrical surface and a test rig is built to carry out the hydraulic performance experiment. In this experiment, parameters, such as the head, the efficiency, and the shaft power, are measured, and the pressure fluctuation and the noise signal are also collected. The research results suggest that after processing the inlet flow passage, the head of the mixed-flow pump significantly goes down; the best efficiency of the mixed-flow pump drops by approximately 1.5%, the efficiency decreases more significantly under the large flow rate; the shaft power slightly increases under the large flow rate, slightly decreases under the small flow rate. In addition, the pressure fluctuation amplitudes on both the impeller inlet and the diffuser outlet increase significantly with more drastic pressure fluctuations and significantly lower stability of the internal flow of the mixed-flow pump. At the same time, the noise dramatically increases. Overall speaking, the subtle variation of the inlet flow passage leads to a significant change of the mixed-flow pump performance, thus suggesting a special attention to the optimization of flow passage. This paper investigates the influence of the flow passage variation on the mixed-flow pump performance by experiment, which will benefit the optimal design of the flow passage of the mixed-flow pump.

  11. Stability of radial swirl flows

    International Nuclear Information System (INIS)

    Dou, H S; Khoo, B C

    2012-01-01

    The energy gradient theory is used to examine the stability of radial swirl flows. It is found that the flow of free vortex is always stable, while the introduction of a radial flow will induce the flow to be unstable. It is also shown that the pure radial flow is stable. Thus, there is a flow angle between the pure circumferential flow and the pure radial flow at which the flow is most unstable. It is demonstrated that the magnitude of this flow angle is related to the Re number based on the radial flow rate, and it is near the pure circumferential flow. The result obtained in this study is useful for the design of vaneless diffusers of centrifugal compressors and pumps as well as other industrial devices.

  12. An electrode polarization impedance based flow sensor for low water flow measurement

    International Nuclear Information System (INIS)

    Yan, Tinghu; Sabic, Darko

    2013-01-01

    This note describes an electrode polarization impedance based flow sensor for low water flow measurement. It consists of two pairs of stainless steel electrodes set apart and inserted into a non-conductive flow tube with each pair of electrodes placed diametrically at the opposite sides. The flow sensor is modeled as a typical four-electrode system of which two electrodes are current-carrying and the other two serve as output pick ups. The polarization impedances of the two current carrying electrodes are affected by water flows resulting in changes of differential potential between the two pick-up electrodes which are separated by the same fluid. The interrogation of the two excitation electrodes with dc biased ac signals offers significantly higher sensor sensitivities to flow. The prototype flow sensor constructed for a 20 mm diameter pipeline was able to measure water flow rate as low as tested at 1.06 l h −1 and remained sensitive at a flow rate of 25.18 l h −1 when it was driven with a sinusoidal voltage at 1000 Hz with a peak ac amplitude of 2 V and a dc offset of +8 V. The nonlinear characteristics of the sensor response indicate that the sensor is more sensitive at low flows and will not be able to measure at very high flows. Additional experiments are needed to evaluate the influences of impurities, chemical species, ions constituents, conductivity and temperature over a practical range of residential water conditions, the effects of fluctuating ground signals, measurement uncertainty, power consumption, compensation of effects and practical operations. The flow sensor (principle) presented may be used as (in) a secondary sensor in combination with an existing electronic water meter to extend the low end of measurement range in residential water metering. (technical design note)

  13. Investigation of intrarenal blood flow and urine flow aspects by scintillation camera

    International Nuclear Information System (INIS)

    Kawamura, J.; Hosokawa, S.; Yoshida, O.; Ishii, Y.; Torizuka, K.

    1977-01-01

    In order to clarify intrarenal dynamic processes related to regional distribution in patients with unilateral renal disease, two radioactive tracers, 133 Xe and /sup 99m/Tc-diethylenetriaminepentaacetic acid (/sup 99m/Tc-DTPA) were introduced into a renal artery and intrarenal blood flow and urine flow aspects were observed by scintillation camera. Cortical blood flow decreased and medullary blood flow relatively increased with the advance of renal damage. Urine flow curve from normal cortex showed two phasic patterns. One early phase might correspond to the appearance of the tracer through the proximal tubule and a second phase might correspond to the appearance of the tracer through the loop of Henle to the distal tubule. Under mannitol diuresis, two phasic urine flow curves from the cortex became obscured and the peak time of pelvic curve shifted to the earlier period. These studies were considered to be useful in evaluating unilateral renal function and might offer a good insight for intrarenal physiology concerning blood flow as well as urine flow

  14. CANDU channel flow verification

    International Nuclear Information System (INIS)

    Mazalu, N.; Negut, Gh.

    1997-01-01

    The purpose of this evaluation was to obtain accurate information on each channel flow that enables us to assess precisely the level of reactor thermal power and, for reasons of safety, to establish which channel is boiling. In order to assess the channel flow parameters, computer simulations were done with the NUCIRC code and the results were checked by measurements. The complete channel flow measurements were made in the zero power cold condition. In hot conditions there were made flow measurements using the Shut Down System 1 (SDS 1) flow devices from 0.1 % F.P. up to 100 % F.P. The NUCIRC prediction for CANDU channel flows and the measurements by Ultrasonic Flow Meter at zero power cold conditions and SDS 1 flow channel measurements at different reactor power levels showed an acceptable agreement. The 100 % F.P. average errors for channel flow of R, shows that suitable NUCIRC flow assessment can be made. So, it can be done a fair prediction of the reactor power distribution. NUCIRC can predict accurately the onset of boiling and helps to warn at the possible power instabilities at high powers or it can detect the flow blockages. The thermal hydraulic analyst has in NUCIRC a suitable tool to do accurate predictions for the thermal hydraulic parameters for different steady state power levels which subsequently leads to an optimal CANDU reactor operation. (authors)

  15. International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis.

    Science.gov (United States)

    Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen

    2015-01-01

    This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries' roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading "trophic levels" have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows.

  16. Comparison of differential pressure model based on flow regime for gas/liquid two-phase flow

    International Nuclear Information System (INIS)

    Dong, F; Zhang, F S; Li, W; Tan, C

    2009-01-01

    Gas/liquid two-phase flow in horizontal pipe is very common in many industry processes, because of the complexity and variability, the real-time parameter measurement of two-phase flow, such as the measurement of flow regime and flow rate, becomes a difficult issue in the field of engineering and science. The flow regime recognition plays a fundamental role in gas/liquid two-phase flow measurement, other parameters of two-phase flow can be measured more easily and correctly based on the correct flow regime recognition result. A multi-sensor system is introduced to make the flow regime recognition and the mass flow rate measurement. The fusion system is consisted of temperature sensor, pressure sensor, cross-section information system and v-cone flow meter. After the flow regime recognition by cross-section information system, comparison of four typical differential pressure (DP) models is discussed based on the DP signal of v-cone flow meter. Eventually, an optimum DP model has been chosen for each flow regime. The experiment result of mass flow rate measurement shows it is efficient to classify the DP models by flow regime.

  17. A novel concept of measuring mass flow rates using flow induced ...

    Indian Academy of Sciences (India)

    Measurement of mass flow rate is important for automatic control of the mass flow rate in .... mass flow rate. The details are as follows. ... Assuming a symmetry plane passing through the thickness of the plate, at the symmetry plane δu∗n,B = 0.

  18. Flow heterogeneity following global no-flow ischemia in isolated rabbit heart

    International Nuclear Information System (INIS)

    Marshall, Robert C.; Powers-Risius, Patricia; Reutter, Bryan W.; Schustz, Amy M.; Kuo, Chaincy; Huesman, Michelle K.; Huesman, Ronald H.

    2002-01-01

    The purpose of this study was to evaluate flow heterogeneity and impaired reflow during reperfusion following 60 min global no-flow ischemia in the isolated rabbit heart. Radiolabeled microspheres were used to measure relative flow in small left ventricular (LV) segments in five ischemia + reperfused hearts and in five non-ischemic controls. Although variable in the post-ischemic hearts, flow heterogeneity was increased relative to pre-ischemia for the whole LV (0.92 plus or minus 0.41 vs. 0.37 plus or minus 0.07, P < 0.05) as well as the subendocardium (Endo) and subepicardium (Epi) considered separately (endo: 1.28 plus or minus 0.74 vs. 0.30 plus or minus 0.09; epi: 0.69 plus or minus 0.22 vs. 0.38 plus or minus 0.08; P < 0.05 for both comparisons) during early reperfusion. There were also segments with abnormally reduced reflow. The number of segments with abnormally reduced reflow increased as flow heterogeneity increased. Abnormally reduced reflow indicates that regional ischemia can persist despite restoration of normal global flow. In addition, the relationship between regional and global flow is altered and venous outflow is derived from regions with continued perfusion and not the whole LV. These observations emphasize the need to quantify regional reflow during reperfusion following sustained no-flow ischemia in the isolated rabbit heart

  19. Flow heterogeneity following global no-flow ischemia in isolated rabbit heart

    Energy Technology Data Exchange (ETDEWEB)

    Marshall, Robert C.; Powers-Risius, Patricia; Reutter, Bryan W.; Schustz, Amy M.; Kuo, Chaincy; Huesman, Michelle K.; Huesman, Ronald H.

    2003-02-01

    The purpose of this study was to evaluate flow heterogeneity and impaired reflow during reperfusion following 60 min global no-flow ischemia in the isolated rabbit heart. Radiolabeled microspheres were used to measure relative flow in small left ventricular (LV) segments in five ischemia + reperfused hearts and in five non-ischemic controls. Although variable in the post-ischemic hearts, flow heterogeneity was increased relative to pre-ischemia for the whole LV (0.92 plus or minus 0.41 vs. 0.37 plus or minus 0.07, P < 0.05) as well as the subendocardium (Endo) and subepicardium (Epi) considered separately (endo: 1.28 plus or minus 0.74 vs. 0.30 plus or minus 0.09; epi: 0.69 plus or minus 0.22 vs. 0.38 plus or minus 0.08; P < 0.05 for both comparisons) during early reperfusion. There were also segments with abnormally reduced reflow. The number of segments with abnormally reduced reflow increased as flow heterogeneity increased. Abnormally reduced reflow indicates that regional ischemia can persist despite restoration of normal global flow. In addition, the relationship between regional and global flow is altered and venous outflow is derived from regions with continued perfusion and not the whole LV. These observations emphasize the need to quantify regional reflow during reperfusion following sustained no-flow ischemia in the isolated rabbit heart.

  20. Core flow control system for field applications; Sistema de controle de core-flow

    Energy Technology Data Exchange (ETDEWEB)

    Granzotto, Desiree G.; Adachi, Vanessa Y.; Bannwart, Antonio C.; Moura, Luiz F.M. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Sassim, Natache S.D.A. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Centro de Estudo do Petroleo (CEPETRO); Carvalho, Carlos H.M. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil)

    2008-07-01

    The significant heavy oil reserves worldwide and the presently high crude oil prices make it essential the development of technologies for heavy oil production and transportation. Heavy oils, with their inherent features of high viscosity (100- 10,000 cP) and density (below 20 deg API) require specific techniques to make it viable their flow in pipes at high flow rates. One of the simplest methods, which do not require use of heat or diluents, is provided by oil-water annular flow (core-flow). Among the still unsolved issues regarding core-flow is the two-phase flow control in order to avoid abrupt increases in the pressure drop due to the possible occurrence of bad water-lubricated points, and thus obtain a safe operation of the line at the lowest possible water-oil ratio. This work presents results of core flow tests which allow designing a control system for the inlet pressure of the line, by actuating on the water flow rate at a fixed oil flow rate. With the circuit model and the specified controller, simulations can be done to assess its performance. The experiments were run at core-flow circuit of LABPETRO-UNICAMP. (author)

  1. Countercurrent two-phase flow

    International Nuclear Information System (INIS)

    Hewitt, G.F.; Imperial Coll. of Science and Technology, London

    1989-01-01

    A survey is presented of counter-current flow with particular reference to the limits of the regime, namely the 'flooding' phenomena. Emphasis is also given to the transiently counter-current type of flow ('churn flow') which is formed on the break-down of falling film counter-current flow. The mechanisms of flooding are reviewed and flooding in systems with heat transfer and in non-vertical channels is discussed. New data on the flooding phenomena and the region of simultaneous downflow and upflow beyond flooding are presented. The onset of churn flow is discussed and new measurements on churn flow are presented. The characteristics of the churn flow regime are shown to be independent of the coexistence of a falling film region below the liquid injection point. (orig.)

  2. Coriolis mass flow rate meters for low flows

    NARCIS (Netherlands)

    Mehendale, A.

    2008-01-01

    The accurate and quick measurement of small mass flow rates (~10 mg/s) of fluids is considered an “enabling technology��? in semiconductor, fine-chemical, and food & drugs industries. Flowmeters based on the Coriolis effect offer the most direct sensing of the mass flow rate, and for this reason do

  3. Reusing balanced power flow object components for developing harmonic power flow

    Energy Technology Data Exchange (ETDEWEB)

    Nadarajah, S. [Peninsular Malaysia Electric Utility Co., Kuala Lumpur (Malaysia). Tenaga Nasional Berhad; Nor, K.M.; Abdel-Akher, M. [Malaysia Univ., Kuala Lumpur (Malaysia). Dept. of Electrical Engineering

    2005-07-01

    Harmonic power flows are used to examine the effects of nonlinear loads on power systems. In this paper, component technology was re-used for the development of a harmonic power flow. The object-oriented power system model (OO-PSM) was developed separately from a solution algorithm. Nodes, lines, and transformers were modelled as entity objects by classes. Power flow solution algorithms were modelled as control objects and encapsulated inside independent software components within the power system component software architecture (PS-COM). Both the OO-PSM and the PS-COM of the balanced power flow were re-used for developing the proposed harmonic power flow. A no-interaction hypothesis was used to consider both fundamental voltages and nonlinear device data dependence. A direct solution voltage node method was also used. The accuracy of the method was demonstrated using IEEE 14 bus and 30 bus test systems. It was concluded that component technology can be used to develop harmonic power flow programs. 7 refs., 2 tabs., 9 figs.

  4. Transient two-phase flow

    International Nuclear Information System (INIS)

    Hsu, Y.Y.

    1974-01-01

    The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)

  5. Gas Flow Detection System

    Science.gov (United States)

    Moss, Thomas; Ihlefeld, Curtis; Slack, Barry

    2010-01-01

    This system provides a portable means to detect gas flow through a thin-walled tube without breaking into the tubing system. The flow detection system was specifically designed to detect flow through two parallel branches of a manifold with only one inlet and outlet, and is a means for verifying a space shuttle program requirement that saves time and reduces the risk of flight hardware damage compared to the current means of requirement verification. The prototype Purge Vent and Drain Window Cavity Conditioning System (PVD WCCS) Flow Detection System consists of a heater and a temperature-sensing thermistor attached to a piece of Velcro to be attached to each branch of a WCCS manifold for the duration of the requirement verification test. The heaters and thermistors are connected to a shielded cable and then to an electronics enclosure, which contains the power supplies, relays, and circuit board to provide power, signal conditioning, and control. The electronics enclosure is then connected to a commercial data acquisition box to provide analog to digital conversion as well as digital control. This data acquisition box is then connected to a commercial laptop running a custom application created using National Instruments LabVIEW. The operation of the PVD WCCS Flow Detection System consists of first attaching a heater/thermistor assembly to each of the two branches of one manifold while there is no flow through the manifold. Next, the software application running on the laptop is used to turn on the heaters and to monitor the manifold branch temperatures. When the system has reached thermal equilibrium, the software application s graphical user interface (GUI) will indicate that the branch temperatures are stable. The operator can then physically open the flow control valve to initiate the test flow of gaseous nitrogen (GN2) through the manifold. Next, the software user interface will be monitored for stable temperature indications when the system is again at

  6. REPAS DANSANT DE L'AMICALE DES POMPIERS DU CERN - French version only

    CERN Multimedia

    2002-01-01

    Le 6 décembre 2002, à l'occasion de la Sainte Barbe, à partir de 20 h., au restaurant no2 (DSR), bâtiment 504 Prix du repas 25 CHF Orchestre Rudy Ache et sa chanteuse Monique Bar à champagne Vestiaire Tickets en vente auprès de l'Amicale des Pompiers du CERN, renseignements au 76655, email : anne.laure.leglise@cern.ch

  7. Is there elliptic flow without transverse flow?

    International Nuclear Information System (INIS)

    Huovinen, Pasi; Kolb, Peter F.; Heinz, Ulrich

    2001-01-01

    Azimuthal anisotropy of final particle distributions was originally introduced as a signature of transverse collective flow. We show that finite anisotropy in momentum space can result solely from the shape of the particle emitting source. However, by comparing the differential anisotropy to recent data from STAR collaboration we can exclude such a scenario, but instead show that the data favour strong flow as resulting from a hydrodynamical evolution

  8. Flow Characteristics of Ground Vehicle Wake and Its Response to Flow Control

    Science.gov (United States)

    Sellappan, Prabu; McNally, Jonathan; Alvi, Farrukh

    2017-11-01

    Air pollution, fuel shortages, and cost savings are some of the many incentives for improving the aerodynamics of vehicles. Reducing wake-induced aerodynamic drag, which is dependent on flow topology, on modern passenger vehicles is important for improving fuel consumption rates which directly affect the environment. In this research, an active flow control technique is applied on a generic ground vehicle, a 25°Ahmed model, to investigate its effect on the flow topology in the near-wake. The flow field of this canonical bluff body is extremely rich, with complex and unsteady flow features such as trailing wake vortices and c-pillar vortices. The spatio-temporal response of these flow features to the application of steady microjet actuators is investigated. The responses are characterized independently through time-resolved and volumetric velocity field measurements. The accuracy and cost of volumetric measurements in this complex flow field through Stereoscopic- and Tomographic- Particle Image Velocimetry (PIV) will also be commented upon. National Science Foundation PIRE Program.

  9. Numerical study on flow rate limitation of open capillary channel flow through a wedge

    Directory of Open Access Journals (Sweden)

    Ting-Ting Zhang

    2016-04-01

    Full Text Available The flow characteristics of slender-column flow in wedge-shaped channel under microgravity condition are investigated in this work. The one-dimensional theoretical model is applied to predict the critical flow rate and surface contour of stable flow. However, the one-dimensional model overestimates the critical flow rate for not considering the extra pressure loss. Then, we develop a three-dimensional simulation method with OpenFOAM, a computational fluid dynamics tool, to simulate various phenomena in wedge channels with different lengths. The numerical results are verified with the capillary channel flow experimental data on the International Space Station. We find that the three-dimensional simulation perfectly predicts the critical flow rates and surface contours under various flow conditions. Meanwhile, the general behaviors in subcritical, critical, and supercritical flow are studied in three-dimensional simulation considering variations of flow rate and open channel length. The numerical techniques for three-dimensional simulation is validated for a wide range of configurations and is hopeful to provide valuable guidance for capillary channel flow experiment and efficient liquid management in space.

  10. Choked flow mechanism of HFC-134a flowing through short-tube orifices

    Energy Technology Data Exchange (ETDEWEB)

    Nilpueng, Kitti; Wongwises, Somchai [Fluid Mechanics, Thermal Engineering and Multiphase Flow Research Lab (FUTURE), Department of Mechanical Engineering, King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok (Thailand)

    2011-02-15

    This paper is a continuation of the author's previous work. New experimental data on the occurrence of choked flow phenomenon and mass flow rate of HFC-134a inside short-tube orifices under choked flow condition are presented. Short-tube orifices diameters ranging from 0.406 mm to 0.686 mm with lengths ranging from 1 mm to 3 mm which can be applied to a miniature vapour-compression refrigeration system are examined. The experimental results indicated that the occurrence of choked flow phenomena inside short-tube orifices is different from that obtained from short-tube orifice diameters of greater than 1 mm, which are typically used in air-conditioner. The beginning of choked flow is dependent on the downstream pressure, degree of subcooling, and length-to-diameter ratio. Under choked flow condition, the mass flow rate is greatly varied with the short-tube orifice dimension, but it is slightly affected by the operating conditions. A correlation of mass flow rate through short-tube orifices is proposed in terms of the dimensionless parameters. The predicted results show good agreement with experimental data with a mean deviation of 4.69%. (author) transfer coefficient was also proposed. (author)

  11. Flow characteristics of counter-current flow in debris bed

    International Nuclear Information System (INIS)

    Abe, Yutaka; Adachi, Hiromichi

    2004-01-01

    In the course of a severe accident, a damaged core would form a debris bed consisting of once-molten and fragmented fuel elements. It is necessary to evaluate the dryout heat flux for the judgment of the coolability of the debris bed during the severe accident. The dryout phenomena in the debris bed is dominated by the counter-current flow limitation (CCFL) in the debris bed. In this study, air-water counter-current flow behavior in the debris bed is experimentally investigated with glass particles simulating the debris beds. In this experiment, falling water flow rate and axial pressure distributions were experimentally measured. As the results, it is clarified that falling water flow rate becomes larger with the debris bed height and the pressure gradient in the upper region of the debris bed is different from that in the lower region of the debris bed. These results indicate that the dominant region for CCFL in the debris bed is identified near the top of the debris bed. Analytical results with annular flow model indicates that interfacial shear stress in the upper region of the debris bed is larger than that in the lower region of the debris bed. (author)

  12. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit. 2. Flow characteristics of bubbly countercurrent flow

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu.

    1997-01-01

    The authors have developed a measurement system which is composed of an ultrasonic velocity profile monitor and a video data processing unit in order to clarify its multi-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system was applied for bubbly countercurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. Next, turbulence intensity in a continuous liquid phase was defined as a standard deviation of velocity fluctuation, and the two-phase multiplier profile of turbulence intensity in the channel was clarified as a ratio of the standard deviation of flow fluctuation in a bubbly countercurrent flow to that in a water single phase flow. Finally, the distribution parameter and drift velocity used in the drift flux model for bubbly countercurrent flows were calculated from the obtained velocity profiles of both phases and void fraction profile, and were compared with the correlation proposed for bubbly countercurrent flows. (author)

  13. OpenFlow cookbook

    CERN Document Server

    Smiler S, Kingston

    2015-01-01

    This book is intended for network protocol developers, SDN controller application developers, and academics who would like to understand and develop their own OpenFlow switch or OpenFlow controller in any programming language. With basic understanding of OpenFlow and its components, you will be able to follow the recipes in this book.

  14. TensorFlow Agents: Efficient Batched Reinforcement Learning in TensorFlow

    OpenAIRE

    Hafner, Danijar; Davidson, James; Vanhoucke, Vincent

    2017-01-01

    We introduce TensorFlow Agents, an efficient infrastructure paradigm for building parallel reinforcement learning algorithms in TensorFlow. We simulate multiple environments in parallel, and group them to perform the neural network computation on a batch rather than individual observations. This allows the TensorFlow execution engine to parallelize computation, without the need for manual synchronization. Environments are stepped in separate Python processes to progress them in parallel witho...

  15. Online recognition of the multiphase flow regime and study of slug flow in pipeline

    International Nuclear Information System (INIS)

    Guo Liejin; Bai Bofeng; Zhao Liang; Wang Xin; Gu Hanyang

    2009-01-01

    Multiphase flow is the phenomenon existing widely in nature, daily life, as well as petroleum and chemical engineering industrial fields. The interface structure among multiphase and their movement are complicated, which distribute random and heterogeneously in the spatial and temporal scales and have multivalue of the flow structure and state. Flow regime is defined as the macro feature about the multiphase interface structure and its distribution, which is an important feature to describe multiphase flow. The energy and mass transport mechanism differ much for each flow regimes. It is necessary to solve the flow regime recognition to get a clear understanding of the physical phenomena and their mechanism of multiphase flow. And the flow regime is one of the main factors affecting the online measurement accuracy of phase fraction, flow rate and other phase parameters. Therefore, it is of great scientific and technological importance to develop new principles and methods of multiphase flow regime online recognition, and of great industrial background. In this paper, the key reasons that the present method cannot be used to solve the industrial multiphase flow pattern recognition are clarified firstly. Then the prerequisite to realize the online recognition of multiphase flow regime is analyzed, and the recognition rules for partial flow pattern are obtained based on the massive experimental data. The standard templates for every flow regime feature are calculated with self-organization cluster algorithm. The multi-sensor data fusion method is proposed to realize the online recognition of multiphase flow regime with the pressure and differential pressure signals, which overcomes the severe influence of fluid flow velocity and the oil fraction on the recognition. The online recognition method is tested in the practice, which has less than 10 percent measurement error. The method takes advantages of high confidence, good fault tolerance and less requirement of single

  16. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    Science.gov (United States)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  17. The mean Evershed flow

    Science.gov (United States)

    Hu, W.-R.

    1984-09-01

    The paper gives a theoretical analysis of the overall characteristics of the Evershed flow (one of the main features of sunspots), with particular attention given to its outward flow from the umbra in the photosphere, reaching a maximum somewhere in the penumbra, and decreasing rapidly further out, and its inward flow of a comparable magnitude in chromosphere. Because the inertial force of the flow is small, the relevant dynamic process can be divided into a base state and a perturbation. The base-state solution yields the equilibrium relations between the pressure gradient, the Lorentz force, and gravity, and the flow law. The perturbation describes the force driving the Evershed flow. Since the pressure gradient in the base state is already in equilibrium with the Lorentz force and the gravity, the driving force of the mean Evershed flow is small.

  18. Forecasting freight flows

    DEFF Research Database (Denmark)

    Lyk-Jensen, Stéphanie

    2011-01-01

    Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...... constitute a valuable input to freight models for forecasting future capacity problems.......Trade patterns and transport markets are changing as a result of the growth and globalization of international trade, and forecasting future freight flow has to rely on trade forecasts. Forecasting freight flows is critical for matching infrastructure supply to demand and for assessing investment...

  19. What is the relationship between free flow and pressure flow studies in women?

    Science.gov (United States)

    Duckett, Jonathan; Cheema, Katherine; Patil, Avanti; Basu, Maya; Beale, Sian; Wise, Brian

    2013-03-01

    The relationship between free flow (FFS) and pressure flow (PFS) voiding studies remains uncertain and the effect of a urethral catheter on flow rates has not been determined. The relationship between residuals obtained at FF and PFS has yet to be established. This was a prospective cohort study based on 474 consecutive women undergoing cystometry using different sized urethral catheters at different centres. FFS and PFS data were compared for different conditions and the relationship of residuals analysed for FFS and PFS. The null hypothesis was that urethral catheters do not produce an alteration in maximum flow rates for PFS and FF studies. Urethral catheterisation results in lower flow rates (p flows are corrected for voided volume (p flow rates are lower in women with DO than USI (p flow rates and vice versa. There was no significant difference between the mean residuals of the two groups (FFS vs PFS-two-tailed t = 0.54, p = 0.59). Positive residuals in FFS showed a good association with positive residuals in the PFS (r = 0.53, p flow rates. The relationship can be compared mathematically. The null hypothesis can be rejected.

  20. Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment

    Science.gov (United States)

    Keshock, Edward G.; Lin, Chin S.

    1996-01-01

    A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.

  1. Titrated flow versus fixed flow Bubble Nasal CPAP for respiratory distress in preterm neonates.

    Directory of Open Access Journals (Sweden)

    Srinivas eMurki

    2015-10-01

    Full Text Available Background: The clinical effects of a pre-fixed flow of air-oxygen versus a flow titrated according to visible bubbling are not well understood.Objective: To compare the effects of a fixed flow (5 L/min and titrated flow ( flow just enough to ensure bubbling at different set pressures on delivered intra-prong pressure, gas exchange and clinical parameters in preterm infants on bubble CPAP for respiratory distress.Methods: Preterm infants less than 35 weeks gestation on bubble CPAP and less than 96 h of age, were enrolled in this cross over study. They were subjected to 30 minute periods of titrated flow and fixed flow. At the end of both epochs, gas flow rate, set pressure, FiO2, SpO2, Silverman retraction score, respiratory rate , abdominal girth, and blood gases were recorded. The delivered intra-prong pressure was measured by an electronic manometer. Results: Sixty nine recordings were made in 54 infants. For each of the set CPAP pressures (4, 5 and 6 cm H2O, the mean delivered pressure with a fixed flow of 5 L/min was higher than that delivered by the titrated flow. During the fixed flow epoch, the delivered pressure was closer to and higher than the set pressure resulting in higher PaO2 and lower PaCO2 as compared to titrated flow epoch. In the titrated flow period, the delivered pressure was consistently lower than the set pressure. Conclusion: In preterm infants on bubble CPAP with set pressures of 4 to 6 cm H2O, a fixed flow of 5 L/min is more effective than a flow titrated to ensure adequate visible bubbling. It achieves higher delivered pressures, better oxygenation and ventilation.

  2. Cross-flow electrochemical reactor cells, cross-flow reactors, and use of cross-flow reactors for oxidation reactions

    Science.gov (United States)

    Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.

    1994-01-01

    This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.

  3. Modelling of groundwater flow and flow paths for a large regional domain in northeast Uppland. A three-dimensional, mathematical modelling of groundwater flows and flow paths on a super-regional scale, for different complexity levels of the flow domain

    International Nuclear Information System (INIS)

    Holmen, Johan G.; Stigsson, Martin; Marsic, Niko; Gylling, Bjoern

    2003-12-01

    The general purpose of this study is to estimate the groundwater flow for a large regional domain by use of groundwater models; and to do that with such a resolution (degree of detail) that important local properties of the flow system studied is represented in the established models. Based on the results of the groundwater modelling, we have compared different theoretical locations of a repository for nuclear waste, considering length and breakthrough time (advective flow) for flow paths from such a repository. The area studied is located in Sweden, in the Northeast of the Uppland province. The area has a maximum horizontal extension of 90 km by 50 km, and the size of the area is approximately 2,000 km 2 . The study is based on a system analysis approach. The studied system is the groundwater flow in the rock mass of Northeast Uppland. To reach the objectives of the study, different mathematical models were devised of the studied domain; these models will, in an idealised and simplified way, reproduce the groundwater movements at the area studied. The formal models (the mathematical models) used for simulation of the groundwater flow are three dimensional mathematical descriptions of the studied hydraulic system. For establishment of the formal models we used two different numerical codes GEOAN, which is based on the finite difference method and NAMMU, which is based on the finite element method. Considering flow path lengths and breakthrough times from a theoretical repository, we have evaluated the following: Importance of the local and regional topography; Importance of cell size in the numerical model; Importance of depth of domain represented in the numerical model; Importance of regional fracture zones; Importance of local lakes; Importance of areas covered by a clay layer; Importance of a modified topography; Importance of the shore level progress. Importance of density dependent flow. The results of the study includes: Length and breakthrough time of flow

  4. Modelling of groundwater flow and flow paths for a large regional domain in northeast Uppland. A three-dimensional, mathematical modelling of groundwater flows and flow paths on a super-regional scale, for different complexity levels of the flow domain

    Energy Technology Data Exchange (ETDEWEB)

    Holmen, Johan G.; Stigsson, Martin [Golder Associates, Stockholm (Sweden); Marsic, Niko; Gylling, Bjoern [Kemakta Konsult AB, Stockholm (Sweden)

    2003-12-01

    The general purpose of this study is to estimate the groundwater flow for a large regional domain by use of groundwater models; and to do that with such a resolution (degree of detail) that important local properties of the flow system studied is represented in the established models. Based on the results of the groundwater modelling, we have compared different theoretical locations of a repository for nuclear waste, considering length and breakthrough time (advective flow) for flow paths from such a repository. The area studied is located in Sweden, in the Northeast of the Uppland province. The area has a maximum horizontal extension of 90 km by 50 km, and the size of the area is approximately 2,000 km{sup 2}. The study is based on a system analysis approach. The studied system is the groundwater flow in the rock mass of Northeast Uppland. To reach the objectives of the study, different mathematical models were devised of the studied domain; these models will, in an idealised and simplified way, reproduce the groundwater movements at the area studied. The formal models (the mathematical models) used for simulation of the groundwater flow are three dimensional mathematical descriptions of the studied hydraulic system. For establishment of the formal models we used two different numerical codes GEOAN, which is based on the finite difference method and NAMMU, which is based on the finite element method. Considering flow path lengths and breakthrough times from a theoretical repository, we have evaluated the following: Importance of the local and regional topography; Importance of cell size in the numerical model; Importance of depth of domain represented in the numerical model; Importance of regional fracture zones; Importance of local lakes; Importance of areas covered by a clay layer; Importance of a modified topography; Importance of the shore level progress. Importance of density dependent flow. The results of the study includes: Length and breakthrough time of

  5. The flows structure in unsteady gas flow in pipes with different cross-sections

    OpenAIRE

    Plotnikov Leonid; Nevolin Alexandr; Nikolaev Dmitrij

    2017-01-01

    The results of numerical simulation and experimental study of the structure of unsteady flows in pipes with different cross sections are presented in the article. It is shown that the unsteady gas flow in a circular pipe is axisymmetric without secondary currents. Steady vortex structures (secondary flows) are observed in pipes with cross sections in the form of a square and an equilateral triangle. It was found that these secondary flows have a significant impact on gas flows in pipes of com...

  6. Downstream Effects on Orbiter Leeside Flow Separation for Hypersonic Flows

    Science.gov (United States)

    Buck, Gregory M.; Pulsonetti, Maria V.; Weilmuenster, K. James

    2005-01-01

    Discrepancies between experiment and computation for shuttle leeside flow separation, which came to light in the Columbia accident investigation, are resolved. Tests were run in the Langley Research Center 20-Inch Hypersonic CF4 Tunnel with a baseline orbiter model and two extended trailing edge models. The extended trailing edges altered the wing leeside separation lines, moving the lines toward the fuselage, proving that wing trailing edge modeling does affect the orbiter leeside flow. Computations were then made with a wake grid. These calculations more closely matched baseline experiments. Thus, the present findings demonstrate that it is imperative to include the wake flow domain in CFD calculations in order to accurately predict leeside flow separation for hypersonic vehicles at high angles of attack.

  7. Forced convection flow boiling and two-phase flow phenomena in a microchannel

    Science.gov (United States)

    Na, Yun Whan

    2008-07-01

    The present study was performed to numerically analyze the evaporation phenomena through the liquid-vapor interface and to investigate bubble dynamics and heat transfer behavior during forced convective flow boiling in a microchannel. Flow instabilities of two-phase flow boiling in a microchannel were studied as well. The main objective of this research is to investigate the fundamental mechanisms of two-phase flow boiling in a microchannel and provide predictive tools to design thermal management systems, for example, microchannel heat sinks. The numerical results obtained from this study were qualitatively and quantitatively compared with experimental results in the open literature. Physical and mathematical models, accounting for evaporating phenomena through the liquid-vapor interface in a microchannel at constant heat flux and constant wall temperature, have been developed, respectively. The heat transfer mechanism is affected by the dominant heat conduction through the thin liquid film and vaporization at the liquid-vapor interface. The thickness of the liquid film and the pressure of the liquid and vapor phases were simultaneously solved by the governing differential equations. The developed semi-analytical evaporation model that takes into account of the interfacial phenomena and surface tension effects was used to obtain solutions numerically using the fourth-order Runge-Kutta method. The effects of heat flux 19 and wall temperature on the liquid film were evaluated. The obtained pressure drops in a microchannel were qualitatively consistent with the experimental results of Qu and Mudawar (2004). Forced convective flow boiling in a single microchannel with different channel heights was studied through a numerical simulation to investigate bubble dynamics, flow patterns, and heat transfer. The momentum and energy equations were solved using the finite volume method while the liquid-vapor interface of a bubble is captured using the VOF (Volume of Fluid

  8. Flow visualization of a low density hypersonic flow field

    International Nuclear Information System (INIS)

    Masson, B.S.; Jumper, E.J.; Walters, E.; Segalman, T.Y.; Founds, N.D.

    1989-01-01

    Characteristics of laser induced iodine fluorescence (LIIF) in low density hypersonic flows are being investigated for use as a diagnostic technique. At low pressures, doppler broadening dominates the iodine absorption profile producing a fluorescence signal that is primarily temperature and velocity dependent. From this dependency, a low pressure flow field has the potential to be mapped for its velocity and temperature fields. The theory for relating iodine emission to the velocity and temperature fields of a hypersonic flow is discussed in this paper. Experimental observations are made of a fluorescencing free expansion and qualitatively related to the theory. 7 refs

  9. Convection flow study within a horizontal fluid layer under the action of gas flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2016-01-01

    Full Text Available Experimental investigation of convective processes within horizontal evaporating liquid layer under shear–stress of gas flow is presented. It is found the structures of the convection, which move in opposite direction relative to each other. First convective structure moves in reverse direction with the flow of gas, and the second convective structure moves towards the gas flow. Convection flow within the liquid layer is registered with help of PIV technique. Average evaporation flow rate of Ethanol liquid layer under Air gas flow is measured. Influence of the gas velocity, at a constant temperature of 20 °C, on the evaporation flow rate has been studied.

  10. Channel Geometry and Flood Flows: Quantifying over-bank flow dynamics during high-flow events in North Carolina's floodplains

    Science.gov (United States)

    Lovette, J. P.; Duncan, J. M.; Vimal, S.; Band, L. E.

    2015-12-01

    Natural riparian areas play numerous roles in the maintenance and improvement of stream water quality. Both restoration of riparian areas and improvement of hydrologic connectivity to the stream are often key goals of river restoration projects. These management actions are designed to improve nutrient removal by slowing and treating overland flow delivered from uplands and by storing, treating, and slowly releasing streamwater from overbank inundation during flood events. A major question is how effective this storage of overbank flow is at treating streamwater based on the cumulative time stream discharge at a downstream location has spent in shallower, slower overbank flow. The North Carolina Floodplain Mapping Program maintains a detailed statewide Flood Risk Information System (FRIS) using HEC-RAS modeling, lidar, and detailed surveyed river cross-sections. FRIS provides extensive information regarding channel geometry on approximately 39,000 stream reaches (a slightly coarser spatial resolution than the NHD+v2 dataset) with tens of cross-sections for each reach. We use this FRIS data to calculate volume and discharge from floodplain riparian areas separately from in-channel flow during overbank events. Preliminary results suggest that a small percentage of total annual discharge interacts with the full floodplain extent along a stream reach due to the infrequency of overbank flow events. However, with the significantly different physical characteristics of the riparian area when compared to the channel itself, this overbank flow can provide unique services to water quality. Our project aims to use this information in conjunction with data from the USGS SPARROW program to target non-point source hotspots of Nitrogen and Phosphorus addition and removal. By better understanding the flow dynamics within riparian areas during high flow events, riparian restoration projects can be carried out with improved efficacy.

  11. Flow-throttling orifice nozzle

    International Nuclear Information System (INIS)

    Sletten, H.L.

    1975-01-01

    A series-parallel-flow type throttling apparatus to restrict coolant flow to certain fuel assemblies of a nuclear reactor is comprised of an axial extension nozzle of the fuel assembly. The nozzle has a series of concentric tubes with parallel-flow orifice holes in each tube. Flow passes from a high pressure plenum chamber outside the nozzle through the holes in each tube in series to the inside of the innermost tube where the coolant, having dissipated most of its pressure, flows axially to the fuel element. (U.S.)

  12. Industrial energy-flow management

    International Nuclear Information System (INIS)

    Lampret, Marko; Bukovec, Venceslav; Paternost, Andrej; Krizman, Srecko; Lojk, Vito; Golobic, Iztok

    2007-01-01

    Deregulation of the energy market has created new opportunities for the development of new energy-management methods based on energy assets, risk management, energy efficiency and sustainable development. Industrial energy-flow management in pharmaceutical systems, with a responsible approach to sustainable development, is a complex task. For this reason, an energy-information centre, with over 14,000 online measured data/nodes, was implemented. This paper presents the energy-flow rate, exergy-flow rate and cost-flow rate diagrams, with emphasis on cost-flow rate per energy unit or exergy unit of complex pharmaceutical systems

  13. The Cross-Flow Mixing Analysis of Quasi-Static Pebble Flow in Pebble Bed Reactor

    International Nuclear Information System (INIS)

    Fang Xiang; Liu Zhiyong; Sun Yanfei; Yang Xingtuan; Jiang Shengyao

    2014-01-01

    In the pebble bed reactor, large number of fuel pebbles’ movement law and moving state can affect the reactor’s design, operation and safety directly. Therefore the pebble flow, which is based on the theory of particle streaming, is one of the most important research subjects of the pebble bed reactor engineering. The in-core pebble flow is a very slow particle flow (or called quasi-static particle flow), which is very different from the usual particle motion. How to accurately describe the characteristics of in-core pebble flow is a central issue for this subject. Due to the presence of random flow, the cross-mixing phenomenon will occur inevitably. In the present paper, the mixing phenomenon of pebble flow is generalized on the basis of experiment results. The pebble flow cross-mixing probability serves as the parameter which describes both the regularity and the randomness of pebble flow. The results are provided in the form of diagrammatic presentation. (author)

  14. LDV measurement, flow visualization and numerical analysis of flow distribution in a close-coupled catalytic converter

    International Nuclear Information System (INIS)

    Kim, Duk Sang; Cho, Yong Seok

    2004-01-01

    Results from an experimental study of flow distribution in a Close-coupled Catalytic Converter (CCC) are presented. The experiments were carried out with a flow measurement system specially designed for this study under steady and transient flow conditions. A pitot tube was a tool for measuring flow distribution at the exit of the first monolith. The flow distribution of the CCC was also measured by LDV system and flow visualization. Results from numerical analysis are also presented. Experimental results showed that the flow uniformity index decreases as flow Reynolds number increases. In steady flow conditions, the flow through each exhaust pipe made some flow concentrations on a specific region of the CCC inlet. The transient test results showed that the flow through each exhaust pipe in the engine firing order, interacted with each other to ensure that the flow distribution was uniform. The results of numerical analysis were qualitatively accepted with experimental results. They supported and helped explain the flow in the entry region of CCC

  15. Performance of the Subsurface Flow Wetland in Batch Flow for Municipal Wastewater Treatment

    Directory of Open Access Journals (Sweden)

    Abolfazle Rahmani sani

    2009-06-01

    Full Text Available Subsurface flow wetlands are one of the natural treatment methods used for municipal and industrial wastewater treatment that are economical in terms of energy consumption and cost-effectiveness. Much research has been conducted on wetland operation with continuous flow but not enough information is available on batch flow. This study investigates wetland efficiency in batch flow. For the purposes of this research, two pretreatment units of the anaerobic pond type with digestion pits and two subsurface flow wetlands with a 2-day detention time were built on the pilot scale. The cells were charged with sand of 5 mm effective size, uniformity coefficient of 1.5, and a porosity of 35%. One wetland cell and one pretreatment unit were used as control. The municipal wastewater selected to be monitored for the one-year study period had a flow rate of 26 m3/day and average BOD5 of 250mg/l, TSS of 320mg/l, TKN of 35mg/l, TP of 12mg/l and TC of 2×108 MPN/100ml from Sabzevar Wastewater Treatment Plant. The average removal efficiencies of BOD5,TSS,TKN,TP, and TC in the continuous flow for the combined control pretreatment and wetland cell were 77.2%, 92%, 91%, 89%, 96.5% while the same values for the batch flow for the combined experimental pretreatment and wetland cell were 92%, 97%, 97.5%, 97%, and 99.75%, respectively. The removal efficiency in the subsurface flow wetlands in the batch flow was higher than that of the continuous flow. Thus, for wastewaters with a high pollution level, the batch flow can be used in cell operation in cases where there is not enough land for spreading the wetland cell.

  16. Insights from field observations into controls on flow front speed in submarine sediment flows

    Science.gov (United States)

    Heerema, C.; Talling, P.; Cartigny, M.; Paull, C. K.; Gwiazda, R.; Clare, M. A.; Parsons, D. R.; Xu, J.; Simmons, S.; Maier, K. L.; Chapplow, N.; Gales, J. A.; McGann, M.; Barry, J.; Lundsten, E. M.; Anderson, K.; O'Reilly, T. C.; Rosenberger, K. J.; Sumner, E. J.; Stacey, C.

    2017-12-01

    Seafloor avalanches of sediment called turbidity currents are one of the most important processes for moving sediment across our planet. Only rivers carry comparable amounts of sediment across such large areas. Here we present some of the first detailed monitoring of these underwater flows that is being undertaken at a series of test sites. We seek to understand the factors that determine flow front speed, and how that speed varies with distance. This frontal speed is particularly important for predicting flow runout, and how the power of these hazardous flows varies with distance. First, we consider unusually detailed measurements of flow front speed defined by transit times between moorings and other tracked objects placed on the floor of Monterey Canyon offshore California in 2016-17. These measurements are then compared to flow front speeds measured using multiple moorings in Bute Inlet, British Columbia in 2016; and by cable breaks in Gaoping Canyon offshore Taiwan in 2006 and 2009. We seek to understand how flow front velocity is related to seafloor gradient, flow front thickness and density. It appears that the spatial evolution of frontal speed is similar in multiple flows, although their peak frontal velocities vary. Flow front velocity tends to increase rapidly initially before declining rather gradually over tens or even hundreds of kilometres. It has been proposed that submarine flows will exist in one of two states; either eroding and accelerating, or depositing sediment and dissipating. We conclude by discussing the implications of this global compilation of flow front velocities for understanding submarine flow behaviour.

  17. The Three Dimensional Flow Field at the Exit of an Axial-Flow Turbine Rotor

    Science.gov (United States)

    Lakshminarayana, B.; Ristic, D.; Chu, S.

    1998-01-01

    A systematic and comprehensive investigation was performed to provide detailed data on the three dimensional viscous flow phenomena downstream of a modem turbine rotor and to understand the flow physics such as origin, nature, development of wakes, secondary flow, and leakage flow. The experiment was carried out in the Axial Flow Turbine Research Facility (AFTRF) at Penn State, with velocity measurements taken with a 3-D LDV System. Two radial traverses at 1% and 10% of chord downstream of the rotor have been performed to identify the three-dimensional flow features at the exit of the rotor blade row. Sufficient spatial resolution was maintained to resolve blade wake, secondary flow, and tip leakage flow. The wake deficit is found to be substantial, especially at 1% of chord downstream of the rotor. At this location, negative axial velocity occurs near the tip, suggesting flow separation in the tip clearance region. Turbulence intensities peak in the wake region, and cross- correlations are mainly associated with the velocity gradient of the wake deficit. The radial velocities, both in the wake and in the endwall region, are found to be substantial. Two counter-rotating secondary flows are identified in the blade passage, with one occupying the half span close to the casino and the other occupying the half span close to the hub. The tip leakage flow is well restricted to 10% immersion from the blade tip. There are strong vorticity distributions associated with these secondary flows and tip leakage flow. The passage averaged data are in good agreement with design values.

  18. Research for rolling effects on flow pattern of gas-water flow in horizontal tubes

    International Nuclear Information System (INIS)

    Luan Feng; Yan Changqi

    2007-01-01

    The flow pattern transition of two-phase flow is caused by the inertial force resulted from rolling and incline of horizontal tubes under rolling state. an experimental study on the flow patterns of gas-water flow was carried out in horizontal tubes under rolling state, which rolling period is 15 second and rolling angle is 10 degrees, and a pattern flow picture is shown. It was found that there are two flow patterns in one rolling period under some gas flux and water flux. (authors)

  19. Flow Pattern Identification of Horizontal Two-Phase Refrigerant Flow Using Neural Networks

    Science.gov (United States)

    2015-12-31

    classification of liquid–vapor structures into flow patterns is useful for predicting heat transfer rates and, ultimately, system performance. Most flow and...Here, ~x represents the spa- tial variables, x and y, and t is time. This normalization assigns εð~x; tÞ to be zero for only vapor (εg) and one for...tube surface [17,22]. As in stratified wavy flow, interfacial waves were also present in stratified wavy transitional flow. The waves were more fre

  20. Flowing and heat transfer characteristics of turbulent flow in typical rod bundles at rolling motion

    International Nuclear Information System (INIS)

    Yan Binghuo; Yu Lei; Gu Hanyang

    2011-01-01

    The influence mechanism of rolling motion on the flowing and heat transfer characteristics of turbulent flow in typical four rod bundles was investigated with Fluent code. The flowing and heat transfer characteristics of turbulent flow in rod bundles can be affected by rolling motion. But the flowing similarity of turbulent flow in adiabatic and non-adiabatic can not be affected. If the rolling period is small, the radial additional force can make the parameter profiles, the turbulent flowing and heat transfer change greatly. At rolling motion, as the pitch to diameter ratio decreases, especially if it is less than 1.1, the flowing and heat transfer of turbulent flow at rolling motion change significantly. The variation of pitch to diameter ratio can change the profiles of secondary flow and turbulent kinetic energy in cross-section greatly. (authors)

  1. Microgravity Two-Phase Flow Transition

    Science.gov (United States)

    Parang, M.; Chao, D.

    1999-01-01

    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  2. Influence of slip-surface geometry on earth-flow deformation, Montaguto earth flow, southern Italy

    Science.gov (United States)

    Guerriero, L.; Coe, Jeffrey A.; Revellio, P.; Grelle, G.; Pinto, F.; Guadagno, F.

    2016-01-01

    We investigated relations between slip-surface geometry and deformational structures and hydrologic features at the Montaguto earth flow in southern Italy between 1954 and 2010. We used 25 boreholes, 15 static cone-penetration tests, and 22 shallow-seismic profiles to define the geometry of basal- and lateral-slip surfaces; and 9 multitemporal maps to quantify the spatial and temporal distribution of normal faults, thrust faults, back-tilted surfaces, strike-slip faults, flank ridges, folds, ponds, and springs. We infer that the slip surface is a repeating series of steeply sloping surfaces (risers) and gently sloping surfaces (treads). Stretching of earth-flow material created normal faults at risers, and shortening of earth-flow material created thrust faults, back-tilted surfaces, and ponds at treads. Individual pairs of risers and treads formed quasi-discrete kinematic zones within the earth flow that operated in unison to transmit pulses of sediment along the length of the flow. The locations of strike-slip faults, flank ridges, and folds were not controlled by basal-slip surface topography but were instead dependent on earth-flow volume and lateral changes in the direction of the earth-flow travel path. The earth-flow travel path was strongly influenced by inactive earth-flow deposits and pre-earth-flow drainages whose positions were determined by tectonic structures. The implications of our results that may be applicable to other earth flows are that structures with strikes normal to the direction of earth-flow motion (e.g., normal faults and thrust faults) can be used as a guide to the geometry of basal-slip surfaces, but that depths to the slip surface (i.e., the thickness of an earth flow) will vary as sediment pulses are transmitted through a flow.

  3. R 12 two-phase flow in throttle capillaries in critical flow conditions

    International Nuclear Information System (INIS)

    Petry, G.

    1983-01-01

    In this dissertation, the state of knowledge on two phase flow, its use and measurement processes are given from an extensive search of the literature. In the experimental part of the work, a continuously working experimental circuit was built up, by which single component two phase flow can be examined in critical flow conditions. Using the maintenance equations, a system of equations was produced, by which the content of steam flow, the content of steam volume and the slip between the phases at the end corssection of the capillary can be determined. The transfer of the experimental results into the Baker diagram shows that the experimental values lie in the region of mist, bubble and foam flow. (orig.) [de

  4. PENGARUH MODIFIED AUDIT OPINION TERHADAP BORROWING CASH FLOW DAN INVESTMENT CASH FLOW

    Directory of Open Access Journals (Sweden)

    Puspita Hardina Cahyaningrum

    2013-06-01

    Full Text Available This study examines and analyzes the economic consequences of modified audit opinion on borrowing cash flow and investment cash flow. Panel data model was used to observe the research. The sample of this study was 247 companies listed in Indonesia Stock Exchange for the years 2008-2010. The results show that modified audit opinion, except unqualified opinion with explanatory paragraph about going concern, did not affect borrowing cash flow because audit opinion was not the only consideration for granting credit by creditors. Companies receiving modified audit opinion were proven using more operating cash flow for investing shown in investment cash flow, especially companies receiving unqualified opinion with explanatory paragraph about going concern.

  5. Flow Regime Identification of Co-Current Downward Two-Phase Flow With Neural Network Approach

    International Nuclear Information System (INIS)

    Hiroshi Goda; Seungjin Kim; Ye Mi; Finch, Joshua P.; Mamoru Ishii; Jennifer Uhle

    2002-01-01

    Flow regime identification for an adiabatic vertical co-current downward air-water two-phase flow in the 25.4 mm ID and the 50.8 mm ID round tubes was performed by employing an impedance void meter coupled with the neural network classification approach. This approach minimizes the subjective judgment in determining the flow regimes. The signals obtained by an impedance void meter were applied to train the self-organizing neural network to categorize these impedance signals into a certain number of groups. The characteristic parameters set into the neural network classification included the mean, standard deviation and skewness of impedance signals in the present experiment. The classification categories adopted in the present investigation were four widely accepted flow regimes, viz. bubbly, slug, churn-turbulent, and annular flows. These four flow regimes were recognized based upon the conventional flow visualization approach by a high-speed motion analyzer. The resulting flow regime maps classified by the neural network were compared with the results obtained through the flow visualization method, and consequently the efficiency of the neural network classification for flow regime identification was demonstrated. (authors)

  6. Effects of Electron Flow Current Density on Flow Impedance of Magnetically Insulated Transmission Lines

    International Nuclear Information System (INIS)

    He Yong; Zou Wen-Kang; Song Sheng-Yi

    2011-01-01

    In modern pulsed power systems, magnetically insulated transmission lines (MITLs) are used to couple power between the driver and the load. The circuit parameters of MITLs are well understood by employing the concept of flow impedance derived from Maxwell's equations and pressure balance across the flow. However, the electron density in an MITL is always taken as constant in the application of flow impedance. Thus effects of electron flow current density (product of electron density and drift velocity) in an MITL are neglected. We calculate the flow impedances of an MITL and compare them under three classical MITL theories, in which the electron density profile and electron flow current density are different from each other. It is found that the assumption of constant electron density profile in the calculation of the flow impedance is not always valid. The electron density profile and the electron flow current density have significant effects on flow impedance of the MITL. The details of the electron flow current density and its effects on the operation impedance of the MITL should be addressed more explicitly by experiments and theories in the future. (nuclear physics)

  7. Coupled equations for transient water flow, heat flow, and ...

    Indian Academy of Sciences (India)

    interacting processes, including flow of fluids, deformation of porous materials, chemical reactions, and transport of ... systems involving the flow of water, heat, and deformation. Such systems are ..... Defined thus, αI is independent of boundary con- ditions in an ... perature change with free deformation at constant total stress ...

  8. Flow visualization study of post-critical heat flux in inverted flow

    International Nuclear Information System (INIS)

    Babelli, I.; Revankar, S.T.; Ishii, M.

    1994-01-01

    A visual study of film boiling was carried out to determine the flow regime transition in the post-CHF region for a transient bottom reflooding of a hot transparent test section. The effect of test liquid subcooling and inlet velocity on flow transition as well as on the quench front propagation was investigated. The respective ranges for liquid velocity and subcooling were 1.8-26.8 cm/s, and 20-45 C, respectively. The test liquid was Freon 113 which was introduced into the bottom of the quartz test section whose walls were maintained well above the film boiling temperature of the test liquid, via a transparent heat transfer fluid. The flow regimes observed down stream of the upward moving quench front were the rough wavy, the agitated, and the dispersed droplet/ligaments in agreement with a steady state, two-phase core injection study carried on recently by one of the authors. A correlation for the flow regime transition between the inverted annular and the dispersed droplet/ligament flow patterns was developed. The correlation showed a marked dependence on the void fraction at the CHF location and hence on the flow regime encountered in the pre-CHF region. (orig.)

  9. Physics of zonal flows

    International Nuclear Information System (INIS)

    Itoh, K.; Fujisawa, A.; Itoh, S.-I.; Yagi, M.; Nagashima, Y.; Diamond, P.H.; Tynan, G.R.; Hahm, T.S.

    2006-01-01

    Zonal flows, which means azimuthally symmetric band-like shear flows, are ubiquitous phenomena in nature and the laboratory. It is now widely recognized that zonal flows are a key constituent in virtually all cases and regimes of drift wave turbulence, indeed, so much so that this classic problem is now frequently referred to as ''drift wave-zonal flow turbulence.'' In this review, new viewpoints and unifying concepts are presented, which facilitate understanding of zonal flow physics, via theory, computation and their confrontation with the results of laboratory experiment. Special emphasis is placed on identifying avenues for further progress. (author)

  10. Physics of zonal flows

    International Nuclear Information System (INIS)

    Itoh, K.; Itoh, S.-I.; Diamond, P.H.; Hahm, T.S.; Fujisawa, A.; Tynan, G.R.; Yagi, M.; Nagashima, Y.

    2006-01-01

    Zonal flows, which means azimuthally symmetric band-like shear flows, are ubiquitous phenomena in nature and the laboratory. It is now widely recognized that zonal flows are a key constituent in virtually all cases and regimes of drift wave turbulence, indeed, so much so that this classic problem is now frequently referred to as 'drift wave-zonal flow turbulence'. In this review, new viewpoints and unifying concepts are presented, which facilitate understanding of zonal flow physics, via theory, computation and their confrontation with the results of laboratory experiment. Special emphasis is placed on identifying avenues for further progress

  11. Study on the flow reduction of forced flow superconducting magnet and its stable operation condition

    Energy Technology Data Exchange (ETDEWEB)

    Sugimoto, Makoto [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    2001-03-01

    The forced flow superconducting coil especially made from a Cable-in-Conduit Conductor (CICC) is applied for large-scale devices such as fusion magnets and superconducting magnet energy storage (SMES) because it has high mechanical and electrical performance potential. The flow reduction phenomena caused by AC loss generation due to the pulsed operation was found based on the experimental results of three forced flow superconducting coils. And relation between the AC loss generation and flow reduction was defined from viewpoint of the engineering design and operation of the coils. Also the mechanism of flow reduction was investigated and stable operation condition under the flow reduction was clarified for forced flow superconducting coils. First, experiments of three different large-scale superconducting coils were carried out and experimental database of the flow reduction by AC loss generation was established. It was found experimentally that the flow reduction depends on the AC loss generation (W/m{sup 3}) in all of coils. It means the stable operation condition is defined not only the electro magnetism of superconducting coil but also flow condition. Mechanism of the flow reduction was investigated based on the experimental database. Hydraulics was applied to supercritical helium as a coolant. Also performances of the cryogenic pump by which coolant are supplied to the coil and friction of the superconductor as cooling path is considered for hydraulic estimation. The flow reduction of the coil is clarified and predictable by the equations of continuity, momentum and energy balance. Also total mass flow rate of coolant was discussed. The estimation method in the design phase was developed for total mass flow rate which are required under the flow reduction by AC losses. The friction of the superconductor and performance of cryogenic pump should be required for precise prediction of flow reduction. These values were obtained by the experiment data of coil and

  12. Methods for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma

    Science.gov (United States)

    Esralew, Rachel A.; Smith, S. Jerrod

    2010-01-01

    Flow statistics can be used to provide decision makers with surface-water information needed for activities such as water-supply permitting, flow regulation, and other water rights issues. Flow statistics could be needed at any location along a stream. Most often, streamflow statistics are needed at ungaged sites, where no flow data are available to compute the statistics. Methods are presented in this report for estimating flow-duration and annual mean-flow statistics for ungaged streams in Oklahoma. Flow statistics included the (1) annual (period of record), (2) seasonal (summer-autumn and winter-spring), and (3) 12 monthly duration statistics, including the 20th, 50th, 80th, 90th, and 95th percentile flow exceedances, and the annual mean-flow (mean of daily flows for the period of record). Flow statistics were calculated from daily streamflow information collected from 235 streamflow-gaging stations throughout Oklahoma and areas in adjacent states. A drainage-area ratio method is the preferred method for estimating flow statistics at an ungaged location that is on a stream near a gage. The method generally is reliable only if the drainage-area ratio of the two sites is between 0.5 and 1.5. Regression equations that relate flow statistics to drainage-basin characteristics were developed for the purpose of estimating selected flow-duration and annual mean-flow statistics for ungaged streams that are not near gaging stations on the same stream. Regression equations were developed from flow statistics and drainage-basin characteristics for 113 unregulated gaging stations. Separate regression equations were developed by using U.S. Geological Survey streamflow-gaging stations in regions with similar drainage-basin characteristics. These equations can increase the accuracy of regression equations used for estimating flow-duration and annual mean-flow statistics at ungaged stream locations in Oklahoma. Streamflow-gaging stations were grouped by selected drainage

  13. Flow of Aqueous Humor

    Science.gov (United States)

    ... Home Flow of Aqueous Humor Flow of Aqueous Humor Most, but not all, forms of glaucoma are ... remains normal when some of the fluid (aqueous humor) produced by the eye's ciliary body flows out ...

  14. Internal Flow of Contra-Rotating Small Hydroturbine at Off- Design Flow Rates

    Science.gov (United States)

    SHIGEMITSU, Toru; TAKESHIMA, Yasutoshi; OGAWA, Yuya; FUKUTOMI, Junichiro

    2016-11-01

    Small hydropower generation is one of important alternative energy, and enormous potential lie in the small hydropower. However, efficiency of small hydroturbines is lower than that of large one. Then, there are demands for small hydroturbines to keep high performance in wide flow rate range. Therefore, we adopted contra-rotating rotors, which can be expected to achieve high performance. In this research, performance of the contra-rotating small hydroturbine with 60mm casing diameter was investigated by an experiment and numerical analysis. Efficiency of the contra-rotating small hydroturbine was high in pico-hydroturbine and high efficiency could be kept in wide flow rate range, however the performance of a rear rotor decreased significantly in partial flow rates. Then, internal flow condition, which was difficult to measure experimentally, was investigated by the numerical flow analysis. Then, a relation between the performance and internal flow condition was considered by the numerical analysis result.

  15. A numerical method to calculate flow-induced vibrations in a turbulent flow

    International Nuclear Information System (INIS)

    Sadaoka, Noriyuki; Umegaki, Kikuo

    1993-01-01

    An unsteady fluid force on structures in a turbulent flow can cause their vibration. The phenomenon is the most important among various flow-induced vibrations and it is an important subject in design nuclear plant components such as heat exchangers. A new approach to simulate flow-induced vibrations is introduced. A fully coupled analysis of fluid-structure interaction has been realized in a turbulent flow field by integrating the following calculational steps: (a) solving turbulent flow by a direct simulation method where the ALE (arbitrary Lagrangian Eulerian) type approximation is adopted to take account of structure displacements; (b) estimating fluid force on structures by integrating fluid pressure and shear stress; (c) calculating dynamic response of structures and determining the amount of displacement; (d) regenerate curvilinear grids for new geometry using the boundary-fitted coordinate transformation method. Forced vibration of a circular cylinder in a cross flow were successfully simulated and the synchronization phenomena between Karman-vortices and cylinder vibrations were clearly seen

  16. Pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump

    International Nuclear Information System (INIS)

    Wang Chunlin; Yang Xiaoyong; Li Changjun; Jia Fei; Zhao Binjuan

    2013-01-01

    In order to research the pressure fluctuation characteristics of flow field of mixed flow nuclear primary pump, this study used the technique of ANSYS-Workbench and CFX fluid solid heat coupling to do numerical simulation analysis for model pump. According to the situation of pressure fluctuation of time domain and frequency domain, the main cause of pressure fluctuation was discussed. For different flow, the pressure fluctuations were compared. This study shows it is feasible that large eddy simulation method is used for the research of pressure fluctuation. The pressure fluctuation amplitudes of four sections are increasing from wheel hub to wheel rim. The pressure fluctuation of inlet and outlet of impeller depends on the rotational frequency of impeller. Along with the fluid flowing away from the impeller, the effect of the impeller on the fluid pressure fluctuation weakens gradually. Comparing the different results of three flow conditions, the pressure fluctuation in design condition flow is superior to the others. (authors)

  17. Building a Champagne Network on a Beer Budget

    Science.gov (United States)

    Dolan, Jon; Pederson, Curt

    2004-01-01

    Oregon State University's demand for bandwidth to support scientific collaboration and research continues to grow exponentially, while state funding declines due to hard economic times. The challenge faced by these authors was to find creative yet fiscally responsible ways to meet OSU's bandwidth demands. Looking at their options for high-capacity…

  18. Method for confirming flow pattern of gas-water flow in horizontal tubes under rolling state

    International Nuclear Information System (INIS)

    Luan Feng; Yan Changqi

    2008-01-01

    An experimental study on the flow patterns of gas-water flow was carried out in horizontal tubes under rolling state. It was found that the pressure drop of two phase flow was with an obvious periodical characteristic. The flow pattern of the gas-water flow was distinguished according to the characteristics of the pressure drop in this paper. It was proved that the characteristics of the pressure drop can distinguish the flow pattern of gas-water flow correctly through comparing with the result of careful observation and high speed digital camera. (authors)

  19. Complex networks from experimental horizontal oil–water flows: Community structure detection versus flow pattern discrimination

    International Nuclear Information System (INIS)

    Gao, Zhong-Ke; Fang, Peng-Cheng; Ding, Mei-Shuang; Yang, Dan; Jin, Ning-De

    2015-01-01

    We propose a complex network-based method to distinguish complex patterns arising from experimental horizontal oil–water two-phase flow. We first use the adaptive optimal kernel time–frequency representation (AOK TFR) to characterize flow pattern behaviors from the energy and frequency point of view. Then, we infer two-phase flow complex networks from experimental measurements and detect the community structures associated with flow patterns. The results suggest that the community detection in two-phase flow complex network allows objectively discriminating complex horizontal oil–water flow patterns, especially for the segregated and dispersed flow patterns, a task that existing method based on AOK TFR fails to work. - Highlights: • We combine time–frequency analysis and complex network to identify flow patterns. • We explore the transitional flow behaviors in terms of betweenness centrality. • Our analysis provides a novel way for recognizing complex flow patterns. • Broader applicability of our method is demonstrated and articulated

  20. Hyperspectral imaging flow cytometer

    Science.gov (United States)

    Sinclair, Michael B.; Jones, Howland D. T.

    2017-10-25

    A hyperspectral imaging flow cytometer can acquire high-resolution hyperspectral images of particles, such as biological cells, flowing through a microfluidic system. The hyperspectral imaging flow cytometer can provide detailed spatial maps of multiple emitting species, cell morphology information, and state of health. An optimized system can image about 20 cells per second. The hyperspectral imaging flow cytometer enables many thousands of cells to be characterized in a single session.

  1. Flowing holographic anyonic superfluid

    Science.gov (United States)

    Jokela, Niko; Lifschytz, Gilad; Lippert, Matthew

    2014-10-01

    We investigate the flow of a strongly coupled anyonic superfluid based on the holographic D3-D7' probe brane model. By analyzing the spectrum of fluctuations, we find the critical superfluid velocity, as a function of the temperature, at which the flow stops being dissipationless when flowing past a barrier. We find that at a larger velocity the flow becomes unstable even in the absence of a barrier.

  2. Applied multiphase flow in pipes and flow assurance oil and gas production

    CERN Document Server

    Al-Safran, Eissa M

    2017-01-01

    Applied Multiphase Flow in Pipes and Flow Assurance - Oil and Gas Production delivers the most recent advancements in multiphase flow technology while remaining easy to read and appropriate for undergraduate and graduate petroleum engineering students. Responding to the need for a more up-to-the-minute resource, this highly anticipated new book represents applications on the fundamentals with new material on heat transfer in production systems, flow assurance, transient multiphase flow in pipes and the TUFFP unified model. The complex computation procedure of mechanistic models is simplified through solution flowcharts and several example problems. Containing over 50 solved example problems and 140 homework problems, this new book will equip engineers with the skills necessary to use the latest steady-state simulators available.

  3. Investigation on the Flow in a Rotor-Stator Cavity with Centripetal Through-Flow

    Directory of Open Access Journals (Sweden)

    Bo Hu

    2017-10-01

    Full Text Available Daily and Nece distinguished four flow regimes in an enclosed rotor-stator cavity, which are dependent on the circumferential Reynolds number and dimensionless axial gap width. A diagram of the different flow regimes including the respective mean profiles for both tangential and radial velocity was developed. The coefficients for the different flow regimes have also been correlated. In centrifugal pumps and turbines, the centripetal through-flow is quite common from the outer radius of the impeller to the impeller eye, which has a strong influence on the radial pressure distribution, axial thrust and frictional torque. The influence of the centripetal through-flow on the cavity flow with different circumferential Reynolds numbers and dimensionless axial gap width is not sufficiently investigated. It is also quite important to convert the 2D Daily and Nece diagram into 3D by introducing the through-flow coefficient. In order to investigate the impact of the centripetal through-flow, a test rig is designed and built up at the University of Duisburg-Essen. The design of the test rig is described. The impact of the above mentioned parameters on the velocity profile, pressure distribution, axial thrust and frictional torque are presented and analyzed in this paper. The 3D Daily and Nece diagram introducing the through-flow coefficient is also organized in this paper.

  4. The art and science of flow control - case studies using flow visualization methods

    Science.gov (United States)

    Alvi, F. S.; Cattafesta, L. N., III

    2010-04-01

    Active flow control (AFC) has been the focus of significant research in the last decade. This is mainly due to the potentially substantial benefits it affords. AFC applications range from the subsonic to the supersonic (and beyond) regime for both internal and external flows. These applications are wide and varied, such as controlling flow transition and separation over various external components of the aircraft to active management of separation and flow distortion in engine components and over turbine and compressor blades. High-speed AFC applications include control of flow oscillations in cavity flows, supersonic jet screech, impinging jets, and jet-noise control. In this paper we review some of our recent applications of AFC through a number of case studies that illustrate the typical benefits as well as limitations of present AFC methods. The case studies include subsonic and supersonic canonical flowfields such as separation control over airfoils, control of supersonic cavity flows and impinging jets. In addition, properties of zero-net mass-flux (ZNMF) actuators are also discussed as they represent one of the most widely studied actuators used for AFC. In keeping with the theme of this special issue, the flowfield properties and their response to actuation are examined through the use of various qualitative and quantitative flow visualization methods, such as smoke, shadowgraph, schlieren, planar-laser scattering, and Particle image velocimetry (PIV). The results presented here clearly illustrate the merits of using flow visualization to gain significant insight into the flow and its response to AFC.

  5. Structural characteristics of cohesive flow deposits, and a sedimentological approach on their flow mechanisms.

    Science.gov (United States)

    Tripsanas, E. K.; Bryant, W. R.; Prior, D. B.

    2003-04-01

    A large number of Jumbo Piston cores (up to 20 m long), acquired from the continental slope and rise of the Northwest Gulf of Mexico (Bryant Canyon area and eastern Sigsbee Escarpment), have recovered various mass-transport deposits. The main cause of slope instabilities over these areas is oversteepening of the slopes due to the seaward mobilization of the underlying allochthonous salt masses. Cohesive flow deposits were the most common recoveries in the sediment cores. Four types of cohesive flow deposits have been recognized: a) fluid debris flow, b) mud flow, c) mud-matrix dominated debris flow, and d) clast-dominated debris flow deposits. The first type is characterized by its relatively small thickness (less than 1 m), a mud matrix with small (less than 0.5 cm) and soft mud-clasts, and a faint layering. The mud-clasts reveal a normal grading and become more abundant towards the base of each layer. That reveals that their deposition resulted by several successive surges/pulses, developed in the main flow, than the sudden “freezing” of the whole flow. The main difference between mud flow and mud-matrix dominated debris flow deposits is the presence of small to large mud-clasts in the later. Both deposits consist of a chaotic mud-matrix, and a basal shear laminated zone, where the strongest shearing of the flow was exhibited. Convolute laminations, fault-like surfaces, thrust faults, and microfaults are interpreted as occurring during the “freezing” of the flows and/or by adjustments of the rested deposits. Clast-dominated debris flow deposits consist of three zones: a) an upper plug-zone, characterized by large interlocked clasts, b) a mid-zone, of higher reworked, inversely graded clasts, floating in a mud-matrix, and c) a lower shear laminated zone. The structure of the last three cohesive flow deposits indicate that they represent deposition of typical Bingham flows, consisting of an upper plug-zone in which the yield stress is not exceeded and an

  6. From mineral industry to industrial waste recycling: the Valme Company in Falaise

    Energy Technology Data Exchange (ETDEWEB)

    Delubac, G

    1993-07-01

    Computers reach their final destination in the Calvados town of Falaise. There, the Valme Company recovers the gold, silver and palladium contained in computer parts. On average, Valme thus recovers between 500 and 600 kg of gold, 4.5 tons of silver, and 100 to 150 kg of palladium per year. The Falaise plant also handles refining of the Rouez-en-Champagne gold mining products. (Author). 4 figs.

  7. Flow in bedrock canyons.

    Science.gov (United States)

    Venditti, Jeremy G; Rennie, Colin D; Bomhof, James; Bradley, Ryan W; Little, Malcolm; Church, Michael

    2014-09-25

    Bedrock erosion in rivers sets the pace of landscape evolution, influences the evolution of orogens and determines the size, shape and relief of mountains. A variety of models link fluid flow and sediment transport processes to bedrock incision in canyons. The model components that represent sediment transport processes are increasingly well developed. In contrast, the model components being used to represent fluid flow are largely untested because there are no observations of the flow structure in bedrock canyons. Here we present a 524-kilometre, continuous centreline, acoustic Doppler current profiler survey of the Fraser Canyon in western Canada, which includes 42 individual bedrock canyons. Our observations of three-dimensional flow structure reveal that, as water enters the canyons, a high-velocity core follows the bed surface, causing a velocity inversion (high velocities near the bed and low velocities at the surface). The plunging water then upwells along the canyon walls, resulting in counter-rotating, along-stream coherent flow structures that diverge near the bed. The resulting flow structure promotes deep scour in the bedrock channel floor and undercutting of the canyon walls. This provides a mechanism for channel widening and ensures that the base of the walls is swept clear of the debris that is often deposited there, keeping the walls nearly vertical. These observations reveal that the flow structure in bedrock canyons is more complex than assumed in the models presently used. Fluid flow models that capture the essence of the three-dimensional flow field, using simple phenomenological rules that are computationally tractable, are required to capture the dynamic coupling between flow, bedrock erosion and solid-Earth dynamics.

  8. Make peak flow a habit

    Science.gov (United States)

    Asthma - make peak flow a habit; Reactive airway disease - peak flow; Bronchial asthma - peak flow ... 2014:chap 55. National Asthma Education and Prevention Program website. How to use a peak flow meter. ...

  9. Can elliptical galaxies be equilibrium systems

    Energy Technology Data Exchange (ETDEWEB)

    Caimmi, R [Padua Univ. (Italy). Ist. di Astronomia

    1980-08-01

    This paper deals with the question of whether elliptical galaxies can be considered as equilibrium systems (i.e., the gravitational + centrifugal potential is constant on the external surface). We find that equilibrium models such as Emden-Chandrasekhar polytropes and Roche polytropes with n = 0 can account for the main part of observations relative to the ratio of maximum rotational velocity to central velocity dispersion in elliptical systems. More complex models involving, for example, massive halos could lead to a more complete agreement. Models that are a good fit to the observed data are characterized by an inner component (where most of the mass is concentrated) and a low-density outer component. A comparison is performed between some theoretical density distributions and the density distribution observed by Young et al. (1978) in NGC 4473, but a number of limitations must be adopted. Alternative models, such as triaxial oblate non-equilibrium configurations with coaxial shells, involve a number of problems which are briefly discussed. We conclude that spheroidal oblate models describing elliptical galaxies cannot be ruled out until new analyses relative to more refined theoretical equilibrium models (involving, for example, massive halos) and more detailed observations are performed.

  10. Spinning solutions in general relativity with infinite central density

    Science.gov (United States)

    Flammer, P. D.

    2018-05-01

    This paper presents general relativistic numerical simulations of uniformly rotating polytropes. Equations are developed using MSQI coordinates, but taking a logarithm of the radial coordinate. The result is relatively simple elliptical differential equations. Due to the logarithmic scale, we can resolve solutions with near-singular mass distributions near their center, while the solution domain extends many orders of magnitude larger than the radius of the distribution (to connect with flat space-time). Rotating solutions are found with very high central energy densities for a range of adiabatic exponents. Analytically, assuming the pressure is proportional to the energy density (which is true for polytropes in the limit of large energy density), we determine the small radius behavior of the metric potentials and energy density. This small radius behavior agrees well with the small radius behavior of large central density numerical results, lending confidence to our numerical approach. We compare results with rotating solutions available in the literature, which show good agreement. We study the stability of spherical solutions: instability sets in at the first maximum in mass versus central energy density; this is also consistent with results in the literature, and further lends confidence to the numerical approach.

  11. Microparticle Flow Sensor

    Science.gov (United States)

    Morrison, Dennis R.

    2005-01-01

    The microparticle flow sensor (MFS) is a system for identifying and counting microscopic particles entrained in a flowing liquid. The MFS includes a transparent, optoelectronically instrumented laminar-flow chamber (see figure) and a computer for processing instrument-readout data. The MFS could be used to count microparticles (including micro-organisms) in diverse applications -- for example, production of microcapsules, treatment of wastewater, pumping of industrial chemicals, and identification of ownership of liquid products.

  12. Concentric Split Flow Filter

    Science.gov (United States)

    Stapleton, Thomas J. (Inventor)

    2015-01-01

    A concentric split flow filter may be configured to remove odor and/or bacteria from pumped air used to collect urine and fecal waste products. For instance, filter may be designed to effectively fill the volume that was previously considered wasted surrounding the transport tube of a waste management system. The concentric split flow filter may be configured to split the air flow, with substantially half of the air flow to be treated traveling through a first bed of filter media and substantially the other half of the air flow to be treated traveling through the second bed of filter media. This split flow design reduces the air velocity by 50%. In this way, the pressure drop of filter may be reduced by as much as a factor of 4 as compare to the conventional design.

  13. A century of changing flows: Forest management changed flow magnitudes and warming advanced the timing of flow in a southwestern US river.

    Directory of Open Access Journals (Sweden)

    Marcos D Robles

    Full Text Available The continued provision of water from rivers in the southwestern United States to downstream cities, natural communities and species is at risk due to higher temperatures and drought conditions in recent decades. Snowpack and snowfall levels have declined, snowmelt and peak spring flows are arriving earlier, and summer flows have declined. Concurrent to climate change and variation, a century of fire suppression has resulted in dramatic changes to forest conditions, and yet, few studies have focused on determining the degree to which changing forests have altered flows. In this study, we evaluated changes in flow, climate, and forest conditions in the Salt River in central Arizona from 1914-2012 to compare and evaluate the effects of changing forest conditions and temperatures on flows. After using linear regression models to remove the influence of precipitation and temperature, we estimated that annual flows declined by 8-29% from 1914-1963, coincident with a 2-fold increase in basal area, a 2-3-fold increase in canopy cover, and at least a 10-fold increase in forest density within ponderosa pine forests. Streamflow volumes declined by 37-56% in summer and fall months during this period. Declines in climate-adjusted flows reversed at mid-century when spring and annual flows increased by 10-31% from 1964-2012, perhaps due to more winter rainfall. Additionally, peak spring flows occurred about 12 days earlier in this period than in the previous period, coincident with winter and spring temperatures that increased by 1-2°C. While uncertainties remain, this study adds to the knowledge gained in other regions that forest change has had effects on flow that were on par with climate variability and, in the case of mid-century declines, well before the influence of anthropogenic warming. Current large-scale forest restoration projects hold some promise of recovering seasonal flows.

  14. Void fraction in horizontal bulk flow boiling at high flow qualities

    International Nuclear Information System (INIS)

    Collado, Fancisco J.; Monne, Carlos; Pascau, Antonio

    2008-01-01

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities (≤0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality (≤0.2)

  15. Flow and volume dependence of rat airway resistance during constant flow inflation and deflation.

    Science.gov (United States)

    Rubini, Alessandro; Carniel, Emanuele Luigi; Parmagnani, Andrea; Natali, Arturo Nicola

    2011-12-01

    The aim of this study was to measure the flow and volume dependence of both the ohmic and the viscoelastic pressure dissipations of the normal rat respiratory system separately during inflation and deflation. The study was conducted in the Respiratory Physiology Laboratory in our institution. Measurements were obtained for Seven albino Wistar rats of both sexes by using the flow interruption method during constant flow inflations and deflations. Measurements included anesthesia induction, tracheostomy and positioning of a tracheal cannula, positive pressure ventilation, constant flow respiratory system inflations and deflations at two different volumes and flows. The ohmic resistance exhibited volume and flow dependence, decreasing with lung volume and increasing with flow rate, during both inflation and deflation. The stress relaxation-related viscoelastic resistance also exhibited volume and flow dependence. It decreased with the flow rate at a constant lung volume during both inflation and deflation, but exhibited a different behavior with the lung volume at a constant flow rate (i.e., increased during inflations and decreased during deflations). Thus, stress relaxation in the rat lungs exhibited a hysteretic behavior. The observed flow and volume dependence of respiratory system resistance may be predicted by an equation derived from a model of the respiratory system that consists of two distinct compartments. The equation agrees well with the experimental data and indicates that the loading time is the critical parameter on which stress relaxation depends, during both lung inflation and deflation.

  16. Numerical flow analysis of axial flow compressor for steady and unsteady flow cases

    Science.gov (United States)

    Prabhudev, B. M.; Satish kumar, S.; Rajanna, D.

    2017-07-01

    Performance of jet engine is dependent on the performance of compressor. This paper gives numerical study of performance characteristics for axial compressor. The test rig is present at CSIR LAB Bangalore. Flow domains are meshed and fluid dynamic equations are solved using ANSYS package. Analysis is done for six different speeds and for operating conditions like choke, maximum efficiency & before stall point. Different plots are compared and results are discussed. Shock displacement, vortex flows, leakage patterns are presented along with unsteady FFT plot and time step plot.

  17. HANARO core channel flow-rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.

  18. Mathematical simulation of fluid flow and analysis of flow pattern in the flow path of low-head Kaplan turbine

    Directory of Open Access Journals (Sweden)

    A. V. Rusanov

    2016-12-01

    Full Text Available The results of numerical investigation of spatial flow of viscous incompressible fluid in flow part of Kaplan turbine PL20 Kremenchug HPP at optimum setting angle of runner blade φb = 15° and at maximum setting angle φb = 35° are shown. The flow simulation has been carried out on basis of numerical integration of the Reynolds equations with an additional term containing artificial compressibility. The differential two-parameter model of Menter (SST has been applied to take into account turbulent effects. Numerical integration of the equations is carried out using an implicit quasi-monotone Godunov type scheme of second - order accuracy in space and time. The calculations have been conducted with the help of the software system IPMFlow. The analysis of fluid flow in the flow part elements is shown and the values of hydraulic losses and local cavitation coefficient have been obtained. Comparison of calculated and experimental results has been carried out.

  19. Transition from slug to annular flow in horizontal air-water flow

    International Nuclear Information System (INIS)

    Reismann, J.; John, H.; Seeger, W.

    1981-11-01

    The transition from slug to annular flow in horizontal air-water and steam-water flow was investigated. Test sections of 50; 66.6 and 80 mm ID were used. The system pressure was 0.2 and 0.5 MPa in the air-water experiments and 2.5; 5; 7.5 and 10 MPa in the steam-water experiments. For flow pattern detection local impedance probes were used. This method was compared in a part of the experiments with differential pressure and gamma-beam measurements. The flow regime boundary is shifting strongly to smaller values of the superficial gas velocity with increasing pressure. Correlations from literature fit unsatisfactorily the experimental results. A new correlation is presented. (orig.) [de

  20. Perbandingan Hasil Pemodelan Aliran Satu Dimensi Unsteady Flow dan Steady Flow pada Banjir Kota

    Directory of Open Access Journals (Sweden)

    Andreas Tigor Oktaga

    2016-06-01

    Full Text Available One dimensional flow is often used as a flood simulation for the planning capacity of the river. Flood is a type of unsteady non-uniform flow, that can be simulated using HEC-RAS. HEC-RAS software is often used for flood modeling with a one-dimensional flow method. Unsteady flow modeling results in HEC-RAS sometimes refer to error and warning due to unstable analysis program. The stability program among others influenced bend in the river flow, the steep slope of the river bottom, and changes in cross-section shape. Because the flood handling required maximum discharge and maximum flood water level, then a steady flow is often used as an alternative to simulate the flood flow. This study aimed to determine the advantages and disadvantages of modeling unsteady non-uniform and steady non-uniform flow. The research location in the Kanal Banjir Barat, in the Semarang City. Hydraulics modeling uses HEC-RAS 4.1 and for discharge the plan is obtained from the HEC-HMS 3.5. Results of the comparison modeling hydraulics the modeling of steady non-uniform flow has a tendency water level is higher and modeling of unsteady non-uniform flow takes longer to analyze. Results of the comparison the average flood water level maximun is less than 15%  (± 0,3 meters, that is 0.27 meters (13.16% for Q50, 0.25 meters (11.56% for Q100, dan 0.16 meters (4.73% for Q200. So the modeling steady non-uniform flow can still be used as a companion version the modeling unsteady non-uniform flow.

  1. Practical flow cytometry

    National Research Council Canada - National Science Library

    Shapiro, Howard M

    2003-01-01

    ... ... Conflict: Resolution ... 1.3 Problem Number One: Finding The Cell(s) ... Flow Cytometry: Quick on the Trigger ... The Main Event ... The Pulse Quickens, the Plot Thickens ... 1.4 Flow Cytometry: ...

  2. Characterization of Flow Dynamics and Reduced-Order Description of Experimental Two-Phase Pipe Flow

    Science.gov (United States)

    Viggiano, Bianca; SkjæRaasen, Olaf; Tutkun, Murat; Cal, Raul Bayoan

    2017-11-01

    Multiphase pipe flow is investigated using proper orthogonal decomposition for tomographic X-ray data, where holdup, cross sectional phase distributions and phase interface characteristics are obtained. Instantaneous phase fractions of dispersed flow and slug flow are analyzed and a reduced order dynamical description is generated. The dispersed flow displays coherent structures in the first few modes near the horizontal center of the pipe, representing the liquid-liquid interface location while the slug flow case shows coherent structures that correspond to the cyclical formation and breakup of the slug in the first 10 modes. The reconstruction of the fields indicate that main features are observed in the low order dynamical descriptions utilizing less than 1 % of the full order model. POD temporal coefficients a1, a2 and a3 show interdependence for the slug flow case. The coefficients also describe the phase fraction holdup as a function of time for both dispersed and slug flow. These flows are highly applicable to petroleum transport pipelines, hydroelectric power and heat exchanger tubes to name a few. The mathematical representations obtained via proper orthogonal decomposition will deepen the understanding of fundamental multiphase flow characteristics.

  3. Champagne-Ardenne Climate-Air-Energy Plan + Synthesis + Wind energy regional plan + Report and conclusion of the consultation and dialogue organised from January 20 to March 20, 2012. Territorial Climate-Energy Plan Coeur d'Ardenne urban community, Sedan region community of communes

    International Nuclear Information System (INIS)

    Guillot, Michel; Bachy, Jean-Paul

    2012-05-01

    After a recall of stakes and challenges related to climate, air and energy, an introduction presents the Champagne-Ardenne Regional Climate Air Energy Plan (PCAER), recalls national and international commitments (struggle against greenhouse effect, improvement of air quality, development of renewable energies, energy demand management), describes the PCAER elaboration process, indicates its legal status and value, and its relationship with other schemes and plans. The next part proposes a situational analysis with a presentation of the territory (economy, geography, demography, organisation), an assessment of its final energy consumption, and an assessment of potential energy savings, energy efficiency improvements and energy demand management. It proposes an assessment of renewable and recovery energy production and of its potential development, an inventory of greenhouse gas emissions and of atmospheric pollutant emissions, an assessment of air quality, and a discussion of territory vulnerability to climate change. The next part is a more prospective one as it defines orientations for land and urban development, mobility, good transport, agriculture and viticulture, forest and wood valorisation, buildings, renewable and recovery energies, water, natural, technological and health risks, the tertiary sector, industry, communities, and governance for the PCAER implementation. A second document is a synthesis of this PCAER and proposes an overview of the situation and challenges, of objectives to be reached, and the definition of a roadmap, with a focus on the regional scheme for wind energy (SRE). This last one discusses the wind energy development (legal and regulatory framework, role in regional development, issues related to land development, dialogue, impacts), proposes an overview of the different types of constraints and servitudes (environmental, technical, heritage, landscape, and so on). The next document reports the consultation and dialogue process and

  4. The onset of flow instability for a downward flow of a non-boiling heated liquid

    International Nuclear Information System (INIS)

    Babelli, Ibrahim; Ishii, Mamoru

    1999-01-01

    A procedure for predicting the onset of flow instability (OFI) in downward flows at low-pressure and low-flow conditions without boiling is presented in this paper. It is generally accepted that the onset of significant void in subcooled boiling precedes, and is a precondition to, the occurrence of static flow instability. A detailed analysis of the pressure drop components for a downward flow in a heated channel reveals the possibility of unstable transition from single-phase flow to high-quality two-phase flow, i.e., flow excursion. Low flow rate and high subcooling are the two important conditions for the occurrence of this type of instability. The unstable transition occurs when the resistance to the downward flow caused by local (orifice), frictional, and thermal expansion pressure drops equalizes the driving force of the gravitational pressure drop. The inclusion of the thermal expansion pressure drop is essential to account for this type of transition. Experimental data are yet to be produced to verify the prediction of the present analysis. (author)

  5. Polyoxometalate flow battery

    Science.gov (United States)

    Anderson, Travis M.; Pratt, Harry D.

    2016-03-15

    Flow batteries including an electrolyte of a polyoxometalate material are disclosed herein. In a general embodiment, the flow battery includes an electrochemical cell including an anode portion, a cathode portion and a separator disposed between the anode portion and the cathode portion. Each of the anode portion and the cathode portion comprises a polyoxometalate material. The flow battery further includes an anode electrode disposed in the anode portion and a cathode electrode disposed in the cathode portion.

  6. Transition from annular flow to plug/slug flow in condensation of steam in microchannels

    Energy Technology Data Exchange (ETDEWEB)

    Quan, Xiaojun; Cheng, Ping; Wu, Huiying [School of Mechanical and Power Engineering, Shanghai Jiaotong University, 800 Dong Chuan Road, Shanghai 200240 (China)

    2008-02-15

    A visualization study has been conducted to investigate the transition from annular flow to plug/slug flow in the condensation of steam in two different sets of parallel microchannels, having hydraulic diameters of 90 {mu}m and 136 {mu}m, respectively. The steam in the parallel microchannels was cooled on the bottom by forced convection of water and by natural convection of air from the top. It is found that the location, where the transition from annular flow to plug/slug flow takes place, depends on mass flux and cooling rate of steam. The effects of mass flux and cooling rate on the occurrence frequency of the injection flow in a single microchannel, having a hydraulic diameter of 120 {mu}m and 128 {mu}m, respectively, are investigated. It is found that two different shapes of injection flow occur in the smooth annular flow in microchannels: injection flow with unsteady vapor ligament occurring at low mass flux (or high cooling rate) and injection flow with steady vapor ligament occurring at high mass flux (or low cooling rate). It is also found that increase of steam mass flux, decrease of cooling rate, or decrease of the microchannel diameter tends to enhance instability of the condensate film on the wall, resulting in occurrence of the injection flow further toward the outlet with an increase in occurrence frequency. (author)

  7. Two-phase flow through small branches in a horizontal pipe with stratified flow

    International Nuclear Information System (INIS)

    Smoglie, C.

    1984-12-01

    This report presents the description and results of experiments designed to determine the mass flow rate and quality through a small break at the bottom, the top or the side of a main pipe with stratified gas-liquid flow. If the interface level is far below (above) the branch, only single-phase gas (liquid) flow enters the branch. For smaller distances the interface is locally deformed because of the pressure decrease due to the fluid acceleration near the branch inlet (Bernoulli effect) and liquid (gas) can be entrained. This report contains photographs illustrating the flow phenomena as well as a general correlation to determine the beginning of entrainment. Results are presented on the branch mass flow rate and quality as a function of a normalized distance between the interface and the branch inlet. A model was developed which enables to predict the branch quality and mass flux. Results from air-water flow through horizontal branches, were extrapolated for steam water flow at high pressure with critical branch mass flux. (orig./HP) [de

  8. Fast X-ray imaging of two-phase flows: Application to cavitating flows

    International Nuclear Information System (INIS)

    Khlifa, Ilyass

    2014-01-01

    A promising method based on fast X-ray imaging has been developed to investigate the dynamics and the structure of complex two-phase flows. It has been applied in this work on cavitating flows created inside a Venturi-type test section and helped therefore to better understand flows inside cavitation pockets. Seeding particles were injected into the flow to trace the liquid phase. Thanks to the characteristics of the beam provided by the APS synchrotron (Advance Photon Source, USA), high definition X-ray images of the flow containing simultaneously information for both liquid and vapour were obtained. Velocity fields of both phases were thus calculated using image cross-correlation algorithms. Local volume fractions of vapour have also been obtained using local intensities of the images. Beforehand however, image processing is required to separate phases for velocity measurements. Validation methods of all applied treatments were developed, they allowed to characterise the measurement accuracy. This experimental technique helped us to have more insight into the dynamic of cavitating flows and especially demonstrates the presence of significant slip velocities between phases. (author)

  9. Investigation of the specific mass flow rate distribution in pipes supplied with a pulsating flow

    Energy Technology Data Exchange (ETDEWEB)

    Olczyk, Aleksander [Institute of Turbomachinery, Technical University of Lodz, Wolczanska 219/223, 90-924 Lodz (Poland)], E-mail: aolczyk@p.lodz.pl

    2009-08-15

    A pulsating flow is typical of inlet and exhaust pipes of internal combustion engines and piston compressors. Unsteady flow phenomena are especially important in the case of turbocharged engines, because dynamic effects occurring in the exhaust pipe can affect turbine operation conditions and performance. One of the basic parameters describing the unsteady flow is a transient mass flow rate related to the instantaneous flow velocity, which is usually measured by means of hot-wire anemometers. For the flowing gas, it is more appropriate to analyze the specific mass flow rate {phi}{sub m} = {rho}v, which takes into account also variations in the gas density. In order to minimize the volume occupied by measuring devices in the control section, special double-wire sensors for the specific mass flow rate (CTA) and temperature (CCT) measurement were applied. The article describes procedures of their calibration and measurement. Different forms of calibration curves are analyzed as well in order to match the approximation function to calibration points. Special attention is paid to dynamic phenomena related to the resonance occurring in a pipe for characteristic frequencies depending on the pipe length. One of these phenomena is a reverse flow, which makes it difficult to interpret properly the recorded CTA signal. Procedures of signal correction are described in detail. To verify the measurements, a flow field investigation was carried out by displacing probes radially and determining the profiles of the specific mass flow rate under the conditions of a steady and pulsating flow. The presence and general features of a reverse flow, which was identified experimentally, were confirmed by 1-D unsteady flow calculations.

  10. Investigation of the specific mass flow rate distribution in pipes supplied with a pulsating flow

    International Nuclear Information System (INIS)

    Olczyk, Aleksander

    2009-01-01

    A pulsating flow is typical of inlet and exhaust pipes of internal combustion engines and piston compressors. Unsteady flow phenomena are especially important in the case of turbocharged engines, because dynamic effects occurring in the exhaust pipe can affect turbine operation conditions and performance. One of the basic parameters describing the unsteady flow is a transient mass flow rate related to the instantaneous flow velocity, which is usually measured by means of hot-wire anemometers. For the flowing gas, it is more appropriate to analyze the specific mass flow rate φ m = ρv, which takes into account also variations in the gas density. In order to minimize the volume occupied by measuring devices in the control section, special double-wire sensors for the specific mass flow rate (CTA) and temperature (CCT) measurement were applied. The article describes procedures of their calibration and measurement. Different forms of calibration curves are analyzed as well in order to match the approximation function to calibration points. Special attention is paid to dynamic phenomena related to the resonance occurring in a pipe for characteristic frequencies depending on the pipe length. One of these phenomena is a reverse flow, which makes it difficult to interpret properly the recorded CTA signal. Procedures of signal correction are described in detail. To verify the measurements, a flow field investigation was carried out by displacing probes radially and determining the profiles of the specific mass flow rate under the conditions of a steady and pulsating flow. The presence and general features of a reverse flow, which was identified experimentally, were confirmed by 1-D unsteady flow calculations.

  11. UZ Flow Models and Submodels

    International Nuclear Information System (INIS)

    Y. Wu

    2004-01-01

    The purpose of this report is to document the unsaturated zone (UZ) flow models and submodels, as well as the flow fields that have been generated using the UZ flow model(s) of Yucca Mountain, Nevada. In this report, the term ''UZ model'' refers to the UZ flow model and the several submodels, which include tracer transport, temperature or ambient geothermal, pneumatic or gas flow, and geochemistry (chloride, calcite, and strontium) submodels. The term UZ flow model refers to the three-dimensional models used for calibration and simulation of UZ flow fields. This work was planned in the ''Technical Work Plan (TWP) for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Section 1.2.7). The table of included Features, Events, and Processes (FEPs), Table 6.2-11, is different from the list of included FEPs assigned to this report in the ''Technical Work Plan for: Unsaturated Zone Flow Analysis and Model Report Integration'' (BSC 2004 [DIRS 169654], Table 2.1.5-1), as discussed in Section 6.2.6. The UZ model has revised, updated, and enhanced the previous UZ model (BSC 2001 [DIRS 158726]) by incorporating the repository design with new grids, recalibration of property sets, and more comprehensive validation effort. The flow fields describe fracture-fracture, matrix-matrix, and fracture-matrix liquid flow rates, and their spatial distributions as well as moisture conditions in the UZ system. These three-dimensional UZ flow fields are used directly by Total System Performance Assessment (TSPA). The model and submodels evaluate important hydrogeologic processes in the UZ as well as geochemistry and geothermal conditions. These provide the necessary framework to test hypotheses of flow and transport at different scales, and predict flow and transport behavior under a variety of climatic conditions. In addition, the limitations of the UZ model are discussed in Section 8.11

  12. Understanding of the Interaction between Clearance Leakage Flow and Main Passage Flow in a VGT Turbine

    Directory of Open Access Journals (Sweden)

    Ben Zhao

    2015-02-01

    Full Text Available The clearance flow between the nozzle and endwall in a variable geometry turbine (VGT has been numerically investigated to understand the clearance effect on the VGT performance and internal flow. It was found that the flow rate through turbine increases but the turbine efficiency decreases with height of clearance. Detailed flow field analyses indicated that most of the efficiency loss resulting from the leakage flow occurs at the upstream of the rotor area, that is, in the nozzle endwall clearance and between the nozzle vanes. There are two main mechanisms associated with this efficiency loss. One is due to the formation of the local vortex flow structure between the clearance flow and the main flow. The other is due to the impact of the clearance flow on the main flow after the nozzle throat. This impact reduces the span of shockwave with increased shockwave magnitude by changing the trajectory of the main flow.

  13. Pengalaman Flow dalam Belajar

    Directory of Open Access Journals (Sweden)

    Lucky Purwantini

    2017-08-01

    Full Text Available Flow is a condition when individual merges within his/her activity. When a person in flow state, he/she can develop his/her abilities and more success in learning. The purpose of the study is to understand flow experience in learning among undergraduate student. The study used case study qualitative approach. Informant of this research was an undergraduate student which had flow experience. Data was collected by an interview. According to the result, the subject did not experience flow in the learning process, as likes he was in meditation. It happened because when he learned something, he felt be pressed by tasks. It’s important for individual to relax when they are learning.

  14. Gas/liquid flow configurations

    International Nuclear Information System (INIS)

    Bonin, Jacques; Fitremann, J.-M.

    1978-01-01

    Prediction of flow configurations (morphology) for gas/liquid or liquid/vapour mixtures is an important industrial problem which is not yet fully understood. The ''Flow Configurations'' Seminar of Societe Hydrotechnique de France has framed recommendations for investigation of potential industrial applications for flow configurations [fr

  15. Thermal flow micro sensors

    NARCIS (Netherlands)

    Elwenspoek, Michael Curt

    1999-01-01

    A review is given on sensors fabricated by silicon micromachining technology using the thermal domain for the measurement of fluid flow. Attention is paid especially to performance and geometry of the sensors. Three basic types of thermal flow sensors are discussed: anemometers, calorimetric flow

  16. STOCHASTIC FLOWS OF MAPPINGS

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this paper, the stochastic flow of mappings generated by a Feller convolution semigroup on a compact metric space is studied. This kind of flow is the generalization of superprocesses of stochastic flows and stochastic diffeomorphism induced by the strong solutions of stochastic differential equations.

  17. Elementary chaotic snap flows

    International Nuclear Information System (INIS)

    Munmuangsaen, Buncha; Srisuchinwong, Banlue

    2011-01-01

    Highlights: → Five new elementary chaotic snap flows and a generalization of an existing chaotic snap flow have been presented. → Three of all are conservative systems whilst three others are dissipative systems. → Four cases need only a single control parameter and a single nonlinearity. → A cubic case in a jerk representation requires only two terms and a single nonlinearity. - Abstract: Hyperjerk systems with 4th-order derivative of the form x .... =f(x ... ,x .. ,x . ,x) have been referred to as snap systems. Five new elementary chaotic snap flows and a generalization of an existing flow are presented through an extensive numerical search. Four of these flows demonstrate elegant simplicity of a single control parameter based on a single nonlinearity of a quadratic, a piecewise-linear or an exponential type. Two others demonstrate elegant simplicity of all unity-in-magnitude parameters based on either a single cubic nonlinearity or three cubic nonlinearities. The chaotic snap flow with a single cubic nonlinearity requires only two terms and can be transformed to its equivalent dynamical form of only five terms which have a single nonlinearity. An advantage is that such a chaotic flow offers only five terms even though the (four) dimension is high. Three of the chaotic snap flows are characterized as conservative systems whilst three others are dissipative systems. Basic dynamical properties are described.

  18. Effect of a flow-corrective insert on the flow pattern in a pebble bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yu; Gui, Nan; Yang, Xingtuan [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); Tu, Jiyuan [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China); School of Aerospace, Mechanical & Manufacturing Engineering, RMIT University, Melbourne 3083, VIC (Australia); Jiang, Shengyao, E-mail: shengyaojiang@sina.com [Institute of Nuclear and New Energy Technology, Collaborative Innovation Center of Advanced Nuclear Energy Technology, Key Laboratory of Advanced Reactor Engineering and Safety of Ministry of Education, Tsinghua University, Beijing 100084 (China)

    2016-04-15

    Highlights: • Effect of an insert on improving flow uniformity and eliminating stagnant zone is studied. • Three values concerned with the stagnant zone, radial uniformity and flow sequence are used. • Outlet diameter is a critical parameter that determines balancing mechanism of the insert. • Height/location is varied to let the insert work in unbalanced region and avoid adverse effect. - Abstract: A flow-corrective insert is adopted in the pebble-bed high temperature gas-cooled reactor (HTGR) to improve flow performance of the pebble flow for the first time. 3D discrete element method (DEM) modeling is employed to study this slow and dense granular flow. It is verified that locating a properly designed insert in the bed can help transform unsatisfactory flow field to the preferred flow pattern for pebble bed reactors. Three characteristic values on the stagnant zone, radial uniformity and flow sequence of pebble flow are defined to evaluate uniformity of the overall flow field quantitatively. The results demonstrate that the pebble bed equipped with an insert performs better than normal beds from all these three aspects. Moreover, based on numerical experiments, several universal tips for insert design on height, location and outlet diameter are suggested.

  19. CFD Analysis for Predicting Flow Resistance of the Cross Flow Gap in Prismatic VHTR Core

    International Nuclear Information System (INIS)

    Lee, Jeong Hun; Yoon, Su Jong; Park, Goon Cherl; Park, Jong Woon

    2011-01-01

    The core of Very High Temperature Reactor (VHTR) consists of assemblies of hexagonal graphite blocks and its height and across-flats width are 800 mm and 360 mm respectively. They are equipped with 108 coolant holes 16 mm in diameter. Up to ten fuel blocks arranged in vertical order form a fuel element column and the neutron flux varies over the cross section of the core. It makes different axial shrinkage of fuel element and this leads to make wedge-shaped gaps between the base and top surfaces of stacked blocks. The cross flow is defined as the core flow that passes through this cross gaps. The cross flow complicates the flow distribution of reactor core. Moreover, the cross flow could lead to uneven coolant distribution and consequently to superheating of individual fuel element zones with increased fission product release. Since the core cross flow has a negative impact on safety and efficiency of VHTR, core cross flow phenomena have to be investigated to improve the core thermal margin of VHTR. In particular, to predict amount of flow at the cross flow gap obtaining accurate flow loss coefficient is important. Nevertheless, there has not been much effort in domestic. The experiment of cross flow was carried out by H. G. Groehn in 1981 Germany. For the study of cross flow the applicability of CFD code should be validated. In this paper a commercial CFD code CFX-12 validation will be carried out with this cross flow experiment. Validated data can be used for validation of other thermal-hydraulic analysis codes

  20. Measurement of the single and two phase flow using newly developed average bidirectional flow tube

    International Nuclear Information System (INIS)

    Yun, Byong Jo; Euh, Dong Jin; Kang, Kyung Ho; Song, Chul Hwa; Baek, Won Pil

    2005-01-01

    A new instrument, an average BDFT (Birectional Flow Tube), was proposed to measure the flow rate in single and two phase flows. Its working principle is similar to that of the pitot tube, wherein the dynamic pressure is measured. In an average BDFT, the pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than the static pressure of the flow field due to the suction effect downstream. The proposed instrument was tested in air/water vertical and horizontal test sections with an inner diameter of 0.08m. The tests were performed primarily in single phase water and air flow conditions to obtain the amplification factor(k) of the flow tube in the vertical and horizontal test sections. Tests were also performed in air/water vertical two phase flow conditions in which the flow regimes were bubbly, slug, and churn turbulent flows. In order to calculate the phasic mass flow rates from the measured differential pressure, the Chexal dirft-flux correlation and a momentum exchange factor between the two phases were introduced. The test results show that the proposed instrument with a combination of the measured void fraction, Chexal drift-flux correlation, and Bosio and Malnes' momentum exchange model could predict the phasic mass flow rates within a 15% error. A new momentum exchange model was also proposed from the present data and its implementation provides a 5% improvement to the measured mass flow rate when compared to that with the Bosio and Malnes' model

  1. Tile drainage as karst: Conduit flow and diffuse flow in a tile-drained watershed

    Science.gov (United States)

    Schilling, K.E.; Helmers, M.

    2008-01-01

    The similarity of tiled-drained watersheds to karst drainage basins can be used to improve understanding of watershed-scale nutrient losses from subsurface tile drainage networks. In this study, short-term variations in discharge and chemistry were examined from a tile outlet collecting subsurface tile flow from a 963 ha agricultural watershed. Study objectives were to apply analytical techniques from karst springs to tile discharge to evaluate water sources and estimate the loads of agricultural pollutants discharged from the tile with conduit, intermediate and diffuse flow regimes. A two-member mixing model using nitrate, chloride and specific conductance was used to distinguish rainwater versus groundwater inputs. Results indicated that groundwater comprised 75% of the discharge for a three-day storm period and rainwater was primarily concentrated during the hydrograph peak. A contrasting pattern of solute concentrations and export loads was observed in tile flow. During base flow periods, tile flow consisted of diffuse flow from groundwater sources and contained elevated levels of nitrate, chloride and specific conductance. During storm events, suspended solids and pollutants adhered to soil surfaces (phosphorus, ammonium and organic nitrogen) were concentrated and discharged during the rapid, conduit flow portion of the hydrograph. During a three-day period, conduit flow occurred for 5.6% of the time but accounted for 16.5% of the total flow. Nitrate and chloride were delivered primarily with diffuse flow (more than 70%), whereas 80-94% of total suspended sediment, phosphorus and ammonium were exported with conduit and intermediate flow regimes. Understanding the water sources contributing to tile drainage and the manner by which pollutant discharge occurs from these systems (conduit, intermediate or diffuse flow) may be useful for designing, implementing and evaluating non-point source reduction strategies in tile-drained landscapes. ?? 2007 Elsevier B.V. All

  2. Turbulent behaviour of non-cohesive sediment gravity flows at unexpectedly high flow density

    Science.gov (United States)

    Baker, Megan; Baas, Jaco H.; Malarkey, Jonathan; Kane, Ian

    2016-04-01

    Experimental lock exchange-type turbidity currents laden with non-cohesive silica-flour were found to be highly dynamic at remarkably high suspended sediment concentrations. These experiments were conducted to produce sediment gravity flows of volumetric concentrations ranging from 1% to 52%, to study how changes in suspended sediment concentration affects the head velocities and run-out distances of these flows, in natural seawater. Increasing the volumetric concentration of suspended silica-flour, C, up to C = 46%, within the flows led to a progressive increase in the maximum head velocity. This relationship suggests that suspended sediment concentration intensifies the density difference between the turbulent suspension and the ambient water, which drives the flow, even if almost half of the available space is occupied by sediment particles. However, from C = 46% to C = 52% a rapid reduction in the maximum head velocity was measured. It is inferred that at C = 46%, friction from grain-to-grain interactions begins to attenuate turbulence within the flows. At C > 46%, the frictional stresses become progressively more dominant over the turbulent forces and excess density, thus producing lower maximum head velocities. This grain interaction process started to rapidly reduce the run-out distance of the silica-flour flows at equally high concentrations of C ≥ 47%. All flows with C tank, but the head velocities gradually reduced along the tank. Bagnold (1954, 1963) estimated that, for sand flows, grain-to-grain interactions start to become important in modulating turbulence at C > 9%. Yet, the critical flow concentration at which turbulence modulation commenced for these silica-flour laden flows appeared to be much higher. We suggest that Bagnold's 9% criterion cannot be applied to flows that carry fine-grained sediment, because turbulent forces are more important than dispersive forces, and frictional forces start to affect the flows only at concentrations just

  3. Free surface profiles in river flows: Can standard energy-based gradually-varied flow computations be pursued?

    Science.gov (United States)

    Cantero, Francisco; Castro-Orgaz, Oscar; Garcia-Marín, Amanda; Ayuso, José Luis; Dey, Subhasish

    2015-10-01

    Is the energy equation for gradually-varied flow the best approximation for the free surface profile computations in river flows? Determination of flood inundation in rivers and natural waterways is based on the hydraulic computation of flow profiles. This is usually done using energy-based gradually-varied flow models, like HEC-RAS, that adopts a vertical division method for discharge prediction in compound channel sections. However, this discharge prediction method is not so accurate in the context of advancements over the last three decades. This paper firstly presents a study of the impact of discharge prediction on the gradually-varied flow computations by comparing thirteen different methods for compound channels, where both energy and momentum equations are applied. The discharge, velocity distribution coefficients, specific energy, momentum and flow profiles are determined. After the study of gradually-varied flow predictions, a new theory is developed to produce higher-order energy and momentum equations for rapidly-varied flow in compound channels. These generalized equations enable to describe the flow profiles with more generality than the gradually-varied flow computations. As an outcome, results of gradually-varied flow provide realistic conclusions for computations of flow in compound channels, showing that momentum-based models are in general more accurate; whereas the new theory developed for rapidly-varied flow opens a new research direction, so far not investigated in flows through compound channels.

  4. Heat transfer and fluid flow in regular rod arrays with opposing flow

    International Nuclear Information System (INIS)

    Yang, J.W.

    1979-01-01

    The heat transfer and fluid flow problem of opposing flow in the fully developed laminar region has been solved analytically for regular rod arrays. The problem is governed by two parameters: the pitch-to-diameter ratio and the Grashof-to-Reynolds number ratio. The critical Gr/Re ratios for flow separation caused by the upward buoyancy force on the downward flow were evaluated for a large range of P/D ratios of the triangular array. Numerical results reveal that both the heat transfer and pressure loss are reduced by the buoyancy force. Applications to nuclear reactors are discussed

  5. New approaches to reduce ulcerogenity of nonsteroidal anti-inflammatory drugs: achievements, unsolved issues and ways to optimize

    Directory of Open Access Journals (Sweden)

    F. V. Hladkykh

    2014-04-01

    Full Text Available Analysis of the domestic and foreign literature sources devoted to the study of pathogenetic mechanisms of gastropathy caused by non-steroidal anti-inflammatory drugs was done. Current approaches of prevention and treatment of NSAID-induced gastropathy were lined. The appropriateness of drugs with polytropic pharmacological properties (Quercetin, Vinboron and Tiotriazolin to eliminate the side effects of NSAIDs, including ultserogenesis was discusses.

  6. Macro- and Microscopic Study of the Effect of 2-Phenyl-3-Carbethoxy-4-Dimethylaminomethyl-5-Hydroxybenzofuran Hydrochloride (Vinboron) on the Gastrotoxicity of Ibuprofen in Experimental Rheumatoid Arthritis in Rats

    OpenAIRE

    Hladkykh, Fedir; Stepaniuk, Natali; Vernygorodskyi, Sergii

    2017-01-01

    It is known that besides a wide range of therapeutic effects, non-steroidal anti-inflammatory drugs have side effects such as gastroduodenotoxicity, hepatotoxicity, cardiotoxicity, nephrotoxicity, hematotoxicity, allergenicity, neurotoxicity, and others. We have proposed the use of Ukrainian antispasmodics with polytropic pharmacological properties of vinoboron in order to prevent ulcerogenic action of ibuprofen. The conducted study showed that the combined use of ibuprofen and vinoboron l...

  7. Fluid flow control system

    International Nuclear Information System (INIS)

    Rion, Jacky.

    1982-01-01

    Fluid flow control system featuring a series of grids placed perpendicular to the fluid flow direction, characterized by the fact that it is formed of a stack of identical and continuous grids, each of which consists of identical meshes forming a flat lattice. The said meshes are offset from one grid to the next. This system applies in particular to flow control of the coolant flowing at the foot of an assembly of a liquid metal cooled nuclear reactor [fr

  8. Some comments on combusting flows and instrumentation for two-phase flows

    International Nuclear Information System (INIS)

    Whitelaw, J.H.

    1985-01-01

    Measurements of the velocity characteristics of combusting flows have been reported over the past 15 years and have Encompassed an extensive range of flows configurations. Difficulties in applying instrumentation and interpreting results are, however, still experienced and this presentation describes two experiments which are useful examples of successful applications. The first is concerned with a gas-turbine combustion chamber which involves limited optical access with high heat release but does not require measurement accuracy such as that of, for example, external aerodynamic flows. The second combines laser velocimetry with digitally compensated thermocouples to provide detailed information of a premixed, bluff-body stabilized flame and involves conditionally sampled results so as to determine the separate flow characteristics of products and reactants

  9. Free surface flow with moving rigid bodies. Part 1. Computational flow model

    International Nuclear Information System (INIS)

    Gubanov, O.I.; Mironova, L.A.; Kocabiyik, S.

    2005-01-01

    This paper was motivated by the study of Hirt and Sicilian, where the 'differential form' of the governing equations for the inviscid fluid flow (FAVOR equations) were obtained. We utilize mainly generalized differentiation to extend the Reynolds transport theorem over a control volume containing fluid interface for deriving the 'integral form' of governing equations for the incompressible viscous flow problems. This is done following the work by Farassat and the use of generalized function theory made this derivation straightforward, systematic and rigorous. The resulting equations are discretized by a finite-volume method using a staggered grid, after making use of the coarse-scale approximation. The resulting governing equations are valid for a class of flows including free surface flows with arbitrarily moving bodies and are consistent with Hirt and Sicilian's formulation in the inviscid fluid flow case. (author)

  10. A novel drag force coefficient model for gas–water two-phase flows under different flow patterns

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Zhi, E-mail: shangzhi@tsinghua.org.cn

    2015-07-15

    Graphical abstract: - Highlights: • A novel drag force coefficient model was established. • This model realized to cover different flow patterns for CFD. • Numerical simulations were performed under wide range flow regimes. • Validations were carried out through comparisons to experiments. - Abstract: A novel drag force coefficient model has been developed to study gas–water two-phase flows. In this drag force coefficient model, the terminal velocities were calculated through the revised drift flux model. The revised drift flux is different from the traditional drift flux model because the natural curve movement of the bubble was revised through considering the centrifugal force. Owing to the revisions, the revised drift flux model was to extend to 3D. Therefore it is suitable for CFD applications. In the revised drift flux model, the different flow patterns of the gas–water two-phase flows were able to be considered. This model innovatively realizes the drag force being able to cover different flow patterns of gas–water two-phase flows on bubbly flow, slug flow, churn flow, annular flow and mist flow. Through the comparisons of the numerical simulations to the experiments in vertical upward and downward pipe flows, this model was validated.

  11. Constraints on the design of flow measuring structures over a large dynamic flow range

    International Nuclear Information System (INIS)

    Hickey, M.J.; Holmes, R.M.

    1979-01-01

    Topographical restraints for design storm flow are described as sharp-crested weirs for low flows in series with broad-crested weirs for the high flows. These design selections are considered to be most economical while providing the specified flow measuring capabilities for movement of radionuclides from the solid waste disposal areas into the surface streams around ORNL

  12. Behavior of instantaneous lateral velocity and flow pulsation in duct flow with cylindrical rod

    International Nuclear Information System (INIS)

    Lee, Chi Young; Shin, Chang Hwan; Park, Ju Yong; Oh, Dong Seok; Chun, Tae Hyun; In, Wang Kee

    2012-01-01

    Recently, KAERI (Korea Atomic Energy Research Institute) has examined and developed a dual cooled annular fuel. Dual cooled annular fuel allows the coolant to flow through the inner channel as well as the outer channel. Due to inner channel, the outer diameter of dual cooled annular fuel (15.9 mm) is larger than that of conventional cylindrical solid fuel (9.5 mm). Hence, dual cooled annular fuel assembly becomes a tight lattice fuel bundle configuration to maintain the same array size and guide tube locations as cylindrical solid fuel assembly. P/Ds (pitch between rods to rod diameter ratio) of dual cooled annular and cylindrical solid fuel assemblies are 1.08 and 1.35, respectively. This difference of P/D could change the behavior of turbulent flow in rod bundle. Our research group has investigated a turbulent flow parallel to the fuel rods using two kinds of simulated 3x3 rod bundles. To measure the turbulent rod bundle flow, PIV (Particle Image Velocimetry) and MIR (Matching Index of Refraction) techniques were used. In a simulated dual cooled annular fuel bundle (i.e., P/D=1.08), the quasi periodic oscillating flow motion in the lateral direction, called the flow pulsation, was observed, which significantly increased the lateral turbulence intensity at the rod gap center. The flow pulsation was visualized and measured clearly and successfully by PIV and MIR techniques. Such a flow motion may have influence on the fluid induced vibration, heat transfer, CHF (Critical Heat Flux), and flow mixing between subchannels in rod bundle flow. On the other hand, in a simulated cylindrical solid fuel bundle (i.e., P/D=1.35), the peak of turbulence intensity at the gap center was not measured due to an irregular motion of the lateral flow. This study implies that the behavior of lateral velocity in rod bundle flow is greatly influenced by the P/D (i.e., gap distance). In this work, the influence of gap distance on behavior of instantaneous lateral velocity and flow

  13. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    Science.gov (United States)

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  14. Transport phenomena of macro and micro flows behind orifice and flow accelerated corrosion

    International Nuclear Information System (INIS)

    Fujisawa, Nobuyuki; Hayase, Toshiyuki; Ohara, Taku; Ikohagi, Toshiaki

    2008-01-01

    This paper describes experiment and numerical simulations for macro and micro flows behind an orifice model in a square pipe, which are carried from the viewpoint of flow accelerated corrosion (FAC). The measurements of velocity field behind the orifice model were carried out using particle image velocimetry, and the variations of velocity field with respect to the accuracy of the orifice position were studied. It is found that the reattachment behavior of the flow is highly influenced by the orifice position, which is a critical problem for predicting the pipe thinning phenomena by FAC. The DNS simulation was also conducted for calculating the macro flow behind the orifice. The result suggests that the DNS simulation is applicable to the prediction of pipe thinning macro flow for highly aged nuclear plant. The micro flow simulation can predict the pipe thinning phenomena near the wall. (author)

  15. Visualized investigation on flow regimes for vertical upward steam–water flow in a heated narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Junfeng; Huang Yanping; Wang Yanlin; Song Mingliang

    2012-01-01

    Highlights: ► Flow regimes were visually investigated in a heated narrow rectangular channel. ► Bubbly, churn, and annular flow were observed. Slug flow was never observed. ► Flow regime transition boundary could be predicted by existing criteria. ► Churn zone in present flow regime maps were poorly predicted by existing criteria. - Abstract: Flow regimes are very important in understanding two-phase flow resistance and heat transfer characteristics. In present work, two-phase flow regimes for steam–water flows in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, were visually studied at relatively low pressure and low mass flux condition. The flow regimes observed in this experiment could be classified into bubbly, churn and annular flow. Slug flow was never observed at any of the conditions in our experiment. Flow regime maps at the pressure of 0.7 MPa and 1.0 MPa were developed, and then the pressure effect on flow regime transition was analyzed. Based on the experimental results, the comparisons with some existing flow regime maps and transition criteria were conducted. The comparison results show that the bubbly transition boundary and annular formation boundary of heated steam–water flow were consistent with that of adiabatic air–water flow. However, the intermediate flow pattern between bubbly and annular flow was different. Hibiki and Mishima criteria could predict the bubbly transition boundary and annular formation boundary satisfactorily, but it poorly predicted churn zone in present experimental data.

  16. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    Science.gov (United States)

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.

    1999-01-01

    The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a

  17. The in situ permeable flow sensor: A device for measuring groundwater flow velocity

    International Nuclear Information System (INIS)

    Ballard, S.; Barker, G.T.; Nichols, R.L.

    1994-03-01

    A new technology called the In Situ Permeable Flow Sensor has been developed at Sandia National Laboratories. These sensors use a thermal perturbation technique to directly measure the direction and magnitude of the full three dimensional groundwater flow velocity vector in unconsolidated, saturated, porous media. The velocity measured is an average value characteristic of an approximately 1 cubic meter volume of the subsurface. During a test at the Savannah River Site in South Carolina, two flow sensors were deployed in a confined aquifer in close proximity to a well which was screened over the entire vertical extent of the aquifer and the well was pumped at four different pumping rates. In this situation horizontal flow which is radially directed toward the pumping well is expected. The flow sensors measured horizontal flow which was directed toward the pumping well, within the uncertainty in the measurements. The observed magnitude of the horizontal component of the flow velocity increased linearly with pumping rate, as predicted by theoretical considerations. The measured horizontal component of the flow velocity differed from the predicted flow velocity, which was calculated with the assumptions that the hydraulic properties of the aquifer were radially homogeneous and isotropic, by less than a factor of two. Drawdown data obtained from other wells near the pumping well during the pump test indicate that the hydraulic properties of the aquifer are probably not radially homogeneous but the effect of the inhomogeneity on the flow velocity field around the pumping well was not modeled because the degree and distribution of the inhomogeneity are unknown. Grain size analysis of core samples from wells in the area were used to estimate the vertical distribution of hydraulic conductivity

  18. Experimental investigation on flow patterns of gas-liquid two-phase upward flow through packed channel with spheres

    International Nuclear Information System (INIS)

    Zhang Nan; Sun Zhongning; Zhao Zhongnan

    2011-01-01

    Experiments of visualized two-phase upward flow were conducted in the packed channel, which filled with 3, 5, 8 mm in diameter of glass sphere respectively. The gas superficial velocity ranges from 0.005 to 1.172 m/s. The liquid superficial velocity ranges from 0.004 to 0.093 m/s. Four representative flow patterns were observed as bubbly flow, cluster flow, liquid-pulse flow and churn-pulse flow, and corresponding flow pattern maps were also presented. It is found that the pulse flow region is dominant. The comparisons of flow pattern map between packed channel and non-packed channel show that the bubbly flow region in packed channel is narrower than that of non-packed channel due to the packing. The comparisons of flow pattern maps for three different packing sizes show that the cluster flow region expands with the increase of the packing diameter. In the low liquid superficial velocity, the cluster flow directly changes to churn-pulse flow in the packed channel with 8 mm packing. (authors)

  19. Performance and internal flow characteristics of a cross-flow turbine by guide vane angle

    International Nuclear Information System (INIS)

    Chen, Z M; Choi, Y D

    2013-01-01

    This study attempts to investigate the performance and internal flow characteristics of a cross-flow turbine by guide vane angle. In order to improve the performance of a cross flow turbine, the paper presents a numerical investigation of the turbine with air supply and discusses the influence of variable guide vane angle on the internal flow. A newly developed air supply from air suction Hole is adopted. To investigate the performance and internal flow of the cross-flow turbine, the CFD software based on the two-phase flow model is utilized. The numerical grids are made in two-dimensional geometry in order to shorten the time of two-phase calculations. Then a series of CFD analysis has been conducted in the range of different guide vane angle. Moreover, local output power is divided at different stages and the effect of air layer in each stage is examined

  20. Flow control of micro-ramps on supersonic forward-facing step flow

    International Nuclear Information System (INIS)

    Zhang Qing-Hu; Zhu Tao; Wu Anping; Yi Shihe

    2016-01-01

    The effects of the micro-ramps on supersonic turbulent flow over a forward-facing step (FFS) was experimentally investigated in a supersonic low-noise wind tunnel at Mach number 3 using nano-tracer planar laser scattering (NPLS) and particle image velocimetry (PIV) techniques. High spatiotemporal resolution images and velocity fields of supersonic flow over the testing model were captured. The fine structures and their spatial evolutionary characteristics without and with the micro-ramps were revealed and compared. The large-scale structures generated by the micro-ramps can survive the downstream FFS flowfield. The micro-ramps control on the flow separation and the separation shock unsteadiness was investigated by PIV results. With the micro-ramps, the reduction in the range of the reversal flow zone in streamwise direction is 50% and the turbulence intensity is also reduced. Moreover, the reduction in the average separated region and in separation shock unsteadiness are 47% and 26%, respectively. The results indicate that the micro-ramps are effective in reducing the flow separation and the separation shock unsteadiness. (paper)