WorldWideScience

Sample records for polytetrafluoroethylene membranes impregnated

  1. Research and development of lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi

    2013-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% 6 Li. In Japan, new lithium isotope separation technique using ionic-liquid impregnated organic membranes have been developed. The improvement in the durability of the ionic-liquid impregnated organic membrane is one of the main issues for stable, long-term operation of electrodialysis cells while maintaining good performance. Therefore, we developed highly-durable ionic-liquid impregnated organic membrane. Both ends of the ionic-liquid impregnated organic membrane were covered by a nafion 324 overcoat to prevent the outflow of the ionic liquid. The transmission of Lithium aqueous solution after 10 hours under the highly-durable ionic-liquid impregnated organic membrane is almost 13%. So this highly-durable ionic-liquid impregnated organic membrane for long operating of electrodialysis cells has been developed through successful prevention of ion liquid dissolution. (J.P.N.)

  2. Solution casting Nafion/polytetrafluoroethylene membrane for vanadium redox flow battery application

    International Nuclear Information System (INIS)

    Teng, Xiangguo; Sun, Cui; Dai, Jicui; Liu, Haiping; Su, Jing; Li, Faqiang

    2013-01-01

    Highlights: ► Nafion/polytetrafluoroethylene (PTFE) blend membranes were prepared by solution casting method. ► The blend membranes were tested for vanadium redox flow battery (VRB) application. ► The blend membranes show lower vanadium ion permeability than that of recast Nafion membrane. ► In VRB single cell test, the blend membrane shows superior performances than that of pure recast Nafion. -- Abstract: Solution casting method was adopted using Nafion and polytetrafluoroethylene (PTFE) solution to prepare Nafion/PTFE blend membranes for vanadium redox flow battery application. The physicochemical properties of the membranes were characterized by using water uptake, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal analysis (TA). The electrochemical properties of the membranes were examined by using electrochemical impedance spectroscopy (EIS) and single cell test. Despite the high miscibility of PTFE with Nafion, the addition of hydrophobic PTFE reduces the water uptake, ion exchange capacity (IEC) and conductivity of blend membranes. But PTFE can increase the crystallinity, thermal stability of Nafion/PTFE membranes and reduce the vanadium permeability. The blend membrane with PTFE (30 wt%, N 0.7 P 0.3 ) was chosen and investigated for VRB single cell test. The energy efficiency of this VRB with N 0.7 P 0.3 membrane was 85.1% at current density of 50 mA cm −2 , which was superior to that of recast Nafion (r-Nafion) membrane (80.5%). Self-discharge test shows that the decay of open circuit potential of N 0.7 P 0.3 membrane is much lower than that of r-Nafion membrane. More than 50 cycles charge–discharge test proved that the N 0.7 P 0.3 membrane possesses high stability in long time running. Chemical stabilities of the chosen N 0.7 P 0.3 membrane are further proved by soaking the membrane for 3 weeks in highly oxidative V(V) solution. All results suggest that the addition of PTFE is a simple and effective way to

  3. Novel Ultrafine Fibrous Poly(tetrafluoroethylene Hollow Fiber Membrane Fabricated by Electrospinning

    Directory of Open Access Journals (Sweden)

    Qinglin Huang

    2018-04-01

    Full Text Available Novel poly(tetrafluoroethylene (PTFE hollow fiber membranes were successfully fabricated by electrospinning, with ultrafine fibrous PTFE membranes as separation layers, while a porous glassfiber braided tube served as the supporting matrix. During this process, PTFE/poly(vinylalcohol (PVA ultrafine fibrous membranes were electrospun while covering the porous glassfiber braided tube; then, the nascent PTFE/PVA hollow fiber membrane was obtained. In the following sintering process, the spinning carrier PVA decomposed; meanwhile, the ultrafine fibrous PTFE membrane shrank inward so as to further integrate with the supporting matrix. Therefore, the ultrafine fibrous PTFE membranes had excellent interface bonding strength with the supporting matrix. Moreover, the obtained ultrafine fibrous PTFE hollow fiber membrane exhibited superior performances in terms of strong hydrophobicity (CA > 140°, high porosity (>70%, and sharp pore size distribution. The comprehensive properties indicated that the ultrafine fibrous PTFE hollow fiber membranes could have potentially useful applications in membrane contactors (MC, especially membrane distillation (MD in harsh water environments.

  4. High-performance membrane-electrode assembly with an optimal polytetrafluoroethylene content for high-temperature polymer electrolyte membrane fuel cells

    DEFF Research Database (Denmark)

    Jeong, Gisu; Kim, MinJoong; Han, Junyoung

    2016-01-01

    Although high-temperature polymer electrolyte membrane fuel cells (HT-PEMFCs) have a high carbon monoxide tolerance and allow for efficient water management, their practical applications are limited due to their lower performance than conventional low-temperature PEMFCs. Herein, we present a high......-performance membrane-electrode assembly (MEA) with an optimal polytetrafluoroethylene (PTFE) content for HT-PEMFCs. Low or excess PTFE content in the electrode leads to an inefficient electrolyte distribution or severe catalyst agglomeration, respectively, which hinder the formation of triple phase boundaries...

  5. Study on surface adhesion of Plasma modified Polytetrafluoroethylene hollow fiber membrane

    Science.gov (United States)

    Chen, Jiangrong; Zhang, Huifeng; Liu, Guochang; Guo, Chungang; Lv, Jinglie; Zhangb, Yushan

    2018-01-01

    Polytetrafluoroethylene (PTFE) is popular membrane material because of its excellent thermal stability, chemical stability and mechanical stability. However, the low surface energy and non-sticky property of PTFE present challenges for modification. In the present study, plasma treatment was performed to improve the surface adhesion of PTFE hollow fiber membrane. The effect of discharge voltage, treatment time on the adhesion of PTFE hollow fiber membrane was symmetrically evaluated. Results showed that the plasma treatment method contributed to improve the surface activity and roughness of PTFE hollow fiber membrane, and the adhesion strength depend significantly on discharge voltage, which was beneficial to seepage pressure of PTFE hollow fiber membrane module. The adhesion strength of PTFE membrane by plasma treated at 220V for 3min reached as high as 86.2 N, far surpassing the adhesion strength 12.7 N of pristine membrane. Furthermore, improvement of content of free radical and composition analysis changes of the plasma modified PTFE membrane were investigated. The seepage pressure of PTFE membrane by plasma treated at 220V for 3min was 0.375 MPa, which means that the plasma treatment is an effective technique to improve the adhesion strength of membrane.

  6. Pregnancy Outcomes After Myomectomy With Polytetrafluoroethylene Placement

    OpenAIRE

    Eaton, Jennifer L.; Milad, Magdy P.

    2014-01-01

    Background and Objectives: The aim of this study was to report preliminary data on pregnancy outcomes after myomectomy with placement of an expanded polytetrafluoroethylene adhesion barrier membrane. Methods: In this retrospective case series, 68 women who underwent myomectomy with expanded polytetrafluoroethylene membrane placement between January 1, 2003, and December 31, 2009, were identified. Of these women, 15 subsequently had documented pregnancies and were included in the final dataset...

  7. Scalable bonding of nanofibrous polytetrafluoroethylene (PTFE) membranes on microstructures

    Science.gov (United States)

    Mortazavi, Mehdi; Fazeli, Abdolreza; Moghaddam, Saeed

    2018-01-01

    Expanded polytetrafluoroethylene (ePTFE) nanofibrous membranes exhibit high porosity (80%-90%), high gas permeability, chemical inertness, and superhydrophobicity, which makes them a suitable choice in many demanding fields including industrial filtration, medical implants, bio-/nano- sensors/actuators and microanalysis (i.e. lab-on-a-chip). However, one of the major challenges that inhibit implementation of such membranes is their inability to bond to other materials due to their intrinsic low surface energy and chemical inertness. Prior attempts to improve adhesion of ePTFE membranes to other surfaces involved surface chemical treatments which have not been successful due to degradation of the mechanical integrity and the breakthrough pressure of the membrane. Here, we report a simple and scalable method of bonding ePTFE membranes to different surfaces via the introduction of an intermediate adhesive layer. While a variety of adhesives can be used with this technique, the highest bonding performance is obtained for adhesives that have moderate contact angles with the substrate and low contact angles with the membrane. A thin layer of an adhesive can be uniformly applied onto micro-patterned substrates with feature sizes down to 5 µm using a roll-coating process. Membrane-based microchannel and micropillar devices with burst pressures of up to 200 kPa have been successfully fabricated and tested. A thin layer of the membrane remains attached to the substrate after debonding, suggesting that mechanical interlocking through nanofiber engagement is the main mechanism of adhesion.

  8. Poly-electrolyte fuel cell membrane based on crosslinked polytetrafluoroethylene by radiation-grafting

    International Nuclear Information System (INIS)

    Ichizuri, Shogo; Asano, Saneto; Li, Jingye

    2004-01-01

    Poly-electrolyte fuel cell (PEFC) membranes based on crosslinked Polytetrafluoroethylene (RX-PTFE) have been fabricated by radiation-grafting with reactive styrene monomers using γ-ray irradiation in air at room temperature / electron beam irradiation under N 2 gas atmosphere at room temperature. The characteristic properties of obtained materials have been measured by DSC, TGA and FT-IR spectroscopy, and so on. Ion exchange capacity of sulfonated crosslinked PTFE has been achieved 2.8meq/g. (author)

  9. Comparison of Polytetrafluoroethylene Flat-Sheet Membranes with Different Pore Sizes in Application to Submerged Membrane Bioreactor

    Directory of Open Access Journals (Sweden)

    Manabu Motoori

    2012-06-01

    Full Text Available This study focused on phase separation of activated sludge mixed liquor by flat-sheet membranes of polytetrafluoroethylene (PTFE. A 20 liter working volume lab-scale MBR incorporating immersed PTFE flat-sheet membrane modules with different pore sizes (0.3, 0.5 and 1.0 μm was operated for 19 days treating a synthetic wastewater. The experiment was interrupted twice at days 5 and 13 when the modules were removed and cleaned physically and chemically in sequence. The pure water permeate flux of each membrane module was measured before and after each cleaning step to calculate membrane resistances. Results showed that fouling of membrane modules with 0.3 μm pore size was more rapid than other membrane modules with different pore sizes (0.5 and 1.0 μm. On the other hand, it was not clear whether fouling of the 0.5 μm membrane module was more severe than that of the 1.0 μm membrane module. This was partly because of the membrane condition after chemical cleaning, which seemed to determine the fouling of those modules over the next period. When irreversible resistance (Ri i.e., differences in membrane resistance before use and after chemical cleaning was high, the transmembrane pressure increased quickly during the next period irrespective of membrane pore size.

  10. Novel Aluminum Oxide-Impregnated Carbon Nanotube Membrane for the Removal of Cadmium from Aqueous Solution

    Directory of Open Access Journals (Sweden)

    Ihsanullah

    2017-09-01

    Full Text Available An aluminum oxide-impregnated carbon nanotube (CNT-Al2O3 membrane was developed via a novel approach and used in the removal of toxic metal cadmium ions, Cd(II. The membrane did not require any binder to hold the carbon nanotubes (CNTs together. Instead, the Al2O3 particles impregnated on the surface of the CNTs were sintered together during heating at 1400 °C. Impregnated CNTs were characterized using XRD, while the CNT-Al2O3 membrane was characterized using scanning electron microscopy (SEM. Water flux, contact angle, and porosity measurements were performed on the membrane prior to the Cd(II ion removal experiment, which was conducted in a specially devised continuous filtration system. The results demonstrated the extreme hydrophilic behavior of the developed membrane, which yielded a high water flux through the membrane. The filtration system removed 84% of the Cd(II ions at pH 7 using CNT membrane with 10% Al2O3 loading. A maximum adsorption capacity of 54 mg/g was predicted by the Langmuir isotherm model for the CNT membrane with 10% Al2O3 loading. This high adsorption capacity indicated that adsorption was the main mechanism involved in the removal of Cd(II ions.

  11. Thermodynamic analysis of Cr(VI) extraction using TOPO impregnated membranes

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, Prashant; Loh, Kai-Chee, E-mail: chelohkc@nus.edu.sg

    2016-08-15

    Highlights: • Cr(VI) extraction by extractant impregnated membranes (EIM) was investigated. • EIM exhibited high extraction efficiency, mass transfer rate and stability. • Mass transfer mechanism was proposed based on kinetics and equilibrium data. • Uptake of Cr(VI) by EIMs was endothermic and spontaneous. • Cr(VI) extraction by EIMs was dominated by physical interactions. - Abstract: Solid/liquid extraction of Cr(VI) was accomplished using trioctylphosphine oxide impregnated polypropylene hollow fiber membranes. Extraction of 100–500 mg/L Cr(VI) by the extractant impregnated membranes (EIM) was characterized by high uptake rate and capacity, and equilibrium was attained within 45 min of contact. Extraction equilibrium was pH-dependent (at an optimal pH 2), whereas stripping using 0.2 M sodium hydroxide yielded the highest recovery of 98% within 60 min. The distribution coefficient was independent of initial Cr(VI) concentration, and the linear distribution equilibrium isotherm could be modeled using Freundlich isotherm. The mass transfer kinetics of Cr(VI) was examined using pseudo-second-order and intraparticle diffusion models and a mass transfer mechanism was deduced. The distribution coefficient increased with temperature, which indicated endothermic nature of the reaction. Enthalpy and entropy change during Cr(VI) extraction were positive and varied in the range of 37–49 kJ/mol and 114–155 J/mol, respectively. The free energy change was negative, confirming the feasibility and spontaneity of the mass transfer process. Results obtained suggest that EIMs are efficient and sustainable for extraction of Cr(VI) from wastewater.

  12. DEVELOPMENT OF PROTOTYPE TITANATE ION EXCHANGE LOADED MEMBRANES FOR STRONTIUM, CESIUM AND ACTINIDE DECONTAMINATION FROM AQUEOUS MEDIA

    Energy Technology Data Exchange (ETDEWEB)

    Oji, L; Keisha Martin, K; David Hobbs, D

    2008-05-30

    We have successfully incorporated high surface area particles of titanate ion exchange materials (monosodium titanate and crystalline silicotitanate) with acceptable particle size distribution into porous and inert support membrane fibrils consisting of polytetrafluoroethylene (Teflon{reg_sign}), polyethylene and cellulose materials. The resulting membrane sheets, under laboratory conditions, were used to evaluate the removal of surrogate radioactive materials for cesium-137 and strontium-90 from high caustic nuclear waste simulants. These membrane supports met the nominal requirement for nonchemical interaction with the embedded ion exchange materials and were porous enough to allow sufficient liquid flow. Some of this 47-mm size stamped out prototype titanium impregnated ion exchange membrane discs was found to remove more than 96% of dissolved cesium-133 and strontium-88 from a caustic nuclear waste salt simulants. Since in traditional ion exchange based column technology monosodium titanate (MST) is known to have great affinity for the sorbing of other actinides like plutonium, neptunium and even uranium, we expect that the MST-based membranes developed here, although not directly evaluated for uptake of these three actinides because of costs associated with working with actinides which do not have 'true' experimental surrogates, would also show significant affinity for these actinides in aqueous media. It was also observed that crystalline silicotitanate impregnated polytetrafluoroethylene or polyethylene membranes became less selective and sorbed both cesium and strontium from the caustic aqueous salt simulants.

  13. Impregnated membranes for direct methanol fuel cells at high methanol concentrations

    NARCIS (Netherlands)

    Yildirim, M.H.; Schwarz, Alexander; Stamatialis, Dimitrios; Wessling, Matthias

    2009-01-01

    Sulfonated poly(phthalazinone ether ketone) (SPPEK) impregnated Solupor® microporous film (SPPEK–PE) and pure SPPEK membranes with two different ion-exchange capacities (IECs) were prepared and characterized for use in DMFC applications. Swelling, proton conductivity, diffusion and DMFC experiments

  14. Fabrication of palladium nanoparticles immobilized on an amine-functionalized ceramic membrane support using a nanoparticulate colloidal impregnation method with enhanced catalytic properties

    Energy Technology Data Exchange (ETDEWEB)

    Du, Yan; Chen, Rizhi [Nanjing Tech University, Nanjing (China)

    2015-09-15

    An efficient and reusable catalyst was developed by depositing palladium nanoparticles on an amine-functionalized ceramic membrane support using a nanoparticulate colloidal impregnation method. The as-prepared Pdloaded ceramic membrane support was characterized by XRD, SEM, EDS, TEM, XPS, ICP, and its catalytic properties were investigated in the liquid-phase p-nitrophenol hydrogenation. A comparative study was also made with the palladium nanoparticles deposited on an amine-functionalized ceramic membrane support by an impregnation-reduction method. The palladium nanoparticles could be homogeneously immobilized on the ceramic membrane support surface, and exhibited excellent catalytic performance in the p-nitrophenol hydrogenation. The catalytic activity of the Pdloaded ceramic membrane support prepared by the nanoparticulate colloidal impregnation method increased by 16.6% compared to that of impregnation-reduction method. In the nanoparticulate colloidal impregnation method, palladium nanoparticles were presynthesized, higher loading of Pd(0) could be obtained, resulting in better catalytic activity. The as-prepared Pd-loaded ceramic membrane support could be easily reused for several cycles without appreciable degradation of catalytic activity.

  15. Fabrication of TiO2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    Science.gov (United States)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO2, we successfully fixed TiO2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti4+. The TiO2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  16. Radiation processing for carbon fiber-reinforced polytetrafluoroethylene composite materials

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Udagawa, Akira; Morita, Yousuke

    2001-01-01

    The present work is an attempt to evaluate the performance of the fiber composites with crosslinked polytetrafluoroethylene (PTFE) as a polymer matrix by radiation. The uni-directional carbon fiber-reinforced composites were fabricated with PTFE fine powder impregnation method and then crosslinked by electron beams irradiation under selective conditions. The carbon fiber-reinforced crosslinked PTFE composites show good mechanical properties compared with crosslinked PTFE. The radiation resistance of crosslinked PTFE composites is improved more than that of crosslinked resin without fiber. (author)

  17. A proton-exchange membrane prepared by the radiation grafting of styrene and silica into polytetrafluoroethylene films

    Science.gov (United States)

    Yu, Hongyan; Shi, Jianheng; Zeng, Xinmiao; Bao, Mao; Zhao, Xinqing

    2009-07-01

    A polytetrafluoroethylene (PTFE) based organic-inorganic hybrid proton-exchange membrane was prepared from simultaneous radiation grafting of styrene (St) into porous PTFE membrane with the in situ sol-gel reaction of tetraethoxysilane (TEOS) followed by sulfonation in fuming sulfonic acid. The effect of radiation on the sol-gel reaction was studied. The results show that radiation promotes the sol-gel reaction with the help of St at room temperature. Incorporated silica gel helps to produce higher degree of grafting (DOG). SEM analysis was conducted to confirm that the inorganic silicon oxide was introduced to produce hybrid membrane in this work. The proton conductivity of membrane evaluated using electrochemical impedance spectroscopy is much higher (14.3×10 -2 S cm -1) than that of Nafion ® 117 at temperature of 80 °C with acceptable water uptake 51 wt%.

  18. Basic technology for {sup 6}Li enrichment using an ionic-liquid impregnated organic membrane

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Tsuyoshi, E-mail: hoshino.tsuyoshi@jaea.go.jp [Blanket Irradiation and Analysis Group, Fusion Research and Development Directorate, Japan Atomic Energy Agency, 4002, Narita-cho, Oarai-machi, Higashi Ibaraki-gun, Ibaraki 311-1393 (Japan); Terai, Takayuki [The Institute of Engineering Innovation and Department of Nuclear Engineering and Management School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2011-10-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ({sup 6}Li) in tritium breeding materials. However, natural Li contains only about 7.6 at.% {sup 6}Li. In this paper, a new lithium isotope separation technique using an ionic-liquid impregnated organic membrane is proposed. In order to separate and concentrate lithium isotopes, only lithium ions are able to move through the membrane by electrodialysis between the cathode and the anode in lithium solutions. Preliminary experiments of lithium isotope separation were conducted using this phenomenon. Organic membranes impregnated with TMPA-TFSI and PP13-TFSI as ionic liquids were prepared, and the relationship between the {sup 6}Li separation coefficient and the applied electrodialytic conditions was evaluated using them. The results showed that the {sup 6}Li isotope separation coefficient in this method (about 1.1-1.4) was larger than that in the mercury amalgam method (about 1.06).

  19. Synthesis, Characterization, and Impregnation of Some Ionic Liquids on Polymer Membrane for Separation of Carbon Dioxide from Its Mixture with Methane

    Directory of Open Access Journals (Sweden)

    T. T. L. Bui

    2018-03-01

    Full Text Available Some 1-alkyl-3-methylimidazolium-based ionic liquids were synthesized, characterized, and immobilized on membranes to form supported ionic liquid membranes. The supported ionic liquid membranes were characterized by SEM. The initial transmembrane pressures were investigated for each type of impregnated membrane. The CO2/CH4 single gas and mixed gas permeability (CO2 and CH4 have been investigated. The results showed that the CO2/CH4 ideal selectivities and mixed gas selectivities reached 15.45 – 23.9 and 13.91 – 22.82, respectively (equivalent to separation yields of 93.3 – 95.98 %.mThe 1-alkyl-3-methylimidazolium acetate impregnated membrane leads to a slightly lowermCO2/CH4 selectivity, however, this ionic liquid is stable, free of halogen and has a low price. The impregnated membranes prepared from polyvinylidene fluoride are more stablemthan those from polyethersulfone support, and have a higher affinity for CO2 compared to other gas. The obtained high CO2/CH4 selectivities indicate that immobilized membranes can be used for CO2 separation processes.

  20. High-efficiency technology for lithium isotope separation using an ionic-liquid impregnated organic membrane

    International Nuclear Information System (INIS)

    Hoshino, Tsuyoshi; Terai, Takayuki

    2011-01-01

    The tritium needed as a fuel for fusion reactors is produced by the neutron capture reaction of lithium-6 ( 6 Li) in tritium breeding materials. New lithium isotope separation technique using ionic-liquid impregnated organic membranes (Ionic-Liquid-i-OMs) have been developed. Lithium ions are able to move by electrodialysis through certain Ionic-Liquid-i-OMs between the cathode and the anode in lithium solutions. In this report, the effects of protection cover and membrane thickness on the durability of membrane and the efficiency of isotope separation were evaluated. In order to improve the durability of the Ionic-Liquid-i-OM, we developed highly-durable Ionic-Liquid-i-OM. Both surfaces of the Ionic-Liquid-i-OM were covered by a nafion 324 overcoat or a cation exchange membrane (SELEMION TM CMD) to prevent the outflow of the ionic liquid. It was observed that the durability of the Ionic-Liquid-i-OM was improved by a nafion 324 overcoat. On the other hand, the organic membrane selected was 1, 2 or 3 mm highly-porous Teflon film, in order to efficiently impregnate the ionic liquid. The 6 Li isotope separation factor by electrodialysis using highly-porous Teflon film of 3 mm thickness was larger than using that of 1 or 2 mm thickness.

  1. Properties of the Nafion membrane impregnated with hydroxyl ammonium based ionic liquids

    International Nuclear Information System (INIS)

    Garaev, Valeriy; Pavlovica, Sanita; Vaivars, Guntars; Kleperis, Janis

    2012-01-01

    In this work, the Nafion 112 membrane impregnated with nine various hydroxyl ammonium based ionic liquids have been investigated. The used ionic liquids were combined from hydroxyl ammonium cations (2-hydroxyethylammonium/HEA, bis(2- hydroxyethyl)ammonium/BHEA, tris(2-hydroxyethyl)ammonium/THEA) and carboxylate anions (formate, acetate, lactate). The membranes are characterized by conductivity and thermal stability measurements. It was found, that almost all composites have 10 times higher ion conductivity than a pure Nafion 112 at 90 °C in ambient environment due to the higher thermal stability. The thermal stability of Nafion membrane was increased by all studied nine ionic liquids. In this work, only biodegradable ionic liquids were used for composite preparation.

  2. Fabrication of TiO_2-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    International Nuclear Information System (INIS)

    Qian, Yingjia; Chi, Lina; Zhou, Weili; Yu, Zhenjiang; Zhang, Zhongzhi; Zhang, Zhenjia; Jiang, Zheng

    2016-01-01

    Graphical abstract: - Highlights: • Multifunctional TiO_2/PAA/PTFE ultrafiltration membrane was fabricated via tight coating of TiO_2 functional layer onto the plasma-assisted graft of PAA on PTFE. • The high water flux rate, remarkable enhanced ultrafiltration performance and excellent self-cleaning ability were demonstrated. • The formation of COO−Ti bidentate coordination between TiO_2 and PAA was responsible for the successful coating. - Abstract: Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO_2, we successfully fixed TiO_2 functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO_2 attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti"4"+. The TiO_2 surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO_2/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO_2, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  3. Performance of a 1 kW Class Nafion-PTFE Composite Membrane Fuel Cell Stack

    Directory of Open Access Journals (Sweden)

    Pattabiraman Krishnamurthy

    2012-01-01

    Full Text Available Composite membranes have been prepared by impregnation of Nafion into the expanded polytetrafluoroethylene (EPTFE matrix. Nafion loading in the composite membranes was kept constant at 2 mg/cm2. The lower amount of electrolyte per unit area in the composite membranes offers cost advantages compared to conventional membrane of 50 μm thickness with an electrolyte loading of ~9 mg/cm2. Composite membranes (30 μm thickness were found to have higher thermal stability and mechanical strength compared to the conventional membranes (50 μm thickness. The performance of the membrane electrode assembly made with these composite membranes was comparable to that of the conventional membranes. Single cells fabricated from these MEAs were tested for their performance and durability before scaling them up for large area. The performance of a 20-cell stack of active area 330 cm2 fabricated using these membranes is reported.

  4. Emulsion Electrospinning of Polytetrafluoroethylene (PTFE) Nanofibrous Membranes for High-Performance Triboelectric Nanogenerators.

    Science.gov (United States)

    Zhao, Pengfei; Soin, Navneet; Prashanthi, Kovur; Chen, Jinkai; Dong, Shurong; Zhou, Erping; Zhu, Zhigang; Narasimulu, Anand Arcot; Montemagno, Carlo D; Yu, Liyang; Luo, Jikui

    2018-02-14

    Electrospinning is a simple, versatile technique for fabricating fibrous nanomaterials with the desirable features of extremely high porosities and large surface areas. Using emulsion electrospinning, polytetrafluoroethylene/polyethene oxide (PTFE/PEO) membranes were fabricated, followed by a sintering process to obtain pure PTFE fibrous membranes, which were further utilized against a polyamide 6 (PA6) membrane for vertical contact-mode triboelectric nanogenerators (TENGs). Electrostatic force microscopy (EFM) measurements of the sintered electrospun PTFE membranes revealed the presence of both positive and negative surface charges owing to the transfer of positive charge from PEO which was further corroborated by FTIR measurements. To enhance the ensuing triboelectric surface charge, a facile negative charge-injection process was carried out onto the electrospun (ES) PTFE subsequently. The fabricated TENG gave a stabilized peak-to-peak open-circuit voltage (V oc ) of up to ∼900 V, a short-circuit current density (J sc ) of ∼20 mA m -2 , and a corresponding charge density of ∼149 μC m -2 , which are ∼12, 14, and 11 times higher than the corresponding values prior to the ion-injection treatment. This increase in the surface charge density is caused by the inversion of positive surface charges with the simultaneous increase in the negative surface charge on the PTFE surface, which was confirmed by using EFM measurements. The negative charge injection led to an enhanced power output density of ∼9 W m -2 with high stability as confirmed from the continuous operation of the ion-injected PTFE/PA6 TENG for 30 000 operation cycles, without any significant reduction in the output. The work thus introduces a relatively simple, cost-effective, and environmentally friendly technique for fabricating fibrous fluoropolymer polymer membranes with high thermal/chemical resistance in TENG field and a direct ion-injection method which is able to dramatically improve the

  5. Automation of static and dynamic non-dispersive liquid phase microextraction. Part 2: Approaches based on impregnated membranes and porous supports.

    Science.gov (United States)

    Alexovič, Michal; Horstkotte, Burkhard; Solich, Petr; Sabo, Ján

    2016-02-11

    A critical overview on automation of modern liquid phase microextraction (LPME) approaches based on the liquid impregnation of porous sorbents and membranes is presented. It is the continuation of part 1, in which non-dispersive LPME techniques based on the use of the extraction phase (EP) in the form of drop, plug, film, or microflow have been surveyed. Compared to the approaches described in part 1, porous materials provide an improved support for the EP. Simultaneously they allow to enlarge its contact surface and to reduce the risk of loss by incident flow or by components of surrounding matrix. Solvent-impregnated membranes or hollow fibres are further ideally suited for analyte extraction with simultaneous or subsequent back-extraction. Their use can therefore improve the procedure robustness and reproducibility as well as it "opens the door" to the new operation modes and fields of application. However, additional work and time are required for membrane replacement and renewed impregnation. Automation of porous support-based and membrane-based approaches plays an important role in the achievement of better reliability, rapidness, and reproducibility compared to manual assays. Automated renewal of the extraction solvent and coupling of sample pretreatment with the detection instrumentation can be named as examples. The different LPME methodologies using impregnated membranes and porous supports for the extraction phase and the different strategies of their automation, and their analytical applications are comprehensively described and discussed in this part. Finally, an outlook on future demands and perspectives of LPME techniques from both parts as a promising area in the field of sample pretreatment is given. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Fabrication of TiO{sub 2}-modified polytetrafluoroethylene ultrafiltration membranes via plasma-enhanced surface graft pretreatment

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Yingjia [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Chi, Lina, E-mail: lnchi@sjtu.edu.cn [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom); Zhou, Weili; Yu, Zhenjiang [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Zhongzhi [College of Chemical Engineering, China University of Petroleum, Beijing 102249 (China); Zhang, Zhenjia [School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240 (China); Jiang, Zheng, E-mail: z.jiang@soton.ac.uk [Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2016-01-01

    Graphical abstract: - Highlights: • Multifunctional TiO{sub 2}/PAA/PTFE ultrafiltration membrane was fabricated via tight coating of TiO{sub 2} functional layer onto the plasma-assisted graft of PAA on PTFE. • The high water flux rate, remarkable enhanced ultrafiltration performance and excellent self-cleaning ability were demonstrated. • The formation of COO−Ti bidentate coordination between TiO{sub 2} and PAA was responsible for the successful coating. - Abstract: Surface hydrophilic modification of polymer ultrafiltration membrane using metal oxide represents an effective yet highly challenging solution to improve water flux and antifouling performance. Via plasma-enhanced graft of poly acryl acid (PAA) prior to coating TiO{sub 2}, we successfully fixed TiO{sub 2} functional thin layer on super hydrophobic polytetrafluoroethylene (PTFE) ultrafiltration (UF) membranes. The characterization results evidenced TiO{sub 2} attached on the PTFE-based UF membranes through the chelating bidentate coordination between surface-grafted carboxyl group and Ti{sup 4+}. The TiO{sub 2} surface modification may greatly reduce the water contact angle from 115.8° of the PTFE membrane to 35.0° without degradation in 30-day continuous filtration operations. The novel TiO{sub 2}/PAA/PTFE membranes also exhibited excellent antifouling and self-cleaning performance due to the intrinsic hydrophilicity and photocatalysis properties of TiO{sub 2}, which was further confirmed by the photo-degradation of MB under Xe lamp irradiation.

  7. Histomorphometric Analysis of Periodontal Tissue Regeneration by the Use of High Density Polytetrafluoroethylen Membrane in Grade II Furcation Defects of Dogs

    Directory of Open Access Journals (Sweden)

    Raoofi S

    2015-09-01

    Full Text Available Statement of Problem: There are limited histomorphometric studies on biologic efficacy of high density tetrafluoroethylen (d-PTFE membrane. Objectives: To investigate the healing of surgically induced grade II furcation defects in dogs following the use of dense polytetrafluoroethylene as the barrier membrane and to compare the results with the contra lateral control teeth without the application of any membrane. Materials andMethods: Mandibular and maxillary 3rd premolar teeth of 18 young adult male mongrel dogs were used for the experiment. The furcation defects were created during the surgery. 5 weeks later, regenerative surgery was performed. The third premolar teeth were assigned randomly to control and test groups. In the test group, after a full thickness flap reflection, the d-PTFE membrane was placed over furcation defects. In the control group, no membrane was placed over the defect. 37 tissue blocks containing the teeth and surrounding hard and soft tissues were obtained three months post-regenerative surgery. The specimens were demineralized, serially sectioned, mounted and stained with Hematoxylin and Eosin staining technique. From each tissue block, 35-45 sections of 10 μm thickness within 60μm interval captured the entire surgically created defect. The histological images were transferred to computer and then the linear measurement ranges of the defects area, interadicular alveolar bone, epithelial attachment and coronal extension of the new cementum were done. Then, the volume and area of aforementioned parameters were calculated considering the thickness and interval of the sections. To compare the parameters between the control and test teeth, we calculated the amount of each one proportionally to the original amount of defects. Results: The mean interradicular root surface areas of original defects covered with new cementum was 74.46% and 29.59% for the membrane and control defects, respectively (p < 0.0001. Corresponding

  8. Anticorrosion Coating of Carbon Nanotube/Polytetrafluoroethylene Composite Film on the Stainless Steel Bipolar Plate for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Yoshiyuki Show

    2013-01-01

    Full Text Available Composite film of carbon nanotube (CNT and polytetrafluoroethylene (PTFE was formed from dispersion fluids of CNT and PTFE. The composite film showed high electrical conductivity in the range of 0.1–13 S/cm and hydrophobic nature. This composite film was applied to stainless steel (SS bipolar plates of the proton exchange membrane fuel cell (PEMFC as anticorrosion film. This coating decreased the contact resistance between the surface of the bipolar plate and the membrane electrode assembly (MEA of the PEMFC. The output power of the fuel cell is increased by 1.6 times because the decrease in the contact resistance decreases the series resistance of the PEMFC. Moreover, the coating of this composite film protects the bipolar plate from the surface corrosion.

  9. Removal of heavy metals in wastewater by using zeolite nano-particles impregnated polysulfone membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yurekli, Yilmaz, E-mail: yilmazyurekli@gmail.com

    2016-05-15

    Highlights: • NaX addition significantly enhanced water hydraulic permeability of the membrane. • Metal exchange capacity of the membrane increased with the NaX content. • Hybrid membrane was efficient for the solutions with low metal concentrations - Abstract: In this study, the adsorption and the filtration processes were coupled by a zeolite nanoparticle impregnated polysulfone (PSf) membrane which was used to remove the lead and the nickel cations from synthetically prepared solutions. The results obtained from X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) analysis indicated that the synthesized zeolite nanoparticles, using conventional hydrothermal method, produced a pure NaX with ultrafine and uniform particles. The performance of the hybrid membrane was determined under dynamic conditions. The results also revealed that the sorption capacity as well as the water hydraulic permeability of the membranes could both be improved by simply tuning the membrane fabricating conditions such as evaporation period of the casting film and NaX loading. The maximum sorption capacity of the hybrid membrane for the lead and nickel ions was measured as 682 and 122 mg/g respectively at the end of 60 min of filtration, under 1 bar of transmembrane pressure. The coupling process suggested that the membrane architecture could be efficiently used for treating metal solutions with low concentrations and transmembrane pressures.

  10. Study on radiation grafting of acrylic acid onto fluorine-containing polymers. II. Properties of membrane obtained by preirradiation grafting onto poly(tetrafluoroethylene)

    International Nuclear Information System (INIS)

    Hegazy, E.S.A.; Ishigaki, I.; Rabie, A.; Dessouki, A.M.; Okamoto, J.

    1981-01-01

    Some properties of the membranes obtained by the preirradiation grafting of acrylic acid onto poly(tetrafluoroethylene) (PTFE) film have been studied. The dimensional change by grafting and swelling, water uptake, electric conductivity, and mechanical properties of the grafted PTFE films were measured and were found to increase as the grafting proceeds. These properties were found to be dependent mainly on the degree of grafting regardless of grafting conditions except higher monomer concentration (80 wt %). The electric conductivity and mechanical properties of the membranes at 80 wt % monomer concentration is lower than those at a lower monomer concentration. The results suggest that the membranes obtained at 80-wt % acrylic acid solution have a somewhat heterogeneous distribution of electrolyte groups as compared with those prepared at a monomer concentration less than 60 wt %. X-ray microscopy of the grafted films revealed that the grafting begins at the part close to the film surface and proceeds into the center with progressive diffusion of monomer to give finally the homogeneous distribution of electrolyte groups. The membranes show good electrochemical and mechanical properties which make them acceptable for the practical uses as cation exchange membrane

  11. Radiation degradation and crosslinking of polytetrafluoroethylene and its application

    International Nuclear Information System (INIS)

    Wu Guozhong; Wang Mouhua; Tang Zhongfeng

    2009-01-01

    Polytetrafluoroethylene (PTFE) is a high-performance engineering plastic and known as a typical material of radiation degradation. PTFE can be degraded by radiation under various conditions and PTFE micro-powder is usually fabricated by a combination of radiation and milling. PTFE can also be crosslinked by irradiation in the melt state (330∼340 degree C). The materials can be applied as a special additive due to its excellent wear resistance. Crosslinked PTFE may also be applied in lithography and fuel cell membrane in the future. In this paper, history and application of PTFE degradation and crosslinking products are reviewed. (authors)

  12. 76 FR 8774 - Granular Polytetrafluoroethylene Resin From Japan

    Science.gov (United States)

    2011-02-15

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 731-TA-386 (Third Review)] Granular Polytetrafluoroethylene Resin From Japan AGENCY: United States International Trade Commission. ACTION: Termination of five... revocation of the antidumping duty order on granular polytetrafluoroethylene resin from Japan would be likely...

  13. Incorporation of Hyperbranched Supramolecules into Nafion Ionic Domains via Impregnation and In-Situ Photopolymerization

    Directory of Open Access Journals (Sweden)

    Hiruto Kudo

    2011-11-01

    Full Text Available Nafion membranes were impregnated with photocurable supramolecules, viz., hyperbranched polyester having pendant functional carboxylic acid groups (HBPEAc-COOH by swelling in methanol and subsequently photocured in-situ after drying. Structure-property relationships of the HBPEAc-COOH impregnated Nafion membranes were analyzed on the basis of Fourier transform infrared (FTIR spectroscopy, solid-state nuclear magnetic resonance (SSNMR and dynamic mechanical analysis (DMA. FTIR and SSNMR investigations revealed that about 7 wt % of HBPEAc-COOH was actually incorporated into the ionic domains of Nafion. The FTIR study suggests possible complexation via inter-species hydrogen bonding between the carboxylic groups of HBPEAc-COOH and the sulfonate groups of Nafion. The α-relaxation peak corresponding to the glass transition temperature of the ionic domains of the neat Nafion-acid form was found to increase from ~100 to ~130 °C upon impregnation with enhanced modulus afforded by the cured polyester network within the ionic domains. The AC impedance fuel cell measurement of the impregnated membrane exhibited an increasing trend of proton conductivity with increasing temperature, which eventually surpassed that of neat Nafion above 100 °C. Of particular importance is that the present paper is the first to successfully incorporate polymer molecules/networks into the Nafion ionic domains by means of impregnation with hyperbranched supramolecules followed by in-situ photopolymerization.

  14. Fouling mechanisms of dairy streams during membrane distillation

    NARCIS (Netherlands)

    Hausmann, A.; Sanciolo, P.; Vasiljevic, T.; Weeks, M.; Schroën, C.G.P.H.; Gray, S.; Duke, M.

    2013-01-01

    This study reports on fouling mechanisms of skim milk and whey during membrane distillation (MD) using polytetrafluoroethylene (PTFE) membranes. Structural and elemental changes along the fouling layer from the anchorpoint at the membrane to the topsurface of the fouling layer have been investigated

  15. Ag-polytetrafluoroethylene composite coating on stainless steel as bipolar plate of proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yu. [Laboratory of Fuel Cells, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Graduate University of Chinese Academy of Sciences, Beijing 100049 (China); Hou, Ming; Shao, Zhigang; Yi, Baolian [Laboratory of Fuel Cells, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road, Dalian 116023 (China); Xu, Hongfeng; Hou, Zhongjun; Ming, Pingwen [Sunrise Power Co., Ltd., Dalian 116025 (China)

    2008-08-01

    Forming a coating on metals by surface treatment is a good way to get high performance bipolar plate of proton exchange membrane fuel cell (PEMFC). In our research, Ag-polytetrafluoroethylene (PTFE) composite film was electrodeposited with silver-gilt solution of nicotinic acid by a bi-pulse electroplating power supply on 316 L stainless steel bipolar plate of PEMFC. Surface topography, contact angle, interfacial conductivity and corrosion resistance of the bipolar plate samples were investigated. Results showed that the defects on the Ag-PTFE composite coating are greatly reduced compared with those on the pure Ag coating fabricated under the same condition; and the contact angle of the Ag-PTFE composite coating with water is 114 , which is much bigger than that of the pure Ag coating (73 ). In addition, the interfacial contact resistance of the composite coating stays as low as the pure Ag coating; and the bipolar plate sample with composite coating shows a close corrosion resistance to the pure Ag coating sample in potentiodynamic and potentiostatic tests. Coated 316 L stainless steel plate with Ag-PTFE composite coating exhibits well hydrophobic characteristic, less defects, high interfacial conductivity and good corrosion resistance, which shows a great potential of the application in PEMFC. (author)

  16. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes

    Directory of Open Access Journals (Sweden)

    M. G. Mostafa

    2017-09-01

    Full Text Available Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE membranes with a hydrophilic polyurethane surface layer (PU-PTFE are used for the first time for direct contact MD (DCMD on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5–6 L/m2/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

  17. Membrane Distillation of Meat Industry Effluent with Hydrophilic Polyurethane Coated Polytetrafluoroethylene Membranes.

    Science.gov (United States)

    Mostafa, M G; Zhu, Bo; Cran, Marlene; Dow, Noel; Milne, Nicholas; Desai, Dilip; Duke, Mikel

    2017-09-29

    Meat rendering operations produce stick water waste which is rich in proteins, fats, and minerals. Membrane distillation (MD) may further recover water and valuable solids, but hydrophobic membranes are contaminated by the fats. Here, commercial hydrophobic polytetrafluorethylene (PTFE) membranes with a hydrophilic polyurethane surface layer (PU-PTFE) are used for the first time for direct contact MD (DCMD) on real poultry, fish, and bovine stick waters. Metal membrane microfiltration (MMF) was also used to capture fats prior to MD. Although the standard hydrophobic PTFE membranes failed rapidly, PU-PTFE membranes effectively processed all stick water samples to colourless permeate with sodium rejections >99%. Initial clean solution fluxes 5-6 L/m²/h declined to less than half during short 40% water recovery tests for all stick water samples. Fish stick water uniquely showed reduced fouling and up to 78% water recovery. Lost flux was easily restored by rinsing the membrane with clean water. MMF prior to MD removed 92% of fats, facilitating superior MD performance. Differences in fouling between stick waters were attributed to temperature polarisation from higher melt temperature fats and relative proportions to proteins. Hydrophilic coated MD membranes are applicable to stick water processing but further studies should consider membrane cleaning and longer-term stability.

  18. Alkaline anion exchange membrane water electrolysis: Effects of electrolyte feed method and electrode binder content

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Lee, Hye Jin; Kim, Hyoung-Juhn; Lim, Ahyoun; Henkensmeier, Dirk; Yoo, Sung Jong; Kim, Jin Young; Lee, So Young; Park, Hyun S.; Jang, Jong Hyun

    2018-04-01

    Herein, we investigate the effects of catholyte feed method and anode binder content on the characteristics of anion exchange membrane water electrolysis (AEMWE) to construct a high-performance electrolyzer, revealing that the initial AEMWE performance is significantly improved by pre-feeding 0.5 M aqueous KOH to the cathode. The highest long-term activity during repeated voltage cycling is observed for AEMWE operation in the dry cathode mode, for which the best long-term performance among membrane electrode assemblies (MEAs) featuring polytetrafluoroethylene (PTFE) binder-impregnated (5-20 wt%) anodes is detected for a PTFE content of 20 wt%. MEAs with low PTFE content (5 and 9 wt%) demonstrate high initial performance, rapid performance decay, and significant catalyst loss from the electrode during long-term operation, whereas the MEA with 20 wt% PTFE allows stable water electrolysis for over 1600 voltage cycles. Optimization of cell operating conditions (i.e., operation in dry cathode mode at an optimum anode binder content following an initial solution feed) achieves an enhanced water splitting current density (1.07 A cm-2 at 1.8 V) and stable long-term AEMWE performance (0.01% current density reduction per voltage cycle).

  19. 75 FR 67105 - Granular Polytetrafluoroethylene Resin From Italy and Japan

    Science.gov (United States)

    2010-11-01

    ... Polytetrafluoroethylene Resin From Italy and Japan AGENCY: United States International Trade Commission. ACTION... resin from Italy and Japan. SUMMARY: The Commission hereby gives notice that it has instituted reviews... revocation of the antidumping duty orders on granular polytetrafluoroethylene resin from Italy and Japan...

  20. Optimum concentration gradient of the electrocatalyst, Nafion® and poly(tetrafluoroethylene) in a membrane-electrode-assembly for enhanced performance of direct methanol fuel cells.

    Science.gov (United States)

    Liu, Jing Hua; Jeon, Min Ku; Lee, Ki Rak; Woo, Seong Ihl

    2010-12-14

    A combinatorial library of membrane-electrode-assemblies (MEAs) which consisted of 27 different compositions was fabricated to optimize the multilayer structure of direct methanol fuel cells. Each spot consisted of three layers of ink and a gradient was generated by employing different concentrations of the three components (Pt catalyst, Nafion® and polytetrafluoroethylene (PTFE)) of each layer. For quick evaluation of the library, a high-throughput optical screening technique was employed for methanol electro-oxidation reaction (MOR) activity. The screening results revealed that gradient layers could lead to higher MOR activity than uniform layers. It was found that the MOR activity was higher when the concentrations of Pt catalyst and Nafion ionomer decreased downward from the top layer to the bottom layer. On the other hand, higher MOR activity was observed when PTFE concentration increased downward from the top to the bottom layer.

  1. Removal of chromium (VI) ions from aqueous solutions using amine-impregnated TiO2 nanoparticles modified cellulose acetate membranes.

    Science.gov (United States)

    Gebru, Kibrom Alebel; Das, Chandan

    2018-01-01

    In this work, TiO 2 nanoparticles (NPs) were modified using tetraethylenepentamine (TEPA), ethylenediamine (EDA), and hexamethylenetetramine (HMTA) amines using impregnation process. The prepared amine modified TiO 2 samples were explored as an additive to fabricate ultrafiltration membranes with enhanced capacity towards the removal of chromium ions from aqueous solution. Modified membranes were prepared from cellulose acetate (CA) polymer blended with polyethylene glycol (PEG) additive, and amine modified TiO 2 by using phase inversion technique. Fourier transform infrared spectroscopy (FTIR), zeta potential (ζ), thermo gravimetric analysis (TGA), field emission scanning electron microscopy (FESEM), water contact angle (WCA), and atomic absorption spectrophotometer (AAS) studies were done to characterize the membranes in terms of chemical structure, electric charge, thermal stability, morphology, hydrophilicity, and removal performance. The pure water permeability and Cr (VI) ion removal efficiency of the unmodified (i.e. CA/U-Ti) and the amine modified (CA/Ti-HMTA, CA/Ti-EDA, and CA/Ti-TEPA) membranes were dependent on pH and metal ion concentration. Incorporation of amine modified TiO 2 composite to the CA polymer was found to improve the fouling and removal characteristics of the membranes during the chromium ultrafiltration process. The maximum removal efficiency result of Cr (VI) ions at pH of 3.5 using CA/Ti-TEPA membrane was 99.8%. The washing/regeneration cycle results in this study described as an essential part for prospect industrial applications of the prepared membranes. The maximum Cr (VI) removal results by using CA/Ti-TEPA membrane for four washing/regeneration cycles are 99.6%, 99.5%, 98.6% and, 96.6%, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers.

    Science.gov (United States)

    Allabashi, Roza; Arkas, Michael; Hörmann, Gerold; Tsiourvas, Dimitris

    2007-01-01

    Triethoxysilylated derivatives of poly(propylene imine) dendrimer, polyethylene imine and polyglycerol hyperbranched polymers and beta-cyclodextrin have been synthesized and characterized. These compounds impregnated ceramic membranes made from Al(2)O(3), SiC and TiO(2) and subsequently sol-gel reaction led to their polymerization and chemical bond formation with the ceramic substrates. The resulting organic-inorganic filters were tested for the removal of a variety of organic pollutants from water. They were found to remove of polycyclic aromatic hydrocarbons (up to 99%), of monocyclic aromatic hydrocarbons (up to 93%), trihalogen methanes (up to 81%), pesticides (up to 43%) and methyl-tert-butyl ether (up to 46%).

  3. 21 CFR 878.3500 - Polytetrafluoroethylene with carbon fibers composite implant material.

    Science.gov (United States)

    2010-04-01

    ... composite implant material. 878.3500 Section 878.3500 Food and Drugs FOOD AND DRUG ADMINISTRATION... Prosthetic Devices § 878.3500 Polytetrafluoroethylene with carbon fibers composite implant material. (a) Identification. A polytetrafluoroethylene with carbon fibers composite implant material is a porous device...

  4. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes

    NARCIS (Netherlands)

    van Leeuwen, A. C.; Huddleston Slater, J. J. R.; Gielkens, P. F. M.; de Jong, J. R.; Grijpma, D. W.; Bos, R. R. M.

    The present study evaluates a new synthetic degradable barrier membrane based on poly(trimethylene carbonate) (PTMC) for use in guided bone regeneration. A collagen membrane and an expanded polytetrafluoroethylene (e-PTFE) membrane served as reference materials. In 192 male Sprague-Dawley rats, a

  5. Guided bone regeneration in rat mandibular defects using resorbable poly(trimethylene carbonate) barrier membranes

    NARCIS (Netherlands)

    van Leeuwen, A.C.; Huddelston Slater, J.J.R.; Gielkens, P.F.M.; de Jong, J.R.; Grijpma, Dirk W.; Bos, R.R.M.

    2012-01-01

    The present study evaluates a new synthetic degradable barrier membrane based on poly(trimethylene carbonate) (PTMC) for use in guided bone regeneration. A collagen membrane and an expanded polytetrafluoroethylene (e-PTFE) membrane served as reference materials. In 192 male Sprague–Dawley rats, a

  6. Solid/liquid extraction equilibria of phenolic compounds with trioctylphosphine oxide impregnated in polymeric membranes.

    Science.gov (United States)

    Praveen, Prashant; Loh, Kai-Chee

    2016-06-01

    Trioctylphosphine oxide based extractant impregnated membranes (EIM) were used for extraction of phenol and its methyl, hydroxyl and chloride substituted derivatives. The distribution coefficients of the phenols varied from 2 to 234, in the order of 1-napthol > p-chlorophenol > m-cresol > p-cresol > o-cresol > phenol > catechol > pyrogallol > hydroquinone, when initial phenols loadings was varied in 100-2000 mg/L. An extraction model, based on the law of mass action, was formulated to predict the equilibrium distribution of the phenols. The model was in excellent agreement (R(2) > 0.97) with the experimental results at low phenols concentrations ( 0.95), which signified high mass transfer resistance in the EIMs. Examination of the effects of ring substitution on equilibrium, and bivariate statistical analysis between the amounts of phenols extracted into the EIMs and factors affecting phenols interaction with TOPO, indicated the dominant role of hydrophobicity in equilibrium determination. These results improve understanding of the solid/liquid equilibrium process between phenols and the EIMs, and these will be useful in designing phenol recovery process from wastewater. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Facile fabrication and characterization of poly(tetrafluoroethylene)@polypyrrole/nano-silver composite membranes with conducting and antibacterial property

    Science.gov (United States)

    Shi, Zhiquan; Zhou, Hui; Qing, Xutang; Dai, Tingyang; Lu, Yun

    2012-06-01

    Porous poly(tetrafluoroethylene) (PTFE) membranes play an important role in air purification and separation engineering. To achieve the bi-functionality of conducting and antibacterial property, two kinds of poly(tetrafluoroethylene)@ polypyrrole/nano-silver composite membranes have been prepared. One involves hydrophobic polypyrrole/nano-silver composite with hollow capsule nanostructures immobilized on the surface of the PTFE membranes. The other is a type of composite membranes with polypyrrole/nano-silver composite wholly packed on the fibrils of the expand PTFE membrane to form core/shell coaxial cable structures. The structure and morphology of the two kinds of composite membranes have been characterized by FTIR, UV-vis, XRD, TGA and SEM measurements. Possible formation mechanisms of the hollow capsules and the core/shell nanocable structures have been discussed in detail. The antibacterial effects of composite membranes are also briefly investigated.

  8. Structure and properties of polymer-silicate nanocomposites based on polytetrafluoroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Sleptsova, Sardana A.; Okhlopkova, Aitalina A. [North-Eastern Federal University, Yakutsk (Russian Federation)

    2011-07-01

    The results of physicomechanical, tribological , and structural investigation of polytetrafluoroethylene based polymers and natural layered silicates are reported. It is shown that the tribological behaviour of the composites can be significantly improved by introducing a small amount of activated silicates. The results of structural examination of the composite friction surfaces by scanning-probe microscopy and IR spectroscopy are discussed. Key words: polytetrafluoroethylene, layered silicates, wear resistance, friction coefficient, structure, IR-spectrum.

  9. Radiation effect on polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Deng Pengyang; Zhong Xiaoguang; Sun Jiazhen

    1999-01-01

    Polytetrafluoroethylene (PTFE) has always been regarded as a typical kind of radiation degradation polymer. But, in fact, PTFE can be induced crosslinking by γ-ray or electron beam at some special conditions (free oxygen and a narrow temperature region at 335 +- 5 degree C). Compared with radiation degradiation PTFE, cosslinking PTFE owns a lot of new properties. Some articles concerning with these have been published, which will be systematically reviewed in this

  10. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo; Ghaffour, NorEddine; Alsaadi, Ahmad Salem; Amy, Gary L.

    2014-01-01

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  11. Performance of different hollow fiber membranes for seawater desalination using membrane distillation

    KAUST Repository

    Francis, Lijo

    2014-08-11

    Membrane distillation requires a highly porous hydrophobic membrane with low surface energy. In this paper, we compare the direct contact membrane distillation (DCMD) performances of four different types of in-house fabricated hollow fiber membranes and two different commercially available hollow fiber membranes. Hollow fiber membranes are fabricated using wet-jet phase inversion technique and the polymeric matrices used for the fabrication are polyvinylidine fluoride (PVDF) and polyvinyl chloride (PVC). Commercial hollow fiber membrane materials are made of polytetrafluoroethylene (PTFE) and polypropylene (PP). PVDF hollow fibers showed a superior performance among all the hollow fibers tested in the DCMD process and gave a water vapor flux of 31 kg m-2h-1 at a feed and coolant inlet temperatures of 80 and 20°C, respectively. Under the same conditions, the water vapor flux observed for PP, PTFE, and PVC hollow fiber membranes are 13, 11, and 6 kg m-2h-1, respectively, with 99.99% salt rejection observed for all membranes used.

  12. Radiolysis of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Ferreira, Max Passos; Ferreira, Roberta Viana; Verly, Rodrigo Moreira

    2007-01-01

    Polytetrafluoroethylene is a linear polymer with structure: -[-CF 2 -CF 2 -] n -. Due to its singular properties, it is ideal for use at high temperatures and in chemically aggressive environments. It is extremely sensitive to ionizing radiation and is quickly degraded. PTFE radiolysis has been extensively studied. However, despite the many published papers, its degradation mechanism remains much uncertain. The degradation of polytetrafluoroethylene by γ irradiation yields perfluorinated carboxylic acids, olefin mixtures, and paraffins with different molecular weights. This process is a new alternative for the synthesis of aliphatic perfluorinated compounds used as intermediates for obtaining special products such as fluoro surfactants, electrical materials, special products for the textile industry, etc. PTFE scraps were irradiated with a uniform source of 60 Co gamma rays in oxygen atmosphere with a dose of 3 MGy. The radiolysis of PTFE yielded a water soluble material (probably fluorinated hydrocarbons with low molecular weight and main chains with 10-20 carbon atoms) and a water insoluble brittle polymeric material. Spectroscopy analysis in the infrared region of irradiated and non-irradiated PTFE were carried out. X-ray diffractometry pointed to changes in the crystalline structure of PTFE; scanning electron microscopy indicated alterations in samples irradiated under different conditions. Mass spectrometry was also used to identify the compounds formed after sample irradiation. Comparison of irradiated and non-irradiated FTIR spectra showed the formation of bands at 3450 cm -1 , associated with the O-H stretching, and at 1631 cm -1 , associated with the C=O stretching. The bands are characteristic of carboxylic acid, which indicates its formation in irradiated PTFE. (author)

  13. Characterization of polytetrafluoroethylene membranes impregnated with calyx[n]arenes (n=4, 6 and 8) and acetatecalix[n]arenes for use in treatment of radioactive waste using the supported liquid membrane technique

    International Nuclear Information System (INIS)

    Santos, Jacinete L. dos; Felinto, Maria Claudia F.C.

    2009-01-01

    In the nuclear industry the separation processes have been to the long of those years of great importance in what refers to the production of nuclear materials used as fuels, having assumed fundamental paper in the strategy of decontamination of decommissioned nuclear installations and potentially in the disposition of liquid radioactive waste. Those wastes are produced continually, varying considerably in volume, radioactivity and chemical composition. In the treatment of these wastes different techniques have been used as the chemical treatment, the adsorption, the filtration, the ion exchange and the evaporation. Those techniques are limited to remove all the pollutants, and in the case of the evaporation they end up generating secondary solid wastes. In the last decades the technology of membranes has been a lot used mainly in the nuclear area to recover metal ions of radioactive liquid waste. This work presents the characterization of the PTFE membranes with pore size ranging between 0.45 and 5 μm for use in the recovery of metal ions in processes using the SLM technique. The membranes were characterized for: thickness and porosity, thermogravimetric analysis, infrared spectroscopy (IR), scanning electron microscopy (SEM) and luminescence spectroscopy with Eu(III) ions. (author)

  14. Radiation induced crosslinking of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Ikeda, Shigetoshi; Otsuhata, Kazushige; Kudoh, Hisaaki; Seguchi, Tadao.

    1995-01-01

    The Irradiation temperature effect on polytetrafluoroethylene (PTFE) from room temperature to 380degC was investigated by tensile test and thermal analysis. The behavior of tensile properties and changes of crystallinity on irradiation indicated the formation of a network structure in PTFE by radiation induced crosslinking in inert gas in the molten state just above the melting temperature of PTFE (327degC). The crosslinked PTFE showed a much improved radiation resistance in an atmospheric radiation field. (author)

  15. Polytetrafluoroethylene-jacketed stirrer modified with graphene oxide and polydopamine for the efficient extraction of polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Zhang, Zinxin; Mwadini, Mwadini Ahmada; Chen, Zilin

    2016-10-01

    Steel stirrers jacketed with polytetrafluoroethylene can be regarded as an ideal substrate for stirrer bar sorptive extraction. However, it is still a great challenge to immobilize graphene onto a polytetrafluoroethylene stirrer due to the high chemical resistance of the surface of a polytetrafluoroethylene stirrer. We describe here a method to modify the surface of polytetrafluoroethylene stirrers with graphene. In this work, graphene was used as the sorbent due to its excellent adsorption capability for aromatic compounds, such as polycyclic aromatic compounds. Graphene was successfully immobilized onto polytetrafluoroethylene-stirrer by a bio-inspired polydopamine functionalization method. The graphene-modified polytetrafluoroethylene-stirrer shows good stability and tolerance to stirring, ultrasonication, strong acidic and basic solutions, and to organic solvents. The multilayer coating was characterized by scanning electronic microscopy and Fourier transform infrared spectroscopy. After the optimization of some experimental conditions, the graphene-modified polytetrafluoroethylene stirrer was used for the stirrer bar sorptive extraction of polycyclic aromatic hydrocarbons, in which the binding between the polycyclic aromatic hydrocarbons and the graphene layer was mainly based on π-π stacking and hydrophobic interactions. The graphene-modified polytetrafluoroethylene-stirrer-based stirrer bar sorptive extraction and high-performance liquid chromatography method was developed for the determination of polycyclic aromatic hydrocarbons with great extraction efficiency, with enrichment factors from 18 to 62. The method has low limits of detection of 1-5 pg/mL, wide linear range (5-100 and 10-200 pg/mL), good linearity (R ≥ 0.9957) and good reproducibility (RSD ≤ 6.45%). The proposed method has been applied to determine polycyclic aromatic hydrocarbons in real dust samples. Good recoveries were obtained, ranging from 88.53 to 109.43%. © 2016 WILEY-VCH Verlag

  16. Cell microarrays on photochemically modified polytetrafluoroethylene

    Czech Academy of Sciences Publication Activity Database

    Mikulíková, R.; Moritz, S.; Gumpenberger, T.; Olbrich, M.; Romanin, C.; Bačáková, Lucie; Švorčík, V.; Heitz, J.

    2005-01-01

    Roč. 26, č. 27 (2005), s. 5572-5580 ISSN 0142-9612 R&D Projects: GA AV ČR(CZ) IAA5011301 Grant - others:CZ-AT(CZ) Scientific-Technical Cooperation 2004-9; Jubiläumsfonds der Österreichischen Nationalbank(AT) 10549 Institutional research plan: CEZ:AV0Z50110509 Keywords : polytetrafluoroethylene * surface modification * endothelial cells Subject RIV: EI - Biotechnology ; Bionics Impact factor: 4.698, year: 2005

  17. Substrate Effect on Carbon/Ceramic Mixed Matrix Membrane Prepared by a Vacuum-Assisted Method for Desalination

    Directory of Open Access Journals (Sweden)

    Yingjun Song

    2018-05-01

    Full Text Available This work investigates the effect of various membrane substrates and coating conditions on the formation of carbon/ceramic mixed matrix membranes for desalination application. The substrates were impregnated with phenolic resin via a vacuum-assisted method followed by carbonization under an inert gas. Substrates with pore sizes of 100 nm required a single impregnation step only, where short vacuum times (<120 s resulted in low quality membranes with defects. For vacuum times of ≥120 s, high quality membranes with homogeneous impregnation were prepared leading to high salt rejection (>90% and high water fluxes (up to 25 L m−2 h−1. The increase in water flux as a function of the vacuum time confirms the vacuum etching effect resulting from the vacuum-assisted method. Substrates with pore sizes of 140 nm required two impregnation steps. These pores were too large for the ceramic inter-particle space to be filled with phenolic resin via a single step. In the second impregnation step, increasing the concentration of the phenolic resin resulted in membranes with lower water fluxes. These results indicate that thicker films were formed by increasing the phenolic resin concentration. In the case of substrates with pores of 600 nm, these pores were too large and inter-particle space filling with phenolic resin was not attained.

  18. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics

    KAUST Repository

    Chang, Y.-H.; Chen, S.-C.; Wang, T.-J.; Guo, J.

    2018-01-01

    Polytetrafluoroethylene (PTFE) micro-porous membranes were prepared from PTFE fine powder through extruding, rolling, and uniaxial longitudinally stretching. In contrast to conventional planar transverse stretching, a novel 3D mold design of non

  19. Comparison of the compressive strength of impregnated and nonimpregnated eucalyptus subjected to two different pressures and impregnation times

    Directory of Open Access Journals (Sweden)

    Waldemir Rodrigues

    2004-06-01

    Full Text Available The durability of wood is affected by several factors. For this reason, much research has been done on a variety of chemical compounds for impregnating wood, aimed at preserving it while simultaneously improving its properties. Recent studies of the properties of impregnated wood have demonstrated the possibility of substantially improving its mechanical characteristics. Thus, the purpose of this work was to compare the strength to parallel compression of wooden fibers (Eucalyptus grandis, both nonimpregnated and impregnated with a monocomponent resin, from the standpoint of pressure and impregnation time, aiming at its structural utilization. The results demonstrate that the compressive strength of impregnated test specimens is greater than that of nonimpregnated ones, indicating that monocomponent polyurethane resin can be considered suitable for impregnating wood, since it increases the compressive strength of eucalyptus.

  20. Recycling of impregnated wood and impregnating agents - combustion plant technology; Kyllaestetyn puutavaran ja kyllaestysaineiden kierraetys - polttolaitostekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Syrjaenen, T.; Kangas, E. [Kestopuu Oy, Helsinki (Finland)

    2000-07-01

    It has been estimated that in the 20th century it is possible to recycle about 70 000 m{sup 3} of impregnated wood, corresponding to about 48 % of the total amount of annually demolished impregnated wood. The amount is estimated to grow up to 130 000 m{sup 3} in 2015 (about 65% of demolished impregnated wood). In the beginning half of the recyclable impregnated wood is poles, but the share of sawn timber will increase as the time goes by. The poles and pieces of them are demolished and transported to an intermediate storage e.g. on the yard of an electricity supply company, from which they can be fetched in larger quantities. Even wood impregnation plant can act as intermediate storage sites. Collection points for impregnated construction timber can be established on timer sales companies, but most of it will be collected at waste processing sites. The economy of impregnated wood recycling chain depends on the sales income of generated energy. Calculations show that collection, transportation and processing costs can be covered with the sales of impregnated wood for energy generation and with recycling fees. The recycling fee for sawn timber would be 20 FIM/m{sup 3} and that for poles 64 FIM/m{sup 3}. In 2001 recycling fees were set for impregnated wood, the fees being 11 FIM/m{sup 3} for sawn timber and 42 FIM/m{sup 3} for poles. Collected impregnated wood can be crushed with either fixed or movable crushers used for crushing of waste wood. The impurities of wood (bolts, nails, stones, etc.), large dimensions of wood, in- homogenous material and dust require special features for the crushing equipment. Crushing device can be equipped with feeding crane and saw for processing of large-dimension wood, and metal detectors and magnetic separators if needed, but the large metal scrap has to be removed before crushing. At present in Finland there is not a combustion plant capable for combustion of impregnated wood without any modification. Improvements of flue gas

  1. Characteristics of the Nafion (registered) - impregnated polycarbonate composite membranes for PEMFCs

    International Nuclear Information System (INIS)

    Kim, Ki-Hwan; Ahn, Sang-Yeoul; Oh, In-Hwan; Ha, Heung Yong; Hong, Seong-Ahn; Kim, Moon-Sun; Lee, Youngkwan; Lee, Yong-Chul

    2004-01-01

    In this work, polycarbonate composite membranes were prepared for proton exchange membrane fuel cells (PEMFCs). In the preparation of membranes, a small amount of poly(ethylene glycol) (PEG) was blended with polycarbonate (PC) solution and then cast to make membranes. PEG contained in the membrane was removed by the high solubility of supercritical CO 2 to afford porosity in the membrane. Then, porous PC membranes were soaked in Nafion (registered) solution to yield the PC/Nafion (registered) composite membranes. The PC composite membrane had lower ion conductivity but higher conductance than Nafion (registered)

  2. Simultaneous extraction and determination of trace amounts of diclofenac from whole blood using supported liquid membrane microextraction and fast Fourier transform voltammetry.

    Science.gov (United States)

    Mofidi, Zahra; Norouzi, Parviz; Sajadian, Masumeh; Ganjali, Mohammad Reza

    2018-04-01

    A novel, simple, and inexpensive analytical technique based on flat sheet supported liquid membrane microextraction coupled with fast Fourier transform stripping cyclic voltammetry on a reduced graphene oxide carbon paste electrode was used for the extraction and online determination of diclofenac in whole blood. First, diclofenac was extracted from blood samples using a polytetrafluoroethylene membrane impregnated with 1-octanol and then into an acceptor solution, subsequently it was oxidized on a carbon paste electrode modified with reduced graphene oxide nanosheets. The optimal values of the key parameters influencing the method were as follows: scan rate, 6 V/s; stripping potential, 200 mV; stripping time, 5 s; pH of the sample solution, 5; pH of the acceptor solution,7; and extraction time, 240 min. The calibration curves were plotted for the whole blood samples and the method was found to have a good linearity within the range of 1-25 μg/mL with a determination coefficient of 0.99. The limits of detection and quantification were 0.1 and 1.0 μg/mL, respectively. Using this coupled method, the extraction and determination were merged into one step. Accordingly, the speed of detection for sensitive determination of diclofenac in complex samples, such as blood, increased considerably. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Surface Modification of Poly(tetrafluoroethylene) by Magnesium Amalgam

    Czech Academy of Sciences Publication Activity Database

    Kavan, Ladislav; Janda, Pavel; Weber, Jan

    2001-01-01

    Roč. 36, - (2001), s. 879-885 ISSN 0022-2461 R&D Projects: GA ČR GA203/98/1168; GA ČR GA203/98/1181 Institutional research plan: CEZ:AV0Z4040901 Keywords : poly(tetrafluoroethylene) * surface modification * ESCA Subject RIV: CG - Electrochemistry Impact factor: 0.728, year: 2001

  4. Plasma treatment of polyethersulfone membrane for benzene removal from water by air gap membrane distillation.

    Science.gov (United States)

    Pedram, Sara; Mortaheb, Hamid Reza; Arefi-Khonsari, Farzaneh

    2018-01-01

    In order to obtain a durable cost-effective membrane for membrane distillation (MD) process, flat sheet polyethersulfone (PES) membranes were modified by an atmospheric pressure nonequilibrium plasma generated using a dielectric barrier discharge in a mixture of argon and hexamethyldisiloxane as the organosilicon precursor. The surface properties of the plasma-modified membranes were characterized by water contact angle (CA), liquid entry pressure, X-ray photoelectron spectroscopy, scanning electron microscopy, and atomic force microscopy. The water CA of the membrane was increased from 64° to 104° by depositing a Si(CH 3 )-rich thin layer. While the pristine PES membrane was not applicable in the MD process, the modified PES membrane could be applied for the first time in an air gap membrane distillation setup for the removal of benzene as a volatile organic compound from water. The experimental design using central composite design and response surface methodology was applied to study the effects of feed temperature, concentration, and flow rate as well as their binary interactions on the overall permeate flux and separation factor. The separation factor and permeation flux of the modified PES membrane at optimum conditions were comparable with those of commercial polytetrafluoroethylene membrane.

  5. Mechanisms of Contact Electrification at Aluminum-Polytetrafluoroethylene and Polypropylene-Water

    KAUST Repository

    Nauruzbayeva, Jamilya

    2017-01-01

    of electrons, but a comprehensive understanding of contact electrification at interfaces of electrical insulators, such as air, water, polytetrafluoroethylene (PTFE), polypropylene remains incomplete. In fact, a variety of mechanisms responsible for transfer

  6. Gamma radiation grafting process for preparing separator membranes for electrochemical cells

    International Nuclear Information System (INIS)

    Agostino, V.F. D'; Lee, J.Y.

    1982-01-01

    An irradiation grafting process for preparing separator membranes for use in electrochemical cells, comprises contacting a polymeric base film with an aqueous solution of a hydrophilic monomer and a polymerization retardant; and irradiating said contacted film to form a graft membrane having low electrical resistivity and having monomer molecules uniformly grafted thereon. In the examples (meth) acrylic acid is grafted on to polyethylene, polypropylene and polytetrafluoroethylene in the presence of ferrous sulphate or cupric sulphate as polymerization retardants. (author)

  7. Two-stage supported liquid membrane method for the separation of carrier-free {sup 90}Y from {sup 90}Sr using KSM-17 and CMPO as carriers

    Energy Technology Data Exchange (ETDEWEB)

    Dhami, P S; Naik, P W; Dudwadkar, N L; Kannan, R; Achuthan, P V; Dakshinamoorthy, A; Jambunathan, U; Munshi, S K; Dey, P K [Fuel Reprocessing Division, Bhabha Atomic Research Centre, Mumbai (India); Pandey, Usha; Venkatesh, Meera [Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai (India)

    2007-07-01

    A two stage supported liquid membrane system is developed for the separation of carrier free {sup 90}Y from {sup 90}Sr for therapeutic applications. The feed containing {sup 90}Sr-{sup 90}Y in nitric acid solution at pH 2 is placed in the feed compartment and transported across a polytetrafluoroethylene membrane containing 2-ethyhexyl2ethylhexyl phosphonic acid to a 4M HNO{sub 3} receiver phase. This is then transported across another polytetrafluoroethylene membrane containing octyl phenyl N,N-diisobutylcarbamoyl methylphosphene oxide to another receiving phase, 1 M acetic acid. This has been implemented on simultaneous and sequential modes with very good yield. The second stage will act as a barrier for {sup 90}Sr, and will improve the product purity. (author)

  8. Evaluation of a simple polytetrafluoroethylene (PTFE)-based membrane for blood-feeding of malaria and dengue fever vectors in the laboratory.

    Science.gov (United States)

    Siria, Doreen J; Batista, Elis P A; Opiyo, Mercy A; Melo, Elizangela F; Sumaye, Robert D; Ngowo, Halfan S; Eiras, Alvaro E; Okumu, Fredros O

    2018-04-11

    Controlled blood-feeding is essential for maintaining laboratory colonies of disease-transmitting mosquitoes and investigating pathogen transmission. We evaluated a low-cost artificial feeding (AF) method, as an alternative to direct human feeding (DHF), commonly used in mosquito laboratories. We applied thinly-stretched pieces of polytetrafluoroethylene (PTFE) membranes cut from locally available seal tape (i.e. plumbers tape, commonly used for sealing pipe threads in gasworks or waterworks). Approximately 4 ml of bovine blood was placed on the bottom surfaces of inverted Styrofoam cups and then the PTFE membranes were thinly stretched over the surfaces. The cups were filled with boiled water to keep the blood warm (~37 °C), and held over netting cages containing 3-4 day-old inseminated adults of female Aedes aegypti, Anopheles gambiae (s.s.) or Anopheles arabiensis. Blood-feeding success, fecundity and survival of mosquitoes maintained by this system were compared against DHF. Aedes aegypti achieved 100% feeding success on both AF and DHF, and also similar fecundity rates (13.1 ± 1.7 and 12.8 ± 1.0 eggs/mosquito respectively; P > 0.05). An. arabiensis had slightly lower feeding success on AF (85.83 ± 16.28%) than DHF (98.83 ± 2.29%) though these were not statistically different (P > 0.05), and also comparable fecundity between AF (8.82 ± 7.02) and DHF (8.02 ± 5.81). Similarly, for An. gambiae (s.s.), we observed a marginal difference in feeding success between AF (86.00 ± 10.86%) and DHF (98.92 ± 2.65%), but similar fecundity by either method. Compared to DHF, mosquitoes fed using AF survived a similar number of days [Hazard Ratios (HR) for Ae. aegypti = 0.99 (0.75-1.34), P > 0.05; An. arabiensis = 0.96 (0.75-1.22), P > 0.05; and An. gambiae (s.s.) = 1.03 (0.79-1.35), P > 0.05]. Mosquitoes fed via this simple AF method had similar feeding success, fecundity and longevity. The method could potentially be used for laboratory colonization of mosquitoes

  9. Socket Preservation with d-PTFE Membrane: Histologic Analysis of the Newly Formed Matrix at Membrane Removal.

    Science.gov (United States)

    Laurito, Domenico; Cugnetto, Riccardo; Lollobrigida, Marco; Guerra, Fabrizio; Vestri, Annarita; Gianno, Francesca; Bosco, Sandro; Lamazza, Luca; De Biase, Alberto

    This study aimed to evaluate the efficacy of an exposed high-density polytetrafluoroethylene (d-PTFE) membrane in preventing epithelial migration in postextraction sockets. For this purpose, a histologic description of the newly formed soft tissue underlying the membrane is presented. The periodontal status of the adjacent teeth was also evaluated to assess the gingival response. Ten premolar extraction sockets were treated. After tooth extraction, the sockets were filled with nanocrystalline hydroxyapatite and covered with d-PTFE membranes. Subperiosteal pockets were created to ensure the stability of the membranes. Membranes were left intentionally exposed and were atraumatically removed after 28 days. At that time, a bioptic specimen of the newly formed soft tissue under the membranes was taken. All the histologic samples showed a dense connective tissue without epithelial cells and no signs of foreign body reaction. No significant variation of the periodontal indices was observed on the teeth adjacent to the extraction sites. The study results indicate that exposed d-PTFE membranes can prevent epithelial migration in healing sockets without consequences on the periodontal health.

  10. Fabricating PFPE Membranes for Microfluidic Valves and Pumps

    Science.gov (United States)

    Greer, Frank; White, Victor E.; Lee, Michael C.; Willis, Peter A.; Grunthaner, Frank J.; Rolland, Jason; Rolland, Jason

    2009-01-01

    A process has been developed for fabricating membranes of a perfluoropolyether (PFPE) and integrating them into valves and pumps in laboratory-on-achip microfluidic devices. Membranes of poly(tetrafluoroethylene) [PTFE] and poly(dimethylsilane) [PDMS] have been considered for this purpose and found wanting. By making it possible to use PFPE instead of PTFE or PDMS, the present process expands the array of options for further development of microfluidic devices for diverse applications that could include detection of biochemicals of interest, detection of toxins and biowarfare agents, synthesis and analysis of proteins, medical diagnosis, and synthesis of fuels.

  11. Histological evaluation of different biodegradable and non-biodegradable membranes implanted subcutaneously in rats

    DEFF Research Database (Denmark)

    Zhao, S; Pinholt, E M; Madsen, J E

    2000-01-01

    Different types of biodegradable membranes have become available for guided tissue regeneration. The purpose of this study was to evaluate histologically three different biodegradable membranes (Bio-Gide, Resolut and Vicryl) and one non-biodegradable membrane (expanded polytetrafluoroethylene/e-PTFE...... that e-PTFE was well tolerated and encapsulated by a fibrous connective tissue capsule. There was capsule formation around Resolut and Vicryl and around Bio-Gide in the early phase there was a wide inflammatory zone already. e-PTFE and Vicryl were stable materials while Resolut and Bio-Gide fragmented...

  12. Impregnation of silver sulfadiazine into bacterial cellulose for antimicrobial and biocompatible wound dressing

    International Nuclear Information System (INIS)

    Luan, Jiabin; Wu, Jian; Zheng, Yudong; Wang, Guojie; Guo, Jia; Ding, Xun; Song, Wenhui

    2012-01-01

    Silver sulfadiazine (SSD) is a useful antimicrobial agent for wound treatment. However, recent findings indicate that conventional SSD cream has several drawbacks for use in treatments. Bacterial cellulose (BC) is a promising material for wound dressing due to its outstanding properties of holding water, strength and degradability. Unfortunately, BC itself exhibits no antimicrobial activity. A combination of SSD and BC is envisaged to form a new class of wound dressing with both antimicrobial activity and biocompatibility, which has not been reported to date. To achieve antimicrobial activity, SSD particles were impregnated into BC by immersing BC into SSD suspension after ultrasonication, namely SSD–BC. Parameters influencing SSD–BC impregnation were systematically studied. Optimized conditions of sonication time for no less than 90 min and the proper pH value between 6.6 and 9.0 were suggested. The absorption of SSD onto the BC nanofibrous network was revealed by XRD and SEM analyses. The SSD–BC membranes exhibited significant antimicrobial activities against Pseudomonas aeruginosa, Escherichia coli and Staphylococcus aureus evaluated by the disc diffusion method. In addition, the favorable biocompatibility of SSD–BC was verified by MTT colorimetry, epidermal cell counting method and optical microscopy. The results demonstrate the potential of SSD–BC membranes as a new class of antimicrobial and biocompatible wound dressing. (paper)

  13. Improvement of Polytetrafluoroethylene Surface Energy by Repetitive Pulse Non-Thermal Plasma Treatment in Atmospheric Air

    International Nuclear Information System (INIS)

    Yang Guoqing; Zhang Guanjun; Zhang Wenyuan

    2011-01-01

    Improvement of polytetrafluoroethylene surface energy by non-thermal plasma treatment is presented, using a nanosecond-positive-edge repetitive pulsed dielectric barrier discharge generator in atmospheric air. The electrical parameters including discharging power, peak and density of micro-discharge current were calculated, and the electron energy was estimated. Surface treatment experiments of polytetrafluoroethylene films were conducted for both different applied voltages and different treating durations. Results show that the surface energy of polytetrafluoroethylene film could be improved to 40 mJ/m 2 or more by plasma treatment. Surface roughness measurement and surface X-ray photoelectron spectroscopy analysis indicate that there are chemical etching and implantation of polar oxygen groups in the sample surface treating process, resulting in the improvement of the sample surface energy. Compared with an AC source of 50 Hz, the dielectric barrier discharges generated by a repetitive pulsed source could provide higher peak power, lower mean power, larger micro-discharge current density and higher electron energy. Therefore, with the same applied peak voltage and treating duration, the improvement of polytetrafluoroethylene surface energy using repetitive pulsed plasma is more effective, and the plasma treatment process based on repetitive pulsed dielectric barrier discharges in air is thus feasible and applicable.

  14. Structural changes in polytetrafluoroethylene molecular chains upon sliding against steel

    NARCIS (Netherlands)

    Shen, J.T.; Pei, Y.T.; Hosson, J.Th.M. De

    In this work, the influence of dry sliding between a steel counterpart ball and polytetrafluoroethylene (PTFE) plate sample on the transformation of PTFE molecular structure is investigated. With X-ray diffraction, differential scanning calorimetry, Fourier transform infrared (FT-IR) spectroscopy

  15. Influence of gamma-radiation on tensile strength properties of polytetrafluoroethylene (PTFE)

    CERN Document Server

    Gafurov, U G; Nemkova, N

    2002-01-01

    The tensile strength properties of polytetrafluoroethylene are studied at modification doses of gamma-irradiation. The main molecular process of polymer destruction is found to be the thermostimulated slippage of molecular chains. (author)

  16. Experimental Study of Impregnation Birch and Aspen Samples

    Directory of Open Access Journals (Sweden)

    Igor Vladislavovich Grigorev

    2014-10-01

    Full Text Available An experimental study of wood impregnation was implemented by applying centrifugal methods. The impregnants were a 10% aqueous solution of potassium chloride and a 2% aqueous solution of borax. Birch (Betula pendula and aspen (Populus tremula wood samples in different moisture content were tested. The impregnation time in the centrifugal device were 30 seconds repeated 21 times, and the samples were measured after every 30 seconds. The experimental results were fitted to a nonlinear filtration law, which indicated that the centrifugal wood impregnation was dependent on wood species, wood moisture, rotational speed, and radius. Determination of rotational speed and centrifuge radius for impregnating aspen and birch at varying lengths and humidity under conditions of the nonlinear impregnant filtration law can be done using the example charts that were developed and presented in this study.

  17. [Research on ultrasonic permeability of low intensity pulsed ultrasound through PTFE membrane and Bio-Gide collagen membrane].

    Science.gov (United States)

    Chai, Zhaowu; Zhao, Chunliang; Song, Jinlin; Deng, Feng; Yang, Ji; Gao, Xiang; Liu, Minyi

    2013-12-01

    The aim of the present study was to detect the transmission rate of ultrasonic low intensity pulsed ultrasound (LIPUS) through polytetrafluoroethylene (PTFE) membrane (Thickness: 0.01 mm) and Bio-Gide collagen membrane, and to provide the basis for the barrier membrane selection on the study of LIPUS combined with guided tissue regeneration (GTR). The ultrasonic (LIPUS, frequency 1.5 MHz, pulse width 200 micros, repetition rate 1.0 kHz) transmission coefficient of the two kinds of barrier membrane were detected respectively through setting ten groups from 10 to 100mW/cm2 every other 10 mW/cm2. We found in the study that the ultrasonic transmission coefficient through 0.01 mm PTFE membrane was 78.1% to 92.%, and the ultrasonic transmission coefficient through Bio-Gide collagen membrane was 43.9% to 55.8%. The ultrasonic transmission coefficient through PTFE membrane was obviously higher than that through Bio-Gide collagen membrane. The transmission coefficient of the same barrier membrane of the ultrasonic ion was statistically different under different powers (P PTFE membrane and Bio-Gide collagen membrane were relatively high. We should select barrier membranes based on different experimental needs, and exercise ultrasonic transmission coefficient experiments to ensure effective power.

  18. Some properties of castor oil affecting its performance as a capacitor impregnant and their significance to future impregnant research

    International Nuclear Information System (INIS)

    Boicourt, G.P.

    1975-01-01

    For a considerable time castor oil and polychlorinated biphenyl (PCB) have been the principal impregnants used in energy-storage capacitors. Castor oil has proven to be better than PCB for pulsed applications. PCB's have come under attack as an environmental hazard, while castor oil is a vegetable product and its supply and quality are subject to fluctuation. These two facts make the development of new impregnants desirable. The properties of PCB as a capacitor impregnant are well known. This paper first compares a number of properties of castor oil and PCB's. A comparison is made between the lives of castor oil capacitors and comparable PCB energy-storage capacitors. Some of the physical and chemical properties of castor oil which make it a good pulse capacitor impregnant are examined. These properties can be used as a guide for future research on new pulse capacitor impregnants

  19. Performance modeling of direct contact membrane distillation (DCMD) seawater desalination process using a commercial composite membrane

    KAUST Repository

    Lee, Junggil

    2015-01-10

    This paper presents the development of a rigorous theoretical model to predict the transmembrane flux of a flat sheet hydrophobic composite membrane, comprising both an active layer of polytetrafluoroethylene and a scrim-backing support layer of polypropylene, in the direct contact membrane distillation (DCMD) process. An integrated model includes the mass, momentum, species and energy balances for both retentate and permeate flows, coupled with the mass transfer of water vapor through the composite membrane and the heat transfer across the membrane and through the boundary layers adjacent to the membrane surfaces. Experimental results and model predictions for permeate flux and performance ratio are compared and shown to be in good agreement. The permeate flux through the composite layer can be ignored in the consideration of mass transfer pathways at the composite membrane. The effect of the surface porosity and the thickness of active and support layers on the process performance of composite membrane has also been studied. Among these parameters, surface porosity is identified to be the main factor significantly influencing the permeate flux and performance ratio, while the relative influence of the surface porosity on the performance ratio is less than that on flux.

  20. Potentiometric measurement of polymer-membrane electrodes based on lanthanum

    Energy Technology Data Exchange (ETDEWEB)

    Saefurohman, Asep, E-mail: saefurohman.asep78@Gmail.com; Buchari,, E-mail: saefurohman.asep78@Gmail.com; Noviandri, Indra, E-mail: saefurohman.asep78@Gmail.com [Department of Chemistry, Bandung Institute of Technology (Indonesia); Syoni [Department of Metallurgy Engineering, Bandung Institute of Technology (Indonesia)

    2014-03-24

    Quantitative analysis of rare earth elements which are considered as the standard method that has a high accuracy, and detection limits achieved by the order of ppm is inductively coupled plasma atomic emission spectroscopy (ICPAES). But these tools are expensive and valuable analysis of the high cost of implementation. In this study be made and characterized selective electrode for the determination of rare earth ions is potentiometric. Membrane manufacturing techniques studied is based on immersion (liquid impregnated membrane) in PTFE 0.5 pore size. As ionophores to be used tri butyl phosphate (TBP) and bis(2-etylhexyl) hydrogen phosphate. There is no report previously that TBP used as ionophore in polymeric membrane based lanthanum. Some parameters that affect the performance of membrane electrode such as membrane composition, membrane thickness, and types of membrane materials studied in this research. Manufacturing of Ion Selective Electrodes (ISE) Lanthanum (La) by means of impregnation La membrane in TBP in kerosene solution has been done and showed performance for ISE-La. FTIR spectrum results for PTFE 0.5 pore size which impregnated in TBP and PTFE blank showed difference of spectra in the top 1257 cm{sup −1}, 1031 cm{sup −1} and 794.7 cm{sup −1} for P=O stretching and stretching POC from group −OP =O. The result showed shift wave number for P =O stretching of the cluster (−OP=O) in PTFE-TBP mixture that is at the peak of 1230 cm{sup −1} indicated that no interaction bond between hydroxyl group of molecules with molecular clusters fosforil of TBP or R{sub 3}P = O. The membrane had stable responses in pH range between 1 and 9. Good responses were obtained using 10{sup −3} M La(III) internal solution, which produced relatively high potential. ISE-La showed relatively good performances. The electrode had a response time of 29±4.5 second and could be use for 50 days. The linear range was between 10{sup −5} and 10{sup −1} M.

  1. Expanded polytetrafluoroethylene membrane alters tissue response to implanted Ahmed glaucoma valve.

    Science.gov (United States)

    DeCroos, Francis Char; Ahmad, Sameer; Kondo, Yuji; Chow, Jessica; Mordes, Daniel; Lee, Maria Regina; Asrani, Sanjay; Allingham, R Rand; Olbrich, Kevin C; Klitzman, Bruce

    2009-07-01

    Long-term intraocular pressure control by glaucoma drainage implants is compromised by the formation of an avascular fibrous capsule that surrounds the glaucoma implant and increases aqueous outflow resistance. It is possible to alter this fibrotic tissue reaction and produce a more vascularized and potentially more permeable capsule around implanted devices by enclosing them in a porous membrane. Ahmed glaucoma implants modified with an outer 5-microm pore size membrane (termed porous retrofitted implant with modified enclosure or PRIME-Ahmed) and unmodified glaucoma implants were implanted into paired rabbit eyes. After 6 weeks, the devices were explanted and subject to histological analysis. A tissue response containing minimal vascularization, negligible immune response, and a thick fibrous capsule surrounded the unmodified Ahmed glaucoma implant. In comparison, the tissue response around the PRIME-Ahmed demonstrated a thinner fibrous capsule (46.4 +/- 10.8 microm for PRIME-Ahmed versus 94.9 +/- 21.2 microm for control, p vascularized near the tissue-material interface. A prominent chronic inflammatory response was noted as well. Encapsulating the aqueous outflow pathway with a porous membrane produces a more vascular tissue response and thinner fibrous capsule compared with a standard glaucoma implant plate. Enhanced vascularity and a thinner fibrous capsule may reduce aqueous outflow resistance and improve long-term glaucoma implant performance.

  2. New insight of hybrid membrane to degrade Congo red and Reactive yellow under sunlight.

    Science.gov (United States)

    Rajeswari, A; Jackcina Stobel Christy, E; Pius, Anitha

    2018-02-01

    A study was carried out to investigate the degradation of organic contaminants (Congo red and Reactive yellow - 105) using cellulose acetate - polystyrene (CA-PS) membrane with and without ZnO impregnation. Scanning electron microscope (SEM), electron dispersive analysis of X-rays (EDAX), Fourier transform infrared spectrometer (FTIR), atomic force microscope (AFM) and thermogravimeric analysis (TG-DTA) analysis were carried out to characterize bare and ZnO impregnated CA-PS membranes. Membrane efficiency was also tested for pure water flux and antifouling performance. The modified membrane showed almost 85% water flux recovery. Blending of ZnO nanoparticles to CA-PS matrix could decrease membrane fouling and increase permeation quality of the membrane with above 90% of photocatalytic degradation efficiency for dyes. The rate of degradation of dyes was observed using UV-Vis spectrometer. Reusability of CA-PS-ZnO membrane was studied and no significant change was noted in the degradation efficiency until fourth cycle. Langmuir-Hinshelwood kinetic model well describes the photo degradation capacity and the degradation of dyes CR and RY - 105 exhibited pseudo-first order kinetics. The regression coefficient (R) of CR and RY - 105 found to be 0.99. The novelty of the prepared CA-PS-ZnO membrane is that it has better efficiency and high thermal stability than our previously reported material. Therefore, ZnO impregnated CA-PS membrane had proved to be an innovative alternative for the degradation of CR and RY - 105 dyes. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. High flux and antifouling properties of negatively charged membrane for dyeing wastewater treatment by membrane distillation

    KAUST Repository

    An, Alicia Kyoungjin

    2016-07-25

    This study investigated the applicability of membrane distillation (MD) to treat dyeing wastewater discharged by the textile industry. Four different dyes containing methylene blue (MB), crystal violet (CV), acid red 18 (AR), and acid yellow 36 (AY) were tested. Two types of hydrophobic membranes made of polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVDF) were used. The membranes were characterized by testing against each dye (foulant-foulant) and the membrane–dye (membrane-foulant) interfacial interactions and their mechanisms were identified. The MD membranes possessed negative charges, which facilitated the treatment of acid and azo dyes of the same charge and showed higher fluxes. In addition, PTFE membrane reduced the wettability with higher hydrophobicity of the membrane surface. The PTFE membrane evidenced especially its resistant to dye absorption, as its strong negative charge and chemical structure caused a flake-like (loose) dye–dye structure to form on the membrane surface rather than in the membrane pores. This also enabled the recovery of flux and membrane properties by water flushing (WF), thereby direct-contact MD with PTFE membrane treating 100 mg/L of dye mixtures showed stable flux and superior color removal during five days operation. Thus, MD shows a potential for stable long-term operation in conjunction with a simple membrane cleaning process, and its suitability in dyeing wastewater treatment.

  4. Iron impregnated carbon materials with improved physicochemical characteristics

    International Nuclear Information System (INIS)

    Shah, Irfan; Adnan, Rohana; Wan Ngah, Wan Saime; Mohamed, Norita

    2015-01-01

    Highlights: • The morphology of raw AC was altered upon Fe impregnation and surface oxidation. • Surface modification had increased the pores diameter and surface functionalities. • Development of iron oxides have been expected on Fe impregnated carbon materials. • The M1, M2 and M3 have revealed magnetic susceptibility in applied magnetic field. • Dyes removal efficiency of M3 was notably higher (90–99%) than the raw AC (60–85%). - Abstract: This paper highlights the effect of iron impregnation and surface oxidation on the physicochemical characteristics of iron impregnated carbon materials. These materials were characterized by various techniques like surface area, pore size distribution, SEM/EDX, CHN, XRD, FTIR, TG/DT, VSM and XPS analyses. The increase in the surface functionalities and pores diameter (3.51–5.49 nm) of the iron-impregnated carbon materials was observed with the increase in iron contents and surface oxidation. The saturated magnetization values (0.029–0.034 emu/g) for the iron-impregnated carbon materials reflected the magnetic tendency due to the development of small size iron oxides on their surfaces. The XPS spectra revealed the existence of different oxidation states of the corresponding metals on the iron impregnated carbon materials. The percentage removal of model dyes (Methylene Blue and Methyl Orange) by iron-impregnated carbon materials was enhanced (>90%) with the increase in iron contents and pores diameters.

  5. The noncovalent bonding of antibiotics to a polytetrafluoroethylene-benzalkonium graft

    International Nuclear Information System (INIS)

    Harvey, R.A.; Greco, R.S.

    1981-01-01

    This study evaluates the noncovalent bonding of anionic antibiotics to polytetrafluoroethylene grafts using benzalkonium chloride as a cationic anchor. The binding of radiolabeled surfactants and antibiotics was evaluated by liquid scintillation and in an in vitro microbiologic assay against Staphylococcus aureus. Significant quantities of antibiotic were bound when the grafts were pretreated with benzalkonium in ethanol or aqueous solution at elevated temperature. Bound antibiotic is stable in aqueous salt solutions, but slowly dissociates in the presence of blood or serum. The ionic nature of the bonding process is clarified by the use of a variety of antibiotics and surfactants with complementary charges. The ability of the benzalkonium treated grafts to adsorb antibiotic from blood is, likewise, demonstrated and the possibility of concomitantly binding heparin and antibiotic simultaneously is evaluated. These studies support the ability to noncovalently bond antibiotics to polytetrafluoroethylene surfaces and form the basis of eventually utilizing these surfaces in the prevention of vascular prosthetic infections

  6. Catalytic membranes for CO oxidation in fuel cells

    Science.gov (United States)

    Sandi-Tapia, Giselle; Carrado Gregar, Kathleen; Kizilel, Riza

    2010-06-08

    A hydrogen permeable membrane, which includes a polymer stable at temperatures of about 200 C having clay impregnated with Pt or Au or Ru or Pd particles or mixtures thereof with average diameters of less than about 10 nanometers (nms) is disclosed. The membranes are useful in fuel cells or any device which requires hydrogen to be separated from carbon monoxide.

  7. Methods for the characterization of impregnating pitches

    Energy Technology Data Exchange (ETDEWEB)

    Compin, S.; Ben Aim, R.; Couderc, P.; Saint-Romain, J.L.

    1987-11-01

    This paper discusses modification of the impregnation performance of various pitches. The filtration ability, which expresses the impregnation performance, was studied using gel permeation chromatography and scanning electron microscopy. 16 refs., 5 figs., 2 tabs.

  8. Fouling mitigation in membrane distillation processes during ammonia stripping from pig manure

    DEFF Research Database (Denmark)

    Zarebska, Agata; Amor, Angel Cid; Ciurkot, Klaudia

    2015-01-01

    Over time fouling leads to membrane wetting. This is the biggest obstacle to widespread use of membrane distillation (MD) for ammonia removal from animal slurry. Feed pretreatment and cleaning strategies of membrane surfaces are the most common methods to prevent or diminish fouling phenomena....... This study investigates preliminary fouling of polypropylene (PP) and polytetrafluoroethylene (PTFE) membranes. A model manure solution was used as feed. In addition cleaning efficiencies with deionized water, NaOH/citric acid, and Novadan agents were studied. Further microfiltration and ultrafiltration were...... examined as manure pretreatment to diminish fouling. To this end polyvinylidene fluoride membranes (PVDF 0.2 µm and 150 kDa respectively) were used. Organic fouling was shown to be dominant. For the model manure solution the fouling comprised lipids, carbohydrates and proteins. For pig slurry the fouling...

  9. A Novel Non-Planar Transverse Stretching Process for Micro-Porous PTFE Membranes and Resulting Characteristics

    KAUST Repository

    Chang, Y.-H.

    2018-02-26

    Polytetrafluoroethylene (PTFE) micro-porous membranes were prepared from PTFE fine powder through extruding, rolling, and uniaxial longitudinally stretching. In contrast to conventional planar transverse stretching, a novel 3D mold design of non-planar transverse stretching process was employed in this study to produce micro-porous structure. The morphology, membrane thickness, mean pore size, and porosity of the PTFE membrane were investigated. The results show that the non-planar transverse stretched membranes exhibit more uniform average pore diameter with thinner membrane thickness. Morphological changes induced by planar and non-planar transverse stretching for pore characteristics were investigated. The stretching conditions, stretching temperature and rate, affect the stretched membrane. Increasing temperature facilitated the uniformity of pore size and uniformity of membrane thickness. Moreover, increase in stretching rate resulted in finer pore size and thinner membrane.

  10. Oil-Impregnated Polyethylene Films

    Science.gov (United States)

    Mukherjee, Ranit; Habibi, Mohammad; Rashed, Ziad; Berbert, Otacilio; Shi, Shawn; Boreyko, Jonathan

    2017-11-01

    Slippery liquid-infused porous surfaces (SLIPS) minimize the contact angle hysteresis of a wide range of liquids and aqueous food products. Although hydrophobic polymers are often used as the porous substrate for SLIPS, the choice of polymer has been limited to silicone-based or fluorine-based materials. Hydrocarbon-based polymers, such as polyethylene, are cost effective and widely used in food packaging applications where SLIPS would be highly desirable. However, to date there have been no reports on using polyethylene as a SLIPS substrate, as it is considered highly impermeable. Here, we show that thin films of low-density polyethylene can be stably impregnated with carbon-based oils without requiring any surface modification. Wicking tests reveal that oils with sufficient chemical compatibility follow Washburn's equation. The nanometric effective pore size of the polyethylene does result in a very low wicking speed, but by using micro-thin films and a drawdown coater, impregnation can still be completed in under one second. The oil-impregnated polyethylene films promoted ultra-slippery behavior for water, ketchup, and yogurt while remaining durable even after being submerged in ketchup for over one month. This work was supported by Bemis North America (AT-23981).

  11. Replacement of hazardous chromium impregnating agent from silver/copper/chromium-impregnated active carbon using triethylenediamine to remove hydrogen sulfide, trichloromethane, ammonia, and sulfur dioxide.

    Science.gov (United States)

    Wu, Li-Chun; Chung, Ying-Chien

    2009-03-01

    Activated carbon (AC) is widely used as an effective adsorbent in many applications, including industrial-scale air purification systems and air filter systems in gas masks. In general, ACs without chemical impregnation are good adsorbents of organic vapors but poor adsorbents of low-molecular-weight or polar gases such as chlorine, sulfur dioxide (SO2), formaldehyde, and ammonia (NH3). Impregnated ACs modified with metallic impregnating agents (ASC-carbons; e.g., copper, chromium, and silver) enhance the adsorbing properties of the ACs for simultaneously removing specific poisonous gases, but disposal of the chromium metal salt used to impregnate the ACs has the potential to result in situations that are toxic to both humans and the environment, thereby necessitating the search for replaceable organic impregnating agents that represent a much lower risk. The aim of this study was to assess the gas removal efficiency of an AC in which the organic impregnating agent triethylenediamine (TEDA) largely replaced the metallic impregnating agent chromium. We assessed batch and continuous adsorption capacities in situ for removing simulated hydrogen sulfide (H2S), trichloromethane (CHCl3), NH3, and SO2 gases. Brunauer-Emmet-Teller measurements and scanning electron microscopy analyses identified the removal mechanism by which TEDA-impregnated AS-carbon (dechromium ASC-carbon) adsorbs gases and determined the removal capacity for H2S, CHCl3, NH3, and SO2 to be 311, 258, 272, and 223 mg/g-C, respectively. These results demonstrate that TEDA-impregnated AS-carbon is significantly more efficient than ASC-carbon in adsorbing these four gases. Organic TEDA-impregnating agents have also been proven to be a reliable and environmental friendly agent and therefore a safe replacement of the hazardous chromium found in conventional ASC-carbon used in removing toxic gases from the airstream.

  12. Effect of membranes and porous hydroxyapatite on healing in bone defects around titanium dental implants. An experimental study in monkeys

    DEFF Research Database (Denmark)

    Gotfredsen, K; Warrer, K; Hjørting-Hansen

    1991-01-01

    The purpose of the present study was to examine the effect of treating bony craters around titanium dental implant with polytetrafluoroethylene membranes (PTFE), with and without grafting of hydroxyapatite (HA), and with HA alone. 4 standardized bone defects were prepared in the alveolar ridge...

  13. Natural gas purification using supported ionic liquid membrane

    NARCIS (Netherlands)

    Althuluth, M.A.M.; Overbeek, J.P.; Wees, H.J.; Zubeir, L.F.; Haije, W.G.; Berrouk, A.S.; Peters, C.J.; Kroon, M.C.

    2015-01-01

    This paper examines the possibility of the application of a supported ionic liquid membrane (SILM) for natural gas purification. The ionic liquid (IL) 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([emim][FAP]) was impregnated successfully in the ¿-alumina layer of a tubular

  14. Cell proliferation on UV-excimer lamp modified and grafted polytetrafluoroethylene

    Czech Academy of Sciences Publication Activity Database

    Švorčík, V.; Ročková, K.; Ratajová, E.; Heitz, J.; Huber, N.; Bäuerle, D.; Bačáková, Lucie; Dvořánková, B.; Hnatowicz, Vladimír

    2004-01-01

    Roč. 217, č. 2 (2004), s. 307-313 ISSN 0168-583X R&D Projects: GA AV ČR IAA5011301; GA ČR GA106/03/0514 Grant - others:CZ-AT(CZ) Aktion 2002-7 Institutional research plan: CEZ:AV0Z5011922 Keywords : polytetrafluoroethylene * UV-beam modification * grafting Subject RIV: EI - Biotechnology ; Bionics Impact factor: 0.997, year: 2004

  15. Supported Ionic Liquid Membranes and Ion-Jelly® Membranes with [BMIM][DCA]: Comparison of Its Performance for CO2 Separation

    Directory of Open Access Journals (Sweden)

    Ricardo Couto

    2015-01-01

    Full Text Available In this work, a supported ionic liquid membrane (SILM was prepared by impregnating a PVDF membrane with 1-butyl-3-methylimidazolium dicyanamide ([BMIM][DCA] ionic liquid. This membrane was tested for its permeability to pure gases (CO2, N2 and O2 and ideal selectivities were calculated. The SILM performance was also compared to that of Ion-Jelly® membranes, a new type of gelled membranes developed recently. It was found that the PVDF membrane presents permeabilities for pure gases similar or lower to those presented by the Ion-Jelly® membranes, but with increased ideal selectivities. This membrane presents also the highest ideal selectivity (73 for the separation of CO2 from N2 when compared with SILMs using the same PVDF support but with different ionic liquids.

  16. Polymeric membranes for guided bone regeneration.

    Science.gov (United States)

    Gentile, Piergiorgio; Chiono, Valeria; Tonda-Turo, Chiara; Ferreira, Ana M; Ciardelli, Gianluca

    2011-10-01

    In this review, different barrier membranes for guided bone regeneration (GBR) are described as a useful surgical technique to enhance bone regeneration in damaged alveolar sites before performing implants and fitting other dental appliances. The GBR procedure encourages bone regeneration through cellular exclusion and avoids the invasion of epithelial and connective tissues that grow at the defective site instead of bone tissue. The barrier membrane should satisfy various properties, such as biocompatibility, non-immunogenicity, non-toxicity, and a degradation rate that is long enough to permit mechanical support during bone formation. Other characteristics such as tissue integration, nutrient transfer, space maintenance and manageability are also of interest. In this review, various non-resorbable and resorbable commercially available membranes are described, based on expanded polytetrafluoroethylene, poly(lactic acid), poly(glycolic acid) and their copolymers. The polyester-based membranes are biodegradable, permit a single-stage procedure, and have higher manageability than non-resorbable membranes; however, they have shown poor biocompatibility. In contrast, membranes based on natural materials, such as collagen, are biocompatible but are characterized by poor mechanical properties and stability due to their early degradation. Moreover, new approaches are described, such as the use of multi-layered, graft-copolymer-based and composite membranes containing osteoconductive ceramic fillers as alternatives to conventional membranes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Impregnation of Ibuprofen into Polycaprolactone using supercritical carbon dioxide

    International Nuclear Information System (INIS)

    Yoganathan, Roshan; Mammucari, Raffaella; Foster, Neil R

    2010-01-01

    Polycaprolactone (PCL) is a Food and Drug Administration (FDA) approved biodegradable polyester used in tissue engineering applications. Ibuprofen is an anti-inflammatory drug which has good solubility in supercritical CO 2 (SCCO 2 ). The solubility of CO 2 in PCL allows for the impregnation of CO 2 -soluble therapeutic agents into the polymer via a supercritical fluid (SCF) process. Polymers impregnated with bio-active compounds are highly desired for medical implants and controlled drug delivery. In this study, the use of CO 2 to impregnate PCL with ibuprofen was investigated. The effect of operating conditions on the impregnation of ibuprofen into PCL was investigated over two pressure and two temperature levels, 150bar and 200bar, 35 0 C and 40 0 C, respectively. Polycaprolactone with drug-loadings as high as 27% w/w were obtained. Impregnated samples exhibited controlled drug release profiles over several days.

  18. Recovery of ammonia from poultry litter using flat gas permeable membranes.

    Science.gov (United States)

    Rothrock, M J; Szögi, A A; Vanotti, M B

    2013-06-01

    The use of flat gas-permeable membranes was investigated as components of a new process to capture and recover ammonia (NH3) in poultry houses. This process includes the passage of gaseous NH3 through a microporous hydrophobic membrane, capture with a circulating dilute acid on the other side of the membrane, and production of a concentrated ammonium (NH4) salt. Bench- and pilot-scale prototype systems using flat expanded polytetrafluoroethylene (ePTFE) membranes and a sulfuric acid solution consistently reduced headspace NH3 concentrations from 70% to 97% and recovered 88% to 100% of the NH3 volatilized from poultry litter. The potential benefits of this technology include cleaner air inside poultry houses, reduced ventilation costs, and a concentrated liquid ammonium salt that can be used as a plant nutrient solution. Published by Elsevier Ltd.

  19. Bioactive surface modifications on inner walls of poly-tetra-fluoro-ethylene tubes using dielectric barrier discharge

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Ki [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Heat Treatment and Surface Engineering R and D Group, Korea Institute of Industrial Technology, Incheon 406-840 (Korea, Republic of); Park, Daewon; Kim, Hoonbae [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Hyerim; Park, Heonyong [Department of Molecular Biology, Dankook University, Yongin 448-701 (Korea, Republic of); Kim, Hong Ja [Department of Internal Medicine, Dankook University, Cheonan 330-714 (Korea, Republic of); Jung, Donggeun, E-mail: djung@skku.ac.kr [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2014-03-01

    Graphical abstract: - Highlights: • The surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts. • Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment using micro plasma discharge. - Abstract: Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature

  20. Bioactive surface modifications on inner walls of poly-tetra-fluoro-ethylene tubes using dielectric barrier discharge

    International Nuclear Information System (INIS)

    Cho, Yong Ki; Park, Daewon; Kim, Hoonbae; Lee, Hyerim; Park, Heonyong; Kim, Hong Ja; Jung, Donggeun

    2014-01-01

    Graphical abstract: - Highlights: • The surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts. • Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment using micro plasma discharge. - Abstract: Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature

  1. Impregnation of leather during "freeze-drying"

    DEFF Research Database (Denmark)

    Storch, Mikkel; Vestergaard Poulsen Sommer, Dorte; Hovmand, Ida

    2016-01-01

    Freeze-drying is a recognized method for the preservation of waterlogged objects. Naturally, freeze-drying has also been used for waterlogged archaeological leather often after treatment with Na2.EDTA and impregnation with PEG; but the treated leather sometimes suffers from “excessive drying......” becoming too stiff and brittle. The aim of this study was to examine the effect of a conventional freeze-drying method against an alternative freeze-drying method that preserves the natural moisture content of the leather. Both new and archaeological waterlogged leather were included in the study...... suggest that the process which takes place within the leather during the freeze-drying in not actual freeze-drying, but rather a sophisticated way of distributing the impregnating agent. The pure ice phase freezes out, but the impregnating agent remains liquid as the temperature does not become low enough...

  2. Growth of muscle cells on plasma-treated and gold nanoparticles-grafted polytetrafluoroethylene

    Czech Academy of Sciences Publication Activity Database

    Řezníčková, A.; Makajová, Z.; Kasálková-Slepičková, N.; Kolská, Z.; Bačáková, Lucie; Švorčík, V.

    2014-01-01

    Roč. 23, č. 3 (2014), s. 227-236 ISSN 1026-1265 R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:67985823 Keywords : polytetrafluoroethylene ( PTFE ) * nanoparticles * biocompatibility Subject RIV: EI - Biotechnology ; Bionics Impact factor: 1.806, year: 2014

  3. Vivosorb (R), Bio-Gide (R), and Gore-Tex (R) as barrier membranes in rat mandibular defects : an evaluation by microradiography and micro-CT

    NARCIS (Netherlands)

    Gielkens, Pepijn F. M.; Schortinghuis, Jurjen; de Jong, Johan R.; Raghoebar, Gerry M.; Stegenga, Boudewijn; Bos, Ruud R. M.

    Objectives: The objectives of this study were to determine whether a new degradable synthetic barrier membrane (Vivosorb (R)) composed of poly(DL-lactide-epsilon-caprolactone) (PDLLCL) can be useful in implant dentistry and to compare it with collagen and expanded polytetrafluoroethylene (ePTFE)

  4. Impregnation of Ibuprofen into Polycaprolactone using supercritical carbon dioxide

    Energy Technology Data Exchange (ETDEWEB)

    Yoganathan, Roshan; Mammucari, Raffaella; Foster, Neil R, E-mail: n.foster@unsw.edu.a [Supercritical Fluids Research Group, School of Chemical Sciences and Engineering, University of New South Wales, NSW 2052 (Australia)

    2010-03-01

    Polycaprolactone (PCL) is a Food and Drug Administration (FDA) approved biodegradable polyester used in tissue engineering applications. Ibuprofen is an anti-inflammatory drug which has good solubility in supercritical CO{sub 2} (SCCO{sub 2}). The solubility of CO{sub 2} in PCL allows for the impregnation of CO{sub 2}-soluble therapeutic agents into the polymer via a supercritical fluid (SCF) process. Polymers impregnated with bio-active compounds are highly desired for medical implants and controlled drug delivery. In this study, the use of CO{sub 2} to impregnate PCL with ibuprofen was investigated. The effect of operating conditions on the impregnation of ibuprofen into PCL was investigated over two pressure and two temperature levels, 150bar and 200bar, 35{sup 0}C and 40 {sup 0}C, respectively. Polycaprolactone with drug-loadings as high as 27% w/w were obtained. Impregnated samples exhibited controlled drug release profiles over several days.

  5. Ridge Preservation Comparing a Nonresorbable PTFE Membrane to a Resorbable Collagen Membrane: A Clinical and Histologic Study in Humans.

    Science.gov (United States)

    Arbab, Hussain; Greenwell, Henry; Hill, Margaret; Morton, Dean; Vidal, Ricardo; Shumway, Brian; Allan, Nicholas D

    2016-02-01

    The primary aim of this randomized, controlled, blinded clinical trial was to compare the effect of a resorbable collagen membrane (CM group) versus a nonresorbable high-density polytetrafluoroethylene membrane (PTFE group) on the clinical and histologic outcomes of a ridge preservation procedure. All 24 sites received an intrasocket cancellous allograft and a buccal overlay bovine derived xenograft. The change in horizontal crestal ridge width was -1.4 ± 1.2 mm for the CM group, whereas the PTFE group lost -2.2 ± 1.5 mm, which was not statistically significant between groups (P > 0.05). Vertical ridge height change was -1.2 ± 1.5 for the CM group, whereas the PTFE group lost -0.5 ± 1.6, which was not significantly different between groups (P > 0.05). The percent vital bone was similar and not significantly different between groups. Primary closure was not obtained and the exposed membrane portion over the socket opening healed with keratinized tissue. The choice of a resorbable versus a nonresorbable barrier membrane did not affect the clinical or the histologic outcome of ridge preservation treatment.

  6. Cellular reactions of osteoblast-like cells to a novel nanocomposite membrane for guided bone regeneration

    International Nuclear Information System (INIS)

    Meng Yao; Liu Man; Wang Shaoan; Mo Anchun; Huang, Cui; Zuo Yi; Li Jidong

    2008-01-01

    This study investigated the bioactivity and biocompatibility of hydroxyapatite nanoparticles (n-HA)/Polyamide-66 (PA66) nanocomposite membrane and expanded-polytetrafluoroethylene (e-PTFE) membrane (as control) to MG63 osteoblast-like cells. The attachment and proliferation of the cells on the porous surface of nHA/PA66 membrane and the surface of e-PTFE membrane were evaluated by scanning electron microscope (SEM) observation and the MTT assay. The bioactivity of the cells on the surface of the two membranes was evaluated by testing cell viability and alkaline phosphatase (ALP) activities. The results suggested that the bioresponse of MG63 osteoblast-like cells on the porous surface of nHA/PA66 membrane was better than the bioresponse on the opposite surface of e-PTFE membrane. Because of a better cell attachment manner, there is a potential utilization of the guided bone regeneration (GBR) membrane to substitute nHA/PA66 membrane for e-PTFE membrane

  7. Cellular reactions of osteoblast-like cells to a novel nanocomposite membrane for guided bone regeneration

    Energy Technology Data Exchange (ETDEWEB)

    Meng Yao [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Department of Orthodontics, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Liu Man [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Stomatology Health Care Center, Shenzhen Maternity and Child Healthcare Hospital, Shenzhen 518048 (China); Wang Shaoan [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Mo Anchun [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China)], E-mail: moanchun@163.com; Huang, Cui [State Key Laboratory of Oral Diseases, West China Stomatology Hospital, Sichuan University, Chengdu 610041 (China); Zuo Yi; Li Jidong [Research Center for Nano-biomaterials, Sichuan University, Chengdu 610041 (China)

    2008-11-15

    This study investigated the bioactivity and biocompatibility of hydroxyapatite nanoparticles (n-HA)/Polyamide-66 (PA66) nanocomposite membrane and expanded-polytetrafluoroethylene (e-PTFE) membrane (as control) to MG63 osteoblast-like cells. The attachment and proliferation of the cells on the porous surface of nHA/PA66 membrane and the surface of e-PTFE membrane were evaluated by scanning electron microscope (SEM) observation and the MTT assay. The bioactivity of the cells on the surface of the two membranes was evaluated by testing cell viability and alkaline phosphatase (ALP) activities. The results suggested that the bioresponse of MG63 osteoblast-like cells on the porous surface of nHA/PA66 membrane was better than the bioresponse on the opposite surface of e-PTFE membrane. Because of a better cell attachment manner, there is a potential utilization of the guided bone regeneration (GBR) membrane to substitute nHA/PA66 membrane for e-PTFE membra0008.

  8. Membrane processes in nuclear technologies

    International Nuclear Information System (INIS)

    Zakrzewska-Trznadel, G.

    2006-01-01

    pure water for power industry purposes. The membranes made from polytetrafluoroethylene and polypropylene were used in the case of membrane distillation. It was proved that membrane distillation is an efficient process in radioactive waste processing, enabling complete purification of the effluent and high volume reduction. The flow-sheet of integrated system for the purification of low and medium level radioactive wastes, combined with nuclear desalination by the membrane distillation method for the purpose of nuclear power plant, has been elaborated. The experimental results on the application of membrane processes for tritium removal from aqueous solutions were also presented. The pressure-driven process (ultrafiltration), as well as the processes with phase transition, namely pervaporation and vacuum enhanced membrane distillation were applied in that case. The polymer membranes made from modified polysulphone and regenerated cellulose, as well as porous polytetrafluoroethylene membranes were used for the purpose of tritium separation from aqueous solutions. The prevailed contribution of the Knudsen diffusion to the observed separation effects with the application of porous polytetrafluoroethylene membranes has been proved. The final conclusions comprise the characteristics and comparison of the applied membrane methods and the evaluation of their efficiency. Both the results of the performed research and the literature studies indicate directions and opportunities of potential applications of these methods in nuclear technologies. (author)

  9. Apple snack enriched with L-arginine using vacuum impregnation/ohmic heating technology.

    Science.gov (United States)

    Moreno, Jorge; Echeverria, Julian; Silva, Andrea; Escudero, Andrea; Petzold, Guillermo; Mella, Karla; Escudero, Carlos

    2017-07-01

    Modern life has created a high demand for functional food, and in this context, emerging technologies such as vacuum impregnation and ohmic heating have been applied to generate functional foods. The aim of this research was to enrich the content of the semi-essential amino acid L-arginine in apple cubes using vacuum impregnation, conventional heating, and ohmic heating. Additionally, combined vacuum impregnation/conventional heating and vacuum impregnation/ohmic heating treatments were evaluated. The above treatments were applied at 30, 40 and 50  ℃ and combined with air-drying at 40 ℃ in order to obtain an apple snack rich in L-arginine. Both the impregnation kinetics of L-arginine and sample color were evaluated. The impregnated samples created using vacuum impregnation/ohmic heating at 50 ℃ presented a high content of L-arginine, an effect attributed primarily to electropermeabilization. Overall, vacuum impregnation/ohmic heating treatment at 50 ℃, followed by drying at 40 ℃, was the best process for obtaining an apple snack rich in L-arginine.

  10. Impact of impregnation with boron compounds on combustion ...

    African Journals Online (AJOL)

    This study examined the impacts of varnishing after impregnation with boron compounds on combustion properties of oriental beech. The test samples prepared from oriental beech (Fagus orientalis Lipsky) wood were impregnated according to ASTM D 1413–76–99 with boric acid (Ba) or borax (Bx) using a vacuum ...

  11. Self expandable polytetrafluoroethylene stent for carotid blowout syndrome.

    Science.gov (United States)

    Tatar, E C; Yildirim, U M; Dündar, Y; Ozdek, A; Işik, E; Korkmaz, H

    2012-01-01

    Carotid blowout syndrome (CBS) is an emergency complication in patients undergoing treatment for head and neck cancers. The classical management of CBS is the ligation of the common carotid artery, because suturing is not be possible due to infection and necrosis of the field. In this case report, we present a patient with CBS, in whom we applied a self-expandable polytetrafluoroethylene (PTFE) stent and observed no morbidity. Endovascular stent is a life-saving technique with minimum morbidity that preserves blood flow to the brain. We believe that this method is preferable to ligation of the artery in CBS.

  12. Wood construction and magnetic characteristics of impregnated type magnetic wood

    International Nuclear Information System (INIS)

    Oka, Hideo; Hojo, Atsushi; Seki, Kyoushiro; Takashiba, Toshio

    2002-01-01

    The results of experiments involving the AC and DC magnetic characteristics of impregnated type magnetic wood were studied by taking into consideration the wood construction and fiber direction. The experimental results show that the sufficient amount of impregnated magnetic fluid varies depending on the fiber direction and length, and the grain face of the wood material. The impregnated type magnetic wood sample that is fully impregnated by magnetic fluid has a 60% saturation magnetization compared to the saturation magnetization of magnetic fluid. Samples for which the wood fiber direction was the same as the direction of the magnetic path had a higher magnetization intensity and permeability

  13. PROTECTIVE TREATMENT OF WOOD IMPREGNATING COMPOSITION OF PETROCHEMICAL WASTE

    Directory of Open Access Journals (Sweden)

    T. V. Maslakova

    2015-01-01

    Full Text Available The paper presents results of experimental and theoretical studies aimed at expanding the applications of the copolymers on the basis of the waste styrene production. One of the areas is used as impregnating compositions of wood materials, selection of optimal conditions modification on samples of the most widely used in the industry of wood, such as birch, aspen and other. Studies were conducted to obtain and use an impregnating compositions based on copolymers synthesized from waste products of styrene and the cubic remainder rectification of ethylbenzene (CRRE for the protective treatment of birch wood. Identified physic-chemical characteristics of physical mixtures of copolymers «CORS», «STAM», CRRE at different ratios. Studied the process of modification birch using the method of experiment planning greco-latin square of the fourth order, and the influence of such factors as the temperature of the impregnating composition, the duration of the impregnation, the temperature and duration of thermal treatment on the performance moisture resistance of wood. Were established optimal conditions modification birch wood treated impregnating compositions on the basis of physical mixtures of copolymer «CORS» with CRRE and copolymer «STAM» with CRRE is the mixing ratio 2:1, the duration and temperature of the impregnation 7 h and 95 0C, time and temperature of heat treatment 7 h and 170 0C, respectively. A sealing composition containing CRRE with copolymer «STAM» 1:2 is more preferable, as in the structure of the copolymer «STAM» contains carboxyl and anhydrite group. Thus was justified use for the modification of natural wood impregnating compositions on the basis of physical mixtures of CRRE with copolymers «CORS» and «STAM», which improve the properties of wood, increase moisture and weather resistance more than twice.

  14. Endovascular Treatment of Occlusive Lesions in the Aortic Bifurcation with Kissing Polytetrafluoroethylene-Covered Stents

    NARCIS (Netherlands)

    Grimme, F.A.B.; Spithoven, J.H.; Zeebregts, C.J.A.; Scharn, D.M.; Reijnen, M.M.

    2015-01-01

    PURPOSE: To determine the clinical outcomes of polytetrafluoroethylene covered balloon expandable stents (CBESs) in occlusive lesions of the aortic bifurcation in a kissing stent configuration. MATERIALS AND METHODS: The study included 69 consecutive patients (29 men, 40 women) who underwent kissing

  15. Endovascular Treatment of Occlusive Lesions in the Aortic Bifurcation with Kissing Polytetrafluoroethylene-Covered Stents

    NARCIS (Netherlands)

    Grimme, Frederike A. B.; Spithoven, J. Hans; Zeebregts, Clark J.; Scharn, Dirk M.; Reijnen, Michel M. P. J.

    Purpose: To determine the clinical outcomes of polytetrafluoroethylene covered balloon expandable stents (CBESs) in occlusive lesions of the aortic bifurcation in a kissing stent configuration. Materials and Methods: The study included 69 consecutive patients (29 men, 40 women) who underwent kissing

  16. Radiation hardenable impregnating agents for the consolidating conservation of wooden objects

    International Nuclear Information System (INIS)

    Schaudy, R.

    1985-01-01

    Radiation hardenable impregnating agents offer some advantages over the conventional agents. At the author's institution objects up to 110 cm length can be impregnated for conservation. More than 200 monomers and resins have been investigated. The procedure of impregnation is outlined and some kinds of wooden objects conserved in this way listed. (G.W.)

  17. Long-Term Outcomes of Double-Layered Polytetrafluoroethylene Membrane-Covered Self-Expandable Segmental Metallic Stents (Uventa) in Patients with Chronic Ureteral Obstructions: Is It Really Safe?

    Science.gov (United States)

    Kim, Myong; Hong, Bumsik; Park, Hyung Keun

    2016-12-01

    To evaluate the long-term clinical efficacy and safety of double-layered polytetrafluoroethylene membrane-covered self-expandable segmental metallic stents (Uventa) in patients with chronic ureteral obstruction. In a retrospective study, a total of 50 ureter units (44 patients) with chronic obstructions were included from July 2010 to May 2015. Indications for Uventa placement were primary stenting for malignant ureteral obstruction, failed conventional polymeric Double-J stent (PS), or percutaneous nephrostomy (PCN) technique, with comorbidities or fears limiting PS/PCN changes, or with irritation or pain due to PS/PCN. Patients underwent Uventa stent placement using the antegrade or retrograde approach. There were no immediate procedure-related complications, and all stents were placed in the proper sites. During the median follow-up of 30.9 (interquartile range [IQR], 8.1-49.0) months, the primary (no obstruction and no additional intervention) and overall success (no obstruction and no additional intervention except supplementary Uventa) was 30.0% and 34.0%, respectively. Moreover, 14 of 50 ureter units (28.0%) experienced major complications (≥Clavien-Dindo class IIIb), such as ureteroarterial fistula (three cases, 6.0%), ureteroenteric fistula (three, 6.0%), ureterovaginal fistula (one, 2.0%), ureter perforation (one, 2.0%), uncontrollable bleeding (one, 2.0%), and complete obstruction (five, 10.0%). On univariate analysis, major complications were associated with female (odds ratio [OR] = 6.000), cervical cancer (OR = 4.667), ureteral stricture length (≥6.0 cm, OR = 4.583), and placement duration (≥24.0 months, OR = 20.429; all p stent demonstrated poor treatment outcomes with frequent major complications in patients with chronic ureteral obstructions.

  18. 21 CFR 529.1003 - Flurogestone acetate-impregnated vaginal sponge.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Flurogestone acetate-impregnated vaginal sponge... § 529.1003 Flurogestone acetate-impregnated vaginal sponge. (a) Specifications. Each vaginal sponge... ewes during their normal breeding season. (2) Limitations. Using applicator provided, insert sponge...

  19. Microfabrication of high quality polytetrafluoroethylene films by synchrotron radiation

    International Nuclear Information System (INIS)

    Yoshida, A.; Matsumoto, E.; Yamada, H.; Okada, H.; Wakahara, A.

    2003-01-01

    We deposited polytetrafluoroethylene (PTFE) thin films both from the PTFE target by using synchrotron radiation (SR) beam and from PTFE emulsion by spin-coat process. The X-ray diffraction analyses showed a sharp peak due to (1 0 0) PTFE crystalline part, and only C-F 2 bonding was found in Fourier transform infrared spectrophotometer spectra. From electron spectroscopy for chemical analysis measurements, no impurities were found. The fabricated PTFE films were easily etched by SR beam on the limited area of the surface on a microscale through a suitably patterned mask

  20. Physicochemical properties of vanadium impregnated Al-PILCs: Effect of vanadium source

    Energy Technology Data Exchange (ETDEWEB)

    Balci, Suna, E-mail: sunabalci@gazi.edu.tr; Tecimer, Aylin

    2015-03-01

    Graphical abstract: - Highlights: • Vanadium was incorporated into Al-PILC using NaVO{sub 3} or VOSO{sub 4}·3H{sub 2}O precursors by wet impregnation, washing after wet impregnation and impregnation from solution methods. • The layered structure of the supports was retained after the vanadium incorporation. • Incorporation took place both by settling and ion exchange mechanism with the treatment VOSO{sub 4}·3H{sub 2}O precursor while settling was dominant in the use of NaVO{sub 3} precursor. • Treatment with VOSO{sub 4}·3H{sub 2}O which was acidic in solution resulted in more structural deformation. • V{sub 2}O{sub 5} and VO{sub 2} were found as the major oxide forms on the impregnated samples. Loading of vanadyl sulfate hydrate (VOSO{sub 4}·H{sub 2}O) resulted in higher V/Si ratio. Most of the vanadium was bonded in +5 oxide form. • Changes in the FTIR signals after vanadium incorporation caused by Brønsted and Lewis sites, silanol, water and vanadium vibrations were occured. • Dehydroxylation of the structure took place around 300 °C. Samples obtained by impregnation and washing after wet impregnation methods resulted in similar mass losses and the wet impregnated sample showed the highest mass loss among the impregnated samples. - Summary: Clay from the Middle Anatolian previously pillared by Al{sub 13}-Keggin ions and then calcined at 300 °C (Al-PILC) was impregnated with aqueous solutions of vanadium precursors by impregnation from solution (I), wet impregnation (WI) and washing after wet impregnation (WWI) methods. The crystal and textural properties were evaluated by X-ray powder diffraction (XRD), nitrogen sorption and transmission electron microscopy (TEM) images. Vanadium incorporation into the Al-PILC resulted decreases in the basal spacing from 1.75 nm to 1.35 nm with the preserved typical layered structure. The use of sodium metavanadate (NaVO{sub 3}) as the source and the impregnation from solution as the incorporation method

  1. Development of metal catalyst impregnation technology for membrane-based oxygen removal system

    International Nuclear Information System (INIS)

    Kim, Mun Soo; Lee, Doo Ho; Kang, Duk Won

    2005-01-01

    Dissolved oxygen(DO) is a primary cause of PWSCC and its content in reactor coolant system in NPPs has been strictly controlled by various DO removal methods. There are several removal methods of DO, such as vacuum degasification, thermal deaeration, and reductive removal by oxygen scavengers. Although the operation principles of vacuum degasification and thermal deaeration are simple, these methods require a lot of energy for operation and show lower efficiency. And these methods have a few handicaps such as temperature, pH, toxicity, high cost of installation and so on. For the purpose of developing the best method for DO removal from make-up water storage tank, it is necessary to overcome the disadvantages of hydrazine treatment. From this point of view, membrane-based oxygen removal system (MORS) has many advantages than other methods for example, friendly environmental process, versatility of operation conditions with high temperature and low pressure, small space, low cost, etc. Recently de-gassing membrane is widely used in power plant's feed water system for DO removal. De-gassing membrane has some advantages; it removes other dissolved gases such as CO2, N2, as well as O2, and is more economical than Catalytic resin-based Oxygen Removal System. In this study, to obtain better efficiency of MORS, we modified the polypropylene (PP) hollow fiber membrane by plasma treatment and ion beam irradiation supported platinum(Pt), palladium(Pd) as metal catalyst on the surface of the membrane

  2. Transport of Carbon Dioxide through a Biomimetic Membrane

    Directory of Open Access Journals (Sweden)

    Efstathios Matsaridis

    2011-01-01

    Full Text Available Biomimetic membranes (BMM based on polymer filters impregnated with lipids or their analogues are widely applied in numerous areas of physics, biology, and medicine. In this paper we report the design and testing of an electrochemical system, which allows the investigation of CO2 transport through natural membranes such as alveoli barrier membrane system and also can be applied for solid-state measurements. The experimental setup comprises a specially designed two-compartment cell with BMM connected with an electrochemical workstation placed in a Faraday cage, two PH meters, and a nondispersive infrared gas analyzer. We prove, experimentally, that the CO2 transport through the natural membranes under different conditions depends on pH and displays a similar behavior as natural membranes. The influence of different drugs on the CO2 transport process through such membranes is discussed.

  3. Impregnation transition in a powder

    Science.gov (United States)

    Raux, Pascal; Cockenpot, Heloise; Quere, David; Clanet, Christophe

    2011-11-01

    When an initially dry pile of micrometrical grains comes into contact with a liquid, one can observe different behaviors, function of the wetting properties. If the contact angle with the solid is low, the liquid will invade the pile (impregnation), while for higher contact angles, the grains will stay dry. We present an experimental study of this phenomenon: a dry pile of glass beads is deposed on the liquid surface, and we vary the contact angle of the liquid on the grains. We report a critical contact angle below which impregnation always occurs, and develop a model to explain its value. Different parameters modifying this critical contact angle are also investigated. Collaboration with Marco Ramaioli, Nestle Research Center, Lausanne, Switzerland.

  4. Durability of Gamma Irradiated Polymer Impregnated Blended Cement Pastes

    International Nuclear Information System (INIS)

    Khattab, M.M.; Abdel-Rahman, H.A.; Younes, M.M.

    2010-01-01

    This study is focusing on durability and performance of the neat blended cement paste as well as those of the polymer-impregnated paste towards seawater and various concentrations of magnesium sulfate solutions up to 6 months of curing. The neat blended cement paste is prepared by a partial substitution of ordinary Portland cement with 5% of active rice husk ash (RHA). These samples were cured under tap water for 7 days. Similar samples were impregnated with unsaturated polyester resin (UPE) and subjected to various doses of gamma rays ranging from 10 to 50 kGy. The results showed that the irradiated impregnated specimens gave higher values of compressive strength than the neat blended cement paste specimens. On immersing the neat blended cement specimens and polymer impregnated specimens especially that irradiated at 30 kGy in seawater and different concentrations of magnesium sulfate solutions up to 6 months of curing, the results showed that the polymer impregnated blended cement (OPC-RHA-UPE) paste have a good resistance towards aggressive media as compared to the neat blended cement (OPC-RHA) paste. The results also indicated that the sea water has a greater corrosive effect than the magnesium sulfate solutions. These results were confirmed by scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP)

  5. A polymer electrolyte membrane for high temperature fuel cells to fit vehicle applications

    International Nuclear Information System (INIS)

    Li Mingqiang; Scott, Keith

    2010-01-01

    Poly(tetrafluoroethylene) PTFE/PBI composite membranes doped with H 3 PO 4 were fabricated to improve the performance of high temperature polymer electrolyte membrane fuel cells (HT-PEMFC). The composite membranes were fabricated by immobilising polybenzimidazole (PBI) solution into a hydrophobic porous PTFE membrane. The mechanical strength of the membrane was good exhibiting a maximum load of 35.19 MPa. After doping with the phosphoric acid, the composite membrane had a larger proton conductivity than that of PBI doped with phosphoric acid. The PTFE/PBI membrane conductivity was greater than 0.3 S cm -1 at a relative humidity 8.4% and temperature of 180 deg. C with a 300% H 3 PO 4 doping level. Use of the membrane in a fuel cell with oxygen, at 1 bar overpressure gave a peak power density of 1.2 W cm -2 at cell voltages >0.4 V and current densities of 3.0 A cm -2 . The PTFE/PBI/H 3 PO 4 composite membrane did not exhibit significant degradation after 50 h of intermittent operation at 150 deg. C. These results indicate that the composite membrane is a promising material for vehicles driven by high temperature PEMFCs.

  6. Removal of hydrogen sulfide and sulfur dioxide by carbons impregnated with triethylenediamine.

    Science.gov (United States)

    Wu, Li-Chun; Chang, Tsu-Hua; Chung, Ying-Chien

    2007-12-01

    Activated carbon (AC) adsorption has long been considered to be a readily available technology for providing protection against exposure to acutely toxic gases. However, ACs without chemical impregnation have proven to be much less efficient than impregnated ACs in terms of gas removal. The impregnated ACs in current use are usually modified with metalloid impregnation agents (ASC-carbons; copper, chromium, or silver) to simultaneously enhance the chemical and physical properties of the ACs in removing specific poisonous gases. These metalloid agents, however, can cause acute poisoning to both humans and the environment, thereby necessitating the search for organic impregnation agents that present a much lower risk. The aim of the study reported here was to assess AC or ASC-carbon impregnated with triethylenediamine (TEDA) in terms of its adsorption capability for simulated hydrogen sulfide (H2S) and sulfur dioxide (SO2) gases. The investigation was undergone in a properly designed laboratory-scale and industrial fume hood evaluation. Using the system reported here, we obtained a significant adsorption: the removal capability for H2S and SO2 was 375 and 229 mg/g-C, respectively. BET measurements, element analysis, scanning electron microscopy, and energy dispersive spectrometry identified the removal mechanism for TEDA-impregnated AC to be both chemical and physical adsorption. Chemical adsorption and oxidation were the primary means by which TEDA-impregnated ASC-carbons removed the simulated gases.

  7. Preparation Nano-Structure Polytetrafluoroethylene (PTFE Functional Film on the Cellulose Insulation Polymer and Its Effect on the Breakdown Voltage and Hydrophobicity Properties

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2018-05-01

    Full Text Available Cellulose insulation polymer is an important component of oil-paper insulation, which is widely used in power transformer. The weight of the cellulose insulation polymer materials is as high as tens of tons in the larger converter transformer. Excellent performance of oil-paper insulation is very important for ensuring the safe operation of larger converter transformer. An effective way to improve the insulation and the physicochemical property of the oil impregnated insulation pressboard/paper is currently a popular research topic. In this paper, the polytetrafluoroethylene (PTFE functional film was coated on the cellulose insulation pressboard by radio frequency (RF magnetron sputtering to improve its breakdown voltage and the hydrophobicity properties. X-ray photoelectron spectroscopy (XPS results show that the nano-structure PTFE functional film was successfully fabricated on the cellulose insulation pressboard surface. The scanning electron microscopy (SEM and X-ray diffraction (XRD present that the nanoscale size PTFE particles were attached to the pressboard surface and it exists in the amorphous form. Atomic force microscopy (AFM shows that the sputtered pressboard surface is still rough. The rough PTFE functional film and the reduction of the hydrophilic hydroxyl of the surface due to the shielding effect of PTFE improve the breakdown and the hydrophobicity properties of the cellulose insulation pressboard obviously. This paper provides an innovative way to improve the performance of the cellulose insulation polymer.

  8. Polysulfone - CNT composite membrane with enhanced water permeability

    Science.gov (United States)

    Hirani, Bhakti; Kar, Soumitra; Aswal, V. K.; Bindal, R. C.; Goyal, P. S.

    2018-04-01

    Polymeric membranes are routinely used for water purification. The performance of these conventional membranes can be improved by incorporating nanomaterials, such as metal oxide nanoparticle and carbon nanotubes (CNTs). This manuscript reports the synthesis and characterization of polysulfone (Psf) based nanocomposite membranes where multi wall carbon nanotubes (MWCNTs) and oleic acid coated Fe3O4 nanoparticles have been impregnated onto the polymeric host matrix. The performance of the membranes was evaluated by water permeability and solute rejection measurements. It was observed that the permeability of Psf membrane increases three times at 0.1% loading of MWCNT without compromise in selectivity. It was further observed that the increase in permeability is not affected upon addition of Fe3O4 nanoparticles into the membrane. In order to get a better insight into the membrane microstructure, small angle neutron scattering (SANS) studies were carried out. There is a good correlation between the water permeability and the pore sizes of the membranes as measured using SANS.

  9. The transfer of rare earth elements through liquid extraction membranes

    International Nuclear Information System (INIS)

    Kapranchik, V.P.; Proyaev, V.V.; Kopyrin, A.A.

    1988-01-01

    The transfer of rare earth elements through liquid extraction membranes, presenting Dacron nuclear filters, impregnated by extractants of different types (tributylphosphine oxide; di-2-ethylhexylphosphoric acid, HDEHP; trioctylamine, TOA) is investigated. It is ascertained that in systems with extractant-carriers TOA and HDEHP inversion of dependences of flow values and distribution coefficients on the element atomic number is observed. Mathematical model of transfer, permitting to establish relation between extractional and transport characteristics of the membrane, is suggested

  10. Characteristics of scandate-impregnated cathodes with sub-micron scandia-doped matrices

    International Nuclear Information System (INIS)

    Yuan Haiqing; Gu Xin; Pan Kexin; Wang Yiman; Liu Wei; Zhang Ke; Wang Jinshu; Zhou Meiling; Li Ji

    2005-01-01

    We describe in this paper scandate-impregnated cathodes with sub-micron scandia-doped tungsten matrices having an improved uniformity of the Sc distribution. The scandia-doped tungsten powders were made by both liquid-solid doping and liquid-liquid doping methods on the basis of previous research. By improving pressing, sintering and impregnating procedures, we have obtained scandate-impregnated cathodes with a good uniformity of the Sc 2 O 3 - distribution. The porosity of the sub-micron structure matrix and content of impregnants inside the matrix are similar to those of conventionally impregnated cathodes. Space charge limited current densities of more than 30 A/cm 2 at 850 deg. C b have been obtained in a reproducible way. The current density continuously increases during the first 2000 h life test at 950 deg. C b with a dc load of 2 A/cm 2 and are stable for at least 3000 h

  11. Effects of impregnation with boron compounds on the surface ...

    African Journals Online (AJOL)

    Liebl.) which met the requirements of ASTM D 358 were impregnated according to ASTM D 1413 with boric acid (Ba) and borax (Bx) by vacuum technique. After impregnation, surfaces were coated with cellulosic, synthetic, polyurathane, water-based, acrylic and acid hardening varnishes in accordance with ASTM D 3023 ...

  12. Study on poly-electrolyte membrane of crosslinked PTFE by radiation-grafting

    International Nuclear Information System (INIS)

    Sato, Kohei; Ikeda, Shigetoshi; Iida, Minoru; Oshima, Akihiro; Tabata, Yoneho; Washio, Masakazu

    2003-01-01

    Polymer electrolyte fuel cell membrane based on crosslinked polytetrafluoroethylene (PTFE) [RX-PTFE] has been processed by radiation-grafting with reactive styrene monomers by γ-rays under atmospheric circumstances, and the characteristic properties of the obtained membranes have been studied. The grafting yields of styrene monomer onto RX-PTFE, which have various crosslinking densities, were in the range of 5-100%. At the reaction period of 24 h, the grafting yields for RX-PTFE with low crosslinking density, which was reacted at 60 deg. C, achieved 94%. As a tendency, the lower grafting temperature gives higher grafting ratio of styrene onto RX-PTFE. Moreover, the yields of subsequent sulfonation for all samples were close to 100%. Mechanical properties were decreased with increasing grafting yields; especially the membrane with higher grafting yields was brittle. Ion exchange capacity of sulfonated RX-PTFE reached 1.1 meq/g while maintaining the mechanical properties

  13. Physicomechanical evaluation of polypropylene, polyester, and polytetrafluoroethylene meshes for inguinal hernia repair.

    Science.gov (United States)

    Deeken, Corey R; Abdo, Michael S; Frisella, Margaret M; Matthews, Brent D

    2011-01-01

    For meshes to be used effectively for hernia repair, it is imperative that engineers and surgeons standardize the terminology and techniques related to physicomechanical evaluation of these materials. The objectives of this study were to propose standard techniques, perform physicomechanical testing, and classify materials commonly used for inguinal hernia repair. Nine meshes were evaluated: 4 polypropylene, 1 polyester, 1 polytetrafluoroethylene, and 3 partially absorbable. Physical properties were determined through image analysis, laser micrometry, and density measurements. Biomechanical properties were determined through suture retention, tear resistance, uniaxial, and ball burst testing with specimens tested in 2 different orientations. A 1-way ANOVA with Tukey's post-test or a t-test were performed, with p INFINIT (WL Gore & Associates) did not resist tearing as effectively as the others. All meshes exhibited supraphysiologic burst strengths except INFINIT and ULTRAPRO. Significant differences exist between the physicomechanical properties of polypropylene, polyester, polytetrafluoroethylene, and partially absorbable mesh prostheses commonly used for inguinal hernia repair. Orientation of the mesh was also shown to be critical for the success of meshes, particularly those demonstrating anisotropy. Copyright © 2011 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  14. Supercritical CO2 impregnation of polyethylene components for medical purposes

    Directory of Open Access Journals (Sweden)

    Gamse Thomas

    2007-01-01

    Full Text Available Modem hip and knee endoprosthesis are produced in titanium and to reduce the friction at the contact area polymer parts, mainly ultra-high molecular weight polyethylene (UHMW-PE, are installed. The polyethylene is impregnated with a-tocopherol (vitamin E before processing for remarkable decrease of oxidative degradation. Cross linked UHMW-PE offers much higher stability, but a-tocopherol cannot be added before processing, because a-tocopherol hinders the cross linking process accompanied by a heavy degradation of the vitamin. The impregnation of UHMW-PE with a-tocopherol has to be performed after the cross linking process and an accurate concentration has to be achieved over the cross section of the whole material. In the first tests UHMW-PE-cubes were stored in pure a-tocopherol under inert atmosphere at temperatures from 100 to 150 °C resulting in a high mass fraction of a-tocopherol in the edge zones and no constant concentration over the cross section. For better distribution and for regulating the mass fraction of a-tocopherol in the cross linked UHMW-PE material supercritical CO2 impregnation tests were investigated. Again UHMW-PE-cubes were impregnated in an autoclave with a-tocopherol dissolved in supercritical CO2 at different pressures and temperatures with variable impregnation times and vitamin E concentrations. Based on the excellent results of supercritical CO2 impregnation standard hip and knee cups were stabilized nearly homogeneously with varying mass fraction of a-tocopherol.

  15. Impregnation of soft biological specimens with thermosetting resins and elastomers.

    Science.gov (United States)

    von Hagens, G

    1979-06-01

    A new method for impregnation of biological specimens with thermosetting resins and elastomers is described. The method has the advantage that the original relief of the surface is retained. The impregnation is carried out by utilizing the difference between the high vapor tension of the intermedium (e.g., methylene chloride) and the low vapor tension of the solution to be polymerized. After impregnation, the specimen is subject to polymerization conditions without surrounding embedding material. The optical and mechanical properties can be selected by proper choice from various kinds of resins and different procedures, for example, by complete or incomplete impregnation. Acrylic resins, polyester resins, epoxy resins, polyurethanes and silicone rubber have been found suitable for the method. Excellent results have been obtained using transparent silicone rubber since after treatment the specimens are still flexible and resilient, and have retained their natural appearance.

  16. Deposition of nanostructured fluorocarbon plasma polymer films by RF magnetron sputtering of polytetrafluoroethylene

    Energy Technology Data Exchange (ETDEWEB)

    Kylian, Ondrej, E-mail: ondrej.kylian@gmail.com; Drabik, Martin; Polonskyi, Oleksandr; Cechvala, Juraj; Artemenko, Anna; Gordeev, Ivan; Choukourov, Andrei; Matolinova, Iva; Slavinska, Danka; Biederman, Hynek, E-mail: bieder@kmf.troja.mff.cuni.cz

    2011-07-29

    The RF magnetron sputtering of polytetrafluoroethylene target is studied with the aim to find out conditions leading to the deposition of super-hydrophobic thin films. It is shown that such coatings can be prepared at elevated pressures and a longer distance between the sputtered target and the substrate. This is explained by an increase in the density of longer C{sub x}F{sub y} molecules that reach the substrate and a lower flux of ions and CF{sub 2} radicals on the surface of growing film under such deposition conditions, as observed by optical emission spectroscopy and mass spectrometry. Such changes in plasma composition result in a deposition of rough films having F/C ratio close to 2 as observed by scanning electron microscopy and X-ray photoelectron spectroscopy, respectively. These findings clearly distinguish our results from the previous investigations of polytetrafluoroethylene sputtering performed at shorter distances from the target, where either low F/C ratio or low roughness of the deposited films did not allow reaching super-hydrophobic character of the coatings.

  17. X-ray initiated polymerization of wood impregnants

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Marshall R.; Galloway, Richard A. [IBA Industrial, Inc., Edgewood, NY (United States); Berejka, Anthony J. [Ionicorp, Huntington, NY 11743 (United States)], E-mail: berejka@msn.com; Montoney, Daniel [Strathmore Products, Syracuse, NY (United States); Driscoll, Mark; Smith, Leonard; Scott Larsen, L. [State University of New York, SUNY-ESF, Syracuse, NY (United States)

    2009-07-15

    X-rays, derived from a high energy, high-current electron beam (EB), initiated in-situ polymerization of a unique class of monomers that were found to penetrate the cell walls of wood. X-rays initiated an auto-catalytic acrylic polymerization and penetrated through thick pieces of wood. The final cured product having the polymerizate, a polymer, both in the wood cell lumens and in the cell walls is called wood impregnated with a wood-polymer penetrant (WPP). The controlled lower dose rate of X-rays overcame disproportionation encountered when using higher dose-rate electron beam initiation. With X-rays, the in-situ polymerization took place in one exposure of modest dose. With EB, multiple passes were needed to avoid excessive heat build-up and monomer volatilization. Having entered the cell walls of the wood and then being polymerized within the cell walls, these radiation-cured unique monomers imparted outstanding dimensional stability upon exposure of the impregnated wood to humidity cycling. The preferred monomer system was also chemically modified prior to impregnation with agents that would remain in the wood and prevent the growth of fungi and other microbials. This technique differs from historic uses of monomers that merely filled the lumens of the wood (historic wood-polymer composites), which are only suitable for indoor use. The WPP impregnated wood that was either X-ray cured or EB cured demonstrated enhanced structural properties, dimensional stability, and decay resistance.

  18. X-ray initiated polymerization of wood impregnants

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Galloway, Richard A.; Berejka, Anthony J.; Montoney, Daniel; Driscoll, Mark; Smith, Leonard; Scott Larsen, L.

    2009-01-01

    X-rays, derived from a high energy, high-current electron beam (EB), initiated in-situ polymerization of a unique class of monomers that were found to penetrate the cell walls of wood. X-rays initiated an auto-catalytic acrylic polymerization and penetrated through thick pieces of wood. The final cured product having the polymerizate, a polymer, both in the wood cell lumens and in the cell walls is called wood impregnated with a wood-polymer penetrant (WPP). The controlled lower dose rate of X-rays overcame disproportionation encountered when using higher dose-rate electron beam initiation. With X-rays, the in-situ polymerization took place in one exposure of modest dose. With EB, multiple passes were needed to avoid excessive heat build-up and monomer volatilization. Having entered the cell walls of the wood and then being polymerized within the cell walls, these radiation-cured unique monomers imparted outstanding dimensional stability upon exposure of the impregnated wood to humidity cycling. The preferred monomer system was also chemically modified prior to impregnation with agents that would remain in the wood and prevent the growth of fungi and other microbials. This technique differs from historic uses of monomers that merely filled the lumens of the wood (historic wood-polymer composites), which are only suitable for indoor use. The WPP impregnated wood that was either X-ray cured or EB cured demonstrated enhanced structural properties, dimensional stability, and decay resistance.

  19. Polymer-filled microcontainers for oral delivery loaded using supercritical impregnation

    DEFF Research Database (Denmark)

    Marizza, Paolo; Keller, Stephan Sylvest; Müllertz, Anette

    2014-01-01

    with a quasi-no-waste performance. Then ketoprofen is impregnated in the polymer matrix by using supercritical carbon dioxide (scCO2) as loading medium. The amount of polymer is controlled by the volume and the number of droplets of dispensed polymer and drug loading is tuned by varying the impregnation...... procedures. This work proposes an effective loading technique for a poorly soluble model drug in microcontainers, by combining inkjet printing and supercritical fluid impregnation. Well defined quantities of poly(vinyl pyrrolidone) (PVP) solutions are dispensed into microcontainers by inkjet printing...

  20. Pemisahan Unsur Samarium dan Yttrium dari Mineral Tanah Jarang dengan Teknik Membran Cair Berpendukung (Supported Liquid Membrane

    Directory of Open Access Journals (Sweden)

    Amri Amin

    2009-06-01

    Full Text Available he increasing use of rare earth elements in high technology industries needs to be supported by developmental work for the separation of elements. The research objective is fiercely attracting and challenging considering the similarity of bath physical and chemical properties among these elements. The rate separation of samarium and yttrium elements using supported liquid membrane has been studied. Polytetrafluoroethylene (PTFE with pore size of 0.45 µm has been used as the membrane and di(2-ethylhexyl phosphate (D2EHP in hexane has been used as a carrier and nitric acid solution has been used as receiving phase. Result of experiments showed that the best separation rate of samarium and yttrium elements could be obtained at feeding phase of pH 3.0, di(2-ethylhexyl phosphate (D2EHP concentration of 0.3 M, agitation rate of 700 rpm, agitation time of 2 hours, and nitric acid and its solution concentrations of 1.0 M and 0.1 M, respectively. At this condition, separation rates of samarium and yttrium were 64.4 and 67.6%, respectively.   Keywords: liquid membrane, rare earth elements, samarium, yttrium

  1. Laser incising of wood: Impregnation of columns with water-soluble dye

    International Nuclear Information System (INIS)

    Hattori, N.; Ando, K.; Kitayama, S.; Nakamura, Y.

    1994-01-01

    To know whether or not laser incising is a useful pre-treatment technique in impregnating a chemical fluid into lumber, pin holes were made in columns of hinoki (Chamaecyparis obtusa Endl.), sugi (Cryptomeria japonica D. Don), karamatsu (Larix leptolepis Gordon) and douglas-fir (Pseudo-tsuga menziesii Franco) with 1.7 kW CO2 laser, and a water-soluble dye was impregnated into these columns with a local pressure impregnation device. Retentions, and lengths and widths of penetrations from each hole were measured quantitatively. Referring to the results of the preparatory experiment mentioned above, incising patterns for sugi and douglas-fir were designed, and the same water-soluble dye was impregnated into the laser-incised columns as well as into non-incised ones with the vacuum-pressure method to obtain penetrated layers with the target depths completely. As a result, a retention of 200 kg/m3 of dye could be achieved for a column of douglas-fir even if it is a species difficult to impregnate. The penetrated layer also could be formed completely at the depth of the laser incision. Therefore, it is concluded that laser incising can be used for the pre-treatment before impregnation of wood columns. (author)

  2. Performance and Fouling Study of Asymmetric PVDF Membrane Applied in the Concentration of Organic Fertilizer by Direct Contact Membrane Distillation (DCMD

    Directory of Open Access Journals (Sweden)

    Yanfei Liu

    2018-02-01

    Full Text Available This study proposes using membrane distillation (MD as an alternative to the conventional multi-stage flushing (MSF process to concentrate a semi-product of organic fertilizer. By applying a unique asymmetric polyvinylidene fluoride (PVDF membrane, which was specifically designed for MD applications using a nonsolvent thermally induced phase separation (NTIPS method, the direct contact membrane distillation (DCMD performance was investigated in terms of its sustainability in permeation flux, fouling resistance, and anti-wetting properties. It was found that the permeation flux increased with increasing flow rate, while the top-surface facing feed mode was the preferred orientation to achieve 25% higher flux than the bottom-surface facing feed mode. Compared to the commercial polytetrafluoroethylene (PTFE membrane, the asymmetric PVDF membrane exhibited excellent anti-fouling and sustainable flux, with less than 8% flux decline in a 15 h continuous operation, i.e., flux decreased slightly and was maintained as high as 74 kg·m−2·h−1 at 70 °C. Meanwhile, the lost flux was easily recovered by clean water rinsing. Overall 2.6 times concentration factor was achieved in 15 h MD operation, with 63.4% water being removed from the fertilizer sample. Further concentration could be achieved to reach the desired industrial standard of 5x concentration factor.

  3. A Mathematical Model of Repeated Impregnation of Porous Bodies with Solutions of Polymers

    Directory of Open Access Journals (Sweden)

    I. V. Glebov

    2015-01-01

    Full Text Available The paper describes basic methods of impregnating porous bodies with solutions of polymers and their use to manufacture prepregs. It also describes the existing methods of manufacturing multilayer prepregs to produce aerospace coating of the spacecraft "Soyuz". It is shown that these prepregs have to meet high requirements for the content of the polymer, as compared with other composite materials, about 35 - 40% of the mass. Methods used for their manufacturing are long-term and non-controllable. The assumption is made that using the vacuum impregnation technology of a woven material will allow to accelerate the manufacturing process of these prepregs and improve their quality.In reviewing the technical literature have been found works on modeling the processes of impregnation, but they are aimed only at studying the speed of the woven material impregnation by various fluids and determining the time of impregnation. There were no models found to define prepreg parameters during the process of multiple impregnations. The aim of this work is to develop the simple mathematical model, which enables us to predict the polymer content of volatile products in the prepreg after each cycle of multiple impregnation of woven material with a solution of the polymer.To consider the vacuum impregnation method are used the prepregs based on silica and silica-nylon stitch-bonding fabric and bakelite varnish LBS-4 containing 50 - 60% of phenol resin and the solvent with minor impurities of pure phenol and water, as an example. To describe the process of vacuum impregnation of the porous work-piece is developed a mathematical description of the process of filling the porous space of the material with a varnish. It is assumed that the varnish components fill the porous space of the material in the same proportion as they are contained in the varnish.It is shown that a single impregnation cannot ensure the content of phenol resin in the prepreg over 32%, which does

  4. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal

    Energy Technology Data Exchange (ETDEWEB)

    Dou, Xiaomin [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Chen, Dezhen, E-mail: chendezhen@tongji.edu.cn [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Hu, Yuyan; Feng, Yuheng [Thermal & Environmental Engineering Institute, Tongji University, Shanghai 201804 (China); Dai, Xiaohu [National Engineering Research Centre for Urban Pollution Control, Tongji University, Shanghai 200092 (China); College of Environmental Science and Engineering, Tongji University, Shanghai 200092 (China)

    2017-01-05

    Highlights: • The carbonization of SS with externally impregnated heavy metals was investigated. • Externally impregnated heavy metals can be immobilized in the SSC. • Higher carbonization temperature help produce non-hazardous SSC. • Incineration FA can be kneaded into SS for co-disposal through co-carbonization. - Abstract: Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400–800 °C and an impregnating concentration ≨0.5 wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal.

  5. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal

    International Nuclear Information System (INIS)

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-01

    Highlights: • The carbonization of SS with externally impregnated heavy metals was investigated. • Externally impregnated heavy metals can be immobilized in the SSC. • Higher carbonization temperature help produce non-hazardous SSC. • Incineration FA can be kneaded into SS for co-disposal through co-carbonization. - Abstract: Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400–800 °C and an impregnating concentration ≨0.5 wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal.

  6. Selective separation of furfural and hydroxymethylfurfural from an aqueous solution using a supported hydrophobic deep eutectic solvent liquid membrane.

    Science.gov (United States)

    Dietz, Carin H J T; Kroon, Maaike C; Di Stefano, Michela; van Sint Annaland, Martin; Gallucci, Fausto

    2017-12-14

    For the first time, 12 different supported deep eutectic solvent (DES) liquid membranes were prepared and characterized. These membranes consist of a polymeric support impregnated with a hydrophobic DES. First, the different membranes were characterized and their stability in water and air was determined. Subsequently, the supported DES liquid membranes were applied for the recovery of furfural (FF) and hydroxymethylfurfural (HMF) from aqueous solutions. The effects of substrate properties (e.g. pore size), DES properties (e.g. viscosity) and concentrations of FF and HMF in the feed phase on the observed diffusivities and permeabilities were assessed. It was found that the addition of DES enhances the transport of FF and HMF through the polymeric membrane support. In particular, the use of the DES consisting of thymol + lidocaine (in the molar ratio 2 : 1) impregnated in a polyethylene support resulted in enhanced transport for both FF and HMF, and is most interesting for (in situ) isolation of FF and HMF from aqueous solutions, e.g. in biorefinery processes.

  7. Preparation of the proton exchange membranes for fuel cell under pre-irradiation induced grafting method

    International Nuclear Information System (INIS)

    Li Jingye; Muto, F.; Matsuura, A.; Kakiji, T.; Miura, T.; Oshima, A.; Washio, M.; Katsumura, Y.

    2006-01-01

    Proton exchange membranes (PEMs) were prepared via pre-irradiation induced grafting of styrene or styrene/divinylbenzene (S/DVB) into the crosslinked polytetrafluoroethylene (RX-PTFE) films with thickness around 10 m and then sulfonated by chlorosulfonic acid. The membrane electrode assembles (MEAs) based on these PEMs with ion exchange capacity (IEC) values around 2meq/g were prepared by hot-press with Nafion dispersion coated on the surfaces of the membranes and electrodes. And the MEA based on the Nafion 112 membrane was also prepared under same procedure as a comparison. The performances of the MEAs in single fuel cell were tested under different working temperatures and humidification conditions. The performance of the synthesized PEMs showed better results than that of Nafion 112 membrane under low humidification at 80 degree C. The electrochemical impedance spectra (EIS) were taken with the direct current density of 0.5A/cm 2 and the resulted curves in Nyqvist representation obeyed the half circle pattern. (authors)

  8. Studies of properties of rubber wood with impregnation of polymer

    Indian Academy of Sciences (India)

    Impregnation of rubber wood has been carried out under different conditions by using styrene as grafting monomer and glycidyl methacrylate (GMA) as crosslinker. Properties such as dimensional stability, water absorption, hardness, tensile strength, flexural strength, etc of the impregnated wood have been checked and ...

  9. Preparation of iron-impregnated granular activated carbon for arsenic removal from drinking water

    International Nuclear Information System (INIS)

    Chang Qigang; Lin Wei; Ying Weichi

    2010-01-01

    Granular activated carbon (GAC) was impregnated with iron through a new multi-step procedure using ferrous chloride as the precursor for removing arsenic from drinking water. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated that the impregnated iron was distributed evenly on the internal surface of the GAC. Impregnated iron formed nano-size particles, and existed in both crystalline (akaganeite) and amorphous iron forms. Iron-impregnated GACs (Fe-GACs) were treated with sodium hydroxide to stabilize iron in GAC and impregnated iron was found very stable at the common pH range in water treatments. Synthetic arsenate-contaminated drinking water was used in isotherm tests to evaluate arsenic adsorption capacities and iron use efficiencies of Fe-GACs with iron contents ranging from 1.64% to 12.13% (by weight). Nonlinear regression was used to obtain unbiased estimates of Langmuir model parameters. The arsenic adsorption capacity of Fe-GAC increased significantly with impregnated iron up to 4.22% and then decreased with more impregnated iron. Fe-GACs synthesized in this study exhibited higher affinity for arsenate as compared with references in literature and shows great potential for real implementations.

  10. The effect of type and mixture of resin on the properties of impregnated paper

    Directory of Open Access Journals (Sweden)

    hossein Kermanian

    2017-05-01

    Full Text Available This study was carried out in order to investigate the effects of different types of resins and also their mixtures on the impregnated paper properties. In this regard, pure urea resin (100%, mixture of melamine and urea resins with various combinations (60/40 and 70/30 and 50/50, mixture of nano-fiber cellulose ratios of 1, 2 and 3 percent with urea resin and pure PVA (100% were used to impregnate of newsprint basic paper of Mazandaran wood and paper industries. Immersion of samples in the impregnation step were done in two time of 5 and 10 seconds. Next, melamine resin was used for surface coating and then absorption of resin in the impregnation and coating process measured. Results showed that in the impregnation step with pure urea (100%, in the respect of absorption rate and surface properties of melamine paper, the best time of impregnation was obtained 10 seconds. In the combined treatment, adding up to 30% melamine to urea resin, as impregnation step resin, offers better properties in terms of stain resistance, cigarette resistance, resistance to cracking and resistance to hot water steam for impregnatedmade paper. By adding nanocellulose up to 1% in impregnation resin, better properties is obtained for melamine paper. Also, PVA as impregnation resin, can be offer similar quality to pure urea in the resulting melamine papers.

  11. Evaluation and control of poisoning of impregnated carbons used for organic iodide removal

    International Nuclear Information System (INIS)

    Kovach, J.L.; Rankovic, L.

    1979-01-01

    By the evaluation of the chemical reactions which have taken place on impregnated activated carbon surfaces exposed to nuclear reactor atmospheric environments, the role of various impregnants has been studied. The evaluation shows several different paths for the aging and posioning to take place. The four major causes were found to be: organic solvent contamination; inorganic acid gas contamination; formation of organic acids on carbon surface; and, formation of SO 2 from carbon sulfur content. Prevention of poisoning by the first two paths can be accomplished only by procedural changes within the facility. However the last three poisoning paths can be controlled to some extent by the selection of carbon pretreatment techniques and the type of impregnant used. Results were generated by evaluating used carbons from 14 nuclear power plants and by artificial poisoning of laboratory impregnated carbons. Impregnants which have antioxidant properties, besides reaction with organic iodides, can increase the life of the impregnated activated carbons

  12. Starch-modified magnetite nanoparticles for impregnation into cartilage

    Energy Technology Data Exchange (ETDEWEB)

    Soshnikova, Yulia M., E-mail: yuliasoshnikova@gmail.com [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Roman, Svetlana G.; Chebotareva, Natalia A. [A.N. Bach Institute of Biochemistry (Russian Federation); Baum, Olga I. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Obrezkova, Mariya V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation); Gillis, Richard B.; Harding, Stephen E. [University of Nottingham, National Centre for Macromolecular Hydrodynamics (United Kingdom); Sobol, Emil N. [Russian Academy of Sciences, Institute on Laser and Information Technologies (Russian Federation); Lunin, Valeriy V. [Lomonosov Moscow State University, Department of Chemistry (Russian Federation)

    2013-11-15

    The paper presents preparation and characterization of starch-modified Fe{sub 3}O{sub 4} nanoparticles (NPs) in aqueous dispersion after impregnation into healthy and damaged types of cartilage. We show that starch-modified dispersion has a narrower size distribution than a non‐stabilized one. The average hydrodynamic radius of magnetite NPs in a dispersion used for impregnation into cartilage is (48 ± 1) nm with the width of the distribution from 5 to 200 nm. We investigate stability of aqueous magnetite NPs dispersions during storage and with increase in temperature (up to 70 °C). We find that polydisperse magnetite NPs can penetrate into cartilage and the size and concentration of impregnated particles depend on the organization of the tissue structure. The results confirm the possibility of application of magnetite NPs in diagnostics and laser treatment of degenerative cartilage deceases.

  13. Resin impregnation process for producing a resin-fiber composite

    Science.gov (United States)

    Palmer, Raymond J. (Inventor); Moore, William E. (Inventor)

    1994-01-01

    Process for vacuum impregnation of a dry fiber reinforcement with a curable resin to produce a resin-fiber composite, by drawing a vacuum to permit flow of curable liquid resin into and through a fiber reinforcement to impregnate same and curing the resin-impregnated fiber reinforcement at a sufficient temperature and pressure to effect final curing. Both vacuum and positive pressure, e.g. autoclave pressure, are applied to the dry fiber reinforcement prior to application of heat and prior to any resin flow to compact the dry fiber reinforcement, and produce a resin-fiber composite of reduced weight, thickness and resin content, and improved mechanical properties. Preferably both a vacuum and positive pressure, e.g. autoclave pressure, are also applied during final curing.

  14. Osmotic membrane bioreactor for phenol biodegradation under continuous operation

    Energy Technology Data Exchange (ETDEWEB)

    Praveen, Prashant; Loh, Kai-Chee, E-mail: chelohkc@nus.edu.sg

    2016-03-15

    Highlights: • Osmotic membrane bioreactor was used for phenol biodegradation in continuous mode. • Extractant impregnated membranes were used to alleviate substrate inhibition. • Phenol removal was achieved through both biodegradation and membrane rejection. • Phenol concentrations up to 2500 mg/L were treated at HRT varying in 2.8–14 h. • A biofilm removal strategy was formulated to improve bioreactor sustainability. - Abstract: Continuous phenol biodegradation was accomplished in a two-phase partitioning osmotic membrane bioreactor (TPPOMBR) system, using extractant impregnated membranes (EIM) as the partitioning phase. The EIMs alleviated substrate inhibition during prolonged operation at influent phenol concentrations of 600–2000 mg/L, and also at spiked concentrations of 2500 mg/L phenol restricted to 2 days. Filtration of the effluent through forward osmosis maintained high biomass concentration in the bioreactor and improved effluent quality. Steady state was reached in 5–6 days at removal rates varying between 2000 and 5500 mg/L-day under various conditions. Due to biofouling and salt accumulation, the permeate flux varied from 1.2–7.2 LMH during 54 days of operation, while maintaining an average hydraulic retention time of 7.4 h. A washing cycle, comprising 1 h osmotic backwashing using 0.5 M NaCl and 2 h washing with water, facilitated biofilm removal from the membranes. Characterization of the extracellular polymeric substances (EPS) through FTIR showed peaks between 1700 and 1500 cm{sup −1}, 1450–1450 cm{sup −1} and 1200–1000 cm{sup −1}, indicating the presence of proteins, phenols and polysaccharides, respectively. The carbohydrate to protein ratio in the EPS was estimated to be 0.3. These results indicate that TPPOMBR can be promising in continuous treatment of phenolic wastewater.

  15. Performance Investigation of O-Ring Vacuum Membrane Distillation Module for Water Desalination

    Directory of Open Access Journals (Sweden)

    Adnan Alhathal Alanezi

    2016-01-01

    Full Text Available A new O-ring flat sheet membrane module design was used to investigate the performance of Vacuum Membrane Distillation (VMD for water desalination using two commercial polytetrafluoroethylene (PTFE and polyvinylidene fluoride (PVDF flat sheet hydrophobic membranes. The design of the membrane module proved its applicability for achieving a high heat transfer coefficient of the order of 103 (W/m2 K and a high Reynolds number (Re. VMD experiments were conducted to measure the heat and mass transfer coefficients within the membrane module. The effects of the process parameters, such as the feed temperature, feed flow rate, vacuum degree, and feed concentration, on the permeate flux have been investigated. The feed temperature, feed flow rate, and vacuum degree play an important role in enhancing the performance of the VMD process; therefore, optimizing all of these parameters is the best way to achieve a high permeate flux. The PTFE membrane showed better performance than the PVDF membrane in VMD desalination. The obtained water flux is relatively high compared to that reported in the literature, reaching 43.8 and 52.6 (kg/m2 h for PVDF and PTFE, respectively. The salt rejection of NaCl was higher than 99% for both membranes.

  16. A kinetic study of pyrolysis in pitch impregnated electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Kocaefe, D.; Charette, A.; Ferland, J.; Couderc, P.; Saint-Romain, J.L. (Universite du Quebec a Chicoutini, Chicoutini, PQ (Canada))

    1990-12-01

    A study was conducted on carbon electrodes which were impregnated with three different pitches. The focus of the study was to investigate the pyrolysis of pitch impregnated electrodes. For the purposes of the research an experimental technique and calculation procedure were developed. A kinetic model was used to interpret the data, comparison of model predictions and experimental data showed good agreement. 17 refs., 10 figs., 2 tabs.

  17. Gas pollutant cleaning by a membrane reactor

    Directory of Open Access Journals (Sweden)

    Kaldis Sotiris

    2006-01-01

    Full Text Available An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al2O3 catalyst was prepared by the dry and wet impregnation method and characterized by the inductively coupled plasma method, scanning electron microscopy, X-ray diffraction, and N2 adsorption before and after activation. Commercially available a-Al2O3 membranes were also characterized and the permeabilities and permselectivities of H2, N2, and CO2 were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. .

  18. Atomic force microscopy analysis of synthetic membranes applied in release studies

    Energy Technology Data Exchange (ETDEWEB)

    Olejnik, Anna, E-mail: annamar@amu.edu.pl; Nowak, Izabela

    2015-11-15

    Graphical abstract: - Highlights: • We compare eight synthetic membranes by atomic force microscopy. • We predict the behavior of membranes in the release experiments. • The polymeric synthetic membranes varied in shape and size. • We detect substructures in pores of cellulose esters and nylon membranes. • Substructures limit the release rate of active compound. - Abstract: Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  19. Atomic force microscopy analysis of synthetic membranes applied in release studies

    International Nuclear Information System (INIS)

    Olejnik, Anna; Nowak, Izabela

    2015-01-01

    Graphical abstract: - Highlights: • We compare eight synthetic membranes by atomic force microscopy. • We predict the behavior of membranes in the release experiments. • The polymeric synthetic membranes varied in shape and size. • We detect substructures in pores of cellulose esters and nylon membranes. • Substructures limit the release rate of active compound. - Abstract: Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  20. Non-Fourier heat conduction and phase transition in laser ablation of polytetrafluoroethylene (PTFE)

    Science.gov (United States)

    Zhang, Yu; Zhang, Daixian; Wu, Jianjun; Li, Jian; He, Zhaofu

    2017-11-01

    The phase transition in heat conduction of polytetrafluoroethylene-like polymers was investigated and applied in many fields of science and engineering. Considering more details including internal absorption of laser radiation, reflectivity of material and non-Fourier effect etc., the combined heat conduction and phase transition in laser ablation of polytetrafluoroethylene were modeled and investigated numerically. The thermal and mechanic issues in laser ablation were illustrated and analyzed. Especially, the phenomenon of temperature discontinuity formed in the combined phase transition and non-Fourier heat conduction was discussed. Comparisons of target temperature profiles between Fourier and non-Fourier heat conduction in melting process were implemented. It was indicated that the effect of non-Fourier plays an important role in the temperature evolvement. The effect of laser fluence was proven to be significant and the thermal wave propagation was independent on the laser intensity for the non-Fourier heat conduction. Besides, the effect of absorption coefficients on temperature evolvements was studied. For different ranges of absorption coefficients, different temperature evolvements can be achieved. The above numerical simulation provided insight into physical processes of combined non-Fourier heat conduction and phase transition in laser ablation.

  1. Membrane technologies for liquid radioactive waste treatment

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Harasimowicz, M.; Zakrzewska-Trznadel, G.

    1998-01-01

    At Institute of Nuclear Chemistry and Technology (INCT) the membrane method for purification of radioactive wastes applied such processes as ultrafiltration (UF), 'seeded' ultrafiltration and reverse osmosis (RO) was developed. On the basis of the results obtained in laboratory experiments the pilot plant for radioactive effluents treatment was built. The plant was composed of UF unit (AMICON H 26P30 capillary module) and two RO units (NITTO NTR 739 HF S-4 spiral wound LPRO modules). The capacity of the pilot plant was up to 200 L/h and the specific activity of wastes purified in the system - below 10 4 Bq/L. Decontamination factor for entire system is higher than 5 x10 3 . Another possibility for radioactive wastes treatment is membrane distillation (MD), non-isothermal process employing hydrophobic polymer membrane, which is developed at INCT now. Preliminary tests with liquid radwaste were carried out on laboratory unit with permeation test-cell holding flat sheet membrane. As a hydrophobic barrier membranes made of two polymers were used: polytetrafluoroethylene (PTFE) and polypropylene (PP). The process was arranged in direct contact membrane distillation configuration. The permeate condensed directly in the cold stream (distilled water) and retentate was enriched in radionuclides. The further experiments carried out with capillary module BFMF 06-30-33 (Euro-Sep Ltd.) with polypropylene capillaries, diameter 0.33 mm and cut off 0.6 μm proved previous results. A pilot plant employing GORE-TEX membrane distillation was constructed. The plant can clean the low-level radioactive wastes from nuclear centre, at a throughput about 0.05 m 3 /h

  2. Carbonization of heavy metal impregnated sewage sludge oriented towards potential co-disposal.

    Science.gov (United States)

    Dou, Xiaomin; Chen, Dezhen; Hu, Yuyan; Feng, Yuheng; Dai, Xiaohu

    2017-01-05

    Sewage sludge (SS) is adopted as a stabilizer to immobilize externally impregnated heavy metals through carbonization oriented towards the co-disposal of SS and some hazardous wastes. Firstly Cu and Pb were impregnated into SS to ascertain the impregnating capacity and leaching behaviours of heavy metals in the resulting sewage sludge char (SSC). Meanwhile, scanning electron microscopy (SEM) and X-ray diffraction (XRD) were employed to detect the heavy metal phase in the SSC. The results showed that within 400-800°C and an impregnating concentration ≨0.5wt%, more than 90% of the externally impregnated Cu and Pb were remained in the SSC and immobilized. And higher temperatures helped produce non-hazardous SSC. In addition, SEM and XRD analyses revealed that externally impregnated heavy metals could be converted into stable forms and evenly distributed throughout the SSC. In the second step municipal solid waste incineration fly ash (FA) was kneaded into SS and subjected to carbonization; it has been proved that the heavy metals in FA can be well immobilized in the resulting char when FA: SS mass ratio is 1:5. Those results show that sewage sludge can be co-carbonized with wastes contaminated with heavy metals to achieve co-disposal. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Mercury adsorption properties of sulfur-impregnated adsorbents

    Science.gov (United States)

    Hsi, N.-C.; Rood, M.J.; Rostam-Abadi, M.; Chen, S.; Chang, R.

    2002-01-01

    Carbonaceous and noncarbonaceous adsorbents were impregnated with elemental sulfur to evaluate the chemical and physical properties of the adsorbents and their equilibrium mercury adsorption capacities. Simulated coal combustion flue gas conditions were used to determine the equilibrium adsorption capacities for Hg0 and HgCl2 gases to better understand how to remove mercury from gas streams generated by coal-fired utility power plants. Sulfur was deposited onto the adsorbents by monolayer surface deposition or volume pore filling. Sulfur impregnation increased the total sulfur content and decreased the total and micropore surface areas and pore volumes for all of the adsorbents tested. Adsorbents with sufficient amounts of active adsorption sites and sufficient microporous structure had mercury adsorption capacities up to 4,509 ??g Hg/g adsorbent. Elemental sulfur, organic sulfur, and sulfate were formed on the adsorbents during sulfur impregnation. Correlations were established with R2>0.92 between the equilibrium Hg0/HgCl2 adsorption capacities and the mass concentrations of elemental and organic sulfur. This result indicates that elemental and organic sulfur are important active adsorption sites for Hg0 and HgCl2.

  4. Dimensionally stable Nafion-polyethylene composite membranes for direct methanol fuel cell applications

    NARCIS (Netherlands)

    Yildirim, M.H.; Stamatialis, Dimitrios; Wessling, Matthias

    2008-01-01

    Nafion ® impregnated Solupor ®, microporous UHMWPE film, (N-PE), Nafion ®117 (N117) and a membrane prepared using a DE2020 Nafion ® dispersion (DE2020) were characterized with respect to their swelling degree (SD), methanol cross-over, proton conductivity and DMFC performance at various methanol

  5. Drug smuggling using clothing impregnated with cocaine.

    Science.gov (United States)

    McDermott, Seán D; Power, John D

    2005-11-01

    A case study is presented where a woman travelling from South America to the Republic of Ireland was detained at Dublin Airport and articles of clothing she had in her luggage were found to be impregnated with cocaine. The study shows that the amount of powder recovered from the garments was approximately 14% of the total weight of the garments. The cocaine was in the form of cocaine hydrochloride and the purity was approximately 80%. An examination of the garments under filtered light highlighted the areas exposed to cocaine and indicated that the method of impregnation was by pouring liquid containing cocaine onto the clothing.

  6. Wet-chemical approach for the cell-adhesive modification of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Gabriel, Matthias; Dahm, Manfred; Vahl, Christian-F

    2011-01-01

    Polytetrafluoroethylene (PTFE), a frequently utilized polymer for the fabrication of synthetic vascular grafts, was surface-modified by means of a wet-chemical process. The inherently non-cell-adhesive polymer does not support cellular attachment, a prerequisite for the endothelialization of luminal surface grafts in small diameter applications. To impart the material with cell-adhesive properties a treatment with sodium-naphthalene provided a basis for the subsequent immobilization of the adhesion promoting RGD-peptide using a hydroxy- and amine-reactive crosslinker. Successful conjugation was shown with cell culture experiments which demonstrated excellent endothelial cell growth on the modified surfaces.

  7. Evaluation of optimal silver amount for the removal of methyl iodide on silver-impregnated adsorbents

    International Nuclear Information System (INIS)

    Park, G.I.; Cho, I.H.; Kim, J.H.; Oh, W.Z.

    2001-01-01

    The adsorption characteristics of methyl iodide generated from the simulated off-gas stream on various adsorbents such as silver-impregnated zeolite (AgX), zeocarbon and activated carbon were investigated. An extensive evaluation was made on the optimal silver impregnation amount for the removal of methyl iodide at temperatures up to 300 deg. C. The degree of adsorption efficiency of methyl iodide on silver-impregnated adsorbent is strongly dependent on impregnation amount and process temperature. A quantitative comparison of adsorption efficiencies on three adsorbents in a fixed bed was investigated. The influence of temperature, methyl iodide concentration and silver impregnation amount on the adsorption efficiency is closely related to the pore characteristics of adsorbents. It shows that the effective impregnation ratio was about 10wt%, based on the degree of silver utilization for the removal of methyl iodide. The practical applicability of silver-impregnated zeolite for the removal of radioiodine generated from the DUPIC process was consequently proposed. (author)

  8. The sampling of sulfur dioxide in air with impregnated filter paper

    NARCIS (Netherlands)

    Huygen, C.

    1963-01-01

    A method is suggested for the sampling of sulfur dioxide in air with impregnated filter paper instead of bubblers. The best aqueous impregnating solution contained potassium hydroxide with glycerol or triethanolamine. The possibilities and limitations of the method are discussed. High collection

  9. Mixed Matrix Carbon Molecular Sieve and Alumina (CMS-Al2O3) Membranes.

    Science.gov (United States)

    Song, Yingjun; Wang, David K; Birkett, Greg; Martens, Wayde; Duke, Mikel C; Smart, Simon; Diniz da Costa, João C

    2016-07-29

    This work shows mixed matrix inorganic membranes prepared by the vacuum-assisted impregnation method, where phenolic resin precursors filled the pore of α-alumina substrates. Upon carbonisation, the phenolic resin decomposed into several fragments derived from the backbone of the resin matrix. The final stages of decomposition (>650 °C) led to a formation of carbon molecular sieve (CMS) structures, reaching the lowest average pore sizes of ~5 Å at carbonisation temperatures of 700 °C. The combination of vacuum-assisted impregnation and carbonisation led to the formation of mixed matrix of CMS and α-alumina particles (CMS-Al2O3) in a single membrane. These membranes were tested for pervaporative desalination and gave very high water fluxes of up to 25 kg m(-2) h(-1) for seawater (NaCl 3.5 wt%) at 75 °C. Salt rejection was also very high varying between 93-99% depending on temperature and feed salt concentration. Interestingly, the water fluxes remained almost constant and were not affected as feed salt concentration increased from 0.3, 1 and 3.5 wt%.

  10. Physical and chemical durability of cement impregnated epoxy resin

    International Nuclear Information System (INIS)

    Suryantoro

    1997-01-01

    Immobilization of simulation radioactive waste contains Cs and Sr with cement impregnated epoxy resin has been done. Low level liquid waste in 30% weight mixed cement homogeneously and then set in its curing time about 28 days. Waste from was impregnated with epoxy resin (Bisphenol-A-diglycidylether) and use Triethylenteramin as catalyst. the sample of cement impregnated epoxy resin 2.5 cm x 2.5 cm in diameter and length was tested by Paul Weber. The compressive strength was obtained of 4.08 kN.cm - 2. The sochxlet apparatus was run on flow rate of 300 ml/hour at 100 o C and during 24 hours. The leaching rate of Cs was round on 5.5 x 10 - 4 g.cm - 2.d - 1 and Sr was 6.1 x 10 - 4 g.cm - 2.d - 1 (author)

  11. Radiation-induced branching and crosslinking of poly(tetrafluoroethylene) (PTFE)

    International Nuclear Information System (INIS)

    Lappan, U.; Geissler, U.; Haeussler, L.; Jehnichen, D.; Pompe, G.; Lunkwitz, K.

    2001-01-01

    The effect of electron beams on poly(tetrafluoroethylene) (PTFE) at elevated temperatures above the melting point on oxygen-free conditions has been studied using differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS), Fourier-transform infrared (FTIR) spectroscopy, thermo-gravimetric analysis (TGA) and tensile test. The investigations have shown that the chemical structure and several properties of PTFE are greatly altered by the irradiation. DSC and WAXS indicate that the crystallinity of the PTFE irradiated with high doses is reduced. CF 3 side groups and branched structures are assumed to hinder the crystallization. TGA has shown that the thermal stability of the radiation-modified PTFE is considerably lower than that of unirradiated PTFE

  12. The sampling of hydrogen sulfide in air with impregnated filter paper

    NARCIS (Netherlands)

    Huygen, C.

    1964-01-01

    A method is proposed for the quantitative collection of hydrogen sulfide in air on impregnated filter paper. An aqueous solution of potassium hydroxide, potassium zincate and glycerol is used as impregnating fluid. The stability of the collected sulfide and the efficiency of collection at different

  13. The Effect of Water Repellent Surface Impregnation on Durability of Cement-Based Materials

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2017-01-01

    Full Text Available In many cases, service life of reinforced concrete structures is severely limited by chloride penetration until the steel reinforcement or by carbonation of the covercrete. Water repellent treatment on the surfaces of cement-based materials has often been considered to protect concrete from these deteriorations. In this paper, three types of water repellent agents have been applied on the surface of concrete specimens. Penetration profiles of silicon resin in treated concrete have been determined by FT-IR spectroscopy. Water capillary suction, chloride penetration, carbonation, and reinforcement corrosion in both surface impregnated and untreated specimens have been measured. Results indicate that surface impregnation reduced the coefficient of capillary suction of concrete substantially. An efficient chloride barrier can be established by deep impregnation. Water repellent surface impregnation by silanes also can make the process of carbonation action slow. In addition, it also has been concluded that surface impregnation can provide effective corrosion protection to reinforcing steel in concrete with migrating chloride. The improvement of durability and extension of service life for reinforced concrete structures, therefore, can be expected through the applications of appropriate water repellent surface impregnation.

  14. Synthesis and characterization of biomorphic CeO2 obtained by using egg shell membrane as template

    Directory of Open Access Journals (Sweden)

    Marija Prekajski

    2014-06-01

    Full Text Available A new technology based on bio-templating approach was proposed in this paper. Egg-shell membrane (ESM has been employed as a natural biotemplate. Fibrous oxide ceramics was prepared by wet impregnation of biological template with water solution of cerium nitrate. The template was derived from membranes of fresh chicken eggs. Repeated impregnation, pyrolysis and final calcination in the range of 600 to 1200 °C in air resulted in template burnout and consolidation of the oxide layers. At low temperatures, the obtained products had structure which corresponded to the negative replication of biological templates. Unique bio-morphic CeO2 microstructures with interwoven networks were synthesized and characterized by scanning electron microscope (SEM and X-ray diffraction (XRD, whereas low-temperature nitrogen adsorption (BET method was used in order to characterize porous properties.

  15. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    Topis, S.; Koutsonikolas, D.; Kaldis, S. (and others) [Aristotle University of Thessaloniki, Thessaloniki (Greece). Dept. of Chemical Engineering

    2005-07-01

    An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and selectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 5 refs., 6 figs., 1 tab.

  16. Gas pollutant cleaning by a membrane reactor

    Energy Technology Data Exchange (ETDEWEB)

    George E. Skodras; Sotiris Kaldis; Savas G. Topis; Dimitris Koutsonikolas; George P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory, Dept. of Chemical Engineering

    2006-07-01

    An alternative technology for the removal of gas pollutants at the intergrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al{sub 2}O{sub 3} catalyst was prepared by the dry and wet impregnation method and characterized by ICP, SEM, XRD and N{sub 2} adsorption before and after activation. Commercially available {alpha}-Al{sub 2}O{sub 3} membranes were also characterized and the permeabilities and permselectivities of H{sub 2}, N{sub 2} and CO{sub 2} were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. 9 refs., 6 figs., 1 tab.

  17. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    Energy Technology Data Exchange (ETDEWEB)

    Pestana, Carolina F.M.; Guerra, Antonio C.O.; Turci, Cassia C. [Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Quimica; Ferreira, Glaucio B. [Universidade Federal Fluminense, Niteroi, RJ (Brazil). Inst. de Quimica; Mota, Claudio J.A., E-mail: cmota@iq.ufrj.br [INCT Energia e Ambiente, Universidade Federal do Rio de Janeiro, RJ (Brazil)

    2013-01-15

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  18. Oxidative dehydration of glycerol to acrylic acid over vanadium-impregnated zeolite beta

    International Nuclear Information System (INIS)

    Pestana, Carolina F.M.; Guerra, Antonio C.O.; Turci, Cassia C.

    2013-01-01

    The oxidative dehydration of glycerol to acrylic acid was studied over vanadium-impregnated zeolite Beta. Catalysts were prepared by wet impregnation of ammonium metavanadate over ammonium-exchanged zeolite Beta, followed by air calcination at 823 K. Impregnation reduced the specific surface area, but did not significantly affected the acidity (Bronsted and Lewis) of the zeolites. The catalytic evaluation was carried out in a fixed bed flow reactor using air as the carrier and injecting glycerol by means of a syringe pump. Acrolein was the main product, with acetaldehyde and hydroxy-acetone (acetol) being also formed. Acrylic acid was formed with approximately 25% selectivity at 548 K over the impregnated zeolites. The result can be explained by XPS (X-ray photoelectron spectroscopy) measurements, which indicated a good dispersion of the vanadium inside the pores. (author)

  19. Airborne nanoparticle concentrations in the manufacturing of polytetrafluoroethylene (PTFE) apparel.

    Science.gov (United States)

    Vosburgh, Donna J H; Boysen, Dane A; Oleson, Jacob J; Peters, Thomas M

    2011-03-01

    One form of waterproof, breathable apparel is manufactured from polytetrafluoroethylene (PTFE) membrane laminated fabric using a specific process to seal seams that have been sewn with traditional techniques. The sealing process involves applying waterproof tape to the seam by feeding the seam through two rollers while applying hot air (600 °C). This study addressed the potential for exposure to particulate matter from this sealing process by characterizing airborne particles in a facility that produces more than 1000 lightweight PTFE rain jackets per day. Aerosol concentrations throughout the facility were mapped, breathing zone concentrations were measured, and hoods used to ventilate the seam sealing operation were evaluated. The geometric mean (GM) particle number concentrations were substantially greater in the sewing and sealing areas (67,000 and 188,000 particles cm⁻³)) compared with that measured in the office area (12,100 particles cm⁻³). Respirable mass concentrations were negligible throughout the facility (GM = 0.002 mg m⁻³) in the sewing and sealing areas). The particles exiting the final discharge of the facility's ventilation system were dominated by nanoparticles (number median diameter = 25 nm; geometric standard deviation of 1.39). The breathing zone particle number concentrations of the workers who sealed the sewn seams were highly variable and significantly greater when sealing seams than when conducting other tasks (p < 0.0001). The sealing workers' breathing zone concentrations ranged from 147,000 particles cm⁻³ to 798,000 particles cm⁻³, and their seam responsibility significantly influenced their breathing zone concentrations (p = 0.03). The finding that particle number concentrations were approximately equal outside the hood and inside the local exhaust duct indicated poor effectiveness of the canopy hoods used to ventilate sealing operations.

  20. Cold crystallization of polytetrafluoroethylene by γ irradiation

    International Nuclear Information System (INIS)

    Takenaga, M.; Yamagata, K.

    1980-01-01

    Changes in density and in the corresponding degree of crystallinity with radiation dose are studied experimentally for γ-irradiated polytetrafluoroethylene (PTFE) in the dose range from 1 x 10 3 to 1 x 10 9 R. The relation between the amorphous fraction and the radiation dose is derived from a quantitative analysis of cold crystallization by scission of polymer backbone chains. The characteristic radiation dose, at which one break occurs on the average per initial molecule, is estimated as about 3 x 10 4 R on the basis of a derived kinetic equation. The theoretical relation is modified by considering microvoids produced in the irradiated samples. The radii of microvoids in the form of spheres are evaluated as about 0.2 nm, and are also related to cage spheres relevant to the chain scission process. Good agreement between the modified theoretical relation and experimental data is attained over the entire range of radiation dose. 4 figures, 1 table

  1. Sulfonation of cPTFE Film grafted Styrene for Proton Exchange Membrane Fuel Cell

    Directory of Open Access Journals (Sweden)

    Yohan Yohan

    2010-10-01

    Full Text Available Sulfonation of γ-ray iradiated and styrene-grafted crosslinked polytetrafluoroethylene film (cPTFE-g-S film have been done. The aim of the research is to make hydropyl membrane as proton exchange membrane fuel cell. Sulfonation was prepared with chlorosulfonic acid in chloroethane under various conditions. The impact of the percent of grafting, the concentration of chlorosulfonic acid, the reaction time,and the reaction temperature on the properties of sulfonated film is examinated. The results show that sulfonation of surface-grafted films is incomplete at room  temperature. The increasing of concentration of chlorosulfonic acid and reaction temperature accelerates the reaction but they also add favor side reactions. These will lead to decreasing of the ion-exchange capacity, water uptake, and proton conductivity but increasing the resistance to oxidation in a perhidrol solution. The cPTFE-g-SS membrane which is resulted has stability in a H2O2 30% solution for 20 hours.

  2. Growth properties of poly(tetrafluoroethylene) films by synchrotron radiation ablation

    International Nuclear Information System (INIS)

    Guo, Qixin; Kugino, Takashi; Kume, Yusuke; Mitsuishi, Yoshiaki; Tanaka, Tooru; Nishi, Mitsuhiro; Ogawa, Hiroshi

    2007-01-01

    High-quality poly(tetrafluoroethylene) (PTFE) films have been grown on Si substrates by synchrotron radiation ablation of a PTFE target. Only doublet absorption structures assigned to C-F asymmetric and symmetric stretching vibrations in CF 2 groups are observed, suggesting that the CF 2 groups in the grown PTFE film are organized in an ordered manner through linear attachment. The growth rate of the PTFE films increases with increasing target temperature, while it decreases with increasing substrate temperature. It has been shown that the thickness of the PTFE film with a high-spatial-resolution structure can be easily controlled at nanometer order by changing the synchrotron radiation irradiation dose. (author)

  3. Processing effects in production of composite prepreg by hot melt impregnation

    Science.gov (United States)

    Chmielewski, C.; Jayaraman, K.; Petty, C. A.

    1993-06-01

    The hot melt impregnation process for producing composite prepreg has been studied. The role of the exit die is highlighted by operating without impregnation bars. Experimental results show that when a fiber tow is pulled through a resin bath and then through a wedge shaped die, the total resin mass fraction and the extent of resin impregnation in the tow increase with the processing viscosity. The penetration of resin into a fiber bundle is greater when the resin viscosity is higher. This trend is unchanged over a range of tow speeds up to the breaking point. A theoretical model is developed to describe the effect of processing conditions and die geometry on the degree of impregnation. Calculations with this model indicate that for a given die geometry, the degree of impregnation increases from 58 percent to 90 percent as the ratio of the clearance between the tow and the die wall, to the total die gap is decreased from 0.15 to 0.05. Physical arguments related to the effective viscosity of the prepreg show that the clearance ratio is independent of the tow speed, but decreases as the ratio of the effective shear viscosity of the prepreg to the resin viscosity increases. This provides a connection between the experimental results obtained with varying resin viscosity and the computational results obtained with varying clearance values at the die inlet.

  4. The effect of normal load on polytetrafluoroethylene tribology.

    Science.gov (United States)

    Barry, Peter R; Chiu, Patrick Y; Perry, Scott S; Sawyer, W Gregory; Phillpot, Simon R; Sinnott, Susan B

    2009-04-08

    The tribological behavior of oriented poly(tetrafluoroethylene) (PTFE) sliding surfaces is examined as a function of sliding direction and applied normal load in classical molecular dynamics (MD) simulations. The forces are calculated with the second-generation reactive empirical bond-order potential for short-range interactions, and with a Lennard-Jones potential for long-range interactions. The range of applied normal loads considered is 5-30 nN. The displacement of interfacial atoms from their initial positions during sliding is found to vary by a factor of seven, depending on the relative orientation of the sliding chains. However, within each sliding configuration the magnitude of the interfacial atomic displacements exhibits little dependence on load over the range considered. The predicted friction coefficients are also found to vary with chain orientation and are in excellent quantitative agreement with experimental measurements.

  5. Estimation of tribological anticorrosion properties of impregnated nitriding layers

    International Nuclear Information System (INIS)

    Iwanow, J.; Senatorski, J.; Tacikowski, J.

    1999-01-01

    In this paper is described aim, experimental and test result of tribological anticorrosion properties of thin nitriding layer (12.5 μm) obtained on 45 steel grade in controlled gas-nitriding process (570 o C, 4 h) impregnated with oil-based formulations, containing corrosion inhibitor BS-43, modified with tribological additives based on ashen organometallic compounds as well as ash-free organic compounds. It was stated, that tribological additives does not influence, in fact, on behaviour of corrosion resistance of nitriding layers impregnated with oil-base formulations mainly connected with inhibitor BS-43. Synergy of tribological additive and corrosion inhibitor is however more visible in modelling of wear resistance of nitriding layer. The influence nature of tribological additives in combination with corrosion inhibitor BS-43 is dependent on their kind and as result improves or worsens the wear resistance by friction. Hence in choice of impregnated formulation, which is enable to accomplish of tribological anticorrosion requirements, determined, above all, tribological additive. (author)

  6. Preparation of Palladium-Impregnated Ceria by Metal Complex Decomposition for Methane Steam Reforming Catalysis

    Directory of Open Access Journals (Sweden)

    Worawat Wattanathana

    2017-01-01

    Full Text Available Palladium-impregnated ceria materials were successfully prepared via an integrated procedure between a metal complex decomposition method and a microwave-assisted wetness impregnation. Firstly, ceria (CeO2 powders were synthesized by thermal decomposition of cerium(III complexes prepared by using cerium(III nitrate or cerium(III chloride as a metal source to form a metal complex precursor with triethanolamine or benzoxazine dimer as an organic ligand. Palladium(II nitrate was consequently introduced to the preformed ceria materials using wetness impregnation while applying microwave irradiation to assist dispersion of the dopant. The palladium-impregnated ceria materials were obtained by calcination under reduced atmosphere of 10% H2 in He stream at 700°C for 2 h. Characterization of the palladium-impregnated ceria materials reveals the influences of the metal complex precursors on the properties of the obtained materials. Interestingly, the palladium-impregnated ceria prepared from the cerium(III-benzoxazine dimer complex revealed significantly higher BET specific surface area and higher content of the more active Pdδ+ (δ > 2 species than the materials prepared from cerium(III-triethanolamine complexes. Consequently, it exhibited the most efficient catalytic activity in the methane steam reforming reaction. By optimization of the metal complex precursors, characteristics of the obtained palladium-impregnated ceria catalysts can be modified and hence influence the catalytic activity.

  7. The edible cocktail: the effect of sugar and alcohol impregnation on the crunchiness of fruit

    NARCIS (Netherlands)

    Scholten, E.; Peters, M.M.J.P.

    2012-01-01

    Vacuum impregnation is seen as a valuable technique for flavor pairing in the catering industry. One of the applications of this technique is the creation of edible cocktails by impregnating of fruits with liquors, leading to an interplay of different flavors. However, the effect of the impregnation

  8. Ion-exchange composite membranes pore-filled with sulfonated poly(ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries

    Science.gov (United States)

    Kim, Jihoon; Lee, Yongkyu; Jeon, Jae-Deok; Kwak, Seung-Yeop

    2018-04-01

    A series of ion-exchange membranes for vanadium redox flow batteries (VRBs) are prepared by filling the pores of a poly(tetrafluoroethylene) (PTFE) substrate with sulfonated poly(ether ether ketone) (SPEEK) and microporous Engelhard titanosilicate-10 (ETS-10). The effects of ETS-10 incorporation and PTFE reinforcement on membrane properties and VRB single-cell performance are investigated using various characterization tools. The results show that these composite membranes exhibit improved mechanical properties and reduced vanadium-ion permeabilities owing to the interactions between ETS-10 and SPEEK, the suppressed swelling of PTFE, and the unique ETS-10 framework. The composite membrane with 3 wt% ETS-10 (referred to as "SE3/P") exhibits the best membrane properties and highest ion selectivity. The VRB system with the SE3/P membrane exhibits higher cell capacity, higher cell efficiency, and lower capacity decay than that with a Nafion membrane. These results indicate that this composite membrane has potential as an alternative to Nafion in VRB systems.

  9. Effects of impregnation methods and drying conditions on quinoline hydrodenitrogenation over Ni-W based catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Fang; Qiu, Zegang; Zhao, Liangfu; Xiang, Hongwei [Institute of Coal Chemistry, Chinese Academy of Sciences (China); Guo, Shaoqing [Taiyuan University of Science and Technology (China)

    2014-04-15

    The effects of impregnation methods (co-impregnation and sequential impregnation) and drying conditions (air and vacuum) on the structure and catalytic behavior of MCM-41 supported Ni-W catalysts were investigated. The catalysts were characterized by powder X-ray diffraction (XRD) analysis, Fourier-transform infrared spectroscopy (FT-IR), diffuse reflectance UV-Vis absorbance spectroscopy (DRS), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and pyridine adsorbed infrared spectroscopy (Py-IR) techniques. They were tested for hydrodenitrogenation (HDN) of quinoline at temperatures of 300-400 deg C. The HDN results showed that the catalysts prepared by co-impregnation were more active than the catalysts prepared by sequential impregnation and the catalysts prepared by drying under vacuum were more active than the catalysts dried in air. Characterization revealed that the co-impregnation method and drying under vacuum promoted the dispersion of W, the formation of the active phases, and the formation of acidic sites on the catalysts. (author)

  10. A Feasibility Study of Ammonia Recovery from Coking Wastewater by Coupled Operation of a Membrane Contactor and Membrane Distillation

    Directory of Open Access Journals (Sweden)

    Po-Hsun Lin

    2018-03-01

    Full Text Available More than 80% of ammonia (NH3 in the steel manufacturing process wastewater is contributed from the coking wastewater, which is usually treated by biological processes. However, the NH3 in the coking wastewater is typically too high for biological treatment due to its inhibitory concentration. Therefore, a two-stage process including a hollow fiber membrane contactor (HFMC and a modified membrane distillation (MD system was developed and applied to reduce and recover NH3 from coking wastewater. The objectives of this paper are to evaluate different membrane materials, receiving solutions, and operation parameters for the system, remove NH3 from the coking wastewater to less than 300 mg N/L, which is amenable to the biological process, and recover ammonia solution for reuse. As a result, the polytetrafluoroethylene (PTFE HFMC using sulfuric acid as a receiving solution can achieve a maximum NH3-N transmembrane flux of 1.67 g N/m2·h at pH of 11.5 and reduce NH3 in the coking wastewater to less than 300 mg N/L. The NH3 in the converted ammonium sulfate ((NH42SO4 was then recovered by the modified MD using ice water as the receiving solution to produce ≥3% of ammonia solution for reuse.

  11. In situ treatment of concrete surfaces by organic impregnation and polymerization

    International Nuclear Information System (INIS)

    Ursella, P.; Moretti, G.; Pellecchia, V.

    1990-01-01

    The impregnation by resins of concrete structures is a process well known at PIC (Polymer Impregnated Concrete). This process improves the physical-chemical features of concrete matrixes in order to extend their durability when severe environmental conditions may occur. The main objective of this research contract has been the verification of a proper impregnation 'in situ' of existing concrete surfaces, of any laying in the space, by means of a prototype machine, expressly designed and implemented, and verification of the increase of mechanical resistance, leach resistance, durability of treated material. In a nuclear facility this goal is very important in relation to the long term integrity of concrete structures during operating lifetime and, in particular, after final shutdown. (author)

  12. Characteristic of Polymer-Impregnated Cement Mortar: Composites: Bulk Density and Microstructure

    International Nuclear Information System (INIS)

    Younes, M.M.; Abo-El-Enein, S.A.; El-Saft, M.M.; Sadek, M.A.; Zohdy, K.M.

    2010-01-01

    The effect of radiation initiated polymerization of some monomers on the physical properties of polymer-incorporated mortar was studied. The monomers used were: castor oil (C.O.), 4, 4'-diphenylmethane diisocyanate (MDI) and methyl methacrylate (MMA). Polymerization was carried out by subjecting the monomer-impregnated mortar specimens to different doses of gamma radiation. Where polyurethane (pu) and polyurethane -methyl methacrylate copolymers were formed within the pore system. The influence of polymer impregnation on the various physico-mechanical characteristics of the resulting composites was studied with respect to bulk density and polymer loading. Scanning electron microscopy (SEM) was employed to study the micro-structural characteristics of the neat hardened Ordinary Portland Cement (OPC) mortar pastes and their polymer-impregnated composites

  13. Optical study of planar waveguides based on oxidized porous silicon impregnated with laser dyes

    Energy Technology Data Exchange (ETDEWEB)

    Chouket, A. [Unite de recherche de Spectroscopie Raman, Departement de Physique, Faculte des Sciences de Tunis, Elmanar 2092, Tunis (Tunisia); Charrier, J. [Laboratoire d' Optronique CNRS-UMR FOTON 6082, Universite de Rennes 1, ENSSAT-6 rue de Kerampont, BP 80518, 22305 Lannion Cedex (France); Elhouichet, H. [Unite de recherche de Spectroscopie Raman, Departement de Physique, Faculte des Sciences de Tunis, Elmanar 2092, Tunis (Tunisia)], E-mail: habib.elhouichet@fst.rnu.tn; Oueslati, M. [Unite de recherche de Spectroscopie Raman, Departement de Physique, Faculte des Sciences de Tunis, Elmanar 2092, Tunis (Tunisia)

    2009-05-15

    Oxidized porous silicon optical planar waveguides were elaborated and impregnated with rhodamine B and rhodamine 6G. The waveguiding, absorption, and photoluminescence properties of these impregnated waveguides were studied. Successful impregnation of the structure with laser dyes is shown from photoluminescence and reflectivity measurements. Furthermore, the reflectivity spectra prove the homogenous incorporation of both dye molecules inside the pores of the matrices. The refractive indices of waveguide layers were determined before and after dye impregnation to indicate the conservation of guiding conditions. The optical losses in the visible wavelengths are studied as a function of dye concentration. The dye absorption is the main reason for these losses.

  14. Impregnation of mesoporous silica for catalyst preparation studied with differential scanning calorimetry

    NARCIS (Netherlands)

    Eggenhuisen, T.M.; van Steenbergen, M.J.; Talsma, H.; de Jongh, P.E.; de Jong, K.P.

    2009-01-01

    Aqueous impregnation of mesoporous silica as a first step in catalyst preparation was studied to investigate the distribution of the metal-precursor solution over the support. The degree of pore-filling after impregnation was determined using the freezing point depression of confined liquids. A

  15. Sample clean-up, enrichment and determination of s-triazine herbicides from southern ethiopian lakes supported using liquid membrane extraction

    Directory of Open Access Journals (Sweden)

    Jan Åke Jönsson

    2000-06-01

    Full Text Available The liquid membrane extraction method has been employed for selectively extracting trace quantities of s-triazine herbicides in environmental waters collected from lakes Awassa, Chamo and Abbya, located in close proximity to the agricultural farms in Southern Ethiopia. In liquid membrane extraction, the uncharged triazine compounds from the flowing donor solution diffuse through a porous poly(tetrafluoroethylene (PTFE membrane, containing a water immiscible organic solvent. The s-triazine molecules are then irreversibly trapped in the stagnant acidic acceptor phase since they become protonated. Using both di-n-hexylether and n-undecane membrane solvents, s-traizine herbicides were extracted and low detection limits of about 1 ng/L have been obtained by extraction of three liters of sample solution spiked with 0.1 g/L of each triazine. Residues of atrazine and terbutryn ranging in concentration from 0.02 to 0.05 g/L have been successfully determined.

  16. Different Types of Waste Melamine Impregnated Paper (MIP in Particleboard Manufacturing

    Directory of Open Access Journals (Sweden)

    Ibrahim Halil BASBOGA

    2017-03-01

    Full Text Available Two different types of waste melamine impregnated paper (WMIP were generated in the manufactured coated board product plants. First one is obtained when the neat décor papers were impregnated (in the impregnation line with melamine urea formaldehyde and other chemicals (WMIP1. The second one is generated during the coating of the melamine impregnated papers on the board surfaces (WMIP2. In this study, the utilization of both WMIPs in the production of particleboard as an adhesivereplacement was investigated. First, waste melamine impregnated papers (WMIPs granulated into flour form using Pulverizator with cooling capabilities. Then, they were dry-mixed with surface and core layer particles at 10% or 15% loadings. Three different WMIPs (WMIP1, WMIP2 or their mixtures - 70% WMIP1+30% WMIP2 were used as adhesive-replacement. Mechanical properties including bending strength, modulus of elasticity, internal bond strength and surface stability of the samples were determined according to EN 310, EN 319 and EN 317 standards, respectively. Based on the results, the type of WMIP had significant effect on all mechanical properties investigated. Particleboards produced with both 10% and 15% of WMIP1 loading provided adequate results for the related standards. The best result was obtained when 15% of WMIP1 was used. It is concluded that WMIP1 might be used as an adhesive-replacement in particleboard manufacturing and may provide economic and environmental benefits.

  17. Comparative study of the monomer grafting: ethylene, acetylene, 1,3-butadiene and estyrene in the matrix of recycled polytetrafluoroethylene (PTFE)

    International Nuclear Information System (INIS)

    Ikari, Carolina T.; Rosner, Gerhardyne O.; Oliveira, Ana C.F.; Ferreto, Helio F.R.; Lima, Luiz F.C.P.; Lugao, Ademar B.; Moreira, Otavio M.

    2009-01-01

    In this study it is used the recycled polytetrafluoroethylene (PTFE), that with the gamma radiation under inert atmosphere or in presence of air, it is obtained free radicals and a posterior the monomer grafting (ethylene, acetylene, styrene or 1.3 butadiene), obtaining the copolymer polytetrafluoroethylene-g-monomer. It is studied the obtention of the polymer by two methods: by direct way, via grafting, where the polymer is irradiated in presence of monomer, and via grafting when the polymer is irradiated in absence of monomer and under inert or air. The characterization of the copolymer was performed by the techniques of infrared region absorption spectroscopy with Fourier transformation (FTIR), thermogravimetric (TGA) and derivative thermogravimetry (DTG), and percentage of mass grafting (DOG)

  18. Recycling of Polytetrafluoroethylene Scarp for Useful Practical Applications

    International Nuclear Information System (INIS)

    El-Nemr, K.F.; Youssef, H.A.; Abd-El Aziz, M.M.; El-Miligy, A.A.

    1999-01-01

    Radiation vulcanization of NBR based composites were prepared whereby polytetrafluoroethylene, PTFE scrap was utilized as additive. The thermal property of composites, using TGA technique was investigated as a function of irradiation dose as well as the degree of loading with Teflon scarp. Moreover, the effect of gasoline solvent of varying content of toluene on the swelling characteristics of prepared composites has been followed up at 100 degree whereby, the irradiation dose was kept at 100 kGy. It was found that due to incorporation of PTFE powder , the solid composites obtained possess good thermal stability as well as swelling resistance. The best swelling resistance was obtained for the gasoline which does not contains toluene. The prepared rubber composites would be recommended for manufacturing rubber articles characterized by having self-lubricating property used as rubber seals under static condition, that may be at temperatures as high as 100 degree

  19. Radiation grafting of styrene and maleic anhydride onto PTFE membranes and sequent sulfonation for applications of vanadium redox battery

    International Nuclear Information System (INIS)

    Qiu Jingyi; Ni Jiangfeng; Zhai Maolin; Peng Jing; Zhou Henghui; Li Jiuqiang; Wei Genshuan

    2007-01-01

    Using γ-radiation technique, poly(tetrafluoroethylene) (PTFE) membrane was grafted with styrene (St) (PTFE-graft-PS) or binary monomers of St and maleic anhydride (MAn) (PTFE-graft-PS-co-PMAn), respectively. Then grafted membranes were further sulfonated with chlorosulfonic acid into ion-exchange membranes (denoted as PTFE-graft-PSSA and PTFE-graft-PSSA-co-PMAc, respectively) for application of vanadium redox battery (VRB). Micro-FTIR analysis indicated that PTFE was successfully grafted and sulfonated at the above two different conditions. However, a higher degree of grafting (DOG) was obtained in St/MAn binary system at the same dose due to a synergistic effect. Comparing with PTFE-graft-PSSA, PTFE-graft-PSSA-co-PMAc membrane showed higher water uptake and ion-exchange capacity (IEC) and lower area resistance (AR) at the same DOG. In addition, PTFE-graft-PSSA-co-PMAc with 6% DOG also showed a higher IEC and higher conductivity compared to Nafion membrane. Radiation grafting of PTFE in St/MAn binary system and sequent sulfonation is an appropriate method for preparing ion-exchange membrane of VRB

  20. Copper recovery in a bench-scale carrier facilitated tubular supported liquid membrane system

    Directory of Open Access Journals (Sweden)

    Makaka S.

    2010-01-01

    Full Text Available The extraction of copper ions in a tubular supported liquid membrane using LIX 984NC as a mobile carrier was studied, evaluating the effect of the feed characteristics (flowrate, density, viscosity on the feedside laminar layer of the membrane. A vertical countercurrent, double pipe perspex benchscale reactor consisting of a single hydrophobic PVDF tubular membrane mounted inside was used in all test work. The membrane was impregnated with LIX 984NC and became the support for this organic transport medium. Dilute Copper solution passed through the centre pipe and sulphuric acid as strippant passed through the shell side. Copper was successfully transported from the feedside to the stripside and from the data obtained, a relationship between Schmidt, Reynolds and Sherwood number was achieved of.

  1. Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material

    International Nuclear Information System (INIS)

    Lee, Youn Suk; Park, Insik; Choi, Hong Yeol

    2014-01-01

    Moisture is a major factor causing the deteriorative physical change, microbial growth, and chemical reaction of the products. In this study, the moisture absorbing composite films have been prepared with moisture absorbing material of polyacrylic acid partial sodium salt (PAPSS) impregnated on LLDPE polymer for the functional packaging applications. The results showed that PAPSS impregnated film illustrated uniformly dispersed PAPSS particles in the LLDPE polymer matrix. The transparency of the PAPSS impregnated film decreased slightly at higher PAPSS concentrations. An increase in the PAPSS content for moisture-absorbing films showed a similar decrease in tensile strength, percent elongation at break, and tear strength. Their values of films impregnated with PAPSS of 0.5, 1, and 2% showed no significant difference. Meanwhile, 4% PAPSS films significantly decreased the values of mechanical properties compared to the films impregnated with different PAPSS levels. Values of the oxygen permeability and water vapor permeability for PAPSS impregnated films decreased significantly with greater PAPSS. The results indicate that 4% PAPSS impregnated in LLDPE films had high affinity of moisture absorbencies compared to the other films. The mathematical equation that best described the moisture sorption isotherm of each film sample was the GAB equation at 25 .deg. C. The crystallization and melting temperatures of PAPSS films were influenced by the addition of PAPSS material, but showed good thermal stability

  2. Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Suk; Park, Insik [Yonsei University, Wonju (Korea, Republic of); Choi, Hong Yeol [CJ Cheiljedang, Seoul (Korea, Republic of)

    2014-08-15

    Moisture is a major factor causing the deteriorative physical change, microbial growth, and chemical reaction of the products. In this study, the moisture absorbing composite films have been prepared with moisture absorbing material of polyacrylic acid partial sodium salt (PAPSS) impregnated on LLDPE polymer for the functional packaging applications. The results showed that PAPSS impregnated film illustrated uniformly dispersed PAPSS particles in the LLDPE polymer matrix. The transparency of the PAPSS impregnated film decreased slightly at higher PAPSS concentrations. An increase in the PAPSS content for moisture-absorbing films showed a similar decrease in tensile strength, percent elongation at break, and tear strength. Their values of films impregnated with PAPSS of 0.5, 1, and 2% showed no significant difference. Meanwhile, 4% PAPSS films significantly decreased the values of mechanical properties compared to the films impregnated with different PAPSS levels. Values of the oxygen permeability and water vapor permeability for PAPSS impregnated films decreased significantly with greater PAPSS. The results indicate that 4% PAPSS impregnated in LLDPE films had high affinity of moisture absorbencies compared to the other films. The mathematical equation that best described the moisture sorption isotherm of each film sample was the GAB equation at 25 .deg. C. The crystallization and melting temperatures of PAPSS films were influenced by the addition of PAPSS material, but showed good thermal stability.

  3. Solvent impregnated resin for isolation of U(VI) from industrial wastes

    International Nuclear Information System (INIS)

    Karve, M.; Rajgor, R.V.

    2008-01-01

    A solid-phase extraction method based upon impregnation of Cyanex 302 (bis(2,4,4- trimethylpentyl)mono-thio-phosphinic acid) on Amberlite XAD-2 resin is proposed for isolation of U(VI) from uranmicrolite ore tailing samples and industrial effluent samples. U(VI) was sorbed from nitric acid media on the solvent-impregnated resin (SIR) and was recovered completely with 1.0 M HCl. Based upon sorption behavior of U(VI) with Cyanex 302, it was quantitatively sorbed on the SIR in a dynamic method, while the other metal ions were not sorbed by the modified resin. The preparation of impregnated resin is simple, based upon physical interaction of the extractant and solid support, has good sorption capacity for U(VI), and is also reliable for detection of traces of U(VI). (authors)

  4. Thermal Effect on the phosphoric Acid Impregnated Activated Carbon Fiber and Adsorption Properties Toward Isoprene

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Taek Sung; Lee, Jin Hyok; Kang, Kyung suk [Department of Chemical Engineering, College of Engineering, Chungnam National University, Taejon (Korea); Kim, Kwang Young [Ace Lab. Co. Ltd. Taejon (Korea); Rhee, Moon Soo [Korea Ginseng and Tobacoo Research Institute, Taejon (Korea)

    2001-05-01

    To introduce chemisorption property and improve adsorption capacities for isoprene, ACF (Activated Carbon Fiber) was impregnated by phosphoric acid. As the impregnated ACF was dried by programmed temperature from 300 degree C to 500 degree C, degree of impregnation, surface area, thermal stability and adsorption properties for isoprene were observed. The degree of impregnation of the ACF, dried at the 400 degree C, was 12.7 w/w% and surface area was 1148 m{sup 2}/g. Over the temperature range of 450 degree C to 700 degree C, there was one-step thermal degradation by the thermal decomposition of phosphonyl group. The adsorption rate of phosphoric acid on the impregnated ACF, which was dried at 400 degree C, was the fastest. The breakthrough time of ACF that was dried at 400 degree C was 18 min., and its adsorption capacity improved roughly 7.2 times in comparison to the pure ACF. In addition, it was observed the adsorption properties persisted even after the regeneration. The adsorption efficiency of regenerated ACF was 66 percent compared to the unused impregnated ACF. 21 refs., 7 figs., 3 tabs.

  5. Improvement of radiation resistance for polytetrafluoroethylene(PTFE) by radiation cross-linking

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Tabata, Yoneho; Ikeda, Shigetoshi; Seguchi, Tadao.

    1996-01-01

    The crosslinked polytetrafluoroethylene(PTFE) was prepared by electron beams irradiation technique in the molten state at 340degC ± 3degC in inert gas atmosphere. The crosslinking density was changed by the irradiation dose. The radiation resistance of crosslinked PTFE was investigated on the mechanical properties after irradiation by γ-rays at room temperature under vacuum and in air. The dose at half value of elongation at break was about 1MGy for 500kGy-crosslinked PTFE, while the dose for non-crosslinked PTFE was only 3.5kGy. It was found that the radiation resistance of PTFE was extremely improved by crosslinking. (author)

  6. Chemical structure and physical properties of radiation-induced crosslinking of polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Oshima, Akihiro; Ikeda, Shigetoshi; Katoh, Etsuko; Tabata, Yoneho

    2001-01-01

    The chemical structure and physical properties of polytetrafluoroethylene (PTFE) that has been crosslinked by radiation have been studied by various methods. It has been found that a Y-type crosslinking structure and a Y-type structure incorporating a double bond (modified Y-type) is formed in PTFE by radiation-crosslinking in the molten state. In addition, various types of double bond structures, excluding the crosslinking site, have been identified. The crosslinked PTFE has a good light transparency due to the loss of crystallites, whilst it retains the excellent properties of electrical insulation and heat resistance. The coefficient of abrasion and the permanent creep are also greatly improved by crosslinking

  7. Impacts of impregnation with boric acid and borax on the red colour ...

    African Journals Online (AJOL)

    Impacts of impregnation with boric acid and borax on the red colour tone of some hardwoods and varnishes. H Keskin, M Atar, A Ketizmen. Abstract. This study was performed to determine the impacts of impregnation with boric acid and borax on the red colour tone of some hardwoods and varnishes. For this purpose, the ...

  8. Bacterial adhesion forces to Ag-impregnated contact lens cases and transmission to contact lenses.

    Science.gov (United States)

    Qu, Wenwen; Busscher, Henk J; van der Mei, Henny C; Hooymans, Johanna M M

    2013-03-01

    To measure adhesion forces of Pseudomonas aeruginosa, Staphylococcus aureus, and Serratia marcescens to a rigid contact lens (CL), standard polypropylene, and Ag-impregnated lens cases using atomic force microscopy and determine bacterial transmission from lens case to CL. Adhesion forces of bacterial strains to Ag-impregnated and polypropylene lens cases and a rigid CL were measured using atomic force microscopy. Adhesion forces were used to calculate Weibull distributions, from which transmission probabilities from lens case to CL were derived. Transmission probabilities were compared with actual transmission of viable bacteria from a lens case to the CL in 0.9% NaCl and in an antimicrobial lens care solution. Bacterial transmission probabilities from polypropylene lens cases based on force analysis coincided well for all strains with actual transmission in 0.9% NaCl. Bacterial adhesion forces on Ag-impregnated lens cases were much smaller than that on polypropylene and CLs, yielding a high probability of transmission. Comparison with actual bacterial transmission indicated bacterial killing due to Ag ions during colony-forming unit transmission from an Ag-impregnated lens case, especially for P. aeruginosa. Transmission of viable bacteria from Ag-impregnated lens cases could be further decreased by use of an antimicrobial lens care solution instead of 0.9% NaCl. Bacterial transmission probabilities are higher from Ag-impregnated lens cases than from polypropylene lens cases because of small adhesion forces, but this is compensated for by enhanced bacterial killing due to Ag impregnation, especially when in combination with an antimicrobial lens care solution. This calls for a balanced combination of antimicrobial lens care solutions and surface properties of a lens case and CL.

  9. The friction and wear of γ-irradiated polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Briscoe, B.J.; Ni, Z.

    1984-01-01

    The exposure of polytetrafluoroethylene (PTFE) to γ radiation significantly reduces the molecular weight but below the gross softening temperature suppresses the overall molecular domain mobility. The shear modulus and creep resistance increase but the toughness is reduced. Data are presented to substantiate these trends and to interpret their influence on the friction and wear of γ-damaged PTFE. The sliding friction on smooth rigid counterfaces increases but the wear in this configuration is decreased. The rate of abrasion on rough rigid counterfaces is increased. There is also an improvement in the ultimate load-bearing capacity. All the changes produced are a function of the exposure but most of the effects are fully manifested by 20 Mrad. The general conclusion is that the extent of the molecular mobility or migration induced by mechanical stresses, imposed in both the interface and the bulk of the polymer, has a critical effect on the friction and wear processes. (Auth.)

  10. A Binder Viscosity Effect on the Wet-Wounded Composite Porosity in the Impregnating Bath

    Directory of Open Access Journals (Sweden)

    M. A. Komkov

    2014-01-01

    Full Text Available The aim of this work is to define experimentally an impregnation rate of VM-1 glass fibers and CBM aramid bundles with the epoxy binder EDB-10 using wet method of winding. During the impregnation process of the fibrous fillers by the liquid binder, air is displaced from the interfiber space of fiber and bundle. With the composite product winding a fiber impregnation process is short. That is why gas inclusions or pores are formed in the polymer-fiber compositeThe impregnation rate or porosity of wound material will depend directly on the binder viscosity. To reduce an epoxy binder viscosity temporarily is possible by two ways. The first is to heat a liquid epoxy composition EDB-10 to the maximum possible temperature during the winding process of the product. The second method is to dilute the binder by a solvent, such as acetone or alcohol. However, the solvent reduces its strength.The paper presents experimental data to show the volumetric content of pores in the wound composite affected only by the viscosity of the epoxy binder. Heating a binder allowed us to regulate a changing conditional viscosity of the binder in the impregnating bath for the normal conditions of impregnation. Other impacts on the impregnation and filament-winding processes, such as filler kinks, squeeze, vacuuming binder, highly tensioned winding, and others were not used.Experimentally obtained dependences of the porosity value of wound composite on the conditional viscosity of binder are nonlinear and can be used to design heaters for impregnating devices of winders. The research technique and results can be used in development of technological processes to manufacture composite structures by winding from the other reinforcing fibrous fillers and thermo-active binders.The results show that the volumetric content of pores can significantly vary within 8 - 14 % of material volume. Therefore, to reduce the number of pores in the wound composite to 1-2 %, auxiliary

  11. Study of adsorption properties of impregnated charcoal for airborne iodine and methyl iodide

    International Nuclear Information System (INIS)

    Qi-dong, L.; Sui-yuang, H.

    1985-01-01

    The adsorption characteristics of airborne radioiodine and methyl iodide on impregnated charcoal were investigated. The activated charcoal tested was made from home-made oil-palm shells, and KI and TEDA were used as impregnants. A new technique was used to plot the dynamic partial adsorption isotherm at challenge concentrations (concentration range of iodine: 1-20 ppm v/v). Some adsorption properties of the impregnated charcoal were estimated with the dynamic partial adsorption isotherm. The dependences of the adsorption capacity and penetration behavior for airborne iodine and methyl iodide on the ambient conditions (temperature, relative humidity, and superficial velocity) were studied

  12. Flammability studies of impregnated paper sheets

    Science.gov (United States)

    Ivan Simkovic; Anne Fuller; Robert White

    2011-01-01

    Paper sheets impregnated with flame retardants made from agricultural residues and other additives were studied with the cone calorimeter. The use of sugar beet ethanol eluent (SBE), CaCl2, and ZnCl2 lowered the peak rate of heat release (PRHR) the most in comparison to water treated material. The average effective heat of...

  13. Fabrication of polymer-alloy based on polytetrafluoroethylene by radiation-crosslinking

    International Nuclear Information System (INIS)

    Oshima, A.; Asano, S.; Hyunga, T.; Ichizuri, S.; Washio, M.

    2003-01-01

    Perfluoropolymer such as polytetrafluoroethylene (PTFE), tetrafluoroethylene co-perfluoroalkylvinylether (PFA) and tetrafluoroethylene-co-hexafluoropropylene (FFP) have been classified to be a typical polymer of radiation-induced degradation. However, we confirmed that the crosslinking of PTFE, PFA and FEP proceed by irradiation under selective condition where oxygen-free and high temperature above the melting temperature of them. In this study, fabrication of polymer-alloy based on PTFE has been demonstrated by radiation-crosslinking techniques. The polymer alloy, which was PTFE fine powder contained with other polymeric materials, was obtained by electron beams irradiation under oxygen-free atmosphere. Characterization of polymer-alloy based on PTFE has been studied by various measurements such as solid state 19F- and 13C-NMR spectroscopy, thermal analysis (DSC, TGA)

  14. Titanium impregnated borosilicate zeolites for epoxidation catalysis

    Czech Academy of Sciences Publication Activity Database

    Přech, Jan; Vitvarová, Dana; Lupínková, Lenka; Kubů, Martin; Čejka, Jiří

    2015-01-01

    Roč. 212, AUG 2015 (2015), s. 28-34 ISSN 1387-1811 R&D Projects: GA ČR GAP106/11/0819 Institutional support: RVO:61388955 Keywords : borosilicate * titanium impregnation * epoxidation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.349, year: 2015

  15. Combustion properties of wood impregnated with commercial ...

    African Journals Online (AJOL)

    The objective of this study was to determine some combustion properties of Calabrian pine (Pinus brutia Ten.) wood specimens impregnated with aqueous solutions of commercial fertilizers. Ammonium sulphate (AS) and diammonium phosphate (DAP) were used as commercial fertilizers. Diammonium phosphate and ...

  16. Removal efficiency of radioactive methyl iodide on TEDA-impregnated activated carbons

    International Nuclear Information System (INIS)

    Gonzalez-Garcia, C.M.; Gonzalez, J.F.; Roman, S.

    2011-01-01

    Activated carbons were prepared by different series of carbon dioxide and steam activation from walnut shells for their optimal use as radioactive methyl iodide adsorbents in Nuclear Plants. The knowledge of the most favourable textural characteristics of the activated carbons was possible by the previous study of the commercial activated carbon currently used for this purpose. In order to increase their methyl iodide affinity, the effect of triethylenediamine impregnation was studied at 5 and 10 wt.%. The results obtained indicated that in both cases the adsorption efficiency is markedly improved by the addition of impregnant, which allows the adsorbate uptake to occur not only by physical adsorption, via non-specific interactions (as in non-impregnated carbons) but also by the specific interaction of triethylenediamine with radioactive methyl iodide. Methyl iodide retention efficiencies up to 98.1% were achieved. (author)

  17. High-rate anisotropic ablation and deposition of polytetrafluoroethylene using synchrotron radiation process

    International Nuclear Information System (INIS)

    Inayoshi, Muneto; Ikeda, Masanobu; Hori, Masaru; Goto, Toshio; Hiramatsu, Mineo; Hiraya, Atsunari.

    1995-01-01

    Both anisotropic ablation and thin film formation of polytetrafluoroethylene (PTFE) were successfully demonstrated using synchrotron radiation (SR) irradiation of PTFE, that is, the SR ablation process. Anisotropic ablation by the SR irradiation was performed at an extremely high rate of 3500 μm/min at a PTFE target temperature of 200degC. Moreover, a PTFE thin film was formed at a high rate of 2.6 μm/min using SR ablation of PTFE. The chemical structure of the deposited film was similar to that of the PTFE target as determined from Fourier transform infrared absorption spectroscopy (FT-IR) analysis. (author)

  18. Impact of polymeric membrane filtration of oil sands process water on organic compounds quantification.

    Science.gov (United States)

    Moustafa, Ahmed M A; Kim, Eun-Sik; Alpatova, Alla; Sun, Nian; Smith, Scott; Kang, Seoktae; Gamal El-Din, Mohamed

    2014-01-01

    The interaction between organic fractions in oil sands process-affected water (OSPW) and three polymeric membranes with varying hydrophilicity (nylon, polyvinylidene fluoride and polytetrafluoroethylene) at different pHs was studied to evaluate the impact of filtration on the quantification of acid-extractable fraction (AEF) and naphthenic acids (NAs). Four functional groups predominated in OSPW (amine, phosphoryl, carboxyl and hydroxyl) as indicated by the linear programming method. The nylon membranes were the most hydrophilic and exhibited the lowest AEF removal at pH of 8.7. However, the adsorption of AEF on the membranes increased as the pH of OSPW decreased due to hydrophobic interactions between the membrane surfaces and the protonated molecules. The use of ultra pressure liquid chromatography-high resolution mass spectrometry (UPLC/HRMS) showed insignificant adsorption of NAs on the tested membranes at pH 8.7. However, 26±2.4% adsorption of NAs was observed at pH 5.3 following the protonation of NAs species. For the nylon membrane, excessive carboxylic acids in the commercial NAs caused the formation of negatively charged assisted hydrogen bonds, resulting in increased adsorption at pH 8.2 (25%) as compared to OSPW (0%). The use of membranes for filtration of soluble compounds from complex oily wastewaters before quantification analysis of AEF and NAs should be examined prior to application.

  19. Conservation of diverse old wooden objects by impregnation and radiation curing

    International Nuclear Information System (INIS)

    Schaudy, R.; Slais, E.; Eibner, C.

    1983-12-01

    The conservation by impregnation with radiation-curable impregnating agents and subsequent curing with gamma radiation of an medieval wooden window-frame, several gold-coated frame fragments, a primitive flail and a poppy mallet as well as fragments of a painted mail-box and of a border is described and the results are discussed. The process is especially suited for the consolidation of heavily decayed porous objects, e.g. archaeologic findings. (Author) [de

  20. Transport of Liquid Phase Organic Solutes in Liquid Crystalline Membranes

    OpenAIRE

    Han, Sangil

    2010-01-01

    Porous cellulose nitrate membranes were impregnated with 8CB and PCH5 LCs (liquid crystals) and separations of solutes dissolved in aqueous phases were performed while monitoring solute concentration via UV-VIS spectrometry. The diffusing organic solutes, which consist of one aromatic ring and various functional groups, were selected to exclude molecular size effects on the diffusion and sorption. We studied the effects on solute transport of solute intra-molecular hydrogen bonding and so...

  1. X-ray photoelectron spectroscopy study of synchrotron radiation irradiation of a polytetrafluoroethylene surface

    CERN Document Server

    Haruyama, Y; Matsui, S; Ideta, T; Ishigaki, H

    2003-01-01

    The effect of synchrotron radiation (SR) irradiation of a polytetrafluoroethylene (PTFE) surface was investigated using X-ray photoelectron spectroscopy (XPS). After the SR irradiation, the relative intensity of the F ls peak to the C ls peak decreased markedly. The chemical composition ratio to the F atoms to C atoms was estimated to be 0.29. From the curve fitting analysis of C ls and F ls XPS spectra, the chemical components and their intensity ratio were determined. The reason for the chemical composition change by the SR irradiation was discussed. (author)

  2. In situ synthesis of silver chloride nanoparticles into bacterial cellulose membranes

    International Nuclear Information System (INIS)

    Hu Weili; Chen Shiyan; Li Xin; Shi Shuaike; Shen Wei; Zhang Xiang; Wang Huaping

    2009-01-01

    In situ synthesis of silver chloride (AgCl) nanoparticles was carried out under ambient conditions in nanoporous bacterial cellulose (BC) membranes as nanoreactors. The growth of the nanoparticles was readily obtained by alternating dipping of BC membranes in the solution of silver nitrate or sodium chloride followed by a rinse step. X-ray diffraction (XRD) patterns indicated the existence of AgCl nanoparticles in the BC and scanning electron microscopy (SEM) images showed that the AgCl nanoparticles well dispersed on the surface of BC and penetrated into the BC network. The AgCl nanoparticle-impregnated BC membranes exhibited high hydrophilic ability and strong antimicrobial activity against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive). The preparative procedure is facile and versatile, and provides a simple route to manufacturing of useful antimicrobial membranes, which would be a good alternative for antimicrobial wound dressing.

  3. Enhancing oxygen transport through Mixed-Ionic-and-Electronic-Conducting ceramic membranes

    Science.gov (United States)

    Yu, Anthony S.

    approaches to increase surface reaction kinetics and decrease Rs that were examined in this thesis involved modifying the surface microstructure, as well as adding both metallic (e.g. Pt) and oxide (e.g. CeO2, La0.8Sr0.2FeO3) catalysts to both membrane surfaces. These two approaches were investigated for single-phase MIEC membrane reactors (La0.9Ca0.1FeO3-delta ), as well as composite membrane reactors composed of an electronic conductor (La0.8Sr-0.2CrO3-delta) and an ionic conductor (YSZ). The use of catalysts and microstructure modifications to decrease interfacial losses is equally important for SOFCs. In this thesis, the electrochemical activity and microstructure of metallic catalysts formed by "ex-solving" metals from an oxide lattice, and oxide catalysts deposited by Atomic Layer Deposition (ALD) were investigated. It is shown that these methods for depositing catalysts resulted in very different effects on electrode performance when compared to the same catalysts deposited by wet impregnation. For example, when transition metals, such as Ni and Co, were "ex-solved" from a La0.8Sr0.2CrO3-delta anode lattice, these "ex-solved" metal particles not only exhibited great catalytic activity, they were also less prone to coking compared to their wet impregnated counterparts. On the cathode side, thin layers of various oxides (e.g. Al 2O3, CeOx, SrO) that were deposited using ALD also exhibited drastically different electrochemical activity compared to their wet impregnated counterparts. It was determined that differences in electrochemical activity could be attributed to a difference in the oxide morphology, showing that a catalyst's microstructure and morphology are very important in dictating its overall activity in SOFC electrodes.

  4. The investigation of copper-based impregnated activated carbons prepared from water-soluble materials for broad spectrum respirator applications

    International Nuclear Information System (INIS)

    Smith, J.W.H.; Westreich, P.; Abdellatif, H.; Filbee-Dexter, P.; Smith, A.J.; Wood, T.E.; Croll, L.M.; Reynolds, J.H.; Dahn, J.R.

    2010-01-01

    The preparation of impregnated activated carbons (IACs) from aqueous, copper-containing solutions for broad spectrum gas filtration applications is studied here. Several samples were studied to determine the effect that impregnant loading, impregnant distribution and impregnant recipe had on the overall performance. Dynamic flow testing was used to determine the gas filtration capacity of the IAC samples versus a variety of challenge gases. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to characterize the impregnant distribution on the carbon as a function of impregnant loading. Oven tests were performed to determine the thermal stability of the IAC samples exposed to elevated temperatures. The role impregnant distribution plays in gas filtration capacity and the overall performance of the IAC samples is discussed. The IAC samples prepared in this work were found to have gas filtration capacities as good as or better than broad spectrum respirator carbon samples prepared from the patent literature. IACs impregnated with an aqueous 2.4 M Cu(NO 3 ) 2 /0.04 M H 3 PO 4 .12MoO 3 /4 M HNO 3 solution that were heated to 200 deg. C under argon were found to have the best overall performance of the samples studied in this work.

  5. Thick-target Pixe analysis of chromium, copper and arsenic impregnated lumber

    International Nuclear Information System (INIS)

    Saarela, K-E.; Harju, L.; Lill, J-O.; Rajander, J.; Lindroos, A.; Heselius, S-J.

    1999-01-01

    Chromium, copper and arsenic (CCA) have for decades been used for wood preservation. Of these elements especially arsenic is very toxic. As CCA impregnated wood is still today used for many construction purposes, a monitoring of these metal ions is of great environmental importance. Thick-target PIXE is a powerful method for the determination of trace metals in wood. The TTPIXE method enabled study of variations of the elemental concentrations in lumber treated with CCA impregnation solution. Distribution patterns were obtained for both naturally occurring elements and elements introduced in the treatment process. During the impregnation process a desorption of e.g. alkali metal ions takes place from the wood. The sensitivity of the method is improved by dry ashing of the samples prior to PIXE analysis. The TTPIXE method was calibrated and validated using international certified reference materials (CRM) based on wood material

  6. Modeling boron separation from water by activated carbon, impregnated and unimpregnated

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, M.; Grbavcic, Z. [Belgrade Univ., Belgrade (BA). Faculty of Technology and Metallurgy; Marinovic, V. [Belgrade Univ., Belgrade (BA). Ist. of Technical Science of the Serbian Academy of Science and Arts

    2000-10-01

    The sorption of boron from boric acid water solution by impregnated activated carbon has been studied. Barium, calcium, mannitol, tartaric acid and citric acid were used as chemical active materials. All processes were performed in a chromatographic continuous system at 22{sup 0} C. Experimental results show that activated carbon impregnated with mannitol is effective in removing boron from water. The separation of boron from the wastewater from a factory for producing enameled dishes by activated carbon impregnated with mannitol was also performed. Two models have been applied to describe published and new data on boron sorption by impregnated activated carbon. Both of them are based on the analysis of boron concentration response to the step input function. This led to a mathematical model that quite successfully described impregnation effects on adsorption capacities. [Italian] E' stato studiato l'assorbimento del boro, mediante carbone attivo impregnato, da soluzioni acquose di acido borico. Quali materiali chimici attivi sono stati utilizzati: bario, calcio, mannitolo, acido tartarico ed acido citrico. Tutti i processi sono stati condotti in un sistema cromatografico continuo a 22{sup 0}C. I risultati sperimentali mostrano che il carbone attivo impregnato con mannitolo e' efficace nella rimozione del boro dall'acqua. E' anche stata effettuata la separazione del boro da acque di scarico di un'industria per la produzione di piatti smaltati mediante carbone attivo impregnato con mannitolo. Sono stati applicati due modelli per descrivere i risultati, pubblicati e nuovi, dell'assorbimento del boro mediante carbone attivo impregnato. Entrambi sono basati sull'analisi della risposta alla concentrazione di boro successivamente incrementata a stadi. Cio' porta ad un modello matematico che descrive abbastanza soddisfacentemente gli effetti dell'impregnazione sulla capacita' di assorbimento.

  7. Monomer-Polymer Chemistry and the Impregnation Process

    Energy Technology Data Exchange (ETDEWEB)

    Stannett, V. [North Carolina State University, Raleigh, NC (United States)

    1968-10-15

    A brief outline of early polymerization techniques is followed by a description of polymerization process chemistry, impregnation and polymerization methods and criteria for the choice of monomer. General considerations, including the effects of polymerization inhibitors, swelling agents, radiation dose rate and sample thickness, are enumerated. (author)

  8. Prevalent material parameters governing spalling of a slag-impregnated refractory

    Energy Technology Data Exchange (ETDEWEB)

    Blond, E.; Schmitt, N.; Arnould, O.; Hild, F. [LMT-Cachan (ENS de Cachan / CNRS-UMR 8535 / Univ. Paris 6), Cachan (France); Blumenfeld, P. [CRDM / ARCELOR Grande Synthe, Dunkerque (France); Poirier, J. [CRDM / ARCELOR Grande Synthe, Dunkerque (France); CRMHT-CNRS, Orleans (France)

    2004-07-01

    In steel ladle linings, bauxite refractories in contact with iron and steel slag are subjected to complex loadings. To identify the causes of degradation in different reactor linings, a coupling diagram made up of three poles is established: namely, slag impregnation (I), Thermomechanics (TM) and phase transformations (P). The variation of the microstructure and the gradient of the chemical composition resulting from the (I-P) coupling are characterized by microprobe analyses; a natural impregnation tracer is identified. The (I-T) coupling is studied by modeling the refractory lining behavior subjected to a cyclic thermal loading within the framework of the mechanics of porous continua. Parameters governing the location and amplitude of the maximum pore pressure are obtained and their influences are studied. The analysis of the (TM) pole leads to the identification of a thermo-elasto-viscoplastic model for bauxite in various states of slag impregnation. Numerical simulations show that the stress state developed during the heating stages can induce spalling, probably generated by a localized over-pressure of slag. (orig.)

  9. Conservation of mining and metallurgic arachaeologic wooden objects by impregnation and radiation curing

    International Nuclear Information System (INIS)

    Schaudy, R.; Slais, E.; Eibner, C.

    1983-05-01

    The conservation of mining and metallurgic archaeologic wooden objects of different grade of destruction by impregnation with radiation-curable impregnating agents followed by in-situ-curing with gamma rays is described. Dry objects have been consolidated after cautious cleaning, whereas wet findings had to be freezedried first. The results are discussed. (Author) [de

  10. Impregnation of bio-oil from small diameter pine into wood for moisture resistance

    Science.gov (United States)

    Thomas J. Robinson; Brian K. Via; Oladiran Fasina; Sushil Adhikari; Emily Carter

    2011-01-01

    Wood pyrolysis oil consists of hundreds of complex compounds, many of which are phenolic-based and exhibit hydrophobic properties. Southern yellow pine was impregnated with a pyrolysis oil-based penetrant using both a high pressure and vacuum impregnation systems, with no significant differences in retention levels. Penetrant concentrations ranging from 5-50% pyrolysis...

  11. Antibiotic bonding to polytetrafluoroethylene with tridodecylmethylammonium chloride

    International Nuclear Information System (INIS)

    Harvey, R.A.; Alcid, D.V.; Greco, R.S.

    1982-01-01

    Polytetrafluoroethylene (PTFE) treated with the cationic surfactant, triodecylmethylammonium chloride (TDMAC), binds 14 C-penicillin (1.5 to 2 mg antibiotic/cm graft), whereas untreated PTFE or PTFE treated with anionic detergents shows little binding of antibiotic. TDMAC-treated PTFE concomitantly binds penicillin and heparin, generating a surface that potentially can resist both infection and thrombosis. The retention of these biologically active molecules is not due to passive entrapment in the PTFE but reflects an ionic interaction between the anionic ligands and surface-bound TDMAC. Penicillin bound to PTFE is not removed by exhaustive washing in aqueous buffers but is slowly released in the presence of plasma or when the PTFE is placed in a muscle pouch in the rat. Muscle tissue adjacent to the treated PTFE shows elevated levels of antibiotic following implantation. PTFE treated with TDMAC and placed in a muscle pouch binds 14 C-penicillin when it is locally irrigated with antibiotic or when penicillin is administered intravenously. Thus, the TDMAC surface treated either in vitro or in vivo with penicillin provides an effective in situ source for the timed release of antibiotic

  12. Spatial repellency of metofluthrin-impregnated multilayer paper strip against Aedes albopictus under outdoor conditions, Nagasaki, Japan

    OpenAIRE

    Argueta, Tamara Belzabel Obispo; Kawada, Hitoshi; Takagi, Masahiro

    2004-01-01

    Spatial repellency of a new device in which metofluthrin, a newly synthesized pyrethroid, is impregnated into a multilayer paper strip, against Aedes albopictus was evaluated under outdoor conditions. High spatial repellency (>80%) with the metofluthrin-impregnated (200 mg) device lasted for more than 6 weeks, while the repellency with the same device impregnated with the same amount of transfluthrin declined within 5 weeks after treatment.

  13. Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles

    International Nuclear Information System (INIS)

    Velázquez-Velázquez, Jorge Luis; Santos-Flores, Andrés; Araujo-Meléndez, Javier; Sánchez-Sánchez, Roberto; Velasquillo, Cristina; González, Carmen; Martínez-Castañon, Gabriel; Martinez-Gutierrez, Fidel

    2015-01-01

    Infections arising from bacterial adhesion and colonization on chronic wounds are a significant healthcare problem. Silver nanoparticles (AgNPs) impregnated in dressing have attracted a great deal of attention as a potential solution. The goal of the present study was to evaluate the anti-biofilm activities of AgNPs impregnated in commercial dressings against Pseudomonas aeruginosa, bacteria isolated of chronic wounds from a hospital patient. The antimicrobial activity of AgNPs was tested within biofilms generated under slow fluid shear conditions using a standard bioreactor. A 2-log reduction in the number of colony-forming units of P. aeruginosa was recorded in the reactor on exposure to dressing impregnated with 250 ppm of AgNPs, diameter 9.3 ± 1.1 nm, and also showed compatibility to mammalian cells (human fibroblasts). Our study suggests that the use of dressings with AgNPs may either prevent or reduce microbial growth in the wound environment, and reducing wound bioburden may improve wound-healing outcomes. - Highlights: • Biological activities of silver nanoparticles for wound-healing purposes • Characterization of the silver nanoparticles impregnated in dressings • Reduction in the P. aeruginosa biofilm formation was statistically significant. • Compatibility to human dermal fibroblasts as the main cell type involved in the reparation • AgNPs covering the surfaces would provide great potential for prevention and treatment

  14. Anti-biofilm and cytotoxicity activity of impregnated dressings with silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Velázquez-Velázquez, Jorge Luis [Laboratorio de Microbiología, Facultad de Ciencias Químicas, UASLP (Mexico); Santos-Flores, Andrés; Araujo-Meléndez, Javier [Servicio de Epidemiología del Hospital Central “Dr. Ignacio Morones Prieto”, San Luis Potosí (Mexico); Sánchez-Sánchez, Roberto; Velasquillo, Cristina [Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación (Mexico); González, Carmen [Laboratorio de Fisiología Celular, Facultad de Ciencias Químicas, UASLP (Mexico); Martínez-Castañon, Gabriel [Maestría en Ciencias Odontológicas Facultad de Estomatología, UASLP (Mexico); Martinez-Gutierrez, Fidel, E-mail: fidel@uaslp.mx [Laboratorio de Microbiología, Facultad de Ciencias Químicas, UASLP (Mexico)

    2015-04-01

    Infections arising from bacterial adhesion and colonization on chronic wounds are a significant healthcare problem. Silver nanoparticles (AgNPs) impregnated in dressing have attracted a great deal of attention as a potential solution. The goal of the present study was to evaluate the anti-biofilm activities of AgNPs impregnated in commercial dressings against Pseudomonas aeruginosa, bacteria isolated of chronic wounds from a hospital patient. The antimicrobial activity of AgNPs was tested within biofilms generated under slow fluid shear conditions using a standard bioreactor. A 2-log reduction in the number of colony-forming units of P. aeruginosa was recorded in the reactor on exposure to dressing impregnated with 250 ppm of AgNPs, diameter 9.3 ± 1.1 nm, and also showed compatibility to mammalian cells (human fibroblasts). Our study suggests that the use of dressings with AgNPs may either prevent or reduce microbial growth in the wound environment, and reducing wound bioburden may improve wound-healing outcomes. - Highlights: • Biological activities of silver nanoparticles for wound-healing purposes • Characterization of the silver nanoparticles impregnated in dressings • Reduction in the P. aeruginosa biofilm formation was statistically significant. • Compatibility to human dermal fibroblasts as the main cell type involved in the reparation • AgNPs covering the surfaces would provide great potential for prevention and treatment.

  15. Properties of carbonisation products obtained from impregnated coal

    Czech Academy of Sciences Publication Activity Database

    Plevová, Eva; Šugárková, Věra; Kaloč, M.; Vaculíková, Lenka

    -, - (2008), s. 52-61. ISBN 978-80-248-1939-6 Grant - others:GA CŘ(CZ) GA105/00/1698 Institutional research plan: CEZ:AV0Z30860518 Keywords : chlorides * impregnation * coal Subject RIV: CC - Organic Chemistry

  16. Structural surprises in friction-deposited films of poly(tetrafluoroethylene)

    DEFF Research Database (Denmark)

    Breiby, Dag Werner; Sølling, Theis Ivan; Bunk, Oliver

    2005-01-01

    Thin films of poly(tetrafluoroethylene) (PTFE) produced by friction deposition were studied using grazing incidence X-ray diffraction as the principal tool. The structure of the deposited thin films was compared with that of the surface of the PTFE bar used for depositing the films. Both exhibited...... the 15/7 helix conformation characteristic of crystal PTFE phase IV. A high degree of biaxial orientation was found for the highly crystalline thin films. Whereas the unit cell of the bar surface material appeared to be single-stem hexagonal, the film displayed diffraction characteristics consistent...... the possibility of a continuous transition between the low-order single-stem hexagonal and the multistem high-order unit cell. The degree of chain orientation was much lower at the surface of the bar than in the thin film. A modification of the commonly accepted mechanism for the transfer of material from the bar...

  17. Reflectance dependence of polytetrafluoroethylene on thickness for xenon scintillation light

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, J.; Neff, A.; Arthurs, M.; Batista, E.; Morton, D.; Okunawo, M.; Pushkin, K.; Sander, A. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Stephenson, S. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); University of California Davis, Department of Physics, One Shields Ave., Davis, CA 95616 (United States); Wang, Y. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Lorenzon, W., E-mail: lorenzon@umich.edu [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2017-06-01

    Many rare event searches including dark matter direct detection and neutrinoless double beta decay experiments take advantage of the high VUV reflective surfaces made from polytetrafluoroethylene (PTFE) reflector materials to achieve high light collection efficiency in their detectors. As the detectors have grown in size over the past decade, there has also been an increased need for ever thinner detector walls without significant loss in reflectance to reduce dead volumes around active noble liquids, outgassing, and potential backgrounds. We report on the experimental results to measure the dependence of the reflectance on thickness of two PTFE samples at wavelengths near 178 nm. No change in reflectance was observed as the wall thickness of a cylindrically shaped PTFE vessel immersed in liquid xenon was varied between 1 mm to 9.5 mm.

  18. Preparing polymer brushes on polytetrafluoroethylene films by free radical polymerization

    International Nuclear Information System (INIS)

    Sun Wei; Chen Yiwang; Deng Qilan; Chen Lie; Zhou Lang

    2006-01-01

    Films of polytetrafluoroethylene (PTFE) were exposed to sodium naphthalenide (Na/naphtha) etchant so as to defluorinate the surface for obtaining hydroxyl functionality. Surface-initiators were immobilized on the PTFE films by esterification of 4,4'-azobis(4-cyanopentanoic acid) (ACP) and the hydroxyl groups covalently linked to the surface. Grafting of polymer brushes on the PTFE films was carried out by the surface-initiated free radical polymerization. Homopolymers brushes of methyl methacrylate (MMA) were prepared by free radical polymerization from the azo-functionalized PTFE surface. The chemical composition and topography of the graft-functionalized PTFE surfaces were characterized by X-ray photoelectron spectroscopy (XPS), attenuated total reflectance (ATR) FT-IR spectroscopy and atomic force microscopy (AFM). Water contact angles on PTFE films were reduced by surface grafting of MMA

  19. Impregnated cathode coated with tungsten thin film containing Sc2O3

    International Nuclear Information System (INIS)

    Yamamoto, S.; Taguchi, S.; Watanabe, I.; Kawase, S.

    1987-01-01

    An impregnated cathode of a novel structure is proposed, fabricated, and evaluated. A thin tungsten film 100--400 nm in thickness containing various amounts of Sc 2 O 3 is coated on a standard impregnated cathode composed of a porous tungsten body in which electron emissive materials are impregnated. The electron emission property measured with a diode configuration is found to be dependent on Sc 2 O 3 content and surface atom distribution. Surface atom distribution is depicted by means of Auger electron spectroscopy. For high electron emission enhancement it is necessary for Sc 2 O 3 content to be 2.5--6.5 wt. % and for a layer of the order of a monolayer in thickness composed of Ba, Sc, and O to develop on the cathode surface

  20. Dielectric properties of transformer paper impregnated by mineral oil based magnetic fluid

    International Nuclear Information System (INIS)

    Timko, M; Marton, K; Tomco, L; Kopcansky, P; Koneracka, M

    2010-01-01

    The influence of combined magnetic and electric field on permittivity of transformer paper used in power transformers was observed. Transformer paper was impregnated by pure transformer oil ITO 100 and magnetic fluids based on transformer oil ITO 100 with different concentrations of magnetite nanoparticles. The measurements were carried out with help of high precision capacitance bridge. The electric intensity between circular planar electrodes was in the region of weak electric field (E > 10 6 V/m). The increase of electric permittivity of transformer paper impregnated by magnetic fluid opposite pure transformer paper was observed. The experiments showed that permittivity of insulator system consisting of pure transformer paper and impregnated transformer paper naturally depends on number of paper layers. The magnetodielectric effect was found to be dependent on magnetite nanoparticles concentration in magnetic fluids.

  1. Investigation of the metabolic consequences of impregnating spinach leaves with trehalose and applying a pulsed electric field.

    Science.gov (United States)

    Dymek, Katarzyna; Panarese, Valentina; Herremans, Els; Cantre, Dennis; Schoo, Rick; Toraño, Javier Sastre; Schluepmann, Henriette; Wadso, Lars; Verboven, Pieter; Nicolai, Bart M; Dejmek, Petr; Gómez Galindo, Federico

    2016-12-01

    The impregnation of leafy vegetables with cryoprotectants using a combination of vacuum impregnation (VI) and pulsed electric fields (PEF) has been proposed by our research group as a method of improving their freezing tolerance and consequently their general quality after thawing. In this study, we have investigated the metabolic consequences of the combination of these unit operations on spinach. The vacuum impregnated spinach leaves showed a drastic decrease in the porosity of the extracellular space. However, at maximum weight gain, randomly located air pockets remained, which may account for oxygen-consuming pathways in the cells being active after VI. The metabolic activity of the impregnated leaves showed a drastic increase that was further enhanced by the application of PEF to the impregnated tissue. Impregnating the leaves with trehalose by VI led to a significant accumulation of trehalose-6-phosphate (T6P), however, this was not further enhanced by PEF. It is suggested that the accumulation of T6P in the leaves may increase metabolic activity, and increase tissue resistance to abiotic stress. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Dielectric microwave absorbing material processed by impregnation of carbon fiber fabric with polyaniline

    Directory of Open Access Journals (Sweden)

    Luiza de Castro Folgueras

    2007-03-01

    Full Text Available It is a known fact that the adequate combination of components and experimental conditions may produce materials with specific requirements. This study presents the effect of carbon fiber fabric impregnation with polyaniline conducting polymer aiming at the radar absorbing material processing. The experiments consider the sample preparation with one and two impregnations. The prepared samples were evaluated by reflectivity measurements, in the frequency range of 8-12 GHz and scanning electron microscopy analyses. The correlation of the results shows that the quantity of impregnated material influences the performance of the processed microwave absorber. This study shows that the proposed experimental route provides flexible absorbers with absorption values of the incident radiation close to 87%.

  3. An in vitro Method for Predicting Inhalation Toxicity of Impregnation Spray Products

    DEFF Research Database (Denmark)

    Sørli, Jorid B.; Hansen, Jitka S.; Nørgaard, Asger Wisti

    2015-01-01

    Impregnation spray products are used for making surfaces water and dirt repellent. The products are composed of one or more active film-forming components dissolved or suspended in an appropriate solvent mixture. Exposure to impregnation spray products may cause respiratory distress and new cases...

  4. The investigation of copper-based impregnated activated carbons prepared from water-soluble materials for broad spectrum respirator applications

    Energy Technology Data Exchange (ETDEWEB)

    Smith, J.W.H.; Westreich, P.; Abdellatif, H.; Filbee-Dexter, P.; Smith, A.J. [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Wood, T.E. [3M Company, St. Paul, MN, 55144 (United States); Croll, L.M.; Reynolds, J.H. [3M Canada Company, Brockville, Ontario, K6V 5V8 (Canada); Dahn, J.R., E-mail: jeff.dahn@dal.ca [Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 3J5 (Canada); Department of Chemistry, Dalhousie University, Halifax, Nova Scotia, B3H 4J3 (Canada)

    2010-08-15

    The preparation of impregnated activated carbons (IACs) from aqueous, copper-containing solutions for broad spectrum gas filtration applications is studied here. Several samples were studied to determine the effect that impregnant loading, impregnant distribution and impregnant recipe had on the overall performance. Dynamic flow testing was used to determine the gas filtration capacity of the IAC samples versus a variety of challenge gases. X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to characterize the impregnant distribution on the carbon as a function of impregnant loading. Oven tests were performed to determine the thermal stability of the IAC samples exposed to elevated temperatures. The role impregnant distribution plays in gas filtration capacity and the overall performance of the IAC samples is discussed. The IAC samples prepared in this work were found to have gas filtration capacities as good as or better than broad spectrum respirator carbon samples prepared from the patent literature. IACs impregnated with an aqueous 2.4 M Cu(NO{sub 3}){sub 2}/0.04 M H{sub 3}PO{sub 4}.12MoO{sub 3}/4 M HNO{sub 3} solution that were heated to 200 deg. C under argon were found to have the best overall performance of the samples studied in this work.

  5. Photolithography of polytetrafluoroethylene for tailored adhesion

    International Nuclear Information System (INIS)

    Rye, R.R.; Martinez, R.J.

    1988-01-01

    Irradiation of polytetrafluoroethylene (PTFE) with Mg (Kα) x-rays is shown to protect the surface against the chemical etching steps used to prepare PTFE for adhesion. Pre-irradiated etched samples of PTFE have adhesions strengths of less than 3% of that for non-irradiated etched samples. The major portion of this decrease in adhesion strength occurs for x-ray exposures of less than 10 min ∼4.8 x10 3 mrads) and failure in every case occurs in PTFE and not in the bonded transition region. XPS measurements (20 angstrom sampling depth) show little difference in F content between irradiated and non-irradiated samples, but thermal desorption shows increasing fluorocarbon desorption with irradiation time. These results are consistent with the known radiation chemistry of PTFE. Irradiation produced free radicals lead to branching and/ or cross-linking, and a surface rich in low molecular weight fluorocarbons. The more rigid cross-linked surface is resistant to deep (10,000 angstrom chemical attack and the bond formed is with a surface rich in short chain flurocarbons. Both a thin boundary region and bonding to short chain species is expected to lead to weak adhesive bonding. Electron irradiation is shown to lead to protection against chemical etching comparable to that obtained with X-rays. With electrons one has the patterns with resolution limited by the beam diameter

  6. Novel antimony doped tin oxide/carbon aerogel as efficient electrocatalytic filtration membrane

    Directory of Open Access Journals (Sweden)

    Zhimeng Liu

    2016-05-01

    Full Text Available A facile method was developed to prepare antimony doped tin oxide (Sb-SnO2/carbon aerogel (CA for use as an electrocatalytic filtration membrane. The preparation process included synthesis of a precursor sol, impregnation, and thermal decomposition. The Sb-SnO2, which was tetragonal in phase with an average crystallite size of 10.8 nm, was uniformly distributed on the CA surface and firmly attached via carbon-oxygen-tin chemical bonds. Preliminary filtration tests indicated that the Sb-SnO2/CA membrane had a high rate of total organic carbon removal for aqueous tetracycline owing to its high current efficiency and electrode stability.

  7. A bioactive metallurgical grade porous silicon-polytetrafluoroethylene sheet for guided bone regeneration applications.

    Science.gov (United States)

    Chadwick, E G; Clarkin, O M; Raghavendra, R; Tanner, D A

    2014-01-01

    The properties of porous silicon make it a promising material for a host of applications including drug delivery, molecular and cell-based biosensing, and tissue engineering. Porous silicon has previously shown its potential for the controlled release of pharmacological agents and in assisting bone healing. Hydroxyapatite, the principle constituent of bone, allows osteointegration in vivo, due to its chemical and physical similarities to bone. Synthetic hydroxyapatite is currently applied as a surface coating to medical devices and prosthetics, encouraging bone in-growth at their surface and improving osseointegration. This paper examines the potential for the use of an economically produced porous silicon particulate-polytetrafluoroethylene sheet for use as a guided bone regeneration device in periodontal and orthopaedic applications. The particulate sheet is comprised of a series of microparticles in a polytetrafluoroethylene matrix and is shown to produce a stable hydroxyapatite on its surface under simulated physiological conditions. The microstructure of the material is examined both before and after simulated body fluid experiments for a period of 1, 7, 14 and 30 days using Scanning Electron Microscopy. The composition is examined using a combination of Energy Dispersive X-ray Spectroscopy, Thin film X-ray diffraction, Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy and the uptake/release of constituents at the fluid-solid interface is explored using Inductively Coupled Plasma-Optical Emission Spectroscopy. Microstructural and compositional analysis reveals progressive growth of crystalline, 'bone-like' apatite on the surface of the material, indicating the likelihood of close bony apposition in vivo.

  8. Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis

    Science.gov (United States)

    Cho, Min Kyung; Park, Hee-Young; Choe, Seunghoe; Yoo, Sung Jong; Kim, Jin Young; Kim, Hyoung-Juhn; Henkensmeier, Dirk; Lee, So Young; Sung, Yung-Eun; Park, Hyun S.; Jang, Jong Hyun

    2017-04-01

    To improve the cell performance for alkaline anion exchange membrane water electrolysis (AEMWE), the effects of the amount of polytetrafluoroethylene (PTFE) non-ionomeric binder in the anode and the hot-pressing conditions during the fabrication of the membrane electrode assemblies (MEAs) on cell performances are studied. The electrochemical impedance data indicates that hot-pressing at 50 °C for 1 min during MEA construction can reduce the polarization resistance of AEMWE by ∼12%, and increase the initial water electrolysis current density at 1.8 V (from 195 to 243 mA cm-2). The electrochemical polarization and impedance results also suggest that the AEMWE performance is significantly affected by the content of PTFE binder in the anode electrode, and the optimal content is found to be 9 wt% between 5 and 20 wt%. The AEMWE device fabricated with the optimized parameters exhibits good water splitting performance (299 mA cm-2 at 1.8 V) without noticeable degradation in voltage cycling operations.

  9. Permeabilitas Membran Transpor Campuran Unsur Tanah Jarang (La, Nd, Gd, Lu Menggunakan Carrier (TBP : D2EHPA Melalui Supported Liquid Membrane

    Directory of Open Access Journals (Sweden)

    Djabal Nur Basir

    2015-01-01

    Full Text Available Methods that have been developed currently for the separation and purification of rare earth elements, REE’s are solvent extraction by through immobilization of an extracting agent in a porous polymeric membrane. This methods beside could increase the transport selectivity, also the amount of carrier was very few. This technique is known as supported liquid membrane, SLM. Research toward transport and separation of REE’s through SLM have been still relatively limited merely to single feed-binary mixture, and one type of carrier. The transport   membrane permeability was obtained in a mixture of REE’s (La,Nd,Gd,Lu using the carrier TBP : D2EHPA by SLM. In this SLM technique, supporting membrane PTFE (polytetrafluoroethylene was soaked in a mixture of TBP carrier (tributilfosfat as a neutral ligand and D2EHPA (acid-2- etilheksilfosfat as anionic ligand with a particular concentration ratio in the solvent kerosene as membrane phase. HCl as receiver phase and solution mixture of REE’s as feed phase. Determination of the REE’s total concentration was carried out by UV-Vis spectrophotometry with NAS (sodium alizarin sulfonate as the colouring agent at pH 4,75 and the solution absorbance was determinated at 534 nm as maximum wavelength. Transport patterns of REE’s on the variation of the concentration of total mixed carrier composition, pH, and concentration  of the receiver phase were done for 300 minutes. The optimum conditions of transport mixture of REE’s (La, Nd, Gd, Lu were feed phase pH 3,0; carrier TBP: D2EHPA (0,3:0,7 M; and receiver phase HCl 3,0 M. In this condition, the transport membrane permeability in mixture of REE’s was 0,1077 cm.menit-1 with the percent of transport was 95,24%.

  10. The effect of silanated and impregnated fiber on the tensile strength of E-glass fiber reinforced composite retainer

    Directory of Open Access Journals (Sweden)

    Niswati Fathmah Rosyida

    2015-12-01

    Full Text Available Background: Fiber reinforced composite (FRC is can be used in dentistry as an orthodontic retainer. FRC  still has a limitations because of to  a weak bonding between fibers and matrix. Purpose: This research was aimed to evaluate the effect of silane as coupling agent and fiber impregnation on the tensile strength of E-glass FRC. Methods: The samples of this research were classified into two groups each of which consisted of three subgroups, namely the impregnated fiber group (original, 1x addition of silane, 2x addition of silane and the non-impregnated fiber group (original, 1x addition of silane, 2x addition of silane. The tensile strength was measured by a universal testing machine. The averages of the tensile strength in all groups then were compared by using Kruskal Wallis and Mann Whitney post hoc tests. Results: The averages of the tensile strength (MPa in the impregnated fiber group can be known as follow; original impregnated fiber (26.60±0.51, 1x addition of silane (43.38±4.42, and 2x addition of silane (36.22±7.23. The averages of tensile strength (MPa in the non-impregnated fiber group can also be known as follow; original non-impregnated fiber (29.38±1.08, 1x addition of silane (29.38±1.08, 2x addition of silane (12.48±2.37. Kruskal Wallis test showed that there was a significant difference between the impregnated fiber group and the non-impregnated fiber group (p<0.05. Based on the results of post hoc test, it is also known that the addition of silane in the impregnated fiber group had a significant effect on the increasing of the tensile strength of E-glass FRC (p<0.05, while the addition of silane in the non-impregnated fiber group had a significant effect on the decreasing of the tensile strength of E-glass FRC. Conclusion: It can be concluded that the addition of silane in the non-silanated fiber group can increase the tensile strength of E-glass FRC, but the addition of silane in the silanated fiber group can

  11. Heavy metal ion adsorption onto polypyrrole-impregnated porous carbon.

    Science.gov (United States)

    Choi, Moonjung; Jang, Jyongsik

    2008-09-01

    Polypyrrole-impregnated porous carbon was readily synthesized using vapor infiltration polymerization of pyrrole monomers. The results show that the functionalized polymer layer was successfully coated onto the pore surface of carbon without collapse of mesoporous structure. The modified porous carbon exhibited an improved complexation affinity for heavy metal ions such as mercury, lead, and silver ions due to the amine group of polypyrrole. The introduced polypyrrole layer could provide the surface modification to be applied for heavy metal ion adsorbents. Especially, polymer-impregnated porous carbon has an enhanced heavy metal ion uptake, which is 20 times higher than that of adsorbents with amine functional groups. Furthermore, the relationship between the coated polymer amount and surface area was also investigated in regard to adsorption capacity.

  12. Rhodamine 6G impregnated porous silica: A photoluminescence study

    Energy Technology Data Exchange (ETDEWEB)

    Anedda, A. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Canada) (Italy); Carbonaro, C.M. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Canada) (Italy)]. E-mail: cm.carbonaro@dsf.unica.it; Clemente, F. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Ca) (Italy); Corpino, R. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Ca) (Italy); Ricci, P.C. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Ca) (Italy); Rossini, S. [Dipartimento di Fisica, Universita degli Studi di Cagliari and INMF UdR Cagliari, SP no8, Km 0700, 09042, Monserrato (Ca) (Italy)

    2005-12-15

    The optical properties of rhodamine 6G dye confined in porous silica are reported. Photoluminescence properties of embedded chromophores in mesoporous hosts can be affected by the surrounding matrices: shifts in emission spectra and variations of photoluminescence quantum yield are found as compared to dye solutions. Host-guest interactions are studied here by varying both SiO{sub 2} xerogels porosity and the dye concentration. Comparing samples obtained by impregnating matrices with 5.4 and 18.2 nm pores with solutions having concentrations in the rhodamine 6G high laser gain, matrices with 5.4 nm pores impregnated with a dye concentration of 5 x 10{sup -4} M are found to be the most stable and efficient in the examined range.

  13. Impregnated Fibrous Materials. Report of a Study Group on Impregnated Fibrous Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-10-15

    There has recently been renewed interest in the use of radiation from radioisotopes or particle accelerators to initiate and sustain chemical reactions. Particular attention is being paid to the production of wood-plastic composites, a process which is now a commercial reality with radiation competing against chemical methods to enhance the properties of wood. It has been reported that water repellancy, hardness, weathering, insect and chemical resistance, compressive, bending and shear strength can be significantly improved by the process, but so far there has been a limited commercial outlet for the product. Papers on this subject were presented at the International Atomic Energy Agency's Symposium on Industrial Uses of Large Radiation Sources, Salzburg, May 1963, and since then the Agency has been aware of the interest of developing countries in conducting research on wood and other fibrous materials as a means of further exploiting natural resources. It was felt that some attempt should be made to co-ordinate, on a regional basis, the work being done in this field and at the same time review the world status, including the associated technology in such areas as monomer-polymer chemistry and impregnation techniques where they are directly related to this work. Because of the wide range of fibrous materials being studied there, Asia and the Far East was chosen as the most representative area and 39 participants from 13 countries, and from international organizations, met in Bangkok from 20 to 24 November 1967 to assess the potential of impregnated fibrous materials. This report is a record of the meeting and is based not only on work performed both inside and outside the region but also on details of the resources and industries in the area.

  14. Comment on the mechanism of operation of the impregnated tungsten cathode

    Science.gov (United States)

    Forman, R.

    1979-01-01

    Recent life-test measurements, over 20,000-30,000 h, on impregnated tungsten cathodes in tubes employing an open-type electron-gun structure, show emission current degradation with time. This is in contrast to those recently published by Rittner on B-type cathodes, run in close-spaced diodes, taken some years ago. These more recent life-test results are consistent with the model suggested by Forman and disputed by Rittner that the barium coverage on an impregnated cathode is less than a monolayer for most of its life and decreases with time.

  15. A Combined Electro-Thermal Breakdown Model for Oil-Impregnated Paper

    Directory of Open Access Journals (Sweden)

    Meng Huang

    2017-12-01

    Full Text Available The breakdown property of oil-impregnated paper is a key factor for converter transformer design and operation, but it is not well understood. In this paper, breakdown voltages of oil-impregnated paper were measured at different temperatures. The results showed that with the increase of temperature, electrical, electro-thermal and thermal breakdown occurred successively. An electro-thermal breakdown model was proposed based on the heat equilibrium and space charge transport, and negative differential mobility was introduced to the model. It was shown that carrier mobility determined whether it was electrical or thermal breakdown, and the model can effectively explain the temperature-dependent breakdown.

  16. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings

    International Nuclear Information System (INIS)

    Jafari, R.; Menini, R.; Farzaneh, M.

    2010-01-01

    A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon). Scanning electron microscopy images showed a 'bird's nest'-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a high static contact angle of ∼165 deg. with a very low contact angle hysteresis of ∼3 deg. X-ray photoelectron spectroscopy (XPS) results showed high quantities of CF 3 and CF 2 groups, which are responsible for the hydrophobic behavior of the coatings. The performance of this superhydrophobic film was studied under atmospheric icing conditions. These results showed that on superhydrophobic surfaces ice-adhesion strength was 3.5 times lower than on the polished aluminum substrate.

  17. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings

    Science.gov (United States)

    Jafari, R.; Menini, R.; Farzaneh, M.

    2010-12-01

    A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon ®). Scanning electron microscopy images showed a " bird's nest"-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a high static contact angle of ˜165° with a very low contact angle hysteresis of ˜3°. X-ray photoelectron spectroscopy (XPS) results showed high quantities of CF 3 and CF 2 groups, which are responsible for the hydrophobic behavior of the coatings. The performance of this superhydrophobic film was studied under atmospheric icing conditions. These results showed that on superhydrophobic surfaces ice-adhesion strength was 3.5 times lower than on the polished aluminum substrate.

  18. IMPROVED HEALING OF SMALL-CALIBER POLYTETRAFLUOROETHYLENE PROSTHESES BY INDUCTION OF A CLOT LAYER - A REVIEW OF EXPERIMENTAL STUDIES IN RATS

    NARCIS (Netherlands)

    VANDERLEI, B; STRONCK, JW; WILDEVUUR, CRH

    1991-01-01

    This report reviews our experiments that have been undertaken to test the hypothesis whether the induction of a clot layer on the graft surface of small-caliber polytetrafluoroethylene ( PTFE) prostheses might improve their healing. 1 2 PTFE prostheses with a fibril length of 30-mu-m, PTFE

  19. Swelling kinetics and impregnation of PLA with thymol under supercritical CO2 conditions

    Directory of Open Access Journals (Sweden)

    Milovanović Stoja L.

    2016-01-01

    Full Text Available The present work was aimed to study swelling kinetics of polylactic acid (PLA and its impregnation with thymol in supercritical carbon dioxide (scCO2 medium. The influences of temperature and soaking time on the swelling kinetics and impregnation yield of PLA cylindrical disc and film were investigated. Swelling experiments were performed in a high pressure view cell at 10 MPa and temperatures of 40°C, 60°C and 75°C for 2 to 24 h. On the basis of swelling kinetics, pressure of 10 MPa and temperature of 40°C were chosen for supercritical solvent impregnation (SSI of the PLA samples during 2 to24 h. The highest swelling extent was observed for the PLA monolith after 24 h treatment with pure scCO2 (7.5% and scCO2 with thymol (118.3%. It was shown that sufficiently high amount of thymol can be loaded into both PLA monolith and film using SSI after only 2 h (10.0% and 6.6%, respectively. Monolith and film of PLA impregnated with thymol could be suitable for active food packaging and sterile medical disposables.

  20. Destruction of Toluene by the Combination of High Frequency Discharge Electrodeless Lamp and Manganese Oxide-Impregnated Granular Activated Carbon Catalyst

    Directory of Open Access Journals (Sweden)

    Jianhui Xu

    2014-01-01

    Full Text Available The destruction of low concentration of toluene (0–30 ppm has been studied under the UV/photogenerated O3/MnO2-impregnated granular activated carbon (MnO2-impregnated GAC process by the combination of self-made high frequency discharge electrodeless lamp (HFDEL with MnO2-impregnated GAC catalyst. Experimental results showed that the initial toluene concentration can strongly affect the concentration of photogenerated O3 from HFDEL and the efficiency and mass rate of destruction of toluene via HFDEL/MnO2-impregnated GAC system. Active oxygen and hydroxyl radicals generated from HFDEL/MnO2-impregnated GAC system played a key role in the decomposition of toluene process and the intermediates formed by photolysis are more prone to be mineralized by the subsequent MnO2-impregnated GAC catalyst compared to the original toluene, resulting in synergistic mineralization of toluene by HFDEL/MnO2-impregnated GAC system. The role of MnO2-impregnated GAC catalyst is not only to eliminate the residual O3 completely but also to enhance the decomposition and mineralization of toluene.

  1. Mechanical and Magnetic Properties of YBCO Superconductor with Bi/CNT Composite and Resin/CNT Impregnation

    International Nuclear Information System (INIS)

    Oh, W. S.; Jang, G. E.; Han, Y. H.; Sung, T. H.

    2007-01-01

    Bi/CNT composite and resin/CNT were chosen to improve the mechanical properties of YBa 2 Cu 3 O 7 (YBCO) superconductor. In order to elucidate the effects of Bi/CNT composite and resin/CNT in YBCO superconductors, melt texture superconductor were impregnated by mixed compound of Bi and CNT into the artificial holes parallel to the c-axis, which were drilled on the YBCO superconductor. Various amount of Bi/CNT and resin/CNT were impregnated to YBCO superconductor with different holes diameters. Typical artificial holes diameters were 0.5, 0.7, and 1.0 mm respectively. Result of three-point bending test measurement, the bending strength with resin/CNT impregnation was improved up to 59.64 MPa as compared with 50.79 MPa of resin/CNT free bulk. Resin/CNT impregnation has been found to be one of the effective ways in improving the mechanical properties of bulk superconductor.

  2. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    OpenAIRE

    Md. Poostforush; H. Azizi

    2014-01-01

    The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO). Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina) but their transparency was preserved (Tλ550 nm ~ 72%). Integrated annealed alumina phase, low ...

  3. Textile impregnation with thermoplastic resin - models and application

    NARCIS (Netherlands)

    Loendersloot, Richard; Grouve, Wouter Johannes Bernardus; Lamers, E.A.D.; Wijskamp, Sebastiaan; Kelly, P.A.; Bickerton, S.; Lescher, P.; Govignon, Q.

    2012-01-01

    One of the key issues of the development of cost-effective thermoplastic composites for the aerospace industry is the process quality control. A complete, void free impregnation of the textile reinforcement by the thermoplastic resin is an important measure of the quality of composites. The

  4. Pore structure, mechanical properties and polymer characteristics of porous materials impregnated with methylmethacrylate

    International Nuclear Information System (INIS)

    Hastrup, K.

    1976-05-01

    The pore structure of porous materials plays a decisive role with regard to many properties of the materials. One therefore expects property improvement due to impregnation to be mostly brought about as a result of pore structure modification. This supposition formed the basis for the project here presented, which had the main aim of investigating polymer impregnation in relation to pore structure. Objectives were: 1) to examine the pore structure of hardened cement paste, beech wood and porous glass before and after gas-phase impregnation with methyl-methacrylate monomer and in situ polymerization, 2) to investigate the influence of the pore structure on the molecular weight of the polymer, 3) to investigate the influence of the degree of pore filling on the elastic modulus, damping coefficient and bending strength. (author)

  5. Active screen cage pulsed dc discharge for implanting copper in polytetrafluoroethylene (PTFE)

    Science.gov (United States)

    Zaka-ul-Islam, Mujahid; Naeem, Muhammad; Shafiq, Muhammad; Sitara; Jabbar Al-Rajab, Abdul; Zakaullah, Muhammad

    2017-07-01

    Polymers such as polytetrafluoroethylene (PTFE) are widely used in artificial organs where long-term anti-bacterial properties are required to avoid bacterial proliferation. Copper or silver ion implantation on the polymer surface is known as a viable method to generate long-term anti-bacterial properties. Here, we have tested pulsed DC plasma with copper cathodic cage for the PTFE surface treatment. The surface analysis of the treated specimens suggests that the surface, structural properties, crystallinity and chemical structure of the PTFE have been changed, after the plasma treatment. The copper release tests show that copper ions are released from the polymer at a slow rate and quantity of the released copper increases with the plasma treatment time.

  6. The Effects of Natural Weathering on Color Stability of Impregnated and Varnished Wood Materials

    Directory of Open Access Journals (Sweden)

    Turkay Turkoglu

    2015-01-01

    Full Text Available The aim of this study was to investigate effects of natural weathering on color stability of Scots pine (Pinus sylvestris L. and Oriental beech (Fagus orientalis L. impregnated with some chemicals [tanalith-E (TN-E, adolit-KD5 (AD-KD5, and chromated copper arsenate (CCA] and then varnished [synthetic varnish (SV and polyurethane varnish (PV]. While applying varnish increased lightness, impregnation decreased lightness of the wood specimens before natural weathering. Natural weathering caused greenish, bluish, and dark color tones of the wood surface. Total color change was increased with increasing exposure times in natural weathering. Untreated (control wood specimens exhibited higher color changes than the other wood specimens in all the stages of natural weathering. The total color changes of untreated Oriental beech specimens were less than untreated Scots pine specimens. The color stability of impregnated and varnished wood specimens gave better results than untreated and solely varnished wood specimens after natural weathering. The best color stability was obtained from both Oriental beech and Scots pine wood impregnated with TN-E before PV coating.

  7. Coupling Sodium Dodecyl Sulfate–Capillary Polyacrylamide Gel Electrophoresis with MALDI-TOF-MS via a PTFE Membrane

    Science.gov (United States)

    Lu, Joann J.; Zhu, Zaifang; Wang, Wei; Liu, Shaorong

    2011-01-01

    Sodium dodecyl sulfate (SDS)–polyacrylamide gel electrophoresis (PAGE) is a fundamental analytical technique for proteomic research, and SDS–capillary gel electrophoresis (CGE) is its miniaturized version. Compared to conventional slab-gel electrophoresis, SDS-CGE has many advantages such as increased separation efficiency, reduced separation time and automated operation. SDS-CGE is not widely accepted in proteomic research primarily due to the difficulties in identifying the well-resolved proteins. MALDI–TOF–MS is an outstanding platform for protein identifications. Coupling the two would solve the problem but is extremely challenging because the MS detector has no access to the SDS-CGE resolved proteins and the SDS interferes with MS detection. In this work we introduce an approach to address these issues. We discover that poly(tetrafluoroethylene) (PTFE) membranes are excellent materials for collecting SDS-CGE separated proteins. We demonstrate that we can wash off the SDS bound to the collected proteins and identify these proteins on-membrane with MALDI-TOF-MS. We also show that we can immunoblot and Coomassie-stain the proteins collected on these membranes. PMID:21309548

  8. Possible applications of crown-ethers to metal extraction using liquid membrane technology - a literature survey

    International Nuclear Information System (INIS)

    Dozol, M.

    1990-01-01

    Ether-crowns, discovered in 1967 by J.C. PEDERSEN, exhibit attractive complexive and extractive properties, enhanced in various fields, such as analytical chemistry, chemical synthesis, field of biology, or extractive chemistry. The investigations carried out on these macrocyclic compounds are continually increasing, as show in international literature. Among the focus of interest, the applications to metal extraction are extensively studied with crown compounds present in liquid phase or impregnated on supports (membranes or resins). The goal of this paper is to describe the application of crown-ethers to metal extraction, using liquid membrane processes. 69 refs

  9. Combustion Characteristics of Impregnated and Surface-treated Chestnut (Castanea sativa Mill. Wood Left Outdoors for One Year

    Directory of Open Access Journals (Sweden)

    Muhammed Said Fidan

    2016-01-01

    Full Text Available Treating wood with impregnating materials in order to improve resistance to burning is a commonly employed safety measure. In this study, chestnut (Castanea sativa Mill. wood samples were impregnated using either Tanalith-E or Wolmanit-CB according to ASTM-D 1413-76 and surface-treated using water-based or synthetic varnish according to ASTM-D 3023. These samples were used to investigate the combustion characteristics of samples left outdoors for one year as detailed in ASTM-E 160-50. The combustion temperatures of the samples left outdoors were similar upon impregnation with either Tanalith-E or Wolmanit-CB. However, the combustion temperature of the samples treated with synthetic varnish was lower than those that were treated with water-based varnish. The time to collapse and the total duration of combustion of the samples left outdoors were shorter for those impregnated with Wolmanit-CB. Weight loss of the samples left outdoors was higher for those that were impregnated with Tanalith-E and treated with water-based varnish. Gas analysis of the samples that were left outdoors indicated that the O2 content of flue gas from samples that were impregnated with Wolmanit-CB and treated with synthetic varnish was high and the CO content of flue gas from the same samples was low.

  10. In vitro evaluation of various bioabsorbable and nonresorbable barrier membranes for guided tissue regeneration

    Directory of Open Access Journals (Sweden)

    Smeets Ralf

    2008-10-01

    Full Text Available Abstract Background Different types of bioabsorbable and nonresorbable membranes have been widely used for guided tissue regeneration (GTR with its ultimate goal of regenerating lost periodontal structures. The purpose of the present study was to evaluate the biological effects of various bioabsorbable and nonresorbable membranes in cultures of primary human gingival fibroblasts (HGF, periodontal ligament fibroblasts (PDLF and human osteoblast-like (HOB cells in vitro. Methods Three commercially available collagen membranes [TutoDent® (TD, Resodont® (RD and BioGide® (BG] as well as three nonresorbable polytetrafluoroethylene (PTFE membranes [ACE (AC, Cytoplast® (CT and TefGen-FD® (TG] were tested. Cells plated on culture dishes (CD served as positive controls. The effect of the barrier membranes on HGF, PDLF as well as HOB cells was assessed by the Alamar Blue fluorometric proliferation assay after 1, 2.5, 4, 24 and 48 h time periods. The structural and morphological properties of the membranes were evaluated by scanning electron microscopy (SEM. Results The results showed that of the six barriers tested, TD and RD demonstrated the highest rate of HGF proliferation at both earlier (1 h and later (48 h time periods (P P ≤ 0.001. In HOB cell culture, the highest rate of cell proliferation was also calculated for TD at all time periods (P Conclusion Results from the present study suggested that GTR membrane materials, per se, may influence cell proliferation in the process of periodontal tissue/bone regeneration. Among the six membranes examined, the bioabsorbable membranes demonstrated to be more suitable to stimulate cellular proliferation compared to nonresorbable PTFE membranes.

  11. Conservation experiments applying radiation-curable impregnating agents to intact and artifically decayed wood samples

    International Nuclear Information System (INIS)

    Schaudy, R.; Slais, E.

    1983-02-01

    Conservation experiments have been performed applying 10 selected impregnating agents to intact and chemically as well as biologically decayed wood samples. The quality of the radiation-curable impregnating agents could be valued by determination of the monomer uptake, the alteration of dimensions and volume and the deformation of the samples. The results are to be discussed. (Author) [de

  12. Conservation of waterlogged wood by freeze-drying and optional resin impregnation

    International Nuclear Information System (INIS)

    Schaudy, R.

    1987-09-01

    As a contribution to the 'International Comparative Study on Waterlogged Wood' (Grattan-Schweingruber-Project) of the ICOM Working Group on Waterlogged Organic Materials seven archaeological wood samples from sites in Canada, England, the Netherlands, Japan, Norway and Western Australia have been treated. The conservation process consisted of freeze-drying following a polyethylene glycol (PEG 400) treatment and - for fragile objects - of a resin impregnation using a radiation-curable impregnant and gamma radiation for curing. The results are discussed, however without paying regard to the other contributions to this international study. 20 refs., 3 tabs., 30 figs. (Author)

  13. An innovative process for the impregnation of magnet coils and other structures

    International Nuclear Information System (INIS)

    Evans, D.; Morgan, J.T.

    1992-01-01

    The need to bond and encapsulate the conductor in many types of superconductive magnet is well understood. The choice of materials for bonding may influence the performance of the coil and the technique used for its application. This paper considers the merits of three types of close-quote bonding close-quote procedure and presents details of an innovative method for the vacuum impregnation of coils. The process has been developed and evaluated in an attempt to remove some of the uncertainties of the vacuum impregnation process that traditionally may be eliminated only with the use of sealed mould tools and high quality vacuum chambers. For large magnets or for mass production, this process may lead to a reduction in tooling and plant costs, together with reduced resin consumption and improved health and safety factors. The process has been developed in conjunction with a resin system that has been designed to exhibit excellent thermal shock characteristics and to minimise preparation time and post impregnation cleaning requirements

  14. Superior thermal conductivity of transparent polymer nanocomposites with a crystallized alumina membrane

    Directory of Open Access Journals (Sweden)

    Md. Poostforush

    2014-04-01

    Full Text Available The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO. Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina but their transparency was preserved (Tλ550 nm ~ 72%. Integrated annealed alumina phase, low refractive index mismatch between resin and alumina and formation of nano-optical fibers through the membrane resulted in such marvel combination. This report shows a great potential of these types of nanocomposites in ‘heat management’ of lightening devices.

  15. Production of polytetrafluoroethylene by means of polymerization induced by gamma radiation

    International Nuclear Information System (INIS)

    Sugao, A.B.

    1986-01-01

    The process of polytetrafluoroethylene (PTFE) production, is studied. The TFE monomer was prepared by pyrolisis of clorodifluoromethane (R-22) and purified by low temperature fractional distillation. The bulk polymerization of tetrafluoroethylene (TFE) induced by gamma rays from a 185 TBq (5000 Ci) Co-60 source was studied at several temperatures (0 0 C, -23 0 C e -78 0 C). The purified monomer was introduced into stainless steel cylindres of 15 and 60 ml under vacuum. Glass cylindres of 10,50 and 700 ml were also used for irradiation at -78 0 C. The polymer was obtained as white agglomerated particles. The I.R. spectra of polymer samples were consistent with those of commercial PTFE. The melting points of samples were between 327 and 331 0 C. (Author) [pt

  16. A procedure for Alcian blue staining of mucins on polyvinylidene difluoride membranes.

    Science.gov (United States)

    Dong, Weijie; Matsuno, Yu-ki; Kameyama, Akihiko

    2012-10-16

    The isolation and characterization of mucins are critically important for obtaining insight into the molecular pathology of various diseases, including cancers and cystic fibrosis. Recently, we developed a novel membrane electrophoretic method, supported molecular matrix electrophoresis (SMME), which separates mucins on a polyvinylidene difluoride (PVDF) membrane impregnated with a hydrophilic polymer. Alcian blue staining is widely used to visualize mucopolysaccharides and acidic mucins on both blotted membranes and SMME membranes; however, this method cannot be used to stain mucins with a low acidic glycan content. Meanwhile, periodic acid-Schiff staining can selectively visualize glycoproteins, including mucins, but is incompatible with glycan analysis, which is indispensable for mucin characterizations. Here we describe a novel staining method, designated succinylation-Alcian blue staining, for visualizing mucins on a PVDF membrane. This method can visualize mucins regardless of the acidic residue content and shows a sensitivity 2-fold higher than that of Pro-Q Emerald 488, a fluorescent periodate Schiff-base stain. Furthermore, we demonstrate the compatibility of this novel staining procedure with glycan analysis using porcine gastric mucin as a model mucin.

  17. Supercritical impregnation of cinnamaldehyde into polylactic acid as a route to develop antibacterial food packaging materials.

    Science.gov (United States)

    Villegas, Carolina; Torres, Alejandra; Rios, Mauricio; Rojas, Adrián; Romero, Julio; de Dicastillo, Carol López; Valenzuela, Ximena; Galotto, María José; Guarda, Abel

    2017-09-01

    Supercritical impregnation was used to incorporate a natural compound with antibacterial activity into biopolymer-based films to develop active food packaging materials. Impregnation tests were carried out under two pressure conditions (9 and 12MPa), and three depressurization rates (0.1, 1 and 10MPamin -1 ) in a high-pressure cell at a constant temperature equal to 40°C. Cinnamaldehyde (Ci), a natural compound with proven antimicrobial activity, was successfully incorporated into poly(lactic acid) films (PLA) using supercritical carbon dioxide (scCO 2 ), with impregnation yields ranging from 8 to 13% w/w. Higher pressure and slower depressurization rate seem to favor the Ci impregnation. The incorporation of Ci improved thermal, structural and mechanical properties of the PLA films. Impregnated films were more flexible, less brittle and more resistant materials than neat PLA films. The tested samples showed strong antibacterial activity against the selected microorganisms. In summary, this study provides an innovative route to the development of antibacterial biodegradable materials, which could be used in a wide range of applications of active food packaging. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Comparison of the performance of natural latex membranes prepared with different procedures and PTFE membrane in guided bone regeneration (GBR) in rabbits.

    Science.gov (United States)

    Moura, Jonas M L; Ferreira, Juliana F; Marques, Leonardo; Holgado, Leandro; Graeff, Carlos F O; Kinoshita, Angela

    2014-09-01

    This work assessed the performance of membranes made of natural latex extracted from Hevea brasiliensis prepared with three different methods: polymerized immediately after collection without the use of ammonia (L1); polymerized after preservation in ammonia solution (L2); and polymerized after storage in ammonia, followed by Soxhlet technique for the extraction of substances (L3). Polytetrafluoroethylene (PTFE) membrane was used as control. Two 10-mm diameter bone defects were surgically made in the calvaria of thirty adult male New Zealand rabbits. Defects (total n = 60) were treated with guided bone regeneration (GBR) using L1, L2, L3 or PTFE membranes (n = 15 for each membrane). Ten animals were euthanized after 7, 20 and 60 days postoperatively so that five samples (n = 5) of each treatment were collected at each time, and bone regeneration was assessed microscopically. The microscopic analysis revealed defects filled with blood clot and new bone formation at the margins of the defect in all 7-day samples, while 20-day defects were mainly filled with fibrous connective tissue. After 60 days defects covered with L1 membranes showed a significantly larger bone formation area in comparison to the other groups (P PTFE membranes was also investigated in six additional rabbits. The animals were subjected to the same surgical procedure for the confection of one 10-mm diameter bone defect that was treated with L1 (n = 3) or PTFE (n = 3). Fifty-three days later, a second surgery was performed to make a second defect, which was treated with the same type of membrane used in the first surgery. Seven days later, the animals were euthanized and samples analyzed. No differences among L1 and PTFE samples collected from sensitized and non-sensitized animals were found (P > 0.05, Kruskal-Wallis). Therefore, the results demonstrated that latex membranes presented performance comparable to PTFE membranes, and that L1 membranes induced higher bone formation. L1 and

  19. Superhydrophobic and icephobic surfaces prepared by RF-sputtered polytetrafluoroethylene coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, R., E-mail: rjafari@uqac.ca [NSERC / Hydro-Quebec / UQAC Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE) and Canada Research Chair on Engineering of Power Network Atmospheric Icing (INGIVRE), Universite du Quebec a Chicoutimi, Chicoutimi, QC (Canada); Menini, R.; Farzaneh, M. [NSERC / Hydro-Quebec / UQAC Industrial Chair on Atmospheric Icing of Power Network Equipment (CIGELE) and Canada Research Chair on Engineering of Power Network Atmospheric Icing (INGIVRE), Universite du Quebec a Chicoutimi, Chicoutimi, QC (Canada)

    2010-12-15

    A superhydrophobic and icephobic surface were investigated on aluminum alloy substrate. Anodizing was used first to create a micro-nanostructured aluminum oxide underlayer on the alloy substrate. In a second step, the rough surface was coated with RF-sputtered polytetrafluoroethylene (PTFE or Teflon). Scanning electron microscopy images showed a 'bird's nest'-like structure on the anodized surface. The RF-sputtered PTFE coating exhibited a high static contact angle of {approx}165 deg. with a very low contact angle hysteresis of {approx}3 deg. X-ray photoelectron spectroscopy (XPS) results showed high quantities of CF{sub 3} and CF{sub 2} groups, which are responsible for the hydrophobic behavior of the coatings. The performance of this superhydrophobic film was studied under atmospheric icing conditions. These results showed that on superhydrophobic surfaces ice-adhesion strength was 3.5 times lower than on the polished aluminum substrate.

  20. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation

    International Nuclear Information System (INIS)

    Dumée, Ludovic F.; Alglave, Hortense; Chaffraix, Thomas; Lin, Bao; Magniez, Kevin; Schütz, Jürg

    2016-01-01

    Graphical abstract: - Highlights: • Systematic surface modifications by gas plasma treatment of hydrophobic polymers. • Correlation between plasma parameters and materials surface energy and morphology. • Spectral analysis of the formation of functional groups across the membranes surface. • Relationship between wettability, roughness and performance. - Abstract: The impact on performance of the surface energy and roughness of membrane materials used for direct contact membrane distillation are critical but yet poorly investigated parameters. The capacity to alter the wettability of highly hydrophobic materials such as poly(tetra-fluoro-ethylene) (PTFE) by gas plasma treatments is reported in this paper. An equally important contribution from this investigation arises from illustrating how vaporized material from the treated sample participates after a short while in the composition of the plasma and fundamentally changes the result of surface chemistry processes. The water contact angle across the hydrophobic membranes is generally controlled by varying the plasma gas conditions, such as the plasma power, chamber pressure and irradiation duration. Changes to surface porosity and roughness of the bulk material as well as the surface chemistry, through specific and partial de-fluorination of the surface were detected and systematically studied by Fourier transform infra-red analysis and scanning electron microscopy. It was found that the rupture of fibrils, formed during membrane processing by thermal-stretching, led to the formation of a denser surface composed of nodules similar to these naturally acting as bridging points across the membrane material between fibrils. This structural change has a profound and impart a permanent effect on the permeation across the modified membranes, which was found to be enhanced by up to 10% for long plasma exposures while the selectivity of the membranes was found to remain unaffected by the treatment at a level higher

  1. Morphology-properties relationship of gas plasma treated hydrophobic meso-porous membranes and their improved performance for desalination by membrane distillation

    Energy Technology Data Exchange (ETDEWEB)

    Dumée, Ludovic F., E-mail: ludovic.dumee@deakin.edu.au [Deakin University, Geelong Victoria–Australia - Institute for Frontier Materials (Australia); Alglave, Hortense; Chaffraix, Thomas; Lin, Bao; Magniez, Kevin [Deakin University, Geelong Victoria–Australia - Institute for Frontier Materials (Australia); Schütz, Jürg [CSIRO, Manufacturing Flagship, 75 Pigdons Road, 3216 Waurn Ponds, Victoria (Australia)

    2016-02-15

    Graphical abstract: - Highlights: • Systematic surface modifications by gas plasma treatment of hydrophobic polymers. • Correlation between plasma parameters and materials surface energy and morphology. • Spectral analysis of the formation of functional groups across the membranes surface. • Relationship between wettability, roughness and performance. - Abstract: The impact on performance of the surface energy and roughness of membrane materials used for direct contact membrane distillation are critical but yet poorly investigated parameters. The capacity to alter the wettability of highly hydrophobic materials such as poly(tetra-fluoro-ethylene) (PTFE) by gas plasma treatments is reported in this paper. An equally important contribution from this investigation arises from illustrating how vaporized material from the treated sample participates after a short while in the composition of the plasma and fundamentally changes the result of surface chemistry processes. The water contact angle across the hydrophobic membranes is generally controlled by varying the plasma gas conditions, such as the plasma power, chamber pressure and irradiation duration. Changes to surface porosity and roughness of the bulk material as well as the surface chemistry, through specific and partial de-fluorination of the surface were detected and systematically studied by Fourier transform infra-red analysis and scanning electron microscopy. It was found that the rupture of fibrils, formed during membrane processing by thermal-stretching, led to the formation of a denser surface composed of nodules similar to these naturally acting as bridging points across the membrane material between fibrils. This structural change has a profound and impart a permanent effect on the permeation across the modified membranes, which was found to be enhanced by up to 10% for long plasma exposures while the selectivity of the membranes was found to remain unaffected by the treatment at a level higher

  2. Forecasting the condition of petroleum impregnated load bearing ...

    African Journals Online (AJOL)

    Petroleum products (PP) used in industrial processes systematically fall on the load-bearing CRC structures and gradually impregnate therein. Currently, available guidelines for the assessment of technical condition and reliability of load-bearing CRC structures do not fully take into account the effect of viscosity of PP that ...

  3. Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO2 and NOx

    International Nuclear Information System (INIS)

    Sumathi, S.; Bhatia, S.; Lee, K.T.; Mohamed, A.R.

    2010-01-01

    This work examines the impregnated carbon-based sorbents for simultaneous removal of SO 2 and NOx from simulated flue gas. The carbon-based sorbents were prepared using palm shell activated carbon (PSAC) impregnated with several metal oxides (Ni, V, Fe and Ce). The removal of SO 2 and NOx from the simulated flue gas was investigated in a fixed-bed reactor. The results showed that PSAC impregnated with CeO 2 (PSAC-Ce) reported the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO 2 and NOx. PSAC-Ce showed the longest breakthrough time of 165 and 115 min for SO 2 and NOx, respectively. The properties of the pure and impregnated PSAC were analyzed by BET, FTIR and XRF. The physical-chemical features of the PSAC-Ce sorbent indicated a catalytic activity in both the sorption of SO 2 and NOx. The formation of both sulfate (SO 4 2- ) and nitrate (NO 3- ) species on spent PSAC-Ce further prove the catalytic role played by CeO 2 .

  4. Barium depletion study on impregnated cathodes and lifetime prediction

    International Nuclear Information System (INIS)

    Roquais, J.M.; Poret, F.; Doze, R. le; Ricaud, J.L.; Monterrin, A.; Steinbrunn, A.

    2003-01-01

    In the thermionic cathodes used in cathode ray-tubes (CRTs), barium is the key element for the electronic emission. In the case of the dispenser cathodes made of a porous tungsten pellet impregnated with Ba, Ca aluminates, the evaporation of Ba determines the cathode lifetime with respect to emission performance in the CRT. The Ba evaporation results in progressive depletion of the impregnating material inside the pellet. In the present work, the Ba depletion with time has been extensively characterized over a large range of cathode temperature. Calculations using the depletion data allowed modeling of the depletion as a function of key parameters. The link between measured depletion and emission in tubes has been established, from which an end-of-life criterion was deduced. Taking modeling into account, predicting accelerated life-tests were performed using high-density maximum emission current (MIK)

  5. Management of carotid Dacron patch infection: a case report using median sternotomy for proximal common carotid artery control and in situ polytetrafluoroethylene grafting.

    Science.gov (United States)

    Illuminati, Giulio; Calio', Francesco G; D'Urso, Antonio; Ceccanei, Gianluca; Pacilè, Maria Antonietta

    2009-01-01

    We report on a 58-year-old male who presented with an enlarging cervical hematoma 3 months following carotid endarterectomy with Dacron patch repair, due to septic disruption of the Dacron patch secondary to presumed infection. The essential features of this case are the control of the proximal common carotid artery gained through a median sternotomy, because the patient was markedly obese with minimal thyromental distance, and the treatment consisting of in situ polytetrafluoroethylene bypass grafting, due to the absence of a suitable autogenous saphenous vein. Median sternotomy is rarely required in case of reintervention for septic false aneurysms and hematomas following carotid endarterectomy but should be considered whenever difficult control of the common carotid artery, when entering the previous cervicotomy, is anticipated. In situ polytetrafluoroethylene grafting can be considered if autogenous vein material is lacking.

  6. Impregnation of β-tricalcium phosphate robocast scaffolds by in situ polymerization.

    Science.gov (United States)

    Martínez-Vázquez, Francisco J; Perera, Fidel H; van der Meulen, Inge; Heise, Andreas; Pajares, Antonia; Miranda, Pedro

    2013-11-01

    Ring-opening polymerization of ε-caprolactone (ε-CL) and L-lactide (LLA) was performed to impregnate β-tricalcium phosphate (β-TCP) scaffolds fabricated by robocasting. Concentrated colloidal inks prepared from β-TCP commercial powders were used to fabricate porous structures consisting of a 3D mesh of interpenetrating rods. ε-CL and LLA were in situ polymerized within the ceramic structure by using a lipase and stannous octanoate, respectively, as catalysts. The results show that both the macropores inside the ceramic mesh and the micropores within the ceramic rods are full of polymer in either case. The mechanical properties of scaffolds impregnated by in situ polymerization (ISP) are significantly increased over those of the bare structures, exhibiting similar values than those obtained by other, more aggressive, impregnation methods such as melt-immersion (MI). ISP using enzymatic catalysts requires a reduced processing temperature which could facilitate the incorporation of growth factors and other drugs into the polymer composition, thus enhancing the bioactivity of the composite scaffold. The implications of these results for the optimization of the mechanical and biological performance of scaffolds for bone tissue engineering applications are discussed. Copyright © 2013 Wiley Periodicals, Inc.

  7. Chiral separation of amino-alcohols using extractant impregnated resins

    NARCIS (Netherlands)

    Babic, K.; Driessen, G.H.M.; van der Ham, Aloysius G.J.; de Haan, A.B.

    2007-01-01

    The performance of extractant impregnated resin (EIR) technology for chiral separation of amino-alcohols has been investigated. Phenylglycinol was selected as an archetype model enantiomer and azophenolic crown ether was used as a versatile enantioselective extractant. 1-Phenyloctane was selected as

  8. Partial-impregnation techniques in the production of wood-polymer composites through gamma irradiation

    International Nuclear Information System (INIS)

    Du Plessis, T.A.; Du Toit, G.S.; Jurriaanse, A.

    1977-04-01

    Radiation-processed wood-polymer composites produced from various partially impregnated Pinus species grown in South Africa were investigated and compared to a number of locally available noble hardwoods in respect of dimensional stability, hardness, homogeneity and weathering properties. This investigation clearly demonstrates that, through partial-impregnation techniques, wood-polymer composites can be formed from the locally grown Pinus species with a considerable saving in monomer costs without sacrificing most of the important physical properties of these materials [af

  9. Formation of SiO2/polytetrafluoroethylene hybrid superhydrophobic coating

    International Nuclear Information System (INIS)

    Zheng Yansheng; He Yi; Qing Yongquan; Zhuo Zhihao; Mo Qian

    2012-01-01

    Highlights: ► The coating showed the water contact angle of 165° and the water sliding angle of 6°. ► The hierarchical structure with the low surface energy leads to surface superhydrophobicity. ► We demonstrated a simple yet efficient approach to preparing superhydrophobic surface. - Abstract: Superhydrophobic coating has been fabricated on the glass substrates with modified SiO 2 sol and polytetrafluoroethylene emulsion through a sol–gel process. SiO 2 sol was modified with γ-glycidoxypropyl trimethoxysilane. The coatings were characterized by water contact angle measurement, Scanning electron microscope, Fourier transform infrared spectrometry, X-ray photoelectron spectroscopy and thermal synthetic analysis. The experimental results show that coatings exhibited superhydrophobic and heat-resistant property with a water average contact angle of 156° and sliding angle of 6°, coating has a rough surface with both micro- and nanoscale structures, γ-glycidoxypropyl trimethoxysilane enhanced the hydrophobicity of the coatings. Low surface energy of polymer and special structure of the coatings were responsible for the hydrophobic of the surfaces.

  10. Bioactive surface modifications on inner walls of poly-tetra-fluoro-ethylene tubes using dielectric barrier discharge

    Science.gov (United States)

    Cho, Yong Ki; Park, Daewon; Kim, Hoonbae; Lee, Hyerim; Park, Heonyong; Kim, Hong Ja; Jung, Donggeun

    2014-03-01

    Bioactive surface modification can be used in a variety of medical polymeric materials in the fields of biochips and biosensors, artificial membranes, and vascular grafts. In this study, the surface modification of the inner walls of poly-tetra-fluoro-ethylene (PTFE) tubing was carried out to improve vascular grafts, which are made of biocompatible material for the human body in the medical field. Focus was centered on the cell attachment of the inner wall of the PTFE by sequential processes of hydrogen plasma treatment, hydrocarbon deposition, and reactive plasma treatment on the PFTE surface using micro plasma discharge. Micro plasma was generated by a medium-frequency alternating current high-voltage generator. The preliminary modification of PTFE was conducted by a plasma of hydrogen and argon gases. The hydrocarbon thin film was deposited on modified PTFE with a mixture of acetylene and argon gases. The reactive plasma treatment using oxygen plasma was done to give biocompatible functionality to the inner wall surface. The hydrophobic surface of bare PTFE is made hydrophilic by the reactive plasma treatment due to the formation of carbonyl groups on the surface. The reactive treatment could lead to improved attachment of smooth muscle cells (SMCs) on the modified PTFE tubing. Fourier transform infrared absorption spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle measurement were used for the analysis of the surface modification. The SMC-attached PTFE tube developed will be applicable to in vitro human vasculature-mimetic model systems, and to medical vascular grafts.

  11. Characterisation of a re-cast composite Nafion® 1100 series of proton exchange membranes incorporating inert inorganic oxide particles

    OpenAIRE

    Slade, S.; Smith, James; Campbell, S.; Ralph, T.; Ponce de Leon, C.; Walsh, F.

    2010-01-01

    A series of cation exchange membranes was produced by impregnating and coating both sides of a quartz web with a Nafion® solution (1100 EW, 10%wt in water). Inert filler particles (SiO2, ZrO2 or TiO2; 5–20%wt) were incorporated into the aqueous Nafion® solution to produce robust, composite membranes. Ion-exchange capacity/equivalent weight, water take-up, thickness change on hydration and ionic and electrical conductivity were measured in 1 mol dm−3 sulfuric acid at 298 K. The TiO2 filler sig...

  12. Effects of the operational conditions on the membrane and electrode properties of a polymer electrolyte fuel cell

    Directory of Open Access Journals (Sweden)

    Passos Raimundo R.

    2002-01-01

    Full Text Available The effects of the operational conditions on the membrane and electrode properties on a polymer electrolyte fuel cell (PEFC were investigated as a function of the cell and the gas humidifiers temperatures, the thickness of the membrane, the impregnation with phosphotungstic acid (PWA, and the variation of the Nafion and Teflon contents in the gas diffusion electrodes. An increase of the membrane resistance was observed when the PEFC is operated at temperatures equal or higher than those of the gas humidifiers, and this is more apparent for thicker electrolyte films. In the presence of PWA, the physicochemical properties of the membrane do not appreciably change with temperature. However, in this case, a lower humidification temperature affects the electrode performance. Changes on the Nafion loading in the electrodes do not lead to any significant effect in the electrode and membrane properties. For high Teflon contents there is a small lowering of the membrane conductivity.

  13. Preparation of TiO2 hollow fibers using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template

    International Nuclear Information System (INIS)

    Lu Haiqiang; Zhang Lixiong; Xing Weihong; Wang Huanting; Xu Nanping

    2005-01-01

    TiO 2 hollow fibers were successfully prepared by using poly(vinylidene fluoride) hollow fiber microfiltration membrane as a template. The preparation procedure includes repeated impregnation of the TiO 2 precursor in the pores of the polymeric membrane, and calcination to burn off the template, producing the TiO 2 hollow fibers. The TiO 2 hollow fibers were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). TiO 2 hollow fibers with other structures, such as honeycomb monolith and spring, were also prepared by preshaping the polymeric membranes into the honeycomb structure and spring, respectively. The phase structure of the TiO 2 hollow fibers could be readily adjusted by changing the calcination temperature

  14. Ablation of polytetrafluoroethylene using a continuous CO2 laser beam

    International Nuclear Information System (INIS)

    Tolstopyatov, E M

    2005-01-01

    The ablation of polytetrafluoroethylene (PTFE) is studied using a continuous CO 2 laser beam of 30-50 W at a mean intensity of 0.05-50 MW m -2 . The ablation products and changes in the target layer are examined using infrared spectroscopy, x-ray photoelectron spectroscopy, x-ray diffraction and electron microscopy. The main experiments were conducted with an unfocused beam of intensity 0.9-1.2 MW m -2 . The radiation-polymer interaction characteristics were found to change appreciably as the ablation conditions are approached. Within the polymer layer, light scattering diminishes and true resonant light absorption increases. Two distinct polymer components, which differ primarily in their resistance to CO 2 laser radiation, were found to exist under ablation conditions. The less stable component depolymerizes intensively, while the more resistant component is blown up into fibres by intense gas flow. The reasons behind this behaviour are discussed. Preliminary gamma irradiation of PTFE is found to have a significant influence on the laser ablation process

  15. Bacterial flagella as biotemplate for the synthesis of silver nanoparticle impregnated bionanomaterial

    Energy Technology Data Exchange (ETDEWEB)

    Gopinathan, Priya [Nanobiotechnology Laboratory, Nanotech Research Facility, PSG Institute of Advanced Studies, Coimbatore, 641004 (India); Ashok, Anuradha M. [HRTEM facility, Nanotech Research Facility, PSG Institute of Advanced Studies, Coimbatore, 641004 (India); Selvakumar, R., E-mail: selvabiotech@gmail.com [Nanobiotechnology Laboratory, Nanotech Research Facility, PSG Institute of Advanced Studies, Coimbatore, 641004 (India)

    2013-07-01

    The present study was carried out to synthesize one dimensional silver nanoparticle impregnated flagellar bionanomaterial. Flagella was isolated from Salmonella typhimurium and depolymerised into flagellin monomers. The flagellin monomers were repolymerised again into flagella using suitable technique. The molecular weight of native (NF) and polymerized flagella (PF) was determined using polyacrylamide gel electrophoresis. The NF and PF were used as a template, over which silver nanoparticles were impregnated using in situ chemical reduction process. The synthesized flagellar-silver nanoparticle bionanomaterials were characterized using UV–vis, FT-IR Raman and XRD spectroscopy, and High resolution transmission electron microscopy (HR-TEM). The characterization studies confirmed the attachment of silver nanoparticles over flagella and repolymerised flagella. The size of the silver nanoparticles on the flagella and repolymerised flagella varied and was in the range of 3–11 nm. I–V characteristics of the bionanomaterials were analyzed using Kethley meter which indicated the increase of conductivity after impregnation of silver nanoparticles. The results indicated that flagellar-silver nanoparticle bionanomaterials can be used as a potential one dimensional bionanomaterials for various applications.

  16. Bacterial flagella as biotemplate for the synthesis of silver nanoparticle impregnated bionanomaterial

    International Nuclear Information System (INIS)

    Gopinathan, Priya; Ashok, Anuradha M.; Selvakumar, R.

    2013-01-01

    The present study was carried out to synthesize one dimensional silver nanoparticle impregnated flagellar bionanomaterial. Flagella was isolated from Salmonella typhimurium and depolymerised into flagellin monomers. The flagellin monomers were repolymerised again into flagella using suitable technique. The molecular weight of native (NF) and polymerized flagella (PF) was determined using polyacrylamide gel electrophoresis. The NF and PF were used as a template, over which silver nanoparticles were impregnated using in situ chemical reduction process. The synthesized flagellar-silver nanoparticle bionanomaterials were characterized using UV–vis, FT-IR Raman and XRD spectroscopy, and High resolution transmission electron microscopy (HR-TEM). The characterization studies confirmed the attachment of silver nanoparticles over flagella and repolymerised flagella. The size of the silver nanoparticles on the flagella and repolymerised flagella varied and was in the range of 3–11 nm. I–V characteristics of the bionanomaterials were analyzed using Kethley meter which indicated the increase of conductivity after impregnation of silver nanoparticles. The results indicated that flagellar-silver nanoparticle bionanomaterials can be used as a potential one dimensional bionanomaterials for various applications.

  17. Improvement in tribological properties of atmospheric plasma-sprayed WC-Co coating followed by Cu electrochemical impregnation

    International Nuclear Information System (INIS)

    Yuan Jianhui; Zhu Yingchun; Zheng Xuebing; Ruan Qichao; Ji Heng

    2009-01-01

    The WC-Co coating obtained by atmospheric plasma spraying (APS) was modified by Cu electrochemical impregnation. The copper has infiltrated into and filled up the pores in WC-Co coating. The tribological properties of the coating against the stainless steel ball as sliding pairs were investigated with a ball-on-disc (BOD) configuration in air at room temperature. The as-prepared samples were characterized by means of optical microscope, scanning electron microscope and X-ray diffraction. It was found that the frictional behavior of the WC-Co coating followed by Cu electrochemical impregnation was superior to that of WC-Co coating. The wear mechanism of the WC-Co coating followed by Cu electrochemical impregnation was microcutting, whilst that of a WC-Co coating was the fatigue wear. The improvement in tribological properties of the WC-Co coating followed by Cu electrochemical impregnation was attributed to the formation of self-lubricating Cu film on the wear surface which induces the transformation of wear mechanism.

  18. Advanced Examination Techniques Applied to the Assessment of Vacuum Pressure Impregnation (VPI) of ITER Correction Coils

    CERN Document Server

    Sgobba, Stefano; Samain, Valerie; Libeyre, Paul; Cecillon, Alexandre; Dawid, J

    2014-01-01

    The ITER Magnet System includes a set of 18 superconducting correction coils (CC) which are used to compensate the error field modes arising from geometrical deviations caused by manufacturing and assembly tolerances. The turn and ground insulation are electrically insulated with a multi-layer fiberglass polyimide interleaved composite, impregnated with epoxy resin using vacuum pressure impregnation (VPI). Adequate high voltage insulation (5 kV), mechanical strength and rigidity of the winding pack should be achieved after impregnation and curing of the insulation system. VPI is an effective process to avoid defects such dry spots and incomplete wet out. This insulation technology has also been developed since several years for application to large superconducting coils and more recently to ITER CC. It allows the coils to be impregnated without impacting on their functional characteristics. One of the critical challenges associated with the construction of the CC is the qualification of the VPI insulation. Se...

  19. Property-porosity relationships for polymer-impregnated superconducting ceramic composite

    International Nuclear Information System (INIS)

    Salib, S.; Vipulanandan, C.

    1990-01-01

    A thermoplastic polymer, poly(methyl methacrylate) (PMMA), was used to improve the flexural properties of the high-temperature superconducting ceramic (YBa 2 Cu 3 O 7-δ ). Ceramic specimens with different porosities were prepared by dry compacting 12.5-mm-diameter disk specimens at various uniaxial pressures. Density-pressure relationships have been developed for before- and after-sintering conditions. The PMMA polymer was impregnated into the porous ceramic at room temperature. The mechanical properties were evaluated by concentrically loading simply supported disk specimens. The load-displacement responses were analyzed using the finite-element method. Impregnation of PMMA polymer at room temperature increased the flexural strength and modulus of the superconducting ceramic without affecting its electrical properties. The flexural properties depended on the porosity of the ceramics, and, hence, linear and nonlinear property-porosity relationships have been used to characterize the behavior of superconducting ceramic with an without the polymer

  20. Thin layer chromatography of glucose and sorbitol on Cu(II)-impregnated silica gel plates

    Energy Technology Data Exchange (ETDEWEB)

    Hadzija, O. (Ruder Boskovic Inst., Zagreb (Croatia)); Spoljar, B. (Ruder Boskovic Inst., Zagreb (Croatia)); Sesartic, L. (Inst. of Immunology, Zagreb (Croatia))

    1994-04-01

    A thin-layer chromatographic (TLC) separation of glucose and sorbitol on CU(II)-impregnated silica gel plates with n-propanol: Water (4:1) v/v as developer and potassium permanganate as detecting reagent has been worked out. The new impregnant is completely insoluble in water and thus enables the use of an aqueous developer. The R[sub f]-values are 55 and 10 for glucose and sorbitol, respectively. (orig.)

  1. Arsenic removal using silver-impregnated Prosopis spicigera L ...

    African Journals Online (AJOL)

    Arsenic removal using silver-impregnated Prosopis spicigera L. wood (PSLW) activated carbon: batch and column studies. ... Arsenic uptake has no regular trend with increasing pH; contains two adsorption maxima, the first adsorption maximum at pH 4.0 and a second adsorption maximum at pH 10.0. The extent of As (III) ...

  2. Radiation induced grafting of tetrafluoroethylene on Nafion Films for ion exchange membrane application

    International Nuclear Information System (INIS)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Ferreto, Helio Fernando Rodrigues; Souza, Camila Pinheiro; Parra, Duclerc Fernandes; Lugao, Ademar Benevolo

    2011-01-01

    Grafting of TFE nanocomposites onto Nafion was studied for synthesis of ion exchange membranes. Radiation-induced grafting of TFE gas onto Nafion films was investigated after simultaneous irradiation using a 60 Co source. The thermal degradation of polytetrafluoroethylene (PTFE) waste has been used for production of TFE. Nafion films were irradiated at 15 kGy dose at room temperature and chemical changes were monitored after contact with TFE gas for grafting. The modified films were evaluated by differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TG), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Characterization by XRD suggests crystallinity changes after TFE grafting. The ion exchange capacity (IEC) of membranes was determined by acid-base titration and the values for modified films were achieved similar to Nafion pristine films. DSC measurements revealed a displacement in the endothermic peaks and it was probably associated with the TFE graft. The graft forces the Nafion polymer chains to re-organize themselves and form a more cross-linked structure within the clusters. (author)

  3. Radiation induced grafting of tetrafluoroethylene on Nafion Films for ion exchange membrane application

    Energy Technology Data Exchange (ETDEWEB)

    Geraldes, Adriana Napoleao; Silva, Dionisio Furtunato da; Ferreto, Helio Fernando Rodrigues; Souza, Camila Pinheiro; Parra, Duclerc Fernandes; Lugao, Ademar Benevolo [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    Grafting of TFE nanocomposites onto Nafion was studied for synthesis of ion exchange membranes. Radiation-induced grafting of TFE gas onto Nafion films was investigated after simultaneous irradiation using a {sup 60}Co source. The thermal degradation of polytetrafluoroethylene (PTFE) waste has been used for production of TFE. Nafion films were irradiated at 15 kGy dose at room temperature and chemical changes were monitored after contact with TFE gas for grafting. The modified films were evaluated by differential scanning calorimetry analysis (DSC), thermogravimetric analysis (TG), scanning electron microscopy (SEM) and X-ray diffraction (XRD). Characterization by XRD suggests crystallinity changes after TFE grafting. The ion exchange capacity (IEC) of membranes was determined by acid-base titration and the values for modified films were achieved similar to Nafion pristine films. DSC measurements revealed a displacement in the endothermic peaks and it was probably associated with the TFE graft. The graft forces the Nafion polymer chains to re-organize themselves and form a more cross-linked structure within the clusters. (author)

  4. Silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine for carbon dioxide capture under the flue gas condition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Min-Sang; Park, Soo-Jin, E-mail: sjpark@inha.ac.kr

    2015-03-15

    In this study, silica-coated multi-walled carbon nanotubes impregnated with polyethyleneimine (PEI) were prepared via a two-step process: (i) hydrolysis of tetraethylorthosilicate onto multi-walled carbon nanotubes, and (ii) impregnation of PEI. The adsorption properties of CO{sub 2} were investigated using CO{sub 2} adsorption–desorption isotherms at 298 K and thermogravimetric analysis under the flue gas condition (15% CO{sub 2}/85% N{sub 2}). The results obtained in this study indicate that CO{sub 2} adsorption increases after impregnation of PEI. The increase in CO{sub 2} capture was attributed to the affinity between CO{sub 2} and the amine groups. CO{sub 2} adsorption–desorption experiments, which were repeated five times, also showed that the prepared adsorbents have excellent regeneration properties. - Graphical abstract: Fabrication and CO{sub 2} adsorption process of the S-MWCNTs impregnated with PEI. - Highlights: • Silica coated-MWCNT impregnated with PEI was synthesized. • Amine groups of PEI gave CO{sub 2} affinity sites on MWCNT surfaces. • The S-MWCNT/PEI(50) exhibited the highest CO{sub 2} adsorption capacity.

  5. Influence of impregnation by inorganic substances on the yield of pyrolysis products

    Energy Technology Data Exchange (ETDEWEB)

    Shevkoplyas, V N; Saranchuk, V I [AN Ukrainskoj SSR, Donetsk (Ukraine). Inst. Fiziko-Organicheskoj Khimii i Uglekhimii

    1998-09-01

    In papers was shown that fossil coals impregnation by aqueous solution of inorganic substances with a subsequent pyrolysis leads to the rise of the rate and depth of its organic mass destruction into liquid and gaseous products. This is, apperently, conditioned by changes in coals structure already on the stage of treatment. But, there are few papers that study an activating effect of inorganic reactants upon natural coals structure and their behaviour at pyrolysis. One of the methods which allows to judge structural transformation in coals at their impregnation by inorganic substances is an X-ray analysis. (orig.)

  6. 3D Imaging of Water-Drop Condensation on Hydrophobic and Hydrophilic Lubricant-Impregnated Surfaces

    Science.gov (United States)

    Kajiya, Tadashi; Schellenberger, Frank; Papadopoulos, Periklis; Vollmer, Doris; Butt, Hans-Jürgen

    2016-04-01

    Condensation of water from the atmosphere on a solid surface is an ubiquitous phenomenon in nature and has diverse technological applications, e.g. in heat and mass transfer. We investigated the condensation kinetics of water drops on a lubricant-impregnated surface, i.e., a micropillar array impregnated with a non-volatile ionic liquid. Growing and coalescing drops were imaged in 3D using a laser scanning confocal microscope equipped with a temperature and humidity control. Different stages of condensation can be discriminated. On a lubricant-impregnated hydrophobic micropillar array these are: (1) Nucleation on the lubricant surface. (2) Regular alignment of water drops between micropillars and formation of a three-phase contact line on a bottom of the substrate. (3) Deformation and bridging by coalescence which eventually leads to a detachment of the drops from the bottom substrate. The drop-substrate contact does not result in breakdown of the slippery behaviour. Contrary, on a lubricant-impregnated hydrophilic micropillar array, the condensed water drops replace the lubricant. Consequently, the surface loses its slippery property. Our results demonstrate that a Wenzel-like to Cassie transition, required to maintain the facile removal of condensed water drops, can be induced by well-chosen surface hydrophobicity.

  7. Impregnation of Graphite with Liquid Silicon in a Vacuum; Impregnation du graphite avec du silicium llquide sous vide; Propitka grafita kremniem v vakuume; Impregnacion de grafito con silicio liquido en el vacio

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, V. E.; Zelenskij, V. F.; Kolendovskij, M. K.; Kolomiets, L. D.

    1963-11-15

    A study was made of the possibility of producing high thermal resistance graphite-silicon carbide materials by means of impregnating MG graphite with liquid silicon in a vacuum. An attempt is made to explain the mechanism and origins of the degradation of products during the impregnation process. On the basis of their researches the authors put forward a number of technical requirements, observance of which make it possible to produce graphite-silicon carbide materials by means of impregnation of graphite with liquid silicon-in a vacuum at temperatures of 1450 to 1600 deg. C. (author) [French] Les auteurs etudient la possibilite d'obtenir, en impregnant du graphite MG avec du silicium liquide sous vide, des materiaux au graphite, carbure et silicium resistants a la chaleur. Ils cherchent a expliquer le mecanisme et les causes de la destruction des produits au cours de l'impregnation. Se fondant sur les resultats de leurs recherches, ils enoncent un certain nombre de conditions technologiques a remplir pour obtenir les materiaux en question en impregnant le graphite de silicium liquide sous vide, a une temperature de l'ordre de 1450 a 1600 deg. C. (author) [Spanish] Los autores han estudiado la posibilidad de preparar materiales de grafito y carburo de silicio de elevada resistencia termica impregnando grafito marca MG con silicio liquido en el vacio. Proponen una explicacion del mecanismo y de las causas de la degradacion de los productos durante la impregnacion. Sobre la base de las investigaciones realizadas, los autores enumeran una serie de condiciones tecnologicas cuyo cumplimiento permite preparar piezas de grafito y carburo de silicio, impregnando el grafito con silicio liquido en el vacio a temperaturas comprendidas entre 1450 y 1600 deg. C. [Russian] V rabote izuchalas' vozmozhnost' sozdaniya grafit-karbidkremnievykh materialov s povyshennoj termostojkost'yu putem propitki grafita marki MG zhidkim kremniem v vakuume. Sdelana popytka ob{sup y

  8. [E-PTFE Membrane for the Management of Perforated Corneal Ulcer].

    Science.gov (United States)

    Pahor, D; Pahor, A

    2016-10-01

    Purpose: To present the surgical management of perforated corneal ulcer using PRECLUDE® Pericardial Membrane, composed of expanded polytetrafluoroethylene (e-PTFE; GORE-TEX®), as an alternative surgical procedure in patients at high risk of graft rejections and to evaluate side effects for a prolonged period. Patients and Methods: The study included all patients who were admitted to our department and underwent surgical repair of perforated corneal ulcer with the e-PTFE membrane between 2010 and 2015. In total, 8 patients (8 eyes) were enrolled. Medical records of all patients were retrospectively reviewed. The operation was performed under peribulbar anaesthesia. Non-absorbable, microporous, watertight 0.1 mm thick e-PTFE membrane was used to close the corneal ulcer. The membrane was cut to overlap the defect adequately and to achieve the desired tissue attachment without preparing the conjunctiva or superficial trephination of the cornea. The membrane was fixed to the healthy cornea with several non-absorbable sutures (Prolene® 10.0), in order to achieve the proper stress without wrinkling. Results: Five of 8 patients were treated for systemic immunological diseases. Sjögren's syndrome was diagnosed in 2 patients, granulomatosis with polyangiitis in one, vasculitis with a history of previous sclerokeratitis in one and systemic lupus erythematosus in one. In 2 patients, corneal perforation was observed as a complication of corneal infection and in one patient as a late complication of a severe chemical burn. Corneal perforations were successfully covered with e-PTFE membrane in all patients. E-PTFE membrane was well tolerated in all patients and the eye was always preserved. After 3 to 4 months, the membrane was removed in 7 patients. The underlying cornea was thin, firm, stable and vascularised. In one patient with Sjögren's syndrome, the e-PTFE membrane is still in place. Conclusion: Surgical management of perforated corneal ulcer using E-PTFE membrane

  9. Impregnation of cinnamaldehyde into cassava starch biocomposite films using supercritical fluid technology for the development of food active packaging.

    Science.gov (United States)

    de Souza, Ana Cristina; Dias, Ana M A; Sousa, Hermínio C; Tadini, Carmen C

    2014-02-15

    In this work, supercritical solvent impregnation (SSI) has been tested for the incorporation of natural compounds into biocomposite materials for food packaging. Cinnamaldehyde, with proved antimicrobial activity against fungi commonly found in bread products, was successfully impregnated on biocomposite cassava starch based materials using supercritical carbon dioxide as solvent. Different process experimental conditions were tested (pressure, impregnation time and depressurization rate) at a fixed temperature (35 °C) in order to study their influence on the amount of impregnated cinnamaldehyde as well as on the morphology of the films. Results showed that all conditions permitted to impregnate antimicrobial active amounts superior to those previously obtained using conventional incorporation methods. Moreover, a significant decrease of the equilibrium water vapor sorption capacity and water vapor permeability of the films was observed after SSI processing which is a clear advantage of the process, considering the envisaged applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Investigation of the Acoustic Properties of Chemically Impregnated Kayu Malam Wood Used for Musical Instrument

    Directory of Open Access Journals (Sweden)

    Md. Faruk Hossen

    2018-01-01

    Full Text Available The chemical modification or impregnation through preparing the wood polymer composites (WPCs can effectively reduce the hygroscopicity as well as can improve the acoustic properties of wood. On the other hand, a small amount of nanoclay into the chemical mixture can further improve the different properties of the WPCs through the preparation of wood polymer nanocomposites (WPNCs. Kayu Malam wood species with styrene (St, vinyl acetate (VA, and montmorillonite (MMT nanoclay were used for the preparation of WPNCs. The acoustic properties such as specific dynamic Young’s modulus (Ed/γ, internal friction (Q−1, and acoustic conversion efficiency (ACE of wood were examined using free-free flexural vibration. It was observed that the chemically impregnated wood composite showed a higher value of Ed/γ than raw wood and the nanoclay-loaded wood nanocomposite showed the highest value. The reverse trend was observed in the case of Q−1. On the other hand, chemical impregnation has a minor effect on ACE of wood for musical instruments. The results suggested that the chemically impregnated Kayu Malam wood polymer nanocomposite (WPNC is suitable for making soundboards of violin and guitar instruments to be played longer without losing tone quality.

  11. Gas removal in free-flow electrophoresis using an integrated nanoporous membrane

    International Nuclear Information System (INIS)

    Herzog, Christin; Jochem, Georg F. W.; Glaeser, Petra; Nagl, Stefan

    2015-01-01

    The performance of continuous microfluidic free-flow electrophoresis (μFFE) is often compromised by the formation of gaseous products caused by electrolysis of water. We show that this adverse effect can be overcome by employing a nanoporous polytetrafluoroethylene (PTFE) membrane attached to a μFFE system which results in efficient removal of any gases formed. The respective assembly was manufactured via laser cutting and lamination. The complete microfluidic FFE chips consist of five layers, viz. (a) two supporting layers, one made of an adhesive transfer foil and the other from poly(ethylene terephthalate), (b) a hydrophobic membrane, (c) a microfluidic structure in a layer of PTFE, and (d) a bottom glass slide. Such a platform warrants a stable flow of electric current over hours of operation at electric field strength of around 500 V∙cm -1 . This is in contrast to conventional FFE microchips where the current decreases to zero within a few minutes (using the same separation parameters). Micropreparative separation of a mixture of three fluorophores was successfully accomplished continuously over 3 h using this micro-FFE chip and was not accompanied by any disturbances caused by formation of gases. (author)

  12. Superhydrophobic polytetrafluoroethylene thin films with hierarchical roughness deposited using a single step vapor phase technique

    International Nuclear Information System (INIS)

    Gupta, Sushant; Arjunan, Arul Chakkaravarthi; Deshpande, Sameer; Seal, Sudipta; Singh, Deepika; Singh, Rajiv K.

    2009-01-01

    Superhydrophobic polytetrafluoroethylene films with hierarchical surface roughness were deposited using pulse electron deposition technique. We were able to modulate roughness of the deposited films by controlling the beam energy and hence the electron penetration depth. The films deposited at higher beam energy showed contact angle as high as 166 o . The scanning electron and atomic force microscope studies revealed clustered growth and two level sub-micron asperities on films deposited at higher energies. Such dual-scale hierarchical roughness and heterogeneities at the water-surface interface was attributed to the observed contact angle and thus its superhydrophobic nature.

  13. Superhydrophobic polytetrafluoroethylene thin films with hierarchical roughness deposited using a single step vapor phase technique

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Sushant, E-mail: sushant3@ufl.ed [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States); Arjunan, Arul Chakkaravarthi [Sinmat Incorporated, 2153 SE Hawthorne Road, 129, Gainesville, Florida 32641 (United States); Deshpande, Sameer; Seal, Sudipta [Advanced Material Processing and Analysis Center, University of Central Florida, Orlando, Florida 32816 (United States); Singh, Deepika [Sinmat Incorporated, 2153 SE Hawthorne Road, 129, Gainesville, Florida 32641 (United States); Singh, Rajiv K. [Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611 (United States)

    2009-06-30

    Superhydrophobic polytetrafluoroethylene films with hierarchical surface roughness were deposited using pulse electron deposition technique. We were able to modulate roughness of the deposited films by controlling the beam energy and hence the electron penetration depth. The films deposited at higher beam energy showed contact angle as high as 166{sup o}. The scanning electron and atomic force microscope studies revealed clustered growth and two level sub-micron asperities on films deposited at higher energies. Such dual-scale hierarchical roughness and heterogeneities at the water-surface interface was attributed to the observed contact angle and thus its superhydrophobic nature.

  14. Hydrogenation of Maltose in Catalytic Membrane Reactor for Maltitol Production

    Directory of Open Access Journals (Sweden)

    Makertihartha I.G.B.N.

    2018-01-01

    Full Text Available Maltitol is one of the low-calorie sweeteners which has a major role in food industries. Due to its characteristics of comparable sweetness level to sucrose, maltitol can be a suitable sugar replacement. In this work, catalytic membrane reactor (CMR was examined in maltitol production through hydrogenation of maltose. Commercial ceramic membrane impregnated with Kalcat 8030 Nickel was used as the CMR. The reaction was conducted at a batch mode operation, 95 to 110°C of temperature, and 5 to 8 bar of pressure. In the range of working conditions used in this study, up to 47% conversion was achieved. The reaction conversion was significantly affected by temperature and pressure. Results of this preliminary study indicated that CMR can be used for hydrogenation of maltose with good performance under a relatively low operating pressure.

  15. A comparison of woven versus nonwoven polypropylene (PP) and expanded versus condensed polytetrafluoroethylene (PTFE) on their intraperitoneal incorporation and adhesion formation.

    Science.gov (United States)

    Raptis, Dimitri Aristotle; Vichova, Barbora; Breza, Jan; Skipworth, James; Barker, Stephen

    2011-07-01

    To compare known and novel synthetic materials useful for incisional hernia repair and to test independently, whether they justify common perceptions related to their use. Four types of synthetic materials were implanted in to 12 pigs to compare incorporation histology and adhesion formation 90 d after placement. Woven polypropylene (WPP), nonwoven polypropylene (NWPP), expanded polytetrafluoroethylene (ePTFE). and condensed polytetrafluoroethylene (cPTFE) were placed intraperitoneally (IP). Intraperitoneally, WPP became fully peritonealized, but generated thick and plentiful adhesions. NWPP became fully peritonealized and generated filmy and far less numerous adhesions. ePTFE formed some filmy adhesions and did not peritonealize. cPTFE and WPP became fully peritonealized. However, bowel became adherent on raised edges of cPTFE and WPP. We conclude that NWPP incorporates extremely well intraperitoneally, promotes few adhesions, and its use is likely to be suitable for hernia repair. cPTFE performs well and promotes few adhesions, but to minimize potentially serious complications, its edges must be secured around its entire circumference. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Characterization of impregnated GDC nano structures and their functionality in LSM based cathodes

    DEFF Research Database (Denmark)

    Klemensø, Trine; Chatzichristodoulou, Christodoulos; Nielsen, Jimmi

    2012-01-01

    Porous composite cathodes of LSM–YSZ (lanthanum strontium manganite and yttria stabilized zirconia) were impregnated with GDC (gadolinia doped ceria) nano particles. The impregnation process was varied using none or different surfactants (Triton X-45, Triton X-100, P123), and the quantity...... on the LSM phase and the LSM grain boundaries. The observations suggest that the improved performance associated with GDC nano particles is related to the particles placed near the TPB (triple phase boundary) zone. The GDC extends the TPB by creating an ionic conducting network on top of the LSM particles...

  17. Introducing catalyst in alkaline membrane for improved performance direct borohydride fuel cells

    Science.gov (United States)

    Qin, Haiying; Lin, Longxia; Chu, Wen; Jiang, Wei; He, Yan; Shi, Qiao; Deng, Yonghong; Ji, Zhenguo; Liu, Jiabin; Tao, Shanwen

    2018-01-01

    A catalytic material is introduced into the polymer matrix to prepare a novel polymeric alkaline electrolyte membrane (AEM) which simultaneously increases ionic conductivity, reduces the fuel cross-over. In this work, the hydroxide anion exchange membrane is mainly composed of poly(vinylalcohol) and alkaline exchange resin. CoCl2 is added into the poly(vinylalcohol) and alkaline exchange resin gel before casting the membrane to introduce catalytic materials. CoCl2 is converted into CoOOH after the reaction with KOH solution. The crystallinity of the polymer matrix decreases and the ionic conductivity of the composite membrane is notably improved by the introduction of Co-species. A direct borohydride fuel cell using the composite membrane exhibits an open circuit voltage of 1.11 V at 30 °C, which is notably higher than that of cells using other AEMs. The cell using the composite membrane achieves a maximum power density of 283 mW cm-2 at 60 °C while the cell using the membrane without Co-species only reaches 117 mW cm-2 at the same conditions. The outstanding performance of the cell using the composite membrane benefits from impregnation of the catalytic Co-species in the membrane, which not only increases the ionic conductivity but also reduces electrode polarization thus improves the fuel cell performance. This work provides a new approach to develop high-performance fuel cells through adding catalysts in the electrolyte membrane.

  18. Evaluation of the plaque removal efficacy of xylitol-impregnated single-use toothbrush in vivo in 10-11-year-old children

    Directory of Open Access Journals (Sweden)

    Tezer Ulusu

    2017-01-01

    Full Text Available Objective: Xylitol is non-fermentable by oral bacteria and it inhibits the growth, metabolism and polysaccharide production of mutans streptococci, resulting in less bacterial plaque accumulation on teeth. This study aimed to compare the plaque removal efficacy on the teeth of children of xylitol-impregnated or non-impregnated single-use toothbrushes identical in shape and manufactured by the same company. Materials and Method: Thirty children aged 10-11 years were randomly separated into two groups of 15 children each. First group used a xylitol-impregnated toothbrush and the second group used a non-impregnated toothbrush for brushing. Dental plaque on upper central incisors was photographed intra-orally before and after brushing under standardized conditions. These photographs were stored in a computer and the amount of dental plaque was scored by using Turensky Modified Quinley Hein Plaque Index by a researcher blinded to the groups. Results: While both xylitol-impregnated and non-impregnated groups had significantly higher plaque index in before-brushing photographs than after-brushing photographs (p0.05. Conclusion: The results of the study emphasized that toothbrushing itself, regardless of xylitol content within the toothbrush, is essential for removing the dental plaque.

  19. Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes

    KAUST Repository

    Da'as, E. H.

    2013-10-07

    The impregnation method has been considered as one of the most successful techniques for the fabrication of highly efficient electrodes for solid oxide fuel and electrolysis cells (SOCs) at the lab scale. However, because the impregnation is usually performed manually, its irreproducibility remains a major problem that can be solved by using controllable techniques, such as inkjet printing. In this paper, lanthanum strontium manganite (LSM)/yttria stabilized zirconia (YSZ) air electrodes were prepared by infiltrating YSZ porous bodies with LSM precursor solution using inkjet printing, followed by annealing at 800°C for 2 hours. XRD analysis confirmed the formation of the LSM phase, which was in the form of nanoparticles with size in the 50-70 nm range on the YSZ walls, as revealed by FEG-SEM observations. The effect of printing parameters on the distribution of the impregnated phase was investigated and discussed.

  20. Controllable Impregnation Via Inkjet Printing for the Fabrication of Solid Oxide Cell Air Electrodes

    KAUST Repository

    Da'as, E. H.; Irvine, J. T. S.; Traversa, Enrico; Boulfrad, S.

    2013-01-01

    The impregnation method has been considered as one of the most successful techniques for the fabrication of highly efficient electrodes for solid oxide fuel and electrolysis cells (SOCs) at the lab scale. However, because the impregnation is usually performed manually, its irreproducibility remains a major problem that can be solved by using controllable techniques, such as inkjet printing. In this paper, lanthanum strontium manganite (LSM)/yttria stabilized zirconia (YSZ) air electrodes were prepared by infiltrating YSZ porous bodies with LSM precursor solution using inkjet printing, followed by annealing at 800°C for 2 hours. XRD analysis confirmed the formation of the LSM phase, which was in the form of nanoparticles with size in the 50-70 nm range on the YSZ walls, as revealed by FEG-SEM observations. The effect of printing parameters on the distribution of the impregnated phase was investigated and discussed.

  1. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    International Nuclear Information System (INIS)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb 3 Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of “ten stacks” of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy

  2. Recent progress and tests of radiation resistant impregnation materials for Nb3Sn coils

    Science.gov (United States)

    Bossert, R.; Krave, S.; Ambrosio, G.; Andreev, N.; Chlachidze, G.; Nobrega, A.; Novitski, I.; Yu, M.; Zlobin, A. V.

    2014-01-01

    Fermilab is collaborating with Lawrence Berkeley National Laboratory (LBNL) and Brookhaven National Laboratory (BNL) (US-LARP collaboration) to develop a large-aperture Nb3Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade. An important component of this work is the development of materials that are sufficiently radiation resistant for use in critical areas of the upgrade. This paper describes recent progress in characterization of materials, including the baseline CTD101K epoxy, cyanate ester blends, and Matrimid 5292, a bismaleimide-based system. Structural properties of "ten stacks" of cable impregnated with these materials are tested at room and cryogenic temperatures and compared to the baseline CT-101K. Experience with potting 1 and 2 meter long coils with Matrimid 5292 are described. Test results of a single 1-m coil impregnated with Matrimid 5292 are reported and compared to similar coils impregnated with the traditional epoxy.

  3. Pore structure modification of cement concretes by impregnation with sulfur-containing compounds

    Directory of Open Access Journals (Sweden)

    YANAKHMETOV Marat Rafisovich

    2015-02-01

    Full Text Available The authors study how the impregnation with sulfur-containing compounds changes the concrete pore structure and how it influences on the water absorption and watertightness. The results of this research indicate that impregnation of cement concrete with water-based solution of polysulphide modifies pore structure of cement concrete in such a way that it decreases total and effective porosity, reduces water absorption and increases watertightness. The proposed impregnation based on mineral helps to protect for a long time the most vulnerable parts of buildings – basements, foundations, as well as places on the facades of buildings exposed to rain, snow and groundwater. Application of the new product in the construction industry can increase the durability of materials, preventing the destruction processes caused by weathering, remove excess moisture in damp basements. The surfaces treated by protective compounds acquire antisoiling properties for a long time, and due to reduced thermal conductivity the cost of heating buildings is decreased. The effectiveness of the actions and the relatively low cost of proposed hydrophobizator makes it possible to spread widely the proposed protection method for building structures.

  4. Development of silver impregnated alumina for iodine separation from off-gas streams

    Energy Technology Data Exchange (ETDEWEB)

    Funabashi, Kiyomi; Fukasawa, Tetsuo; Kikuchi, Makoto [Energy Research Laboratory, Hitachi (Japan)] [and others

    1995-02-01

    An inorganic iodine adsorbent, silver impregnated alumina (AgA), has been developed to separate iodine effectively from off-gas streams of nuclear facilities and to decrease the volume of waste (spent adsorbent). Iodine removal efficiency was improved at relatively high humidity by using alumina carrier with two different pore diameters. Waste volume reduction was achieved by impregnating relatively large amounts of silver into the alumina pores. The developed adsorbent was tested first with simulated off-gas streams under various experimental conditions and finally with actual off-gas streams of the Karlsruhe reprocessing plant. The decontamination factor (DF) was about 100 with the AgA bed depth of 2cm at 70% relative humidity, which was a DF one order higher than that when AgA with one pore size was used. Iodine adsorption capacity was checked by passing excess iodine into the AgA bed. Values were about 0.12 and 0.35 g-I/cm`-AgA bed for 10 and 24wt% silver impregnated AgA, respectively. The results obtained in this study demonstrated the applicability of the developed AgA to the off-gas treatment system of nuclear facilities.

  5. Reducing the moisture effect on the creep deformation of wood by an irradiation-induced polymer impregnation method

    International Nuclear Information System (INIS)

    Chia, L.H.L.; Boey, F.Y.C.; Teoh, S.H.

    1988-01-01

    This paper reports an attempt to reduce the sensitivity of creep deformation to moisture adsorption by impregnating a tropical wood with methyl-methacrylate and subsequent polymerization by γ-irradiation. Beam specimens both of untreated wood and polymer impregnated wood were subjected to a three-point bend creep test under a constant load of 300 N at 23 ± 1 0 C, at three different humidity levels of 50 ± 5, 65 ± 5 and 85 ± 5%. A Norton-Bailey (power law) mathematical model successfully described the creep behaviour, with the creep components determined by a non-linear regression analysis. A significant reduction in the sensitivity of creep deformation to the humidity level was attained for the polymer impregnated wood. This could be explained by the ability of the impregnated polymer to form a strongly adhesive interface with the wood cell material, thereby acting as a physical barrier to reduce the movement of water to and from the wood cell material. (author)

  6. Xe-133 recuperation by adsorption in active carbon impregnated with PF5

    International Nuclear Information System (INIS)

    Mondino, A.V.; Marques, R.O.

    1990-01-01

    Since the Mo-99 Fission Project has the aim to produce Xe-133 from gases generated in the alkaline dissolution of Al-U plates irradiated with thermal neutrons and, considering the importance of this radioisotope from the nuclear medicine point of view, studies to improve and optimize the Xe-133 recuperation were continued. Experiences were made on 'static' equilibrium employing high purity xenon and for the 'dynamic' case, Xe-133 mixed with a carrier and nitrogen as gas carrier; in this case, a 44% and a 34% increase in the capacity of xenon adsorption relaxed with activated carbon without being impregnated and impregnated with AgF, were respectively achieved. (Author) [es

  7. Strengthening of limestone by the impregnation - gamma irradiation method. Results of tests

    International Nuclear Information System (INIS)

    Ramiere, R.; Tassigny, C. de

    1975-04-01

    The method developed by the Centre d'Etudes Nucleaires de Grenoble (France) strengthens the stones by impregnation with a styrene resin/liquid polystyrene mixture followed by polymerization under gamma irradiation. This method is applicable to stones which can be taken into the laboratory for treatment. The increase in strength of 6 different species of French limestone has been quantitatively recorded. The following parameters were studied: possibility of water migration inside the stones, improvements of the mechanical properties of the impregnated stone, standing up to freeze-thaw conditions and artificial ageing of the stones which causes only minor changes in the appearance of the stone and a negligible decrease in weight [fr

  8. Selection of best impregnated palm shell activated carbon (PSAC) for simultaneous removal of SO{sub 2} and NOx

    Energy Technology Data Exchange (ETDEWEB)

    Sumathi, S.; Bhatia, S.; Lee, K.T. [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang (Malaysia); Mohamed, A.R., E-mail: chrahman@eng.usm.my [School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang (Malaysia)

    2010-04-15

    This work examines the impregnated carbon-based sorbents for simultaneous removal of SO{sub 2} and NOx from simulated flue gas. The carbon-based sorbents were prepared using palm shell activated carbon (PSAC) impregnated with several metal oxides (Ni, V, Fe and Ce). The removal of SO{sub 2} and NOx from the simulated flue gas was investigated in a fixed-bed reactor. The results showed that PSAC impregnated with CeO{sub 2} (PSAC-Ce) reported the highest sorption capacity among other impregnated metal oxides for the simultaneous removal of SO{sub 2} and NOx. PSAC-Ce showed the longest breakthrough time of 165 and 115 min for SO{sub 2} and NOx, respectively. The properties of the pure and impregnated PSAC were analyzed by BET, FTIR and XRF. The physical-chemical features of the PSAC-Ce sorbent indicated a catalytic activity in both the sorption of SO{sub 2} and NOx. The formation of both sulfate (SO{sub 4}{sup 2-}) and nitrate (NO{sup 3-}) species on spent PSAC-Ce further prove the catalytic role played by CeO{sub 2}.

  9. Mechanistic insights into the room temperature transitions of polytetrafluoroethylene during electron-beam irradiation

    Science.gov (United States)

    Fu, Congli; Yu, Xianwei; Zhao, Xiaofeng; Wang, Xiuli; Gu, Aiqun; Xie, Meiju; Chen, Chen; Yu, Zili

    2017-11-01

    In order to recognize the characteristic thermal transitions of polytetrafluoroethylene (PTFE) occurring at 19 °C and 30 °C, PTFE is irradiated on electron beam accelerator at room temperature and analyzed by differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD). The results suggest that the two transition temperatures decrease considerably with increasing irradiation doses. Based on the results of structural analysis, the decrease of the two transition temperatures is supposed to be highly relevant to the structural changes. In particular, the content and structure of the side groups generated in PTFE are responsible for the variations of the two thermal transitions after irradiation, offering fundamental insights into the reaction mechanisms of PTFE during irradiation.

  10. Transport of uranium by supported liquid membrane containing bis(2-ethylhexyl) hydrogenphosphate and 1-octanol

    International Nuclear Information System (INIS)

    Akiba, Kenichi; Kanno, Takuji; Takahashi, Toshihiko.

    1984-01-01

    Carrier-mediated transport of uranium(VI) has been studied by means of liquid membranes impregnated in a microporous polymer. Liquid membranes containing bis(2-ethylhexyl) hydrogenphosphate (DEHPA) alone yielded inadequate stripping of uranium. The addition of 1-octanol to DEHPA solutions resulted in a decrease in extractability, and made it possible to control the distribution ratio of uranium. Uranium in the feed solution was sufficiently transported across the liquid membrane containing this DEHPA-1-octanol mixture into the product solution. The apparent rate constant (ksub(obs)) of transport increased slightly with an increase in carrier concentrations. Variations in acid concentrations of the feed solution (pH 2.5--3.2) and the product solution (0.1--1.0 M H 2 SO 4 ) had little effect on the transport rate. A large excess of uranium, more than the carrier content in the liquid membrane, was finally concentrated in the stripping acid. (author)

  11. Improving carbon tolerance of Ni-YSZ catalytic porous membrane by palladium addition for low temperature steam methane reforming

    Science.gov (United States)

    Lee, Sang Moon; Won, Jong Min; Kim, Geo Jong; Lee, Seung Hyun; Kim, Sung Su; Hong, Sung Chang

    2017-10-01

    Palladium was added on the Ni-YSZ catalytic porous membrane by wet impregnation and electroless plating methods. Its surface morphology characteristics and carbon deposition properties for the low temperature steam methane reforming were investigated. The addition of palladium could obviously be enhanced the catalytic activity as well as carbon tolerance of the Ni-YSZ porous membrane. The porous membranes were evaluated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR), CH4 temperature-programmed reduction (CH4-TPR), and O2 temperature-programmed oxidation (O2-TPO). It was found that the Pd-Ni-YSZ catalytic porous membrane showed the superior stability as well as the deposition of carbon on the surface during carbon dissociation adsorption at 650 °C was also suppressed.

  12. Removal of Lead (II from Aqueous Solution Using Chitosan Impregnated Granular Activated Carbon

    Directory of Open Access Journals (Sweden)

    Ali Mousa Ridha

    2017-03-01

    Full Text Available The use of biopolymer material Chitosan impregnated granular activated carbon CHGAC as adsorbent in the removal of lead ions pb.2+ from aqueous solution was studied using batch adsorption mode. The prepared CHGAC was characterized by Scanning Electronic Microscopy (SEM and atomic-absorption pectrophotometer. The adsorption of lead ions onto Chitosan-impregnated granular activated carbon was examined as a function of adsorbent weight, pH and contact time in Batch system. Langmuir and Freundlich models were employed to analyze the resulting experimental data demonstrated that better fitted by Langmuir isotherm model than Freundlich model, with good correlation coefficient. The maximum adsorption capacity calculated from the pseudo second order model in conformity to the experimental values. This means that the adsorption performance of lead ions onto CHGAC follows a pseudo second order model, which illustrates that the adsorption of Pb2+ onto CHGAC was controlled by chemisorption. The granular activated carbon GAC impregnated by Chitosan was effectively applied as adsorbent for the elimination of lead ions from aqueous solution.

  13. Effect of halide impregnation on elemental mercury removal of activated carbons

    Energy Technology Data Exchange (ETDEWEB)

    Yim, Yoon Ji; Park, Soo Jin [Dept. of Chemistry, Inha University, Incheon (Korea, Republic of)

    2017-02-15

    Activated carbons (ACs) were impregnated with potassium halides (KX) to enhance the removal efficiency of elemental mercury (Hg{sup 0}). In this work, the impregnation effect of potassium bromide (KBr) and potassium iodine (KI) were investigated. The surface properties of KX-ACs were determined by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). The pore structures and total pore volumes of the KX-ACs were analyzed using the N{sub 2} /77 K adsorption isotherms. The Hg{sup 0} removal efficiency of KBr-ACs and KI-ACs was studied under simulated flue gas conditions. The effects of KI and KBr loading, adsorption temperature, and flue gas components on Hg{sup 0} removal efficiency were also investigated. The results showed that the Hg{sup 0} removal efficiency of the ACs was significantly enhanced by KI or KBr impregnation, and KI-ACs showed higher Hg{sup 0} removal efficiency than KBr-ACs under the same conditions. An increase in KI or KBr loading and higher adsorption temperatures improved the Hg{sup 0} removal efficiency, indicating that chemisorption occurred due to the reaction between X− and Hg{sup 0}. The lower extent of Hg{sup 0} removal exhibited by the KBr-ACs than by the KI-ACs was due to the difficulty of Br{sub 2} formation on the surfaces.

  14. Multi-layer composite structure covered polytetrafluoroethylene for visible-infrared-radar spectral Compatibility

    Science.gov (United States)

    Qi, Dong; Cheng, Yongzhi; Wang, Xian; Wang, Fang; Li, Bowen; Gong, Rongzhou

    2017-12-01

    In this paper, a polytetrafluoroethylene (PTFE) top-covered multi-layer composite structure PTFE/H s/(Ge/ZnS)3 (H s represents the surface layer ZnS with various thicknesses) for spectral compatibility is proposed and investigated theoretically and experimentally. A substantial decline of glossiness from over 200 Gs to 74.2 Gs could be realized, due to high roughness and interface reflection of the 800 nm PTFE protection layer. In addition, similar to the structure of H s/(Ge/ZnS)3, the designed structure with a certain color exhibits ultra-low emissivity of average 0.196 at 8-14 µm and highly transparent performance of 96.45% in the radar frequency range of 2-18 GHz. Our design will provide an important reference for the practical applications of the spectral compatible multilayer films.

  15. Fabrication of HTR fuel elements by a gaseous impregnation process

    International Nuclear Information System (INIS)

    Blin, J.C.; Berthier, J.; Devillard, J.

    1976-01-01

    The results obtained with the gaseous impregnation process are described. The successive steps of the fabrication in their present state of realization are given together with the results obtained after irradiation. A comparison between this process and a classical method is presented

  16. Removable polytetrafluoroethylene template based epitaxy of ferroelectric copolymer thin films

    Science.gov (United States)

    Xia, Wei; Chen, Qiusong; Zhang, Jian; Wang, Hui; Cheng, Qian; Jiang, Yulong; Zhu, Guodong

    2018-04-01

    In recent years ferroelectric polymers have shown their great potentials in organic and flexible electronics. To meet the requirements of high-performance and low energy consumption of novel electronic devices and systems, structural and electrical properties of ferroelectric polymer thin films are expected to be further optimized. One possible way is to realize epitaxial growth of ferroelectric thin films via removable high-ordered polytetrafluoroethylene (PTFE) templates. Here two key parameters in epitaxy process, annealing temperature and applied pressure, are systematically studied and thus optimized through structural and electrical measurements of ferroelectric copolymer thin films. Experimental results indicate that controlled epitaxial growth is realized via suitable combination of both parameters. Annealing temperature above the melting point of ferroelectric copolymer films is required, and simultaneously moderate pressure (around 2.0 MPa here) should be applied. Over-low pressure (around 1.0 MPa here) usually results in the failure of epitaxy process, while over-high pressure (around 3.0 MPa here) often results in residual of PTFE templates on ferroelectric thin films.

  17. Antibiotic-Impregnated Bone Grafts in Orthopaedic and Trauma Surgery: A Systematic Review of the Literature

    Directory of Open Access Journals (Sweden)

    Konstantinos Anagnostakos

    2012-01-01

    Full Text Available There exist several options for local antibiotic therapy in orthopaedic and trauma surgery. Over the past years, the use of antibiotic-impregnated bone grafts (AIBGs has become a popular procedure in the treatment of bone and joint infections. A major advantage of AIBGs involves the possibility of impregnation of various antibiotics depending on the sensitivity profile of the causative organism, whereas an additional surgery with removal of the antibiotic carrier is not necessary, as in the use of antibiotic-loaded bone cement. However, generalized conclusions cannot be clearly drawn from the existing literature due to differences of bone used, impregnation method, antibiotics, their doses, laboratory circumstances, or clinical indications. The present work reviews the literature regarding this topic and sheds some light onto the choice of bone and antibiotics, manufacturing details, and clinical experience.

  18. Applicability of a Supported Liquid Membrane in the Enrichment and Determination of Cadmium from Complex Aqueous Samples

    Directory of Open Access Journals (Sweden)

    Núria Pont

    2018-04-01

    Full Text Available A supported liquid membrane is developed for the separation of Cd from either high in salinity or acidity aqueous media. The membrane consisted of a durapore (polyvinylidene difluoride polymeric support impregnated with a 0.5 M Aliquat 336 solution in decaline. The effect of carrier concentration, organic solvent and feed and receiving solutions on the metal permeability is studied. This system allows the effective transport of trace levels of Cd through the formation of CdCl42−, which is the predominant species responsible for the extraction process, in both NaCl and HCl solutions. The supported liquid membrane system in a hollow fibre configuration allows the enrichment and separation of trace levels of Cd from spiked seawater samples, facilitating the analytical determination of this toxic metal.

  19. Radiation-curable impregnating agents for the conservation of archaeologic wooden objects. Part 2

    International Nuclear Information System (INIS)

    Schaudy, R.; Wendrinsky, J.; Kalteis, H.; Grienauer, W.

    1982-12-01

    As a continuation of the work described in OEFZS Ber. No. 4165, impregnating agents curable by ionizing radiation, such as free radical polymerizable monomers or artificial resins, have been investigated. Specific weight and viscosity of the liquid mixtures have been as well determined as the specific weight and gel content of the gamma radiation-cured samples. Hardness and elastic behaviour have been estimated only. The shrinkage during hardening was found to be 5 to 12 % for low viscous mixtures (up to 600 mPa.s) and 3 to 8 % for higher viscous impregnating agents. The results are to be discussed. (Author) [de

  20. Decomposition pathways of polytetrafluoroethylene by co-grinding with strontium/calcium oxides.

    Science.gov (United States)

    Qu, Jun; He, Xiaoman; Zhang, Qiwu; Liu, Xinzhong; Saito, Fumio

    2017-06-01

    Waste polytetrafluoroethylene (PTFE) could be easily decomposed by co-grinding with inorganic additive such as strontium oxide (SrO), strontium peroxide (SrO 2 ) and calcium oxide (CaO) by using a planetary ball mill, in which the fluorine was transformed into nontoxic inorganic fluoride salts such as strontium fluoride (SrF 2 ) or calcium fluoride (CaF 2 ). Depending on the kind of additive as well as the added molar ratio, however, the reaction mechanism of the decomposition was found to change, with different compositions of carbon compounds formed. CO gas, the mixture of strontium carbonate (SrCO 3 ) and carbon, only SrCO 3 were obtained as reaction products respectively with equimolar SrO, excess SrO and excess SrO 2 to the monomer unit CF 2 of PTFE were used. Excess amount of CaO was needed to effectively decompose PTFE because of its lower reactivity compared with strontium oxide, but it promised practical applications due to its low cost.

  1. Eucalyptus oil nanoemulsion-impregnated chitosan film: antibacterial effects against a clinical pathogen, Staphylococcus aureus, in vitro

    Directory of Open Access Journals (Sweden)

    Sugumar S

    2015-10-01

    Full Text Available Saranya Sugumar, Amitava Mukherjee, Natarajan Chandrasekaran Centre for Nanobiotechnology, VIT University, Vellore, India Abstract: Eucalyptus oil (Eucalyptus globulus nanoemulsion was formulated using low- and high-energy emulsification methods. Development of nanoemulsion was optimized for system parameters such as emulsifier type, emulsifier concentration, and emulsification methods to obtain a lower droplet size with greater stability. The minimized droplet diameter was achieved using the high-energy method of ultrasonication. Tween 80 was more effective in reducing droplet size and emulsion appearance when compared to Tween 20. Stable nanoemulsion was formulated with Tween 80 as a surfactant, and the particle size was found to be 9.4 nm (1:2 v/v. The eucalyptus oil nanoemulsion was impregnated into chitosan (1% as a biopolymer in varying concentrations. Further, the film was characterized by moisture content, microscopic study, X-ray diffraction, and Fourier transform infrared spectroscopy. Also, the film with and without nanoemulsion was evaluated against Staphylococcus aureus. The nanoemulsion-impregnated chitosan film showed higher antibacterial activity than chitosan film. These results support the inclusion of nanoemulsion-impregnated chitosan film in wound management studies. Keywords: essential oil, emulsion, biopolymer, impregnation, thin film, wound isolate

  2. METHOD OF IMPREGNATING A POROUS MATERIAL

    Science.gov (United States)

    Steele, G.N.

    1960-06-01

    A method of impregnating a porous body with an inorganic uranium- containing salt is outlined and comprises dissolving a water-soluble uranium- containing salt in water; saturating the intercommunicating pores of the porous body with the salt solution; infusing ammonia gas into the intercommunicating pores of the body, the ammonia gas in water chemically reacting with the water- soluble uranium-containing salt in the water solvent to form a nonwater-soluble uranium-containing precipitant; and evaporating the volatile unprecipitated products from the intercommunicating pores whereby the uranium-containing precipitate is uniformly distributed in the intercommunicating peres of the porous body.

  3. Lubricant-impregnated surfaces for electrochemical applications, and devices and systems using same

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, Brian Richmond; Chen, Xinwei; Chiang, Yet-Ming; Varanasi, Kripa K.

    2018-04-17

    In certain embodiments, the invention relates to an electrochemical device having a liquid lubricant impregnated surface. At least a portion of the interior surface of the electrochemical device includes a portion that includes a plurality of solid features disposed therein. The plurality of solid features define a plurality of regions therebetween. A lubricant is disposed in the plurality of regions which retain the liquid lubricant in the plurality of regions during operation of the device. An electroactive phase comes in contact with at least the portion of the interior surface. The liquid lubricant impregnated surface introduces a slip at the surface when the electroactive phase flows along the surface. The electroactive phase may be a yield stress fluid.

  4. Leaching of Silver from Silver-Impregnated Food Storage Containers

    Science.gov (United States)

    Hauri, James F.; Niece, Brian K.

    2011-01-01

    The use of silver in commercial products has proliferated in recent years owing to its antibacterial properties. Food containers impregnated with micro-sized silver promise long food life, but there is some concern because silver can leach out of the plastic and into the stored food. This laboratory experiment gives students the opportunity to…

  5. Friction transfer of polytetrafluoroethylene (PTFE) to produce nanoscale features and influence cellular response in vitro.

    Science.gov (United States)

    Kearns, V R; Doherty, P J; Beamson, G; Martin, N; Williams, R L

    2010-07-01

    A large number of cell types are known to respond to chemical and topographical patterning of substrates. Friction transfer of polytetrafluoroethylene (PTFE) onto substrates has been shown to produce continuous, straight, parallel nanofibres. Ammonia plasma treatment can be used to defluorinate the PTFE, decreasing the dynamic contact angle. Fibroblast and epithelial cells were elongated and oriented with their long axis parallel to the fibres, both individually and in clusters. The fibres restricted cell migration. Cell alignment was slightly reduced on the plasma-treated fibres. These results indicated that although surface topography can affect cellular response, surface chemistry also mediates the extent of this response.

  6. Determination of SO2 in the atmosphere using radioactive iodine kryptonate as impregnation medium of chromatographic paper

    International Nuclear Information System (INIS)

    Pruzinec, J.

    1975-01-01

    Chromatographic paper was impregnated with radioiodine kryptonate using the macrodiffusion technique. The decrease with time of the activity of the kryptonate-impregnated paper exposed to SO 2 -contaminated air was measured. From the decrease in chromatographic paper activity, the concentration of SO 2 was determined in the range 300 to 700 ppm. (A.K.)

  7. Process for making 90 degree K. superconductors by impregnating cellulosic article with precursor solution

    International Nuclear Information System (INIS)

    Bolt, J.D.; Subramanian, M.A.

    1991-01-01

    This patent describes an improved process for preparing a shaped article of a superconducting composition having the formula MBa 2 Cu 3 O x wherein; M is selected from the group consisting of Y, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb and Lu; x is from about 6.5 to about 7.0; the composition having a superconducting transition temperature of about 90 K. It comprises: forming in acetic acid a mixture of M(C 2 H 3 O 2 ) 3 , barium acetate and copper acetate in an atomic ratio of M:Ba:Cu of about 1:2:3; heating the resulting mixture to boiling, and adding sufficient formic acid to dissolve any undissolved starting material while continuing to boil the solution; contacting an article of cellulose material with the solution thereby impregnating the article with the solution, the article having the shape desired; removing excess solution from the resulting impregnated article of cellulose material and drying the impregnated article; heating the impregnated article of cellulose material to a temperature from about 850 degree C to about 925 degree C in an oxygen-containing atmosphere for a time sufficient to form MBa 2 Cu 3 O y , where y is from about 6.0 to about 6.5, the heating effecting carbonization of the cellulose material and oxidization of carbon without ignition; and maintaining the resulting article in an oxygen-containing atmosphere while cooling for a time sufficient to obtained the desired product

  8. In situ processing of concrete surface by impregnation and polymerization of an organic resin

    International Nuclear Information System (INIS)

    Pellecchia, V.; Ursella, P.; Moretto, G.

    1990-01-01

    The impregnation by resins of concrete structures is widely known as PIC (Polymer Impregnated Concrete). This process is normally used to improve the physical-chemical features of prefabricated items in particular to raise their lifetime under severe environmental conditions. The main target of this research contract was the verification of the possibility of a proper impregnation of existing concrete surfaces, of any dimensions and position, by comparing the obtained characteristics with those of untreated original material to check the improvement of chemical-physical properties and durability. In a nuclear facility, this goal is very important with reference to the long-term integrity of concrete walls during plant operative lifetime and after the final shutdown and decommissioning of the plant, if its dismantling is deferred. The operative steps of the research were the design, manufacturing and implementation of a tailored prototype equipment, the setting-up of the machine, the project and erection of a walling unit made of different density sectors in nuclear grade concrete and optimisation of the PIC process phases (dehydration, degassing, monomer injection, thermal cycles) during the experimental campaign. The data collected from samples gathered from field application gave results very similar to laboratory impregnated samples, thus confirming the satisfactory running of the prototype unit. Particularly the resin penetration, in spite of low porosity of nuclear grade concrete matrix, reached depths well beyond 50 mm with a significant increase of mechanical features, leaching resistance to aggressive agents and an appreciable sealing of concrete porosity

  9. Alveolar Ridge Preservation with nc-HA and d-PTFE Membrane: A Clinical, Histologic, and Histomorphometric Study.

    Science.gov (United States)

    Laurito, Domenica; Lollobrigida, Marco; Gianno, Francesca; Bosco, Sandro; Lamazza, Luca; De Biase, Alberto

    Alveolar ridge preservation has become a very common procedure following tooth extraction. This study presents a clinical, histologic, and histomorphometric analysis of postextraction bone changes using nanocrystalline hydroxyapatite (nc-HA) and exposed high-density polytetrafluoroethylene (d-PTFE) membrane. A total of 10 extraction sockets were treated. Clinical measurements were taken after tooth extraction with a customized acrylic stent to ensure the same measurement points. At 6 months, clinical measurements were repeated and bone specimens taken. An overall bone reduction was observed. The histologic and histomorphometric analysis revealed newly formed bone (25.92% ± 18.78%), soft tissue (28.55% ± 9.73%), and residual graft particles (15.43% ± 11.08%). Further studies are necessary to evaluate the efficacy of this technique over the long term.

  10. Role of iron catalyst impregnated by solvent swelling method in pyrolytic removal of coal nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, J.; Kusakabe, K.; Morooka, S.; Nielsen, M.; Furimsky, E. [Kyushu University, Fukuoka (Japan). Dept. of Chemical Science and Technology

    1995-11-01

    Organometallic iron precursors, ferrocene and ferric acetate, were impregnated into Illinois No. 6 (IL), Wyoming (WY) and Yallourn (YL) coals by solvent swelling technique in THF, ethanol, and a THF/ethanol binary solvent. Then iron-impregnated coals were pyrolyzed in a flow of helium at atmospheric pressure in a fixed bed and a thermobalance. Conversion of coal nitrogen to N{sub 2} was 20, 38 and 30% respectively, for original IL, WY, and YL coals. Iron formed from both precursors lowered the onset temperature of N{sub 2} evolution by 20-100{degree}C. When ferrocene was impregnated in coals at a concentration of 1.7-1.8 wt% as Fe, nitrogen conversion was increased to 52, 71 and 68% for IL, WY and YL coals, respectively. Ferric acetate impregnated into IL coal from THF/ethanol solution increased the nitrogen conversion much more than that from ethanol solution. The expansion of microporous coal structure by the swelling was essential for better dispersion of the catalyst precursor. The evolution of HCN as well as NH{sub 3} was effectively suppressed above 600{degree}C by the presence of iron but not influenced significantly by combinations of catalyst precursors and solvents. The increase in N{sub 2} yield was compensated by the decrease in nitrogen emitted as HCN and NH{sub 3} and in tar and char. The increase in CO evolution from the iron-impregnated IL coal at 600-800{degree}C was explained by catalytic rearrangement of aromatic structure of char, accompanying the removal of nitrogen as N{sub 2}. In a range of 600-750{degree}C, the evolution of CO as well as N{sub 2} from the other coals increased remarkably with a significant decrease in CO{sub 2} gasification in char microproes. 32 refs., 9 figs., 3 tabs.

  11. Treatment of a Left Internal Mammary Artery to Pulmonary Artery Fistula with Polytetrafluoroethylene Covered Stents: A Case Report and Review of the Literature

    International Nuclear Information System (INIS)

    Abbott, J. Dawn; Brennan, Joseph J.; Remetz, Michael S.

    2004-01-01

    Internal mammary artery (IMA) to pulmonary artery (PA) fistula is a rare complication of coronary artery bypass grafting (CABG) that may present as myocardial ischemia. We describe a case of left IMA-to-PA fistula treated with balloon expandable coronary polytetrafluoroethylene (PTFE) graft stents and review previously reported cases of this entity

  12. Performance of Conformable Phenolic Impregnated Carbon Ablator in Aerothermal Environments

    Science.gov (United States)

    Thornton, Jeremy; Fan, Wendy; Stackpoole, Mairead; Kao, David; Skokova, Kristina; Chavez-Garcia, Jose

    2012-01-01

    Conformable Phenolic Impregnated Carbon Ablator, a cousin of Phenolic Impregnated Carbon Ablator (PICA), was developed at NASA Ames Research Center as a lightweight thermal protection system under the Fundamental Aeronautics Program. PICA is made using a brittle carbon substrate, which has a very low strain to failure. Conformable PICA is made using a flexible carbon substrate, a felt in this case. The flexible felt significantly increases the strain to failure of the ablator. PICA is limited by its thermal mechanical properties. Future NASA missions will require heatshields that are more fracture resistant than PICA and, as a result, NASA Ames is working to improve PICA's performance by developing conformable PICA to meet these needs. Research efforts include tailoring the chemistry of conformable PICA with varying amounts of additives to enhance mechanical properties and testing them in aerothermal environments. This poster shows the performance of conformable PICA variants in arc jets tests. Some mechanical and thermal properties will also be presented.

  13. Fe-Impregnated Mineral Colloids for Peroxide Activation: Effects of Mineral Substrate and Fe Precursor.

    Science.gov (United States)

    Li, Yue; Machala, Libor; Yan, Weile

    2016-02-02

    Heterogeneous iron species at the mineral/water interface are important catalysts for the generation of reactive oxygen species at circumneutral pH. One significant pathway leading to the formation of such species arises from deposition of dissolved iron onto mineral colloids due to changes in redox conditions. This study investigates the catalytic properties of Fe impregnated on silica, alumina, and titania nanoparticles (as prototypical mineral colloids). Fe impregnation was carried out by immersing the mineral nanoparticles in dilute Fe(II) or Fe(III) solutions at pH 6 and 3, respectively, in an aerobic environment. The uptake of iron per unit surface area follows the order of nTiO2 > nAl2O3 > nSiO2 for both types of Fe precursors. Impregnation of mineral particles in Fe(II) solutions results in predominantly Fe(III) species due to efficient surface-mediated oxidation. The catalytic activity of the impregnated solids to produce hydroxyl radical (·OH) from H2O2 decomposition was evaluated using benzoic acid as a probe compound under dark conditions. Invariably, the rates of benzoic acid oxidation with different Fe-laden particles increase with the surface density of Fe until a critical density above which the catalytic activity approaches a plateau, suggesting active Fe species are formed predominantly at low surface loadings. The critical surface density of Fe varies with the mineral substrate as well as the aqueous Fe precursor. Fe impregnated on TiO2 exhibits markedly higher activity than its Al2O3 and SiO2 counterparts. The speciation of interfacial Fe is analyzed with diffuse reflectance UV-vis analysis and interpretation of the data in the context of benzoic oxidation rates suggests that the surface activity of the solids for ·OH generation correlates strongly with the isolated (i.e., mononuclear) Fe species. Therefore, iron dispersed on mineral colloids is a significant form of reactive iron surfaces in the aquatic environment.

  14. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells

    Directory of Open Access Journals (Sweden)

    Henry Fonda Aritonang

    2017-05-01

    Full Text Available Highly dispersed platinum (Pt nanoparticles / multiwalled carbon nanotubes (MWCNTs on bacterial cellulose (BC as anode catalysts for proton exchange membrane fuel cells (PEMFC were prepared with various precursors and their electro-catalytic activities towards hydrogen oxidation at 70 oC under non-humidified conditions. The composite was prepared by deposition of Pt nanoparticles and MWCNTs on BC gel by impregnation method using a water solution of metal precursors and MWCNTs followed by reducing reaction using a hydrogen gas. The composite was characterized by using TEM (transmission electron microscopy, EDS (energy dispersive spectroscopy, and XRD (X-ray diffractometry techniques. TEM images and XRD patterns both lead to the observation of spherical metallic Pt nanoparticles with mean diameter of 3-11 nm well impregnated into the BC fibrils. Preliminary tests on a single cell indicate that renewable BC is a good prospect to be explored as a membrane in fuel cell field. Copyright © 2017 BCREC Group. All rights reserved Received: 21st November 2016; Revised: 26th February 2017; Accepted: 27th February 2017 How to Cite: Aritonang, H.F., Kamu, V.S., Ciptati, C., Onggo, D., Radiman, C.L. (2017. Performance of Platinum Nanoparticles / Multiwalled Carbon Nanotubes / Bacterial Cellulose Composite as Anode Catalyst for Proton Exchange Membrane Fuel Cells. Bulletin of Chemical Reaction Engineering & Catalysis, 12 (2: 287-292 (doi:10.9767/bcrec.12.2.803.287-292 Permalink/DOI: http://dx.doi.org/10.9767/bcrec.12.2.803.287-292

  15. Characterisation of a re-cast composite Nafion 1100 series of proton exchange membranes incorporating inert inorganic oxide particles

    International Nuclear Information System (INIS)

    Slade, S.M.; Smith, J.R.; Campbell, S.A.; Ralph, T.R.; Ponce de Leon, C.; Walsh, F.C.

    2010-01-01

    A series of cation exchange membranes was produced by impregnating and coating both sides of a quartz web with a Nafion solution (1100 EW, 10%wt in water). Inert filler particles (SiO 2 , ZrO 2 or TiO 2 ; 5-20%wt) were incorporated into the aqueous Nafion solution to produce robust, composite membranes. Ion-exchange capacity/equivalent weight, water take-up, thickness change on hydration and ionic and electrical conductivity were measured in 1 mol dm -3 sulfuric acid at 298 K. The TiO 2 filler significantly impacted on these properties, producing higher water take-up and increased conductivity. Such membranes may be beneficial for proton exchange membrane (PEM) fuel cell operation at low humidification. The PEM fuel cell performance of the composite membranes containing SiO 2 fillers was examined in a Ballard Mark 5E unit cell. While the use of composite membranes offers a cost reduction, the unit cell performance was reduced, in practice, due to drying of the ionomer at the cathode.

  16. Adsorption of Carbon Dioxide onto Tetraethylenepentamine Impregnated PMMA Sorbents with Different Pore Structure

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Dong Hyun; Park, Cheonggi; Jung, Hyunchul; Kim, Sung Hyun [Korea University, Seoul (Korea, Republic of)

    2015-02-15

    Poly(methyl methacrylate) (PMMA) supports and amine additives were investigated to adsorb CO{sub 2}. PMMA supports were fabricated by using different ratio of pore forming agents (porogen) to control the BET specific surface area, pore volume and distribution. Toluene and xylene are used for porogens. Supported amine sorbents were prepared by wet impregnation of tetraethylenepentamine (TEPA) on PMMA supports. So we could identify the effect of the pore structure of supports and the quantity of impregnated TEPA on the adsorption capacity. The increased amount of toluene as pore foaming agent resulted in the decreased average pore diameter and the increased BET surface area. Polymer supports with huge different pore distribution could be fabricated by controlling the ratio of porogen. After impregnation, the support with micropore structure is supposed the pore blocking and filling effect so that it has low CO{sub 2} capacity and kinetics due to the difficulty of diffusing. Macropore structure indicates fast adsorption capacity and low influence of amine loading. In case of support with mesopore, it has high performance of adsorption capacity and kinetics. So high surface area and meso-/macro- pore structure is suitable for CO{sub 2} capture.

  17. Theoretical impact of insecticide-impregnated school uniforms on dengue incidence in Thai children.

    Science.gov (United States)

    Massad, Eduardo; Amaku, Marcos; Coutinho, Francisco Antonio Bezerra; Kittayapong, Pattamaporn; Wilder-Smith, Annelies

    2013-03-28

    Children carry the main burden of morbidity and mortality caused by dengue. Children spend a considerable amount of their day at school; hence strategies that reduce human-mosquito contact to protect against the day-biting habits of Aedes mosquitoes at schools, such as insecticide-impregnated uniforms, could be an effective prevention strategy. We used mathematical models to calculate the risk of dengue infection based on force of infection taking into account the estimated proportion of mosquito bites that occur in school and the proportion of school time that children wear the impregnated uniforms. The use of insecticide-impregnated uniforms has efficacy varying from around 6% in the most pessimistic estimations, to 55% in the most optimistic scenarios simulated. Reducing contact between mosquito bites and human hosts via insecticide-treated uniforms during school time is theoretically effective in reducing dengue incidence and may be a valuable additional tool for dengue control in school-aged children. The efficacy of this strategy, however, is dependent on the compliance of the target population in terms of proper and consistent wearing of uniforms and, perhaps more importantly, the proportion of bites inflicted by the Aedes population during school time.

  18. The use of an ion-beam source to alter the surface morphology of biological implant materials

    Science.gov (United States)

    Weigand, A. J.

    1978-01-01

    An electron-bombardment ion-thruster was used as a neutralized-ion-beam sputtering source to texture the surfaces of biological implant materials. The materials investigated included 316 stainless steel; titanium-6% aluminum, 4% vanadium; cobalt-20% chromium, 15% tungsten; cobalt-35% nickel, 20% chromium, 10% molybdenum; polytetrafluoroethylene; polyoxymethylene; silicone and polyurethane copolymer; 32%-carbon-impregnated polyolefin; segmented polyurethane; silicone rubber; and alumina. Scanning electron microscopy was used to determine surface morphology changes of all materials after ion-texturing. Electron spectroscopy for chemical analysis was used to determine the effects of ion-texturing on the surface chemical composition of some polymers. Liquid contact angle data were obtained for ion-textured and untextured polymer samples. Results of tensile and fatigue tests of ion-textured metal alloys are presented. Preliminary data of tissue response to ion-textured surfaces of some metals, polytetrafluoroethylene, alumina, and segmented polyurethane have been obtained.

  19. Application of PolyHIPE Membrane with Tricaprylmethylammonium Chloride for Cr(VI) Ion Separation: Parameters and Mechanism of Transport Relating to the Pore Structure.

    Science.gov (United States)

    Chen, Jyh-Herng; Le, Thi Tuyet Mai; Hsu, Kai-Chung

    2018-03-02

    The structural characteristics of membrane support directly affect the performance of carrier facilitated transport membrane. A highly porous PolyHIPE impregnated with Aliquat 336 is proposed for Cr(VI) separation. PolyHIPE consisting of poly(styrene- co -2-ethylhexyl acrylate) copolymer crosslinked with divinylbenzene has the pore structure characteristic of large pore spaces interconnected with small window throats. The unique pore structure provides the membrane with high flux and stability. The experimental results indicate that the effective diffusion coefficient D* of Cr(VI) through Aliquat 336/PolyHIPE membrane is as high as 1.75 × 10 -11 m² s -1 . Transport study shows that the diffusion of Cr(VI) through Aliquat 336/PolyHIPE membrane can be attributed to the jumping transport mechanism. The hydraulic stability experiment shows that the membrane is quite stable, with recovery rates remaining at 95%, even after 10 consecutive cycles of operation. The separation study demonstrates the potential application of this new type of membrane for Cr(VI) recovery.

  20. Determination of atmospheric nitrogen dioxide by sampling with impregnated filters

    International Nuclear Information System (INIS)

    Galiano, J.A.; Palomares, F.

    1978-01-01

    The performance of filters impregnated with triethanolamine for the collection and subsequent determination of atmospheric nitrogen dioxide is studied taking into account the influence of several parameters: storage of filters, reagents, elapsed time, sampling efficiency, etc. The results obtained for sampling times of 24 hours are satisfactory. (author) [es

  1. Effects of tanalith-e impregnation substance on bending strengths and modulus of elasticity in bending of some wood types

    Directory of Open Access Journals (Sweden)

    Hakan Keskin

    2016-04-01

    Full Text Available The aim of this study was to investigate the effects of impregnation with Tanalith-E on the bending strengths and modulus of elasticity in bending of some wood types. The test samples prepared from beech, oak, walnut, poplar, ash and pine wood materials - that are of common use in the forest products industry of TURKEY - according to TS 345, were treated with according to ASTM D 1413-76 substantially. Un-impregnated samples according to impregnated wood materials, the bending strengths in beech to 6.83%, 5.12% in ash, 5.93% in pine, the elasticity module values to 7.15% in oak and ash, at a rate of 6.58% in the higher were found. The highest values of bending strengths and modulus of elasticity in bending were obtained in beech and ash woods impregnated with Tanalith-E, whereas the lowest values were obtained in the poplar wood.

  2. Moisture effect on the dielectric response and space charge behaviour of mineral oil impregnated paper insulation

    International Nuclear Information System (INIS)

    Hao Jian; Liao Ruijin; Chen, George

    2011-01-01

    Dielectric response and space charge behaviour of oil-paper insulation sample with different moisture contents were investigated using the frequency dielectric spectroscopy (FDS) and the pulsed electroacoustic (PEA) technique, respectively. The influence of moisture on the dielectric response and space charge behaviour of oil impregnated paper insulation was analysed. Results show that the moisture has great effect on the FDS and space charge behaviour of oil impregnated paper insulation. In the frequency range of 10 -2 ∼10 6 Hz, the conductivity and the capacitance of oil impregnated paper increases with its moisture content. The space charge distribution of oil-paper sample with lower and higher moisture contents is very different from each other. The higher the moisture concentration of the oil impregnated paper, the easier the negative charge penetration into the insulation paper. There is a significant amount of positive charge accumulated at the paper-paper interface near to the cathode for oilpaper sample with lower moisture content. However, the positive charge appears in the middle layer paper for oil-paper sample with higher moisture content. Due to the high conductivity, the charge trapped in the oil-paper sample with higher moisture content disappears much faster than that in the oil-paper sample with lower moisture content after removing the voltage.

  3. Moisture effect on the dielectric response and space charge behaviour of mineral oil impregnated paper insulation

    Energy Technology Data Exchange (ETDEWEB)

    Hao Jian; Liao Ruijin [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University (China); Chen, George, E-mail: jh210v@ecs.soton.ac.uk [School of Electronics and Computer Science, University of Southampton (United Kingdom)

    2011-08-12

    Dielectric response and space charge behaviour of oil-paper insulation sample with different moisture contents were investigated using the frequency dielectric spectroscopy (FDS) and the pulsed electroacoustic (PEA) technique, respectively. The influence of moisture on the dielectric response and space charge behaviour of oil impregnated paper insulation was analysed. Results show that the moisture has great effect on the FDS and space charge behaviour of oil impregnated paper insulation. In the frequency range of 10{sup -2}{approx}10{sup 6}Hz, the conductivity and the capacitance of oil impregnated paper increases with its moisture content. The space charge distribution of oil-paper sample with lower and higher moisture contents is very different from each other. The higher the moisture concentration of the oil impregnated paper, the easier the negative charge penetration into the insulation paper. There is a significant amount of positive charge accumulated at the paper-paper interface near to the cathode for oilpaper sample with lower moisture content. However, the positive charge appears in the middle layer paper for oil-paper sample with higher moisture content. Due to the high conductivity, the charge trapped in the oil-paper sample with higher moisture content disappears much faster than that in the oil-paper sample with lower moisture content after removing the voltage.

  4. Augmentation of tendon healing with butyric acid-impregnated sutures: biomechanical evaluation in a rabbit model.

    Science.gov (United States)

    Leek, Bryan T; Tasto, James P; Tibor, Lisa M; Healey, Robert M; Freemont, Anthony; Linn, Michael S; Chase, Derek E; Amiel, David

    2012-08-01

    Butyric acid (BA) has been shown to be angiogenic and to enhance transcriptional activity in tissue. These properties of BA have the potential to augment biological healing of a repaired tendon. To evaluate this possibility both biomechanically and histologically in an animal tendon repair model. Controlled laboratory study. A rabbit Achilles tendon healing model was used to evaluate the biomechanical strength and histological properties at 6 and 12 weeks after repair. Unilateral tendon defects were created in the middle bundle of the Achilles tendon of each rabbit, which were repaired equivalently with either Ultrabraid BA-impregnated sutures or control Ultrabraid sutures. After 6 weeks, BA-impregnated suture repairs had a significantly increased (P Tendons repaired with BA-impregnated sutures demonstrated improved biomechanical properties at 6 weeks relative to control sutures, suggesting a neoangiogenic mechanism of enhanced healing through an increased myofibroblast presence. These findings demonstrate that a relatively simple alteration of suture material may augment early tendon healing to create a stronger repair construct during this time.

  5. Surface studies of thermionic cathodes and the mechanism of operation of an impregnated tungsten cathode

    International Nuclear Information System (INIS)

    Forman, R.

    1976-09-01

    The surface properties of conventional impregnated cathodes were investigated by the use of Auger spectroscopy and work function measurements, and these were compared with a synthesized barium- or barium oxide coated tungsten surface. The barium- and barium oxide coated surfaces were prepared by evaporating barium onto a tungsten surface that can be heated to elevated temperatures. Multilayer or monolayer coverages can be investigated using this technique. The results of this study show that the surface of an impregnated tungsten cathode is identical to that observed for a synthesized monolayer or partial monolayer of barium on partially oxidized tungsten, using the criteria of identical Auger patterns and work functions. Desorption measurements of barium from a tungsten surface were also made. These results in conjunction with Auger and work function data were interpreted to show that throughout most of its life an impregnated cathode operating in the range of 1100 C has a partial monolayer rather than a monolayer of barium on its surface

  6. Clinical evaluation of a PHMB-impregnated biocellulose dressing on paediatric lacerations

    NARCIS (Netherlands)

    Elzinga, G.; van Doorn, J.; Wiersema, A. M.; Klicks, R. J.; Andriessen, A.; Alblas, J. G.; Spits, H.; Post, A.; van Gent, M.

    2011-01-01

    Objective: To evaluate the clinical benefits, primarily tolerability and reduction in pain levels, associated with the use of a PHMB-impregnated biosynthetic cellulose dressing (Suprasorb X + PHMB) on paediatric heel lacerations. Method: These lacerations were caused when children, who were being

  7. Effect of Dipping and Vacuum Impregnation Coating Techniques with Alginate Based Coating on Physical Quality Parameters of Cantaloupe Melon.

    Science.gov (United States)

    Senturk Parreidt, Tugce; Schmid, Markus; Müller, Kajetan

    2018-04-01

    Edible coating based on sodium alginate solution was applied to fresh-cut cantaloupe melon by dipping and vacuum impregnation coating methods. One aim of this work is to produce more technical information concerning these conventional and novel coating processes. For this purpose, the effect of various coating parameters (dipping time, draining time, time length of the vacuum period, vacuum pressure, atmospheric restoration time) with several levels on physical quality parameters (percentage of weight gain, color, and texture) of noncoated and coated samples were determined in order to define adequate coating process parameters to achieve a successful coating application. Additionally, the effects of dipping and vacuum impregnation processes were compared. Both processes improved the firmness of the melon pieces. However, vacuum impregnation application had higher firmness and weight gain results, and had significant effect (P coating technique and the parameters used significantly affect the physical quality characteristics of coated food products. The work presented produced more technical information concerning dipping and vacuum impregnation coating techniques, along with evaluating the effects of various coating parameters with several levels. The results revealed that vacuum impregnation technique is a successful coating method; however the effects should be carefully assessed for each product. © 2018 Institute of Food Technologists®.

  8. In vitro evaluation of electrospun chitosan mats crosslinked with genipin as guided tissue regeneration barrier membranes

    Science.gov (United States)

    Norowski, Peter Andrew, Jr.

    Guided tissue regeneration (GTR) is a surgical technique commonly used to exclude bacteria and soft tissues from bone graft sites in oral/maxillofacial bone graft sites by using a barrier membrane to maintain the graft contour and space. Current clinical barrier membrane materials based on expanded polytetrafluoroethylene (ePTFE) and bovine type 1 collagen are non-ideal and experience a number of disadvantages including membrane exposure, bacterial colonization/biofilm formation and premature degradation, all of which result in increased surgical intervention and poor bone regeneration. These materials do not actively participate in tissue regeneration, however bioactive materials, such as chitosan, may provide advantages such as the ability to stimulate wound healing and de novo bone formation. Our hypothesis is that electrospun chitosan GTR membranes will support cell attachment and growth but prevent cell infiltration/penetration of membrane, demonstrate in vitro degradation predictive of 4--6 month in vivo functionality, and will deliver antibiotics locally to prevent/inhibit periopathogenic complications. To test this hypothesis a series of chitosan membranes were electrospun, in the presence or absence of genipin, a natural crosslinking agent, at concentrations of 5 and 10 mM. These membranes were characterized by scanning electron microscopy, tensile testing, suture pullout testing, Fourier transform infrared spectroscopy, X-ray diffraction, and gel permeation chromatography, and in vitro biodegradation for diameter/morphology of fibers, membrane strengths, degree of crosslinking, crystallinity, molecular weight, and degradation kinetics, respectively. Cytocompability of membranes was evaluated in osteoblastic, fibroblastic and monocyte cultures. The activity of minocycline loaded and released from the membranes was determined in zone of inhibition tests using P. gingivalis microbe. The results demonstrated that genipin crosslinking extended the in vitro

  9. Electrochemical in-situ impregnation of wood using a copper nail as source for copper

    DEFF Research Database (Denmark)

    Ottosen, Lisbeth M.; Block, Thomas; Nymark, Morten

    2011-01-01

    A new method for copper impregnation of wood in structures was suggested and tested in laboratory scale with specimen of new pine sapwood. A copper nail and a steel screw were placed in the wood, and an electric direct current field was applied, so the copper nail was anode and the screw...... was cathode. At the anode, copper ions were generated. The copper ions were transported into the wood by electromigration (movement of ions in an applied electric field) towards the cathode, and a volume between the two electrodes was thereby impregnated. Copper also moved to a lesser degree in the opposite...

  10. Production of Biodiesel Using a Membrane Reactor to Minimize Separation Cost

    Science.gov (United States)

    Olagunju, O. A.; Musonge, P.

    2017-07-01

    This study investigates the performance of a packed bed membrane reactor in the transesterification process of triglycerides to methyl ester using soyabean oil as feedstock. A TiO2/Al2O3 ceramic microporous membrane was selected due to its chemical inert nature and thermal stability to selectively remove the product from the reaction medium. CaO impregnated on the surface of activated carbon was packed into the membrane and acted as catalyst. The synthesized catalyst had a total loading of 40.50 % and was characterized by XRD and temperature-programmed desorption of CO2 (CO2-TPD). The crude biodiesel produced was micro-filtered by the ceramic membrane with a pore size of 0.02 μm to retain the unreacted oil and free glycerol, at the transmembrane pressure of 100 KPa. The best condition was achieved with a temperature of 65 °C, methanol/oil molar ratio of 6:1 for 150 minutes, which resulted in the highest FAME yield of 94 %. Methyl ester produced met the ASTM D6751 and SANS 1935 specifications. The product obtained was mainly composed of methyl esters. Glycerol was not detected in the product stream due to the ability of the membrane to retain the glycerol and the unreacted oil in the medium, which solved the issue of glycerol separation from biodiesel.

  11. In vitro biocompatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate.

    Science.gov (United States)

    Beloti, Márcio M; de Oliveira, Paulo T; Gimenes, Rossano; Zaghete, Maria A; Bertolini, Márcio J; Rosa, Adalberto L

    2006-11-01

    This study was aimed at investigating the in vitro biocompatibility of a novel membrane of the composite poly(vinylidene-trifluoroethylene)/barium titanate (P(VDF-TrFE)/BT). Osteoblastic cells were obtained from human alveolar bone fragments and cultured under standard osteogenic condition until subconfluence. First passaged cells were cultured on P(VDF-TrFE)/BT and expanded polytetrafluoroethylene (e-PTFE--control) membranes in 24-well plates. Cell adhesion and spreading were evaluated at 30 min, and 4 and 24 h. For proliferation assay, cells were cultured for 1, 7, and 10 days. Cell viability was detected by trypan blue at 7 and 10 days. Total protein content and alkaline phosphatase (ALP) activity were measured at 7, 14, and 21 days. Cultures were stained with Alizarin red at 21 days, for detection of mineralized matrix. Data were compared by ANOVA and Student t test. Cell attachment (p = 0.001), cell number (p = 0.001), and ALP activity (p = 0.0001) were greater on P(VDF-TrFE)/BT. Additionally, doubling time was greater on P(VDF-TrFE)/BT (p = 0.03), indicating a decreased proliferation rate. Bone-like nodule formation took place only on P(VDF-TrFE)/BT. The present results showed that both membranes are biocompatible. However, P(VDF-TrFE)/BT presented a better in vitro biocompatibility and allowed bone-like nodule formation. Therefore, P(VDF-TrFE)/BT could be an alternative membrane to be used in guided tissue regeneration.

  12. Applicability of Vacuum Impregnation to Modify Physico-Chemical, Sensory and Nutritive Characteristics of Plant Origin Products—A Review

    Directory of Open Access Journals (Sweden)

    Elżbieta Radziejewska-Kubzdela

    2014-09-01

    Full Text Available Vacuum impregnation is a non-destructive method of introducing a solution with a specific composition to the porous matrices of fruit and vegetables. Mass transfer in this process is a result of mechanically induced differences in pressure. Vacuum impregnation makes it possible to fill large volumes of intercellular spaces in tissues of fruit and vegetables, thus modifying physico-chemical properties and sensory attributes of products. This method may be used, e.g., to reduce pH and water activity of the product, change its thermal properties, improve texture, color, taste and aroma. Additionally, bioactive compounds may be introduced together with impregnating solutions, thus improving health-promoting properties of the product or facilitating production of functional food.

  13. The sampling of hydrogen fluoride in air with impregnated filter paper

    NARCIS (Netherlands)

    Huygen, C.

    1963-01-01

    A method isproposed for the quantitative collection of hydrogen fluoride in air by drawing a known quantity of the air through filter paper impregnated with solutions of potassium hydroxide and glycerol or triethanolamine. Somu possibilities and limitations of the method are discussed.

  14. Repair of large abdominal wall defects with expanded polytetrafluoroethylene (PTFE).

    Science.gov (United States)

    Bauer, J J; Salky, B A; Gelernt, I M; Kreel, I

    1987-01-01

    Most abdominal wall incisional hernias can be repaired by primary closure. However, where the defect is large or there is tension on the closure, the use of a prosthetic material is indicated. Expanded polytetrafluoroethylene (PTFE) patches were used to repair incisional hernias in 28 patients between November 1983 and December 1986. Twelve of these patients (43%) had a prior failure of a primary repair. Reherniation occurred in three patients (10.7%). Wound infections developed in two patients (7.1%), both of whom had existing intestinal stomas, one with an intercurrent pelvic abscess. The prosthetic patch was removed in the patient with the abscess, but the infection was resolved in the other without sequelae. Septic complications did not occur after any operations performed in uncontaminated fields. None of the patients exhibited any undue discomfort, wound pain, erythema, or induration. Complications related to adhesions, erosion of the patch material into the viscera, bowel obstruction, or fistula formation did not occur. Based on this clinical experience, the authors believe that the PTFE patch appears to represent an advance in synthetic abdominal wall substitutes. Images Fig. 1. Fig. 2(left)., Fig. 3(right). PMID:3689012

  15. Characteristics improvement of hydrophobic polytetrafluoroethylene-platinum catalysts for tritium separation

    International Nuclear Information System (INIS)

    Popescu, I.; Ionita, Gh.; Dobrinescu, D.; Varlam, C.; Stefanescu, I.

    2006-01-01

    Full text: Based on the long experience of the authors in the preparation, testing and evaluation of the performances of hydrophobic catalysts and based on the reviewed references, this paper presents up-to-date R and D activities on the preparation methods and applications of the hydrophobic catalysts in tritium separation. The objectives of the paper are: how to improve the characteristics and performance of platinum hydrophobic catalysts; to assess and find a new procedure for the preparation of a new improved hydrophobic catalyst. From reviewed references one can conclude that platinum is the most active and efficient catalytic metal while the polytetrafluoroethylene is the best wet-proofing agent. A new improved hydrophobic Pt-catalyst has been proposed and its testing is now underway. The main steps and experimental conditions of preparation are thoroughly discussed. A new wet-proofing agent and new binders (titanium dioxide, cerium dioxide, zirconium dioxide) with a catalytic role are proposed and tested. The physico-structural parameters of the improved catalyst have been determined and are discussed in detail. The new proposal is a promising idea to improve the performance of conventional hydrophobic Pt-catalysts. (authors)

  16. Synthesis of K2O/Zeolite catalysts by KOH impregnation for biodiesel production from waste frying oil

    Science.gov (United States)

    Fitriana, N.; Husin, H.; Yanti, D.; Pontas, K.; Alam, P. N.; Ridho, M.; Iskandar

    2018-03-01

    K2O/Zeolite compounds were successfully synthesized using KOH as starting material and natural zeolite as support. The catalysts were calcined at 500°C for 3 h and then characterized by X-Ray Diffractometer (XRD) and Scanning Electron Microscopy (SEM). The SEM images reveal that the zeolite and K2O/zeolite particles are irregular in shape (100 to 400 nm). The independent variables were impregnated amounts of KOH (15 - 25%), catalyst to oil ratios of 1.0 - 6.0 wt.%, and reaction time of 2 h. The highest biodiesel yield of 95% was produced from the reaction with 2.1 wt.% catalyst of 25% KOH impregnated. The properties of produced biodiesel complied with SNI. The catalytic stability test showed that the 25% KOH impregnated catalyst was stable.

  17. Synthesis H-Zeolite catalyst by impregnation KI/KIO3 and performance test catalyst for biodiesel production

    Science.gov (United States)

    Widayat, W.; Rizky Wicaksono, Adit; Hakim Firdaus, Lukman; Okvitarini, Ndaru

    2016-02-01

    The objective of this research is to produce H-catalyst catalyst that was impregnated with KI/KIO3. The catalyst was analyzed about surface area, X-Ray Diffraction (XRD) and performance test of catalyst for biodiesel production. An H-Zeolite catalyst was synthesized from natural zeolite with chemical treatment processing, impregnation KI/KIO3 and physical treatment. The results shows that the surface area of the catalyst by 27.236 m2/g at a concentration of 5% KI. XRD analysis shows peak 2-θ at 23.627o indicating that KI was impregnated on H-zeolite catalyst. The catalyst was tested in production of biodiesel using palm oil with conventional methods for 3 hour at temperature of 70-80 oC. The result for conversion Fatty Acid Methyl Ester (FAME) reached maximum value on 87.91% under production process using catalyst 5% KIO3-H zeolite.

  18. Factors affecting the retention of methyl iodide by iodide-impregnated carbon

    International Nuclear Information System (INIS)

    Hyder, M.L.; Malstrom, R.A.

    1991-01-01

    This paper comprises two sets of studies of methyl iodide retention by iodide-impregnated carbon. In the first of these, the retention of the methyl iodide on the carbon surface and its subsequent evolution were observed directly by a technique of combustion and phosphorescence. In the second, the methyl iodide retention in a standard test was compared with surface area measurements and the concentration of unreacted iodine. A correlation among these parameters was identified and characterized. Carbon quality was varied through the selection of used material with differing service histories. Air from the Savannah River Site reactor buildings is vented through carbon beds for control of radioiodine before release to the atmosphere. The carbon used is North American Carbon Co. type GX-176 coconut shell carbon impregnated with 1% triethylenedimaine (TEDA) and 2% potassium iodide by weight. Replacement intervals for the carbon have been as long as thirty months. Analysis of samples withdrawn at much shorter times has shown that the TEDA is lost after a few months, and the performance of the carbon for methyl iodide retention is dependent on the iodide impregnant. Efficient methyl iodide retention is not a requirement for carbon in this service; however, methyl iodide retention as measured by the ASTM Test D3803 (method B) has been found to correlate well with other desirable properties of the carbon such as radiation stability. The studies undertaken here were intended to shed light on the changes taking place in this carbon during long-term service and to provide a basis for simpler measurements of carbon quality

  19. Surrogate nits impregnated with white piedra--a case report.

    Science.gov (United States)

    Ghorpade, A

    2004-07-01

    White piedral spores packed inside empty pedicular nits were accidentally found on microscopic examination in a 42-year-old Indian woman who presented with hair loss. The diagnosis of piedra was confirmed on culture. She responded to topical 2% miconazole nitrate solution and manual removal of the nits. This is the first case report of pedicular nits found to be impregnated with spores of white piedra.

  20. Theoretical impact of insecticide-impregnated school uniforms on dengue incidence in Thai children

    Directory of Open Access Journals (Sweden)

    Eduardo Massad

    2013-03-01

    Full Text Available Background: Children carry the main burden of morbidity and mortality caused by dengue. Children spend a considerable amount of their day at school; hence strategies that reduce human–mosquito contact to protect against the day-biting habits of Aedes mosquitoes at schools, such as insecticide-impregnated uniforms, could be an effective prevention strategy. Methodology: We used mathematical models to calculate the risk of dengue infection based on force of infection taking into account the estimated proportion of mosquito bites that occur in school and the proportion of school time that children wear the impregnated uniforms. Principal findings: The use of insecticide-impregnated uniforms has efficacy varying from around 6% in the most pessimistic estimations, to 55% in the most optimistic scenarios simulated. Conclusions: Reducing contact between mosquito bites and human hosts via insecticide-treated uniforms during school time is theoretically effective in reducing dengue incidence and may be a valuable additional tool for dengue control in school-aged children. The efficacy of this strategy, however, is dependent on the compliance of the target population in terms of proper and consistent wearing of uniforms and, perhaps more importantly, the proportion of bites inflicted by the Aedes population during school time.

  1. Functional properties of poly(tetrafluoroethylene) (PTFE) gasket working in nuclear reactor conditions

    Science.gov (United States)

    Wyszkowska, Edyta; Leśniak, Magdalena; Kurpaska, Lukasz; Prokopowicz, Rafal; Jozwik, Iwona; Sitarz, Maciej; Jagielski, Jacek

    2018-04-01

    In this study structural and nanomechanical properties of polytetrafluoroethylene (PTFE) used as a gasket in the nuclear reactor have been deeply investigated. In order to reveal structural changes caused by long-term pressure, temperature and irradiation (possibly neutron and gamma), methods such as SEM, X-ray diffraction and Raman Spectroscopy have been used. Nanomechanical properties such as Young Modulus and hardness were investigated by means of the nanoindentation technique. Presented study confirmed the influence of working (radiative) environment on the functional properties of PTFE. The results of Raman spectroscopy and X-ray diffraction techniques revealed shift of the major band positions and band intensities increase. Moreover, changes of hardness and Young Modulus values of the irradiated material with respect to the virgin specimen have been recorded. This phenomenon can be attributed to the modifications in crystallinity of the material. Presented work suggest that morphology of the irradiated material altered from well-ordered parallel fibers to more dense and thicker ones.

  2. Supercritical CO2 impregnation of PLA/PCL films with natural substances for bacterial growth control in food packaging.

    Science.gov (United States)

    Milovanovic, Stoja; Hollermann, Gesa; Errenst, Cornelia; Pajnik, Jelena; Frerich, Sulamith; Kroll, Stephen; Rezwan, Kurosch; Ivanovic, Jasna

    2018-05-01

    Biodegradable polymers with antibacterial properties are highly desirable materials for active food packaging applications. Thymol, a dietary monoterpene phenol with a strong antibacterial activity is abundant in plants belonging to the genus Thymus. This study presents two approaches for supercritical CO 2 impregnation of poly(lactic acid)(PLA)/poly(ε-caprolactone)(PCL) blended films to induce antibacterial properties of the material: (i) a batch impregnation process for loading pure thymol, and (ii) an integrated supercritical extraction-impregnation process for isolation of thyme extract and its incorporation into the films, operated in both batch or semi-continuous modes with supercritical solution circulation. The PCL content in films, impregnation time and CO 2 flow regime were varied to maximize loading of the films with thymol or thyme extract with preserving films' structure and thermal stability. Representative film samples impregnated with thymol and thyme extract were tested against Gram (-) (Escherichia coli) and Gram(+) (Bacillus subtilis) model strains, by measuring their metabolic activity and re-cultivation after exposure to the films. The film containing thymol (35.8 wt%) showed a strong antibacterial activity leading to a total reduction of bacterial cell viability. Proposed processes enable fast, controlled and organic solvent-free fabrication of the PLA/PCL films containing natural antibacterial substances at moderately low temperature, with a compact structure and a good thermal stability, for potential use as active food packaging materials. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Inkjet Impregnation for Tailoring Air Electrode Microstructure to Improve Solid Oxide Cells Performance

    KAUST Repository

    Da’as, Eman H.

    2015-09-30

    The urge to lower the operating temperature of solid oxide cells (SOCs) to the intermediate ranges between 500-700°C motivated the research into impregnation processes, which offer highly efficient SOC air electrodes at low operating temperatures. Lack of controllability and reproducibility of this technique in the conventional way is still considered as an inadequacy for industrialization since it is performed manually. Therefore, inkjet-printing technology was proposed as an adequate approach to perform scalable and controllable impregnation for SOC air electrodes, which in turn leads to low operating temperatures. Composite LSM-ionic conductive air electrodes of weight ratio 1:2 were fabricated by inkjet impregnation of lanthanum strontium manganite (La0.8Sr0.2MnO3) precursor nitrates onto a porous ionic conductive backbone structure. First, porous yttria stabilized zirconia (8YSZ) substrates prepared by tape casting were used to study the influence of the printing parameters on the lateral dispersion and penetration of LSM ink inside the pores. XRD analysis confirmed the formation of LSM phase after calcination at 800°C for 2 h, while SEM revealed the formation of LSM nanostructures. It has been found by optical microscope observations that the spacing between the drops and the substrate temperature have a significant role in controlling the printing process. Next, the optimized printing parameters were applied in the inkjet impregnation of the LSM ink into porous YSZ electrodes that were spin coated on both sides of dense YSZ layers. LSM-YSZ composite air electrodes achieved an area specific resistance (ASR) of around 0.29 Ω.cm2 at 700°C. The performance of LSM-YSZ composite electrodes was influenced by the microstructure and the thickness, and by the electrode/electrolyte interface characteristics. As a result, the enhancement in LSM-YSZ composite electrode performance was observed due to the better percolation in LSM, YSZ and oxygen diffusion. Finally

  4. Characterizing the Performance of Gas-Permeable Membranes as an Ammonia Recovery Strategy from Anaerobically Digested Dairy Manure.

    Science.gov (United States)

    Fillingham, Melanie; VanderZaag, Andrew; Singh, Jessica; Burtt, Stephen; Crolla, Anna; Kinsley, Chris; MacDonald, J Douglas

    2017-10-07

    Capturing ammonia from anaerobically digested manure could simultaneously decrease the adverse effects of ammonia inhibition on biogas production, reduce reactive nitrogen (N) loss to the environment, and produce mineral N fertilizer as a by-product. In this study, gas permeable membranes (GPM) were used to capture ammonia from dairy manure and digestate by the diffusion of gaseous ammonia across the membrane where ammonia is captured by diluted acid, forming an aqueous ammonium salt. A lab-scale prototype using tubular expanded polytetrafluoroethylene (ePTFE) GPM was used to (1) characterize the effect of total ammonium nitrogen (TAN) concentration, temperature, and pH on the ammonia capture rate using GPM, and (2) to evaluate the performance of a GPM system in conditions similar to a mesophilic anaerobic digester. The GPM captured ammonia at a rate between 2.2 to 6.3% of gaseous ammonia in the donor solution per day. Capture rate was faster in anaerobic digestate than raw manure. The ammonia capture rate could be predicted using non-linear regression based on the factors of total ammonium nitrogen concentration, temperature, and pH. This use of membranes shows promise in reducing the deleterious impacts of ammonia on both the efficiency of biogas production and the release of reactive N to the environment.

  5. Impregnation of LSM Based Cathodes for Solid Oxide Fuel Cells

    DEFF Research Database (Denmark)

    Højberg, Jonathan; Søgaard, Martin

    2011-01-01

    Composites cathodes consisting of strontium doped lanthanum manganite (LSM) and yttria stabilized zirconia have been impregnated with the nitrates corresponding to the nominal compositions: La0.75Sr0.25Mn1.05O3 +/-delta (LSM25), Ce0.8Sm0.2O2 (SDC) and a combination of both (dual). The latter...

  6. Use of X-ray photoelectron spectroscopy to study radiation and thermal effects in polytetrafluoroethylene

    International Nuclear Information System (INIS)

    Wheeler, D.R.; Pepper, S.V.

    1990-01-01

    X-ray photoelectron spectroscopy of the surface and mass spectroscopy of the gas evolved during irradiation and subsequent heating of irradiated polytetrafluoroethylene (PTFE) indicated that the effect of electron irradiation was the same as that of x-irradiation. Saturated fluorocarbon gas was evolved during irradiation and a cross-linked or branched network formed in the surface region. Heating irradiated PTFE to temperatures below 200C resulted in the evolution of additional saturated fluorocarbon gas but no change in the surface. From 200C to 300C, lightly damaged PTFE did not change further, but severely damaged PTFE emitted unsaturated fluorocarbons while the surface underwent apparent partial recovery. These observations demonstrate the thermal instability of the irradiated PTFE surface and allow elaboration of the existing model of radiation damage in PTFE

  7. Effect of preceramic and Zr coating on impregnation behaviors of SiC ceramic composite

    Science.gov (United States)

    Jung, Yang-Il; Kim, Sun-Han; Kim, Hyun-Gil; Park, Jeong-Yong; Koo, Yang-Hyun

    2015-01-01

    SiC fiber-reinforced ceramic composites were fabricated using a polymer impregnation and pyrolysis process. To develop the low temperature process, the pyrolysis was conducted at 600 °C in air. Both a microstructural observation and a mechanical test were utilized for the evaluation of the impregnation. For the impregnation, two kinds of polycarbosilane having a different degree of cross-linking were used. The level of cross-linking affected the ceramic yield of the composites. The cross-linking under oxygen containing atmosphere resulted in a dense matrix and high density of filling. However, tight bonding between the matrix and fibers in the fully dense composite samples, which was obtained using a cross-linking agent of divinylbenzene, turned out to be deteriorative on the mechanical properties. The physical isolation of fibers from matrix phase in the composites was very important to attain a mechanical ductility. The brittle fracture was alleviated by introducing an interphase coating with metallic Zr. The combination of forming the dense matrix and interphase coating should be a necessary condition for the SiCf/SiC fiber-reinforce composite, and it is practicable by controlling the process parameters.

  8. Selective recovery of a pyridine derivative from an aqueous waste stream containing acetic acid and succinonitrile with solvent impregnated resins

    NARCIS (Netherlands)

    Bokhove, J.; Visser, T.J.; Schuur, Boelo; de Haan, A.B.

    2015-01-01

    Solvent impregnated resins (SIRs) were evaluated for the recovery of pyridine derivatives from an aqueous waste-stream containing also acetic acid and succinonitrile. For this purpose, a new solvent was developed, synthesized and impregnated in Amberlite XAD4. Sorption studies were used to determine

  9. Development of a quantitative method for the analysis of cocaine analogue impregnated into textiles by Raman spectroscopy.

    Science.gov (United States)

    Xiao, Linda; Alder, Rhiannon; Mehta, Megha; Krayem, Nadine; Cavasinni, Bianca; Laracy, Sean; Cameron, Shane; Fu, Shanlin

    2018-04-01

    Cocaine trafficking in the form of textile impregnation is routinely encountered as a concealment method. Raman spectroscopy has been a popular and successful testing method used for in situ screening of cocaine in textiles and other matrices. Quantitative analysis of cocaine in these matrices using Raman spectroscopy has not been reported to date. This study aimed to develop a simple Raman method for quantifying cocaine using atropine as the model analogue in various types of textiles. Textiles were impregnated with solutions of atropine in methanol. The impregnated atropine was extracted using less hazardous acidified water with the addition of potassium thiocyanate (KSCN) as an internal standard for Raman analysis. Despite the presence of background matrix signals arising from the textiles, the cocaine analogue could easily be identified by its characteristic Raman bands. The successful use of KSCN normalised the analyte signal response due to different textile matrix background interferences and thus removed the need for a matrix-matched calibration. The method was linear over a concentration range of 6.25-37.5 mg/cm 2 with a coefficient of determination (R 2 ) at 0.975 and acceptable precision and accuracy. A simple and accurate Raman spectroscopy method for the analysis and quantification of a cocaine analogue impregnated in textiles has been developed and validated for the first time. This proof-of-concept study has demonstrated that atropine can act as an ideal model compound to study the problem of cocaine impregnation in textile. The method has the potential to be further developed and implemented in real world forensic cases. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Evaluation of level of impregnation monomers in hydrotalcite

    International Nuclear Information System (INIS)

    Carmo, Danieli M. do; Machado, Jacson S.C.; Oliveira, Marcelo F.L.; Oliveira, Marcia G.; Soares, Bluma G.

    2011-01-01

    To evaluate the impregnation degree of 1,6-hexamethylene diisocyanate and 1,4-butanediol monomers in hydrotalcite clays it was prepared dispersions with mixing ratio 1:100 (clay/monomer), using the Ultraturrax and Ultrasound. Subsequently the samples were characterized by Fourier Transform Infrared Spectroscopy and X-ray Diffraction. Swelling tests and Tyndall effect were used to illustrate the different dispersions. The results indicated a strong interaction between the hydrotalcite with 1,6-hexamethylene diisocyanate, favoring the formation of intercalated structures. (author)

  11. Managing Coil Epoxy Vacuum Impregnation Systems at the Manufacturing Floor Level To Achieve Ultimate Properties in State-of-the-Art Magnet Assemblies

    CERN Document Server

    Hubrig, Jeffrey G

    2005-01-01

    Liquid epoxy resin impregnation systems remain a state-of-the-art polymer material for vacuum and vacuum/pressure impregnation applications in the manufacture of both advanced and conventional coil winding configurations. Epoxy resins inherent latitude in processing parameters accounts for their continued popularity in engineering applications, but also for the tendency to overlook or misinterpret the requisite processing parameters on the manufacturing floor. Resin system impregnation must be managed in detail in order to achieve device life cycle reliability. This closer look reveals how manufacturing floor level management of material acceptance, handling and storage, pre- and post- impregnation processing and cure can be built into a manufacturing plan to increase manufacturing yield, lower unit cost and ensure optimum life cycle performance of the coil.

  12. Multiple Scattering Approach to Polarization Dependence of F K-Edge XANES Spectra for Highly Oriented Polytetrafluoroethylene (PTFE) Thin Film

    International Nuclear Information System (INIS)

    Nagamatsu, S.; Ono, M.; Kera, S.; Okudaira, K. K.; Fujikawa, T.; Ueno, N.

    2007-01-01

    The polarization dependence of F K-edge X-ray absorption near edge structure (XANES) spectra of highly-oriented thin-film of polytetrafluoroethylene (PTFE) has been analyzed by using multiple scattering theory. The spectra show clear polarization dependence due to the highly-oriented structure. The multiple scattering calculations reflects a local structure around an absorbing atom. The calculated results obtained by considering intermolecular-interactions are in good agreement with the observed polarization-dependence. We have also analyzed structural models of the radiation damaged PTFE films

  13. Extraction behaviour of Am(III) and Eu(III) from nitric acid medium in TEHDGA-HDEHP impregnated resins

    Energy Technology Data Exchange (ETDEWEB)

    Saipriya, G.; Kumar, T. [Bhabha Atomic Research Centre Facilities, Kalpakkam (India). Kalpakkam Reprocessing Plant; Kumaresan, R.; Nayak, P.K.; Venkatesan, K.A.; Antony, M.P. [Indira Gandhi Center for Atomic Research, Kalpakkam (India). Fuel Chemistry Div.

    2016-07-01

    The extraction behaviour of Am(III) and Eu(III) from nitric acid medium was studied in the solvent impregnated resins containing extractants such as tetra-bis(2-ethylhexyl)diglycolamide (TEHDGA) or bis-(2-ethylhexyl)phosphoric acid (HDEHP) or mixture of TEHDGA+HDEHP. The rate of extraction of Am(III) and Eu(III) from 1 M nitric acid and the effect of various parameters, such as the concentration of nitric acid in aqueous phase and concentration of TEHDGA and HDEHP in resin phase, on the distribution coefficient of Am(III) and Eu(III) was studied. The distribution coefficient of Am(III) and Eu(III) in HDEHP-impregnated resin decreased and that in TEHDGA-impregnated resin increased, with increase in the concentration of nitric acid. However, in (TEHDGA+HDEHP) - impregnated resin, synergic extraction was observed at lower nitric acid concentration and antagonism at higher nitric acid concentration. The mechanism of Am(III) and Eu(III) extraction in the combined resin was investigated by slope analysis method. The extraction of various metal ions present in the fast reactor simulated high-level liquid waste was studied. The separation factor of Am(III) over Eu(III) was studied using citrate-buffered diethylenetriaminepentaacetic acid (DTPA) solution.

  14. Partitioning of actinides from high level waste of PUREX origin using octylphenyl-N,N'-diisobutylcarbamoylmethyl phosphine oxide (CMPO)-based supported liquid membrane

    International Nuclear Information System (INIS)

    Ramanujam, A.; Dhami, P.S.; Gopalakrishnan, V.; Dudwadkar, N.L.; Chitnis, R.R.; Mathur, J.N.

    1999-01-01

    The present studies deal with the application of the supported liquid membrane (SLM) technique for partitioning of actinides from high level waste of PUREX origin. The process uses a solution of octylphenyl-N,N'-diisobutylcarbamoylmethyl phosphine oxide (CMPO) in n-dodecane as a carrier with a polytetrafluoroethylene support and a mixture of citric acid, formic acid, and hydrazine hydrate as the receiving phase. The studies involve the investigation of such parameters as carrier concentration in SLM, acidity of the feed, and the feed composition. The studies indicated good transport of actinides like neptunium, americium, and plutonium across the membrane from nitric acid medium. A high concentration of uranium in the feed retards the transport of americium, suggesting the need for prior removal of uranium from the waste. The separation of actinides from uranium-lean simulated samples as well as actual high level waste has been found to be feasible using the above technique

  15. Sample clean-up, enrichment and determination of s -triazine ...

    African Journals Online (AJOL)

    In liquid membrane extraction, the uncharged triazine compounds from the flowing donor solution diffuse through a porous poly(tetrafluoroethylene) (PTFE) membrane, containing a water immiscible organic solvent. The s-triazine molecules are then irreversibly trapped in the stagnant acidic acceptor phase since they ...

  16. Effect of impregnation pressure and time on the porosity, structure and properties of polyacrylonitrile-fiber based carbon composites

    Energy Technology Data Exchange (ETDEWEB)

    Venugopalan, Ramani, E-mail: rvg@barc.gov.in [Powder Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Roy, Mainak, E-mail: mainak73@barc.gov.in [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Thomas, Susy [High Pressure Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Patra, A.K. [Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Sathiyamoorthy, D. [Powder Metallurgy Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India); Tyagi, A.K. [Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085 (India)

    2013-02-15

    Carbon–carbon composites may find applications in critical parts of advanced nuclear reactors. A series of carbon–carbon composites were prepared using polyacrylonitrile (PAN) based carbon fibers. The materials were densified by impregnating two-dimensional (2D) preforms with liquid phenol formaldehyde resin at different pressures and for different periods of time and then carbonizing those by slowly heating at 1000 °C. Effects of the processing parameters on the structure of the composites were extensively studied. The study showed conclusively that open porosity decreased with increasing impregnation pressure, whereas impregnation time had lesser effect. Matrix–resin bonding also improved at higher pressure. d{sub 002} spacing decreased and ordering along c-axis increased with concomitant increase in sp{sup 2}-carbon fraction at higher impregnation pressures. The fiber reinforced composites exhibited short range ordering of carbon atoms and satisfied structural conditions (d{sub 002} values) of amorphous carbon according to the turbostratic model for non-graphitic carbon materials. The composites had pellet-density of ∼85% of the theoretical value, low thermal expansion and negligible neutron-poisoning. They maintained structural integrity and retained disordered nature even on heat-treatment at ca. 1800 °C.

  17. Impregnation of sodium titanate onto DMAPAA-grafted fiber under mild reaction conditions and its strontium removal performance from seawater

    International Nuclear Information System (INIS)

    Katagiri, Mizuki; Kono, Michitaka; Goto, Shun-ichi; Kawai-Noma, Shigeko; Umeno, Daisuke; Saito, Kyoichi; Fujiwara, Kunio; Sugo, Takanobu

    2015-01-01

    Sodium titanate was impregnated onto a commercially available 6-nylon fiber by means of radiation-induced graft polymerization of dimethyaminopropyl acrylamide (DMAPAA) and subsequent chemical modifications. A peroxo complex of titanium anions was bound onto the DMAPAA-grafted fiber before the bound titanium species was converted to sodium titanate through precipitation with sodium hydroxide. Impregnation percentage of sodium titanate of the fiber was constant at 20% in the range of sodium hydroxide concentration in a mixture of methanol and water at a volume fraction of methanol of 80% of 0.001 to 1 M, whereas the removal percentage of strontium from seawater leveled off at 80% above a sodium hydroxide concentration in water of 0.1 M. Determination of adsorption isotherms in seawater demonstrates that the sodium-titanate-impregnated fiber with an impregnation percentage of 10% exhibited 2.6-fold higher amount of strontium adsorbed in seawater per g of sodium titanate (8.8 mg-Sr/g) than a commercially available granular adsorbent for strontium, SrTreat ® (3.4 mg-Sr/g). (author)

  18. Development of a novel multi-functional active membrane capping barrier for the remediation of nitrobenzene-contaminated sediment.

    Science.gov (United States)

    Wang, Qing; Li, Yi; Wang, Chao; Wu, Yue; Wang, Peifang

    2014-07-15

    A novel bio-reactive capping barrier composed of polysulfone/granular activated carbon (PS/GAC) hybrid membranes immobilized with microorganism was developed for the remediation of nitrobenzene in sediments. The SEM observation demonstrated that all the membranes had a dense top layer and a porous sublayer, this structure can block the transfer of nitrobenzene from sediment to the water and enhance nitrobenzene degradation. Adsorption behaviors of nitrobenzene on membranes showed that the membrane impregnated with GAC had better performance than the pure PS membrane. The values of Kads increased from 4.64 (without GAC) to 6.19 (1:2 GAC). 20mg/L nitrobenzene can be completely degraded by Pseudomonas putida immobilized on membranes. The biodegradation rate of activated carbon-filled membrane system was little higher than that of pure PS membrane system. For remediation experiments, only about 21.7, 28.3 and 43.9% of nitrobenzene in the sediment was removed by the end of the experiments for PS/GAC membrane, sand-alone and sand amended with activated carbon capping systems, respectively. While for PS/GAC+microorganisms capping system, more than 70% of nitrobenzene loss was observed. This demonstrated that nitrobenzene can be effectively removed from contaminated sediments by microbial degradation in the bio-reactive capping system. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. CHEMISORPtION OF SULFUR (IV OXIDeBY PoLYETHYLENEPOLYAMINE IMPREGNATED FIBROUS MATERIALS. 1. HYDROPHILIC POLYETHYLENEPOLYAMINE IMPREGNATED FIBROUS MATERIALS

    Directory of Open Access Journals (Sweden)

    A. A. Ennan

    2015-03-01

    Full Text Available The hydrophilicity of artificial and synthetic fibers and polyethylenepolyamine (PEPA impregnated fibrous materials based on them was investigated under static conditions using a vacuum sorption installation. Water vapor sorption isotherms were analyzed and monolayer capacitance values  and a water molecules adsorption in the first layer heats were determined in the framework of polymolecular adsorption Brunauer – Emmett – Teller. It has been found that the hydrophilicity of the fibers studied to change in the following sequence: viscose > VION AN-3 > VION KN-1 > nylon-polyester > nitrone > polyester > polypropylene; PEPA modified hydrophilic fibrous material does not depend essentially on the chemical nature of the carrier.

  20. Changes in the chemical structure of polytetrafluoroethylene induced by electron beam irradiation in the molten state

    CERN Document Server

    Lappan, U; Lunkwitz, K

    2000-01-01

    Polytetrafluoroethylene (PTFE) was exposed to electron beam radiation at elevated temperature above the melting point under nitrogen atmosphere and in vacuum for comparison. Fourier-transform infrared (FTIR) spectroscopy was used to study the changes in the chemical structure. The irradiation under nitrogen atmosphere leads to the same structures as described recently for PTFE irradiated in vacuum. Trifluoromethyl branches and double bond structures were detected. The concentrations of terminal and internal double bonds are higher after irradiation under nitrogen than in vacuum. Annealing experiments have shown that the thermal oxidative stability of the radiation-modified PTFE is reduced compared to unirradiated PTFE. The reason are the formation of unstable structures such as double bonds.

  1. INVESTIGATION OF THE PROCESS OF TARTARIC ACID SEPARATION ON AMBERLITE XAD2 IMPREGNATED WITH AMBERLITE LA-2

    Directory of Open Access Journals (Sweden)

    N. Marchitan

    2012-12-01

    Full Text Available This work describes an investigation of the process of reactive ion-exchange separation of tartaric acid from model systems with macroreticular resin AmberliteXAD2 impregnated with liquid ion-exchanger Amberlite LA-2 in batch equipment.The condition of Amberlite XAD2 impregnation process was investigated. Freudlichand Langmuir equations were verified and values of enthalpy, entropy and Gibbs energy were calculated. This article is an extended abstract of a communicationpresented at the Conference Ecological Chemistry 2012.

  2. Effect of ultrasound on the structural and textural properties of copper-impregnated cerium-modified zirconium-pillared bentonite

    International Nuclear Information System (INIS)

    Tomul, Fatma

    2011-01-01

    In this study, the synthesis of zirconium-pillared bentonite modified with cerium was performed via two different methods by the application of conventional and ultrasonic treatments during the intercalation stage. To synthesise copper-impregnated pillared clays by wet impregnation, cerium-modified zirconium-pillared clays were used as supportive materials after being calcined at 300 °C. Ultrasonic treatment significantly decreased the required processing time compared with the conventional treatment of the synthesised pillared bentonites. Chemical analysis confirmed the incorporation of Zr 4+ , Ce 4+ and Cu 2+ species into the pillared bentonites. X-ray diffraction (XRD) patterns of zirconium- and cerium/zirconium-pillared bentonites prepared by conventional treatment show that one large d-spacing above 3.5 nm corresponds to the mesoporous delaminated part, and another small d-spacing above 1.7 nm is indicative of the microporous pillared part. Zirconium- and cerium/zirconium-pillared bentonites prepared via ultrasonic treatment exhibited similar results, with the same high d-spacing but with a second low-intensity d-spacing above 1.9 nm. The delaminated structures of the pillared bentonites synthesised by both methods were conserved after copper impregnation. Nitrogen-adsorption isotherm analysis showed that the textural characteristics of products synthesised by ultrasonic treatment were comparable to those of products synthesised by conventional treatment. Fourier-transform infrared spectroscopy (FTIR) analyses showed the presence of Brønsted- and Lewis-acid sites, and zirconium-pillared clays synthesised by conventional treatment exhibited increased numbers of Brønsted- and Lewis-acid sites after cerium addition and copper impregnation. However, the products synthesised by ultrasonic treatment exhibited an increased number of Brønsted- and Lewis-acid sites after cerium addition, but a decreased number of acid sites after copper impregnation.

  3. Silver impregnation in situ: an aid to radiographic interpretation

    International Nuclear Information System (INIS)

    Boyd, J.; Rantanen, N.W.

    1984-01-01

    In evaluating radiographs of the limb joints and head, students encounter difficulty where superimposition occurs. By replacing calcium with silver salts in the bone, enhanced radiopacity can be produced. In this study, silver impregnation was used to increase the radiopacity of individual carpal and tarsal bones, selected bones of the skull and the sinuses, and guttural pouch of the horse. This provides an interpretation aid for teaching radiographic anatomy of these regions

  4. Field evaluation of spatial repellency of metofluthrin-impregnated plastic strips against Anopheles gambiae complex in Bagamoyo, coastal Tanzania.

    OpenAIRE

    Kawada, Hitoshi; Temu, Emmanuel A.; Minjas, Japhet N.; Matsumoto, Osamu; Iwasaki, Tomonori; Takagi, Masahiro

    2008-01-01

    Metofluthrin is a newly synthesized pyrethroid possessing high knockdown and lethal activity against mosquitoes. Studies of metofluthrin-impregnated plastic strips have been performed with dengue vectors. This study reports the efficacy of the new prototypes of metofluthrin-impregnated plastic strips against malaria vectors, Anopheles gambiae complex, in the Kongo villages of Bagamoyo district in coastal Tanzania. The study, using 20 houses, half intervention, half control, was conducted for ...

  5. In Situ Formed Phosphoric Acid/Phosphosilicate Nanoclusters in the Exceptional Enhancement of Durability of Polybenzimidazole Membrane Fuel Cells at Elevated High Temperatures

    DEFF Research Database (Denmark)

    Zhang, Jin; Aili, David; Bradley, John

    2017-01-01

    -meso-silica. The results indicate that the optimum limit of PWA-meso-silica loading in the PA/PBI membranes is 15 wt%. Detaled analysis indicates that the mesoporous structure of the PWA-meso-silica framework disintegrates, forming phosphosilicate phases within the PBI polymeric matrix during fuel cell operation at 200°C......Most recently, we developed a phosphotungstic acid impregnated mesoporous silica (PWA-meso-silica) and phosphoric acid doped polybenzimidazole (PA/PBI) composite membrane for use in high temperature fuel cells and achieved exceptional durability under a constant current load of 200 mA cm−2 at 200°C...... for over 2700 h. In this work, the fundamental role of PWA-meso-silica in enhancing the stability of the PA/PBI membrane has been investigated. The microstructure, the PA uptake, swelling ratio, mechanical property and conductivity of PA/PBI/PWA-meso-silica composite membranes depend on the loading of PWA...

  6. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    International Nuclear Information System (INIS)

    Celik, Z. Ceylan; Can, B.Z.; Kocakerim, M. Muhtar

    2008-01-01

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid

  7. Boron removal from aqueous solutions by activated carbon impregnated with salicylic acid

    Energy Technology Data Exchange (ETDEWEB)

    Celik, Z. Ceylan [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey)], E-mail: zcelik@atauni.edu.tr; Can, B.Z. [Department of Environmental Engineering, Atatuerk University, Faculty of Engineering, Erzurum (Turkey); Kocakerim, M. Muhtar [Department of Chemical Engineering, Atatuerk University, Faculty of Engineering, 25240 Erzurum (Turkey)

    2008-03-21

    In this study, the removal of boric acid from aqueous solution by activated carbon impregnated with salicylic acid was studied in batch system. pH, adsorbent amount, initial boron concentration, temperature, shaking rate and salicylic acid film thickness were chosen as parameters. Boron removal efficiencies increased with increasing adsorbent amount, temperature and pH, decreasing initial boron concentration. As thickness of salicylic acid film on activated carbon becomes thin up to 0.088 nm, the efficiency increased, and then, the efficiency decreased with becoming thinner than 0.088 nm of salicylic acid film. Shaking rate was no effect on removal efficiency. In result, it was determined that the use of salicylic acid as an impregnant for activated carbon led to the increase of the amount of boron adsorbed. A lactone ring, being the most appropriate conformation, forms between boric acid and -COOH and -OH groups of salicylic acid.

  8. Study on the Effect of Heat Treatment on Physical Properties of Poplar and Beech Woods Impregnated with Nano-Copper and Nano-Silver

    Directory of Open Access Journals (Sweden)

    Hassan Siahposht

    2012-06-01

    Full Text Available Present study conducted to review effects of heat treatment on weight loss, water adsorption, and thickness swelling of poplar (Populus nigra and beech (Fagus oreintalis woods impregnated with nano-copper and nano-silver. Specimens werepressur (2.5 bar impregnated with 400 PPM water-based solution of nano-copper and nano-silver particles in a pressure vessel. For heat treatment, nano-cupper,  nano-silver impregnated and control specimens, were heat treated at 145°C temperature for 24 hours. Water absorption and thickness swelling decreased in heat treated and nano-heat treated specimens and this decrease in specimens impregnated with nano-copper and nano-silver was more obvious than in heat treated control specimens. The reasons were the degradation in crystal sections of celluloses chains and the ink variation of wood polymers. On the other hand, a comparison between heat treated and nano- heat treated specimens has shown weight loss further in nano-heat treated specimens. This shows that retent nano-copper and nano-silver by impregnation facilitates heat transfer in wood; and it may increase the process of degradation and pyrolysis of wood structures in inner parts of specimens.

  9. Operating features of decorative polymer-impregnated concretes under severe operating conditions

    International Nuclear Information System (INIS)

    Kapustina, I.B.; Lobasenok, V.A.; Yakimtsiv, V.P.

    1991-01-01

    The study was carried out to investigate the possibility of a decorative polymer-impregnated concrete as a lining material in radiation-endangered rooms. Their extreme properties such as radiation resistance, decontamination ability, fire resistance and melting-freezing cycle resistance were studied. The material proposed shows substantially high resistance under severe operating conditions

  10. Gauze Impregnated With Quaternary Ammonium Salt Reduces Bacterial Colonization of Surgical Drains After Breast Reconstruction.

    Science.gov (United States)

    Strong, Amy L; Wolfe, Emily T; Shank, Nina; Chaffin, Abigail E; Jansen, David A

    2018-06-01

    Surgical site infection after breast reconstruction is associated with increased length of hospital stay, readmission rates, cost, morbidity, and mortality. Identifying methods to reduce surgical site infection without the use of antibiotics may be beneficial at reducing antimicrobial resistance, reserving the use of antibiotics for more severe cases. Quaternary ammonium salts have previously been shown to be a safe and effective antimicrobial agent in the setting of in vitro and in vivo animal experiments. A retrospective study was conducted to investigate the antimicrobial properties of a quaternary ammonium salt, 3-trimethoxysilyl propyldimethyloctadecyl ammonium chloride (QAS-3PAC; Bio-spear), at reducing surgical drain site colonization and infection after breast reconstruction (deep inferior epigastric perforator flap reconstruction or tissue expander placement). Twenty patients were enrolled, with 14 surgical drains covered with nonimpregnated gauze and 17 surgical drains covered with QAS-3PAC impregnated gauze, for the purposes of investigating bacterial colonization. Antibiotic sensitivity analysis was also conducted when bacterial cultures were positive. The overall incidence of bacterial colonization of surgical drains was lower in the treatment group compared with the control group (17.6% vs 64.3%, respectively; P = 0.008). QAS-3PAC impregnated gauze reduced the incidence of bacterial colonization of surgical drains during the first (0.0% vs 33.3%) and second (33.3% vs 87.5%; P = 0.04) postoperative week. Furthermore, no enhanced antibiotic resistance was noted on drains treated with QAS-3PAC impregnated gauze. The results of this study suggest that QAS-3PAC impregnated gauze applied over surgical drains may be an effective method for reducing the incidence of bacterial colonization.

  11. Ultrafast excited state deactivation of doped porous anodic alumina membranes

    International Nuclear Information System (INIS)

    Makhal, Abhinandan; Sarkar, Soumik; Pal, Samir Kumar; Yan, Hongdan; Wulferding, Dirk; Cetin, Fatih; Lemmens, Peter

    2012-01-01

    Free-standing, bi-directionally permeable and ultra-thin anodic aluminum oxide (AAO) membranes establish attractive templates (host) for the synthesis of nano-dots and rods of various materials (guest). This is due to their chemical and structural integrity and high periodicity on length scales of 5–150 nm which are often used to host photoactive nano-materials for various device applications including dye-sensitized solar cells. In the present study, AAO membranes are synthesized by using electrochemical methods and a detailed structural characterization using FEG-SEM, XRD and TGA confirms the porosity and purity of the material. Defect-mediated photoluminescence quenching of the porous AAO membrane in the presence of an electron accepting guest organic molecule (benzoquinone) is studied by means of steady-state and picosecond/femtosecond-resolved luminescence measurements. Using time-resolved luminescence transients, we have also revealed light harvesting of complexes of porous alumina impregnated with inorganic quantum dots (Maple Red) or gold nanowires. Both the Förster resonance energy transfer and the nano-surface energy transfer techniques are employed to examine the observed quenching behavior as a function of the characteristic donor–acceptor distances. The experimental results will find their relevance in light harvesting devices based on AAOs combined with other materials involving a decisive energy/charge transfer dynamics. (paper)

  12. Ultrafast excited state deactivation of doped porous anodic alumina membranes

    Science.gov (United States)

    Makhal, Abhinandan; Sarkar, Soumik; Pal, Samir Kumar; Yan, Hongdan; Wulferding, Dirk; Cetin, Fatih; Lemmens, Peter

    2012-08-01

    Free-standing, bi-directionally permeable and ultra-thin anodic aluminum oxide (AAO) membranes establish attractive templates (host) for the synthesis of nano-dots and rods of various materials (guest). This is due to their chemical and structural integrity and high periodicity on length scales of 5-150 nm which are often used to host photoactive nano-materials for various device applications including dye-sensitized solar cells. In the present study, AAO membranes are synthesized by using electrochemical methods and a detailed structural characterization using FEG-SEM, XRD and TGA confirms the porosity and purity of the material. Defect-mediated photoluminescence quenching of the porous AAO membrane in the presence of an electron accepting guest organic molecule (benzoquinone) is studied by means of steady-state and picosecond/femtosecond-resolved luminescence measurements. Using time-resolved luminescence transients, we have also revealed light harvesting of complexes of porous alumina impregnated with inorganic quantum dots (Maple Red) or gold nanowires. Both the Förster resonance energy transfer and the nano-surface energy transfer techniques are employed to examine the observed quenching behavior as a function of the characteristic donor-acceptor distances. The experimental results will find their relevance in light harvesting devices based on AAOs combined with other materials involving a decisive energy/charge transfer dynamics.

  13. Ultrafast excited state deactivation of doped porous anodic alumina membranes

    Energy Technology Data Exchange (ETDEWEB)

    Makhal, Abhinandan; Sarkar, Soumik; Pal, Samir Kumar [Department of Chemical, Biological and Macromolecular Sciences, S N Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); Yan, Hongdan; Wulferding, Dirk; Cetin, Fatih; Lemmens, Peter [Institute for Condensed Matter Physics, TU Braunschweig, Mendelssohnstrasse 3, 38106 Braunschweig (Germany)

    2012-08-03

    Free-standing, bi-directionally permeable and ultra-thin anodic aluminum oxide (AAO) membranes establish attractive templates (host) for the synthesis of nano-dots and rods of various materials (guest). This is due to their chemical and structural integrity and high periodicity on length scales of 5-150 nm which are often used to host photoactive nano-materials for various device applications including dye-sensitized solar cells. In the present study, AAO membranes are synthesized by using electrochemical methods and a detailed structural characterization using FEG-SEM, XRD and TGA confirms the porosity and purity of the material. Defect-mediated photoluminescence quenching of the porous AAO membrane in the presence of an electron accepting guest organic molecule (benzoquinone) is studied by means of steady-state and picosecond/femtosecond-resolved luminescence measurements. Using time-resolved luminescence transients, we have also revealed light harvesting of complexes of porous alumina impregnated with inorganic quantum dots (Maple Red) or gold nanowires. Both the Foerster resonance energy transfer and the nano-surface energy transfer techniques are employed to examine the observed quenching behavior as a function of the characteristic donor-acceptor distances. The experimental results will find their relevance in light harvesting devices based on AAOs combined with other materials involving a decisive energy/charge transfer dynamics. (paper)

  14. Fast, versatile x-ray fluorescence method for measuring tin in impregnated wood

    DEFF Research Database (Denmark)

    Drabæk, I.; Christensen, Leif Højslet

    1985-01-01

    The present paper describes an energy-dispersive x-ray fluorescence method for measuring tin in bis(tri-n-butyl)tin-oxide impregnated wood. The proposed method is of the backscatter/fundamental parameter type. Its versatility, precision, and accuracy is demonstrated by analyses of eleven samples...

  15. Adhesion, friction and wear between polytetrafluoroethylene and nitrogen-implanted stainless steel

    International Nuclear Information System (INIS)

    Yang, E.; Hirvonen, J.P.; Raesaenen, M.; Toivanen, R.O.

    1992-01-01

    Adhesion, friction and wear of polytetrafluoroethylene (PTFE), carbon-reinforced PTFE, and glass-reinforced PTFE in sliding contact with nitrogen-implanted and unimplanted AISI 316 stainless steel were determined. The transfer of PTFE within the first 10 unidirectional traverses was investigated using the 19 F(p,αγ) 16 O nuclear reaction. External proton beam induced X-ray emission (PIXE) was used to determine the metal transfer from AISI 316 to pin heads. Nitrogen implantation considerably reduced the transfer of PTFE to the steel surface, and the transfer of the metallic elements from stainless steel to the PTFE-based composites. Furthermore, a lower friction coefficient was observed for nitrogen-implanted samples within the first 400 revolutions. The wear of PTFE, glass-reinforced and carbon-reinforced PTFE pins was only slightly reduced on the nitrogen-implanted surface, although a significant improvement in the wear of the steel was observed. Transmission electron microscopy (TEM) examination of wear debris revealed that PTFE was amorphized during the transfer process. However, no change in the structure of the pin head prior to the transfer was detected with an IR spectrophotometer. (orig.)

  16. Development of separation process of Dy, Y, Tm and Yb from heavier rare earth residue by solvent impregnated resin

    International Nuclear Information System (INIS)

    Shibata, J.; Matsumoto, S.

    1998-01-01

    Full text: Heavier rare earth which is contained in a small amount in ores such as bastnesite and monazite has been accumulated as heavier rare earth residue without doing separation and purification due to lack of suitable methods. The heavier rare earth residue includes seven rare earth elements such as Tb, Dy, Ho, Y, Er, Tm and Yb. Separation and recovery process of Dy, Y, Tm and Yb from leached solution of the heavier rare earth residue was investigated by using a column method with a solvent impregnated resin. The solvent impregnated resin was prepared by impregnation of organophosphorous extractant whose trade name is PC-88A into a macro porous resin, Amberlite XAD-7. It was almost impossible to separate them in simple adsorption and elution steps. However, we attained to individually separate Dy, Y, Tm and Yb from the leached solution first by changing eluent concentration gradually from pH 2 to 2mol/ l HCl in the elution step, and secondly by using a development column and changing eluent concentration in the elution step. The separation process flow was proposed for heavier rare earth residue by using the solvent impregnated resin method

  17. Cavitation as a Precursor to Breakdown of Mass-Impregnated HVDC Cables

    Energy Technology Data Exchange (ETDEWEB)

    Evenset, Gunnar

    1999-09-01

    Thermal cycling has proven to be a critical test for mass-impregnated HVDC cables. The dielectric strength of the insulation is significantly reduced during the first part of the cooling. This decrease of the dielectric strength limits the development of mass-impregnated cables for higher operating voltages and higher power transfer capacities. The decrease of the dielectric strength during cooling has been assumed to be caused by formation of cavities in the mass because the thermal contraction of the mass is larger than that of the paper. Cavities have previously been observed in thermally cycled cables, but their actual formation and growth have not been studied. The fact that breakdown usually occurs a few hours into the cooling period indicates that the dynamics of the growth is important. This work studies the dynamic phenomena occurring in mass-impregnated cables during thermal cycling. In experiments on a system of mass and insulating paper, cavities were observed near the paper surface, probably caused by heterogeneous nucleation. Knowing the tensile stress at cavity formation is important because it controls the size of the cavities and the distance between independently formed cavities in a cable insulation. A test cell was designed to investigate cavitation in models of lapped insulation. The formation, growth and collapse of the cavities could be visually observed while the insulation was electrically stressed and partial discharges were measured. The first cavity generally formed in one of the butt gaps and grew both along the butt gap and into the mass layers between the papers towards adjacent butt gaps. When the cavity between the papers grew into an adjacent butt gap, the gas/vapour filled channel connecting the butt gaps was closed. In this way, one cavity grew into several butt gaps. The extent of cavities between the papers was observed to depend on the interfacial pressure. Considerable less tension is required to suck the menisci of a cavity

  18. Ionic-liquid-impregnated resin for the microwave-assisted solid-liquid extraction of triazine herbicides in honey.

    Science.gov (United States)

    Wu, Lijie; Song, Ying; Hu, Mingzhu; Yu, Cui; Zhang, Hanqi; Yu, Aimin; Ma, Qiang; Wang, Ziming

    2015-09-01

    Microwave-assisted ionic-liquid-impregnated resin solid-liquid extraction was developed for the extraction of triazine herbicides, including cyanazine, metribuzin, desmetryn, secbumeton, terbumeton, terbuthylazine, dimethametryn, and dipropetryn in honey samples. The ionic-liquid-impregnated resin was prepared by immobilizing 1-hexyl-3-methylimidazolium hexafluorophosphate in the microspores of resin. The resin was used as the extraction adsorbent. The extraction and enrichment of analytes were performed in a single step. The extraction time can be shortened greatly with the help of microwave. The effects of experimental parameters including type of resin, type of ionic liquid, mass ratio of resin to ionic liquid, extraction time, amount of the impregnated resin, extraction temperature, salt concentration, and desorption conditions on the extraction efficiency, were investigated. A Box-Behnken design was applied to the selection of the experimental parameters. The recoveries were in the range of 80.1 to 103.4% and the relative standard deviations were lower than 6.8%. The present method was applied to the analysis of honey samples. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Low Cost, Lightweight Gravity Coring and Improved Epoxy Impregnation Applied to Laminated Maar Sediment in Vietnam

    Directory of Open Access Journals (Sweden)

    Jan P. Schimmelmann

    2018-05-01

    Full Text Available In response to the need for lightweight and affordable sediment coring and high-resolution structural documentation of unconsolidated sediment, we developed economical and fast methods for (i recovering short sediment cores with undisturbed topmost sediment, without the need for a firmly anchored coring platform, and (ii rapid epoxy-impregnation of crayon-shaped subcores in preparation for thin-sectioning, with minimal use of solvents and epoxy resin. The ‘Autonomous Gravity Corer’ (AGC can be carried to remote locations and deployed from an inflatable or makeshift raft. Its utility was tested on modern unconsolidated lacustrine sediment from a ~21 m deep maar lake in Vietnam’s Central Highlands near Pleiku. The sedimentary fabric fidelity of the epoxy-impregnation method was demonstrated for finely laminated artificial flume sediment. Our affordable AGC is attractive not only for work in developing countries, but lends itself broadly for coring in remote regions where challenging logistics prevent the use of heavy coring equipment. The improved epoxy-impregnation technique saves effort and costly chemical reagents, while at the same time preserving the texture of the sediment.

  20. TiO2-Impregnated Porous Silica Tube and Its Application for Compact Air- and Water-Purification Units

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ochiai

    2015-09-01

    Full Text Available A simple, convenient, reusable, and inexpensive air- and water-purification unit including a one-end sealed porous amorphous-silica (a-silica tube coated with TiO2 photocatalyst layers has been developed. The porous a-silica layers were formed through outside vapor deposition (OVD. TiO2 photocatalyst layers were formed through impregnation and calcination onto a-silica layers. The resulting porous TiO2-impregnated a-silica tubes were evaluated for air-purification capacity using an acetaldehyde gas decomposition test. The tube (8.5 mm e.d. × 150 mm demonstrated a 93% removal rate for high concentrations (ca. 300 ppm of acetaldehyde gas at a single-pass condition with a 250 mL/min flow rate under UV irradiation. The tube also demonstrated a water purification capacity at a rate 2.0 times higher than a-silica tube without TiO2 impregnation. Therefore, the tubes have a great potential for developing compact and in-line VOC removal and water-purification units.

  1. Effects of acid impregnated steam explosion process on xylose recovery and enzymatic conversion of cellulose in corncob.

    Science.gov (United States)

    Fan, Xiaoguang; Cheng, Gang; Zhang, Hongjia; Li, Menghua; Wang, Shizeng; Yuan, Qipeng

    2014-12-19

    Corncob residue is a cellulose-rich byproduct obtained from industrial xylose production via dilute acid hydrolysis processes. Enzymatic hydrolysis of cellulose in acid hydrolysis residue of corncob (AHRC) is often less efficient without further pretreatment. In this work, the process characteristics of acid impregnated steam explosion were studied in conjunction with a dilute acid process, and their effects on physiochemical changes and enzymatic saccharification of corncob residue were compared. With the acid impregnated steam explosion process, both higher xylose recovery and higher cellulose conversion were obtained. The maximum conversion of cellulose in acid impregnated steam explosion residue of corncob (ASERC) reached 85.3%, which was 1.6 times higher than that of AHRC. Biomass compositional analysis showed similar cellulose and lignin content in ASERC and AHRC. XRD analysis demonstrated comparable crystallinity of ASERC and AHRC. The improved enzymatic hydrolysis efficiency was attributed to higher porosity in ASERC, measured by mercury porosimetry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Unit costs for house spraying and bednet impregnation with residual insecticides in Colombia: a management tool for the control of vector-borne disease.

    Science.gov (United States)

    Kroeger, A; Ayala, C; Medina Lara, A

    2002-06-01

    A study of unit costs and cost components of two malaria-control strategies (house spraying and bednet impregnation with residual insecticides) was undertaken in 11 malaria-endemic states (departamentos) of Colombia, using data provided by control staff on self-administered questionnaires. The accuracy of the data was verified by personal visits, telephone conversations and complementary information from 10 other states. Allthe financial-cost components of the malaria-control operations carried out in the previous 6 months and the results of the control operations themselves (including the numbers of houses sprayed and numbers of bednets impregnated/day) were recorded. The information was stratified according to whether the target communities were 'near' or 'far away' from an operational base, the far-away communities being those that needed overnight stays by the control staff. The main variables analysed were unit costs/house treated, and annual cost/person protected. The results show that house spraying was generally more expensive for the health services than bednet impregnation. This is particularly the case in 'nearby' communities, where most of those at-risk live. In such communities, spraying one house was 7.2 times more expensive than impregnating one bednet. Even if only those sleeping under an impregnated net were assumed to be protected, the unit costs/person protected in a 'nearby' community were twice as high for house spraying than for bednet impregnation. In 'nearby' communities, where technicians could return to the operational base each evening, insecticides made up 80% of the total spraying costs and 42% of the costs of bednet impregnation. In 'far-away' communities, however, salaries and 'per diems' were the most important cost components, representing, respectively, 23% and 22% of the costs of spraying, and 34% plus 27% of the costs of impregnation. Insecticide wastage and non-use of discounts on insecticide prices (available through the

  3. Polytetrafluoroethylene surface modification by filamentary and homogeneous dielectric barrier discharges in air

    International Nuclear Information System (INIS)

    Fang Zhi; Hao Lili; Yang Hao; Xie Xiangqian; Qiu Yuchang; Edmund, Kuffel

    2009-01-01

    In this paper, polytetrafluoroethylene (PTFE) films are modified using non-equilibrium plasma generated by homogeneous DBD in air at medium pressure, and the results are compared to those treated by using filamentary DBD in air at atmospheric pressure. The surface properties of PTFE films before and after the treatments are studied using contact angle and surface energy measurement, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the plasma treatments modify the PTFE surface in both morphology and composition. The PTFE films modified in both treatments show a remarkable decrease in water contact and a remarkable increase in surface energy. XPS analysis reveals that oxygen-containing polar groups are introduced onto the PTFE surface, and SEM analysis shows that the surfaces of the films are etched after both the treatments. It is found that homogeneous DBD is more effective in PTFE surface modification than filamentary DBD as it can make the contact angle decline to a lower level by introducing more oxygen-containing groups, and the possible reason for this effect is discussed.

  4. Physico-chemical studies of gamma-irradiated polyester. Impregnated cement mortar composite

    International Nuclear Information System (INIS)

    Ismail, M.R.; Afifi, M.S.

    1998-01-01

    The effect of impregnation time on the physico-chemical and mechanical properties of polyester-cement mortar composite has been investigated. The samples were soaked in unsaturated polyester resin containing 40% styrene monomer at impregnation times ranging from 1-15 hours and then exposed to 50 kGy of γ-irradiation. The effects on polymer loading, compressive strength, apparent porosity, and water absorption in addition to IR spectra and TGA of the samples were studied. It was found that, the polymer loading and compressive strength increase with the increased of soaking time up to 4 hours and there is no significant improvement of the polymer loading and strength. Whereas, the apparent porosity and water absorption behave in an opposite direction. These are attributed to the presence of polymer in the pores of the samples. IR spectra showed that, new bands appeared as result of the reaction between polyester and set cement. TGA showed that, the polyester cement composite has higher thermal stability as a compared to irradiated polyester. (author)

  5. DEVELOPMENT OF MESOPOROUS MEMBRANE MATERIALS FOR CO2 SEPARATION; SEMIANNUAL

    International Nuclear Information System (INIS)

    Wei-Heng Shih; Qiang Zhao; Tejas Patil

    2002-01-01

    The authors propose to use microporous silica as a suitable candidate for CO(sub 2)/N(sub 2) separation because the pore size is less than 10(angstrom). If a CO(sub 2)adsorbent is added to the microporous silica, the adsorption of CO(sub 2) can block the passage of N(sub 2) and an effective CO(sub 2)/N(sub 2) separator will be found. It was first demonstrated that microporous silica could be synthesized. The microporous silica was then impregnated with Ba(OH)(sub 2). The results of GC study showed that at temperatures between 50 C and 90 C, Ba-doped microporous silica can separate CO(sub 2) from N(sub 2) and the idea of a microporous membrane for CO(sub 2)/N(sub 2) separation is feasible. The new result gives strong support to the proposed research that was outlined in the Phase II proposal. They hope to be able to continue the research and build an effective CO(sub 2)/N(sub 2) membrane separator in the Phase II of this project

  6. Inkjet Impregnation for Tailoring Air Electrode Microstructure to Improve Solid Oxide Cells Performance

    KAUST Repository

    Da’ as, Eman H.

    2015-01-01

    The urge to lower the operating temperature of solid oxide cells (SOCs) to the intermediate ranges between 500-700°C motivated the research into impregnation processes, which offer highly efficient SOC air electrodes at low operating temperatures

  7. Study of building materials impregnation processes by quasi-real-time neutron radiography

    International Nuclear Information System (INIS)

    Nemec, T.; Rant, J.; Apih, V.; Glumac, B.

    1999-01-01

    Neutron radiography (NR) is a useful non-destructive method for determination of hydrogen content in various building and technical materials. Monitoring of transport processes of moisture and hydrogenous liquids in porous building materials is enabled by fast, quasi-real-time NR methods based on novel imaging plate neutron detectors (IP-NDs). Hydrogen content in the samples is determined by quantitative analysis of measured profiles of neutron attenuation in the samples. Detailed description of quantitative NR method is presented by the authors in another accompanying contribution at this conference. Deterioration of building materials is originated by different processes that all require presence of water therefore it is essential to limit or prevent the transport of water through the porous material. In this presentation, results of a study of clay brick impregnation by silicone based hydrophobic agents will be presented. Quantitative results obtained by NR imaging successfully explained the processes that occur during the impregnation of porous materials. Efficiency of hydrophobic treatment was quantitatively evaluated

  8. Development of activated charcoal impregnated air sampling filter media : their characteristics and use

    International Nuclear Information System (INIS)

    Khan, A.A.; Ramarathinam, K.; Gupta, S.K.; Deshingkar, D.S.; Kishore, A.G.

    1975-01-01

    Because of its low maximum permissible concentration in air, air-borne radioiodine must be accurately monitored in contaminated air streams, in the working environment and handling facilities, before release to the environment from the nuclear facilities. Activated charcoal impregnated air sampling filter media are found to be most suitable for monitoring airborne iodine-131. Because of its simplicity and reproducible nature in assessment of air-borne radioactive iodine, the work on the development of such media was undertaken in order to find a suitable substitute for imported activated charcoal impregnated air sampling filter media. Eight different media of such type were developed, evaluated and compared with two imported media. Best suitable medium is recommended for its use in air-borne iodine sampling which was found to be even better suited than imported media of such type. (author)

  9. Vapor-phase elemental mercury adsorption by Ca(OH){sub 2} impregnated with MnO{sub 2} and Ag in fixed-bed system

    Energy Technology Data Exchange (ETDEWEB)

    Y.J. Wang; Y.F. Duan; Z.J. Huang; S.L. Meng; L.G. Yang; C.S. Zhao [Southeast University, Nanjing (China). School of Energy and Environment

    2010-05-15

    The ability of three sorbents (untreated Ca(OH){sub 2}, MnO{sub 2}-impregnated Ca(OH){sub 2} and Ag-impregnated Ca(OH){sub 2}) removing the elemental mercury had been studied using a laboratory-scale fixed-bed reactor at 80{sup o}C under simulated fuel gas conditions. The adsorption performance of the three sorbents was compared by mercury removal efficiency and adsorption capacity. The effect of acid gases such as HCl and SO{sub 2} on the mercury removal was investigated and presented in this article. The results showed that the mercury removal by Ca(OH){sub 2} was mainly controlled by physical mechanisms. In the case of Ca(OH){sub 2}, the presence of both SO{sub 2} and HCl promoted the Hg{sup 0} removal, and compared HCl with SO{sub 2}, HCl had a higher mercury removal than SO{sub 2}. Ca(OH){sub 2} impregnated with MnO{sub 2} had a slightly higher mercury removal than the original Ca(OH){sub 2}, but it was beneficial for mercury speciation. The presence of both SO{sub 2} and HCl promotes the Hg0 removal greatly, which was adsorbed by Ca(OH){sub 2} impregnated with MnO{sub 2}. The Ca(OH){sub 2} impregnated with MnO{sub 2} adsorbed more than 50% total Hg due to the occurrence of chemisorptions. The mercury removal by Ca(OH){sub 2} impregnated with Ag was the highest. This may be because mercury integrated with silver easily that could produce silver amalgam alloy.

  10. Effects of radiation induced polymerisation on the mechanical properties of polymer impregnated concrete

    International Nuclear Information System (INIS)

    Ohgishi, S.; Ono, H.; Kasahara, Y.

    1980-01-01

    In this programme, effects of electron irradiation energy on mechanical properties of polymer impregnated concrete (PIC) were examined with regard to the density of the base cement mortar, the total exposure dose, the radiation source and other factors. (author)

  11. Mechanical properties of porous β-tricalcium phosphate composites prepared by ice-templating and poly(ε-caprolactone) impregnation.

    Science.gov (United States)

    Flauder, Stefan; Sajzew, Roman; Müller, Frank A

    2015-01-14

    In this study ceramic scaffolds of the bioresorbable and osteoconductive bioceramic β-tricalcium phosphate (β-TCP) were impregnated with the bioresorbable and ductile polymer poly(ε-caprolactone) (PCL) to investigate the influence of the impregnation on the mechanical properties of the porous composites. The initial β-TCP scaffolds were fabricated by the ice-templating method and exhibit the typical morphology of aligned, open, and lamellar pores. This pore morphology seems to be appropriate for applications as bone replacement material. The macroporosity of the scaffolds is mostly preserved during the solution-mediated PCL impregnation as the polymer was added only in small amounts so that only the micropores of β-TCP lamellae were infiltrated and the surface of the lamellae were coated with a thin film. Composite scaffolds show a failure behavior with brittle and plastic contributions, which increase their damage tolerance, in contrast to the absolutely brittle behavior of pure β-TCP scaffolds. The energy consumption during bending and compression load was increased in the impregnated scaffolds by (a) elastic and plastic deformation of the introduced polymer, (b) drawing and formation of PCL fibrils which bridge micro- and macrocracks, and (c) friction of ceramic debris still glued together by PCL. PCL addition also increased the compressive and flexural strength of the scaffolds. An explanatory model for this strength enhancement was proposed that implicates the stiffening of cold-drawn PCL present in surface flaws and micropores.

  12. Interaction of the wood surface with metal ions. Part 3: The effects of light on chromium impregnated wood surface

    International Nuclear Information System (INIS)

    Stipta, J.; Németh, K.; Molnárné Hamvas, L.

    2004-01-01

    UV-light changes of untreated and chromium impregnated wood surface were investigated by absorption spectrophotometric methods. The properties of indifferent silicagel and celulose layers were to the behaviour of poplar and black locust surface. Chromic-ion-impregnation had no significant effect on the absorption spectra of these layers. On the other hand, hexavalent chromium was reduced and UV-light caused irreversible wood degradation. Surface treatment caused considerable modification in black locust

  13. Differences and commonalities impregnation of dry and wet sand

    Directory of Open Access Journals (Sweden)

    Maujuda МUZAFFAROVA

    2014-09-01

    Full Text Available The article is devoted to research new methods of physic-chemical methods of preventing deflation to protect railways and highways from such phenomena as exogenous sand drifts. In particular, first studied the possibility of using binders in sand wet state. Results can significantly extend the scope of the method, and identified with particular impregnation maintaining stability requirements protective cover reduces both the concentration previously recommended binders, and their costs, thereby securing implementation in practice of shifting sands resource-saving technology.

  14. Impregnating Systems for Producing Wood-Plastic Composite Materials and Resinified Woods by Radiochemical Means

    International Nuclear Information System (INIS)

    Laizier, J.; Laroche, R.; Marchand, J.

    1969-01-01

    The effect of the nature of the components in the impregnation mixture on the characteristics of wood-plastic combinations has been studied in the case of beech by applying a wide variety of compositions. In particular, the effect of water (in the impregnator, and in the form of moisture in the wood) on the characteristics of the products obtained has been determined. It has been shown that, in place of the conventional method for preparing resinified woods (using a ternary monomer-solvent-water mixture), it is possible to use a method involving comonomers, which obviate the need to dry the wood after treatment. The evaluation of the results obtained is based on the value of the impregnation rate and on the modifications in microscopic structure; these emphasize the differences between the types of filler and enable comparisons to be drawn with the dimensional stabilities observed. Measurements of variations in dimensions and the recurrence of moisture have made it possible to establish a classification based on the types of monomer used and the operating conditions. It is shown that a whole range of products is obtained, the properties of which differ widely and are comparatively easily adaptable to the purpose specified. These properties illustrate clearly the differences and characteristics of resinified woods as opposed to conventional wood-plastic materials. (author) [fr

  15. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.

    2009-12-02

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  16. Asymmetric Hollow Fiber Membranes for Separation of CO 2 from Hydrocarbons and Fluorocarbons at High-Pressure Conditions Relevant to C 2 F 4 Polymerization

    KAUST Repository

    Kosuri, Madhava R.; Koros, William J.

    2009-01-01

    Separation of high-pressure carbon dioxide from fluorocarbons is important for the production of fluoropolymers such as poly(tetrafluoroethylene). Typical polymeric membranes plasticize under high CO2 partial pressure conditions and fail to provide adequate selective separations. Torlon, a polyamide-imide polymer, with the ability to form interchain hydrogen bonding, is shown to provide stability against aggressive CO2 plasticization. Torlon membranes in the form of asymmetric hollow fibers (the most productive form of membranes) are considered for an intended separation of CO 2/C2F4. To avoid safety issues with tetrafluoroethylene (C2F4), which could detonate under testing conditions, safer surrogate mixtures (C2H2F 2 and C2H4) are considered in this paper. Permeation measurements (at 35 °C) indicate that the Torlon membranes are not plasticized even up to 1250 psi of CO2. The membranes provide mixed gas CO2/C2H2F2 and CO 2/C2H4 selectivities of 100 and 30, respectively, at 1250 psi partial pressures of CO2. On the basis of the measured separation performances of CO2/C2H 2F2 and CO2/C2H4 mixtures, the selectivity of the CO2/C2F4 mixture is expected to be greater than 100. Long-term stability studies indicate that the membranes provide stable separations over a period of 5 days at 1250 psi partial pressures of CO2, thereby making the membrane approach attractive. © 2009 American Chemical Society.

  17. Treatment of infectious arthritis of the radiocarpal joint of cattle with gentamicin-impregnated collagen sponges

    International Nuclear Information System (INIS)

    Hirsbrunner, G.; Steiner, A.

    1998-01-01

    Gentamicin-impregnated collagen sponges were used successfully in the treatment of chronic septic arthritis of the radiocarpal joint in two cattle. Both animals were moderately to severely lame and refractory to systemic antibiotics, and one of them was refractory to joint lavage and local antibiotics. The clinical diagnosis was confirmed by radiography and arthrocentesis. Arthroscopy was performed under general anaesthesia and, after debridement and lavage of the joint, gentamicin-impregnated collagen sponges were placed intra-articularly. Synovial fluid was sampled at 10 and 20 days after surgery and radiographs were taken three months (case 1) and two months (case 2) after surgery. The infection was eliminated from both animals and they recovered without residual lameness

  18. A novel ultrasonication method in the preparation of zirconium impregnated cellulose for effective fluoride adsorption.

    Science.gov (United States)

    Barathi, M; Kumar, A Santhana Krishna; Rajesh, N

    2014-05-01

    In the present work, we propose for the first time a novel ultrasound assisted methodology involving the impregnation of zirconium in a cellulose matrix. Fluoride from aqueous solution interacts with the cellulose hydroxyl groups and the cationic zirconium hydroxide. Ultrasonication ensures a green and quick alternative to the conventional time intensive method of preparation. The effectiveness of this process was confirmed by comprehensive characterization of zirconium impregnated cellulose (ZrIC) adsorbent using Fourier transform infrared spectroscopy (FT-IR), energy dispersive X-ray spectrometry (EDX) and X-ray diffraction (XRD) studies. The study of various adsorption isotherm models, kinetics and thermodynamics of the interaction validated the method. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. An experimental study on oil supply in a space bearing with an oil-impregnated retainer

    Science.gov (United States)

    Liu, Jianhai; Fan, Youwen; Wen, Shizhu

    1993-06-01

    Parched elastohydrodynamic lubrication (EHL) film thickness in a space ball bearing is measured by electrical capacitance and resistance, and parched transients of oil film and lubricant breakdown are observed. With different oil-impregnated polymer retainers, which are employed as oil supply resources, parched degradation is restricted to some degree, even lubricant breakdown disappears and a steady state of the oil film is produced. A long-term space bail bearing demands both the lowest driving torque and a steady state oil film, which depends on a strictly controlled oil supply from oil-impregnated retainers. The results of this experimental research describe the effects of oil supply by amounts of oil in retainers on parched EHL.

  20. Antibiotic-impregnated calcium phosphate cement as part of a comprehensive treatment for patients with established orthopaedic infection.

    Science.gov (United States)

    Niikura, Takahiro; Lee, Sang Yang; Iwakura, Takashi; Sakai, Yoshitada; Kuroda, Ryosuke; Kurosaka, Masahiro

    2016-07-01

    The treatment of established orthopaedic infection is challenging. While the main focus of treatment is wide surgical debridement, systemic and local antibiotic administration are important adjuvant therapies. Several reports have described the clinical use of antibiotic-impregnated calcium phosphate cement (CPC) to provide local antibiotic therapy for bone infections. However, these were all individual case reports, and no case series have been reported. We report a case series treated by a single surgeon using antibiotic-impregnated CPC as part of a comprehensive treatment plan in patients with established orthopaedic infection. We enrolled 13 consecutive patients with osteomyelitis (n = 6) or infected non-union (n = 7). Implantation of antibiotic-impregnated CPC was performed to provide local antibiotic therapy as part of a comprehensive treatment plan that also included wide surgical debridement, systemic antibiotic therapy, and subsequent second-stage reconstruction surgery. We investigated the rate of successful infection eradication and systemic/local complications. The concentration of antibiotics in the surgical drainage fluids, blood, and recovered CPC (via elution into a phosphate-buffered saline bath) were measured. The mean follow-up period after surgery was 50.4 (range, 27-73) months. There were no cases of infection recurrence during follow-up. No systemic toxicity or local complications from the implantation of antibiotic-impregnated CPC were observed. The vancomycin concentration in the fluid from surgical drainage (n = 6) was 527.1 ± 363.9 μg/mL on postoperative day 1 and 224.5 ± 198.4 μg/mL on postoperative day 2. In patients who did not receive systemic vancomycin therapy (n = 3), the maximum serum vancomycin level was antibiotic-impregnated CPC is an option to provide local antibiotic therapy as part of a comprehensive treatment plan. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights

  1. Unmodified versus caustics-impregnated carbons for control of hydrogen sulfide emissions from sewage treatment plants

    Energy Technology Data Exchange (ETDEWEB)

    Bandosz, T.J.; Bagreev, A.; Adib, F.; Turk, A.

    2000-03-15

    Unmodified and caustic-impregnated carbons were compared as adsorbents for hydrogen sulfide in the North River Water Pollution Control Plant in New York City over a period of 2 years. The carbons were characterized using accelerated H{sub 2}S breakthrough capacity tests, sorption of nitrogen, potentiometric titration, and thermal analysis. The accelerated laboratory tests indicate that the initial capacity of caustic-impregnated carbons exceeds that of unmodified carbon, but the nature of real-life challenge streams, particularly their lower H{sub 2}S concentrations, nullifies this advantage. As the caustic content of the impregnated carbon is consumed, the situation reverses, and the unmodified carbon becomes more effective. When the concentration of H{sub 2}S is low, the developed surface area and pore volume along with the affinity to retain water create a favorable environment for dissociative adsorption of hydrogen sulfide and its oxidation to elemental sulfur, S{sup 4+}, and S{sup 6+}. In the case of the caustic carbon, the catalytic impact of the carbon surface is limited, and its good performance lasts only while active base is present. The results also show the significant differences in performance of unmodified carbons due to combined effects of their porosity and surface chemistry.

  2. Improvement of operational properties of shell limestone building materials by polysulfide solution impregnation

    Directory of Open Access Journals (Sweden)

    MASSALIMOV Ismail Alexandrovich

    2017-06-01

    Full Text Available The data of studies on the effectiveness of impregnation with polysulfide solutions of shell limestone used as facing and wall material, as well as for the manufacture of road products are presented. Modification of the limestone with the impregnating composition «Akvastat» created by the authors which is sulfur-containing water-based solution of calcium polysulfide containing alcohols and surfactants, can significantly reduce water absorption and increase durability of limestone. Impregnating composition on the basis of calcium polysulfide possesses density of 1.22–1.24 g/cm3, the infiltrant penetrates into the pore structure of limestone to a depth of 4 cm or more, depending on the density and structure of the sample. While the material is drying, sulfur nanoparticles are crystallized from the polysulfide solution in its pores. They partially fill pore space and form protective durable insoluble hydrophobic coating that impedes the penetration of water into the pores of the limestone, but preserves its vapor permeability, which is important for wall and decoration materials. The evaluation of protective coatings was performed with laser particle size analyzer, scanning probe microscope and a diffractometer. It showed that the average size of the particles forming the protective coating is in the range of 20–25 nm, the particles shape is spherical, the particles are elemental sulfur with orthorhombic structure of the crystal lattice. The processing of shell limestone with calcium polysulphide solution provides formation of coating based on nanosized sulfur on the surface of stone pores. The coating partially fills the pore space and, as it is hydrophobic, reduces the water absorption of the samples by a factor of 5–8, increases their average density by 22–27%, strength in 1,2–1,3 times, the softening factor by 6–19%, that makes possible to predict the increase of the durability of building materials based on shell limestone to 1

  3. Adhesive and morphological characteristics of surface chemically modified polytetrafluoroethylene films

    International Nuclear Information System (INIS)

    Hopp, B.; Kresz, N.; Kokavecz, J.; Smausz, T.; Schieferdecker, H.; Doering, A.; Marti, O.; Bor, Z.

    2004-01-01

    In the present paper, we report an experimental determination of adhesive and topographic characteristics of chemically modified surface of polytetrafluoroethylene (PTFE) films. The surface chemistry was modified by ArF excimer laser irradiation in presence of triethylene-tetramine photoreagent. The applied laser fluence was varied in the range of 0.4-9 mJ/cm 2 , and the number of laser pulses incident on the same area was 1500. To detect the changes in the adhesive features of the treated Teflon samples, we measured receding contact angle for distilled water and adhesion strength, respectively. It was found that the receding contact angle decreased from 96 deg. to 30-37 deg. and the adhesion strength of two-component epoxy glue to the treated sample surface increased from 0.03 to 9 MPa in the applied laser fluence range. Additionally, it was demonstrated that the adhesion of human cells to the modified Teflon samples is far better than to the untreated ones. The contact mode and pulsed force mode atomic force microscopic investigations of the treated samples demonstrated that the measured effective contact area of the irradiated films does not differ significantly from that of the original films, but the derived adhesion force is stronger on the modified samples than on the untreated ones. Hence, the increased adhesion of the treated Teflon films is caused by the higher surface energy

  4. Microwave heating of electric cable insulated wires before their impregnation with a hydrophobic material

    Energy Technology Data Exchange (ETDEWEB)

    Niculae, D; Mihailescu, A [Romanian Electricity Authority (Romania); Indreias, I; Martin, D [Institute of Atomic Physics, Bucharest (Romania); Margaritescu, A [ICPE Electrostatica, Bucharest, (Romania); Zlatonovici, D

    1998-12-31

    Underground insulated telecommunication cables must be impregnated with a hydrophobic material in order to prevent water penetration damage. To do so, the cable wire bundle must be heated to a temperature of 60 to 90 degrees C to ensure proper fluidity of the hydrophobic material that must fill the free spaces between the copper wires of the telephone cable. This paper described the microwave heating method of the wires before their impregnation. A cylindrical applicator was designed to perform a telephone bundle heating test. 800 W of microwave power were used on a telephone cable made up of 800 wires of 0.4 mm in diameter. A uniform heating was obtained throughout the section. Microwave heating was also found to be 53 per cent more energy efficient than hot air heating. 4 refs., 4 figs.

  5. Improvement of the process for electrochemical impregnation of nickel hydroxide electrodes

    Science.gov (United States)

    Comtat, M.; Lafage, B.; Leonardi, J.

    1986-01-01

    Nickel hydroxide electrodes containing 11g/dsqm hydroxide, with capacities of 3.6 to 3.8 Ah/dsqm were prepared at 353 K by electrochemical impregnation. The reproducibility of the results is obtained by readjusting the pH before each preparation. The control of each electrode is done during two cycles of charge and discharge following the manufacture by a potential relaxation method.

  6. Mitigating Diseases Transmitted by Aedes Mosquitoes: A Cluster-Randomised Trial of Permethrin-Impregnated School Uniforms.

    Directory of Open Access Journals (Sweden)

    Pattamaporn Kittayapong

    2017-01-01

    Full Text Available Viral diseases transmitted via Aedes mosquitoes are on the rise, such as Zika, dengue, and chikungunya. Novel tools to mitigate Aedes mosquitoes-transmitted diseases are urgently needed. We tested whether commercially insecticide-impregnated school uniforms can reduce dengue incidence in school children.We designed a cluster-randomised controlled trial in Thailand. The primary endpoint was laboratory-confirmed dengue infections. Secondary endpoints were school absenteeism; and impregnated uniforms' 1-hour knock-down and 24 hour mosquito mortality as measured by standardised WHOPES bioassay cone tests at baseline and after repeated washing. Furthermore, entomological assessments inside classrooms and in outside areas of schools were conducted.We enrolled 1,811 pupils aged 6-17 from 5 intervention and 5 control schools. Paired serum samples were obtained from 1,655 pupils. In the control schools, 24/641 (3.7% and in the intervention schools 33/1,014 (3.3% students had evidence of new dengue infections during one school term (5 months. There was no significant difference in proportions of students having incident dengue infections between the intervention and control schools, with adjustment for clustering by school. WHOPES cone tests showed a 100% knock down and mortality of Aedes aegypti mosquitoes exposed to impregnated clothing at baseline and up to 4 washes, but this efficacy rapidly declined to below 20% after 20 washes, corresponding to a weekly reduction in knock-down and mosquito mortality by 4.7% and 4.4% respectively. Results of the entomological assessments showed that the mean number of Aedes aegypti mosquitoes caught inside the classrooms of the intervention schools was significantly reduced in the month following the introduction of the impregnated uniforms, compared to those collected in classrooms of the control schools (p = 0.04.Entomological assessments showed that the intervention had some impact on the number of Aedes

  7. Mitigating Diseases Transmitted by Aedes Mosquitoes: A Cluster-Randomised Trial of Permethrin-Impregnated School Uniforms.

    Science.gov (United States)

    Kittayapong, Pattamaporn; Olanratmanee, Phanthip; Maskhao, Pongsri; Byass, Peter; Logan, James; Tozan, Yesim; Louis, Valérie; Gubler, Duane J; Wilder-Smith, Annelies

    2017-01-01

    Viral diseases transmitted via Aedes mosquitoes are on the rise, such as Zika, dengue, and chikungunya. Novel tools to mitigate Aedes mosquitoes-transmitted diseases are urgently needed. We tested whether commercially insecticide-impregnated school uniforms can reduce dengue incidence in school children. We designed a cluster-randomised controlled trial in Thailand. The primary endpoint was laboratory-confirmed dengue infections. Secondary endpoints were school absenteeism; and impregnated uniforms' 1-hour knock-down and 24 hour mosquito mortality as measured by standardised WHOPES bioassay cone tests at baseline and after repeated washing. Furthermore, entomological assessments inside classrooms and in outside areas of schools were conducted. We enrolled 1,811 pupils aged 6-17 from 5 intervention and 5 control schools. Paired serum samples were obtained from 1,655 pupils. In the control schools, 24/641 (3.7%) and in the intervention schools 33/1,014 (3.3%) students had evidence of new dengue infections during one school term (5 months). There was no significant difference in proportions of students having incident dengue infections between the intervention and control schools, with adjustment for clustering by school. WHOPES cone tests showed a 100% knock down and mortality of Aedes aegypti mosquitoes exposed to impregnated clothing at baseline and up to 4 washes, but this efficacy rapidly declined to below 20% after 20 washes, corresponding to a weekly reduction in knock-down and mosquito mortality by 4.7% and 4.4% respectively. Results of the entomological assessments showed that the mean number of Aedes aegypti mosquitoes caught inside the classrooms of the intervention schools was significantly reduced in the month following the introduction of the impregnated uniforms, compared to those collected in classrooms of the control schools (p = 0.04). Entomological assessments showed that the intervention had some impact on the number of Aedes mosquitoes inside

  8. The influence of FLiNaK salt impregnation on the mechanical properties of a 2D woven C/C composite

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dongsheng, E-mail: zhangdongsheng@sinap.ac.cn; Xia, Huihao; Yang, Xinmei, E-mail: yangxinmei@sinap.ac.cn; Feng, Shanglei; Song, Jinliang; Zhou, Xingtai

    2017-03-15

    Impregnating of molten LiF-NaF-KF salt (LiF-NaF-KF: 46.5–11.5-42 mol%, FLiNaK) into a 2D woven C/C composite was performed at 650 °C under different pressure. The weight gain and mechanical properties change of the 2D woven C/C composite after FLiNaK salt impregnation were measured. The FLiNaK salt distribution into the 2D woven C/C composite was observed by X-ray computed tomography (X-ray CT) and scanning electron microscopy. The results showed that the weight gain of the 2D woven C/C composite increased with increasing impregnating pressure. In X-ray CT images, FLiNaK salt was distributed into the open pores and fissures among fiber bundles and neighboring plies. The interlaminar shear strength, compressive strength, and flexural strength of the 2D woven C/C composite increased with the increase of weight gain. The influence of FLiNaK salt impregnation on the mechanical properties was attributed to the coupling effect of re-densification of FLiNaK salt impregnation and residual stress formed in 2D woven C/C composite. - Highlights: • FLiNaK salt was distributed into the open pores and fissures among fiber bundles. • The mechanical properties of the 2D woven C/C composite increased with the increase of weight gain. • The influence of FLiNaK was attributed to the re-densification of FLiNaK salt and residual stress.

  9. Platinum incorporation in the Na Y zeolite through impregnation method, and characterization by XRD, FTIR and nitrogen adsorption

    International Nuclear Information System (INIS)

    Araujo, A.S.; Sousa, B.V.; Andrade, A.C.C.; Rodrigues, M.G.F.; Rangel, M.C.

    2007-01-01

    Supported metal catalysts are widely used in petroleum refining, chemical and petroleum industries. These catalysts are important in ammonia synthesis, conversion of hydrocarbons with water vapor to synthesis gas, reforming, hydrocracking, ... Platinum has long been used in cracking, hydrogenation and dehydrogenation processes. The aim of this project is the Na Y zeolitic sample preparation through impregnation for incipient humidity, with 0,5% concentration of platinum, aiming its use as a catalyst in the steam reforming reaction. The characterization techniques used were: X Rays Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Nitrogen Adsorption (BET Method). From the obtained results through the techniques mentioned previously it is possible to evidence that the platinum impregnation process did not change the Na Y zeolite structure. Through the superficial specific area (BET) it was possible to observe that the platinum impregnation process caused a decrease in the specific area due to the reduction to the accessibility to the micropores of the zeolitic structure. (author)

  10. Investigation of barium-calcium aluminate process to manufacture and characterize impregnated thermionic cathode for power microwave devices

    International Nuclear Information System (INIS)

    Higashi, Cristiane

    2006-01-01

    In the present work it is described the barium calcium aluminate manufacture processes employed to produce impregnated cathodes to be used in a traveling-wave tube (TWT). The cathodes were developed using a tungsten body impregnated with barium and calcium aluminate with a 5:3:2 proportion (molar). Three different processes were investigated to obtain this material: solid-state reaction, precipitation and crystallization. Thermal analysis, thermogravimetry specifically, supported to determine an adequate preparation procedure (taking into account temperature, time and pyrolysis atmosphere). It was verified that the crystallization showed a better result when compared to those investigated (solid-state reaction and precipitation techniques - formation temperature is about 1000 deg C in hydrogen atmosphere), whereas it presented the lower formation temperature (800 deg C) in oxidizing atmosphere (O 2 ). It was used the practical work function distribution theory (PWFD) of Miram to characterize thermionic impregnated cathode. The PWFD curves were used to characterize the barium-calcium aluminate cathode. PWFD curves shown that the aluminate cathode work function is about 2,00 eV. (author)

  11. Extraction behaviour of Am(III) and Eu(III) from nitric acid medium in CMPO-HDEHP impregnated resins

    Energy Technology Data Exchange (ETDEWEB)

    Saipriya, K.; Kumar, T. [Bhabha Atomic Research Centre Facilities (India). Kalpakkam Reproscessing Plants; Kumaresan, R.; Nayak, P.K.; Venkatesan, K.A.; Antony, M.P. [Indira Gandhi Center for Atomic Research, Kalpakkam (India). Fuel Chemistry Div.

    2016-05-01

    Chromatographic resin containing extractants such as octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) or bis-(2-ethylhexyl)phosphoric acid (HDEHP) or mixture of extractants (CMPO + HDEHP) in an acrylic polymer matrix was prepared and studied for the extraction of Am(III) and Eu(III) over a range of nitric acid concentration. The effect of various parameters such as concentration of nitric acid in aqueous phase and the concentration of CMPO and HDEHP in the resin phase was studied. The distribution coefficient of Am(III) and Eu(III) in the impregnated resin increased with increased in the concentration of nitric acid for CMPO-impregnated resin, whereas a reverse trend was observed in HDEHP impregnated resin. In case of resin containing both the extractants, synergism was observed at low nitric acid concentration and antagonism at high nitric acid concentration. The mechanism of extraction was probed by slope analysis method at 0.01 and 2 M nitric acid concentrations. Citrate-buffered DTPA was used for the selective separation of Am(III), and a separation factor of 3-4 was obtained at pH 3.

  12. Study of the variables which influence the impregnation of globules, compressed tablets and tablet triturates used in homeopathy

    Directory of Open Access Journals (Sweden)

    Fernanda Santos de Souza

    2012-09-01

    Full Text Available Globules, compressed tablets and tablet triturates are solid dosage forms used in homeopathy. Divergences can be noted between the preparation techniques described in official compendiums as well as those applied in homeopathic pharmacies. The difficulty associated with standardization of the impregnation of these dosage forms occurs due to the lack of detail provided for the techniques in the literature, leaving it up to each pharmacy to decide on the exact method of preparation. The objective was to optimize the impregnation technique, through investigating the variables that influence the impregnation of globules, compressed tablets and tablet triturates, applying the statistical tool of factorial design. The independent variables were the dosage form, percentage and type of impregnation and drying temperature, and the dependent variables were the mass gain, disintegration time, friability and hardness. For the globules, the greatest mass gain was for 10% impregnation and drying at 20 ºC. For the tablet triturates and compressed tablets the greatest mass gain was for 15% impregnation and there was no difference between the results obtained using simple and triple impregnation or different drying temperatures. The results can contribute to improving the final product quality, besides aiding in the establishment of standardized techniques for the official compendiums.Glóbulos, comprimidos e tabletes são formas farmacêuticas sólidas utilizadas em homeopatia. Constatam-se divergências entre técnicas de preparação descritas nos compêndios oficiais, bem como em farmácias homeopáticas. A dificuldade de padronização na impregnação destas formas farmacêuticas também ocorre devido à falta de detalhamento das técnicas na literatura existente, deixando para cada farmácia a escolha de como executá-las. O objetivo foi otimizar a técnica de impregnação, através do estudo de variáveis que interferem na impregnação de gl

  13. Manufacturing Technology of Composite Materials-Principles of Modification of Polymer Composite Materials Technology Based on Polytetrafluoroethylene.

    Science.gov (United States)

    Panda, Anton; Dyadyura, Kostiantyn; Valíček, Jan; Harničárová, Marta; Zajac, Jozef; Modrák, Vladimír; Pandová, Iveta; Vrábel, Peter; Nováková-Marcinčínová, Ema; Pavelek, Zdeněk

    2017-03-31

    The results of the investigations into the technological formation of new wear-resistant polymer composites based on polytetrafluoroethylene (PTFE) filled with disperse synthetic and natural compounds are presented. The efficiency of using PTFE composites reinforced with carbon fibers depends on many factors, which influence the significant improvement of physicomechanical characteristics. The results of this research allow stating that interfacial and surface phenomena of the polymer-solid interface and composition play a decisive role in PTFE composites properties. Fillers hinder the relative movement of the PTFE molecules past one another and, in this way, reduce creep or deformation of the parts, reducing the wear rate of parts used in dynamic applications as well as the coefficient of thermal expansion. The necessary structural parameters of such polymer composites are provided by regimes of process equipment.

  14. Studies on surface modification of poly(tetrafluoroethylene) film by remote and direct Ar plasma

    International Nuclear Information System (INIS)

    Wang Chen; Chen Jierong; Li Ru

    2008-01-01

    Poly(tetrafluoroethylene) (PTFE) surfaces are modified with remote and direct Ar plasma, and the effects of the modification on the hydrophilicity of PTFE are investigated. The surface microstructures and compositions of the PTFE film were characterized with the goniometer, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Results show that the remote and direct plasma treatments modify the PTFE surface in morphology and composition, and both modifications cause surface oxidation of PTFE films, in the forming of some polar functional groups enhancing polymer wettability. When the remote and direct Ar plasma treats PTFE film, the contact angles decrease from the untreated 108-58 o and 65.2 o , respectively. The effect of the remote Ar plasma is more noticeable. The role of all kinds of active species, e.g. electrons, ions and free radicals involved in plasma surface modification is further evaluated. This shows that remote Ar plasma can restrain the ion and electron etching reaction and enhance radical reaction

  15. Laparoscopic diaphragmatic hernia repair using expanded polytetrafluoroethylene (ePTFE) for delayed traumatic diaphragmatic hernia.

    Science.gov (United States)

    Jee, Yeseob

    2017-06-01

    Traumatic diaphragmatic hernia (TDH) is an uncommon surgical problem, and diagnosis is often delayed. However, the mortality from bowel necrosis can reach 80%. Therefore, suspicion is needed and surgery is required to prevent complications. A 50-year-old man was transferred due to abdominal pain and vomiting. Chest X-ray and computed tomography (CT) scan showed herniation of the stomach through the left diaphragm. The patient had fallen down 15 months ago and CT scan at that time revealed a small defect of the diaphragm without herniation. We diagnosed delayed herniation of TDH and the patient underwent laparoscopic repair using an expanded polytetrafluoroethylene (ePTFE) mesh. Recovery was uneventful and the CT scan at 3 months after the operation showed no recurrence. We reported a delayed presenting TDH and considered a laparoscopic approach to be safe and feasible during elective surgery. Moreover, use of an ePTFE mesh for repair of large diaphragmatic hernia was also feasible.

  16. Extraction and Separation of Uranium (VI) and Thorium (IV) Using Tri-n-dodecylamine Impregnated Resins

    International Nuclear Information System (INIS)

    Metwally, E.; Saleh, A.Sh.; El-Naggar, H.A.

    2005-01-01

    Extraction of U(VI) and Th(IV) from chloride and nitrate solutions with tri-n- dodecylamine impregnated on Amberlite XAD4, was investigated. The distribution of U(VI) and Th(IV) was studied at different concentrations of acid, salting-out agent, extractant, aqueous metal ion and other parameters. Absorption spectral studies have been investigated for uranium species in both aqueous HCl solution and the resin phase. From these studies, it is suggested that the tetrachloro complex of U(VI) is formed in the extraction of uranium (VI) from hydrochloric acid solutions by TDA impregnated resin. Stripping of the extracted U(VI) and Th(IV) was assayed with HCl and HNO 3 . Finally, the separation of uranium from thorium and fission products in HCl media was achieved

  17. Conservation of a medieval climbing stem by freeze-drying and resin impregnation

    International Nuclear Information System (INIS)

    Schaudy, R.; Slais, E.; Eibner, C.

    1985-12-01

    The conservation of a climbing stem originating from a medieval mining adit is described. The fragile wet object was preserved by a combined process consisting of freeze-drying after a polyethylene glycol bath and consecutive resin impregnation with curing by gamma irradiation. The whole conservation process took 1 year. The result is discussed. (Author)

  18. Impregnation of β-​tricalcium phosphate robocast scaffolds by in situ polymerization

    NARCIS (Netherlands)

    Martinez-Vazquez, F.J.; Perera, F.H.; Meulen, van der I.; Heise, A.; Pajares, A.; Miranda, P.

    2013-01-01

    Ring-¿opening polymn. of e-¿caprolactone (e-¿CL) and L-¿lactide (LLA) was performed to impregnate ß-¿tricalcium phosphate (ß-¿TCP) scaffolds fabricated by robocasting. Concd. colloidal inks prepd. from ß-¿TCP com. powders were used to fabricate porous structures consisting of a 3D mesh of

  19. Vapor mercury uptake with sulphur impregnated active carbons derived using sulphur dioxide

    International Nuclear Information System (INIS)

    Tong, S.; Methta, H.; Ahmed, I.; Morris, E.; Fuentes de Maria, L.; Jia, C.Q.

    2008-01-01

    Active carbon adsorption is the primary technology used for removal of vapour mercury from flue gases in coal-fired power plants, municipal solid waste combustors, and other sources. It can be carried out using two different processes, notably injection of powder active carbon into flue gas streams upstream of the particulate collection devices, and filtration with a granular active carbon fixed bed downstream of the flue gas desulphurization units and/or particulate collectors. This paper presented an investigation of vapour mercury uptake performance of laboratory-made sulphur impregnated active carbons (SIACs) using a fixed bed reactor in a temperature range of 25 to 200 degrees Celsius. The materials and methods as well as the properties of activated carbons studied were presented. The experimental set-up was also described. The paper discussed the effects of initial concentration, the flow rate, the loading amount of SIACs, temperature, and the sulphur impregnation on the mercury uptake performance. The study showed that SIACs produced with sulphur dioxide exhibited a more complicated behaviour when temperature was varied, implying a mixed adsorption mechanism. 10 refs., 3 tabs., 8 figs

  20. Carbon Dioxide Capture by Deep Eutectic Solvent Impregnated Sea Mango Activated Carbon

    Science.gov (United States)

    Zulkurnai, N. Z.; Ali, U. F. Md.; Ibrahim, N.; Manan, N. S. Abdul

    2018-03-01

    The increment amount of the CO2 emission by years has become a major concern worldwide due to the global warming issue. However, the influence modification of activated carbon (AC) has given a huge revolution in CO2 adsorption capture compare to the unmodified AC. In the present study, the Deep Eutectic Solvent (DES) modified surface AC was used for Carbon Dioxide (CO2) capture in the fixed-bed column. The AC underwent pre-carbonization and carbonization processes at 519.8 °C, respectively, with flowing of CO2 gas and then followed by impregnation with 53.75% phosphoric acid (H3PO4) at 1:2 precursor-to-activant ratios. The prepared AC known as sea mango activated carbon (SMAC) was impregnated with DES at 1:2 solid-to-liquid ratio. The DES is composing of choline chloride and urea with ratio 1:2 choline chloride to urea. The optimum adsorption capacity of SMAC was 33.46 mgco2/gsol and 39.40 mgco2/gsol for DES modified AC (DESAC).

  1. Intrasellar Iatrogenic Carotid Pseudoaneurysm: Endovascular Treatment with a Polytetrafluoroethylene-Covered S tent

    International Nuclear Information System (INIS)

    Vanninen, R. L.; Manninen, H. I.; Rinne, J.

    2003-01-01

    This case illustrates successful treatment of a large postoperative intrasellar pseudoaneurysm with a polytetrafluoroethylene (PTFE)-covered stent. The advantages and potential disadvantages of this novel method of treatment are discussed. A previously healthy 59-year-old man underwent transsphenoidal operative treatment for hypophyseal macroadenoma,complicated by bleeding. On the 17 th postoperative day the patient had profuse arterial bleeding from his nose requiring posterior tamponade. Subsequent angiography of the left internal carotid artery(ICA) revealed a large pseudoaneurysm located intrasellarly, with the orifice in the anteromedial wall in the ophthalmic segment of the ICA.Surgical treatment of the pseudoaneurysm was considered very risky. A12-mm PTFE-covered stent (JoMed, Ulestraten, Netherlands), manually compressed on a PTCA-balloon (Maxxum 4.5/13 mm, Boston Scientific,Ireland) was endovascularly delivered covering the orifice of the pseudoaneurysm. Control angiography immediately after the intervention and one year later revealed no flow into the pseudoaneurysm and the ICA was fully patent. In conclusion, deployment of a PTFE-covered stent proved to be feasible and successful in the treatment of an intrasellariatrogenic ICA pseudoaneurysm. Adequate anticoagulative treatment after the procedure is essential to prevent thrombotic complications

  2. Long term results of polytetrafluoroethylene in above knee femoropopliteal bypass for critical ischaemia.

    LENUS (Irish Health Repository)

    Kavanagh, E G

    2012-02-03

    Ninety-six consecutive above-knee femoropopliteal bypasses, using polytetrafluoroethylene (PTFE) preferentially, were performed for limb-threatening ischaemia. Cumulative primary graft patency was 68 per cent, 49 per cent and 36 per cent and limb salvage 93 per cent, 85 per cent and 75 per cent at 1, 3 and 5 yr respectively. As a result of poor long term survival (51 per cent at 5 yr), and the healing of remedial lesions before graft occlusion, 68 patients (72 per cent) required no further intervention. Eighteen secondary bypasses were undertaken, 12 using ipsilateral saphenous vein. In this group of elderly patients with poor life expectancy, where a limited operation is desirable, the use of PTFE provided excellent limb salvage with low morbidity. Although we can no longer justify our continued use of PTFE in every case of critical ischaemia because of its inferior patency to autogenous vein, we continue to use it preferentially in patients whose lifespan is likely to be short and in cases where a remedial lesion is present.

  3. Ecological risks of an old wood impregnation mill: application of the triad approach.

    NARCIS (Netherlands)

    Karjalainen, A.-M.; Kilpi-Koski, J.; Väisänen, A.O.; Penttinen, S.; van Gestel, C.A.M.; Penttinen, O.-P.

    2009-01-01

    Although many studies deal with the distribution and mobility of chromated copper arsenate (CCA) metals in soil, the ecotoxicity of CCA-contaminated soils is rarely studied. The Triad approach was applied to determine the ecological risks posed by a CCA mixture at a decommissioned wood impregnation

  4. Ion Transport in Organic Electrolyte Solution through the Pore Channels of Anodic Nanoporous Alumina Membranes

    International Nuclear Information System (INIS)

    Fukutsuka, Tomokazu; Koyamada, Kohei; Maruyama, Shohei; Miyazaki, Kohei; Abe, Takeshi

    2016-01-01

    Highlights: • Ion transport in organic electrolyte solution in macro- and meso-pores was focused. • Anodic nanoporous alumina membrane was used as a porous material. • The specific ion conductivities drastically decreased in macro- and meso-pores. - Abstract: For the development of high energy density lithium-ion batteries with the high rate performance, the enhancement of the ion transport in the electrolyte solutions impregnated in the porous electrodes is a key. To study the ion transport in porous electrodes, anodic nanoporous alumina (APA) self-standing membranes with macro- or meso-pores were used as model porous materials. These membranes had nearly spherical pore channels of discrete 20–68 nm in diameters. By using the geometric shape of the pores, we attempted to evaluate the specific ion conductivities of the organic electrolyte solution dissolving lithium salt simply. AC impedance spectroscopy measurement of a four-electrode cell with membranes showed one depressed semi-circle in the Nyquist plots and this semi-circle can be assigned as the ion transport resistance in the pores. The specific ion conductivities evaluated from the ion transport resistances and the geometric parameters showed very small values, even in the macro-pores, as compared with that of the bulk electrolyte solution.

  5. Separation of yttrium using carbon nanotube doped polymeric beads impregnated with D2EHPA

    International Nuclear Information System (INIS)

    Dasgupta, Kinshuk; Yadav, Kartikey K.; Singh, D.K.; Anitha, M.; Singh, H.

    2013-01-01

    Di-2-ethylhexyl phosphoric acid impregnated polyethersulfone based composite beads in combination with additives such as polyvinyl alcohol (PVA) and multiwalled carbon nanotube (MWCNT) has been prepared by non-solvent phase inversion method. The synthesized beads were characterized by scanning electron microscopy, thermogravimetry and infra-red spectroscopy. Effect of additives on bead morphology, solvent impregnation capacity, extractability and stability has been examined to compare their suitability for yttrium recovery from acidic medium. Microstructural investigation as well as experimental findings confirmed the role of additives in modifying the pore structures in beads, responsible for varied degree of yttrium extraction. Further the role of metal ion concentration in aqueous phase on its recovery by polymeric beads was also evaluated. Among the tested beads PES/D2EHPA/MWCNT/PVA beads were found to be superior for Y(Ill) extraction. (author)

  6. Mass impregnation plant speeds high voltage cable production

    Energy Technology Data Exchange (ETDEWEB)

    1965-05-07

    A mass impregnation and continuous sheath extrusion plant that will eliminate the long period of vacuum treatment usually required for high voltage oil-filled cables is among the latest techniques included in the new factory at Pirelli General's Eastleigh works. The new factory is said to be the first in Europe designed solely for the manufacture of the full range of oil-filled cables. Possible future increases of system voltages to about 750-kV ac or 1000-kV dc have been taken into account in the design of the works, so that only a small amount of modification and new plant will be involved.

  7. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts

    KAUST Repository

    Imran, Ali; Bramer, Eddy A.; Seshan, Kulathuiyer; Brem, Gerrit

    2015-01-01

    Catalytic pyrolysis of wood with impregnated vegetable oil was investigated and compared with catalytic pyrolysis of jatropha cake making use of sodium based catalysts to produce a high quality bio-oil. The catalytic pyrolysis was carried out in two

  8. Study on Pt-structured anodic alumina catalysts for catalytic combustion of toluene: Effects of competitive adsorbents and competitive impregnation methods

    Science.gov (United States)

    Zhang, Qi; Luan, Hongjuan; Li, Tao; Wu, Yongqiang; Ni, Yanhui

    2016-01-01

    Novel competitive impregnation methods were used to prepare high dispersion Pt-structured anodic alumina catalysts. It is found that competitive adsorbents owning different acidity result in different Pt loading amount and also exert great effects on Pt distribution, particle size and redox ability. The suitable adsorption ability of lactic acid led to its best activity for catalytic combustion of toluene. Co-competitive and pre-competitive impregnation methods were also compared and the mechanisms of two competitive methods were proposed. Co-competitive impregnation made Pt distribute more uniformly through pore channels and resulted in better catalytic activity, because of the weaker spatial constraint effect of lactic acid. Furthermore, the optimized Pt-structured anodic alumina catalyst also showed a good chlorine-resistance under moisture atmosphere, because water could promote the reaction of dichloromethane (DCM) transformation and clean chloride by-products to release more active sites.

  9. Cell adhesion and proliferation on poly(tetrafluoroethylene) with plasma-metal and plasma-metal-carbon interfaces

    Science.gov (United States)

    Reznickova, Alena; Kvitek, Ondrej; Kolarova, Katerina; Smejkalova, Zuzana; Svorcik, Vaclav

    2017-06-01

    The aim of this article is to investigate the effect of the interface between plasma activated, gold and carbon coated poly(tetrafluoroethylene) (PTFE) on in vitro adhesion and spreading of mouse fibroblasts (L929). Surface properties of pristine and modified PTFE were studied by several experimental techniques. The thickness of a deposited gold film is an increasing function of the sputtering time, conversely thickness of carbon layer decreases with increasing distance between carbon source and the substrate. Because all the used surface modification techniques take place in inert Ar plasma, oxidized degradation products are formed on the PTFE surface, which affects wettability of the polymer surface. Cytocompatibility tests indicate that on samples with Au/C interface, the cells accumulate on the part of sample with evaporated carbon. Number of L929 cells proliferated on the studied samples is comparable to tissue culture polystyrene standard.

  10. Bacterial Adhesion Forces to Ag-Impregnated Contact Lens Cases and Transmission to Contact Lenses

    NARCIS (Netherlands)

    Qu, Wenwen; Busscher, Henk J.; van der Mei, Henny C.; Hooymans, Johanna M. M.

    Purpose: To measure adhesion forces of Pseudomonas aeruginosa, Staphylococcus aureus, and Serratia marcescens to a rigid contact lens (CL), standard polypropylene, and Ag-impregnated lens cases using atomic force microscopy and determine bacterial transmission from lens case to CL. Methods: Adhesion

  11. Characterization of Merbau Extractives as a Potential Wood-Impregnating Material

    Directory of Open Access Journals (Sweden)

    Jamaludin Malik

    2016-08-01

    Full Text Available This study aimed to investigate the major content of merbau extractives (ME and their potential use as an impregnating material for low-quality timber. Extraction was done by maceration with ethanol, ethyl-acetate, and hot-water. Physico-chemical, phyto-chemical, UV-visible, and infrared spectroscopy, as well as py-GCMS analysis were then performed on dried extract. The results showed that organic solvent extractions resulted in much higher yields, by 12.50% than that of hot water (1.10%. The merbau extractives liquid obtained had a low acidity, with a pH ranging from 5 to 6, which is typical of phenolic compounds. Flavonoids and phenolics were found as the major compounds. UV-vis spectra showed that ME (λ=279 nm consists of conjugated or aromatic systems, similar to standard resorcinol, which was used as the reference (λ=274 nm. The FTIR spectra showed the absorption bands at 3369 cm-1 that represent the functional group of hydroxyl (OH bonds, and 1619 and 1510 cm-1, representing the aromatic ring (C=C, which could be associated with resorcinol. The Py-GCMS showed that ME is predominated by resorcinol (C6H6O2 with a 79% concentration. The ME could be potentially used for producing phenolic/resorcinolic resin through polymerization, which could be applied for wood impregnation.

  12. Monomers and Monomer Mixtures Used in Impregnation of Fibrous Materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1968-10-15

    Some important properties of monomers and polymers in relation to their use for reinforcement of fibrous materials are listed. Some monomers and their properties important in impregnation of fibrous materials are also listed. In general it is not advantageous to use a pure monomer for impregnation but rather a mixture of monomers or a mixture of a monomer and a low molecular weight polymer such as unsaturated polyester. Some of these mixtures which have been well studied in connection with WPC are listed together with some of their properties when used in WPC. Other monomer mixtures may well come in question and other monomers can probably be used. For instance, it is reported from Japan that the cheap monomer ethyleneoxide, which cannot be polymerized by gamma radiation as such, can be polymerized (in bulk) as a mixture with methylmethacrylate. Good results with WPC have generally been obtained without swelling agents but more is grafted if some swelling agent is used, and it is possible that a swelling agent might be useful in the case of fibre-boards. Solvents, plasticizers, crosslinkable natural resins, aromatic chlorinated hydrocarbons, and retardants can be added, and with their use the properties of WPC can be widely modified. For example, a chlorinated wax can act as retardant, can reduce the total dose of radiation and can increase the flame resistance simultaneously.

  13. Selective permeation of plutonium(IV) through a supported liquid membrane containing tri-iso-amyl phosphate as an ionophore

    International Nuclear Information System (INIS)

    Shukla, J.P.; Kedari, C.S.; Dharmapurikar, G.R.

    1998-01-01

    Selective ionophoric mobility of plutonium with ease of concentration upgradation from aqueous nitrate solutions was investigated. A thin flat-sheet supported liquid membrane (SLM) impregnated with tri-iso-amyl phosphate (TAP) was used. Accurel polypropylene hydrophobic microporous membrane 'Enka' was tested as the solid polymeric support. The source phase generally contained extremely dilute (ca. 10 -6 mol/dm -3 ) to moderately concentrated plutonium(IV) nitrate solutions (ca. 10 -3 mol/dm -3 ) in about 4 mol/dm -3 HNO 3 . Membrane permeability and selectivity dependency on variables like nitric acid concentration in the source phase, carrier concentration, receiving phase composition, etc. were systematically evaluated. More than 90% pertraction of plutonium could be easily accomplished in single run employing a feed solution consisting of about 1 mg/dm -3 Pu and 4 mol/dm -3 HNO 3 , carrier concentration of 0.8 mol/dm -3 TAP/dodecane; the receiving phase was 0.5 mol/dm -3 sodium carbonate or 0.5 mol/dm -3 ascorbic acid. The selective diffusivity of plutonium(IV) was observed from various effluents originating from fuel reprocessing operations. Reusability of membrane supports was also found to be satisfactory. (author)

  14. High activity PtRu/C catalysts synthesized by a modified impregnation method for methanol electro-oxidation

    International Nuclear Information System (INIS)

    Ma Liang; Liu Changpeng; Liao Jianhui; Lu Tianhong; Xing Wei; Zhang Jiujun

    2009-01-01

    A modified impregnation method was used to prepare highly dispersive carbon-supported PtRu catalyst (PtRu/C). Two modifications to the conventional impregnation method were performed: one was to precipitate the precursors ((NH 4 ) 2 PtCl 6 and Ru(OH) 3 ) on the carbon support before metal reduction; the other was to add a buffer into the synthetic solution to stabilize the pH. The prepared catalyst showed a much higher activity for methanol electro-oxidation than a catalyst prepared by the conventional impregnation method, even higher than that of current commercially available, state-of-the-art catalysts. The morphology of the prepared catalyst was characterized using TEM and XRD measurements to determine particle sizes, alloying degree, and lattice parameters. Electrochemical methods were also used to ascertain the electrochemical active surface area and the specific activity of the catalyst. Based on XPS measurements, the high activity of this catalyst was found to originate from both metallic Ru (Ru 0 ) and hydrous ruthenium oxides (RuO x H y ) species on the catalyst surface. However, RuO x H y was found to be more active than metallic Ru. In addition, the anhydrous ruthenium oxide (RuO 2 ) species on the catalyst surface was found to be less active.

  15. Micro- and macroscopic study on the porosity of marble as a function of temperature and impregnation

    Science.gov (United States)

    Malaga-Starzec, K.; Akesson, U.; Lindqvist, J. E.; Schouenborg, B.

    2003-04-01

    The thermal weathering of marble is demonstrated by the progressive granular decohesion that leads to an increased porosity and subsequently to loss of strength. In order to determine how temperature cycling initiates changes in the porosity of fresh and impregnated stones: two chemically and petrographically very different marble types were tested for water absorption and ultrasonic velocity propagation and analysed by fluorescence microscopy and nitrogen adsorption. The influence of the impregnation materials: GypStop P17 and P22, both silica sols with different particle size, on changes of the porosity was also evaluated. A separate long-term study of thermal expansion was additionally performed on fresh unimpregnated samples. The results indicated that inter-granular decohesion was more pronounced for the calictic marble than the dolomitic marble. The impregnation materials had a mitigating effect on the granular decohesion. Use of fluorescence microscopy, among the other methods, appears to give inexpensive and reliable information about internal structure of the marbles. A better understanding of the effect that temperature has on the porosity of marble could be used as a guide for election of suitable stone material for exterior use as well as an indication for appropriate conditioning of the samples before physical properties testing.

  16. Adsorption removal of Sr by Barium impregnated 4A Zeolite(BaA) from high radioactive seawater waste

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eil Hee; Lee, Keun Young; Kim, Kwang Wook; Kim, Ik Soo; Chung, Dong Yong; Moon, Jei Kwon; Choi, Jong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-06-15

    This study investigated the removal of Sr, which was one of the high radioactive nuclides, by adsorption with Barium (Ba) impregnated 4A zeolite (BaA) from high-radioactive seawater waste (HSW). Adsorption of Sr by BaA (BaA-Sr), in the impregnated Ba concentration of above 20.2wt%, was decreased by increasing the impregnated Ba concentration, and the impregnated Ba concentration was suitable at 20.2wt%. The BaA-Sr adsorption was added to the co-precipitation of Sr with BaSO4 precipitation in the adsorption of Sr by 4A (4A-Sr) within BaA. Thus, it was possible to remove Sr more than 99% at m/V (adsorbent weight/solution volume)=5 g/L for BaA and m/V >20 g/L for 4A, respectively, in the Sr concentration of less than 0.2 mg/L (actual concentration level of Sr in HSW). It shows that BaA-Sr adsorption is better than 4A-Sr adsorption in for the removal capacity of Sr per unit gram of adsorbent, and the reduction of the secondary solid waste generation (spent adsorbent etc.). Also, BaA-Sr adsorption was more excellent removal capacity of Sr in the seawater waste than distilled water. Therefore, it seems to be effective for the direct removal of Sr from HSW. On the other hand, the adsorption of Cs by BaA (BaA-Cs) was mainly performed by 4A within BaA. Accordingly, it seems to be little effect of impregnated Ba into BaA. Meanwhile, BaA-Sr adsorption kinetics could be expressed the pseudosecond order rate equation. By increasing the initial Sr concentrations and the ratios of V/m, the adsorption rate constants (k2) were decreased, but the equilibrium adsorption capacities (qe) were increasing. However, with increasing the temperature of solution, k2 was conversely increased, and qe was decreased. The activation energy of BaA-Sr adsorption was 38 kJ/mol. Thus, the chemical adsorption seems to be dominant rather than physical adsorption, although it is not a chemisorption with strong bonding form.

  17. Comparison of the Acidity of Heteropolyacids Encapsulated in or Impregnated on SBA-15

    Directory of Open Access Journals (Sweden)

    Pinto Teresa

    2016-03-01

    Full Text Available Heteropolyacids (HPA immobilized onto SBA-15 silica were prepared by two different ways using either impregnation or encapsulation methodologies. Two Keggin-type HPA, H3PW12O40 and H4SiW12O40 were considered in this study. The resulting hybrid materials were fully characterized by N2 adsorption-desorption isotherms, XRD, FT-IR, Raman, diffuse reflectance UV-Vis spectroscopies and 31P MAS NMR. All characterization methods showed that at room temperature the catalysts contained well-dispersed and intact Keggin units throughout the solid. The catalytic activity of these solids was investigated in the isomerization of n-hexane. The impregnated and encapsulated phosphotungstic catalysts performed similarly in catalysis showing that the amount of active sites was nearly the same in both catalysts. On the contrary, the tungstosilicic encapsulated material was completely inactive while its impregnated counterpart was even more active than the phosphotungstic derived catalysts. The acidity of the solids was measured by various methods: microcalorimetry of ammonia adsorption, ammonia desorption followed by Temperature Programmed Desorption (TPD and DRIFT/GC-MS and pyridine adsorption followed by infrared spectroscopy. Only pyridine adsorption and ammonia desorption followed by DRIFT/GC-MS agreed with the catalytic data. Ammonia adsorption followed by microcalorimetry was not able to differentiate between the four catalysts while the TPD experiments led to unreliable results, as not only the evolved ammonia but also other molecules such as water were taken into account in the measurements. The behavior difference between the encapsulated silico- and phosphotungstic acids was explained by a more pronounced encapsulation in the case of silicon.

  18. Efficacy of rhBMP-2 loaded PCL/PLGA/β-TCP guided bone regeneration membrane fabricated by 3D printing technology for reconstruction of calvaria defects in rabbit

    International Nuclear Information System (INIS)

    Shim, Jin-Hyung; Jeong, Chang-Mo; Huh, Jung-Bo; Jang, Jinah; Jeong, Sung-In; Cho, Dong-Woo; Yoon, Min-Chul

    2014-01-01

    We successfully fabricated a three-dimensional (3D) printing-based PCL/PLGA/β-TCP guided bone regeneration (GBR) membrane that slowly released rhBMP-2. To impregnate the GBR membrane with intact rhBMP-2, collagen solution encapsulating rhBMP-2 (5 µg ml −1 ) was infused into pores of a PCL/PLGA/β-TCP membrane constructed using a 3D printing system with four dispensing heads. In a release profile test, sustained release of rhBMP-2 was observed for up to 28 d. To investigate the efficacy of the GBR membrane on bone regeneration, PCL/PLGA/β-TCP membranes with or without rhBMP-2 were implanted in an 8 mm calvaria defect of rabbits. Bone formation was evaluated at weeks 4 and 8 histologically and histomorphometrically. A space making ability of the GBR membrane was successfully maintained in both groups, and significantly more new bone was formed at post-implantation weeks 4 and 8 by rhBMP-2 loaded GBR membranes. Interestingly, implantation with rhBMP-2 loaded GBR membranes led to almost entire healing of calvaria defects within 8 weeks. (paper)

  19. Studies on the sorption behaviours of Th(IV) and U(VI) from aqueous sulphate solutions using impregnated resin

    International Nuclear Information System (INIS)

    Khatab, A.F.; Sheta, M.E.; Mahfouz, M.G.; Tolba, A.A.

    2007-01-01

    The sorption behaviours of thorium (IV) and uranium (VI) from aqueous sulphate solutions have been studied using n-dodecylamine and tri-n-octylamine (TOA) dissolved in benzene and impregnated onto amberlite XAD-4 (styrene-divinyl benzene copolymer). The sorption behaviours were evaluated as a function of free acidity, salting out effect, ph value, equilibrium time, V/m ratio, initial metal ion concentration, loaded amine concentration and sorption temperature. The equilibrium time for Th(IV) and U(VI) sorption from aqueous sulphate solution was found to be 90 and 60 minutes, respectively. The sorption of Th(IV) was quantitatively at ph range 3.7-4.3 and at 4.3-5.2 for U(VI). The sorption capacity of the impregnated resin was determined by batch method and it was found to be 0.031 and 0.033 mmol/g for Th(IV) and U(VI), respectively. Elution of Th(IV) from thorium-loaded impregnated resin was quantitatively achieved by using 2 mol/l HNO 3 and by using 0.1 mol/l HCl for U(VI)

  20. The effect of a new impregnated gauze containing bentonite and halloysite minerals on blood coagulation and wound healing.

    Science.gov (United States)

    Alavi, Mehrosadat; Totonchi, Alireza; Okhovat, Mohammad Ali; Motazedian, Motahareh; Rezaei, Peyman; Atefi, Mohammad

    2014-12-01

    In recent years, a wide variety of research has been carried out in the field of novel technologies to stop severe bleeding. In several studies, coagulation properties of minerals such as zeolite, bentonite and halloysite have been proven. In this study, the effect of a new impregnated sterile gauze containing bentonite and halloysite minerals was studied on blood coagulation and wound healing rate in male Wistar rats. Initially, impregnated sterile gauze was prepared from the mixture of bentonite and halloysite minerals and petroleum jelly (Vaseline). Then, the effect of gauze was studied on the blood coagulation time and wound healing process in 40 Wistar rats. SPSS software was used for data analysis and P values less than 0.05 were considered significant. The coagulation time of 81.10 ± 2.532 s in the control group and 33.00 ± 1.214 s in the study group (bentonite-halloysite treated) were reported (P halloysite impregnated sterile gauze significantly decreases the clotting time and increase the wound healing rate.

  1. SIMULATION OF POROSITY AND PTFE CONTENT IN GAS DIFFUSION LAYER ON PROTON EXCHANGE MEMBRANE FUEL CELL PERFORMANCE

    Directory of Open Access Journals (Sweden)

    NUR H. MASLAN

    2016-01-01

    Full Text Available Numerous research and development activities have been conducted to optimize the operating parameters of a proton exchange membrane fuel cell (PEMFC by experiments and simulations. This study explains the development of a 3D model by using ANSYS FLUENT 14.5 to determine the optimum PEMFC parameters, namely, porosity and polytetrafluoroethylene (PTFE content, in the gas diffusion layer (GDL. A 3D model was developed to analyze the properties and effects of GDL. Simulation results showed that the increase in GDL porosity significantly improved the performance of PEMFC in generating electrical power. However, the performance of PEMFC decreased with increasing PTFE content in GDL. Thus, the PTFE content in the GDL must be optimized and the optimum PTFE content should be 5 wt%. The model developed in this simulation showed good capability in simulating the PEMFC parameters to assist the development process of PEMFC design.

  2. Internal and External Flow over Laser-Textured Superhydrophobic Polytetrafluoroethylene (PTFE).

    Science.gov (United States)

    Ahmmed, K M Tanvir; Patience, Christian; Kietzig, Anne-Marie

    2016-10-12

    In this work, internal and external flows over superhydrophobic (SH) polytetrafluoroethylene (PTFE) were studied. The SH surface was fabricated by a one-step femtosecond laser micromachining process. The drag reduction ability of the textured surface was studied experimentally both in microscale and macroscale internal flows. The slip length, which indicates drag reduction in fluid flow, was determined in microscale fluid flow with a cone-and-plate rheometer, whereas a pressure channel setup was used for macroscale flow experiments. The textured PTFE surface reduced drag in both experiments yielding comparable slip lengths. Moreover, the experimentally obtained slip lengths correspond well to the result obtained applying a semianalytical model, which considers the solid fraction of the textured surface. In addition to the internal flow studies, we fabricated SH PTFE spheres to test their drag reduction abilities in an external flow experiment, where the terminal velocities of the falling spheres were measured. These experiments were conducted at three different Reynolds numbers in both viscous and inertial flow regimes with pure glycerol, a 30% glycerol solution, and water. Surprisingly, the drag on the SH spheres was higher than the measured drag on the non-SH spheres. We hypothesize that the increase in form drag outweighs the decrease in friction drag on the SH sphere. Thus, the overall drag increased. These experiments demonstrate that a superhydrophobic surface that reduces drag in internal flow might not reduce drag in external flow.

  3. Tribological behavior of polytetrafluoroethylene coating reinforced with black phosphorus nanoparticles

    Science.gov (United States)

    Peng, Shiguang; Guo, Yue; Xie, Guoxin; Luo, Jianbin

    2018-05-01

    This study compares the tribological performance of polytetrafluoroethylene (PTFE) thin film coating reinforced with black phosphorus (BP) or ball-milled graphite (BMG) nanoparticles, so as to elucidate their mechanism of action under reciprocating sliding test conditions. PTFE coatings with 0.5 wt.% BMG (BMG/PTFE) and 0.5 wt.% BP (BP/PTFE) were prepared on GCr15 bearing steel disk by using a spin coater. The friction and wear tests were carried out by using the ball-on-disk tribometer under a normal load of 1 N (contact pressure: 780 MPa), a frequency of 2 Hz, and 4.2 mm sliding displacement amplitude. The surface roughness, wear volume and surface morphology of the coatings were characterized by the three-dimensional white light, and Energy Dispersive X-ray Detector (EDX) analysis coupled with environmental scanning electron microscope (ESEM). It is found that BP/PTFE coating has better anti-wear and anti-friction performances than those of pure PTFE or BMG/PTFE coating. The coating with BP nanoparticles shows excellent tribological properties with the wear volume decreased from 3.52 × 106 μm3 to 1.64 × 106 μm3 and the coefficient of friction (COF) decreased from 0.117 to 0.046. More importantly, the BP layer probably expands and absorbs much energy due to its negative Poisson's ratio phenomenon under reciprocating sliding, and effectively reducing furrow and adhesive wear.

  4. Detection of trace fluoride in serum and urine by online membrane-based distillation coupled with ion chromatography.

    Science.gov (United States)

    Lou, Chaoyan; Guo, Dandan; Wang, Nani; Wu, Shuchao; Zhang, Peimin; Zhu, Yan

    2017-06-02

    An online membrane-based distillation (MBD) coupled with ion chromatography (IC) method was proposed for automatic detection of trace fluoride (F - ) in serum and urine samples. The system consisted of a sample vessel, a lab-made membrane module and an ion chromatograph. Hydrophobic polytetrafluoroethylene (PTFE) hollow fiber membrane was used in MBD which was directly performed in serum and urine samples to eliminate the matrix interferences and enrich fluoride, while enabling automation. The determination of fluoride in biological samples was carried out by IC with suppressed conductometric detection. The proposed method feasibly determined trace fluoride in serum and urine matrices with the optimized parameters, such as acid concentration, distillation temperature, and distillation time, etc. Fluoride exhibited satisfactory linearity in the range of 0.01-5.0mg/L with a correlation coefficient of 0.9992. The limit of detection (LOD, S/N=3) and limit of quantification (LOQ, S/N=10) were 0.78μg/L and 2.61μg/L, respectively. The relative standard deviations of peak area and peak height were all less than 5.15%. The developed method was validated for the determination of fluoride in serum and urine with good spiked recoveries ranging between 97.1-101.9%. This method also can be proposed as a suitable alternative for the analysis of fluoride in other complex biological samples. Copyright © 2017. Published by Elsevier B.V.

  5. Improving the delivery and efficiency of fungus-impregnated cloths for control of adult Aedes aegypti using a synthetic attractive lure.

    Science.gov (United States)

    Paula, Adriano R; Silva, Leila E I; Ribeiro, Anderson; Butt, Tariq M; Silva, Carlos P; Samuels, Richard I

    2018-05-04

    Entomopathogenic fungi are highly promising agents for controlling Aedes aegypti mosquitoes. Deploying fungus-impregnated black cloths in PET traps efficiently reduced Ae. aegypti female survival rates under intra-domicile conditions. With the aim of further increasing the effectiveness of the traps, the addition of attractive lures to fungus-impregnated traps was evaluated. Black cloths were suspended inside 2 l plastic bottles called "PET traps". These traps were placed in rooms simulating human residences. The first experiments evaluated the attraction of mosquitoes to PET traps with black cloths covered in adhesive film with and without synthetic lures (AtrAedes™). Traps were left in the test rooms for either 24 or 48 h. The attractiveness of the lures over time was also evaluated. The efficiency of PET traps with fungus-impregnated black cloths associated with lures was compared to that of traps without lures. The highest percentage of captured mosquitoes (31 and 66%) were observed in PET traps with black cloths covered in adhesive film + attractive lure maintained in test rooms for 24 h and 48 h, respectively. Black cloths covered in adhesive film captured 17 or 36% of the mosquitoes at 24 h and 48 h, respectively. The attractiveness of the lures fell gradually over time, capturing 37% after 5 days on the bench and 22% of the mosquitoes after 30 days exposure to ambient conditions. Associating attractive synthetic lures with black cloths impregnated with M. anisopliae placed in test rooms for 120 h reduced mean survival to 32%, whilst black cloths impregnated with M. anisopliae without lures resulted in a 48% survival rate. Using Beauveria bassiana in the traps resulted in a 52% reduction in mosquito survival, whilst combining Beauveria and AtrAedes resulted in a 36% survival rate. PET traps impregnated with fungus + AtrAedes resulted in similar reductions in survival when left in the rooms for 24, 48, 72 or 120 h. AtrAedes increased attractiveness of PET

  6. Manufacturing Technology of Composite Materials—Principles of Modification of Polymer Composite Materials Technology Based on Polytetrafluoroethylene

    Directory of Open Access Journals (Sweden)

    Anton Panda

    2017-03-01

    Full Text Available The results of the investigations into the technological formation of new wear-resistant polymer composites based on polytetrafluoroethylene (PTFE filled with disperse synthetic and natural compounds are presented. The efficiency of using PTFE composites reinforced with carbon fibers depends on many factors, which influence the significant improvement of physicomechanical characteristics. The results of this research allow stating that interfacial and surface phenomena of the polymer–solid interface and composition play a decisive role in PTFE composites properties. Fillers hinder the relative movement of the PTFE molecules past one another and, in this way, reduce creep or deformation of the parts, reducing the wear rate of parts used in dynamic applications as well as the coefficient of thermal expansion. The necessary structural parameters of such polymer composites are provided by regimes of process equipment.

  7. High Rate of qacA- and qacB-Positive Methicillin-Resistant Staphylococcus aureus Isolates from Chlorhexidine-Impregnated Catheter-Related Bloodstream Infections

    OpenAIRE

    Ho, Cheng-Mao; Li, Chi-Yuan; Ho, Mao-Wang; Lin, Chien-Yu; Liu, Shu-Hui; Lu, Jang-Jih

    2012-01-01

    Chlorhexidine has been widely used for infection control. Although the use of chlorhexidine-impregnated catheters has reduced catheter-related infections, chlorhexidine-resistant Staphylococcus aureus has emerged. The correlation between the existence of the chlorhexidine-resistant genes qacA and qacB (qacA/B) in methicillin-resistant Staphylococcus aureus (MRSA) isolates and the effectiveness of chlorhexidine-impregnated catheters in the prevention of MRSA infections is unknown. Sixty methic...

  8. Development of Antibiotics Impregnated Nanosized Silver Phosphate-Doped Hydroxyapatite Bone Graft

    Directory of Open Access Journals (Sweden)

    Waraporn Suvannapruk

    2013-01-01

    Full Text Available Nanosized Ag3PO4 loaded hydroxyapatite which was prepared by a novel low temperature phosphorization of 3D printed calcium sulfate dihydrate at the nominal silver concentration of 0.001 M and 0.005 M was impregnated by two antibiotics including gentamicin and vancomycin. Phase composition, microstructure, antibiotics loading, silver content, antimicrobial performance, and cytotoxic potential of the prepared samples were characterized. It was found that the fabricated sample consisted of hydroxyapatite as a main phase and spherical-shaped silver phosphate nanoparticles distributing within the cluster of hydroxyapatite crystals. Antibacterial activity of the samples against two bacterial strains (gram negative P. aeruginosa and gram positive S. aureus was carried out. It was found that the combination of antibiotics and nanosized Ag3PO4 in hydroxyapatite could enhance the antibacterial performance of the samples by increasing the duration in which the materials exhibited antibacterial property and the size of the inhibition zone depending on the type of antibiotics and bacterial strains compared to those contained antibiotics or nanosilver phosphate alone. Cytotoxic potential against osteoblasts of antibiotics impregnated nanosilver phosphate hydroxyapatite was found to depend on the combination of antibiotics content, type of antibiotics, and nanosilver phosphate content.

  9. Porous solid backbone impregnation for electrochemical energy conversion systems

    KAUST Repository

    Boulfrad, Samir; Jabbour, Ghassan

    2013-01-01

    An apparatus and method for impregnating a porous solid backbone. The apparatus may include a platform for holding a porous solid backbone, an ink jet nozzle configured to dispense a liquid solution onto the porous solid backbone, a positioning mechanism configured to position the ink jet nozzle proximate to a plurality of locations of the porous solid backbone, and a control unit configured to control the positioning mechanism to position the ink jet nozzle proximate to the plurality of locations and cause the ink jet nozzle to dispense the liquid solution onto the porous solid backbone.

  10. Porous solid backbone impregnation for electrochemical energy conversion systems

    KAUST Repository

    Boulfrad, Samir

    2013-09-19

    An apparatus and method for impregnating a porous solid backbone. The apparatus may include a platform for holding a porous solid backbone, an ink jet nozzle configured to dispense a liquid solution onto the porous solid backbone, a positioning mechanism configured to position the ink jet nozzle proximate to a plurality of locations of the porous solid backbone, and a control unit configured to control the positioning mechanism to position the ink jet nozzle proximate to the plurality of locations and cause the ink jet nozzle to dispense the liquid solution onto the porous solid backbone.

  11. Phosphate adsorption on aluminum-impregnated mesoporous silicates : surface structure and behavior of adsorbents

    Science.gov (United States)

    Eun Woo Shin; James S. Han; Min Jang; Soo-Hong Min; Jae Kwang Park; Roger M. Rowell

    2004-01-01

    Phosphorus from excess fertilizers and detergents ends up washing into lakes, creeks, and rivers. This overabundance of phosphorus causes excessive aquatic plant and algae growth and depletes the dissolved oxygen supply in the water. In this study, aluminum-impregnated mesoporous adsorbents were tested for their ability to remove phosphate from water. The surface...

  12. FY 1998 annual report on the decomposition/removal of harmful compounds in the gaseous phase by porous membrane provided with a catalytic function; 1998 nendo shokubai kinotsuki fuyo takomaku ni yoru kisochu yugai busshitsu no bunkai jokyo chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Harmful compounds, e.g., dioxins and nitrogen oxides, released into the air are causing severer environmental problems on a global scale. In order to solve these problems, it is necessary to efficiently remove the released compounds in the vicinity of the living environments, while preventing, as far as possible, their formation at the sources. An attempt has been made to develop porous membranes impregnated with composites of a variety of metallic oxides showing activities as photocatalysts and for dark reactions by the ion engineering method, in order to drastically solve the above problems. Described herein are the FY 1998 results. Thin films of various titanium oxide crystals (anatase, rutile, and their combinations) are formed on Si substrates by the ion engineering method, as the photocatalysts for decomposition of aldehyde and water (for hydrogen production), to validate the optimum crystalline structures for the photocatalysis. Porous bodies of Ni and carbon are also impregnated with anatase TiO{sub 2} for decomposition of harmful gaseous compounds and water, to validate the effects of the porous membranes provided with catalytic functions. (NEDO)

  13. Modifying an Active Compound’s Release Kinetic Using a Supercritical Impregnation Process to Incorporate an Active Agent into PLA Electrospun Mats

    Directory of Open Access Journals (Sweden)

    Carol López de Dicastillo

    2018-04-01

    Full Text Available The main objective of this work was to study the release of cinnamaldehyde (CIN from electrospun poly lactic acid (e-PLA mats obtained through two techniques: (i direct incorporation of active compound during the electrospinning process (e-PLA-CIN; and (ii supercritical carbon dioxide (scCO2 impregnation of CIN within electrospun PLA mats (e-PLA/CINimp. The development and characterization of both of these active electrospun mats were investigated with the main purpose of modifying the release kinetic of this active compound. Morphological, structural, and thermal properties of these materials were also studied, and control mats e-PLA and e- PLA CO 2 were developed in order to understand the effect of electrospinning and scCO2 impregnation, respectively, on PLA properties. Both strategies of incorporation of this active compound into PLA matrix resulted in different morphologies that influenced chemical and physical properties of these composites and in different release kinetics of CIN. The electrospinning and scCO2 impregnation processes and the presence of CIN altered PLA thermal and structural properties when compared to an extruded PLA material. The incorporation of CIN through scCO2 impregnation resulted in higher release rate and lower diffusion coefficients when compared to active electrospun mats with CIN incorporated during the electrospinning process.

  14. Supercritical impregnation of polymer matrices spatially confined in microcontainers for oral drug delivery: Effect of temperature, pressure and time

    DEFF Research Database (Denmark)

    Marizza, Paolo; Pontoni, L.; Rindzevicius, Tomas

    2016-01-01

    sol-ubility in water. In a previous study we introduced a novel technique for drug loading of microcontainers,based on inkjet printing and supercritical impregnation (SCI). We showed that SCI produces accurate andreproducible drug loading for large arrays of microcontainers. In the attempt...... of enhancing the throughputof the loading methods, we propose the replacement of polymer inkjet printing with an easier man-ual compression of the PVP powder into the microcontainers. As the second step, the polymer powderfilled-microcontainers were submitted to SCI. The separate role of different impregnation...

  15. Insensitive high-energy energetic structural material of tungsten-polytetrafluoroethylene-aluminum composites

    Directory of Open Access Journals (Sweden)

    Liu Wang

    2015-11-01

    Full Text Available Energetic structural material is a kind of materials that are inert under normal conditions but could produce exothermic chemical reaction when subjected to impact. This report shows a kind of energetic structural material of tungsten (W-polytetrafluoroethylene (PTFE-aluminum (Al with density of 4.12 g/cm3, excellent ductility and dynamic compressive strength of 96 MPa. Moreover, 50W-35PTFE-15Al (wt% can exhibit a high reaction energy value of more than 2 times of TNT per unit mass and 5 times of TNT per unit volume, respectively, but with excellent insensitivity compared with traditional explosives. Under thermal conditions, the W-PTFE-Al composite can keep stable at 773 K. Under impact loading, when the strain rate up to ∼4820 s−1 coupled with the absorbed energy per unit volume of 120 J/cm3, deflagration occurs and combustion lasts for 500 μs. During impact compressive deformation, the PTFE matrix is elongated into nano-fibers, thus significantly increases the reaction activity of W-PTFE-Al composites. The nano-fiber structure is necessary for the reaction of W-PTFE-Al composites. The formation of PTFE nano-fibers must undergo severe plastic deformation, and therefore the W-PTFE-Al composites exhibit excellent insensitivity and safety. Furthermore, the reaction mechanisms of W-PTFE-Al composites in argon and in air are revealed.

  16. Synthesis of a gamma irradiation grafted polytetrafluoroethylene (PTFE) based olefinic copolymer

    International Nuclear Information System (INIS)

    Ferreto, Helio Fernando Rodrigues

    2006-01-01

    The extrusion of linear low density polyethylene (LLDPE) is limited by a process related defect known as 'melt fracture' or 'sharkskin', which is a surface defect of the extruded polymer. This defect results in a product with a rough surface that lacks luster and in alterations of specific surface properties. The aim of this study was to obtain a recycled polytetrafluoroethylene polymer with an olefin that could improve the extrudability of the LLDPE. The copolymer was obtained by irradiating recycled PTFE in an inert atmosphere followed by the addition of an olefinic monomer to graft the latter in the polymeric matrix (PTFE). After a certain time of contact, the copolymer was heat treated to permit recombination and elimination of the radicals, both in a reactive and/or inert atmosphere. Three olefinic monomers were used, namely; acetylene, ethylene and 1,3-butadiene. The 1,3-butadiene monomer was found to be more effective with respect to grafting. The specimens were studied using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential thermogravimetry (DTG). 0.2-2.0 wt% of the copolymer that was obtained was mixed with LLDPE. The rheological properties of the mixture were determined with a torque rheometer. The results indicated that the process used rendered a copolymer which when added to LLDPE, improved the extrusion process and eliminated the defect 'melt fracture'. (author)

  17. Control of Effluent Gases from Solid Waste Processing using Impregnated Carbon Nanotubes

    Science.gov (United States)

    Li, Jing; Fisher, John; Wignarajah, Kanapathipillai

    2005-01-01

    One of the major problems associated with solid waste processing technologies is effluent contaminants that are released in gaseous forms from the processes. This is a concern in both biological as well as physicochemical solid waste processing. Carbon dioxide (CO2), the major gas released, does not present a serious problem and there are currently in place a number of flight-qualified technologies for CO2 removal. However, a number of other gases, in particular NOx, SO2, NH3, and various hydrocarbons (e.g. CH4) do present health hazards to the crew members in space habitats. In the present configuration of solid waste processing in the International Space Station (ISS), some of these gases are removed by the Trace Contaminant Control System (TCCS), demands a major resupply. Reduction of the resupply can be effective by using catalyst impregnated carbon nanotubes. For example, NO decomposition to N2 and O2 is thermodynamically favored. Data showing decomposition of NO on metal impregnated carbon nanotubes is presented. Comparisons are made of the existing TCCS systems with the carbon nanotube based technology for removing NOx based on mass/energy penalties.

  18. Catalytic flash pyrolysis of oil-impregnated-wood and jatropha cake using sodium based catalysts

    NARCIS (Netherlands)

    Ali Imran, A.; Bramer, Eduard A.; Seshan, Kulathuiyer; Brem, Gerrit

    2016-01-01

    Catalytic pyrolysis of wood with impregnated vegetable oil was investigated and compared with catalytic pyrolysis of jatropha cake making use of sodium based catalysts to produce a high quality bio-oil. The catalytic pyrolysis was carried out in two modes: in-situ catalytic pyrolysis and post

  19. Using copper hexacyanoferrate (II) impregnated zeolite for cesium removal from radioactive liquid waste

    International Nuclear Information System (INIS)

    Fumio, K.; Kenji, M.

    1982-01-01

    Experiments were performed to obtain fundamental data on cesium ion removal characteristics of metal hexacyanoferrate (II) impregnated zeolite in radioactive liquid waste containing a large amount of sodium sulfate. Copper hexacyanoferrate (II) impregnated zeolite (CuFZ) was prepared and showed a high selectivity for cesium ion. The material was suitable for use in an ion exchange column. This exchanger could selectively and efficiently remove the cesium even if there is 15 wt% Na 2 SO 4 in the solution. Cesium removal ability and stability of CuFZ were excellent over a wide pH range between 1.5 and 10. The cesium ion exchange ability was not influenced by the presence of the alkali metal ions, calcium and magnesium, and carbonate ions even at concentrations 25 times greater than the cesium ion. However, since ammonium ion behaves similarly to cesium ion and interrupts latter ion adsorption, the presence of ammonium ion is not desirable. The CuFZ offers the possibility of separating and removing cesium from liquid wastes produced in facilities handling radioactive materials

  20. Solid phase extraction of Am (III) by resins impregnated with multiply diglycolamide-functionalized ligands

    International Nuclear Information System (INIS)

    Gujar, R.B.; Ansari, S.A.; Mohapatra, P.K.; Verboom, W.

    2016-01-01

    Solvent extraction studies with multiply diglycolamide-functionalized extractants such as tripodal diglycolamide (T-DGA) or diglycolamide-functionalized calix(4)arene (C4DGA) ligands have shown excellent results as compared to those of normal DGA ligands such as TODGA. A very high selectivity for Am(III) has been reported with these ligands with respect to U(VI) and Pu(IV). High selectivities and large extraction efficiencies of these ligands towards trivalent f elements were ascribed to a co-operative complexation mechanism. Furthermore, the extraction efficiency of these ligands increased several folds in ionic liquid medium as compared to paraffinic solvents. It was of interest, therefore, to prepare extraction chromatographic resins by impregnation of solvent systems containing these ligands in an ionic liquid. In the present work, solid phase extraction studies were carried out using these two multiply diglycolamide-functionalized extractants, viz. T-DGA (resin I) and C4DGA (resin-II) containing the ionic liquid C 4 mim. NTf 2 impregnated on Chromosorb-W