WorldWideScience

Sample records for polysaccharide-modified synthetic polymeric

  1. Modified polysaccharides as alternative binders for foundry industry

    Directory of Open Access Journals (Sweden)

    K. Kaczmarska

    2016-10-01

    Full Text Available Polysaccharides constitute a wide group of important polymers with many commercial applications, for example food packaging, fibres, coatings, adhesives etc. This review is devoted to the presentation of polysaccharide application in foundry industry. In this paper the selected properties of foundry moulding sand and core sand containing modified polysaccharides as binders are presented according to foreign literature data. Also, author’s own research about effect of using moulding sand binder consisting of modified polysaccharide (modified starch or its composition with non-toxic synthetic polymers are discussed. Based on technologies taken under consideration in this paper, it could be concluded that polysaccharides are suitable as an alternative for use as binder in foundry moulding applications.

  2. Natural gums and modified natural gums as sustained-release carriers.

    Science.gov (United States)

    Bhardwaj, T R; Kanwar, M; Lal, R; Gupta, A

    2000-10-01

    Although natural gums and their derivatives are used widely in pharmaceutical dosage forms, their use as biodegradable polymeric materials to deliver bioactive agents has been hampered by the synthetic materials. These natural polysaccharides do hold advantages over the synthetic polymers, generally because they are nontoxic, less expensive, and freely available. Natural gums can also be modified to have tailor-made materials for drug delivery systems and thus can compete with the synthetic biodegradable excipients available in the market. In this review, recent developments in the area of natural gums and their derivatives as carriers in the sustained release of drugs are explored.

  3. Scleroglucan: A Versatile Polysaccharide for Modified Drug Delivery

    Directory of Open Access Journals (Sweden)

    Franco Alhaique

    2005-01-01

    Full Text Available Scleroglucan is a natural polysaccharide, produced by fungi of the genus Sclerotium, that has been extensively studied for various commercial applications (secondary oil recovery, ceramic glazes, food, paints, etc. and also shows several interesting pharmacological properties. This review focuses its attention on the use of scleroglucan, and some derivatives, in the field of pharmaceutics and in particular for the formulation of modified-release dosage forms. The reported investigations refer mainly to the following topics: natural scleroglucan suitable for the preparation of sustained release tablets and ocular formulations; oxidized and crosslinked scleroglucan used as a matrix for dosage forms sensitive to environmental conditions; co-crosslinked scleroglucan/gellan whose delivery rate can be affected by calcium ions. Furthermore, a novel hydrogel obtained with this polysaccharide and borate ions is described, and the particular structure of this hydrogel network has been interpreted in terms of conformational analysis and molecular dynamics. Profound attention is devoted to the mechanisms involved in drug release from the tested dosage forms that depend, according to the specific preparation, on swelling and/or diffusion. Experimental data are also discussed on the basis of a mathematical approach that allows a better understanding of the behavior of the tested polymeric materials.

  4. Structural modification of polysaccharides: A biochemical-genetic approach

    Science.gov (United States)

    Kern, Roger G.; Petersen, Gene R.

    1991-01-01

    Polysaccharides have a wide range of industrial and biomedical applications. An industry trend is underway towards the increased use of bacteria to produce polysaccharides. Long term goals of this work are the adaptation and enhancement of saccharide properties for electronic and optic applications. In this report we illustrate the application of enzyme-bearing bacteriophage on strains of the enteric bacterium Klebsiella pneumoniae, which produces a polysaccharide with the relatively rare rheological property of drag-reduction. This has resulted in the production of new polysaccharides with enhanced rheological properties. Our laboratory is developing techniques for processing and structurally modifying bacterial polysaccharides and oligosaccharides which comprise their basic polymeric repeat units. Our research has focused on bacteriophage which produce specific polysaccharide degrading enzymes. This has lead to the development of enzymes generated by bacteriophage as tools for polysaccharide modification and purification. These enzymes were used to efficiently convert the native material to uniform-sized high molecular weight polymers, or alternatively into high-purity oligosaccharides. Enzyme-bearing bacteriophage also serve as genetic selection tools for bacteria that produce new families of polysaccharides with modified structures.

  5. Erythrocyte membrane modified janus polymeric motors for thrombus therapy

    NARCIS (Netherlands)

    Shao, Jingxin; Abdelghani, Mona; Shen, Guizhi; Cao, Shoupeng; Williams, David S.; van Hest, Jan C.M.

    2018-01-01

    We report the construction of erythrocyte membrane-cloaked Janus polymeric motors (EM-JPMs) which are propelled by near-infrared (NIR) laser irradiation and are successfully applied in thrombus ablation. Chitosan (a natural polysaccharide with positive charge, CHI) and heparin (glycosaminoglycan

  6. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P.; Le Nest, J.F.; Gandini, A. [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d`Heres (France)

    1996-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  7. New polysaccharide-based polymer electrolytes; Nouveaux electrolytes polymeres a base de polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez-Morales, P; Le Nest, J F; Gandini, A [Ecole Francaise de Papeterie et des Industries Graphique, 38 - Saint Martin d` Heres (France)

    1997-12-31

    Polysaccharides like cellulose and chitosan are known for their filmic properties. This paper concerns the synthesis and the study of chitosan-based polymer electrolytes. A preliminary work concerns the study of glucosamine reactivity. The poly-condensation of chitosan ethers (obtained by reaction with ethylene oxide or propylene oxide) with bifunctional and monofunctional oligo-ethers leads to the formation of thin lattices (10 {mu}m) having excellent mechanical properties. The presence of grafted polyether chains along the polysaccharide skeleton allows to modify the vitreous transition temperature and the molecular disorder of the system. Two type of polymer electrolytes have been synthesized: electrolytes carrying a dissolved alkaline metal salt and ionomers. The analysis of their thermal, dynamical mechanical, nuclear magnetic relaxation, electrical, and electrochemical properties shows that this new class of polymer electrolytes has the same performances as ethylene poly-oxide based amorphous lattices plus the advantage of having good filmic properties. Abstract only. (J.S.)

  8. Marine Derived Polysaccharides for Biomedical Applications: Chemical Modification Approaches

    Directory of Open Access Journals (Sweden)

    Paola Laurienzo

    2008-09-01

    Full Text Available Polysaccharide-based biomaterials are an emerging class in several biomedical fields such as tissue regeneration, particularly for cartilage, drug delivery devices and gelentrapment systems for the immobilization of cells. Important properties of the polysaccharides include controllable biological activity, biodegradability, and their ability to form hydrogels. Most of the polysaccharides used derive from natural sources; particularly, alginate and chitin, two polysaccharides which have an extensive history of use in medicine, pharmacy and basic sciences, and can be easily extracted from marine plants (algae kelp and crab shells, respectively. The recent rediscovery of poly-saccharidebased materials is also attributable to new synthetic routes for their chemical modification, with the aim of promoting new biological activities and/or to modify the final properties of the biomaterials for specific purposes. These synthetic strategies also involve the combination of polysaccharides with other polymers. A review of the more recent research in the field of chemical modification of alginate, chitin and its derivative chitosan is presented. Moreover, we report as case studies the results of our recent work concerning various different approaches and applications of polysaccharide-based biomaterials, such as the realization of novel composites based on calcium sulphate blended with alginate and with a chemically modified chitosan, the synthesis of novel alginate-poly(ethylene glycol copolymers and the development of a family of materials based on alginate and acrylic polymers of potential interest as drug delivery systems.

  9. Anaerobic biodegradation of the lignin and polysaccharide components of lignocellulose and synthetic lignin by sediment microflora

    Energy Technology Data Exchange (ETDEWEB)

    Benner, R.; Maccubbin, A.E.; Hodson, R.E.

    1984-05-01

    Specifically radiolabeled (/sup 14/C-lignin)lignocelluloses and (/sup 14/C-polysaccharide)lignocelluloses were prepared from a variety of marine and freshwater wetland plants including a grass, a sedge, a rush, and a hardwood. These (/sup 14/C)lignocellulose preparations and synthetic (/sup 14/C)lignin were incubated anaerobically with anoxic sediments collected from a salt marsh, a freshwater marsh, and a mangrove swamp. During long-term incubations lasting up to 300 days, the lignin and polysaccharide components of the lignocelluloses were slowly degraded anaerobically to /sup 14/CO/sub 2/ and /sup 14/CH/sub 4/. Lignocelluloses derived from herbaceous plants were degraded more rapidly than lignocellulose derived from the hardwood. After 294 days, 16.9% of the lignin component and 30.0% of the polysaccharide component of lignocellulose derived from the grass used (Spartina alterniflora) were degraded to gaseous end products. In contrast, after 246 days, only 1.5% of the lignin component and 4.1% of the polysaccharide component of lignocellulose derived from the hardwood used (Rhizophora mangle) were degraded to gaseous end products. Synthetic (/sup 14/C) lignin was degraded anaerobically faster than the lignin component of the hardwood lignocellulose; after 276 days 3.7% of the synthetic lignin was degraded to gaseous end products. Contrary to previous reports, these results demonstrate that lignin and lignified plant tissues are biodegradable in the absence of oxygen. Although lignocelluloses are recalcitrant to anaerobic biodegradation, rates of degradation measured in aquatic sediments are significant and have important implications for the biospheric cycling of carbon from these abundant biopolymers. 31 references.

  10. Performance polymeric concrete with synthetic fiber reinforcement against reflective cracking in rigid pavement overlay

    International Nuclear Information System (INIS)

    Khan, N.U.; Khan, B.

    2012-01-01

    Cement concrete pavements are used for heavy traffic loads throughout the world owing to its better and economical performance. Placing of a concrete overlay on the existing pavement is the most prevalent rehabilitating method for such pavements, however, the problem associated with the newly placed overlay is the occurrence of reflective cracking. This paper presents an assessment of the performance of polymeric concrete with synthetic fiber reinforcement against reflective cracking in an overlay system. The performance of polymeric concrete with synthetic fibers as an overlay material is measured in terms of the load-deflection, strain-deflection and load-strain behavior of beams of the polymeric concrete. For this purpose, five types of beams having different number of fiber wires and position are tested for flexure strength. Deflection/strains for each increment of load are recorded. In addition, cubes of plain concrete and of concrete with synthetic fiber needles were tested after 7 and 28 days for compressive strengths. Finite element models in ANSYS software for the beams have also been developed. Beams with greater number of longitudinal fiber wires displayed relatively better performance against deflection whilst beams with synthetic fiber needles showed better performance against strains. Thus, polymeric concrete overlay with fiber reinforcement will serve relatively better against occurrence of reflective cracking. (author)

  11. Radiation processed polysaccharide products

    International Nuclear Information System (INIS)

    Nguyen, Quoc Hien

    2007-01-01

    Radiation crosslinking, degradation and grafting techniques for modification of polymeric materials including natural polysaccharides have been providing many unique products. In this communication, typical products from radiation processed polysaccharides particularly plant growth promoter from alginate, plant protector and elicitor from chitosan, super water absorbent containing starch, hydrogel sheet containing carrageenan/CM-chitosan as burn wound dressing, metal ion adsorbent from partially deacetylated chitin were described. The procedures for producing those above products were also outlined. Future development works on radiation processing of polysaccharides were briefly presented. (author)

  12. Natural and synthetic polymers in fabric and home care applications

    Science.gov (United States)

    Paderes, Monissa; Ahirwal, Deepak; Fernández Prieto, Susana

    2017-07-01

    Polymers can be tailored to provide different benefits in Fabric & Home Care formulations depending on the monomers and modifications used, such as avoiding dye transfer inhibition in the wash, modifying the surface of tiles or increasing the viscosity and providing suspension properties to consumer products. Specifically, the rheology modification properties of synthetic and natural polymers are discussed in this chapter. The choice of a polymeric rheology modifier will depend on the formulation ingredients (charges, functional groups), the type and the amount of surfactants, the pH and the desired rheology modification. Natural polymeric rheology modifiers have been traditionally used in the food industry, being xanthan gum one of the most well-known ones. On the contrary, synthetic rheology modifiers are preferably used in paints & coats, textile printing and cleaning products.

  13. In Silico Synthesis of Synthetic Receptors: A Polymerization Algorithm.

    Science.gov (United States)

    Cowen, Todd; Busato, Mirko; Karim, Kal; Piletsky, Sergey A

    2016-12-01

    Molecularly imprinted polymer (MIP) synthetic receptors have proposed and applied applications in chemical extraction, sensors, assays, catalysis, targeted drug delivery, and direct inhibition of harmful chemicals and pathogens. However, they rely heavily on effective design for success. An algorithm has been written which mimics radical polymerization atomistically, accounting for chemical and spatial discrimination, hybridization, and geometric optimization. Synthetic ephedrine receptors were synthesized in silico to demonstrate the accuracy of the algorithm in reproducing polymers structures at the atomic level. Comparative analysis in the design of a synthetic ephedrine receptor demonstrates that the new method can effectively identify affinity trends and binding site selectivities where commonly used alternative methods cannot. This new method is believed to generate the most realistic models of MIPs thus produced. This suggests that the algorithm could be a powerful new tool in the design and analysis of various polymers, including MIPs, with significant implications in areas of biotechnology, biomimetics, and the materials sciences more generally. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Recent progress on the design and applications of polysaccharide-based graft copolymer hydrogels as adsorbents for wastewater purification

    CSIR Research Space (South Africa)

    Mittal, Hemant

    2016-05-01

    Full Text Available as emulsifiers and thickeners. In their natural form, gum polysaccharides have poor mechanical and physical properties; therefore, they are frequently modified with various synthetic monomers such as acrylamide and acrylic acid using graft copolymerization. Graft...

  15. The relevance of polymeric synthetic membranes in topical formulation assessment and drug diffusion study.

    Science.gov (United States)

    Ng, Shiow-Fern; Rouse, Jennifer J; Sanderson, Francis D; Eccleston, Gillian M

    2012-03-01

    Synthetic membranes are composed of thin sheets of polymeric macromolecules that can control the passage of components through them. Generally, synthetic membranes used in drug diffusion studies have one of two functions: skin simulation or quality control. Synthetic membranes for skin simulation, such as the silicone-based membranes polydimethylsiloxane and Carbosil, are generally hydrophobic and rate limiting, imitating the stratum corneum. In contrast, synthetic membranes for quality control, such as cellulose esters and polysulfone, are required to act as a support rather than a barrier. These synthetic membranes also often contain pores; hence, they are called porous membranes. The significance of Franz diffusion studies and synthetic membranes in quality control studies involves an understanding of the fundamentals of synthetic membranes. This article provides a general overview of synthetic membranes, including a brief background of the history and the common applications of synthetic membranes. This review then explores the types of synthetic membranes, the transport mechanisms across them, and their relevance in choosing a synthetic membrane in Franz diffusion cell studies for formulation assessment purposes.

  16. Natural and Synthetic Polymers as Inhibitors of Drug Efflux Pumps

    Science.gov (United States)

    2007-01-01

    Inhibition of efflux pumps is an emerging approach in cancer therapy and drug delivery. Since it has been discovered that polymeric pharmaceutical excipients such as Tweens® or Pluronics® can inhibit efflux pumps, various other polymers have been investigated regarding their potential efflux pump inhibitory activity. Among them are polysaccharides, polyethylene glycols and derivatives, amphiphilic block copolymers, dendrimers and thiolated polymers. In the current review article, natural and synthetic polymers that are capable of inhibiting efflux pumps as well as their application in cancer therapy and drug delivery are discussed. PMID:17896100

  17. A pH-responsive carboxylic β-1,3-glucan polysaccharide for complexation with polymeric guests.

    Science.gov (United States)

    Lien, Le Thi Ngoc; Shiraki, Tomohiro; Dawn, Arnab; Tsuchiya, Youichi; Tokunaga, Daisuke; Tamaru, Shun-ichi; Enomoto, Naoya; Hojo, Junichi; Shinkai, Seiji

    2011-06-07

    The helix-forming nature of β-1,3-glucan polysaccharides is a characteristic that has potential for producing gene carriers, bio-nanomaterials and other chiral nanowires. Herein, carboxylic curdlan (CurCOOH) bearing the β-1,3-polyglucuronic acid structure was successfully prepared from β-1,3-glucan polysaccharide curdlan (Cur) by one-step oxidation using a 4-acetamido-TEMPO/NaClO/NaClO(2) system as the oxidant. The resulting high-molecular-weight CurCOOH was proved to bear the 6-COOH group in 100% purity. The optical rotatory dispersion (ORD) spectra indicated that the obtained CurCOOH behaves as a water-soluble single-strand in various pH aqueous media. This advantage has allowed us to use CurCOOH as a polymeric host to form various macromolecular complexes. For example, complexation of CurCOOH with single-walled carbon nanotubes (SWNTs) resulted in a water-soluble one-dimensional architecture, which formed a dispersion in aqueous solution that was stable for several months, and much more stable than SWNTs complexes of the similar negatively-charged polyacrylic acid (PAA) and polymethacrylic acid (PMAA). It was shown that in the complex, SWNTs are effectively wrapped by a small amount of CurCOOH, enabling them to avoid electrostatic repulsion. This pH-responsive CurCOOH formed a very stable complex with cationic water-soluble polythiophenes (PT-1), which was stabilized not only by the hydrophobic interaction but also by the electrostatic attraction between trimethylammonium cations in PT-1 and dissociated anionic COO(-) groups in CurCOOH. The included PT-1 became CD-active only in the neutral to basic pH region, and the positive Cotton effect suggested that the conjugated main chain is twisted in the right-handed direction. We also found that CurCOOH can interact with polycytidylic acid (poly(C)) only under high NaCl concentrations, the binding and release of which could be controlled by a change in the salt concentration. We believe, therefore, that Cur

  18. Application of Synthetic Polymeric Scaffolds in Breast Cancer 3D Tissue Cultures and Animal Tumor Models

    Directory of Open Access Journals (Sweden)

    Girdhari Rijal

    2017-01-01

    Full Text Available Preparation of three-dimensional (3D porous scaffolds from synthetic polymers is a challenge to most laboratories conducting biomedical research. Here, we present a handy and cost-effective method to fabricate polymeric hydrogel and porous scaffolds using poly(lactic-co-glycolic acid (PLGA or polycaprolactone (PCL. Breast cancer cells grown on 3D polymeric scaffolds exhibited distinct survival, morphology, and proliferation compared to those on 2D polymeric surfaces. Mammary epithelial cells cultured on PLGA- or PCL-coated slides expressed extracellular matrix (ECM proteins and their receptors. Estrogen receptor- (ER- positive T47D breast cancer cells are less sensitive to 4-hydroxytamoxifen (4-HT treatment when cultured on the 3D porous scaffolds than in 2D cultures. Finally, cancer cell-laden polymeric scaffolds support consistent tumor formation in animals and biomarker expression as seen in human native tumors. Our data suggest that the porous synthetic polymer scaffolds satisfy the basic requirements for 3D tissue cultures both in vitro and in vivo. The scaffolding technology has appealing potentials to be applied in anticancer drug screening for a better control of the progression of human cancers.

  19. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Mingyi [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Xu, Xiaoyang, E-mail: xiaoyangxu2012@163.com [School of Science, Tianjin University, Tianjin 30072 (China); Wu, Tao [School of Science, Tianjin University, Tianjin 30072 (China); Zhang, Sai; Li, Xianxian [Department of Applied Chemistry, School of Science, Tianjin University of Commerce, Tianjin 300134 (China); Li, Yi, E-mail: liyi@tju.edu.cn [School of Science, Tianjin University, Tianjin 30072 (China)

    2014-12-15

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide.

  20. Polyacrylamide grafting of modified graphene oxides by in situ free radical polymerization

    International Nuclear Information System (INIS)

    Tang, Mingyi; Xu, Xiaoyang; Wu, Tao; Zhang, Sai; Li, Xianxian; Li, Yi

    2014-01-01

    Highlights: • Graphene oxide (GO) was modified by chemical reactions to functionalized GO (FGO). • The FGOs and the GO were then subjected to in situ free radical polymerization. • Hydroxyl groups of GO were the most reactive grafting sites. - Abstract: Graphene oxide (GO) was modified using chemical reactions to obtain three types of functionalized GO sheets (FGO). The FGO sheets and the GO were then subjected to in situ free radical polymerization in order to study the grafting polymerization. The FGO and grafted-.FGO were analyzed with Fourier transform infrared spectroscopy, scanning electronic microscopy, thermo-gravimetric analysis (TGA) and X-ray photoelectron spectroscopy (XPS). The grafting percentages in the materials were calculated using the TGA and XPS results. The FGO sheets with different functional groups exhibited different grafting abilities, and hydroxyl groups were proven to be the most reactive grafting sites for the in situ free radical grafting polymerization of polyacrylamide

  1. Polymeric nanoparticles: potent vectors for vaccine delivery targeting cancer and infectious diseases.

    Science.gov (United States)

    Bolhassani, Azam; Javanzad, Shabnam; Saleh, Tayebeh; Hashemi, Mehrdad; Aghasadeghi, Mohammad Reza; Sadat, Seyed Mehdi

    2014-01-01

    Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble. In addition, cationic polymers seem to produce more stable complexes led to a more protection during cellular trafficking than cationic lipids. Nanoparticles often show significant adjuvant effects in vaccine delivery since they may be easily taken up by antigen presenting cells (APCs). Natural polymers such as polysaccharides and synthetic polymers have demonstrated great potential to form vaccine nanoparticles. The development of new adjuvants or delivery systems for DNA and protein immunization is an expanding research field. This review describes polymeric carriers especially PLGA, chitosan, and PEI as vaccine delivery systems.

  2. Magnetic graphene oxide modified by imidazole-based ionic liquids for the magnetic-based solid-phase extraction of polysaccharides from brown alga.

    Science.gov (United States)

    Wang, Xiaoqin; Li, Guizhen; Row, Kyung Ho

    2017-08-01

    Magnetic graphene oxide was modified by four imidazole-based ionic liquids to synthesize materials for the extraction of polysaccharides by magnetic solid-phase extraction. Fucoidan and laminarin were chosen as the representative polysaccharides owing to their excellent pharmaceutical value and availability. Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, and thermogravimetric analysis were applied to characterize the synthesized materials. Single-factor experiments showed that the extraction efficiency of polysaccharides was affected by the amount of ionic liquids for modification, solid-liquid ratio of brown alga and ethanol, the stirring time of brown alga and ionic liquid-modified magnetic graphene oxide materials, and amount of 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide materials added to the brown alga sample solution. The results indicated that 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide possessed better extraction ability than graphene oxide, magnetic graphene oxide, and other three ionic-liquid-modified magnetic graphene oxide materials. The highest extraction recoveries of fucoidan and laminarin extracted by 1-(3-aminopropyl)imidazole chloride modified magnetic graphene oxide were 93.3 and 87.2%, respectively. In addition, solid materials could be separated and reused easily owing to their magnetic properties. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Precision Synthesis of Functional Polysaccharide Materials by Phosphorylase-Catalyzed Enzymatic Reactions

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2016-04-01

    Full Text Available In this review article, the precise synthesis of functional polysaccharide materials using phosphorylase-catalyzed enzymatic reactions is presented. This particular enzymatic approach has been identified as a powerful tool in preparing well-defined polysaccharide materials. Phosphorylase is an enzyme that has been employed in the synthesis of pure amylose with a precisely controlled structure. Similarly, using a phosphorylase-catalyzed enzymatic polymerization, the chemoenzymatic synthesis of amylose-grafted heteropolysaccharides containing different main-chain polysaccharide structures (e.g., chitin/chitosan, cellulose, alginate, xanthan gum, and carboxymethyl cellulose was achieved. Amylose-based block, star, and branched polymeric materials have also been prepared using this enzymatic polymerization. Since phosphorylase shows a loose specificity for the recognition of substrates, different sugar residues have been introduced to the non-reducing ends of maltooligosaccharides by phosphorylase-catalyzed glycosylations using analog substrates such as α-d-glucuronic acid and α-d-glucosamine 1-phosphates. By means of such reactions, an amphoteric glycogen and its corresponding hydrogel were successfully prepared. Thermostable phosphorylase was able to tolerate a greater variance in the substrate structures with respect to recognition than potato phosphorylase, and as a result, the enzymatic polymerization of α-d-glucosamine 1-phosphate to produce a chitosan stereoisomer was carried out using this enzyme catalyst, which was then subsequently converted to the chitin stereoisomer by N-acetylation. Amylose supramolecular inclusion complexes with polymeric guests were obtained when the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of the guest polymers. Since the structure of this polymeric system is similar to the way that a plant vine twines around a rod, this polymerization system has been named

  4. Polysaccharide-Based Micelles for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Nan Zhang

    2013-05-01

    Full Text Available Delivery of hydrophobic molecules and proteins has been an issue due to poor bioavailability following administration. Thus, micelle carrier systems are being investigated to improve drug solubility and stability. Due to problems with toxicity and immunogenicity, natural polysaccharides are being explored as substitutes for synthetic polymers in the development of new micelle systems. By grafting hydrophobic moieties to the polysaccharide backbone, self-assembled micelles can be readily formed in aqueous solution. Many polysaccharides also possess inherent bioactivity that can facilitate mucoadhesion, enhanced targeting of specific tissues, and a reduction in the inflammatory response. Furthermore, the hydrophilic nature of some polysaccharides can be exploited to enhance circulatory stability. This review will highlight the advantages of polysaccharide use in the development of drug delivery systems and will provide an overview of the polysaccharide-based micelles that have been developed to date.

  5. Comparison of Nonlinear Model Results Using Modified Recorded and Synthetic Ground Motions

    International Nuclear Information System (INIS)

    Spears, Robert E.; Wilkins, J. Kevin

    2011-01-01

    A study has been performed that compares results of nonlinear model runs using two sets of earthquake ground motion time histories that have been modified to fit the same design response spectra. The time histories include applicable modified recorded earthquake ground motion time histories and synthetic ground motion time histories. The modified recorded earthquake ground motion time histories are modified from time history records that are selected based on consistent magnitude and distance. The synthetic ground motion time histories are generated using appropriate Fourier amplitude spectrums, Arias intensity, and drift correction. All of the time history modification is performed using the same algorithm to fit the design response spectra. The study provides data to demonstrate that properly managed synthetic ground motion time histories are reasonable for use in nonlinear seismic analysis.

  6. Natural gums of plant origin as edible coatings for food industry applications.

    Science.gov (United States)

    Saha, Anuradha; Tyagi, Shvetambri; Gupta, Rajinder K; Tyagi, Yogesh K

    2017-12-01

    Natural plant-based gums and their derivatives are widely utilized in food industries, however, their applications as edible coatings to extend fresh fruits and vegetable shelf-life has been explored recently. These natural polymeric polysaccharides have many advantages as compared to synthetic polymers, because they are biodegradable, nontoxic, economical and easily available in the environment. Natural gums can also be semi synthetically modified to produce derivatives, which can easily compete with the synthetic preservatives available on the food market. In this review, the recent developments in the use of natural gums and their derivatives as edible coatings have been explored and discussed.

  7. Biochemical And Genetic Modification Of Polysaccharides

    Science.gov (United States)

    Kern, Roger G.; Petersen, Gene R.; Richards, Gil F.

    1993-01-01

    Bacteriophages producing endopolysaccharase-type enzymes used to produce, isolate, and purify high yields of modified polysaccharides from polysaccharides produced by, and incorporated into capsules of, certain bacteria. Bacteriophages used in conversion of native polysaccharide materials into polymers of nearly uniform high molecular weight or, alternatively, into highly pure oligosaccharides. Also used in genetic selection of families of polysaccharides structurally related to native polysaccharide materials, but having altered properties. Resulting new polysaccharides and oligosaccharides prove useful in variety of products, including pharmaceutical chemicals, coating materials, biologically active carbohydrates, and drag-reducing additives for fluids.

  8. Molecular dynamics modeling the synthetic and biological polymers interactions pre-studied via docking: anchors modified polyanions interference with the HIV-1 fusion mediator.

    Science.gov (United States)

    Tsvetkov, Vladimir B; Serbin, Alexander V

    2014-06-01

    In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 (HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics (MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.

  9. Recent progress of atomic layer deposition on polymeric materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hong Chen; Ye, Enyi [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Li, Zibiao, E-mail: lizb@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Han, Ming-Yong [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Loh, Xian Jun, E-mail: lohxj@imre.a-star.edu.sg [Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634 (Singapore); Department of Materials Science and Engineering, National University of Singapore, Singapore 117574 (Singapore); Singapore Eye Research Institute, 20 College Road, Singapore 169856 (Singapore)

    2017-01-01

    As a very promising surface coating technology, atomic layer deposition (ALD) can be used to modify the surfaces of polymeric materials for improving their functions and expanding their application areas. Polymeric materials vary in surface functional groups (number and type), surface morphology and internal structure, and thus ALD deposition conditions that typically work on a normal solid surface, usually do not work on a polymeric material surface. To date, a large variety of research has been carried out to investigate ALD deposition on various polymeric materials. This paper aims to provide an in-depth review of ALD deposition on polymeric materials and its applications. Through this review, we will provide a better understanding of surface chemistry and reaction mechanism for controlled surface modification of polymeric materials by ALD. The integrated knowledge can aid in devising an improved way in the reaction between reactant precursors and polymer functional groups/polymer backbones, which will in turn open new opportunities in processing ALD materials for better inorganic/organic film integration and potential applications. - Highlights: • ALD deposition on different natural and synthetic polymer materials • Reaction mechanism based on the surface functional groups of polymers • Application of ALD-modified polymers in different fields.

  10. Detection of Inulin, a Prebiotic Polysaccharide, in Maple Syrup.

    Science.gov (United States)

    Sun, Jiadong; Ma, Hang; Seeram, Navindra P; Rowley, David C

    2016-09-28

    Maple syrup is a widely consumed plant-derived natural sweetener produced by concentrating xylem sap collected from certain maple (Acer) species. During thermal evaporation of water, natural phytochemical components are concentrated in maple syrup. The polymeric components from maple syrup were isolated by ethanol precipitation, dialysis, and anion exchange chromatography and structurally characterized by glycosyl composition analysis, glycosyl linkage analysis, and nuclear magnetic resonance spectroscopy. Among the maple syrup polysaccharides, one neutral polysaccharide was characterized as inulin with a broad molecular weight distribution, representing the first isolation of this prebiotic carbohydrate from a xylem sap. In addition, two acidic polysaccharides with structural similarity were identified as arabinogalactans derived from rhamnogalacturonan type I pectic polysaccharides.

  11. Visualization of capsular polysaccharide induction in Acidithiobacillus ferrooxidans

    NARCIS (Netherlands)

    Bellenberg, S.; Leon Morales, C.F.; Sand, W.; Vera, M.

    2012-01-01

    Extracellular Polymeric Substances (EPS) are of fundamental importance for attachment to metal sulfides, biofilm formation and leaching efficiency of Acidithiobacillus ferrooxidans. In this work we have visualized the capsular polysaccharides (CPS) of A. ferrooxidans ATCC 23270 using the

  12. Polymeric materials and formulation technologies for modified-release tablet development.

    Science.gov (United States)

    Zarate, J; Igartua, M; Hernández, R M; Pedraz, J L

    2009-11-01

    Over the last years significant advances have been made in the area of drug delivery with the development of modified-release (MR) dosage forms. The present review is divided into two parts, one dealing with technologies for the design of modified-release drug delivery tablets and the other with the use of synthetic and natural polymers that are capable of controlling drug release.

  13. Advanced Modified High Performance Synthetic Jet Actuator with Curved Chamber

    Science.gov (United States)

    Xu, Tian-Bing (Inventor); Su, Ji (Inventor); Jiang, Xiaoning (Inventor)

    2014-01-01

    The advanced modified high performance synthetic jet actuator with optimized curvature shape chamber (ASJA-M) is a synthetic jet actuator (SJA) with a lower volume reservoir or chamber. A curved chamber is used, instead of the conventional cylinder chamber, to reduce the dead volume of the jet chamber and increase the efficiency of the synthetic jet actuator. The shape of the curvature corresponds to the maximum displacement (deformation) profile of the electroactive diaphragm. The jet velocity and mass flow rate for the ASJA-M will be several times higher than conventional piezoelectric actuators.

  14. Preparation of a zeolite-modified polymer monolith for identification of synthetic colorants in lipsticks

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Huiqi; Li, Zheng [College of Chemistry, Jilin University, Changchun 130012 (China); Niu, Qian [Jilin Entry-Exit Inspection and Quarantine Bureau, Changchun 130062 (China); Ma, Jiutong [College of Chemistry, Jilin University, Changchun 130012 (China); Jia, Qiong, E-mail: jiaqiong@jlu.edu.cn [College of Chemistry, Jilin University, Changchun 130012 (China)

    2015-10-30

    Graphical abstract: Poly(methacrylic acid-ethylene dimethacrylate) monolithic column embedded with zeolites was prepared and employed for the polymer monolith microextraction of colorants combined with HPLC. - Highlights: • Zeolite, as a kind of mesoporous material, was firstly combined with PMME. • Zeolite@poly(MAA-EDMA) monolith columns were prepared for the enrichment of colorants. • Zeolite@poly(MAA-EDMA) monolith columns demonstrated relatively high extraction capacity. - Abstract: A novel zeolite-modified poly(methacrylic acid-ethylenedimethacrylate) (zeolite@poly(MAA-EDMA)) monolithic column was prepared with the in situ polymerization method and employed in polymer monolith microextraction for the separation and preconcentration of synthetic colorants combined with high performance liquid chromatography. The polymer was characterized by scanning electronmicroscopy, Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, and thermo-gravimetric analysis. Various parameters affecting the extraction efficiency were investigated and optimized. Under the optimum experimental conditions, we obtained acceptable linearities, low limits of detection, and good intra-day/inter-day relative standard deviations. The method was applied to the determination of synthetic colorants in lipsticks with recoveries ranged from 70.7% to 109.7%. Compared with conventional methacrylic acid-based monoliths, the developed monolith exhibited high enrichment capacity because of the introduction of zeolites into the preparation process. The extraction efficiency followed the order: zeolite@poly(MAA-EDMA) > poly(MAA-EDMA) > direct HPLC analysis.

  15. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    International Nuclear Information System (INIS)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-01-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20–80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5–25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties. - Highlights: ► Chitosan and starch-based biodegradable films were prepared by casting. ► With the increase of chitosan in starch, the strength of the films improved significantly. ► Monomer, 2-Butane diol-diacrylate was grafted with the films by gamma radiation. ► Mechanical properties of synthetic polymeric films improved by gamma radiation. ► The irradiated polymer films showed better water vapor barrier properties.

  16. Voltammetry of Os(VI)-modified polysaccharides at carbon electrodes

    Czech Academy of Sciences Publication Activity Database

    Trefulka, Mojmír; Paleček, Emil

    2009-01-01

    Roč. 21, č. 15 (2009), s. 1763-1766 ISSN 1040-0397 R&D Projects: GA ČR(CZ) GA301/07/0490; GA MŠk(CZ) LC06035 Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chemical modification of polysaccharides * Os(VI)L-polysaccharide adducts * pyrolytic graphite electrodes Subject RIV: BO - Biophysics Impact factor: 2.630, year: 2009

  17. Modified signed-digit trinary addition using synthetic wavelet filter

    Science.gov (United States)

    Iftekharuddin, K. M.; Razzaque, M. A.

    2000-09-01

    The modified signed-digit (MSD) number system has been a topic of interest as it allows for parallel carry-free addition of two numbers for digital optical computing. In this paper, harmonic wavelet joint transform (HWJT)-based correlation technique is introduced for optical implementation of MSD trinary adder implementation. The realization of the carry-propagation-free addition of MSD trinary numerals is demonstrated using synthetic HWJT correlator model. It is also shown that the proposed synthetic wavelet filter-based correlator shows high performance in logic processing. Simulation results are presented to validate the performance of the proposed technique.

  18. Waterproofing with polymeric geo synthetic barriers (GBR-P) in the manual for the design, construction, management and maintenance of reservoirs

    International Nuclear Information System (INIS)

    Blanco, M.; Cea, J. C.; Garcia, F.; Sanchez, F. J.; Castillo, F.; Mora, J.; Crespo, M. A.

    2010-01-01

    This article presents a part of Manual for the Design, Construction, Management and Maintenance of Reservoirs relative to waterproofing with Polymeric Geo synthetic Barriers (GBR-P). the nature materials of geo membranes is studied also theirs characteristics and specifications. (Author) 26 refs.

  19. Processing of Polymer Nanocomposites Reinforced with Polysaccharide Nanocrystals

    Directory of Open Access Journals (Sweden)

    Alain Dufresne

    2010-06-01

    Full Text Available Aqueous suspensions of polysaccharide (cellulose, chitin or starch nanocrystals can be prepared by acid hydrolysis of biomass. The main problem with their practical use is related to the homogeneous dispersion of these nanoparticles within a polymeric matrix. Water is the preferred processing medium. A new and interesting way for the processing of polysaccharide nanocrystals-based nanocomposites is their transformation into a co-continuous material through long chain surface chemical modification. It involves the surface chemical modification of the nanoparticles based on the use of grafting agents bearing a reactive end group and a long compatibilizing tail.

  20. Isolation, characterization and investigation of Plantago ovata husk polysaccharide as superdisintegrant.

    Science.gov (United States)

    Pawar, Harshal; Varkhade, Chhaya

    2014-08-01

    Psyllium husk (Plantago ovata, Family: Plantaginaceae) contains a high proportion of hemicellulose, composed of a xylan backbone linked with arabinose, rhamnose, and galacturonic acid units (arabinoxylans). Polysaccharide was isolated from Psyllium husk using solvent precipitation method. The isolated polysaccharide was evaluated for various physicochemical parameters. The rheological behavior of polysaccharide (1% w/v in water) was studied using Brookfield viscometer. Polysaccharide derived from the husk of P. ovata was investigated as superdisintegrant in the fast dissolving tablets. Valsartan, an antihypertensive drug, was selected as a model drug. The tablets of Valsartan were prepared separately using different concentrations (1, 2.5, 5, 7.5% w/w) of isolated Plantago ovata (P. ovata) husk polysaccharide (Natural) and crospovidone as a synthetic superdisintegrant by direct compression method. The prepared tablets were evaluated for various pre-compression and post-compression parameters. The drug excipient interactions were characterized by FTIR studies. The formulation F4 containing7.5% polysaccharide showed rapid wetting time and disintegration time as compared to formulation prepared using synthetic superdisintegrant at the same concentration level. Hence batch F4 was considered as optimized formulation. The stability studies were performed on formulation F4. The disintegration time and in vitro drug release of the optimized formulation was compared with the marketed formulation (Conventional tablets). Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Fabrication of γ-MPS-Modified HNT-PMMA Nanocomposites by Ultrasound-Assisted Miniemulsion Polymerization

    Science.gov (United States)

    Buruga, Kezia; Kalathi, Jagannathan T.

    2018-04-01

    Halloysite nanotubes (HNTs) were modified with γ-methacryloxypropyltrimethoxysilane (γ-MPS) to improve their interaction with the polymer, and the modified HNTs (MHNTs) were subsequently used for the synthesis of MHNT-polymethylmethacrylate (PMMA) nanocomposites by miniemulsion polymerization assisted by ultrasound. Reduced agglomeration of HNTs due to modification with γ-MPS was evident from scanning electron microscopy analysis. Modification of HNTs and exfoliation of MHNTs in the polymer nanocomposite were confirmed by the presence of their respective characteristic peaks in Fourier-transform infrared spectra and x-ray diffraction patterns. Transmission electron microscopic analysis showed that the surface of the MHNTs differed significantly from that of unmodified HNTs. MHNT-PMMA nanocomposite exhibited significantly higher glass-transition temperature (T g) compared with neat PMMA or unmodified HNT-PMMA nanocomposite. Hence, such modification of HNTs along with miniemulsion polymerization assisted by ultrasound is a promising approach to achieve better dispersion of HNTs in the polymer and to obtain nanocomposites with enhanced properties.

  2. Voltammetry of Os(VI)-modified polysaccharides

    Czech Academy of Sciences Publication Activity Database

    Trefulka, Mojmír; Paleček, Emil

    2010-01-01

    Roč. 22, č. 16 (2010), s. 1837-1845 ISSN 1040-0397 R&D Projects: GA AV ČR(CZ) GPP301/10/P548; GA MŠk(CZ) LC06035 Grant - others:GA AV ČR(CZ) KAN400310651 Program:KA Institutional research plan: CEZ:AV0Z50040507; CEZ:AV0Z50040702 Keywords : chemical modification of polysaccharides * electroactive labels * osmium(VI) complexes Subject RIV: BO - Biophysics Impact factor: 2.721, year: 2010

  3. In situ intercalative polymerization of poly (ε-caprolactone)/ 12-amino lauric acid-modified clay nano composites

    International Nuclear Information System (INIS)

    Reyes, Larry; Monserate, Juvy J.; Sumera, Florentino

    2013-01-01

    Polymer/layered silicate nano composites were prepared by in situ intercalative polymerization method from from ε-caprolactone (ε-CL) and 12-amino lauric acid modified montmorillonite (AMMT). The organo-modified clay was investigated for its capacity to facilitate ring-opening polymerization of ε-caprolactone within its silicate layers. The effect of varying the organo-modified clay loading (5%, 10% and 15% by weight) on the molecular weight of the poly (ε-caprolactone) (PCL) product was assessed by gel-permeation chromatography. The molecular weight of the polymer with different clay loadings ranged from ∼30,000 g/mo to ∼70,000 g/mol, where the 10% loading produced the highest molecular weight. Fourier Transform infrared (FTIR), and 1 H and 13 C Nuclear Magnetic Resonance (NMR) Spectroscopy were conducted to probe the composition of the polymer and the catalytic activity of AMMT to polymerize ε-CL. FTIR analyses showed two medium intensity and narrow CO-O stretching vibrations for the PCL products at around 1240 cm-1 and 1160 cm-1, which are attributed to ester skeletal backbone. 1 HNMR spectroscopic analysis revealed signals at 4.07 ppm and 3.66 ppm which can be attributed to εmethylene of caprolactone and methyl of ending ester group, respectively. The formation of the nano composites were assessed by X-ray Diffraction (XRD) and Transmission Electron Microscopy (TEM), XRD analyses showed a broadening and disappearance of diffraction peak of AMMT in the nana composite which may indicate the formation of the intercalated and partially exfoliated PCVL/AMMT nana composites. TEM observations corroborated the presence of intercalated and exfoliated layers of AMMT after polymerization. The present work demonstrates that AMMT can be used as an alternative g reen catalyst's for the production of biodegradable polymers, where the in situ intercalative polymerization was employed as a direct method of preparing polymer/layered silicates (author)

  4. Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes

    DEFF Research Database (Denmark)

    Mravec, Jozef; Kračun, Stjepan K.; Rydahl, Maja G.

    2014-01-01

    Polysaccharides are major components of extracellular matrices and are often extensively modified post-synthetically to suit local requirements and developmental programmes. However, our current understanding of the spatiotemporal dynamics and functional significance of these modifications is lim...... and animal systems. We demonstrated their potential for providing new biological insights by using them to study homogalacturonan processing during Arabidopsis thaliana root cap development and by analyzing sites of chitosan deposition in fungal cell walls and arthropod exoskeletons....

  5. Modification of polysaccharides: Pharmaceutical and tissue engineering applications with commercial utility (patents)

    Energy Technology Data Exchange (ETDEWEB)

    Malviya, Rishabha, E-mail: rishabhamalviya19@gmail.com [Polymer Science Laboratory, Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greator Noida, UP (India); Department of Pharmacy, Uttarkhand Technical University, Dehradun, Uttarkhand (India); Sharma, Pramod Kumar [Polymer Science Laboratory, Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greator Noida, UP (India); Dubey, Susheel Kumar [Siddarth Institute of Pharmacy, Dehradun, Uttarkhand (India)

    2016-11-01

    Polymer modifications open new era for the development of polymers with requisite properties. Use of modified polymers is practically boundless. Different studies focus on biomedical applications of chemically modified polysaccharides. Development and utilization of modified polysaccharides get attention to be used as carrier for pharmaceutical drug delivery as well as tissue engineering scaffolds. Grafted polymer shows better cellular regeneration, signal transmission, diagnostic and imaging material than putative form. This review article aims to discuss various approaches to modify naturally derived polymer and their applications as pharmaceutical drug carrier and as a material for wound dressing and artificial cartilage due to better biophysical cues. Manuscript included various patents based on the applications of modified polymers and techniques used to modify polymers. - Highlights: • Properties of natural polysaccharides can be modulated by modification in their basic backbone. • Polysaccharides can be easily modified using microwave irradiation as compared to conventional closed vessel modification. • Biodegradable and biocompatible nature of modified polymer promotes their use in targeted cellular delivery of pharmaceuticals. • Studies show strong support that biodegradable polymers have ability to modulate cell signaling, cellular attachment, migration, proliferation and differentiation. • Manuscript reveals the fact that various commercial patents have been granted for the use of modified polymer.

  6. Tamarind seed polysaccharide: A promising natural excipient for pharmaceuticals

    OpenAIRE

    Joshny Joseph; S N Kanchalochana; G Rajalakshmi; Vedha Hari; Ramya Devi Durai

    2012-01-01

    The natural polymers always have exceptional properties which make them distinct from the synthetic polymers and tamarind seed polysaccharide (TSP) is one such example which shows more valuable properties making it a useful excipient for a wide range of applications. TSP is a natural polysaccharide obtained from the seeds of Tamarindus indica, recently gaining a wide potential in the field of pharmaceutical and cosmetic industries. Its isolation and characterisation involve simple techniques ...

  7. Immobilization of Gibberella fujikuroi cells with carriers modified by radiation polymerization

    International Nuclear Information System (INIS)

    Lu Zhaoxin; Xie Zhongchuan; Wei Qijiang

    1994-01-01

    Gibberella fujikuroi cells were immobilized on modified carriers (gauze) by using the radiation polymerization technique. The mycelium was firmly adhered to the surface of fibril covered with hydrophobic polymer, poly (diethylene glycol dimethyl acrylate) and hydrophobic-hydrophilic copolymer poly (diethylene glycol dimethyl acrylate-sodium acrylate), but it was not immobilized onto the polyethylene net, which has a similar network structure to that of the modified carrier. The weight of immobilized cells was affected by covered polymer. Gibberellic acid productivity in immobilized cells was similar to that of free cells, and the immobilized cells was of good stability. A optimum culture condition for gibberellic acid production was at pH 5.5 and under 20 ∼ 30 degree C

  8. Production of heterologous storage polysaccharides in potato plants

    NARCIS (Netherlands)

    Huang, X.; Vincken, J.P.; Visser, R.G.F.; Trindade, L.M.

    2011-01-01

    Starch is the most important storage polysaccharide in higher plants. This polysaccharide is used in many industrial applications as it is abundant, renewable and biodegradable and it can be modified into a wide range of products used in food, animal feed, pharmaceuticals and industry. With the

  9. Covalent attachment of phospholipid analogous polymers to modify a polymeric membrane surface: a novel approach.

    Science.gov (United States)

    Xu, Zhi-Kang; Dai, Qing-Wen; Wu, Jian; Huang, Xiao-Jun; Yang, Qian

    2004-02-17

    A novel method for the surface modification of a microporous polypropylene membrane by tethering phospholipid analogous polymers (PAPs) is given, which includes the photoinduced graft polymerization of N,N-dimethylaminoethyl methacrylate (DMAEMA) and the ring-opening reaction of grafted poly-(DMAEMA) with 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes. Five 2-alkyloxy-2-oxo-1,3,2-dioxaphospholanes, containing octyloxy, dodecyloxy, tetradecyloxy, hexadecyloxy, and octadecyloxy groups in the molecular structure, were used to fabricate the PAP-modified polypropylene membranes. The attenuated total reflectance FT-IR spectra of the original, poly(DMAEMA)-grafted, and PAP-modified membranes confirmed the chemical changes on the membrane surface. Scanning electron microscope pictures showed that, compared with the original membrane, the surface porosities ofpoly(DMAEMA)-grafted and PAP-modified membranes were somewhat reduced. Water contact angles measured by the sessile drop method on PAP-modified membranes were slightly lower than that on the original polypropylene membrane, but higher than those on poly(DMAEMA)-grafted membranes with the exception of octyloxy-containing PAP-modified membranes. However, BSA adsorption experiments indicated that the five PAP-modified membranes had a much better protein-resistant property than the original polypropylene membrane and the poly(DMAEMA)-grafted membranes. For hexadecyloxy- and octadecyloxy-containing PAP-modified membranes, almost no protein adsorption was observed when the grafting degree was above 6 wt %. It was also found that the platelet adhesion was remarkably suppressed on the PAP-modified membranes. All these results demonstrate that the described approach is an effective way to improve the surface biocompatibility for polymeric membranes.

  10. Application of Ionizing Radiations to Produce New Polysaccharides and Proteins with Enhanced Functionality

    International Nuclear Information System (INIS)

    Al Assaf, S.

    2006-01-01

    Treatment of polysaccharides with ionizing radiation either in the solid state or in aqueous solution leads to degradation, whereas application of radiation to process synthetic polymers to introduce structural changes and special performance characteristics is now a thriving industry. Using a mediating gas associated during the radiation treatment prevents the degradation of natural polymers and enables the introduction of different molecular and functional characteristics, as previously achieved with synthetic polymers. For example, the molecular weight can be increased and standardised, protein distribution reorganised and modified to ensure better emulsification, viscosity and viscoelasticity enhanced, leading when required to hydrogel formation. More than one hydrocolloid can also be integrated into a single matrix using this process. Protein, within demineralised bone, too can be modified to give enhanced osteoinductive capacity. This experience has led to additional patented and proprietary processes, using standard food processing techniques, to promote changes in a wide range of hydrocolloids which emulates and extend those which occur naturally. The lecture will describe these structural changes and their functional role by reference to several hydrocolloids, including acacia gums, pectin, ispaghula and hyaluronan, bone morphogenic protein. Applications in food products, dietary fibre and medical products will be illustrated

  11. Incorporation of poly-saccharidic derivatives in model biological systems: monolayers, lamellar phases and vesicles

    International Nuclear Information System (INIS)

    Deme, Bruno

    1995-01-01

    Our aim is to introduce a soluble polymer in a lyotropic lamellar phase, and to modify the force balance in the case of a collapsed system where no repulsive contribution overcomes the van der Waals attraction, except at very short distances where hydration forces dominate (i.e. a collapsed stack of membranes). Mixed layers of a synthetic lecithin (DMPC) and a hydrophobically modified polysaccharide (cholesteryl-pullulan, CHP) have been investigated at the air-water interface by surface tension experiments and by specular reflection of neutrons. The DMPC/CHP/water ternary phase diagram has been determined by small angle X-ray scattering (SAXS) and small angle neutron scattering (SANS). CHP derivatives are associative polymers bearing lateral cholesterol groups that interact with a polar phases such as phospholipid monolayers and biological membranes. These derivatives are surface active and self-aggregate in solution leading to the formation of soluble micellar type aggregates. The interaction of CHP derivatives with lipidic structures involves the anchoring of the cholesterol groups that yields to the tethering of the poly-saccharidic backbones at lipid/water interfaces. These poly-saccharidic backbones are flexible chains in good solvent in water. Using these derivatives and a new preparation procedure, we show that it is possible to avoid the depletion of the polysaccharide due to its steric exclusion by the collapsed DMPC lamellar phase. We are able to prepare samples at thermodynamic equilibrium with the polysaccharide solubilized in the lamellar phase, a situation opposed to the well known behavior of mixed polysaccharide/lecithin Systems commonly used in osmotic stress experiments. Here, the osmotic pressure of the chains confined in the lamellar lattice acts as a new long range repulsive contribution in the DMPC lyotropic L_α phase and results in the swelling of the lamellar phase at large membrane separations (570 A). Such bilayer separations allow out of

  12. Reducing composite restoration polymerization shrinkage stress through resin modified glass-ionomer based adhesives.

    Science.gov (United States)

    Naoum, S J; Mutzelburg, P R; Shumack, T G; Thode, Djg; Martin, F E; Ellakwa, A E

    2015-12-01

    The aim of this study was to determine whether employing resin modified glass-ionomer based adhesives can reduce polymerization contraction stress generated at the interface of restorative composite adhesive systems. Five resin based adhesives (G Bond, Optibond-All-in-One, Optibond-Solo, Optibond-XTR and Scotchbond-Universal) and two resin modified glass-ionomer based adhesives (Riva Bond-LC, Fuji Bond-LC) were analysed. Each adhesive was applied to bond restorative composite Filtek-Z250 to opposing acrylic rods secured within a universal testing machine. Stress developed at the interface of each adhesive-restorative composite system (n = 5) was calculated at 5-minute intervals over 6 hours. The resin based adhesive-restorative composite systems (RBA-RCS) demonstrated similar interface stress profiles over 6 hours; initial rapid contraction stress development (0-300 seconds) followed by continued contraction stress development ≤0.02MPa/s (300 seconds - 6 hours). The interface stress profile of the resin modified glass-ionomer based adhesive-restorative composite systems (RMGIBA-RCS) differed substantially to the RBA-RCS in several ways. Firstly, during 0-300 seconds the rate of contraction stress development at the interface of the RMGIBA-RCS was significantly (p adhesives can significantly reduce the magnitude and rate of polymerization contraction stress developed at the interface of adhesive-restorative composite systems. © 2015 Australian Dental Association.

  13. Thermo-mechanical and hydrophilic properties of polysaccharide/gluten-based bioplastics.

    Science.gov (United States)

    Zárate-Ramírez, L S; Romero, A; Bengoechea, C; Partal, P; Guerrero, A

    2014-11-04

    The influence of adding different polysaccharides (locust bean gum, LBG; methyl cellulose, MC; and carboxymethyl cellulose, CMC) to gluten-based biodegradable polymeric materials was assessed in this work. Gluten/polysaccharide/plasticiser bioplastics were prepared at different polysaccharide concentrations (0-4.5%) and pH values by mixing in a two-blade counter-rotating batch mixer (at 25 °C under adiabatic conditions) and thermomoulding at 9MPa and 130 °C. Bioplastic probes were evaluated through dynamic mechanical thermal analysis, tensile strength and water absorption capacity tests. Results pointed out that a moderate enhancement of the network structure may be achieved by adding polysaccharide at a pH close to the protein isoelectric point (pH 6), which also conferred a further thermosetting capacity to the system. Moreover, the addition of MC and CMC was found to significantly enhance material elongation properties. However, the presence of charges induced by pH leaded to a higher incompatibility between the polysaccharide and protein domains forming the composite. The pH value played a relevant role in the material water absorption, which significantly increased under acidic or basic conditions (particularly at pH 3). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Seaweed Polysaccharide-Based Nanoparticles: Preparation and Applications for Drug Delivery

    Directory of Open Access Journals (Sweden)

    Jayachandran Venkatesan

    2016-01-01

    Full Text Available In recent years, there have been major advances and increasing amounts of research on the utilization of natural polymeric materials as drug delivery vehicles due to their biocompatibility and biodegradability. Seaweed polysaccharides are abundant resources and have been extensively studied for several biological, biomedical, and functional food applications. The exploration of seaweed polysaccharides for drug delivery applications is still in its infancy. Alginate, carrageenan, fucoidan, ulvan, and laminarin are polysaccharides commonly isolated from seaweed. These natural polymers can be converted into nanoparticles (NPs by different types of methods, such as ionic gelation, emulsion, and polyelectrolyte complexing. Ionic gelation and polyelectrolyte complexing are commonly employed by adding cationic molecules to these anionic polymers to produce NPs of a desired shape, size, and charge. In the present review, we have discussed the preparation of seaweed polysaccharide-based NPs using different types of methods as well as their usage as carriers for the delivery of various therapeutic molecules (e.g., proteins, peptides, anti-cancer drugs, and antibiotics. Seaweed polysaccharide-based NPs exhibit suitable particle size, high drug encapsulation, and sustained drug release with high biocompatibility, thereby demonstrating their high potential for safe and efficient drug delivery.

  15. Interfaces study of all-polysaccharide composite films

    Czech Academy of Sciences Publication Activity Database

    Šimkovic, I.; Kelnar, Ivan; Mendichi, R.; Tracz, A.; Filip, J.; Bertók, T.; Kasák, P.

    2018-01-01

    Roč. 72, č. 3 (2018), s. 711-718 ISSN 0366-6352 Institutional support: RVO:61389013 Keywords : all-polysaccharide composites * elemental analysis * film properties study Subject RIV: JI - Composite Materials OBOR OECD: Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics Impact factor: 1.258, year: 2016

  16. CRYSTALLIZATION KINETICS OF POLYMERIC NANOCOMPOSITES BASED ON POLYAMIDE 12 MODIFIED BY Cr2O3 NANOPARTICLES

    Directory of Open Access Journals (Sweden)

    E. S. Shapoval

    2014-09-01

    Full Text Available In situ polymerization method is used for obtaining polymeric composites based on polyamide12 matrix (PA 12, filled with Cr2O3 nanoparticles. The carried out researches result in synthesis method development for polymeric nanocomposites based on PA 12 matrix filled with nano-sized Cr2O3magnetic particles providing uniform embedding of the filler into polymeric matrix without formation of nanoparticles agglomerates. Mechanical tests on samples compression are carried out. It is shown that mechanical properties of polymeric composites (Young’s modulus, durability limit are decreased for 20-30 % as compared with not modified PA 12 synthesized by means of the chosen method. The influence of the filler on crystallization morphology and kinetics of polymeric nanocomposites is determined by electron microscopy and differential scanning calorimetry. The values of crystallization degree, crystallization rate constant for different supercooling intervals and parameters of Avrami equation are obtained. The initial nucleation is shown to be going on according to non-thermal mechanism, and nanoparticles are not the germs of crystallization. It is stated that nanoparticles are embedded into polymeric matrix and uniformly allocated in crystallites. Research results can find their application at creation of electric and magnetic fields, micro-sized mechanical devices, and at development of new materials for 3D printers.

  17. Synthesis and characterization of hydrophobically modified polymeric betaines

    Directory of Open Access Journals (Sweden)

    Alexey Shakhvorostov

    2015-09-01

    Full Text Available Polymeric betaines containing long alkyl chains C12H25, C14H29, C16H33 and C18H37 were synthesized by Michael addition reaction of alkylaminocrotonates and methacrylic acid (MAA. They were characterized by FTIR, 13C NMR, DSC, DLS, GPC, cryo-TEM, viscometry and zeta-potential measurements. The polymers were fully soluble in DMF, THF and DMSO, partially dissolved in aromatic hydrocarbons (benzene, toluene, o-xylene and formed colloid solutions in aqueous KOH. In aqueous KOH and DMSO solutions, hydrophobically modified polymeric betaines behaved as polyelectrolytes. The average hydrodynamic size and zeta potential of diluted aqueous solutions of hydrophobic polybetainess containing dodecyl-, tetradecyl-, hexadecyl-, and octadecyl groups were studied as a function of pH. Anomalous low values of the isoelectric point (IEP of amphoteric macromolecules were found to be in the range of pH 2.7-3.4. According to DLS data, the average size of macromolecules tends to decrease with dilution. Zeta-potential of amphoteric macromolecules in aqueous solution is much higher than that in DMSO. The cryo-TEM results revealed that in both aqueous KOH and DMSO media, the micron- and nanosized vesicles existed. The structural organization of vesicles in water and DMSO is discussed. The wax inhibition effect of hydrophobic polybetaines at a decrease of the pour point temperatures of high paraffinic oils was better in comparison with commercial available ethylene-vinylacetate copolymers (EVA.

  18. Natural and Synthetic Biohydrogels Design, Characterization, Network Structure Imaging and Modeling

    Science.gov (United States)

    Marmorat, Clement

    Biocompatible hydrogels can be derived from materials that are naturally obtained, such as proteins or polysaccharides, or synthetic, such as poloxamers. In order to be classified as biocompatible, these water-swollen networks can not trigger a toxic response once introduced into a biological or physiological environment and, therefore, must be immunoneutral. Hyaluronic acid hydrogels can be great candidates for tissue engineering applications as long as the cross-linking chemistry and process does not affect the biocompatibility of the natural protein matrix. Thermoreversible hydrogels have the advantage of undergoing a sol/gel phase transition at specific temperatures. Thus, they are excellent candidates for biomedical applications such as drug delivery systems, wound healing coatings or cellular scaffolds. Although these hydrogels can be used in their natural form without further modification or chemical alteration, the original protein or polymer matrix is often strengthened by the use of a crosslinking agent to achieve a specific set of properties. In the case of gelatin fibril formation at low temperatures or the micellization of triblock copolymers in solution with temperature increase, the natural phase transition is modified when crosslinkers are introduced to alter the biohydrogels properties and, ultimately, disturb the system's equilibrium. By using spectroscopy techniques, rheology and cryo-imaging we investigated several biocompatible polymeric networks in their natural form as well as their engineered structures to better understand the mechanisms of gelation and artificial internal re-organization of the networks. Natural and synthetic biohydrogels were designed and their mechanical properties were characterized before imaging. Models that better describe the relationship between network configuration and resulting mechanical properties showed great agreement with experimental mesh size observations. Finally, a novel set of hybrid gels was developed

  19. Evaluation of Osseointegration of Titanium Alloyed Implants Modified by Plasma Polymerization

    Directory of Open Access Journals (Sweden)

    Carolin Gabler

    2014-02-01

    Full Text Available By means of plasma polymerization, positively charged, nanometre-thin coatings can be applied to implant surfaces. The aim of the present study was to quantify the adhesion of human bone cells in vitro and to evaluate the bone ongrowth in vivo, on titanium surfaces modified by plasma polymer coatings. Different implant surface configurations were examined: titanium alloy (Ti6Al4V coated with plasma-polymerized allylamine (PPAAm and plasma-polymerized ethylenediamine (PPEDA versus uncoated. Shear stress on human osteoblast-like MG-63 cells was investigated in vitro using a spinning disc device. Furthermore, bone-to-implant contact (BIC was evaluated in vivo. Custom-made conical titanium implants were inserted at the medial tibia of female Sprague-Dawley rats. After a follow-up of six weeks, the BIC was determined by means of histomorphometry. The quantification of cell adhesion showed a significantly higher shear stress for MG-63 cells on PPAAm and PPEDA compared to uncoated Ti6Al4V. Uncoated titanium alloyed implants showed the lowest BIC (40.4%. Implants with PPAAm coating revealed a clear but not significant increase of the BIC (58.5% and implants with PPEDA a significantly increased BIC (63.7%. In conclusion, plasma polymer coatings demonstrate enhanced cell adhesion and bone ongrowth compared to uncoated titanium surfaces.

  20. Polymeric synthetic geo membranes in reservoirs waterproofing in the Kingdom of Morocco

    International Nuclear Information System (INIS)

    Blanco Fernandez, M.

    2015-01-01

    This essay aims to address some of the aspects related to polymeric synthetic geo membranes that could be used in reservoirs of water located in the Kingdom of Morocco. In this regard, it offers a description of the two basic components geo membranes consist of, that is, resins and additives. It also gives an overview of the key pieces of legislation affecting such an issue. Furthermore, it stresses the paramount importance of implementing monitoring procedures in order to assess the condition of geo membranes over time and, if necessary, to proceed to provide for new waterproofing. Lastly, the characteristics of the process monitoring aforementioned are detailed in terms of tensile strength, elongation, tear resistance, dynamic impact, puncture resistance, low-temperature folding. Shore hardness, stress cracking, oxidation induction times, joint strength shear and peeling test, content and dispersion of carbon black and reflection-optical and scanning-electron microscopy. (Author)

  1. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Käpylä, Elli, E-mail: elli.kapyla@tut.fi [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland); Sedlačík, Tomáš [Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha 6, Břevnov, Prague (Czech Republic); Aydogan, Dogu Baran [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland); Viitanen, Jouko [VTT Technical Research Centre of Finland, P.O. Box 1300, 33101 Tampere (Finland); Rypáček, František [Institute of Macromolecular Chemistry of the Academy of Sciences of the Czech Republic, Heyrovského nám. 2, 162 06 Praha 6, Břevnov, Prague (Czech Republic); Kellomäki, Minna [Department of Electronics and Communications Engineering, Tampere University of Technology, P.O. Box 692, 33101 Tampere (Finland); BioMediTech, Biokatu 10, 33520 Tampere (Finland)

    2014-10-01

    The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication. - Highlights: • Methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s) were synthesized. • Direct laser writing by two-photon polymerization (2PP-DLW) of poly(AA)s is shown. • Poly(AA)s have wider processing windows than poly(ethylene glycol) diacrylates. • 3D poly(AA) structures with 80% water content were fabricated.

  2. Direct laser writing of synthetic poly(amino acid) hydrogels and poly(ethylene glycol) diacrylates by two-photon polymerization

    International Nuclear Information System (INIS)

    Käpylä, Elli; Sedlačík, Tomáš; Aydogan, Dogu Baran; Viitanen, Jouko; Rypáček, František; Kellomäki, Minna

    2014-01-01

    The additive manufacturing technique of direct laser writing by two-photon polymerization (2PP-DLW) enables the fabrication of three-dimensional microstructures with superior accuracy and flexibility. When combined with biomimetic hydrogel materials, 2PP-DLW can be used to recreate the microarchitectures of the extracellular matrix. However, there are currently only a limited number of hydrogels applicable for 2PP-DLW. In order to widen the selection of synthetic biodegradable hydrogels, in this work we studied the 2PP-DLW of methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s). The performance of these materials was compared to widely used poly(ethylene glycol) diacrylates (PEGdas) in terms of polymerization and damage thresholds, voxel size, line width, post-polymerization swelling and deformation. We found that both methacryloylated and acryloylated poly(AA) hydrogels are suitable to 2PP-DLW with a wider processing window than PEGdas. The poly(AA) with the highest degree of acryloylation showed the greatest potential for 3D microfabrication. - Highlights: • Methacryloylated and acryloylated poly(α-amino acid)s (poly(AA)s) were synthesized. • Direct laser writing by two-photon polymerization (2PP-DLW) of poly(AA)s is shown. • Poly(AA)s have wider processing windows than poly(ethylene glycol) diacrylates. • 3D poly(AA) structures with 80% water content were fabricated

  3. Development and evaluation of orodispersible tablets using a natural polysaccharide isolated from Cassia tora seeds

    Directory of Open Access Journals (Sweden)

    Harshal Pawar

    2014-06-01

    Conclusion: The present work revealed that C. tora seed polysaccharide has a good potential as a disintegrant in the formulation of orodispersible tablets. Because C. tora polysaccharide is inexpensive as compared to synthetic superdisintegrants, nontoxic, compatible, and easy to manufacture, it can be used in place of currently marketed superdisintegrants.

  4. Radiation processing of polysaccharides

    International Nuclear Information System (INIS)

    2004-11-01

    Radiation processing is a very convenient tool for imparting desirable effects in polymeric materials and it has been an area of enormous interest in the last few decades. The success of radiation technology for processing of synthetic polymers can be attributed to two reasons namely, their ease of processing in various shapes and sizes, and secondly, most of these polymers undergo crosslinking reaction upon exposure to radiation. In recent years, natural polymers are being looked at with renewed interest because of their unique characteristics, such as inherent biocompatibility, biodegradability and easy availability. Traditionally, the commercial exploitation of natural polymers like carrageenans, alginates or starch etc. has been based, to a large extent, on empirical knowledge. But now, the applications of natural polymers are being sought in knowledge - demanding areas such as pharmacy and biotechnology, which is acting as a locomotive for further scientific research in their structure-function relationship. Selected success stories concerning radiation processed natural polymers and application of their derivatives in the health care products industries and agriculture are reported. This publication will be of interest to individuals at nuclear institutions worldwide that have programmes of R and D and applications in radiation processing technologies. New developments in radiation processing of polymers and other natural raw materials give insight into converting them into useful products for every day life, human health and environmental remediation. The book will also be of interest to other field specialists, readers including managers and decision makers in industry (health care, food and agriculture) helping them to understand the important role of radiation processing technology in polysaccharides

  5. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Yuan, Huihui; Qian, Bin; Zhang, Wei; Lan, Minbo

    2016-01-01

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm"2, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  6. Protein adsorption resistance of PVP-modified polyurethane film prepared by surface-initiated atom transfer radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Huihui; Qian, Bin; Zhang, Wei [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); Lan, Minbo, E-mail: minbolan@ecust.edu.cn [Shanghai Key Laboratory of Functional Materials Chemistry and Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237 (China); State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237 (China)

    2016-02-15

    Highlights: • Antifouling PVP brushes were successfully grafted on PU films by SI-ATRP. • The effect of polymerization time on surface property and topography was studied. • Hydrophilicity and protein fouling resistance of PVP–PU films were greatly promoted. • Competitive adsorption of three proteins on PVP–PU films was evaluated. - Abstract: An anti-fouling surface of polyurethane (PU) film grafted with Poly(N-vinylpyrrolidone) (PVP) was prepared through surface-initiated atom transfer radical polymerization (SI-ATRP). And the polymerization time was investigated to obtain PU films with PVP brushes of different lengths. The surface properties and protein adsorption of modified PU films were evaluated. The results showed that the hydrophilicity of PU–PVP films were improved with the increase of polymerization time, which was not positive correlation with the surface roughness due to the brush structure. Additionally, the protein resistance performance was promoted when prolonging the polymerization time. The best antifouling PU–PVP (6.0 h) film reduced the adsoption level of bovine serum albumin (BSA), lysozyme (LYS), and brovin serum fibrinogen (BFG) by 93.4%, 68.3%, 85.6%, respectively, compared to the unmodified PU film. The competitive adsorption of three proteins indicated that LYS preferentially adsorbed on the modified PU film, while BFG had the lowest adsorption selectivity. And the amount of BFG on PU–PVP (6.0 h) film reduced greatly to 0.08 μg/cm{sup 2}, which was almost one-tenth of its adsorption from the single-protein system. Presented results suggested that both hydrophilicity and surface roughness might be the important factors in all cases of protein adsorption, and the competitive or selective adsorption might be related to the size of the proteins, especially on the non-charged films.

  7. Surface force analysis of molecular interfacial interactions of proteins and lipids with polymeric biomaterials

    International Nuclear Information System (INIS)

    Hamilton-Brown, P.; Griesser, H.J.; Meagher, L.

    2001-01-01

    Full text: Adverse biological responses to biomedical devices are often caused by the irreversible accumulation of biological deposits onto the surfaces of devices. Such deposits cause blocking of artificial blood vessels, fibrous encapsulation of soft tissue regenerative devices, 'fouling' of contact lenses, secondary cataracts on intraocular lenses, and other undesirable events that interfere with the intended functions of biomedical devices. The formation of deposits is triggered by an initial stage in which various proteins and lipids rapidly adsorb onto the synthetic material surface; further biological molecules and ultimately cellular entities (e.g., host cells, bacteria) then settle onto the initial adsorbed layer. Hence, to avoid or control the accumulation of biological deposits, molecular understanding is required of the initial adsorption processes. Such adsorption is caused by attractive interfacial forces, which we are characterising by the use of a novel method. In the present study, polymeric thin film coatings, polyethylene oxide (PEO), and polysaccharide coatings have been analysed in terms of their surface forces and the ensuing propensity for protein and lipid adsorption. Interfacial forces are measured using atomic force microscopy (AFM) with a colloid-modified tip in a liquid cell using solutions of physiological pH and ionic strength. The chemical composition and uniformity of the coatings was characterised by X-ray Photon Spectroscopy (XPS). For a polymeric solid coating, repulsive forces have been measured against a silica colloid probe, and the dominant surface force is electrostatic. For the highly hydrated, 'soft' PEO and polysaccharide coatings, on the other hand, steric/entropic forces are also significant and contribute to interfacial interactions with proteins and lipids. In one system we have observed a time dependence of the electrostatic surface potential, which affects interaction with charged proteins. Force measurements were

  8. Radiation synthesis and characterization of network structure of natural/synthetic double-network superabsorbent polymers

    International Nuclear Information System (INIS)

    Sen, M.; Hayrabolulu, H.

    2011-01-01

    Complete text of publication follows. Superabsorbent polymers (SAPs) are moderately cross linked, 3-D, hydrophilic network polymers that can absorb and conserve considerable amounts of aqueous fluids even under certain heat or pressure. Because of the unique properties superior to conventional absorbents, SAPs have found potential application in many fields such as hygienic products, disposable diapers, horticulture, gel actuators, drug-delivery systems, as well as water-blocking tapes coal dewatering, water managing materials for the renewal of arid and desert environment, etc. In recent years, naturally available resources, such as polysaccharides have drawn considerable attention for the preparation of SAPs. Since the mechanical properties of polysaccharide based natural polymers are low, researchers have mostly focused on natural/synthetic polymer/monomer mixtures to obtain novel SAPs. The aim of this study is to synthesize and characterization of network structure of novel double-network (DN) hydrogels as a SAP. Hydrogels with high mechanical strength have been prepared by radiation induced polymerization and crosslink of acrylic acid sodium salt in the presence of natural polymer locust bean gum. Liquid retention capacities and absorbency under load (AUL) analysis of synthesized SAPs was performed at different temperatures in water and synthetic urine solution, in order to determine their SAP character. For the characterization of network structure of the semi-IPN hydrogels, the average molecular weight between cross links (M c ) were evaluated by using uniaxial compression and oscillatory dynamical mechanical analyses and the advantage and disadvantage of these two technique for the characterization of network structures were compared.

  9. Strategies to Fabricate Polypeptide-Based Structures via Ring-Opening Polymerization of N-Carboxyanhydrides

    Directory of Open Access Journals (Sweden)

    Carmen M. González-Henríquez

    2017-10-01

    Full Text Available In this review, we provide a general and clear overview about the different alternatives reported to fabricate a myriad of polypeptide architectures based on the ring-opening polymerization of N-carbonyanhydrides (ROP NCAs. First of all, the strategies for the preparation of NCA monomers directly from natural occurring or from modified amino acids are analyzed. The synthetic alternatives to prepare non-functionalized and functionalized NCAs are presented. Protection/deprotection protocols, as well as other functionalization chemistries are discussed in this section. Later on, the mechanisms involved in the ROP NCA polymerization, as well as the strategies developed to reduce the eventually occurring side reactions are presented. Finally, a general overview of the synthetic strategies described in the literature to fabricate different polypeptide architectures is provided. This part of the review is organized depending on the complexity of the macromolecular topology prepared. Therefore, linear homopolypeptides, random and block copolypeptides are described first. The next sections include cyclic and branched polymers such as star polypeptides, polymer brushes and highly branched structures including arborescent or dendrigraft structures.

  10. Improving the drug delivery characteristics of graphene oxide based polymer nanocomposites through the “one-pot” synthetic approach of single-electron-transfer living radical polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Peng; Liu, Meiying; Tian, Jianwen; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Xu, Dazhuang [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Liu, Liangji [Affiliated Hospital of Jiangxi University of Traditional Chinese Medicine, Nanchang 330006 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2016-08-15

    Graphical abstract: The PEGylated graphene oxides with high water dispersibility, good biocompatibility as well as high drug loading capability were fabricated via “one-pot” SET-LRP. - Highlights: • Surface modification of graphene oxide with polymers. • One-pot single-electron-transfer living radical polymerization. • Improving drug delivery characteristics. • The synthetic approach is rather simple, universal and effective. - Abstract: Graphene oxide (GO) based polymer nanocomposites have attracted extensive research interest recently for their outstanding physicochemical properties and potential applications. However, surface modification of GO with synthetic polymers has demonstrated to be trouble for most polymerization procedures are occurred under non-aqueous solution, which will in turn lead to the restacking of GO. In this work, a facile and efficient “one-pot” strategy has been developed for surface modification of GO with synthetic polymers through single-electron-transfer living radical polymerization (SET-LRP). The GO based polymer nanocomposites were obtained via SET-LRP in aqueous solution using poly(ethylene glycol) methyl ether methacrylate (PEGMA) as the monomer and 11-bromoundecanoic acid as the initiator, which could be effectively adsorbed on GO through hydrophobic interaction. The successful preparation of GO based polymer nanocomposites was confirmed by a series of characterization techniques such as {sup 1}H nuclear magnetic resonance, Fourier transform infrared spectroscopy, thermogravimetric analysis, transmission electron microscopy and X-ray photoelectron spectroscopy. The resultant products exhibit high water disperisibility, excellent biocompatibility and high efficient drug loading capability, making these PEGylated GO nanocomposites promising candidates for biomedical applications.

  11. Structural Characterization and Enzymatic Modification of Soybean Polysaccharides

    DEFF Research Database (Denmark)

    Pierce, Brian; Wichmann, Jesper

    % galacturonic acid, 8% xylose, 3% rhamnose, and 3% fucose. Currently, the majority of this material is disposed of as waste, increasing production costs. Opportunities exist for the develop-ment of novel functional ingredients from this abundant and underutilized ma-terial; however, efforts in this area......The work in this thesis explores the structure of soybean polysaccharides, and examines approaches for the chemical and enzymatic degradation and solu-bilization of this material. Soybean polysaccharides are produced in large quantities globally as a by-product of various soy production processes...... are currently limited by the material’s insol-ubility. A central hypothesis of this work was that by obtaining a more complete understanding of the structure of this material, chemical and enzymatic ap-proaches could be developed to modify the polysaccharides, creating soluble polysaccharide fractions...

  12. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity.

    Science.gov (United States)

    Chen, Yun; Yao, Fangke; Ming, Ke; Wang, Deyun; Hu, Yuanliang; Liu, Jiaguo

    2016-12-13

    Traditional Chinese Medicine (TCM) has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  13. Effect of telechelic ionic groups on the dispersion of organically modified clays in bisphenol A polycarbonate nanocomposites by in-situ polymerization using activated carbonates

    Directory of Open Access Journals (Sweden)

    M. Colonna

    2017-05-01

    Full Text Available Nanocomposites of bisphenol A polycarbonate with organically modified clays have been prepared for the first time by in-situ polymerization using bis(methyl salicyl carbonate as activated carbonate. The use of the activated carbonate permits to conduct the polymerization reaction at lower temperature and with shorter polymerization time with respect to those necessary for traditional melt methods that uses diphenyl carbonate, affording a nanocomposite with improved color. Moreover, an imidazolium salt with two long alkyl chains has been used to modify the montmorillonite, providing an organically modified clay with high thermal stability and wide d-spacing. The addition of ionic groups at the end of the polymer chain increases the interaction between the clay surface and the polymer producing a better dispersion of the clay. The presence of the clay increases the thermal stability of the polymer.

  14. Polysaccharides from Traditional Chinese Medicines: Extraction, Purification, Modification, and Biological Activity

    Directory of Open Access Journals (Sweden)

    Yun Chen

    2016-12-01

    Full Text Available Traditional Chinese Medicine (TCM has been used to treat diseases in China for thousands of years. TCM compositions are complex, using as their various sources plants, animals, fungi, and minerals. Polysaccharides are one of the active and important ingredients of TCMs. Polysaccharides from TCMs exhibit a wide range of biological activities in terms of immunity- modifying, antiviral, anti-inflammatory, anti-oxidative, and anti-tumor properties. With their widespread biological activities, polysaccharides consistently attract scientist's interests, and the studies often concentrate on the extraction, purification, and biological activity of TCM polysaccharides. Currently, numerous studies have shown that the modification of polysaccharides can heighten or change the biological activities, which is a new angle of polysaccharide research. This review highlights the current knowledge of TCM polysaccharides, including their extraction, purification, modification, and biological activity, which will hopefully provide profound insights facilitating further research and development.

  15. Modification of polysaccharides: Pharmaceutical and tissue engineering applications with commercial utility (patents).

    Science.gov (United States)

    Malviya, Rishabha; Sharma, Pramod Kumar; Dubey, Susheel Kumar

    2016-11-01

    Polymer modifications open new era for the development of polymers with requisite properties. Use of modified polymers is practically boundless. Different studies focus on biomedical applications of chemically modified polysaccharides. Development and utilization of modified polysaccharides get attention to be used as carrier for pharmaceutical drug delivery as well as tissue engineering scaffolds. Grafted polymer shows better cellular regeneration, signal transmission, diagnostic and imaging material than putative form. This review article aims to discuss various approaches to modify naturally derived polymer and their applications as pharmaceutical drug carrier and as a material for wound dressing and artificial cartilage due to better biophysical cues. Manuscript included various patents based on the applications of modified polymers and techniques used to modify polymers. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Versatile and Rapid Postfunctionalization from Cyclodextrin Modified Host Polymeric Membrane Substrate.

    Science.gov (United States)

    Deng, Jie; Liu, Xinyue; Zhang, Shuqing; Cheng, Chong; Nie, Chuanxiong; Zhao, Changsheng

    2015-09-08

    Surface modification has long been of great interest to impart desired functionalities to the bioimplants. However, due to the limitations of recent technologies in surface modification, it is highly desirable to explore novel protocols, which can advantageously and efficiently endow the inert material surfaces with versatile biofunctionalities. Herein, to achieve versatile and rapid postfunctionalization of polymeric membrane, we demonstrate a new strategy for the fabrication of β-cyclodextrin (β-CD) modified host membrane substrate that can recognize a series of well-designed guest macromolecules. The surface assembly procedure was driven by the host-guest interaction between adamantane (Ad) and β-CD. β-CD immobilized host membrane was fabricated via two steps: (1) epoxy groups enriched poly(ether sulfone) (PES) membrane was first prepared via in situ cross-linking polymerization and subsequently phase separation; (2) mono-6-deoxy-6-ethylenediamine-β-CD (EDA-β-CD) was then anchored onto the surface of the epoxy functionalized PES membrane to obtain PES-CD. Subsequently, three types of Ad-terminated polymers, including Ad-poly(styrenesulfonate-co-sodium acrylate) (Ad-PSA), Ad-methoxypoly(ethylene glycol) (Ad-PEG), and Ad-poly(methyl chloride-quaternized 2-(dimethylamino)ethyl methacrylate (Ad-PMT), were separately assembled onto the β-CD immobilized surfaces to endow the membranes with anticoagulant, antifouling, and antibacterial capability, respectively. Activated partial thromboplastin time (APTT), thrombin time (TT), and prothrombin time (PT) measurements were carried out to explore the anticoagulant activity. The antifouling capability was evaluated via protein adsorption and platelet adhesion measurements. Moreover, Staphyllococcous aureus (S. aureus) was selected as model bacteria to evaluate the antibacterial ability of the functionalized membranes. The results indicated that well-regulated blood compatibility, antifouling capability, and

  17. Bacterial Extracellular Polysaccharides Involved in Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Elena P. Ivanova

    2009-07-01

    Full Text Available Extracellular polymeric substances (EPS produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids and humic substances. EPS make up the intercellular space of microbial aggregates and form the structure and architecture of the biofilm matrix. The key functions of EPS comprise the mediation of the initial attachment of cells to different substrata and protection against environmental stress and dehydration. The aim of this review is to present a summary of the current status of the research into the role of EPS in bacterial attachment followed by biofilm formation. The latter has a profound impact on an array of biomedical, biotechnology and industrial fields including pharmaceutical and surgical applications, food engineering, bioremediation and biohydrometallurgy. The diverse structural variations of EPS produced by bacteria of different taxonomic lineages, together with examples of biotechnological applications, are discussed. Finally, a range of novel techniques that can be used in studies involving biofilm-specific polysaccharides is discussed.

  18. [Structural characterization of Astragalus polysaccharides using partial acid hydrolysis-hydrophilic interaction liquid chromatography-mass spectrometry].

    Science.gov (United States)

    Liang, Tu; Fu, Qing; Xin, Huaxia; Li, Fangbing; Jin, Yu; Liang, Xinmiao

    2014-12-01

    Water-soluble polysaccharides from traditional Chinese medicine (TCM) have properties of broad-spectrum treatment and low toxicity, making them as important components in natural medicines and health products. In order to solve the problem of polysaccharides characterization caused by their complex structures, a "bottom-up" approach was developed to complete the characterization of polysaccharides from Astragalus. Firstly, Astragalus pieces were extracted with hot water and then were precipitated by ethanol to obtain Astragalus polysaccharides. Secondly, a partial acid hydrolysis method was carried out and the effects of time, acid concentration and temperature on hydrolysis were investigated. The degree of hydrolysis increased along with the increase of hydrolysis time and acid concentration. The temperature played a great role in the hydrolysis process. No hydrolysis of the polysaccharides occurred at low temperature, while the polysaccharides were almost hydrolyzed to monosaccharide at high temperature. Under the optimum hydrolysis conditions (4 h, 1.5 mol/L trifluoroacetic acid, and 80 °C), Astragalus polysaccharides were hydrolyzed to characteristic oligosaccharide fragments. At last, a hydrophilic liquid chromatography-mass spectrometry method was used for the separation and structural characterization of the polysaccharide hydrolysates. The results showed that the resulting polysaccharides were mainly 1--> 4 linear glucan, and gluco-oligosaccharides with the degrees of polymerization (DP) of 4 - 11 were obtained after partial acid hydrolysis. The significance of this study is that it is the guidance for the characterization of other TCM polysaccharides.

  19. Different Rols of Modified Organoclay in Deformation Mechanism Control of Polymeric Matrices

    Directory of Open Access Journals (Sweden)

    Babak Akbari

    2014-04-01

    Full Text Available The effect of organically modified clay on the structure and deformation mechanism of polymeric matrices was investigated. For this purpose, the role of organoclay in deformation control of polymeric matrices, with different deformation mechanisms, has been studied methodically in order to determine a relationship between the structure and deformation mechanisms. In this respect polypropylene and polystyrene composites systems were designed using montmorillonite through melt intercalation technique using a twin, co-rotating extruder with starve feeding system. Also an epoxy was employed to design a nanocomposite system prepared by in-situ polymerization technique. The structure and deformation mechanism of nanocomposites were investigated using appropriate techniques. X-Ray diffraction and transmission electron microscopy were used to explore the structure of various systems while, the reflection and transmission optical microscopy were used in order to study their corresponding deformation mechanisms. The bulk polymer was also studied for its deformation mechanism by reflection optical microscopy and the notch tip of the samples were examined by transmission optical microscopy. The results of experiments showed that organoclays acted as initiator sites for shear yielding mechanism as the dominant deformation mechanism in epoxies. It may be noted that, these particles may act as initiator sites for crazing, the dominant deformation mechanism of polystyrene, and alter the mechanism from local to massive. In polypropylene systems, which may exhibit both shear yielding and crazing organoclays can facilitate or postpone both mechanisms in different conditions, related to PP morphology and other conditions.

  20. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Yang, Liang; Hu, Yifan; Liu, Yang

    2011-01-01

    Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several d...... polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation.......Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several...... distinguishable stages are observed during bacterial biofilm development. Biofilm formation is shown to be coordinated by EPS production, cell migration, subpopulation differentiation and interactions. However, the ways these different factors affect each other and contribute to community structural...

  1. Radiation-induced graft polymerization of amphiphilic monomers with different polymerization characteristics onto hydrophobic polysilane

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Hidenori; Iwasaki, Isao; Kunai, Yuichiro [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Sato, Nobuhiro, E-mail: sato-n@rri.kyoto-u.ac.j [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan); Matsuyama, Tomochika [Research Reactor Institute, Kyoto University, Asashironishi 2-1010, Kumatori-cho, Sennan-gun, Osaka 590-0494 (Japan)

    2011-08-15

    The structures of poly(methyl-n-propylsilane) (PMPrS) amphiphilically modified through {gamma}-ray-induced graft polymerization were investigated with {sup 1}H NMR measurement. By the use of methyl methacrylate (MMA) or diethyl fumarate (DEF) as monomers for the graft polymerization, grafting yield rose with increasing total absorption dose and monomer concentrations, but decreased with increasing dose rate. This result means that grafting yield of modified PMPrS can be controlled by changing irradiation conditions. However, the number of PMMA or PDEF graft chains per PMPrS chain was estimated to be less than 1.0 by analysis of {sup 1}H NMR spectra, and this value was lower than that we had expected. To improve graft density, maleic anhydride (MAH), which is known as a non-homopolymerizable monomer in radical polymerization, was used as a monomer for grafting. As a result, high density grafting (one MAH unit for 4.2 silicon atoms) was attained. It demonstrates that the structure of {gamma}-ray-modified polysilane strongly depends on the polymerization characteristics of grafted monomers.

  2. Targeted and non-targeted effects in cell wall polysaccharides from transgenetically modified potato tubers

    NARCIS (Netherlands)

    Huang, J.H.

    2016-01-01

    The plant cell wall is a chemically complex network composed mainly of polysaccharides. Cell wall polysaccharides surround and protect plant cells and are responsible for the stability and rigidity of plant tissue. Pectin is a major component of primary cell wall and the middle lamella of plants.

  3. Strength of biodegradable polypropylene tapes filled with a modified starch

    Science.gov (United States)

    Vinidiktova, N. S.; Ermolovich, O. A.; Goldade, V. A.; Pinchuk, L. S.

    2006-05-01

    The possibility of creating composite materials with high deformation and strength characteristics based on polypropylene (PP) and a natural polysaccharide in the form of a modified starch (MS) has been studied. The modified starch is shown to interact chemically with functional groups of PP, thereby positively affecting the physicomechanical properties, structure, and water absorption properties of films and oriented flat fibers based on starch-filled PP. The strength characteristics of both oriented and unoriented composites are 1.5-2.0 times as high as those of the initial PP. The water absorption ability of the materials varies symbatically with content of MS, which points to the dominant contribution of interactions at the PP-MS interface. The introduction of MS into synthetic polymers offers a possibility of producing new ecologically safe materials with high strength characteristics.

  4. Cholesterol and fat lowering with hydrophobic polysaccharide derivatives

    Czech Academy of Sciences Publication Activity Database

    Čopíková, J.; Taubner, T.; Tůma, J.; Synytsya, A.; Dušková, Dagmar; Marounek, Milan

    2015-01-01

    Roč. 116, č. 1 (2015), s. 207-214 ISSN 0144-8617 Institutional support: RVO:67985904 Keywords : hydrophobically modified polysaccharides * structure * thermal analysis Subject RIV: CE - Biochemistry Impact factor: 4.219, year: 2015

  5. Effects of polymeric carbohydrates on growth and development

    DEFF Research Database (Denmark)

    Knudsen, Knud Erik Bach

    , metabolized and net energy); available energy relative to protein is crucial for performance and carcass quality; second, the proportion of starch to NSP will influence rate and type of metabolites (glucose vs. SCFA) deriving from carbohydrate assimilation, and finally, type of starch (types A, B, and C......The main objective of the presentation is to provide insight into the role of polymeric carbohydrates in growth and development of pigs. Polymeric carbohydrates—starch and non-starch polysaccharides (NSP)—quantitatively represent the largest portion of the diets for pigs and are therefore...... at a slower and more constant rate and with SCFA being absorbed by passive diffusion. Type and levels of polymeric carbohydrates influence growth and development through different mechanisms; first, the proportion of starch to NSP plays an important role for the content of available energy (digestible...

  6. Recognition and determination of bovine hemoglobin using a gold electrode modified with gold nanoparticles and molecularly imprinted self-polymerized dopamine

    International Nuclear Information System (INIS)

    Li, Lu; Fan, Limei; Dai, Yunlong; Kan, Xianwen

    2015-01-01

    A molecularly imprinted polymer (MIP) was prepared by self-polymerization of dopamine in the presence of bovine hemoglobin (BHb) and then deposited on the surface of an electrode modified with gold nanoparticles (AuNPs). Scanning electron microscopy, cyclic voltammetry, and differential pulse voltammetry were employed to characterize the modified electrode using the hexacyanoferrate redox system as an electroactive probe. The effects of BHb concentration, dopamine concentration, and polymerization time were optimized. Under optimized conditions, the modified electrode selectively recognizes BHb even in the presence of other proteins. The peak current for hexacyanoferrate, typically measured at + 0.17 V (vs. SCE), depends on the concentration of BHb in the 1.0 × 10 −11 to 1.0 × 10 −2 mg mL −1 range. Due to the ease of preparation and tight adherence of polydopamine to various support materials, the present strategy conceivably also provides a platform for the recognition and detection of other proteins. (author)

  7. RAFT polymerization mediated bioconjugation strategies

    OpenAIRE

    Bulmuş, Volga

    2011-01-01

    This review aims to highlight the use of RAFT polymerization in the synthesis of polymer bioconjugates. It covers two main bioconjugation strategies using the RAFT process: (i) post-polymerization bioconjugations using pre-synthesized reactive polymers, and (ii) bioconjugations via in situ polymerization using biomolecule-modified monomers or chain transfer agents. © 2011 The Royal Society of Chemistry.

  8. Synthesis, characterization and evaluation of thiolated tamarind seed polysaccharide as a mucoadhesive polymer.

    Science.gov (United States)

    Kaur, Harmanmeet; Yadav, Shikha; Ahuja, Munish; Dilbaghi, Neeraj

    2012-11-06

    In the present study, thiol-functionalization of tamarind seed polysaccharide was carried out by esterification with thioglycolic acid. Thiol-functionalization was confirmed by SH stretch in Fourier-transformed infra-red spectra at 2586 cm(-1). It was found to possess 104.5 mM of thiol groups per gram. The results of differential scanning calorimetry and X-ray diffraction study indicate increase in crystallinity. Polymer compacts of thiolated tamarind seed polysaccharide required 6.85-fold greater force to detach from the mucin coated membrane than that of tamarind seed polysaccharide. Comparative evaluation of Carbopol-based metronidazole gels containing thiolated tamarind seed polysaccharide with gels containing tamarind seed polysaccharide for mucoadhesive strength using chicken ileum by modified balance method revealed higher mucoadhesion of gels containing thiolated tamarind seed polysaccharide. Further, the gels containing tamarind seed polysaccharide and thiolated tamarind seed polysaccharide released the drug by Fickian-diffusion following the first-order and Higuchi's-square root release kinetics, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Modification of Clays by Sol-Gel Reaction and Their Use in the Ethylene In Situ Polymerization for Obtaining Nanocomposites

    Directory of Open Access Journals (Sweden)

    E. Moncada

    2012-01-01

    Full Text Available The nanocomposites formation by in situ polymerization used a metallocene catalyst (butyl-2-cyclopentadienyl zirconium 2-chlorines and a hectorite synthetic clay type which is discussed. This research was carried out in two phases. The first phase consisted of mixing the components of the metallocenic polymerization reaction (metallocene-methylaluminoxane-ethylene with clay in a reactor. In the second phase, the metallocenic catalytic system was supported by clay particles and then a polymerization reaction was made. In this second phase, the clay particles were modified using a sol-gel reaction with different pH values: pH = 3, pH = 8, and pH = 12. The results were compared in terms of the catalytic activity in the different systems (phase 1 and phase 2 and the nanoparticle morphology of nanocomposites generated in this study.

  10. Molecular dynamics modeling the synthetic and biological polymers interactions pre-studied via docking

    Science.gov (United States)

    Tsvetkov, Vladimir B.; Serbin, Alexander V.

    2014-06-01

    In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 ( HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [ HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics ( MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.

  11. Rapid End-Group Modification of Polysaccharides for Biomaterial Applications in Regenerative Medicine.

    Science.gov (United States)

    Bondalapati, Somasekhar; Ruvinov, Emil; Kryukov, Olga; Cohen, Smadar; Brik, Ashraf

    2014-09-15

    Polysaccharides have emerged as important functional materials because of their unique properties such as biocompatibility, biodegradability, and availability of reactive sites for chemical modifications to optimize their properties. The overwhelming majority of the methods to modify polysaccharides employ random chemical modifications, which often improve certain properties while compromising others. On the other hand, the employed methods for selective modifications often require excess of coupling partners, long reaction times and are limited in their scope and wide applicability. To circumvent these drawbacks, aniline-catalyzed oxime formation is developed for selective modification of a variety of polysaccharides through their reducing end. Notably, it is found that for efficient oxime formation, different conditions are required depending on the composition of the specific polysaccharide. It is also shown how our strategy can be applied to improve the physical and functional properties of alginate hydrogels, which are widely used in tissue engineering and regenerative medicine applications. While the randomly and selectively modified alginate exhibits similar viscoelastic properties, the latter forms significantly more stable hydrogel and superior cell adhesive and functional properties. Our results show that the developed conjugation reaction is robust and should open new opportunities for preparing polysaccharide-based functional materials with unique properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Fabrication and mechanical characterization of biodegradable and synthetic polymeric films: Effect of gamma radiation

    Science.gov (United States)

    Akter, Nousin; Khan, Ruhul A.; Salmieri, Stephane; Sharmin, Nusrat; Dussault, Dominic; Lacroix, Monique

    2012-08-01

    Chitosan (1 wt%, in 2% aqueous acetic acid solution) and starch (1 wt%, in deionised water) were dissolved and mixed in different proportions (20-80 wt% chitosan) then films were prepared by casting. Tensile strength and elongation at break of the 50% chitosan containing starch-based films were found to be 47 MPa and 16%, respectively. It was revealed that with the increase of chitosan in starch, the values of TS improved significantly. Monomer, 2-butane diol-diacrylate (BDDA) was added into the film forming solutions (50% starch-based), then casted films. The BDDA containing films were irradiated under gamma radiation (5-25 kGy) and it was found that strength of the films improved significantly. On the other hand, synthetic petroleum-based polymeric films (polycaprolactone, polyethylene and polypropylene) were prepared by compression moulding. Mechanical and barrier properties of the films were evaluated. The gamma irradiated (25 kGy) films showed higher strength and better barrier properties.

  13. Shock compression of synthetic opal

    International Nuclear Information System (INIS)

    Inoue, A; Okuno, M; Okudera, H; Mashimo, T; Omurzak, E; Katayama, S; Koyano, M

    2010-01-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO 4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO 2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  14. Shock compression of synthetic opal

    Science.gov (United States)

    Inoue, A.; Okuno, M.; Okudera, H.; Mashimo, T.; Omurzak, E.; Katayama, S.; Koyano, M.

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO4 tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO2 glass. However, internal silanole groups still remain even at 38.1 GPa.

  15. Shock compression of synthetic opal

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, A; Okuno, M; Okudera, H [Department of Earth Sciences, Kanazawa University Kanazawa, Ishikawa, 920-1192 (Japan); Mashimo, T; Omurzak, E [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, 860-8555 (Japan); Katayama, S; Koyano, M, E-mail: okuno@kenroku.kanazawa-u.ac.j [JAIST, Nomi, Ishikawa, 923-1297 (Japan)

    2010-03-01

    Structural change of synthetic opal by shock-wave compression up to 38.1 GPa has been investigated by using SEM, X-ray diffraction method (XRD), Infrared (IR) and Raman spectroscopies. Obtained information may indicate that the dehydration and polymerization of surface silanole due to high shock and residual temperature are very important factors in the structural evolution of synthetic opal by shock compression. Synthetic opal loses opalescence by 10.9 and 18.4 GPa of shock pressures. At 18.4 GPa, dehydration and polymerization of surface silanole and transformation of network structure may occur simultaneously. The 4-membered ring of TO{sub 4} tetrahedrons in as synthetic opal may be relaxed to larger ring such as 6-membered ring by high residual temperature. Therefore, the residual temperature may be significantly high at even 18.4 GPa of shock compression. At 23.9 GPa, opal sample recovered the opalescence. Origin of this opalescence may be its layer structure by shock compression. Finally, sample fuse by very high residual temperature at 38.1 GPa and the structure closes to that of fused SiO{sub 2} glass. However, internal silanole groups still remain even at 38.1 GPa.

  16. Stability of SG1 nitroxide towards unprotected sugar and lithium salts: a preamble to cellulose modification by nitroxide-mediated graft polymerization

    Directory of Open Access Journals (Sweden)

    Guillaume Moreira

    2013-08-01

    Full Text Available The range of applications of cellulose, a glucose-based polysaccharide, is limited by its inherently poor mechanical properties. The grafting of synthetic polymer chains by, for example, a “grafting from” process may provide the means to broaden the range of applications. The nitroxide-mediated polymerization (NMP method is a technique of choice to control the length, the composition and the architecture of the grafted copolymers. Nevertheless, cellulose is difficult to solubilize in organic media because of inter- and intramolecular hydrogen bonds. One possibility to circumvent this limitation is to solubilize cellulose in N,N-dimethylformamide (DMF or N,N-dimethylacetamide (DMA with 5 to 10 wt % of lithium salts (LiCl or LiBr, and carry out grafted polymerization in this medium. The stability of nitroxides such as SG1 has not been studied under these conditions yet, even though these parameters are of crucial importance to perform the graft modification of polysaccharide by NMP. The aim of this work is to offer a model study of the stability of the SG1 nitroxide in organic media in the presence of unprotected glucose or cellobiose (used as a model of cellulose and in the presence of lithium salts (LiBr or LiCl in DMF or DMA.Contrary to TEMPO, SG1 proved to be stable in the presence of unprotected sugar, even with an excess of 100 molar equivalents of glucose. On the other hand, lithium salts in DMF or DMA clearly degrade SG1 nitroxide as proven by electron-spin resonance measurements. The instability of SG1 in these lithium-containing solvents may be explained by the acidification of the medium by the hydrolysis of DMA in the presence of LiCl. This, in turn, enables the disproportionation of the SG1 nitroxide into an unstable hydroxylamine and an oxoammonium ion.Once the conditions to perform an SG1-based nitroxide-mediated graft polymerization from cellobiose have been established, the next stage of this work will be the modification of

  17. Recent Advances in Polymeric Materials Used as Electron Mediators and Immobilizing Matrices in Developing Enzyme Electrodes

    Directory of Open Access Journals (Sweden)

    Mambo Moyo

    2012-01-01

    Full Text Available Different classes of polymeric materials such as nanomaterials, sol-gel materials, conducting polymers, functional polymers and biomaterials have been used in the design of sensors and biosensors. Various methods have been used, for example from direct adsorption, covalent bonding, crossing-linking with glutaraldehyde on composites to mixing the enzymes or use of functionalized beads for the design of sensors and biosensors using these polymeric materials in recent years. It is widely acknowledged that analytical sensing at electrodes modified with polymeric materials results in low detection limits, high sensitivities, lower applied potential, good stability, efficient electron transfer and easier immobilization of enzymes on electrodes such that sensing and biosensing of environmental pollutants is made easier. However, there are a number of challenges to be addressed in order to fulfill the applications of polymeric based polymers such as cost and shortening the long laboratory synthetic pathways involved in sensor preparation. Furthermore, the toxicological effects on flora and fauna of some of these polymeric materials have not been well studied. Given these disadvantages, efforts are now geared towards introducing low cost biomaterials that can serve as alternatives for the development of novel electrochemical sensors and biosensors. This review highlights recent contributions in the development of the electrochemical sensors and biosensors based on different polymeric material. The synergistic action of some of these polymeric materials and nanocomposites imposed when combined on electrode during sensing is discussed.

  18. Trends in polymeric electrospun fibers and their use as oral biomaterials.

    Science.gov (United States)

    Meireles, Agnes B; Corrêa, Daniella K; da Silveira, João Vw; Millás, Ana Lg; Bittencourt, Edison; de Brito-Melo, Gustavo Ea; González-Torres, Libardo A

    2018-05-01

    Electrospinning is one of the techniques to produce structured polymeric fibers in the micro or nano scale and to generate novel materials for biomedical proposes. Electrospinning versatility provides fibers that could support different surgical and rehabilitation treatments. However, its diversity in equipment assembly, polymeric materials, and functional molecules to be incorporated in fibers result in profusion of recent biomaterials that are not fully explored, even though the recognized relevance of the technique. The present article describes the main electrospun polymeric materials used in oral applications, and the main aspects and parameters of the technique. Natural and synthetic polymers, blends, and composites were identified from the available literature and recent developments. Main applications of electrospun fibers were focused on drug delivery systems, tissue regeneration, and material reinforcement or modification, although studies require further investigation in order to enable direct use in human. Current and potential usages as biomaterials for oral applications must motivate the development in the use of electrospinning as an efficient method to produce highly innovative biomaterials, over the next few years. Impact statement Nanotechnology is a challenge for many researchers that look for obtaining different materials behaviors by modifying characteristics at a very low scale. Thus, the production of nanostructured materials represents a very important field in bioengineering, in which the electrospinning technique appears as a suitable alternative. This review discusses and provides further explanation on this versatile technique to produce novel polymeric biomaterials for oral applications. The use of electrospun fibers is incipient in oral areas, mainly because of the unfamiliarity with the technique. Provided disclosure, possibilities and state of the art are aimed at supporting interested researchers to better choose proper materials

  19. Reduced-molecular-weight derivatives of frost grape polysaccharide

    Science.gov (United States)

    A new Type II arabinogalactan was recently described as an abundant gum exudate from stems of wildfrost grape (Vitus riparia Michx.). The purpose of the current study is to more thoroughly characterize the physical properties of this frost grape polysaccharide (FGP), and develop methods to modify th...

  20. Fabrication of a new polysaccharide-based adsorbent for water purification.

    Science.gov (United States)

    Qi, Xiaoliang; Wei, Wei; Su, Ting; Zhang, Jianfa; Dong, Wei

    2018-09-01

    Expanding the application of polysaccharide material has attracted tremendous attention in the fields of wastewater treatment, agriculture and biomedical engineering, on account of its tunable and unique properties. Herein, we employ a water-soluble, sustainable and low cost bacterial polysaccharide, salecan as a matrix, poly(acrylamide-co-itaconic acid) (PAI) as a synthetic component to synthesize salecan-g-PAI hydrogels through a simple chemical crosslinking method. Their physicochemical properties were fully characterized by various methods including Fourier transformed infrared spectroscopy, X-ray diffraction, thermogravimetry, scanning electron microscope and rheometry. We found that salecan not only acted as the interaction sites to regulate the water content of the developing hydrogels, but also endowed them with tailorable morphology. The designed salecan-g-PAI hydrogels exhibited excellent adsorption properties toward methylene blue (MB) dye, and the adsorption process could be well described by the pseudo-second-order kinetic and Freundlich isotherm models. Altogether, this study broadens the application of salecan polysaccharides and provides a new device for dye decontamination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Characterization of diferuloylated pectic polysaccharides from quinoa (Chenopodium quinoa WILLD.).

    Science.gov (United States)

    Wefers, Daniel; Gmeiner, Bianca M; Tyl, Catrin E; Bunzel, Mirko

    2015-08-01

    In plants belonging to the order of Caryophyllales, pectic neutral side chains can be substituted with ferulic acid. The ability of ferulic acid to form intra- and/or intermolecular polysaccharide cross-links by dimerization was shown by the isolation and characterization of diferulic acid oligosaccharides from monocotyledonous plants. In this study, two diferulic acid oligosaccharides were isolated from the enzymatic hydrolyzate of seeds of the dicotyledonous pseudocereal quinoa by gel permeation chromatography and preparative HPLC and unambiguously identified by LC-MS(2) and 1D/2D NMR spectroscopy. The isolated oligosaccharides are comprised of 5-5- and 8-O-4-diferulic acid linked to the O2-position of the nonreducing residue of two (1→5)-linked arabinobioses. To get insight into the structure and the degree of phenolic acid substitution of the diferuloylated polysaccharides, polymeric sugar composition, glycosidic linkages, and polysaccharide-bound monomeric phenolic acids and diferulic acids were analyzed. This study demonstrates that diferulic acids are involved into intramolecular and/or intermolecular cross-linking of arabinan chains and may have a major impact on cell wall architecture of quinoa and other dicotyledonous plants of the order of Caryophyllales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Lijing, E-mail: zhulijing@nimte.ac.cn; Song, Haiming; Wang, Jiarong; Xue, Lixin, E-mail: xuelx@nimte.ac.cn

    2017-05-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility. - Highlights: • PSf membranes were modified by in situ cross-linked polymerization. • The modified PSf membranes showed enhanced hydrophilicity. • The anti-fouling and hemocompatibility of PSf membranes were improved.

  3. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization

    International Nuclear Information System (INIS)

    Zhu, Lijing; Song, Haiming; Wang, Jiarong; Xue, Lixin

    2017-01-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility. - Highlights: • PSf membranes were modified by in situ cross-linked polymerization. • The modified PSf membranes showed enhanced hydrophilicity. • The anti-fouling and hemocompatibility of PSf membranes were improved.

  4. Genetic engineering of grass cell wall polysaccharides for biorefining.

    Science.gov (United States)

    Bhatia, Rakesh; Gallagher, Joe A; Gomez, Leonardo D; Bosch, Maurice

    2017-09-01

    Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  5. Highly efficient reprogramming to pluripotency and directed differentiation of human cells using synthetic modified mRNA

    OpenAIRE

    Warren, Luigi; Manos, Philip D.; Ahfeldt, Tim; Loh, Yuin-Han; Li, Hu; Lau, Frank; Ebina, Wataru; Mandal, Pankaj; Smith, Zachary D.; Meissner, Alexander; Daley, George Q.; Brack, Andrew S.; Collins, James J.; Cowan, Chad; Schlaeger, Thorsten M.

    2010-01-01

    Clinical application of induced pluripotent stem (iPS) cells is limited by the low efficiency of iPS derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPS cells towards clinically useful cell types are lacking. Here we describe a simple, non-integrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate anti-viral re...

  6. Thermodynamic Presynthetic Considerations for Ring-Opening Polymerization.

    Science.gov (United States)

    Olsén, Peter; Odelius, Karin; Albertsson, Ann-Christine

    2016-03-14

    The need for polymers for high-end applications, coupled with the desire to mimic nature's macromolecular machinery fuels the development of innovative synthetic strategies every year. The recently acquired macromolecular-synthetic tools increase the precision and enable the synthesis of polymers with high control and low dispersity. However, regardless of the specificity, the polymerization behavior is highly dependent on the monomeric structure. This is particularly true for the ring-opening polymerization of lactones, in which the ring size and degree of substitution highly influence the polymer formation properties. In other words, there are two important factors to contemplate when considering the particular polymerization behavior of a specific monomer: catalytic specificity and thermodynamic equilibrium behavior. This perspective focuses on the latter and undertakes a holistic approach among the different lactones with regard to the equilibrium thermodynamic polymerization behavior and its relation to polymer synthesis. This is summarized in a monomeric overview diagram that acts as a presynthetic directional cursor for synthesizing highly specific macromolecules; the means by which monomer equilibrium conversion relates to starting temperature, concentration, ring size, degree of substitution, and its implications for polymerization behavior are discussed. These discussions emphasize the importance of considering not only the catalytic system but also the monomer size and structure relations to thermodynamic equilibrium behavior. The thermodynamic equilibrium behavior relation with a monomer structure offers an additional layer of complexity to our molecular toolbox and, if it is harnessed accordingly, enables a powerful route to both monomer formation and intentional macromolecular design.

  7. Polymeric micelles for drug targeting.

    Science.gov (United States)

    Mahmud, Abdullah; Xiong, Xiao-Bing; Aliabadi, Hamidreza Montazeri; Lavasanifar, Afsaneh

    2007-11-01

    Polymeric micelles are nano-delivery systems formed through self-assembly of amphiphilic block copolymers in an aqueous environment. The nanoscopic dimension, stealth properties induced by the hydrophilic polymeric brush on the micellar surface, capacity for stabilized encapsulation of hydrophobic drugs offered by the hydrophobic and rigid micellar core, and finally a possibility for the chemical manipulation of the core/shell structure have made polymeric micelles one of the most promising carriers for drug targeting. To date, three generations of polymeric micellar delivery systems, i.e. polymeric micelles for passive, active and multifunctional drug targeting, have arisen from research efforts, with each subsequent generation displaying greater specificity for the diseased tissue and/or targeting efficiency. The present manuscript aims to review the research efforts made for the development of each generation and provide an assessment on the overall success of polymeric micellar delivery system in drug targeting. The emphasis is placed on the design and development of ligand modified, stimuli responsive and multifunctional polymeric micelles for drug targeting.

  8. Silicoaluminates as “Support Activator” Systems in Olefin Polymerization Processes

    Science.gov (United States)

    Tabernero, Vanessa; Camejo, Claudimar; Terreros, Pilar; Alba, María Dolores; Cuenca, Tomás

    2010-01-01

    In this work we report the polymerization behaviour of natural clays (montmorillonites, MMT) as activating supports. These materials have been modified by treatment with different aluminium compounds in order to obtain enriched aluminium clays and to modify the global Brönsted/Lewis acidity. As a consequence, the intrinsic structural properties of the starting materials have been changed. These changes were studied and these new materials used for ethylene polymerization using a zirconocene complex as catalyst. All the systems were shown to be active in ethylene polymerization. The catalyst activity and the dependence on acid strength and textural properties have been also studied. The behaviour of an artificial silica (SBA 15) modified with an aluminium compound to obtain a silicoaluminate has been studied, but no ethylene polymerization activity has been found yet.

  9. Biocontainment of genetically modified organisms by synthetic protein design

    Science.gov (United States)

    Mandell, Daniel J.; Lajoie, Marc J.; Mee, Michael T.; Takeuchi, Ryo; Kuznetsov, Gleb; Norville, Julie E.; Gregg, Christopher J.; Stoddard, Barry L.; Church, George M.

    2015-02-01

    Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.ΔA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.

  10. Long circulating polymeric nanoparticles for gene/drug delivery.

    Science.gov (United States)

    Hu, Jiaming; Sheng, Yan; Shi, Junfeng; Yu, Bohao; Yu, Zhiqiang; Liao, Guochao

    2017-12-07

    The major limitation in the improving polymeric nanoparticles into an efficient gene/drug delivery carrier is the rapid opsonization, phagocytic uptake by mononuclear phagocyte system and subsequent clearance from the bloodstream. The prolonged circulation time of nanoparticles in the blood is a prerequisite to realizing a controlled and targeted (passive or active targeting) release of the encapsulated gene/drug at the desired site of action. In this review, the factors such as biological barriers and physical barriers including particle size, shape, zeta potential, and hydrophilicity will be discussed, which can cause effects on blood clearance and organ accumulation. Some natural and synthetic polymers utilized in long-circulating nanoparticles will also be discussed. The most popular method to mask or camouflage nanoparticles is the adsorbed, grafted or conjugated of poly (ethylene glycol) (PEG) or other hydrophilic polymers (e.g. polysaccharides) to the particle surface. Surface modification of nanoparticles with these polymers results in an increased blood circulation time by several orders of magnitude in comparison to the bare nanoparticles. However, the circulation half-life of nanoparticles still cannot satisfy the need for clinical use. At present, identification of novel potential coating materials is an emerging field of interest in the design of long-circulating polymer-based nanoparticulate gene/drug delivery. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  11. Meningococcal X polysaccharide quantification by high-performance anion-exchange chromatography using synthetic N-acetylglucosamine-4-phosphate as standard.

    Science.gov (United States)

    Micoli, F; Adamo, R; Proietti, D; Gavini, M; Romano, M R; MacLennan, C A; Costantino, P; Berti, F

    2013-11-15

    A method for meningococcal X (MenX) polysaccharide quantification by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) is described. The polysaccharide is hydrolyzed by strong acidic treatment, and the peak of glucosamine-4-phosphate (4P-GlcN) is detected and measured after chromatography. In the selected conditions of hydrolysis, 4P-GlcN is the prevalent species formed, with GlcN detected for less than 5% in moles. As standard for the analysis, the monomeric unit of MenX polysaccharide, N-acetylglucosamine-4-phosphate (4P-GlcNAc), was used. This method for MenX quantification is highly selective and sensitive, and it constitutes an important analytical tool for the development of a conjugate vaccine against MenX. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Well-defined copolymers synthesized by RAFT polymerization as effective modifiers to enhance the photocatalytic performance of TiO_2

    International Nuclear Information System (INIS)

    Vasilaki, E.; Kaliva, M.; Katsarakis, N.; Vamvakaki, M.

    2017-01-01

    Highlights: • Well-defined, random functional copolymers were synthesized by RAFT polymerization. • Novel TiO_2 particles in-situ modified with copolymers were synthesized. • The hybrid catalysts exhibited reduced aggregation and particle size. • The photocatalytic removal of methylene blue was higher for the hybrid catalysts. - Αbstract: The enhancement of the photocatalytic performance of anatase TiO_2 nanoparticles is demonstrated by a facile route, involving their in-situ surface modification with preformed polymer chains. Random copolymers of poly(ethylene glycol) methyl ether acrylate-co-methacrylic acid (PEGA-co-MAA) or poly(ethylene glycol) methyl ether acrylate-co-dopamine methacrylamide (PEGA-co-DMA) were synthesized by reversible addition−fragmentation chain-transfer (RAFT) polymerization and were bound onto the surface of anatase titania nanoparticles via the “grafting to” method. The hybrid nanocatalysts were characterized by fourier transform infrared spectroscopy, zeta-potential measurements, X-ray powder diffraction, thermogravimetric analysis and transmission electron microscopy. Their photocatalytic performance was evaluated by the decoloration of methylene blue (MB) dye in aqueous media under UV–vis light irradiation. The enhanced photoactivity and reusability of the polymer modified photocatalysts compared to that of bare TiO_2 nanoparticles was attributed to their improved dispersability and colloidal stability, the smaller particle size that leads to a larger surface area and the increased adsorption capacity of the dye onto the polymer modified nanoparticles.

  13. Assessing the effectiveness of synthetic and biologic disease-modifying antirheumatic drugs in psoriatic arthritis – a systematic review

    Directory of Open Access Journals (Sweden)

    Kingsley GH

    2015-05-01

    Full Text Available Gabrielle H Kingsley, David L Scott Rheumatology Unit, Kings College London, London, UK Background: Psoriatic arthritis is an inflammatory arthritis the primary manifestations of which are locomotor and skin disease. Although a number of guidelines have been published citing strategies for reducing disease progression, the evidence base for disease-modifying agents is unclear. This forms the focus of this systematic review. Methods: The systematic review was undertaken according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 2009 checklist. We selected randomized controlled trials (RCTs that looked at the impact of interventions with disease-modifying agents, either synthetic drugs or biologics on musculoskeletal outcomes, notably American College of Rheumatology 20 percent responders. Results were analyzed using Review Manager 5.1.6 (Cochrane Collaboration, Oxford, UK. Whilst our primary focus was on published trials, we also looked at new trials presented in abstract form in 2013–2014 that were not yet published to avoid omitting important and up-to-date information on developing treatments. Results: Our in-depth analysis included 28 trials overall enrolling 5,177 patients published between the 1980s and now as well as limited analysis of some studies in abstract form as described earlier. The most frequently available locomotor outcome measure was the American College of Rheumatology 20 percent responders. The risk ratio for achieving an American College of Rheumatology 20 percent responders response was positive in favor of treatment (risk ratio 2.30; 95% confidence interval 1.78–2.96; however, there was evidence of considerable heterogeneity between trials. Overall randomized controlled trials of established synthetic disease-modifying agents were largely negative (methotrexate, ciclosporin and sulfasalazine though leflunomide showed a small positive effect. A new synthetic agent, apremilast, did show a

  14. Protein nanocoatings on synthetic polymeric nanofibrous membranes designed as carriers for skin cells.

    Science.gov (United States)

    Bacakova, Marketa; Pajorova, Julia; Stranska, Denisa; Hadraba, Daniel; Lopot, Frantisek; Riedel, Tomas; Brynda, Eduard; Zaloudkova, Margit; Bacakova, Lucie

    2017-01-01

    Protein-coated resorbable synthetic polymeric nanofibrous membranes are promising for the fabrication of advanced skin substitutes. We fabricated electrospun polylactic acid and poly(lactide- co -glycolic acid) nanofibrous membranes and coated them with fibrin or collagen I. Fibronectin was attached to a fibrin or collagen nanocoating, in order further to enhance the cell adhesion and spreading. Fibrin regularly formed a coating around individual nanofibers in the membranes, and also formed a thin noncontinuous nanofibrous mesh on top of the membranes. Collagen also coated most of the fibers of the membrane and randomly created a soft gel on the membrane surface. Fibronectin predominantly adsorbed onto a thin fibrin mesh or a collagen gel, and formed a thin nanofibrous structure. Fibrin nanocoating greatly improved the attachment, spreading, and proliferation of human dermal fibroblasts, whereas collagen nanocoating had a positive influence on the behavior of human HaCaT keratinocytes. In addition, fibrin stimulated the fibroblasts to synthesize fibronectin and to deposit it as an extracellular matrix. Fibrin coating also showed a tendency to improve the ultimate tensile strength of the nanofibrous membranes. Fibronectin attached to fibrin or to a collagen coating further enhanced the adhesion, spreading, and proliferation of both cell types.

  15. Optimization for ultrasonic-microwave synergistic extraction of polysaccharides from Cornus officinalis and characterization of polysaccharides.

    Science.gov (United States)

    Yin, Xiulian; You, Qinghong; Jiang, Zhonghai; Zhou, Xinghai

    2016-02-01

    Ultrasonic-microwave synergistic extraction (UMSE) of polysaccharides from Cornus officinalis was optimized by response surface methodology (RSM). The effect of four different factors on the yield of C. officinalis polysaccharides (COP) was studied. RSM results showed that the optimal conditions were extraction time of 31.49823 min, microwave power of 99.39769 W, and water-to-raw material ratio of 28.16273. The COP yield was 11.38±0.31% using the modified optimal conditions, which was consistent with the value predicted by the model. The crude COP was purified by DEAE-Cellulose 52 chromatography and Sephadex G-100 chromatography. Five fractions, namely, crude COP, COP-1, COP-2, COP-3, and COP-4, were obtained. Monosaccharide composition analysis revealed that the COP was composed of glucose, arabinose, fucose, xylose, mannose, and rhamnose. Preliminary structural characterizations of COP were conducted by scanning electron microscopy and Fourier transform infrared spectroscopy. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Life after the synthetic cell

    DEFF Research Database (Denmark)

    Rasmussen, Steen

    2010-01-01

    Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self-replicating ......Nature asked eight synthetic-biology experts about the implications for science and society of the “synthetic cell” made by the J. Craig Venter Institute (JCVI). The institute's team assembled, modified and implanted a synthesized genome into a DNA-free bacterial shell to make a self...

  17. Research in Water Permeability of Poly(ethylene) Terephthalate Track Membranes Modified by Polymerization of Dimethylaniline under the Action of Direct Current Discharge

    CERN Document Server

    Kravets, L I; Drachev, A I

    2004-01-01

    The properties of poly(ethylene) terephthalate track membranes modified by polymerization of dimethylaniline in a discharge of direct current are investigated. The influence of conditions of plasma treatment on the basic characteristics of the membranes (pore size, wettability, surface charge, water permeability) is studied. It is shown that under the action of discharge, a polymeric layer is formed on the membrane surface that can swell in solutions with low pH values. It has been found that the degree of the swelling stipulated by the conformation transfer of macromolecules of the deposited polymeric layer depends upon the size of relative magnification of the mass of the membrane during its plasma treatment. It is also shown that the obtained membranes can reversibly react to changing the pH of solution and applied pressure.

  18. Enzyme-Catalyzed Modifications of Polysaccharides and Poly(ethylene glycol

    Directory of Open Access Journals (Sweden)

    H. N. Cheng

    2012-06-01

    Full Text Available Polysaccharides are used extensively in various industrial applications, such as food, adhesives, coatings, construction, paper, pharmaceuticals, and personal care. Many polysaccharide structures need to be modified in order to improve their end-use properties; this is mostly done through chemical reactions. In the past 20 years many enzyme-catalyzed modifications have been developed to supplement chemical derivatization methods. Typical reactions include enzymatic oxidation, ester formation, amidation, glycosylation, and molecular weight reduction. These reactions are reviewed in this paper, with emphasis placed on the work done by the authors. The polymers covered in this review include cellulosic derivatives, starch, guar, pectin, and poly(ethylene glycol.

  19. In vitro and in vivo evaluation of docetaxel-loaded stearic acid-modified Bletilla striata polysaccharide copolymer micelles.

    Directory of Open Access Journals (Sweden)

    Qingxiang Guan

    Full Text Available Bletilla striata polysaccharides (BSPs have been used in pharmaceutical and biomedical industry, the aim of the present study was to explore a BSPs amphiphilic derivative to overcome its application limit as poorly water-soluble drug carriers due to water-soluble polymers. Stearic acid (SA was selected as a hydrophobic block to modify B. striata polysaccharides (SA-BSPs. Docetaxel (DTX-loaded SA-BSPs (DTX-SA-BSPs copolymer micelles were prepared and characterized. The DTX release percentage in vitro and DTX concentration in vivo was carried out by using high performance liquid chromatography. HepG2 and HeLa cells were subjected to MTT (3-(4, 5-dimethylthiazol-2-yl-2, 5-diphenyl tetrazonium bromide assay to evaluate the cell viability. In vitro evaluation of copolymer micelles showed higher drug encapsulation and loading capacity. The release percentage of DTX from DTX-SA-BSPs copolymer micelles and docetaxel injection was 66.93 ± 1.79% and 97.06 ± 1.56% in 2 days, respectively. The DTX-SA-BSPs copolymer micelles exhibited a sustained release of DTX. A 50% increase in growth inhibition was observed for HepG2 cells treated with DTX-SA-BSPs copolymer micelles as compared to those treated with docetaxel injection for 72 h. DTX-SA-BSPs copolymer micelles presented a similar growth inhibition effect on Hela cells. Furthermore, absolute bioavailability of DTX-SA-BSPs copolymer micelles was shown to be 1.39-fold higher than that of docetaxel injection. Therefore, SA-BSPs copolymer micelles may be used as potential biocompatible polymers for cancer chemotherapy.

  20. Graft polymerization of vinyl acetate onto starch. Saponification to starch-g-poly(vinyl alcohol)

    International Nuclear Information System (INIS)

    Fanta, G.F.; Burr, R.C.; Doane, W.M.; Russell, C.R.

    1979-01-01

    Graft polymerizations of vinyl acetate onto granular cornstarch were initiated by cobalt-60 irradiation of starch-monomer-water mixtures, and ungrafted poly(vinyl acetate) was separated from the graft copolymer by benzene extraction. Conversions of monomer to polymer were quantitative at a radiation dose of 1.0 Mrad. Over half of the polymer was present as ungrafted poly(vinyl acetate) (grafting efficiency less than 50%), and the graft copolymer contained only 34% grafted synthetic polymer (34% add-on). Lower irradiation doses produced lower conversions of monomer to polymer and gave graft copolymers with lower % add-on. Addition of minor amounts of acrylamide, methyl acrylate, and methacrylic acid as comonomers produced only small increases in % add-on and grafting efficency. Grafting efficiency was increased to 70% when a monomer mixture containing about 10% methyl methacrylate was used. Grafting efficiency could be increased to over 90% if the graft polymerization of vinyl acetate--methyl methacrylate was carried out near 0 0 C; although conversion of monomers to polymer was low and grafted polymer contained 40 to 50% poly(methyl methacrylate). Selected graft copolymers were treated with methanolic sodium hydroxide to convert starch-g-poly(vinyl acetate) to starch-g-poly(vinyl alcohol). The molecular weight of the poly(vinyl alcohol) moiety was about 30,000. The solubility of starch-g-poly(vinyl alcohol) in hot water was less than 50; however, solubility could be increased by substituting either acid-modified or hypochlorite-oxidized for unmodified starch in the graft polymerization reaction. Vinyl acetate was also graft polymerized onto acid-modified starch which had been dispersed and partially solubilized by heating in water. A total irradiation dose of either 1.0 or 0.5 Mrad gave starch-g-poly

  1. Hybrid protein-synthetic polymer nanoparticles for drug delivery.

    Science.gov (United States)

    Koseva, Neli S; Rydz, Joanna; Stoyanova, Ekaterina V; Mitova, Violeta A

    2015-01-01

    Among the most common nanoparticulate systems, the polymeric nanocarriers have a number of key benefits, which give a great choice of delivery platforms. Nevertheless, polymeric nanoparticles possess some limitations that include use of toxic solvents in the production process, polymer degradation, drug leakage outside the diseased tissue, and polymer cytotoxicity. The combination of polymers of biological and synthetic origin is an appealing modern strategy for the production of novel nanocarriers with unprecedented properties. Proteins' interface can play an important role in determining bioactivity and toxicity and gives perspective for future development of the polymer-based nanoparticles. The design of hybrid constructs composed of synthetic polymer and biological molecules such as proteins can be considered as a straightforward tool to integrate a broad spectrum of properties and biofunctions into a single device. This review discusses hybrid protein-synthetic polymer nanoparticles with different structures and levels in complexity and functionality, in view of their applications as drug delivery systems. © 2015 Elsevier Inc. All rights reserved.

  2. Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale.

    Science.gov (United States)

    Luo, Qiu-Lian; Tang, Zhuan-Hui; Zhang, Xue-Feng; Zhong, Yong-Hong; Yao, Su-Zhi; Wang, Li-Sheng; Lin, Cui-Wu; Luo, Xuan

    2016-08-01

    In this report, a water-soluble polysaccharide was obtained from the dried stems of Dendrobium officinale Kimura et Migo by hot-water (70-75°C) extraction and 85% ethanol precipitation, and successively purification by DEAE-cellulose anion-exchange chromatography and gel-permeation chromatography. The D. officinale polysaccharide (DOP) has a molecular weight of 8500Da. Monosaccharide composition analysis reveals that DOP is composed of mannose, glucose, and arabinose with a trace of galacturonic acid in a molar ratio of 6.2:2.3:2.1:0.1. Periodate oxidation-smith degradation and 1D and 2D NMR spectroscopy analysis suggest the predominance of mannose and glucose, and it contains a 2-O-acetylglucomannan and (1→4)-linked-β-d-mannopyranosyl and (1→4)-linked-β-d-glucopyranosyl residues. Atomic force microscope shows that DOP mainly exists as rod-shaped chains, supporting high degrees of polymerization. The antioxidant activities of the polysaccharide in vitro assay indicate that DOP has good scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, higher scavenging activity of hydroxyl radical, and metal chelating activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. The Cysteine S-Alkylation Reaction as a Synthetic Method to Covalently Modify Peptide Sequences.

    Science.gov (United States)

    Calce, Enrica; De Luca, Stefania

    2017-01-05

    Synthetic methodologies to chemically modify peptide molecules have long been investigated for their impact in the field of chemical biology. They allow the introduction of biochemical probes useful for studying protein functions, for manipulating peptides with therapeutic potential, and for structure-activity relationship investigations. The commonly used approach was the derivatization of an amino acid side chain. In this regard, the cysteine, for its unique reactivity, has been widely employed as the substrate for such modifications. Herein, we report on methodologies developed to modify the cysteine thiol group through the S-alkylation reaction. Some procedures perform the alkylation of cysteine derivatives, in order to prepare building blocks to be used during the peptide synthesis, whilst some others selectively modify peptide sequences containing a cysteine residue with a free thiol group, both in solution and in the solid phase. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Modified pectic polysaccharide from turmeric (Curcuma longa): A potent dietary component against gastric ulcer.

    Science.gov (United States)

    Harsha, Mysore R; Chandra Prakash, Serkad V; Dharmesh, Shylaja M

    2016-03-15

    Native, intact (TrPP) and modified, low-molecular-weight (MTrPP) forms of pectic polysaccharides isolated from turmeric were evaluated for ulcer-preventive potentials in in vitro and in vivo models. Data indicated that MTrPP possessed significantly better ulcer-preventive property than TrPP; inhibiting ulcer scores up to 85%. Results were substantiated by effective muco-protection, H(+),K(+)-ATPase down-regulation, inhibition of H. pylori growth/adherence, higher antioxidant/cytoprotective mechanisms. Structural data indicated TrPP and MTrPP differ in their molecular weights and structural characteristics with different sugar compositions and side chain ratios. MTrPP was rich in galacturonic acid (687mg/g; TrPP-544mg/g) and galactose (52.9%; TrPP-21.7%). Results were substantiated by NMR/FTIR data indicating the presence of homogalacturonan and rhamnogalacturonam-I containing galactans. By virtue of binding to inflammatory marker (galectin-3), galactans may reduce inflammation induced ulcerations. The low molecular weight of MTrPP (155kDa; TrPP-13kDa) may increase its bioavailability than TrPP, thus MTrPP may possess higher antiulcer potential. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. THE USE OF POLYSACCHARIDES EXTRACTED FROM SEED OF Persea americana var. Hass ON THE SYNTHESIS OF ACRYLIC HYDROGELS

    Directory of Open Access Journals (Sweden)

    Vicente Arturo Lara-Valencia

    Full Text Available This paper reports the use of polysaccharides extracted from seed of Persea americana var. Hass in the synthesis of acrylic hydrogels. The effects of the chemical composition (acrylamide/acrylic acid, the concentration of crosslinking agent (glycerol diacrylate and the type of initiation (redox, photoinitiation of the hydrogels were evaluated with and without polysaccharides. Xerogels were characterized by FTIR spectroscopy, differential scanning calorimetry (DSC and scanning electron microscopy (SEM, while for the swollen hydrogels the swelling kinetic and mechanical properties were evaluated. The kinetic parameters were obtained using the second order equation proposed by Schott, where it is reported that by increasing the concentration of the crosslinking agent, the degree of swelling is reduced because of the greater structural level. The increase of the amount of acrylamide and the amount of polysaccharides causes also a decrease in the swelling degree. The type of initiation also affected the hydrogels swelling kinetic, the photoinitiated hydrogels were the ones that captured less water. Moreover, the increasing of the glass transition temperature and the compression modulus with the crosslinking agent concentration and molar ratio AAm/AAc are observed for hydrogels with and without polysaccharides. The results demonstrate a successful incorporation of polysaccharides into the polymeric network.

  6. Membrane fouling related to microbial community and extracellular polymeric substances at different temperatures.

    Science.gov (United States)

    Gao, Da-Wen; Wen, Zhi-Dan; Li, Bao; Liang, Hong

    2013-09-01

    An anoxic-aerobic membrane bioreactor was established to investigate the role of microorganisms and microbial metabolites in membrane fouling at different temperatures. The results showed that the membrane fouling cycle at 303, 293, and 283 K were 30, 29, and 5.5 days, respectively. Polysaccharides dominated the extracellular polymeric substances (EPS) and soluble microbial products (SMP) at 303 and 293 K, instead, proteins was the predominant composition of metabolites at 283 K. The correlation coefficient (r(2)) was calculated to identify the relationship between temperature (T), filtration resistance (R) and compositions of EPS and SMP. In biocake, the EPS polysaccharides (EPSc) was the most correlative factor to temperature (T) and filtration resistance (R); in mixed liquor, the ratio of SMP polysaccharides to proteins (SMPc/p) was the most correlative factor. The microbial community structure and the dominant species was the major reason causing the change of EPS and SMP composition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Surface chemical immobilization of bioactive peptides on synthetic polymers for cardiac tissue engineering.

    Science.gov (United States)

    Rosellini, Elisabetta; Cristallini, Caterina; Guerra, Giulio D; Barbani, Niccoletta

    2015-01-01

    The aim of this work was the development of new synthetic polymeric systems, functionalized by surface chemical modification with bioactive peptides, for myocardial tissue engineering. Polycaprolactone and a poly(ester-ether-ester) block copolymer synthesized in our lab, polycaprolactone-poly(ethylene oxide)-polycaprolactone (PCL-PEO-PCL), were used as the substrates to be modified. Two pentapeptides, H-Gly-Arg-Gly-Asp-Ser-OH (GRGDS) from fibronectin and H-Tyr-Ile-Gly-Ser-Arg-OH (YIGSR) from laminin, were used for the functionalization. Polymeric membranes were obtained by casting from solutions and then functionalized by means of alkaline hydrolysis and subsequent coupling of the bioactive molecules through 1-(3-dimethylaminopropyl)-3-ethylcarbodimide hydrochloride/N-hydroxysuccinimide chemistry. The hydrolysis conditions, in terms of hydrolysis time, temperature, and sodium hydroxide concentration, were optimized for the two materials. The occurrence of the coupling reaction was demonstrated by infrared spectroscopy, as the presence on the functionalized materials of the absorption peaks typical of the two peptides. The peptide surface density was determined by chromatographic analysis and the distribution was studied by infrared chemical imaging. The results showed a nearly homogeneous peptide distribution, with a density above the minimum value necessary to promote cell adhesion. Preliminary in vitro cell culture studies demonstrated that the introduction of the bioactive molecules had a positive effect on improving C2C12 myoblasts growth on the synthetic materials.

  8. Peptide/protein-polymer conjugates: synthetic strategies and design concepts.

    Science.gov (United States)

    Gauthier, Marc A; Klok, Harm-Anton

    2008-06-21

    This feature article provides a compilation of tools available for preparing well-defined peptide/protein-polymer conjugates, which are defined as hybrid constructs combining (i) a defined number of peptide/protein segments with uniform chain lengths and defined monomer sequences (primary structure) with (ii) a defined number of synthetic polymer chains. The first section describes methods for post-translational, or direct, introduction of chemoselective handles onto natural or synthetic peptides/proteins. Addressed topics include the residue- and/or site-specific modification of peptides/proteins at Arg, Asp, Cys, Gln, Glu, Gly, His, Lys, Met, Phe, Ser, Thr, Trp, Tyr and Val residues and methods for producing peptides/proteins containing non-canonical amino acids by peptide synthesis and protein engineering. In the second section, methods for introducing chemoselective groups onto the side-chain or chain-end of synthetic polymers produced by radical, anionic, cationic, metathesis and ring-opening polymerization are described. The final section discusses convergent and divergent strategies for covalently assembling polymers and peptides/proteins. An overview of the use of chemoselective reactions such as Heck, Sonogashira and Suzuki coupling, Diels-Alder cycloaddition, Click chemistry, Staudinger ligation, Michael's addition, reductive alkylation and oxime/hydrazone chemistry for the convergent synthesis of peptide/protein-polymer conjugates is given. Divergent approaches for preparing peptide/protein-polymer conjugates which are discussed include peptide synthesis from synthetic polymer supports, polymerization from peptide/protein macroinitiators or chain transfer agents and the polymerization of peptide side-chain monomers.

  9. Well-defined copolymers synthesized by RAFT polymerization as effective modifiers to enhance the photocatalytic performance of TiO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vasilaki, E., E-mail: euavasilakh@gmail.com [Department of Chemistry, University of Crete, 710 03, Heraklion, Crete (Greece); Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Kaliva, M. [Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Department of Materials Science and Technology, University of Crete, 710 03, Heraklion, Crete (Greece); Katsarakis, N. [Center of Materials Technology and Photonics, School of Applied Technology, Technological Educational Institute of Crete, 710 04 Heraklion, Crete (Greece); Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Vamvakaki, M. [Institute of Electronic Structure and Laser, Foundation for Research & Technology-Hellas, P.O. Box 1385, Vassilika Vouton, 711 10 Heraklion, Crete (Greece); Department of Materials Science and Technology, University of Crete, 710 03, Heraklion, Crete (Greece)

    2017-03-31

    Highlights: • Well-defined, random functional copolymers were synthesized by RAFT polymerization. • Novel TiO{sub 2} particles in-situ modified with copolymers were synthesized. • The hybrid catalysts exhibited reduced aggregation and particle size. • The photocatalytic removal of methylene blue was higher for the hybrid catalysts. - Αbstract: The enhancement of the photocatalytic performance of anatase TiO{sub 2} nanoparticles is demonstrated by a facile route, involving their in-situ surface modification with preformed polymer chains. Random copolymers of poly(ethylene glycol) methyl ether acrylate-co-methacrylic acid (PEGA-co-MAA) or poly(ethylene glycol) methyl ether acrylate-co-dopamine methacrylamide (PEGA-co-DMA) were synthesized by reversible addition−fragmentation chain-transfer (RAFT) polymerization and were bound onto the surface of anatase titania nanoparticles via the “grafting to” method. The hybrid nanocatalysts were characterized by fourier transform infrared spectroscopy, zeta-potential measurements, X-ray powder diffraction, thermogravimetric analysis and transmission electron microscopy. Their photocatalytic performance was evaluated by the decoloration of methylene blue (MB) dye in aqueous media under UV–vis light irradiation. The enhanced photoactivity and reusability of the polymer modified photocatalysts compared to that of bare TiO{sub 2} nanoparticles was attributed to their improved dispersability and colloidal stability, the smaller particle size that leads to a larger surface area and the increased adsorption capacity of the dye onto the polymer modified nanoparticles.

  10. Synthetic fiber technology evolving into a high-tech field

    Energy Technology Data Exchange (ETDEWEB)

    Yumura, Takao

    1988-07-01

    This paper reports the trend of synthetic fiber technology. Representative synthetic fibers are nylon, polyester, and acrylic. Researchers are studying the continuation of polymerization processes, high-efficiency catalysts, thin-film polymerization, the possibility of energy saving by interfacial polymerization, and small quantities of a large variety of items method. They are making considerable progress in accelerating, simplifying, and rationalizing production processes. As a result, they have already omitted the elongation chamber and realized the continuation of spinning and elongation processes. The textile industry is planning to adopt a super-fast spinning system. To meet customers' needs for a wider variety of advanced materials, researchers are developing differential, high-value-added materials. High functions are added to fibers during all processes including polymerization, spinning, thread or cotton making, knitting, and after-treatment. Researchers have developed new materials looking exactly like silk or wool, having aesthetic properties, artificial suede, and combining moisture permeability and waterproofness. New materials developed for high-technology purposes include carbon fiber, aramid fiber that obtains high strength and elasticity without being elongated, high-strength, and high-elasticity super-high-polymer polyethylene fiber. (3 figs, 1 tab)

  11. Influence of grape maturity and maceration length on color, polyphenolic composition, and polysaccharide content of Cabernet Sauvignon and Tempranillo wines.

    Science.gov (United States)

    Gil, Mariona; Kontoudakis, Nikolaos; González, Elena; Esteruelas, Mireia; Fort, Francesca; Canals, Joan Miquel; Zamora, Fernando

    2012-08-15

    The aim of this paper was to study how maturity and maceration length affect color, phenolic compounds, polysaccharides, and sensorial quality of Cabernet Sauvignon and Tempranillo wines at three stages of grape ripening. Ripeness increased color extractability, phenolic compounds, and polysaccharide concentrations. Moreover, the proanthocyanidin mean degree of polymerization (mDP) and the percentage of prodelphinidins also increased with maturity, whereas the percentage of galloylation decreased. In general, wines from riper grapes contain higher proportions of skin proanthocyanidins. Color and anthocyanin concentration decreased when the maceration was longer, whereas polysaccharide and proanthocyanidin concentrations did the opposite. It was also detected that the mDP and the percentage of prodelphinidins decreased when the maceration was extended, whereas the percentage of galloylation increased. These data seem to indicate that proanthocyanidin extraction from seeds is clearly increased throughout the maceration time.

  12. Method to conjugate polysaccharide antigens to surfaces for the detection of antibodies.

    Science.gov (United States)

    Boas, Ulrik; Lind, Peter; Riber, Ulla

    2014-11-15

    A new generic method for the conjugation of lipopolysaccharide (LPS)-derived polysaccharide antigens from gram-negative bacteria has been developed using Salmonella as a model. After removal of lipid A from the LPS by mild acidolysis, the polysaccharide antigen was conjugated to polystyrene microbeads modified with N-alkyl hydroxylamine and N-alkyl-O-methyl hydroxylamine surface groups by incubation of antigen and beads for 16 h at 40 °C without the need for coupling agents. The efficiency of the new method was evaluated by flow cytometry in model samples and serum samples containing antibodies against Salmonella typhimurium and Salmonella dublin. The presented method was compared with a similar method for conjugation of Salmonella polysaccharide antigens to surfaces. Here, the new method showed higher antigen coupling efficiency by detecting low concentrations of antibodies. Furthermore, the polysaccharide-conjugated beads showed preserved bioactivity after 1 year of use. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Radiation-Induced Graft Polymerization: Gamma Radiation and Electron Beam Technology for Materials Development

    International Nuclear Information System (INIS)

    Madrid, Jordan F.; Cabalar, Patrick Jay; Lopez, Girlie Eunice; Abad, Lucille V.

    2015-01-01

    The formation of functional hybrid materials by attaching polymer chains with advantageous tailored properties to the surface of a base polymer with desirable bulk character is an attractive application of graft copolymerization. Radiation-induced graft polymerization (RIGP) has been a popular approach for surface modification of polymers because of its merits over conventional chemical processes. RIGP, which proceeds primarily via free radical polymerization process, has the advantages such as simplicity, low cost, control over process and adjustment of the materials composition and structure. RIGP can be performed using either electron beam or gamma radiation and it can be applied to both synthetic and natural polymers. These merits make RIGP a popular research topic worldwide. Moreover, the materials synthesized and produced via RIGP has found applications, and were proposed to produce continuous impact, in the fields of medicine, agriculture, pollution remediation, rare earth and valuable metals recovery, fuel cell membrane synthesis and catalysis to name a few. From 2012 our group has performed electron beam and gamma radiation-induced graft polymerization of various monomers onto polymers of natural and synthetic origins (e.g. monomers - glycidyl methacrylate, styrene, acrylonitrile, N,N-dimethylaminoethyl methacrylate; base polymers – polyethylene/polypropylene nonwoven fabric, polypropylene nonwoven fabric pineapple fibers, cellulose nonwoven fabric microcrystalline cellulose). We tested these grafted materials for heavy metals (Pb, Ni, Cu) and organic molecule removal from aqueous solutions and E. coli activity (using reversible addition fragmentation chain transfer RAFT mediated grafting). The results clearly showed the success of materials modified via FIGP in these applications. Currently, we are studying the applications of grafted materials on treatment of waste waters from tanning industry, value addition to abaca nonwoven fabrics cell sheet

  14. Polyethylene-waste tire dust composites via in situ polymerization

    International Nuclear Information System (INIS)

    Reyes A, Y. K.; Narro C, R. I.; Ramos A, M. E.; Neira V, M. G.; Diaz E, J.; Enriquez M, F.; Valencia L, L. A.; Saade C, H.; Diaz de L, R.

    2014-01-01

    Polyethylene/waste tire dust (WTD) composites were obtained by an in situ polymerization technique. The surface of the WTD was modified with deposition of polyethylene by using plasma polymerization. Ethylene polymerization was carried out using bis(cyclopentadienyl) titanium dichloride (Cp 2 TiCl 2 ) as homogeneous metallocenes catalyst, while diethylaluminum chloride (DEAC), ethyl aluminum sesquichloride (EASC) and methyl alumino xane (Mao) were used as co-catalysts at two different [Al]/[Ti] molar ratio. The main characteristics of the obtained polyethylenes were determined by size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction. The results showed that by using EASC and Mao the highest catalytic activities were presented at a [Al]/[Ti] molar ratio of 9.17 and 18.33 respectively. Even though it was possible to obtain polyethylene using WTD (modified or unmodified) the catalytic activity was lower than in the case in which no WTD was added in ethylene polymerization. Scanning transmission electronic microscopy images evidenced that the original morphology of the polyethylenes was not modified by the presence of WTD. (Author)

  15. Polyethylene-waste tire dust composites via in situ polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Reyes A, Y. K.; Narro C, R. I.; Ramos A, M. E. [Universidad Autonoma de Coahuila, Facultad de Ciencias Quimicas, Blvd. Venustiano Carranza s/n, 25280 Saltillo, Coahuila (Mexico); Neira V, M. G.; Diaz E, J.; Enriquez M, F.; Valencia L, L. A.; Saade C, H.; Diaz de L, R., E-mail: ramon.diazdeleon@ciqa.edu.mx [Centro de Investigacion en Quimica Aplicada, Blvd. Enrique Reyna Hermosillo No. 40, Col. San Jose de los Cerritos, 25293 Saltillo, Coahuila (Mexico)

    2014-10-01

    Polyethylene/waste tire dust (WTD) composites were obtained by an in situ polymerization technique. The surface of the WTD was modified with deposition of polyethylene by using plasma polymerization. Ethylene polymerization was carried out using bis(cyclopentadienyl) titanium dichloride (Cp{sub 2}TiCl{sub 2}) as homogeneous metallocenes catalyst, while diethylaluminum chloride (DEAC), ethyl aluminum sesquichloride (EASC) and methyl alumino xane (Mao) were used as co-catalysts at two different [Al]/[Ti] molar ratio. The main characteristics of the obtained polyethylenes were determined by size exclusion chromatography, thermogravimetric analysis, differential scanning calorimetry and wide-angle X-ray diffraction. The results showed that by using EASC and Mao the highest catalytic activities were presented at a [Al]/[Ti] molar ratio of 9.17 and 18.33 respectively. Even though it was possible to obtain polyethylene using WTD (modified or unmodified) the catalytic activity was lower than in the case in which no WTD was added in ethylene polymerization. Scanning transmission electronic microscopy images evidenced that the original morphology of the polyethylenes was not modified by the presence of WTD. (Author)

  16. Plant synthetic biology.

    Science.gov (United States)

    Liu, Wusheng; Stewart, C Neal

    2015-05-01

    Plant synthetic biology is an emerging field that combines engineering principles with plant biology toward the design and production of new devices. This emerging field should play an important role in future agriculture for traditional crop improvement, but also in enabling novel bioproduction in plants. In this review we discuss the design cycles of synthetic biology as well as key engineering principles, genetic parts, and computational tools that can be utilized in plant synthetic biology. Some pioneering examples are offered as a demonstration of how synthetic biology can be used to modify plants for specific purposes. These include synthetic sensors, synthetic metabolic pathways, and synthetic genomes. We also speculate about the future of synthetic biology of plants. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Selenylation Modification of Degraded Polysaccharide from Enteromorpha prolifera and Its Biological Activities

    Science.gov (United States)

    Lv, Haitao; Duan, Ke; Shan, Hu

    2018-04-01

    Polysaccharide extracted from Enteromorpha prolifera possessed excellent biological activities, but its molecular weight was greatly high which influenced the activity. Organic Se had higher biological activities and was safer than inorganic Se species. In the present study, Enteromorpha polysaccharide was degraded to low molecular weight by free-radical degradation method of H2O2 and ascorbic acid. By single factor and orthogonal experiments, the optimal degradation conditions were reaction time of 2 h, reaction temperature of 50°C, H2O2/ascorbic acid (n/n=1:1) concentration of 15 mmol L-1, and solid-liquid ratio of 1:50 (g mL-1). Then, the degraded polysaccharide was chemically modified to obtain its selenide derivatives by nitric acid-sodium selenite method. The selenium content was 1137.29 μg g-1, while the content of sulfate radical had no change. IR spectra indicated that the selenite ester group was formed. Degraded polysaccharide selenide was characterized and evaluated for antioxidant, antifungal and antibacterial activities. The results showed that degraded polysaccharide selenide had strong capacity of scavenging DPPH and ·OH free radical. It had significant antibacterial properties for Escherichia coli, Bacillus subtilis and Salmonella spp., and it also had significant antifungal properties for Apple anthrax. The result ascertained degradation and selenylation modification did not change the main structure of polysaccharides. It was possible that free-radical degradation was an effective way for enhancing antioxidant activity to decrease molecular weight of polysaccharides.

  18. Studies on Radiation Synthesis of Poly(vinyl alcohol)- Natural Polysaccharides Hydrogel Wound Dressing

    International Nuclear Information System (INIS)

    Varshney, L.

    2006-01-01

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible and mechanically strong, biocompatible, effective and economical hydrogel dressings(HD). The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing Poly-vinylalcohol, (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5 -2 % resulted in increase of tensile strength from 45 g/cm 2 to 400 g/cm 2 , elongation from 30 % to 410 % and water uptake from 25 % to 120% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. The polysaccharides show different pre-gel viscosities behaviour indicating different individual contribution to the PVA network. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The polysaccharides also provide desirable plasticizer and humectant effect into the dressing. Formulations containing 7-9% PVA, 0.5- 1.5 % carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning Electron Micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non healing ulcers of Diabetes, Leprosy and other external wounds. The dressings are now being marketed in India under different brand names

  19. Neuronal apoptotic signaling pathways probed and intervened by synthetically and modularly modified (SMM) chemokines.

    Science.gov (United States)

    Choi, Won-Tak; Kaul, Marcus; Kumar, Santosh; Wang, Jun; Kumar, I M Krishna; Dong, Chang-Zhi; An, Jing; Lipton, Stuart A; Huang, Ziwei

    2007-03-09

    As the main coreceptors for human immunodeficiency virus type 1 (HIV-1) entry, CXCR4 and CCR5 play important roles in HIV-associated dementia (HAD). HIV-1 glycoprotein gp120 contributes to HAD by causing neuronal damage and death, either directly by triggering apoptotic pathways or indirectly by stimulating glial cells to release neurotoxins. Here, to understand the mechanism of CXCR4 or CCR5 signaling in neuronal apoptosis associated with HAD, we have applied synthetically and modularly modified (SMM)-chemokine analogs derived from natural stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II as chemical probes of the mechanism(s) whereby these SMM-chemokines prevent or promote neuronal apoptosis. We show that inherently neurotoxic natural ligands of CXCR4, such as stromal cell-derived factor-1alpha or viral macrophage inflammatory protein-II, can be modified to protect neurons from apoptosis induced by CXCR4-preferring gp120(IIIB), and that the inhibition of CCR5 by antagonist SMM-chemokines, unlike neuroprotective CCR5 natural ligands, leads to neurotoxicity by activating a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Furthermore, we discover distinct signaling pathways activated by different chemokine ligands that are either natural agonists or synthetic antagonists, thus demonstrating a chemical biology strategy of using chemically engineered inhibitors of chemokine receptors to study the signaling mechanism of neuronal apoptosis and survival.

  20. Perspective highlights on biodegradable polymeric nanosystems for targeted therapy of solid tumors.

    Science.gov (United States)

    Fathi, Marziyeh; Barar, Jaleh

    2017-01-01

    Introduction: Polymeric nanoparticles (NPs) formulated using biodegradable polymers offer great potential for development of de novo drug delivery systems (DDSs) capable of delivering a wide range of bioactive agents. They can be engineered as advanced multifunctional nanosystems (NSs) for simultaneous imaging and therapy known as theranostics or diapeutics. Methods: A brief prospective is provided on biomedical importance and applications of biodegradable polymeric NSs through reviewing the recently published literature. Results: Biodegradable polymeric NPs present unique characteristics, including: nanoscaled structures, high encapsulation capacity, biocompatibility with non-thrombogenic and non-immunogenic properties, and controlled-/sustained-release profile for lipophilic and hydrophilic drugs. Once administered in vivo, all classes of biodegradable polymers (i.e., synthetic, semi-synthetic, and natural polymers) are subjected to enzymatic degradation; and hence, transformation into byproducts that can be simply eliminated from the human body. Natural and semi-synthetic polymers have been shown to be highly stable, much safer, and offer a non-/less-toxic means for specific delivery of cargo drugs in comparison with synthetic polymers. Despite being biocompatible and enzymatically-degradable, there are some drawbacks associated with these polymers such as batch to batch variation, high production cost, structural complexity, lower bioadhesive potential, uncontrolled rate of hydration, and possibility of microbial spoilage. These pitfalls have bolded the importance of synthetic counterparts despite their somewhat toxicity. Conclusion: Taken all, to minimize the inadvertent effects of these polymers and to engineer much safer NSs, it is necessary to devise biopolymers with desirable chemical and biochemical modification(s) and polyelectrolyte complex formation to improve their drug delivery capacity in vivo.

  1. Polymeric drugs: Advances in the development of pharmacologically active polymers

    Science.gov (United States)

    Li, Jing; Yu, Fei; Chen, Yi; Oupický, David

    2015-01-01

    Synthetic polymers play a critical role in pharmaceutical discovery and development. Current research and applications of pharmaceutical polymers are mainly focused on their functions as excipients and inert carriers of other pharmacologically active agents. This review article surveys recent advances in alternative pharmaceutical use of polymers as pharmacologically active agents known as polymeric drugs. Emphasis is placed on the benefits of polymeric drugs that are associated with their macromolecular character and their ability to explore biologically relevant multivalency processes. We discuss the main therapeutic uses of polymeric drugs as sequestrants, antimicrobials, antivirals, and anticancer and anti-inflammatory agents. PMID:26410809

  2. Synthesis and characterization of in situ photogelable polysaccharide derivative for drug delivery.

    Science.gov (United States)

    Hu, Rong; Chen, Yu-Yun; Zhang, Li-Ming

    2010-06-30

    A novel polysaccharide derivative with photoreactivity was prepared by the conjugation of carboxymethylated chitosan with N-hydroxyl succinimide-activated nitrocinnamate in the presence of N,N-dicyclohexylcarbodiimide, and characterized by IR, (1)H NMR, UV-vis and rheological analyses. It was found that such a modified polysaccharide could exhibit an unique photogelation ability in the absence of potentially toxic photoinitiator or catalyst and be suitable particularly for the in situ preparation of photocrosslinked hydrogel biomaterials. By changing the photoirradiation time and incorporated nitrocinnamate content, its photogelation property could be modulated. For the resultant hydrogels incorporated with various nitrocinnamate contents, their properties such as swelling, viscoelasticity, in vitro biodegradation and drug release were investigated. In addition, the photogelation mechanism of this polysaccharide derivative was also discussed. 2010 Elsevier B.V. All rights reserved.

  3. Chemical modification, antioxidant and α-amylase inhibitory activities of corn silk polysaccharides.

    Science.gov (United States)

    Chen, Shuhan; Chen, Haixia; Tian, Jingge; Wang, Yanwei; Xing, Lisha; Wang, Jia

    2013-10-15

    Water-soluble corn silk polysaccharides (CSPS) were chemically modified to obtain their sulfated, acetylated and carboxymethylated derivatives. Chemical characterization and bioactivities of CSPS and its derivatives were comparatively investigated by chemical methods, gas chromatography, gel filtration chromatography, scanning electron microscope, infrared spectroscopy and circular dichroism spectroscopy, scavenging DPPH free radical assay, scavenging hydroxyl radical assay, ferric reducing power assay, lipid peroxidation inhibition assay and α-amylase activity inhibitory assay, respectively. Among the three derivatives, carboxylmethylated polysaccharide (C-CSPS) demonstrated higher solubility, narrower molecular weight distribution, lower intrinsic viscosity, a hyperbranched conformation, significantly higher antioxidant and α-amylase inhibitory abilities compared with the native polysaccharide and other derivatives. C-CSPS might be used as a novel nutraceutical agent for human consumption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Modified Polymeric Nanoparticles Exert In Vitro Antimicrobial Activity Against Oral Bacteria.

    Science.gov (United States)

    Toledano-Osorio, Manuel; Babu, Jegdish P; Osorio, Raquel; Medina-Castillo, Antonio L; García-Godoy, Franklin; Toledano, Manuel

    2018-06-14

    Polymeric nanoparticles were modified to exert antimicrobial activity against oral bacteria. Nanoparticles were loaded with calcium, zinc and doxycycline. Ions and doxycycline release were measured by inductively coupled plasma optical emission spectrometer and high performance liquid chromatography. Porphyromonas gingivalis , Lactobacillus lactis , Streptoccocus mutans , gordonii and sobrinus were grown and the number of bacteria was determined by optical density. Nanoparticles were suspended in phosphate-buffered saline (PBS) at 10, 1 and 0.1 mg/mL and incubated with 1.0 mL of each bacterial suspension for 3, 12, and 24 h. The bacterial viability was assessed by determining their ability to cleave the tetrazolium salt to a formazan dye. Data were analyzed by ANOVA and Scheffe’s F ( p Nanoparticles (60% to 99% reduction) followed by Ca-Nanoparticles or Zn-Nanoparticles (30% to 70% reduction) and finally the non-doped nanoparticles (7% to 35% reduction). P. gingivalis , S. mutans and L. lactis were the most susceptible bacteria, being S. gordonii and S. sobrinus the most resistant to the tested nanoparticles.

  5. Rheological Properties in Aqueous Solution for Hydrophobically Modified Polyacrylamides Prepared in Inverse Emulsion Polymerization

    Directory of Open Access Journals (Sweden)

    Shirley Carro

    2017-01-01

    Full Text Available Inverse emulsion polymerization technique was employed to synthesize hydrophobically modified polyacrylamide polymers with hydrophobe contents near to feed composition. Three different structures were obtained: multisticker, telechelic, and combined. N-Dimethyl-acrylamide (DMAM, n-dodecylacrylamide (DAM, and n-hexadecylacrylamide (HDAM were used as hydrophobic comonomers. The effect of the hydrophobe length of comonomer, the initial monomer, and surfactant concentrations on shear viscosity was studied. Results show that the molecular weight of copolymer increases with initial monomer concentration and by increasing emulsifier concentration it remained almost constant. Shear viscosity measurements results show that the length of the hydrophobic comonomer augments the hydrophobic interactions causing an increase in viscosity and that the polymer thickening ability is higher for combined polymers.

  6. Comparison of potentials for polymeric liquids

    International Nuclear Information System (INIS)

    Jung, Hae Young

    2002-01-01

    Many theories for polymeric liquids are based on the concepts of cell, hole, free volume of lattice etc. In this theories, van der Waals potential, Lennard-Jones 6-12 potential and their modified potentials are commonly used. In this work, Mie(p,6)potential was applied to the Continuous Lattice Fluid Theory (which extends the discrete lattices of Lattice Fluid Theory to classically continuous lattices) and Dee-Walsch's Cell Theory (which modifies Flory's Equation of State Theory). Both of them are known to be successful theories for polymeric liquids. Thus, PVT values changing with p (the exponent in the repulsion potential) were calculated and compared with experimental values. And, calculated values of Lattice Fluid theory, Flory's Equation of State Theory and Cho-Sanchez Theory using perturbation method were also compared. Through the calculated results, van der Waals potential, Lennard-Jones 6-12 potential and Mie(p,6) potential for polymeric liquids were compared with each other

  7. Role of natural polysaccharides in radiation formation of PVA hydrogel wound dressing

    Science.gov (United States)

    Varshney, Lalit

    2007-02-01

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible, mechanically strong, biocompatible, effective and economical hydrogel dressings. The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing poly-vinylalcohol (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5-2% resulted in increase of tensile strength from 45 g/cm 2 to 411 g/cm 2, elongation from 30% to 410% and water uptake from 25% to 157% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. PVA formulations containing the polysaccharides show significantly different pre-gel viscosities behaviour. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The results indicate that pre irradiation network structure of the formulation plays an important role in determining mechanical properties of the irradiated gel dressing. Formulations containing 7-9% PVA, 0.5-1.5% carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning electron micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non-healing ulcers of diabetes, leprosy and other external wounds. The dressings are now being marketed in India under different brand names.

  8. Role of natural polysaccharides in radiation formation of PVA-hydrogel wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Lalit [ISOMED, Radiation Technology Development Section, Radio-Chemistry and Isotope Group, B.A.R.C, Mumbai 400 085 (India)]. E-mail: lalitv@barc.gov.in

    2007-02-15

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible, mechanically strong, biocompatible, effective and economical hydrogel dressings. The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing poly-vinylalcohol (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5-2% resulted in increase of tensile strength from 45 g/cm{sup 2} to 411 g/cm{sup 2}, elongation from 30% to 410% and water uptake from 25% to 157% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. PVA formulations containing the polysaccharides show significantly different pre-gel viscosities behaviour. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The results indicate that pre irradiation network structure of the formulation plays an important role in determining mechanical properties of the irradiated gel dressing. Formulations containing 7-9% PVA, 0.5-1.5% carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning electron micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non-healing ulcers of diabetes, leprosy and other external wounds. The dressings are now being marketed in India under different brand names.

  9. Role of natural polysaccharides in radiation formation of PVA-hydrogel wound dressing

    International Nuclear Information System (INIS)

    Varshney, Lalit

    2007-01-01

    Radiation processed PVA-polysaccharides hydrogels have been observed to be suitable for producing transparent, flexible, mechanically strong, biocompatible, effective and economical hydrogel dressings. The dressings were formed in single stage irradiation process achieving gel formation and sterilization at 25-30 kGy gamma radiation dose. No synthetic plasticizers and additives were used. Different formulations containing poly-vinylalcohol (PVA) and polysaccharides selected from combinations of agar and carrageenan were used to make the dressings. The selected polysaccharides themselves form thermo-reversible gels and degrade on irradiation. Using concentration of polysaccharides as low as 0.5-2% resulted in increase of tensile strength from 45 g/cm 2 to 411 g/cm 2 , elongation from 30% to 410% and water uptake from 25% to 157% with respect to PVA gel without polysaccharides. Besides improving mechanical strength, agar contributes more to elongation and carrageenan to mechanical strength of the gel dressing. PVA formulations containing the polysaccharides show significantly different pre-gel viscosities behaviour. Increasing the concentration of agar in the formulation to about 2% converts the sheet gel to paste gel useful for filling wound cavities. The results indicate that pre irradiation network structure of the formulation plays an important role in determining mechanical properties of the irradiated gel dressing. Formulations containing 7-9% PVA, 0.5-1.5% carrageenan and 0.5-1% agar gave highly effective usable hydrogel dressings. Scanning electron micrographs show highly porous structure of the gel. Clinical trials of wound dressing on human patients established safety and efficacy of the dressing. The dressing has been observed to be useful in treating burns, non-healing ulcers of diabetes, leprosy and other external wounds. The dressings are now being marketed in India under different brand names

  10. Biodegradable modified Phba systems

    International Nuclear Information System (INIS)

    Aniscenko, L.; Dzenis, M.; Erkske, D.; Tupureina, V.; Savenkova, L.; Muizniece - Braslava, S.

    2004-01-01

    Compositions as well as production technology of ecologically sound biodegradable multicomponent polymer systems were developed. Our objective was to design some bio plastic based composites with required mechanical properties and biodegradability intended for use as biodegradable packaging. Significant characteristics required for food packaging such as barrier properties (water and oxygen permeability) and influence of γ-radiation on the structure and changes of main characteristics of some modified PHB matrices was evaluated. It was found that barrier properties were plasticizers chemical nature and sterilization with γ-radiation dependent and were comparable with corresponding values of typical polymeric packaging films. Low γ-radiation levels (25 kGy) can be recommended as an effective sterilization method of PHB based packaging materials. Purposely designed bio plastic packaging may provide an alternative to traditional synthetic packaging materials without reducing the comfort of the end-user due to specific qualities of PHB - biodegradability, Biocompatibility and hydrophobic nature

  11. Ring-Opening Polymerization of N-Carboxyanhydrides for Preparation of Polypeptides and Polypeptide-Based Hybrid Materials with Various Molecular Architectures

    KAUST Repository

    Pahovnik, David; Hadjichristidis, Nikolaos

    2015-01-01

    Different synthetic approaches utilizing ring-opening polymerization of N-carboxyanhydrides for preparation of polypeptide and polypeptide-based hybrid materials with various molecular architectures are described. An overview of polymerization

  12. An in vitro assessment of titanium functionalized with polysaccharides conjugated with vascular endothelial growth factor for enhanced osseointegration and inhibition of bacterial adhesion.

    Science.gov (United States)

    Hu, Xuefeng; Neoh, Koon-Gee; Shi, Zhilong; Kang, En-Tang; Poh, Chyekhoon; Wang, Wilson

    2010-12-01

    The long-term success of orthopedic implants may be compromised by defective osseointegration and bacterial infection. An effective approach to minimize implant failure would be to modify the surface of the implant to make it habitable for bone-forming cells and anti-infective at the same time. In this in vitro study, the surfaces of titanium (Ti) substrates were functionalized by first covalently grafting either dopamine followed by carboxymethyl chitosan (CMCS) or hyaluronic acid-catechol (HAC). Vascular endothelial growth factor (VEGF) was then conjugated to the polysaccharide-grafted surface. Antibacterial assay with Staphylococcus aureus (S. aureus) showed that the polysaccharide-modified substrates significantly decrease bacterial adhesion. The CMCS-functionalized Ti demonstrated better antibacterial property than the HAC-functionalized Ti since CMCS is bactericidal while HA only inhibits the adhesion of bacteria without killing them. Osteoblast attachment, as well as alkaline phosphatase (ALP) activity and calcium deposition were enhanced by the immobilized VEGF on the polysaccharide-grafted Ti. Thus, Ti substrates modified with polysaccharides conjugated with VEGF can promote osteoblast functions and concurrently reduce bacterial adhesion. Since VEGF is also known to enhance angiogenesis, the VEGF-polysaccharide functionalized substrates will have promising applications in the orthopedic field. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Utilizing whey protein isolate and polysaccharide complexes to stabilize aerated dairy gels.

    Science.gov (United States)

    O'Chiu, Emily; Vardhanabhuti, Bongkosh

    2017-05-01

    Heated soluble complexes of whey protein isolate (WPI) with polysaccharides may be used to modify the properties of aerated dairy gels, which could be formulated into novel-textured high-protein desserts. The objective of this study was to determine the effect of polysaccharide charge density and concentration within a WPI-polysaccharide complex on the physical properties of aerated gels. Three polysaccharides having different degrees of charge density were chosen: low-methoxyl pectin, high-methoxyl type D pectin, and guar gum. Heated complexes were prepared by heating the mixed dispersions (8% protein, 0 to 1% polysaccharide) at pH 7. To form aerated gels, 2% glucono-δ-lactone was added to the dispersions of skim milk powder and heated complex and foam was generated by whipping with a handheld frother. The foam set into a gel as the glucono-δ-lactone acidified to a final pH of 4.5. The aerated gels were evaluated for overrun, drainage, gel strength, and viscoelastic properties. Without heated complexes, stable aerated gels could not be formed. Overrun of aerated gel decreased (up to 73%) as polysaccharide concentration increased from 0.105 to 0.315% due to increased viscosity, which limited air incorporation. A negative relationship was found between percent drainage and dispersion viscosity. However, plotting of drainage against dispersion viscosity separated by polysaccharide type revealed that drainage decreased most in samples with high-charge-density, low-methoxyl pectin followed by those with low-charge-density, high-methoxyl type D pectin. Aerated gels with guar gum (no charge) did not show improvement to stability. Rheological results showed no significant difference in gelation time among samples; therefore, stronger interactions between WPI and high-charge-density polysaccharide were likely responsible for increased stability. Stable dairy aerated gels can be created from WPI-polysaccharide complexes. High-charge-density polysaccharides, at

  14. Characterization of Extracellular Polymeric Substances Produced by Pseudomonas fragi Under Air and Modified Atmosphere Packaging.

    Science.gov (United States)

    Wang, Guang-Yu; Ma, Fang; Wang, Hu-Hu; Xu, Xing-Lian; Zhou, Guang-Hong

    2017-09-01

    Extracellular polymeric substances (EPS) play an important role in bacterial biochemical properties. The characteristics of EPS from 2 strains of Pseudomonas fragi cultured in meat aerobically (control) and in modified atmosphere packaging (MAP) were studied. The amount and components of EPS, the surface properties, and the effect on biofilm formation of several spoilage organisms were evaluated. The results showed that MAP inhibited the growth of the P. fragi strains. Compared with the control, more loose and less bound EPS (containing protein and carbohydrate) were produced by P. fragi in MAP samples. MAP also caused increased cell autoaggregation and surface hydrophobicity. After the removal of the EPS, the surface property changes were strain-dependent, suggesting that membrane compositions were also changed. In addition, the EPS displayed significant antibiofilm activity on Pseudomonas fluorescens and Serratia liquefaciens. In conclusion, P. fragi strains not only modified the amount, components, and surface properties of EPS but also changed the cell membrane compositions to adapt to MAP stress. Moreover, EPS may play an important role in microbial community competitions. © 2017 Institute of Food Technologists®.

  15. Synthetic polymeric substrates as potent pro-oxidant versus anti-oxidant regulators of cytoskeletal remodeling and cell apoptosis.

    Science.gov (United States)

    Sung, Hak-Joon; Chandra, Prafulla; Treiser, Matthew D; Liu, Er; Iovine, Carmine P; Moghe, Prabhas V; Kohn, Joachim

    2009-03-01

    The role of reactive oxygen species (ROS)-mediated cell signal transduction pathways emanating from engineered cell substrates remains unclear. To elucidate the role, polymers derived from the amino acid L-tyrosine were used as synthetic matrix substrates. Variations in their chemical properties were created by co-polymerizing hydrophobic L-tyrosine derivatives with uncharged hydrophilic poly(ethylene glycol) (PEG, Mw = 1,000 Da), and negatively charged desaminotyrosyl-tyrosine (DT). These substrates were characterized for their intrinsic ability to generate ROS, as well as their ability to elicit Saos-2 cell responses in terms of intracellular ROS production, actin remodeling, and apoptosis. PEG-containing substrates induced both exogenous and intracellular ROS production, whereas the charged substrates reduced production of both types, indicating a coupling of exogenous ROS generation and intracellular ROS production. Furthermore, PEG-mediated ROS induction caused nuclear translocation of glyceraldehyde-3-phosphate dehydrogenase and an increase in caspase-3 activity, confirming a link with apoptosis. PEG-rich pro-oxidant substrates caused cytoskeletal actin remodeling through beta-actin cleavage by caspase-3 into fractins. The fractins co-localized to the mitochondria and reduced the mitochondrial membrane potential. The remnant cytosolic beta-actin was polymerized and condensed, events consistent with apoptotic cell shrinkage. The cytoskeletal remodeling was integral to the further augmentation of intracellular ROS production. Conversely, the anti-oxidant DT-containing charged substrates suppressed the entire cascade of apoptotic progression. We demonstrate that ROS activity serves an important role in "outside-in" signaling for cells grown on substrates: the ROS activity couples exogenous stress, driven by substrate composition, to changes in intracellular signaling. This signaling causes cell apoptosis, which is mediated by actin remodeling.

  16. Effect of β-cyclodextrin on Rheological Properties of some Viscosity Modifiers.

    Science.gov (United States)

    Rao, G Chandra Sekhara; Ramadevi, K; Sirisha, K

    2014-01-01

    Cyclodextrins are a group of novel excipients, extensively used in the present pharmaceutical industry. Sometimes they show significant interactions with other conventional additives used in the formulation of dosage forms. The effect of β-cyclodextrin on the rheological properties of aqueous solutions of some selected viscosity modifiers was studied in the present work. β-cyclodextrin showed two different types of effects on the rheology of the selected polymers. In case of natural polymers like xanthan gum and guar gum, enhanced apparent viscosity was found and in case of semi-synthetic polymers like sodium carboxymethyl cellulose and methyl cellulose, reduction in apparent viscosity was found. β-cyclodextrin was included at 0.5, 1 and 2% w/v concentrations into the polymeric solutions. These findings are useful in the adjustment of concentrations of viscosity modifiers during the formulation of physically stable disperse systems.

  17. Polysaccharide-producing microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Braud, J.P.; Chaumont, D.; Gudin, C.; Thepenier, C.; Chassin, P.; Lemaire, C.

    1982-11-01

    The production of extracellular polysaccharides is studied with Nostoc sp (cyanophycus), Porphiridium cruentum, Rhodosorus marinus, Rhodella maculata (rhodophyci) and Chlamydomonas mexicana (chlorophycus). The polysaccharides produced are separated by centrifugation of the culture then precipitation with alcohol. Their chemical structure was studied by infrared spectrometry and acid hydrolysis. By their rheological properties and especially their insensitivity to temperatrure and pH variations the polysaccharides produced by Porphryridium cruentum and Rhodella maculata appear as suitable candidates for industrial applications.

  18. Physical Stability of Octenyl Succinate-Modified Polysaccharides and Whey Proteins for Potential Use as Bioactive Carriers in Food Systems.

    Science.gov (United States)

    Puerta-Gomez, Alex F; Castell-Perez, M Elena

    2015-06-01

    The high cost and potential toxicity of biodegradable polymers like poly(lactic-co-glycolic)acid (PLGA) has increased the interest in natural and modified biopolymers as bioactive carriers. This study characterized the physical stability (water sorption and state transition behavior) of selected starch and proteins: octenyl succinate-modified depolymerized waxy corn starch (DWxCn), waxy rice starch (DWxRc), phytoglycogen, whey protein concentrate (80%, WPC), whey protein isolate (WPI), and α-lactalbumin (α-L) to determine their potential as carriers of bioactive compounds under different environmental conditions. After enzyme modification and particle size characterization, glass transition temperature and moisture isotherms were used to characterize the systems. DWxCn and DWxRc had increased water sorption compared to native starch. The level of octenyl succinate anhydrate (OSA) modification (3% and 7%) did not reduce the water sorption of the DWxCn and phytoglycogen samples. The Guggenheim-Andersen-de Boer model indicated that native waxy corn had significantly (P whey proteins had higher glass transition temperature (Tg) values. On the other hand, depolymerized waxy starches at 7%-OSA modification had a "melted" appearance when exposed to environments with high relative humidity (above 70%) after 10 days at 23 °C. The use of depolymerized and OSA-modified polysaccharides blended with proteins created more stable blends of biopolymers. Hence, this biopolymer would be suitable for materials exposed to high humidity environments in food applications. © 2015 Institute of Food Technologists®

  19. Selective enzymatic degradation of self-assembled particles from amphiphilic block copolymers obtained by the combination of N-carboxyanhydride and nitroxide-mediated polymerization

    NARCIS (Netherlands)

    Habraken, G.J.M.; Peeters, M.; Thornton, P.D.; Koning, C.E.; Heise, A.

    2011-01-01

    Combining controlled radical polymerizations and a controlled polypeptide synthetic technique, such as N-carboxyanhydride (NCA) ring-opening polymerization, enables the generation of well-defined block copolymers to be easily accessible. Here we combine NCA polymerization with the nitroxide-mediated

  20. Ferrimagnetism and spin excitation in a Ni–Mn partially inverted spinel prepared using a modified polymeric precursor method

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Rafael A. [Programa de Pos-Graduação em Ciência e Tecnologia de Materiais (POSMAT), Universidade Estadual Paulista, Faculdade de Ciências, Caixa Postal 473, 17033-360 Bauru, São Paulo (Brazil); Institut des Sciences Chimiques de Rennes – UMR 6226, Université de Rennes 1, F-35042 Rennes (France); Tedesco, Julio C.G.; Birk, Jonas O. [The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Kalceff, Walter, E-mail: wkalceff@uts.edu.au [School of Physics and Advanced Materials, University of Technology Sydney (UTS), P.O. Box 123, Broadway, NSW 2007 (Australia); Yokaichiya, Fabiano [Laboratório Nacional de Luz Síncrotron (LNLS), Caixa Postal 6192, CEP 13083-970 Campinas, São Paulo (Brazil); Comissao Nacional de Energia Nuclear (CNEN), Instituto de Pesquisas Energeticas e Nucleares (IPEN), Reactor Multiproposito Brasileiro - RMB, Avenida Lineo Prestes 2242, Bloco A, Cidade Universitaria Armando Salles de Oliveira, Sao Paulo (Brazil); Rasmussen, Nina [The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); Peña, Octavio [Institut des Sciences Chimiques de Rennes – UMR 6226, Université de Rennes 1, F-35042 Rennes (France); Henry, Paul F. [European Spallation Source ESS AB, Box 176, 22100 Lund (Sweden); Simeoni, Giovanna G. [Heinz Maier-Leibnitz Zentrum (MLZ) and Physics Department, Technische Universität München, Lichtenbergstr. 1, 85748 Garching (Germany); Bordallo, Heloisa N. [The Niels Bohr Institute, University of Copenhagen, DK-2100 Copenhagen (Denmark); European Spallation Source ESS AB, Box 176, 22100 Lund (Sweden); and others

    2014-07-01

    We demonstrate that a Ni–Mn oxide partially inverted spinel (Ni{sub 1−ν}Mn{sub ν})[Ni{sub ν}Mn{sub 2−ν}]O{sub 4} having inversion degree ν ≈ 0.8 and produced by a modified polymeric precursor method exhibits behaviour previously reported only in monophased samples. The structure of the specimen was determined using Rietveld analysis of X-ray and neutron powder diffraction data, showing that at room temperature the material crystallizes in the Fd3{sup ¯}m space group with a lattice constant a = 8.392 Å. Combining magnetization measurements with neutron powder diffraction, we show that the magnetic structure of this spinel is associated with the interplay between the ferromagnetic and antiferromagnetic lattices which coexist due to the cations' presence on both tetrahedral and octahedral sites. Our analysis of the neutron diffraction data confirms the postulated magnetic structure involving a star-like moment arrangement, arising from competition for the B (octahedral) spinel sites by the Ni and Mn cations. Finally, we show that strong magnetic fluctuations are observed in the inelastic neutron scattering data. - Highlights: • Ni–Mn oxide partially-inverted spinel made by modified polymeric precursor method. • Magnetic measurements showed a ferrimagnetic and a parasitic magnetic transition. • NPD revealed a magnetic structure consistent with a star-like moment arrangement. • INS measurements indicated four distinct temperature-dependent magnetic regimes.

  1. [Studies on difference between sporoderm-broken and nonbroken spores of Ganoderma lucidum (Leyss. ex Fr.) Karst. by polysaccharide analysis].

    Science.gov (United States)

    Bao, X F; Fang, J N

    2001-05-01

    To compare the release ability of water-soluble polysaccharides in sporoderm-broken and nonbroken spores of Ganoderma lucidum, and establish a comparatively correct method for the determination and analysis of polysaccharide contents in Chinese herbs. The release ability of water-soluble polysaccharides was determined on the basis of phenol-sulfuric acid modification in different conditions. The release ability of polysaccharides of sporoderm-broken spores was much greater than that of nonbroken spores; and the phenol-sulfuric acid modified cation method proved excellent in accuracy and reproducibility, with a relative error less than 1.5%. The spores should be wall-wracked if used as a nutriment, or for extraction and analysis of their effective components. The method can be successfully used for the determination of polysaccharide contents in Chinese herbs or nutriments.

  2. Preparation of Transparent Bulk TiO2/PMMA Hybrids with Improved Refractive Indices via an in Situ Polymerization Process Using TiO2 Nanoparticles Bearing PMMA Chains Grown by Surface-Initiated Atom Transfer Radical Polymerization.

    Science.gov (United States)

    Maeda, Satoshi; Fujita, Masato; Idota, Naokazu; Matsukawa, Kimihiro; Sugahara, Yoshiyuki

    2016-12-21

    Transparent TiO 2 /PMMA hybrids with a thickness of 5 mm and improved refractive indices were prepared by in situ polymerization of methyl methacrylate (MMA) in the presence of TiO 2 nanoparticles bearing poly(methyl methacrylate) (PMMA) chains grown using surface-initiated atom transfer radical polymerization (SI-ATRP), and the effect of the chain length of modified PMMA on the dispersibility of modified TiO 2 nanoparticles in the bulk hybrids was investigated. The surfaces of TiO 2 nanoparticles were modified with both m-(chloromethyl)phenylmethanoyloxymethylphosphonic acid bearing a terminal ATRP initiator and isodecyl phosphate with a high affinity for common organic solvents, leading to sufficient dispersibility of the surface-modified particles in toluene. Subsequently, SI-ATRP of MMA was achieved from the modified surfaces of the TiO 2 nanoparticles without aggregation of the nanoparticles in toluene. The molecular weights of the PMMA chains cleaved from the modified TiO 2 nanoparticles increased with increases in the prolonging of the polymerization period, and these exhibited a narrow distribution, indicating chain growth controlled by SI-ATRP. The nanoparticles bearing PMMA chains were well-dispersed in MMA regardless of the polymerization period. Bulk PMMA hybrids containing modified TiO 2 nanoparticles with a thickness of 5 mm were prepared by in situ polymerization of the MMA dispersion. The transparency of the hybrids depended significantly on the chain length of the modified PMMA on the nanoparticles, because the modified PMMA of low molecular weight induced aggregation of the TiO 2 nanoparticles during the in situ polymerization process. The refractive indices of the bulk hybrids could be controlled by adjusting the TiO 2 content and could be increased up to 1.566 for 6.3 vol % TiO 2 content (1.492 for pristine PMMA).

  3. A multicenter, randomized trial comparing synthetic surfactant with modified bovine surfactant extract in the treatment of neonatal respiratory distress syndrome

    NARCIS (Netherlands)

    Adams, E; Vollman, J; Giebner, D; Maurer, M; Dreyer, G; Bailey, L; Anderson, M; Mefford, L; Beaumont, E; Sutton, D; Puppala, B; Mangurten, HH; Secrest, J; Lewis, WJ; Carteaux, P; Bednarek, F; Welsberger, S; Gosselin, R; Pantoja, AF; Belenky, A; Campbell, P; Patole, S; Duenas, M; Kelly, M; Alejo, W; Lewallen, P; DeanLieber, S; Hanft, M; Ferlauto, J; Newell, RW; Bagwell, J; Levine, D; Lipp, RW; Harkavy, K; Vasa, R; Birenbaum, H; Broderick, KA; Santos, AQ; Long, BA; Gulrajani, M; Stern, M; Hopgood, G; Hegyi, T; Alba, J; Christmas, L; McQueen, M; Nichols, N; Brown, M; Quissell, BJ; Rusk, C; Marks, K; Gifford, K; Hoehn, G; Pathak, A; Marino, B; Hunt, P; Fox, [No Value; Sharpstein, C; Feldman, B; Johnson, N; Beecham, J; Balcom, R; Helmuth, W; Boylan, D; Frakes, C; Magoon, M; Reese, K; Schwersenski, J; Schutzman, D; Soll, R; Horbar, JD; Leahy, K; Troyer, W; Juzwicki, C; Anderson, P; Dworsky, M; Reynolds, L; Urrutia, J; Gupta, U; Adray, C

    Objective. To compare the efficacy of a synthetic surfactant (Exosurf Neonatal, Burroughs-Wellcome Co) and a modified bovine surfactant extract (Survanta, Ross Laboratories) in the treatment of neonatal respiratory distress syndrome (RDS). Design. Multicenter, randomized trial. Setting. Thirty-eight

  4. Nanoimages show disruption of tubulin polymerization by chlorpyrifos oxon: Implications for neurotoxicity

    International Nuclear Information System (INIS)

    Grigoryan, Hasmik; Lockridge, Oksana

    2009-01-01

    Organophosphorus agents cause cognitive deficits and depression in some people. We hypothesize that the mechanism by which organophosphorus agents cause these disorders is by modification of proteins in the brain. One such protein could be tubulin. Tubulin polymerizes to make the microtubules that transport cell components to nerve axons. The goal of the present work was to measure the effect of the organophosphorus agent chlorpyrifos oxon on tubulin polymerization. An additional goal was to identify the amino acids covalently modified by chlorpyrifos oxon in microtubule polymers and to compare them to the amino acids modified in unpolymerized tubulin dimers. Purified bovine tubulin (0.1 mM) was treated with 0.005-0.1 mM chlorpyrifos oxon for 30 min at room temperature and then polymerized by addition of 1 mM GTP to generate microtubules. Microtubules were visualized by atomic force microscopy. Chlorpyrifos oxon-modified residues were identified by tandem ion trap electrospray ionization and matrix-assisted laser desorption/ionization mass spectrometry of tryptic peptides. Nanoimaging showed that low concentrations (0.005 and 0.01 mM) of chlorpyrifos oxon yielded short, thin microtubules. A concentration of 0.025 mM stimulated polymerization, while high concentrations (0.05 and 0.1 mM) caused aggregation. Of the 17 tyrosines covalently modified by chlorpyrifos oxon in unpolymerized tubulin dimers, only 2 tyrosines were labeled in polymerized microtubules. The two labeled tyrosines in polymerized tubulin were Tyr 103 in EDAANNY*R of alpha tubulin, and Tyr 281 in GSQQY*R of beta tubulin. In conclusion, chlorpyrifos oxon binding to tubulin disrupts tubulin polymerization. These results may lead to an understanding of the neurotoxicity of organophosphorus agents.

  5. Marine Origin Polysaccharides in Drug Delivery Systems.

    Science.gov (United States)

    Cardoso, Matias J; Costa, Rui R; Mano, João F

    2016-02-05

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  6. Marine Origin Polysaccharides in Drug Delivery Systems

    Science.gov (United States)

    Cardoso, Matias J.; Costa, Rui R.; Mano, João F.

    2016-01-01

    Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine. PMID:26861358

  7. Marine Origin Polysaccharides in Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Matias J. Cardoso

    2016-02-01

    Full Text Available Oceans are a vast source of natural substances. In them, we find various compounds with wide biotechnological and biomedical applicabilities. The exploitation of the sea as a renewable source of biocompounds can have a positive impact on the development of new systems and devices for biomedical applications. Marine polysaccharides are among the most abundant materials in the seas, which contributes to a decrease of the extraction costs, besides their solubility behavior in aqueous solvents and extraction media, and their interaction with other biocompounds. Polysaccharides such as alginate, carrageenan and fucoidan can be extracted from algae, whereas chitosan and hyaluronan can be obtained from animal sources. Most marine polysaccharides have important biological properties such as biocompatibility, biodegradability, and anti-inflammatory activity, as well as adhesive and antimicrobial actions. Moreover, they can be modified in order to allow processing them into various shapes and sizes and may exhibit response dependence to external stimuli, such as pH and temperature. Due to these properties, these biomaterials have been studied as raw material for the construction of carrier devices for drugs, including particles, capsules and hydrogels. The devices are designed to achieve a controlled release of therapeutic agents in an attempt to fight against serious diseases, and to be used in advanced therapies, such as gene delivery or regenerative medicine.

  8. Organized polysaccharide fibers as stable drug carriers

    Science.gov (United States)

    Janaswamy, Srinivas; Gill, Kristin L.; Campanella, Osvaldo H.; Pinal, Rodolfo

    2013-01-01

    Many challenges arise during the development of new drug carrier systems, and paramount among them are safety, solubility and controlled release requirements. Although synthetic polymers are effective, the possibility of side effects imposes restrictions on their acceptable use and dose limits. Thus, a new drug carrier system that is safe to handle and free from side effects is very much in need and food grade polysaccharides stand tall as worthy alternatives. Herein, we demonstrate for the first time the feasibility of sodium iota-carrageenan fibers and their distinctive water pockets to embed and release a wide variety of drug molecules. Structural analysis has revealed the existence of crystalline network in the fibers even after encapsulating the drug molecules, and iota-carrageenan maintains its characteristic and reproducible double helical structure suggesting that the composites thus produced are reminiscent of cocrystals. The melting properties of iota-carrageenan:drug complexes are distinctly different from those of either drug or iota-carrageenan fiber. The encapsulated drugs are released in a sustained manner from the fiber matrix. Overall, our research provides an elegant opportunity for developing effective drug carriers with stable network toward enhancing and/or controlling bioavailability and extending shelf-life of drug molecules using GRAS excipients, food polysaccharides, that are inexpensive and non–toxic. PMID:23544530

  9. Studies on atom transfer radical polymerization of acrylates and styrenes with controlled polymeric block structures

    OpenAIRE

    Ibrahim, Khalid

    2006-01-01

    Atom transfer radical polymerization (ATRP) was applied to homo and block copolymerization of vinyl monomers methacrylates, acrylates, and styrene with iron (FeCl2.4H2O) as the transition metal in most cases. As complexing ligand either a commercially available ligand (triphenyl phosphine) (PPh3) or synthetic aliphatic amines were used. As initiators, methyl 2-bromopropionate, ethyl 2-bromoisobutyrate, α,α-dichloroacetophenone, and poly(ethylene oxide) macroinitiator were employed. Block ...

  10. A modified sparse reconstruction method for three-dimensional synthetic aperture radar image

    Science.gov (United States)

    Zhang, Ziqiang; Ji, Kefeng; Song, Haibo; Zou, Huanxin

    2018-03-01

    There is an increasing interest in three-dimensional Synthetic Aperture Radar (3-D SAR) imaging from observed sparse scattering data. However, the existing 3-D sparse imaging method requires large computing times and storage capacity. In this paper, we propose a modified method for the sparse 3-D SAR imaging. The method processes the collection of noisy SAR measurements, usually collected over nonlinear flight paths, and outputs 3-D SAR imagery. Firstly, the 3-D sparse reconstruction problem is transformed into a series of 2-D slices reconstruction problem by range compression. Then the slices are reconstructed by the modified SL0 (smoothed l0 norm) reconstruction algorithm. The improved algorithm uses hyperbolic tangent function instead of the Gaussian function to approximate the l0 norm and uses the Newton direction instead of the steepest descent direction, which can speed up the convergence rate of the SL0 algorithm. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed algorithm. It is shown that our method, compared with existing 3-D sparse imaging method, performs better in reconstruction quality and the reconstruction time.

  11. Immobilization/hybridization of amino-modified DNA on plasma-polymerized allyl chloride

    International Nuclear Information System (INIS)

    Zhang Zhihong; Feng Chuanliang

    2007-01-01

    The present work describes the fabrication and characterization of chloride-derivatized polymer coatings prepared by continuous wave (cw) plasma polymerization as adhesion layers in DNA immobilization/hybridization. The stability of plasma-polymerized allyl chloride (ppAC) in H 2 O was characterized by variation of the thickness of polymer films and its wettability was examined by water contact angle technique. Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) were used to study polymer matrix properties and oligonucleotide/DNA binding interaction. With the same carrier gas rate and process pressure, plasma polymers deposited at different input powers show various comparable immobilization properties; nevertheless, low input power plasma-polymerized films gives a lower sensitivity toward DNA binding than that from high input power plasma-deposited films. The following DNA immobilization on chloride-functionalized surfaces was found dependence on the macromolecular architecture of the plasma films. The hybridization between probe DNA and total mismatch target DNA shows no non-specific adsorption between target and ppAC

  12. Surface modification of cation exchange membranes by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles

    International Nuclear Information System (INIS)

    Nemati, Mahsa; Hosseini, Sayed Mohsen; Bagheripour, Ehsan; Madaeni, Sayed Siavash

    2016-01-01

    Surface modification of polyvinylchloride based heterogeneous cation exchange membrane was performed by graft polymerization of PAA and PAA-co-PANI/MWCNTs nanoparticles. The ion exchange membranes were prepared by solution casting technique. Spectra analysis confirmed graft polymerization clearly. SEM images illustrated that graft polymerization covers the membranes by simple gel network entanglement. The membrane water content was decreased by graft polymerization of PAA-co-PANI/MWCNTs nanoparticles on membrane surface. Membrane transport number and selectivity declined initially by PAA graft polymerization and then began to increase by utilizing of composite nanoparticles in modifier solution. The sodium and barium flux was improved sharply by PAA and PAAco- 0.01%wt PANI/MWCNTs graft polymerization on membrane surface and then decreased again by more increase of PANI/MWCNTs nanoparticles content ratio in modifier solution. The electrodialysis experiment results in laboratory scale showed higher dialytic rate in heavy metals removal for grafted-PAA and grafted-PAA-co-PANI/MWCNTs modified membrane compared to pristine one. Membrane areal electrical resistance was also decreased by introducing graft polymerization of PAA and PAA-co-PANI/MWCNTs NPs on membrane surface.

  13. Immunomodulating activities of acidic sulphated polysaccharides obtained from the seaweed Ulva rigida C. Agardh.

    Science.gov (United States)

    Leiro, José M; Castro, Rosario; Arranz, Jon A; Lamas, Jesús

    2007-07-01

    Water-soluble acidic polysaccharides from the cell walls of Ulva rigida are mainly composed of disaccharides that contain glucuronic acid and sulphated rhamnose. The structure of disaccharides resembles that of glycosaminoglycans (GAGs) as they both contain glucuronic acid and sulphated sugars. Glycosaminoglycans occur in the extracellular matrix of animal connective tissues but can also be produced by leucocytes at inflammatory sites. Certain types of GAGs can even activate macrophages and therefore the acidic polysaccharides from U. rigida probably modulate macrophage activity. In the present study, we evaluated the effects of U. rigida polysaccharides on several RAW264.7 murine macrophage activities, including expression of inflammatory cytokines and receptors, nitric oxide and prostaglandin E2 (PGE(2)) production, and nitric oxide synthase 2 (NOS-2) and cyclooxygenase-2 (COX-2) gene expression. U. rigida acidic polysaccharides induced a more than two-fold increase in the expression of several chemokines (chemokine (C motif) ligand 1, chemokine (C-X-C motif) ligand 12, chemokine (C-C motif) ligand 22 and chemokine (C-X-C motif) ligand 14 (Cxcl14)) and in the expression of IL6 signal transducer and IL12 receptor beta 1. Incubation of macrophages with U. rigida polysaccharides also induced an increase in nitrite production, although this effect decreased considerably after desulphation of polysaccharides, suggesting that the sulphate group is important for the stimulatory capacity of these molecules. U. rigida polysaccharides also stimulated macrophage secretion of PGE(2) and induced an increase in COX-2 and NOS-2 expression. The results indicate that U. rigida acid polysaccharide can be used as an experimental immunostimulant for analysing inflammatory responses related to macrophage functions. In addition, these polysaccharides may also be of clinical interest for modifying certain macrophage activities in diseases where macrophage function is impaired or needs

  14. Application of zein-modified magnetite nanoparticles in dispersive magnetic micro-solid-phase extraction of synthetic food dyes in foodstuffs.

    Science.gov (United States)

    Jangju, Azam; Farhadi, Khalil; Hatami, Mehdi; Amani, Samireh; Esma-Ali, Farzan; Moshkabadi, Aisan; Hajilari, Fatemeh

    2017-03-01

    A simple method for the simultaneous and trace analysis of four synthetic food azo dyes including carmoisine, ponceau 4R, sunset yellow, and allura red from some foodstuff samples was developed by combining dispersive μ-solid-phase extraction and high-performance liquid chromatography with diode array detection. Zein-modified magnetic Fe 3 O 4 nanoparticles were prepared and used for μ-solid-phase extraction of trace amounts of mentioned food dyes. The prepared modified magnetic nanoparticles were characterized by scanning electron microscopy and FTIR spectroscopy. The factors affecting the extraction of the target analytes such as pH, amount of sorbent, extraction time, type and volume of the desorption eluent, and desorption time were investigated. Under the optimized conditions, the method provided good repeatability with relative standard deviations lower than 5.8% (n = 9). Limit of detection values ranged between 0.3 and 0.9 ng/mL with relatively high enrichment factors (224-441). Comparing the obtained results indicated that Fe 3 O 4 nanoparticles modified by zein biopolymer show better analytical application than bare magnetic nanoparticles. The proposed method was also applied for the determination of target synthetic food dyes in foodstuff samples such as carbonated beverage, snack, and candy samples. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Production of monosaccharides and bio-active compounds derived from marine polysaccharides using subcritical water hydrolysis.

    Science.gov (United States)

    Meillisa, Aviannie; Woo, Hee-Chul; Chun, Byung-Soo

    2015-03-15

    Polysaccharides are the major components of brown seaweed, accounting for approximately 40-65% of the total mass. The majority of the brown seaweed polysaccharides consists of alginate (40% of dry matter), a linear hetero-polysaccharides commonly developed in fields. However, depolymerisation of alginate is required to recover high-value compounds. In this report, depolymerisation was performed using subcritical water hydrolysis (SWH) at 180-260°C, with a ratio of material to water of 1:25 (w/v) and 1% formic acid as a catalyst. Sugar recovery was higher at low temperatures in the presence of catalyst. The antioxidant properties of Saccharina japonica showed the best activity at 180°C in the presence of a catalyst. The mass spectra produced using MALDI-TOF showed that polysaccharides and oligosaccharides were produced during hydrothermal treatment. Hydrolysis treatment at 180°C in the presence of a catalyst may be useful for modifying the structure of S. japonica and purified alginate. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Brown algae overproduce cell wall polysaccharides as a protection mechanism against the heavy metal toxicity

    International Nuclear Information System (INIS)

    Andrade, Leonardo R.; Leal, Raquel N.; Noseda, Miguel; Duarte, Maria Eugenia R.; Pereira, Mariana S.; Mourao, Paulo A.S.; Farina, Marcos; Amado Filho, Gilberto M.

    2010-01-01

    Brown algae are often used as heavy metal biomonitors and biosorbents because they can accumulate high concentrations of metals. Cation-exchange performed by cell wall polysaccharides is pointed out as the main chemical mechanism for the metal sequestration. Here, we biochemically investigated if the brown alga Padina gymnospora living in a heavy metal contaminated area would modify their polysaccharidic content. We exposed non-living biomass to Cd and Pb and studied the metals adsorption and localization. We found that raw dried polysaccharides, sulfate groups, uronic acids, fucose, mannose, and galactose were significantly higher in contaminated algae compared with the control ones. Metal concentrations adsorbed by non-living biomass were rising comparatively to the tested concentrations. Electron microscopy showed numerous granules in the cell walls and X-ray microanalysis revealed Cd as the main element. We concluded that P. gymnospora overproduces cell wall polysaccharides when exposed to high metal concentrations as a defense mechanism.

  17. Polysaccharide charge density regulating protein adsorption to air/water interfaces by protein/polysaccharide complex formation

    NARCIS (Netherlands)

    Ganzevles, R.A.; Kosters, H.; Vliet, T. van; Stuart, M.A.C.; Jongh, H.H.J. de

    2007-01-01

    Because the formation of protein/polysaccharide complexes is dominated by electrostatic interaction, polysaccharide charge density is expected to play a major role in the adsorption behavior of the complexes. In this study, pullulan (a non-charged polysaccharide) carboxylated to four different

  18. Use of polymers in oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Stanislav, J.F.

    Water-soluble polymers are used extensively in various stages of gas and oil production operations, typical examples being enhanced oil recovery, water production control, and well drilling. A variety of polymetric materials, both naturally occurring and synthetic ones, are currently used; guar and cellulose derivatives, xanthan gum, polysaccharides, polyacrylamides and others. In this work, only the application of polymeric materials to enhanced recovery processes is discussed.

  19. Impact of Industrial Grade Modified PVA to Vinyl Acetate Semi-continuous Emulsion Polymerization and Properties of Final Product

    Directory of Open Access Journals (Sweden)

    Mindaugas DUBININKAS

    2013-03-01

    Full Text Available Successful vinyl acetate radical emulsion polymerization in water with different type of industrial grade poly(vinyl alcohol were produced by semi continuous way. The poly(vinyl alcohol type has crucial impact on dispersion rheological as well on films and bonding strength properties. It should be stated that the films containing modified poly (vinyl alcohol has better water resistance and mechanical properties. Poly(vinyl alcohol with higher ethylene moieties content and high hydrolization degree determines extremely low viscosity of final dispersion.DOI: http://dx.doi.org/10.5755/j01.ms.19.1.3823

  20. Polymerization reactivity of sulfomethylated alkali lignin modified with horseradish peroxidase.

    Science.gov (United States)

    Yang, Dongjie; Wu, Xiaolei; Qiu, Xueqing; Chang, Yaqi; Lou, Hongming

    2014-03-01

    Alkali lignin (AL) was employed as raw materials in the present study. Sulfomethylation was conducted to improve the solubility of AL, while sulfomethylated alkali lignin (SAL) was further polymerized by horseradish peroxidase (HRP). HRP modification caused a significant increase in molecular weight of SAL which was over 20 times. It was also found to increase the amount of sulfonic and carboxyl groups while decrease the amount of phenolic and methoxyl groups in SAL. The adsorption quantity of self-assembled SAL film was improved after HRP modification. Sulfonation and HRP modification were mutually promoted. The polymerization reactivity of SAL in HRP modification was increased with its sulfonation degree. Meanwhile, HRP modification facilitated SAL's radical-sulfonation reaction. Copyright © 2014. Published by Elsevier Ltd.

  1. Waterproofing with polymeric geo synthetic barriers (GBR-P) in the manual for the design, construction, management and maintenance of reservoirs; La impermeabilizacion con barreras geosinteticas polimericas (GBR-P) en el manual para el diseno, construccion, explotacion y mantenimiento de balsas

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, M.; Cea, J. C.; Garcia, F.; Sanchez, F. J.; Castillo, F.; Mora, J.; Crespo, M. A.

    2010-07-01

    This article presents a part of Manual for the Design, Construction, Management and Maintenance of Reservoirs relative to waterproofing with Polymeric Geo synthetic Barriers (GBR-P). the nature materials of geo membranes is studied also theirs characteristics and specifications. (Author) 26 refs.

  2. Report for fiscal 1998 on results of research and development of silicon-based polymeric material; 1998 nendo keisokei kobunshi zairyo no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The research and development of 'silicon-based polymeric materials' has been implemented under ten year plan since 1991 by the research and development system for industrial science and technology, with the following subjects conducted in the general accounting section of fiscal 1998. In the research and development of the synthetic technology of electrically conductive silicon-based polymeric materials, a synthetic method was established for unsaturated side-chain group polysilanes as a basic structural unit for structuring multidimensions. In the research and development of the synthetic technology of new silicon-based polymeric materials capable of plotting circuits, network-shaped polysilanes with various amino groups introduced were synthesized, for which electrical conductivity and temperature dependency were measured. In the research and development of new silicon-based polymeric materials with an electro-luminous function and the like, polymeric synthesis began developing smoothly that has hole-transporting and electron transporting properties concerning the electro-luminous function. In the research and development of silicon-based photoelectric conversion materials, examination was made on the improvement of photoelectric conversion performance by materialization technology including lamination and mixture. The general investigation and research committee contrived further advancement of the research and development. (NEDO)

  3. Computer simulation and experimental study of the polysaccharide-polysaccharide interaction in the bacteria Azospirillum brasilense Sp245

    Science.gov (United States)

    Arefeva, Oksana A.; Kuznetsov, Pavel E.; Tolmachev, Sergey A.; Kupadze, Machammad S.; Khlebtsov, Boris N.; Rogacheva, Svetlana M.

    2003-09-01

    We have studied the conformational properties and molecular dynamics of polysaccharides by using molecular modeling methods. Theoretical and experimental results of polysaccharide-polysaccharide interactions are described.

  4. Water-soluble photopolymerizable chitosan hydrogels for biofabrication via two-photon polymerization.

    Science.gov (United States)

    Kufelt, Olga; El-Tamer, Ayman; Sehring, Camilla; Meißner, Marita; Schlie-Wolter, Sabrina; Chichkov, Boris N

    2015-05-01

    Fabrication of three-dimensional (3D) hydrogel microenvironments with predefined geometry and porosity can facilitate important requirements in tissue engineering and regenerative medicine. Chitosan (CH) is well known as a biocompatible hydrogel with prospective biological properties for biomedical aims. So far, microstructuring of this soft material presents a great limitation for its application as functional supporting material for guided tissue formation. Enabling photopolymerization, chemically modified CH can be applied for the biofabrication of reproducible 3D scaffolds using rapid prototyping techniques like two-photon polymerization (2PP) or others. The application of this technique allows precise serial fabrication of computer-designed microstructure geometries by scanning a femtosecond laser beam within a photosensitive material. This work explores a new synthesis of water-soluble photosensitive chitosan and the fabrication of well-defined microstructures from the generated materials. To modulate the mechanical and biochemical properties of the material, CH was combined and cross-linked with synthetic poly(ethylene glycol) diacrylate. For a biological adaption to the in vivo situation, CH was covalently crosslinked with a photosensitive modified vascular endothelial growth factor (VEGF). Performed in vitro studies reveal that modified CH is biocompatible. VEGF enhances CH bioactivity. Furthermore, a 3D CH scaffold can be successfully seeded with cells. Therefore, the established CH holds great promise for future applications in tissue engineering. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Development of novel hydrogels by modification of sterculia gum through radiation cross-linking polymerization for use in drug delivery

    International Nuclear Information System (INIS)

    Singh, Baljit; Vashishtha, Manu

    2008-01-01

    In order to modify the sterculia gum polysaccharide, to develop the hydrogels meant for the drug delivery, we have prepared sterculia gum, 2-hydroxyethylmethacrylate (HEMA) and acrylic acid (AAc) based hydrogels by radiation-induced crosslinking polymerization. Polymeric networks (hydrogels) thus formed were characterized with SEMs, FTIR,TGA and swelling studies which were carried out as a function monomers concentration, radiation dose, amount of sterculia contents in the polymer matrix and nature of the swelling medium. This paper discusses the swelling kinetics of the hydrogels and release dynamics of anti-diarrhea model drug ornidazole from the hydrogels to evaluation of swelling and drug release mechanism. Diffusion exponent 'n' have 0.73, 0.56 and 0.61 values and gel characteristic constant 'k' have 1.28 x 10 -2 , 2.95 x 10 -2 and 2.14 x 10 -2 values in distilled water, pH 2.2 buffer and pH 7.4 buffer. The release of drug from the polymer matrix occurred through non-Fickian diffusion mechanism. The values for the late time diffusion coefficients have been lower than the values of initial and average diffusion coefficients. It reflects that in the initial stages rate of release of drug from polymer matrix was higher as compared to the late stages, it means after certain time the drug release occurred in controlled manner

  6. Modified retrieval algorithm for three types of precipitation distribution using x-band synthetic aperture radar

    Science.gov (United States)

    Xie, Yanan; Zhou, Mingliang; Pan, Dengke

    2017-10-01

    The forward-scattering model is introduced to describe the response of normalized radar cross section (NRCS) of precipitation with synthetic aperture radar (SAR). Since the distribution of near-surface rainfall is related to the rate of near-surface rainfall and horizontal distribution factor, a retrieval algorithm called modified regression empirical and model-oriented statistical (M-M) based on the volterra integration theory is proposed. Compared with the model-oriented statistical and volterra integration (MOSVI) algorithm, the biggest difference is that the M-M algorithm is based on the modified regression empirical algorithm rather than the linear regression formula to retrieve the value of near-surface rainfall rate. Half of the empirical parameters are reduced in the weighted integral work and a smaller average relative error is received while the rainfall rate is less than 100 mm/h. Therefore, the algorithm proposed in this paper can obtain high-precision rainfall information.

  7. Initiation of MMA polymerization by iniferters based on dithiocarbamates

    Directory of Open Access Journals (Sweden)

    Jovanović Slobodan M.

    2005-01-01

    Full Text Available Twelve modified dithiocarbamates and a thiuramdisulfide used for the initiation of methyl methacrylate (MMA polymerization were synthesized in this study. The polymerization of MMA was followed by determine the yield and molar mass of the obtained PMMA as a function of polymerization time. Four of the synthesized dithiocarbamates S-benzyl-N,N-dibenzyldithiocarbamate, S-allyl-N,N-dibenzyldithiocarbamate S-benzyl-N,N-diisobutyldithiocarbamate and S-benzoyl-N,N-diisobutyldithiocarbamate, as well as N,N,N',N'-tetrabenzylthiuramdisulfide acted as iniferters. They were active as the initiators of the photo and/or thermally initiated radical polymerization of MMA in bulk and inert solvents (benzene and toluene. S Benzyl - N,N - dibenzyldithiocarbamate can be successfully used for the initiation of MMA polymerization in a polar solvent such as dimethylacetamide.

  8. Synthetically modified nano-cellulose for the removal of chromium: a green nanotech perspective.

    Science.gov (United States)

    Jain, Priyanka; Varshney, Shilpa; Srivastava, Shalini

    2017-02-01

    Existing processes for the decontamination of heavy metals from water are found to be cost-prohibitive and energy-intensive which is totally against the sustainable concept of development. Green nanotechnology for water purification for ecosystem management, agricultural and industry is an emerging as leading global priority and occupies better position over the current state of water purification. Herein, the diafunctionalised polyaniline modified nanocellulose composite sorbent (PANI-NCC) has been used to introduce amine and imine functionalities for the removal of trivalent and hexavalent chromium from water bodies. The fabricated nanobiomaterial has been authenticated by modern spectroscopic, microscopic techniques. The modified PANI-NCC is rod-like in shape, ~60 nm in size. The roughness and crystallinity index is also quantified and found to be 49.67 nm and 84.18%, respectively. The optimised experimental finding provides the efficient removal of trivalent [Cr(III)] (47.06 mg/g; 94.12%) and hexavalent [Cr(VI)] (48.92 mg/g; 97.84%) chromium from synthetic waste water. The fabricated nano biosorbent is deemed to be a potent biosorbent for technological development to remove the toxic metals in the real environmental water samples.

  9. Preparation, Physical-Chemical Characterization, and Cytocompatibility of Polymeric Calcium Phosphate Cements

    Directory of Open Access Journals (Sweden)

    Rania M. Khashaba

    2011-01-01

    Full Text Available Aim. Physicochemical mechanical and in vitro biological properties of novel formulations of polymeric calcium phosphate cements (CPCs were investigated. Methods. Monocalcium phosphate, calcium oxide, and synthetic hydroxyapatite were combined with either modified polyacrylic acid, light activated polyalkenoic acid, or polymethyl vinyl ether maleic acid to obtain Types I, II, and III CPCs. Setting time, compressive and diametral strength of CPCs was compared with zinc polycarboxylate cement (control. Specimens were characterized using X-ray diffraction, scanning electron microscopy, and infrared spectroscopy. In vitro cytotoxicity of CPCs and control was assessed. Results. X-ray diffraction analysis showed hydroxyapatite, monetite, and brushite. Acid-base reaction was confirmed by the appearance of stretching peaks in IR spectra of set cements. SEM revealed rod-like crystals and platy crystals. Setting time of cements was 5–12 min. Type III showed significantly higher strength values compared to control. Type III yielded high biocompatibility. Conclusions. Type III CPCs show promise for dental applications.

  10. Using polysaccharides against cancer

    Directory of Open Access Journals (Sweden)

    E. Azarnoosh

    2017-11-01

    Full Text Available Background and objectives: Nowadays cancer is one of the most important concerns of the society. The adverse effects of common therapeutics and resistance of some cancerous cells to treatment have brought the necessity of new approaches towards the issue. Polysaccharides are a group of carbohydrates found in natural sources. In the present article, our goal was to show the positive effects of carbohydrates (especially polysaccharides in cancer treatment, based on literature review. Methods: The literature review was carried out between 1990 and 2017 inclusive using the following search terms: cancer, carbohydrate and polysaccharide and was performed with use of Google scholar, Medline, Scopus, PubMed, Elsevier and other similar data banks, related to medicine and pharmaceutical fields. Results: Plants like Lyceum barbarum, Astragalus membrannceous, Panax ginseng, and Antrodia camphorate have been studied with promising effects in combating cancerous cells. The polysaccharides from these plants have benefits with numerous mechanisms such as apoptosis, inhibition of angiogenesis, anti-proliferation, immunomodulation, tumor suppression, and increase in macrophage activity. Other studies showed over 200 mushrooms with anticancer effects, especially basidiomycetes (e.g. Ganoderma lucidum. Sulfated polysaccharides found in sea and animals or even a few bacteria like E. coli showed to be useful in cancer. Conclusion: Scientists are realizing the importance of natural drugs and polysaccharide as good and available sources that could give a bright future for prevention, cure and palliative therapy in cancer.

  11. Energy and charge control in mass spectrometry of synthetic polymers

    NARCIS (Netherlands)

    Nasioudis, A.

    2011-01-01

    Synthetic polymers are the products of humans’ attempts to imitate nature’s gigantic molecular chain architectures. The extended variety of building blocks and reaction mechanisms resulted in a plethora of different polymeric architectures. The biggest challenge for polymer chemists is to develop an

  12. Antioxidant effects of polysaccharides from traditional Chinese medicines.

    Science.gov (United States)

    Liu, Yang; Huang, Gangliang

    2017-12-07

    Polysaccharides are a kind of biological macromolecules with immune regulation, anti-tumor, anti-radiation, anti-inflammation, anti-fatigue and anti-aging effects. These effects are related to their antioxidant properties. The action mechanisms of antioxidation and scavenging free radicals for polysaccharides were reviewed. The polysaccharides contain plant polysaccharides, animal polysaccharides and microbial polysaccharides. The recent research progresses and our work on antioxidant properties of polysaccharides and their derivatives were summarized. At last, the existing problems of antioxidant polysaccharides were analyzed, and the development prospects were also presented. It is important to study the antioxidant activities of polysaccharides and their derivatives for the development of natural antioxidants. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Optical Fiber Sensors Based on Polymeric Sensitive Coatings

    Directory of Open Access Journals (Sweden)

    Pedro J. Rivero

    2018-03-01

    Full Text Available Polymer technology is one of the fastest growing fields of contemporary research due to the possibility of using a wide variety of synthetic chemical routes for obtaining a polymeric network with a well-defined structure, resulting in materials with outstanding macroscopic properties. Surface engineering techniques based on the implementation of polymeric structures can be used as an interesting tool for the design of materials with functional properties. In this sense, the use of fabrication techniques for the design of nanostructured polymeric coatings is showing an important growth due to the intrinsic advantages of controlling the structure at a nanoscale level because physical, chemical, or optical properties can be considerably improved in comparison with the bulk materials. In addition, the presence of these sensitive polymeric coatings on optical fiber is a hot topic in the scientific community for its implementation in different market niches because a wide variety of parameters can be perfectly measured with a high selectivity, sensitivity, and fast response time. In this work, the two main roles that a polymeric sensitive matrix can play on an optical fiber for sensing applications are evaluated. In a first section, the polymers are used as a solid support for the immobilization of specific sensitive element, whereas in the second section the polymeric matrix is used as the chemical transducer itself. Additionally, potential applications of the optical fiber sensors in fields as diverse as biology, chemistry, engineering, environmental, industry or medicine will be presented in concordance with these two main roles of the polymeric sensitive matrices.

  14. Isolation and characterization of inulin with a high degree of polymerization from roots of Stevia rebaudiana (Bert.) Bertoni.

    Science.gov (United States)

    Lopes, Sheila M S; Krausová, Gabriela; Rada, Vojtěch; Gonçalves, José E; Gonçalves, Regina A C; de Oliveira, Arildo J B

    2015-06-26

    The polysaccharide inulin has great importance in the food and pharmaceutical industries. The degree of polymerization (DP) of inulin influences important properties, such as, solubility, thermal stability, sweetness power and prebiotic activity. Molecules with a high degree of polymerization are obtained through physical techniques for enrichment of the inulin chains because they are not commonly obtained from plants extract. Gas chromatography/Mass Spectrometry and (1)H Nuclear Magnetic Resonance analysis showed that inulin from Stevia rebaudiana roots has a degree of polymerization (DPn 28) higher than the value of DPn 12-15 for inulins from other plant species. Furthermore, the methodology of freeze/thaw to enrich the chains allowed us to increase the DP, similarly to other methodologies used for the enrichment of inulin chains. The prebiotic assays confirm that inulin from S. rebaudiana has a high DP. The combined use of these molecules with low degree of polymerization fructans seems to be advantageous to prolong the prebiotic effect in the colon. Our results suggest that S. rebaudiana roots are a promising source of high degree polymerization inulins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Polysaccharide production in batch process of Neisseria meningitidis serogroup C comparing Frantz, modified Frantz and Cartlin 6 cultivation media Produção de polissacarídeo em processo de cultivo descontínuo de Neisseria meningitidis sorogrupo C comparando os meios de cultivo Frantz, Frantz modificado e Catlin 6

    Directory of Open Access Journals (Sweden)

    Marcelo Fossa da Paz

    2003-04-01

    Full Text Available Polysaccharide of N. meningitidis serogroup C constitutes the antigen for the vaccine against meningitis. The goal of this work was to compare three cultivation media for production of this polysaccharide: Frantz, modified Frantz medium (with replacement of glucose by glycerol, and Catlin 6 (a synthetic medium with glucose. The comparative criteria were based on the final polysaccharide concentrations and the yield coefficient cell/polysaccharide (Y P/X. The kinetic parameters: pH, substrate consumption and cell growth were also determined. For this purpose, 9 cultivation runs were carried out in a 80 L New Brunswick bioreactor, under the following conditions: 42 L of culture medium, temperature 35ºC, air flow 5 L/min, agitation frequency 120 rpm and vessel pressure 6 psi, without dissolved oxygen or pH controls. The cultivation runs were divided in three groups, with 3 repetitions each. The cultivation using the Frantz medium presented the best results: average of final polysaccharide concentration = 0.134 g/L and Y P/X=0.121, followed by Catlin 6 medium, with results of 0.095 g/L and 0.067 respectively. Considering the principal advantages in the use of the synthetic medium, i.e. facilitation of a cultivation and purification steps of the polysaccharide production process, there is a possibility that in the near future, Catlin 6 will replace the traditional Frantz medium.O polissacarídeo de N. meningitidis sorogrupo C constitui o antígeno para a elaboração da vacina contra a meningite C. O objetivo deste trabalho foi comparar três meios de cultivo para produção desse polissacarídeo: Frantz, Frantz modificado (com a substituição de glicose por glicerol e Catlin 6 (meio sintético com glicose. Os critérios comparativos foram baseados nas concentrações finais de polissacarídeo e o fator de conversão célula/polissacarídeo (Y P/X. Também foram determinados os parâmetros cinéticos de pH, consumo de substrato e crescimento

  16. Adherence to synthetic disease-modifying Antirheumatic Drugs in Rheumatoid Arthritis: Results of the OBSERVAR Study.

    Science.gov (United States)

    Juan Mas, Antonio; Castañeda, Santos; Cantero Santamaría, José I; Baquero, José L; Del Toro Santos, Francisco J

    2017-12-27

    Treatment compliance with disease-modifying antirheumatic drugs (DMARD) is essential to achieve the therapeutic goals in rheumatoid arthritis (RA). However, despite the need for good compliance, there is evidence that patients with RA frequently fail to use DMARD for the control of RA. Thus, the main objective of the OBSERVAR study is to evaluate the reasons for the lack of therapeutic adherence to synthetic DMARD in these patients. A Delphi process involving 18 randomly selected Spanish rheumatologists determined the level of agreement with 66 causes of noncompliance selected from the literature in relation to synthetic DMARD in RA. The reasons for noncompliance were consistent in 75.7%, although 3 reasons (4.5%) were highly consistent: 1) not knowing what to do in the case of an adverse event with DMARD; 2) not having undergone adherence screening by health personnel for early detection of "noncompliant patients"; and 3) not having undergone interventions or strategies that improve adherence. In order to improve adherence to RA treatment with synthetic DMARD, the patient should be adequately informed of each new treatment introduced, the patient's compliance profile should be incorporated into the clinical routine and the patient's motivation for therapeutic compliance be reinforced through the methods available to us. Copyright © 2017 Elsevier España, S.L.U. and Sociedad Española de Reumatología y Colegio Mexicano de Reumatología. All rights reserved.

  17. Drag reduction by natural polymeric additives in PMDS microchannel: Effect of types of additives

    OpenAIRE

    Ling Fiona W.M.; Abdulbari Hayder A.

    2017-01-01

    Drag reduction technology was used in medical applications to enhance the blood flow in semiclogged blood streams which can be an alternative treatment for atherosclerosis. In this present study, natural polymeric drag reducing additives (DRA) was introduced to replace synthetic polymer which has the possibility of bringing side effects to human health. Three different sources, namely okra, aloe vera and hibiscus were utilized to extract the natural polymeric additives which were then tested ...

  18. Protease-sensitive synthetic prions.

    Directory of Open Access Journals (Sweden)

    David W Colby

    2010-01-01

    Full Text Available Prions arise when the cellular prion protein (PrP(C undergoes a self-propagating conformational change; the resulting infectious conformer is designated PrP(Sc. Frequently, PrP(Sc is protease-resistant but protease-sensitive (s prions have been isolated in humans and other animals. We report here that protease-sensitive, synthetic prions were generated in vitro during polymerization of recombinant (rec PrP into amyloid fibers. In 22 independent experiments, recPrP amyloid preparations, but not recPrP monomers or oligomers, transmitted disease to transgenic mice (n = 164, denoted Tg9949 mice, that overexpress N-terminally truncated PrP. Tg9949 control mice (n = 174 did not spontaneously generate prions although they were prone to late-onset spontaneous neurological dysfunction. When synthetic prion isolates from infected Tg9949 mice were serially transmitted in the same line of mice, they exhibited sPrP(Sc and caused neurodegeneration. Interestingly, these protease-sensitive prions did not shorten the life span of Tg9949 mice despite causing extensive neurodegeneration. We inoculated three synthetic prion isolates into Tg4053 mice that overexpress full-length PrP; Tg4053 mice are not prone to developing spontaneous neurological dysfunction. The synthetic prion isolates caused disease in 600-750 days in Tg4053 mice, which exhibited sPrP(Sc. These novel synthetic prions demonstrate that conformational changes in wild-type PrP can produce mouse prions composed exclusively of sPrP(Sc.

  19. Electrospinning of Nanodiamond-Modified Polysaccharide Nanofibers with Physico-Mechanical Properties Close to Natural Skins

    Directory of Open Access Journals (Sweden)

    Mina Mahdavi

    2016-07-01

    Full Text Available Electrospinning of biopolymers has gained significant interest for the fabrication of fibrous mats for potential applications in tissue engineering, particularly for wound dressing and skin regeneration. In this study, for the first time, we report successful electrospinning of chitosan-based biopolymers containing bacterial cellulous (33 wt % and medical grade nanodiamonds (MND (3 nm; up to 3 wt %. Morphological studies by scanning electron microscopy showed that long and uniform fibers with controllable diameters from 80 to 170 nm were prepared. Introducing diamond nanoparticles facilitated the electrospinning process with a decrease in the size of fibers. Fourier transform infrared spectroscopy determined hydrogen bonding between the polymeric matrix and functional groups of MND. It was also found that beyond 1 wt % MND, percolation networks of nanoparticles were formed which affected the properties of the nanofibrous mats. Uniaxial tensile testing of the woven mats determined significant enhancement of the strength (from 13 MPa to 25 MP by dispersion of 1 wt % MND. The hydrophilicity of the mats was also remarkably improved, which was favorable for cell attachment. The water vapor permeability was tailorable in the range of 342 to 423 µg·Pa−1·s−1·m−1. The nanodiamond-modified mats are potentially suitable for wound healing applications.

  20. Electrospinning of Nanodiamond-Modified Polysaccharide Nanofibers with Physico-Mechanical Properties Close to Natural Skins

    Science.gov (United States)

    Mahdavi, Mina; Mahmoudi, Nafiseh; Rezaie Anaran, Farzad; Simchi, Abdolreza

    2016-01-01

    Electrospinning of biopolymers has gained significant interest for the fabrication of fibrous mats for potential applications in tissue engineering, particularly for wound dressing and skin regeneration. In this study, for the first time, we report successful electrospinning of chitosan-based biopolymers containing bacterial cellulous (33 wt %) and medical grade nanodiamonds (MND) (3 nm; up to 3 wt %). Morphological studies by scanning electron microscopy showed that long and uniform fibers with controllable diameters from 80 to 170 nm were prepared. Introducing diamond nanoparticles facilitated the electrospinning process with a decrease in the size of fibers. Fourier transform infrared spectroscopy determined hydrogen bonding between the polymeric matrix and functional groups of MND. It was also found that beyond 1 wt % MND, percolation networks of nanoparticles were formed which affected the properties of the nanofibrous mats. Uniaxial tensile testing of the woven mats determined significant enhancement of the strength (from 13 MPa to 25 MP) by dispersion of 1 wt % MND. The hydrophilicity of the mats was also remarkably improved, which was favorable for cell attachment. The water vapor permeability was tailorable in the range of 342 to 423 µg·Pa−1·s−1·m−1. The nanodiamond-modified mats are potentially suitable for wound healing applications. PMID:27399726

  1. Electrospinning of Nanodiamond-Modified Polysaccharide Nanofibers with Physico-Mechanical Properties Close to Natural Skins.

    Science.gov (United States)

    Mahdavi, Mina; Mahmoudi, Nafiseh; Rezaie Anaran, Farzad; Simchi, Abdolreza

    2016-07-07

    Electrospinning of biopolymers has gained significant interest for the fabrication of fibrous mats for potential applications in tissue engineering, particularly for wound dressing and skin regeneration. In this study, for the first time, we report successful electrospinning of chitosan-based biopolymers containing bacterial cellulous (33 wt %) and medical grade nanodiamonds (MND) (3 nm; up to 3 wt %). Morphological studies by scanning electron microscopy showed that long and uniform fibers with controllable diameters from 80 to 170 nm were prepared. Introducing diamond nanoparticles facilitated the electrospinning process with a decrease in the size of fibers. Fourier transform infrared spectroscopy determined hydrogen bonding between the polymeric matrix and functional groups of MND. It was also found that beyond 1 wt % MND, percolation networks of nanoparticles were formed which affected the properties of the nanofibrous mats. Uniaxial tensile testing of the woven mats determined significant enhancement of the strength (from 13 MPa to 25 MP) by dispersion of 1 wt % MND. The hydrophilicity of the mats was also remarkably improved, which was favorable for cell attachment. The water vapor permeability was tailorable in the range of 342 to 423 µg·Pa(-1)·s(-1)·m(-1). The nanodiamond-modified mats are potentially suitable for wound healing applications.

  2. The Synthesis of Cellulose Graft Copolymers Using Cu(0)-Mediated Polymerization

    Science.gov (United States)

    Donaldson, Jason L.

    Cellulose is the most abundant renewable polymer on the planet and there is great interest in expanding its use beyond its traditional applications. However, its hydrophilicity and insolubility in most common solvent systems are obstacles to its widespread use in advanced materials. One way to counteract this is to attach hydrophobic polymer chains to cellulose: this allows the properties of the copolymer to be tailored by the molecular weight, density, and physical properties of the grafts. Two methods were used here to synthesize the graft copolymers: a 'grafting-from' approach, where synthetic chains were grown outward from bromoester moieties on cellulose (Cell-BiB) via Cu(0)-mediated polymerization; and a 'grafting-to' approach, where fully formed synthetic chains with terminal sulfide functionality were added to cellulose acetate with methacrylate functionality (CA-MAA) via thiol-ene Michael addition. The Cell-BiB was synthesized in the ionic liquid 1-butyl-3-methylimidazolium chloride and had a degree of substitution of 1.13. Polymerization from Cell-BiB proceeded at similar but slightly slower rate than an analogous non-polymeric initiator (EBiB). The average graft density of poly(methyl acrylate) chains was 0.71 chains/ring, with a maximum of 1.0 obtained. The graft density when grafting poly(methyl methacrylate) was only 0.15, and this appeared to be due to the slow initiation of BiB groups. Using EBiB to model the reaction and improve the design should allow this to be overcome. Chain extension experiments demonstrated the living behaviour of the polymer. The CA-MAA was synthesized by esterification with methacrylic acid. Reactions of CA-MAA with thiophenol and dodecanethiol resulted in quantitative addition of the thiol to the alkene. The grafts were synthesized by Cu(0)-mediated polymerization from a bifunctional initiator containing a disulfide bond, followed by reduction to sulfides. The synthetic polymers were successfully grafted to CA-MAA but the

  3. Surface modification of polymeric substrates by plasma-based ion implantation

    Science.gov (United States)

    Okuji, S.; Sekiya, M.; Nakabayashi, M.; Endo, H.; Sakudo, N.; Nagai, K.

    2006-01-01

    Plasma-based ion implantation (PBII) as a tool for polymer modification is studied. Polymeric films have good performances for flexible use, such as food packaging or electronic devices. Compared with inorganic rigid materials, polymers generally have large permeability for gases and moisture, which causes packaged contents and devices to degrade. In order to add a barrier function, surface of polymeric films are modified by PBII. One of the advantageous features of this method over deposition is that the modified surface does not have peeling problem. Besides, micro-cracks due to mechanical stress in the modified layer can be decreased. From the standpoint of mass production, conventional ion implantation that needs low-pressure environment of less than 10-3 Pa is not suitable for continuous large-area processing, while PBII works at rather higher pressure of several Pa. In terms of issues mentioned above, PBII is one of the most expected techniques for modification on flexible substrates. However, the mechanism how the barrier function appears by ion implantation is not well explained so far. In this study, various kinds of polymeric films, including polyethyleneterephthalate (PET), are modified by PBII and their barrier characteristics that depend on the ion dose are evaluated. In order to investigate correlations of the barrier function with implanted ions, modified surface is analyzed with X-ray photoelectron spectroscopy (XPS). It is assumed that the diffusion and sorption coefficients are changed by ion implantation, resulting in higher barrier function.

  4. Surface modification of polymeric substrates by plasma-based ion implantation

    International Nuclear Information System (INIS)

    Okuji, S.; Sekiya, M.; Nakabayashi, M.; Endo, H.; Sakudo, N.; Nagai, K.

    2006-01-01

    Plasma-based ion implantation (PBII) as a tool for polymer modification is studied. Polymeric films have good performances for flexible use, such as food packaging or electronic devices. Compared with inorganic rigid materials, polymers generally have large permeability for gases and moisture, which causes packaged contents and devices to degrade. In order to add a barrier function, surface of polymeric films are modified by PBII. One of the advantageous features of this method over deposition is that the modified surface does not have peeling problem. Besides, micro-cracks due to mechanical stress in the modified layer can be decreased. From the standpoint of mass production, conventional ion implantation that needs low-pressure environment of less than 10 -3 Pa is not suitable for continuous large-area processing, while PBII works at rather higher pressure of several Pa. In terms of issues mentioned above, PBII is one of the most expected techniques for modification on flexible substrates. However, the mechanism how the barrier function appears by ion implantation is not well explained so far. In this study, various kinds of polymeric films, including polyethyleneterephthalate (PET), are modified by PBII and their barrier characteristics that depend on the ion dose are evaluated. In order to investigate correlations of the barrier function with implanted ions, modified surface is analyzed with X-ray photoelectron spectroscopy (XPS). It is assumed that the diffusion and sorption coefficients are changed by ion implantation, resulting in higher barrier function

  5. Constructing Functional Ionic Membrane Surface by Electrochemically Mediated Atom Transfer Radical Polymerization

    Directory of Open Access Journals (Sweden)

    Fen Ran

    2016-01-01

    Full Text Available The sodium polyacrylate (PAANa contained polyethersulfone membrane that was fabricated by preparation of PES-NH2 via nonsolvent phase separation method, the introduction of bromine groups as active sites by grafting α-Bromoisobutyryl bromide, and surface-initiated electrochemically atom transfer radical polymerization (SI-eATRP of sodium acrylate (AANa on the surface of PES membrane. The polymerization could be controlled by reaction condition, such as monomer concentration, electric potential, polymerization time, and modifier concentration. The membrane surface was uniform when the monomer concentration was 0.9 mol/L, the electric potential was −0.12 V, the polymerization time was 8 h, and the modifier concentration was 2 wt.%. The membrane showed excellent hydrophilicity and blood compatibility. The water contact angle decreased from 84° to 68° and activated partial thromboplastin increased from 51 s to 84 s after modification of the membranes.

  6. Polysaccharide components from the scape of Musa paradisiaca: main structural features of water-soluble polysaccharide component.

    Science.gov (United States)

    Anjaneyalu, Y V; Jagadish, R L; Raju, T S

    1997-06-01

    Polysaccharide components present in the pseudo-stem (scape) of M. paradisiaca were purified from acetone powder of the scape by delignification followed by extraction with aqueous solvents into water soluble polysaccharide (WSP), EDTA-soluble polysaccharide (EDTA-SP), alkali-soluble polysaccharide (ASP) and alkali-insoluble polysaccharide (AISP) fractions. Sugar compositional analysis showed that WSP and EDTA-SP contained only D-Glc whereas ASP contained D-Glc, L-Ara and D-Xyl in approximately 1:1:10 ratio, respectively, and AISP contained D-Glc, L-Ara and D-Xyl in approximately 10:1:2 ratio, respectively. WSP was further purified by complexation with iso-amylalcohol and characterized by specific rotation, IR spectroscopy, Iodine affinity, ferricyanide number, blue value, hydrolysis with alpha-amylase and glucoamylase, and methylation linkage analysis, and shown to be a amylopectin type alpha-D-glucan.

  7. A comprehensive study of soft magnetic materials based on FeSi spheres and polymeric resin modified by silica nanorods

    International Nuclear Information System (INIS)

    Strečková, M.; Füzer, J.; Kobera, L.; Brus, J.; Fáberová, M.; Bureš, R.; Kollár, P.; Lauda, M.; Medvecký, Ĺ.; Girman, V.; Hadraba, H.; Bat'ková, M.; Bat'ko, I.

    2014-01-01

    A novel soft magnetic composite (SMC) based on spherical FeSi particles precisely covered by hybrid phenolic resin was designed. The hybrid resin including silica nano-rods chemically incorporated into the phenolic polymer matrix was prepared by the modified sol–gel method. A chemical bridge connecting silica nano-rods with the base polymeric net was verified by FTIR, 13 C and 29 Si NMR spectroscopy, whereas the shape and size of silica nano-rods were determined by TEM. It is shown that the modification of polymeric resin by silica nano-rods generally leads to the improved thermal and mechanical properties of the final samples. The hybrid resin serves as a perfect insulating coating deposited on FeSi particles and the core–shell particles can be further compacted by standard powder metallurgy methods in order to prepare final samples for mechanical, electric and magnetic testing. SEM images evidence negligible porosity, uniform distribution of the hybrid resin around FeSi particles, as well as, dimensional shape stability of the final samples after thermal treatment. The hardness, flexural strength and density of the final samples are comparable to the sintered SMCs, but they simultaneously exhibit much higher specific resistivity along with only slightly lower coercivity and permeability. - Highlights: • Soft magnetic composites are designed for electrotechnical applications. • Electroinsulating layer consists of phenolic resin modified with silica nano-rods. • NMR, FTIR and DSC analysis is used to characterize hybrid resin. • Spherical Fe–Si particles covered by hybrid resin form a core–shell composite. • Mechanical, electrical and magnetic properties are described in detail

  8. Morphological study and thermal analysis of surface modified α-FeOOH via in situ polymerization of methyl methacrylate

    International Nuclear Information System (INIS)

    Han Yaoxing; Ma Xinsheng; Cao Hongming; Zhang Haiying; Wu Qiufang

    2004-01-01

    Considering the interfacial characteristics of goethite (α-FeOOH, iron oxide yellow), the in situ polymerization of methyl methacrylate was employed to modify the surfaces of α-FeOOH pigments in aqueous slurry. The scanning electron micrographs indicated that the poly(methyl methacrylate) anchored on the surfaces of the particle homogeneously. From this study, it was found that one of the key requirements in the synthesis of the α-FeOOH-PMMA composite was to enhance interfacial compatibility between inorganic particles and organic monomer. Moreover, polymer-treated α-FeOOH particles were easily dispersed in organic medium to form a stable colloid and the heat resistance of α-FeOOH particles was improved

  9. Polymeric nanoparticles developed by vitamin E-modified aliphatic polycarbonate polymer to promote oral absorption of oleanolic acid

    Directory of Open Access Journals (Sweden)

    Wenjuan Zhang

    2017-11-01

    Full Text Available Oleanolic acid (OA exhibited good pharmacological activities in the clinical treatment of hypoglycemia, immune regulation, acute jaundice and chronic toxic hepatitis. However, the oral delivery of OA is greatly limited by its inferior water solubility and poor intestinal mucosa permeability. Herein, we developed a novel polymeric nanoparticle (NP delivery system based on vitamin E modified aliphatic polycarbonate (mPEG-PCC-VE to facilitate oral absorption of OA. OA encapsulated mPEG-PCC-VE NPs (OA/mPEG-PCC-VE NPs showed uniform particle size of about 170 nm with high drug loading capability (8.9%. Furthermore, the polymeric mPEG-PCC-VE NPs, with good colloidal stability and pH-sensitive drug release characteristics, significantly enhanced the in vitro dissolution of OA in the alkaline medium. The in situ single pass intestinal perfusion (SPIP studies performed on rats demonstrated that the OA/mPEG-PCC-VE NPs showed significantly improved permeability in the whole intestinal tract when compared to OA solution, especially for duodenum and colon. As a result, the in vivo pharmacokinetics study indicated that the bioavailability of OA/mPEG-PCC-VE NPs showed 1.5-fold higher than commercially available OA tablets. These results suggest that mPEG-PCC-VE NPs are a promising platform to facilitate the oral delivery of OA.

  10. Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications

    International Nuclear Information System (INIS)

    Bakhshayesh, A.M.; Mohammadi, M.R.

    2013-01-01

    A novel simple synthetic procedure for fabrication of high surface area nanostructured TiO 2 electrode with uniform particles for photovoltaic application is reported. Modifying the TiO 2 particulate sol by pH adjustment together with employment of a polymeric agent, so-called polymeric gel process, was developed. The polymeric gel process was used to deposit nanostructured thick electrode by dip coating incorporated in dye-sensitized solar cells (DSSCs). X-ray diffraction (XRD) analysis revealed that deposited film was composed of primary nanoparticles with average crystallite size in the range 21-39 nm. Field emission scanning electron microscope (FE-SEM) images showed that deposited film had nanostructured and porous morphology containing uniform spherical particles with diameter about 2.5 μm. The spherical particles were made of small nanoparticles with average grain size of 60 nm improving light scattering and dye loading of the DSSC. Moreover, atomic force microscope (AFM) analysis verified that the roughness mean square of prepared electrode was low, enhancing electron transport to the counter electrode. Photovoltaic measurements showed that solar cell made of polymeric gel process had higher photovoltaic performance than that made of conventional paste. An enhancement of power conversion efficiency from 4.54%, for conventional paste, to 6.21%, for polymeric gel process, was achieved. Electrochemical impedance spectroscopy (EIS) study showed that the recombination process in solar cell made of polymeric gel process was slower than that in solar cell made of conventional paste. The presented strategy would open up new insight into fabrication of low-cost TiO 2 DSSCs with high power conversion efficiency

  11. Synthesis and immunological evaluation of protein conjugates of Neisseria meningitidis X capsular polysaccharide fragments

    Directory of Open Access Journals (Sweden)

    Laura Morelli

    2014-10-01

    Full Text Available A vaccine to prevent infections from the emerging Neisseria meningitidis X (MenX is becoming an urgent issue. Recently MenX capsular polysaccharide (CPS fragments conjugated to CRM197 as carrier protein have been confirmed at preclinical stage as promising candidates for vaccine development. However, more insights about the minimal epitope required for the immunological activity of MenX CPS are needed. We report herein the chemical conjugation of fully synthetic MenX CPS oligomers (monomer, dimer, and trimer to CRM197. Moreover, improvements in some crucial steps leading to the synthesis of MenX CPS fragments are described. Following immunization with the obtained neoglycoconjugates, the conjugated trimer was demonstrated as the minimal fragment possessing immunogenic activity, even though significantly lower than a pentadecamer obtained from the native polymer and conjugated to the same protein. This finding suggests that oligomers longer than three repeating units are possibly needed to mimic the activity of the native polysaccharide.

  12. Microorganism Utilization for Synthetic Milk

    Science.gov (United States)

    Morford, Megan A.; Khodadad, Christina L.; Caro, Janicce I.; Spencer, LaShelle E.; Richards, Jeffery T.; Strayer, Richard F.; Birmele, Michele N.; Wheeler, Raymond M.

    2014-01-01

    A desired architecture for long duration spaceflight, like aboard the International Space Station or for future missions to Mars, is to provide a supply of fresh food crops for the astronauts. However, some crops can create a high proportion of inedible plant waste. The main goal of the Synthetic Biology project, Cow in a Column, was to produce the components of milk (sugar, lipid, protein) from inedible plant waste by utilizing microorganisms (fungi, yeast, bacteria). Of particular interest was utilizing the valuable polysaccharide, cellulose, found in plant waste, to naturally fuel-through microorganism cellular metabolism- the creation of sugar (glucose), lipid (milk fat), and protein (casein) in order to produce a synthetic edible food product. Environmental conditions such as pH, temperature, carbon source, aeration, and choice microorganisms were optimized in the laboratory and the desired end-products, sugars and lipids, were analyzed. Trichoderma reesei, a known cellulolytic fungus, was utilized to drive the production of glucose, with the intent that the produced glucose would serve as the carbon source for milk fat production and be a substitute for the milk sugar lactose. Lipid production would be carried out by Rhodosporidium toruloides, yeast known to accumulate those lipids that are typically found in milk fat. Results showed that glucose and total lipid content were below what was expected during this phase of experimentation. In addition, individual analysis of six fatty acids revealed that the percentage of each fatty acid was lower than naturally produced bovine milk. Overall, this research indicates that microorganisms could be utilized to breakdown inedible solid waste to produce useable products. For future work, the production of the casein protein for milk would require the development of a genetically modified organism, which was beyond the scope of the original project. Additional trials would be needed to further refine the required

  13. Advances on Bioactive Polysaccharides from Medicinal Plants.

    Science.gov (United States)

    Xie, Jian-Hua; Jin, Ming-Liang; Morris, Gordon A; Zha, Xue-Qiang; Chen, Han-Qing; Yi, Yang; Li, Jing-En; Wang, Zhi-Jun; Gao, Jie; Nie, Shao-Ping; Shang, Peng; Xie, Ming-Yong

    2016-07-29

    In recent decades, the polysaccharides from the medicinal plants have attracted a lot of attention due to their significant bioactivities, such as anti-tumor activity, antioxidant activity, anticoagulant activity, antidiabetic activity, radioprotection effect, anti-viral activity, hypolipidemic and immunomodulatory activities, which make them suitable for medicinal applications. Previous studies have also shown that medicinal plant polysaccharides are non-toxic and show no side effects. Based on these encouraging observations, most researches have been focusing on the isolation and identification of polysaccharides, as well as their bioactivities. A large number of bioactive polysaccharides with different structural features and biological effects from medicinal plants have been purified and characterized. This review provides a comprehensive summary of the most recent developments in physiochemical, structural features and biological activities of bioactive polysaccharides from a number of important medicinal plants, such as polysaccharides from Astragalus membranaceus, Dendrobium plants, Bupleurum, Cactus fruits, Acanthopanax senticosus, Angelica sinensis (Oliv.) Diels, Aloe barbadensis Miller, and Dimocarpus longan Lour. Moreover, the paper has also been focused on the applications of bioactive polysaccharides for medicinal applications. Recent studies have provided evidence that polysaccharides from medicinal plants can play a vital role in bioactivities. The contents and data will serve as a useful reference material for further investigation, production, and application of these polysaccharides in functional foods and therapeutic agents.

  14. Synthetic approaches towards new polymer systems by the combination of living carbocationic and anionic polymerizations

    DEFF Research Database (Denmark)

    Feldthusen, Jesper; Ivan, Bela; Muller, Axel. H.E.

    1996-01-01

    Recent efforts to obtain block copolymers by combination of living carbocationic and anionic polymerizations are presented.When tolyl-ended polyisobutylene was used as macroinitiator of anionic polymerization of methacrylate derivatives mixtures of homopolymers and block copolymers were formed due...... to incomplete lithiation of this chain end.In another approach a new functionalization method was developed by end-quenching living polyisobutylene with 1,1-diphenylethylene. After transformation of the groups into 2,2-diphenylvinyl end groups and lithiation polymers were synthesized from protected acrylate...

  15. Structural analysis of cell wall polysaccharides using PACE

    Energy Technology Data Exchange (ETDEWEB)

    Mortimer, Jennifer C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Joint BioEnergy Institute

    2017-01-01

    The plant cell wall is composed of many complex polysaccharides. The composition and structure of the polysaccharides affect various cell properties including cell shape, cell function and cell adhesion. Many techniques to characterize polysaccharide structure are complicated, requiring expensive equipment and specialized operators e.g. NMR, MALDI-MS. PACE (Polysaccharide Analysis using Carbohydrate gel Electrophoresis) uses a simple, rapid technique to analyze polysaccharide quantity and structure (Goubet et al. 2002). Whilst the method here describes xylan analysis, it can be applied (by use of the appropriate glycosyl hydrolase) to any cell wall polysaccharide.

  16. Immunomodulatory effects of hydroxyethylated Hericium erinaceus polysaccharide on macrophages RAW264.7.

    Science.gov (United States)

    Ren, Zhe; Qin, Tao; Qiu, Fuan; Song, Yulong; Lin, Dandan; Ma, Yufang; Li, Jian; Huang, Yifan

    2017-12-01

    Hericium erinaceus polysaccharide (HEP) has been shown to possess a variety of biological activities. In present study, HEP was successfully modified to obtain its hydroxyethylated derivative hHEP. Its potential immunomodulatory activities on RAW264.7 macrophages were investigated. Results showed that the hHEP were significantly stronger than that of the corresponding unmodified polysaccharide, HEP. Meanwhile, the NO, IL-6 and TNF-α production activities of macrophages were enhanced in the RAW264.7 macrophages by stimulation of hHEP. In addition, the hHEP increase significantly higher iNOS expression than HEP. These results indicated that the hydroxyethylated derivative hHEP could enhance the activation of peritoneal macrophages, and hydroxyethylation modification can enhance the immunomodulation function of HEP. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effect of the molecular weight of a neutral polysaccharide on soy protein gelation.

    Science.gov (United States)

    Monteiro, Sónia R; Lopes-da-Silva, José A

    2017-12-01

    The effects of galactomannans with different molecular weights on the heat-induced gelation characteristics of soybean protein were investigated using dynamic small-strain rheometry, under conditions where the proteins carry a net negative charge (pH7). Microstructure of the resulting gels was investigated by confocal laser scanning microscopy. Phase-separated systems were obtained with different morphologies and degree of phase separation, depending on both biopolymer concentrations and polysaccharide molecular weight. In general, a gelling enhancing effect on soy proteins was verified, despite extensive phase-separation processes observed at the higher polysaccharide molecular weight. This effect was demonstrated by an increase of the gelation rate, a decrease in the temperature at the onset of gelation, and an increase of gel stiffness and elastic character, with the length of polysaccharide chains. Overall, the results obtained established that the judicious selection of the galactomannan molecular weight may be used to modify the structure and gelation properties of soy proteins, originating a diversity of rheological characteristics and microstructures that will impact on the design of novel food formulations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Poly(acrylic acid) modifying bentonite with in-situ polymerization for removing lead ions.

    Science.gov (United States)

    He, Y F; Zhang, L; Yan, D Z; Liu, S L; Wang, H; Li, H R; Wang, R M

    2012-01-01

    In this paper, a new kind of poly(acrylic acid) modified clay adsorbent, the poly(acrylic acid)/bentonite composite (PAA/HB) was prepared by in-situ polymerization, and utilized to remove lead(II) ions from solutions. The maximum adsorption of adsorbent is at pH 5 for metal ions, whereas the adsorption starts at pH 2. The effects of contact time (5-60 min), initial concentration of metal ions (200-1,000 mg/L) and adsorbent dosage (0.04-0.12 g/100 mL) have been reported in this article. The experimental data were investigated by means of kinetic and equilibrium adsorption isotherms. The kinetic data were analyzed by the pseudo-first-order and pseudo-second-order equation. The experimental data fitted the pseudo-second-order kinetic model very well. Langmuir and Freundlich isotherms were tried for the system to better understand the adsorption isotherm process. The maximal adsorption capacity of the lead(II) ions on the PAA/HB, as calculated from the Langmuir model, was 769.2 mg/g. The results in this study indicated that PAA/HB was an attractive candidate for removing lead(II) (99%).

  19. An exocellular polysaccharide and its interactions with proteins

    NARCIS (Netherlands)

    Tuinier, R.

    1999-01-01

    In the food industry polysaccharides are used as thickening or gelling agents. Polysaccharides are usually extracted from plants. Micro-organisms are also capable of excreting polysaccharides: exocellular polysaccharides (EPSs). In some cases EPSs are produced in-situ in food products,

  20. Conjugation of diisocyanate side chains to dimethacrylate reduces polymerization shrinkage and increases the hardness of composite resins.

    Science.gov (United States)

    Jan, Yih-Dean; Lee, Bor-Shiunn; Lin, Chun-Pin; Tseng, Wan-Yu

    2014-04-01

    Polymerization shrinkage is one of the main causes of dental restoration failure. This study tried to conjugate two diisocyanate side chains to dimethacrylate resins in order to reduce polymerization shrinkage and increase the hardness of composite resins. Diisocyanate, 2-hydroxyethyl methacrylate, and bisphenol A dimethacrylate were reacted in different ratios to form urethane-modified new resin matrices, and then mixed with 50 wt.% silica fillers. The viscosities of matrices, polymerization shrinkage, surface hardness, and degrees of conversion of experimental composite resins were then evaluated and compared with a non-modified control group. The viscosities of resin matrices increased with increasing diisocyanate side chain density. Polymerization shrinkage and degree of conversion, however, decreased with increasing diisocyanate side chain density. The surface hardness of all diisocyanate-modified groups was equal to or significantly higher than that of the control group. Conjugation of diisocyanate side chains to dimethacrylate represents an effective means of reducing polymerization shrinkage and increasing the surface hardness of dental composite resins. Copyright © 2012. Published by Elsevier B.V.

  1. A modified synthetic driving force method for molecular dynamics simulation of grain boundary migration

    International Nuclear Information System (INIS)

    Yang, Liang; Li, Saiyi

    2015-01-01

    The synthetic driving force (SDF) molecular dynamics method, which imposes crystalline orientation-dependent driving forces for grain boundary (GB) migration, has been considered deficient in many cases. In this work, we revealed the cause of the deficiency and proposed a modified method by introducing a new technique to distinguish atoms in grains and GB such that the driving forces can be imposed properly. This technique utilizes cross-reference order parameter (CROP) to characterize local lattice orientations in a bicrystal and introduces a CROP-based definition of interface region to minimize interference from thermal fluctuations in distinguishing atoms. A validation of the modified method was conducted by applying it to simulate the migration behavior of Ni 〈1 0 0〉 and Al 〈1 1 2〉 symmetrical tilt GBs, in comparison with the original method. The discrepancies between the migration velocities predicted by the two methods are found to be proportional to their differences in distinguishing atoms. For the Al 〈1 1 2〉 GBs, the modified method predicts a negative misorientation dependency for both the driving pressure threshold for initiating GB movement and the mobility, which agree with experimental findings and other molecular dynamics computations but contradict those predicted using the original method. Last, the modified method was applied to evaluate the mobility of Ni Σ5 〈1 0 0〉 symmetrical tilt GB under different driving pressure and temperature conditions. The results reveal a strong driving pressure dependency of the mobility at relatively low temperatures and suggest that the driving pressure should be as low as possible but large enough to trigger continuous migration.

  2. Three-Dimensional Structural Aspects of Protein–Polysaccharide Interactions

    Directory of Open Access Journals (Sweden)

    Masamichi Nagae

    2014-03-01

    Full Text Available Linear polysaccharides are typically composed of repeating mono- or disaccharide units and are ubiquitous among living organisms. Polysaccharide diversity arises from chain-length variation, branching, and additional modifications. Structural diversity is associated with various physiological functions, which are often regulated by cognate polysaccharide-binding proteins. Proteins that interact with linear polysaccharides have been identified or developed, such as galectins and polysaccharide-specific antibodies, respectively. Currently, data is accumulating on the three-dimensional structure of polysaccharide-binding proteins. These proteins are classified into two types: exo-type and endo-type. The former group specifically interacts with the terminal units of polysaccharides, whereas the latter with internal units. In this review, we describe the structural aspects of exo-type and endo-type protein-polysaccharide interactions. Further, we discuss the structural basis for affinity and specificity enhancement in the face of inherently weak binding interactions.

  3. Comparison of a polymeric pseudostationary phase in EKC with ODS stationary phase in RP-HPLC.

    Science.gov (United States)

    Ni, Xinjiong; Zhang, Min; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun

    2018-01-01

    Poly(stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)) was induced as pseudostationary phase (PSP) in electrokinetic chromatography (EKC). The n-octadecyl groups in SMA were the same as that in octadecylsilane (ODS) C18 column. Thus, the present work focused on the comparison of selectivity between polymeric PSP and ODS stationary phase (SP), and the effect of organic modifiers on the selectivity of polymeric PSP and ODS SP. 1-butanol could directly interacted with PSP as a Class I modifier, and improved both of the methylene selectivity and polar group selectivity. When the analysis times were similar, the polymeric PSP exhibited better methylene selectivity and polar group selectivity. Although the hydrophobic groups were similar, the substituted benzenes elution order was different between polymeric PSP and ODS SP. Linear solvation energy relationships (LSER) model analysis found that polymeric PSP and ODS SP exhibited two same key factors in selectivity: hydrophobic interaction and hydrogen bonding acidity. But polymeric PSP exhibited relatively strong n- and π-electrons interaction to the analytes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Listeria monocytogenes has a functional chitinolytic system and an active lytic polysaccharide monooxygenase

    DEFF Research Database (Denmark)

    Paspaliari, Dafni Katerina; Loose, Jennifer S. M.; Larsen, Marianne Halberg

    2015-01-01

    Chitinases and chitin-active lytic polysaccharide monooxygenases (LPMOs) are most commonly associated with chitin metabolism, but are also reported as virulence factors in pathogenic bacteria. Listeria monocytogenes, a well-known virulent bacterium, possesses two chitinases (ChiA and ChiB) and a ......Chitinases and chitin-active lytic polysaccharide monooxygenases (LPMOs) are most commonly associated with chitin metabolism, but are also reported as virulence factors in pathogenic bacteria. Listeria monocytogenes, a well-known virulent bacterium, possesses two chitinases (ChiA and Chi...... but different product profiles depending on the substrate. In LPMO-chitinase synergy experiments, CBP21 is able to boost the activity of both ChiA and ChiB more than LmLPMO10. Product analysis of the synergy assays revealed that the chitinases were unable to efficiently hydrolyse the LPMO products...... (chitooligosaccharide aldonic acids) with a degree of polymerization below four (ChiA and SmChiC) or three (ChiB). Gene transcription and protein expression analysis showed that LmLPMO10 is neither highly transcribed, nor abundantly secreted during the growth of L. monocytogenes in a chitin-containing medium...

  5. Conversion of Lignocellulosic Bagasse Biomass into Hydrogel

    Directory of Open Access Journals (Sweden)

    Farzaneh Amiri

    2016-11-01

    Full Text Available In recent years, the main objective of developing new hydrogel systems has been to convert biomass into environmentally-friendly hydrogels. Hybrid hydrogels are usually prepared by graft copolymerization of acrylic monomers onto natural polymers or biomass. In this study, sugarcane bagasse was used to prepare semi-synthetic hybrid hydrogels without delignification, which is a costly and timeconsuming process. Sugarcane bagasse as a source of polysaccharide was modified using polymer microgels based on acrylic monomers such as acrylic acid, acrylamide and 2-acrylamido-2-methyl propane sulfonic acid which were prepared through inverse emulsion polymerization. By this process, biomass as a low-value by-product was converted into a valuable semi-synthetic hydrogel. In the following, the effect of latex type¸ the aqueous-to-organic phase ratio in the polymer latex, time and temperature of modification reaction on the swelling capacity of the hybrid hydrogel were evaluated. The chemical reaction between sugarcane bagasse and acrylic latex was carried out during heating of the modified bagasse which led to obtain a semisynthetic hydrogel with 60% natural components and 40% synthetic components. Among the latexes with different structures, poly(AA-NaAA-AM-AMPS was the most suitable polymer latex for the conversion of biomass into hydrogel. The bagasse modified with this latex had a water absorption capacity up to 112 g/g, while the water absorption capacity of primary sugarcane bagasse was only equal to 3.6 g/g. The prepared polymer hydrogels were characterized using Fourier transform infrared spectroscopy (FTIR, dynamic-mechanical thermal analysis (DMTA, thermal gravimetric analysis (TGA, scanning electron microscopy (SEM and determination of the amount of swelling capacity.

  6. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA.

    Science.gov (United States)

    Warren, Luigi; Manos, Philip D; Ahfeldt, Tim; Loh, Yuin-Han; Li, Hu; Lau, Frank; Ebina, Wataru; Mandal, Pankaj K; Smith, Zachary D; Meissner, Alexander; Daley, George Q; Brack, Andrew S; Collins, James J; Cowan, Chad; Schlaeger, Thorsten M; Rossi, Derrick J

    2010-11-05

    Clinical application of induced pluripotent stem cells (iPSCs) is limited by the low efficiency of iPSC derivation and the fact that most protocols modify the genome to effect cellular reprogramming. Moreover, safe and effective means of directing the fate of patient-specific iPSCs toward clinically useful cell types are lacking. Here we describe a simple, nonintegrating strategy for reprogramming cell fate based on administration of synthetic mRNA modified to overcome innate antiviral responses. We show that this approach can reprogram multiple human cell types to pluripotency with efficiencies that greatly surpass established protocols. We further show that the same technology can be used to efficiently direct the differentiation of RNA-induced pluripotent stem cells (RiPSCs) into terminally differentiated myogenic cells. This technology represents a safe, efficient strategy for somatic cell reprogramming and directing cell fate that has broad applicability for basic research, disease modeling, and regenerative medicine. Copyright © 2010 Elsevier Inc. All rights reserved.

  7. Architecture of Amylose Supramolecules in Form of Inclusion Complexes by Phosphorylase-Catalyzed Enzymatic Polymerization

    Directory of Open Access Journals (Sweden)

    Jun-ichi Kadokawa

    2013-07-01

    Full Text Available This paper reviews the architecture of amylose supramolecules in form of inclusion complexes with synthetic polymers by phosphorylase-catalyzed enzymatic polymerization. Amylose is known to be synthesized by enzymatic polymerization using α-d-glucose 1-phosphate as a monomer, by phosphorylase catalysis. When the phosphorylase-catalyzed enzymatic polymerization was conducted in the presence of various hydrophobic polymers, such as polyethers, polyesters, poly(ester-ether, and polycarbonates as a guest polymer, such inclusion supramolecules were formed by the hydrophobic interaction in the progress of polymerization. Because the representation of propagation in the polymerization is similar to the way that a vine of a plant grows, twining around a rod, this polymerization method for the formation of amylose-polymer inclusion complexes was proposed to be named “vine-twining polymerization”. To yield an inclusion complex from a strongly hydrophobic polyester, the parallel enzymatic polymerization system was extensively developed. The author found that amylose selectively included one side of the guest polymer from a mixture of two resemblant guest polymers, as well as a specific range in molecular weights of the guest polymers poly(tetrahydrofuran (PTHF in the vine-twining polymerization. Selective inclusion behavior of amylose toward stereoisomers of chiral polyesters, poly(lactides, also appeared in the vine-twining polymerization.

  8. Production of jet fuel range paraffins by low temperature polymerization of gaseous light olefins using ionic liquid

    International Nuclear Information System (INIS)

    Jiang, Peiwen; Wu, Xiaoping; Zhu, Lijuan; Jin, Feng; Liu, Junxu; Xia, Tongyan; Wang, Tiejun; Li, Quanxin

    2016-01-01

    Graphical abstract: A novel catalytic transformation of light olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. - Highlights: • A novel transformation of light olefins to jet fuel range paraffins was demonstrated. • The synthetic fuels can be produced by atmospheric olefin polymerizations. • C 8 –C 15 iso-paraffins from light olefins was achieved with a selectivity of 80.6%. - Abstract: This work demonstrated a novel catalytic transformation of gaseous olefins into jet fuel range iso-paraffins by the low-temperature olefin polymerizations under atmospheric conditions. The production of the desired C 8 –C 15 iso-paraffins with the selectivity of 80.6 C mol% was achieved by the room-temperature polymerizations of gaseous light olefins using the [BMIM] Al 2 Cl 7 ionic liquid. The influences of the reaction conditions on the olefinic polymerizations were investigated in detail. The properties of hydrocarbons in the synthetic fuels were determined by the GC–MS analyses combined with 1 H NMR, and 13 C NMR analyses. The formation of C 8 –C 15 hydrocarbons from gaseous light olefins was illustrated by the identified products and the functional groups. This transformation potentially provides a useful avenue for the production of the most important components of iso-paraffins required in jet fuels.

  9. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    Science.gov (United States)

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.

  10. Emerging synthetic strategies for core cross-linked star (CCS) polymers and applications as interfacial stabilizers: bridging linear polymers and nanoparticles.

    Science.gov (United States)

    Chen, Qijing; Cao, Xueteng; Xu, Yuanyuan; An, Zesheng

    2013-10-01

    Core cross-linked star (CCS) polymers become increasingly important in polymer science and are evaluated in many value-added applications. However, limitations exist to varied degrees for different synthetic methods. It is clear that improvement in synthetic efficiency is fundamental in driving this field moving even further. Here, the most recent advances are highlighted in synthetic strategies, including cross-linking with cross-linkers of low solubility, polymerization-induced self-assembly in aqueous-based heterogeneous media, and cross-linking via dynamic covalent bonds. The understanding of CCS polymers is also further refined to advocate their role as an intermediate between linear polymers and polymeric nanoparticles, and their use as interfacial stabilizers is rationalized within this context. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Influence of Nano-Crystal Metals on Texture and Biological Properties of Water Soluble Polysaccharides of Medicinal Plants

    Science.gov (United States)

    Churilov, G.; Ivanycheva, J.; Kiryshin, V.

    2015-11-01

    When treating the plants seeds with nano-materials there are some quality and quantity changes of polysaccharides, the molecular mass increase and monosaccharides change that leads to the increase of physiological and pharmacological activity of carbohydrates got from medicinal plants. We have got water soluble polysaccharides and nano-metals combinations containing 0.000165-0.000017 mg/dm3 of the metal. In a case of induced anemia the blood composition has practically restored on the 10th day of the treatment with nanocomposites. The use of pectin polysaccharides (that are attributed to modifiers of biological respond) to get nano-structured materials seems to be actual relative to their physiological activity (radio nuclides persorption, heavy metals ions, bacteria cells and their toxins; lipids metabolism normalization; bowels secreting and motor functions activation and modulation of the endocrine system.

  12. Two dimensional NMR studies of polysaccharides

    International Nuclear Information System (INIS)

    Byrd, R.A.; Egan, W.; Summers, M.F.

    1987-01-01

    Polysaccharides are very important components in the immune response system. Capsular polysaccharides and lipopolysaccharides occupy cell surface sites of bacteria, play key roles in recognition and some have been used to develop vaccines. Consequently, the ability to determine chemical structures of these systems is vital to an understanding of their immunogenic action. The authors have been utilizing recently developed two-dimensional homonuclear and heteronuclear correlation spectroscopy for unambiguous assignment and structure determination of a number of polysaccharides. In particular, the 1 H-detected heteronuclear correlation experiments are essential to the rapid and sensitive determination of these structures. Linkage sites are determined by independent polarization transfer experiments and multiple quantum correlation experiments. These methods permit the complete structure determination on very small amounts of the polysaccharides. They present the results of a number of structural determinations and discuss the limits of these experiments in terms of their applications to polysaccharides

  13. Botanical polysaccharides: macrophage immunomodulation and therapeutic potential.

    Science.gov (United States)

    Schepetkin, Igor A; Quinn, Mark T

    2006-03-01

    Botanical polysaccharides exhibit a number of beneficial therapeutic properties, and it is thought that the mechanisms involved in these effects are due to the modulation of innate immunity and, more specifically, macrophage function. In this review, we summarize our current state of understanding of the macrophage modulatory effects of botanical polysaccharides isolated from a wide array of different species of flora, including higher plants, mushrooms, lichens and algae. Overall, the primary effect of botanical polysaccharides is to enhance and/or activate macrophage immune responses, leading to immunomodulation, anti-tumor activity, wound-healing and other therapeutic effects. Furthermore, botanical and microbial polysaccharides bind to common surface receptors and induce similar immunomodulatory responses in macrophages, suggesting that evolutionarily conserved polysaccharide structural features are shared between these organisms. Thus, the evaluation of botanical polysaccharides provides a unique opportunity for the discovery of novel therapeutic agents and adjuvants that exhibit beneficial immunomodulatory properties.

  14. Production of bacterial polysaccharides

    Energy Technology Data Exchange (ETDEWEB)

    Ellwood, D C; Evans, C G.T.; Yeo, R G

    1978-06-01

    A process for the biochemical synthesis of polysaccharides comprises growing polysaccharide-producing bacteria of the genus Xanthomonas in a single stage continuous culture in a chemically-defined medium. The term chemically-defined medium denotes a culture medium wherein nutrients other than carbon are provided as inorganic salts or single organic compounds of known molecular structure rather than as complex naturally-derived mixtures. Normally the only organic component of the chemically-defined medium will be a conventional carbon source such as a carbohydrate, especially glucose, or glycerol. Preferably the medium should contain only one nitrogen source, since the use of multiple nitrogen sources, as present in complex media, appears to promote changes in the nature of the culture resulting in loss of polysaccharide production. 22 claims.

  15. Formation of low charge state ions of synthetic polymers using quaternary ammonium compounds.

    Science.gov (United States)

    Nasioudis, Andreas; Joyce, William F; van Velde, Jan W; Heeren, Ron M A; van den Brink, Oscar F

    2010-07-01

    Factors such as high polymer dispersity and variation in elemental composition (of copolymers) often complicate the electrospray ionization mass spectrometry (ESI-MS) analysis of synthetic polymers with high molar mass. In the experiments described in this study, quaternary ammonium compounds were observed to facilitate the production of low charge state pseudomolecular ions when added to the spray solution for ESI-MS. This approach was then used for the ESI time-of-flight mass spectrometry (TOF-MS) analysis of synthetic polymers. Hexadecyltrimethylammonium chloride permitted the successful analysis of poly(ethylene glycol) of 2-40 kDa, poly(propylene glycol) and poly(tetramethylene glycol) oligomers. Increasing the quaternary ammonium compounds' concentration results in the production of low charge state pseudomolecular ions. A comparison of structurally different quaternary ammonium compounds showed that the best performance is expected from large molecules with specific charge localization, which leaves the charge available for interactions. The applicability of the method for the MS analysis of other polymeric systems was also studied. In the case of poly(tetramethylene glycol), the method not only shifted the distributions to higher m/z values but also allowed the detection of high molecular weight material that was not observed without addition of the modifier to the spray solution.

  16. Studies in Finishing Effects of Clay Mineral in Polymers and Synthetic Fibers

    Directory of Open Access Journals (Sweden)

    Faheem Uddin

    2013-01-01

    Full Text Available The use of clay mineral in modifying the properties of polymeric material is improved in application. The current interest in modifying the polymeric materials, particularly polyethylene, polypropylene, polystyrene, and nylon using clay mineral for improved flame retardancy, thermal stability, peak heat release rate, fracture, and strength properties generated significant research literature. This paper aims to review some of the important recent modification achieved in the performance of polymeric materials using organoclay mineral. Degradation of clay mineral-polymer (nm composite is discussed with appropriate known examples. Clay mineral (nm loading of 5 wt.% to 7 wt.% that was significantly smaller than the percent loading of conventional fillers in polymeric materials introduced significant improvement in terms of thermal and physical stability. An attempt is made to emphasize flammability and thermal stability and to indicate the areas that are relatively little explored in modification of fiber-forming polymers to enhance further research interest.

  17. Liposome-Based Delivery Systems in Plant Polysaccharides

    International Nuclear Information System (INIS)

    Meiwan, C.; Yitao, W.; Yanfang, Z.; Xinsheng, P.; Jingjing, H.; Ping, Z.

    2012-01-01

    Plant polysaccharides consist of many monosaccharide by α or β glycosidic bond which can be extracted by the water, alcohol, lipophile liquid from a variety of plants including Cordyceps sinensis, astragalus, and mushrooms. Recently, many evidences illustrate that natural plant polysaccharides possess various biological activities including strengthening immunity, lowering blood sugar, regulating lipid metabolism, anti oxidation, anti aging, and antitumour. Plant polysaccharides have been widely used in the medical field due to their special features and low toxicity. As an important drug delivery system, liposomes can not only encapsulate small-molecule compound but also big-molecule drug; therefore, they present great promise for the application of plant polysaccharides with unique physical and chemical properties and make remarkable successes. This paper summarized the current progress in plant polysaccharides liposomes, gave an overview on their experiment design method, preparation, and formulation, characterization and quality control, as well as in vivo and in vitro studies. Moreover, the potential application of plant polysaccharides liposomes was prospected as well.

  18. Evaluation of a Group A Streptococcus synthetic oligosaccharide as vaccine candidate.

    Science.gov (United States)

    Kabanova, Anna; Margarit, Immaculada; Berti, Francesco; Romano, Maria R; Grandi, Guido; Bensi, Giuliano; Chiarot, Emiliano; Proietti, Daniela; Swennen, Erwin; Cappelletti, Emilia; Fontani, Paola; Casini, Daniele; Adamo, Roberto; Pinto, Vittoria; Skibinski, David; Capo, Sabrina; Buffi, Giada; Gallotta, Marilena; Christ, William J; Campbell, A Stewart; Pena, John; Seeberger, Peter H; Rappuoli, Rino; Costantino, Paolo

    2010-12-10

    Bacterial infections caused by Group A Streptococcus (GAS) are a serious health care concern that currently cannot be prevented by vaccination. The GAS cell-wall polysaccharide (GAS-PS) is an attractive vaccine candidate due to its constant expression pattern on different bacterial strains and protective properties of anti-GAS-PS antibodies. Here we report for the first time the immunoprotective efficacy of glycoconjugates with synthetic GAS oligosaccharides as compared to those containing the native GAS-PS. A series of hexa- and dodecasaccharides based on the GAS-PS structure were prepared by chemical synthesis and conjugated to CRM(197). When tested in mice, the conjugates containing the synthetic oligosaccharides conferred levels of immunoprotection comparable to those elicited by the native conjugate. Antisera from immunized rabbits promoted phagocytosis of encapsulated GAS strains. Furthermore we discuss variables that might correlate with glycoconjugate immunogenicity and demonstrate the potential of the synthetic approach that benefits from increased antigen purity and facilitated manufacturing. Copyright © 2010 Elsevier Ltd. All rights reserved.

  19. [Applications of synthetic biology in materials science].

    Science.gov (United States)

    Zhao, Tianxin; Zhong, Chao

    2017-03-25

    Materials are the basis for human being survival and social development. To keep abreast with the increasing needs from all aspects of human society, there are huge needs in the development of advanced materials as well as high-efficiency but low-cost manufacturing strategies that are both sustainable and tunable. Synthetic biology, a new engineering principle taking gene regulation and engineering design as the core, greatly promotes the development of life sciences. This discipline has also contributed to the development of material sciences and will continuously bring new ideas to future new material design. In this paper, we review recent advances in applications of synthetic biology in material sciences, with the focus on how synthetic biology could enable synthesis of new polymeric biomaterials and inorganic materials, phage display and directed evolution of proteins relevant to materials development, living functional materials, engineered bacteria-regulated artificial photosynthesis system as well as applications of gene circuits for material sciences.

  20. Differential natural organic matter fouling of ceramic versus polymeric ultrafiltration membranes.

    Science.gov (United States)

    Lee, Seung-Jin; Kim, Jae-Hong

    2014-01-01

    Ceramic ultrafiltration membranes has drawn increasing attention in drinking water treatment sectors as an alternative to traditional polymeric counterparts, yet only limited information has been made available about the characteristics of ceramic membrane fouling by natural organic matter. The effects of solution chemistry including ionic strength, divalent ion concentration and pH on the flux behavior were comparatively evaluated for ceramic and polymeric ultrafiltration of synthetic water containing model natural organic matter. Filtration characteristics were further probed via resistance-in-series model analysis, fouling visualization using quantum dots, batch adsorption test, contact angle measurement, solute-membrane surface adhesion force measurement, and quantitative comparison of fouling characteristics between ceramic and polymeric membranes. The results collectively suggested that the effects of solution chemistry on fouling behavior of ceramic membranes were generally similar to polymeric counterparts in terms of trends, while the extent varied significantly depending on water quality parameters. Lower fouling tendency and enhanced cleaning efficiency were observed with the ceramic membrane, further promoting the potential for ceramic membrane application to surface water treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Cytochemical Localization of Polysaccharides in Dendrobium officinale and the Involvement of DoCSLA6 in the Synthesis of Mannan Polysaccharides

    OpenAIRE

    He, Chunmei; Wu, Kunlin; Zhang, Jianxia; Liu, Xuncheng; Zeng, Songjun; Yu, Zhenming; Zhang, Xinghua; Teixeira da Silva, Jaime A.; Deng, Rufang; Tan, Jianwen; Luo, Jianping; Duan, Jun

    2017-01-01

    Dendrobium officinale is a precious traditional Chinese medicinal plant because of its abundant polysaccharides found in stems. We determined the composition of water-soluble polysaccharides and starch content in D. officinale stems. The extracted water-soluble polysaccharide content was as high as 35% (w/w). Analysis of the composition of monosaccharides showed that the water-soluble polysaccharides were dominated by mannose, to a lesser extent glucose, and a small amount of galactose, in a ...

  2. Research of polysaccharide complexes from asteraceae family plants

    Directory of Open Access Journals (Sweden)

    Світлана Михайлівна Марчишин

    2015-10-01

    Full Text Available Aim of research. Depth study of polysaccharides in some little-known plant species of Asteraceae family is pressing question, considering that polysaccharides are important biologically active compounds widely used in pharmaceutical and medical practice as remedies and preventive medications. The aim of research was to determinate both quantitative content and monomeric composition of polysaccharide complexes from Asteraceae family plant species – Tagetes genus, Arnica genus, and Bellis genus.Materials and methods. Determination of polysaccharides was carried out by the precipitation reaction, using 96 % ethyl alcohol P and Fehling's solution after acid hydrolysis; quantitative content of this group of compounds was determined by gravimetric analysis. On purpose to identify the monomeric composition hydrolysis under sulfuric acid conditions was conducted. Qualitative monomeric composition of polysaccharides after hydrolysis was carried out by paper chromatography method in n-Butanol – Pyridine – Distilled water P (6:4:3 system along with saccharides reference samples.Results. Polysaccharide complexes from Tagetes erecta, Tagetes patula, Tagetes tenuifolia, Arnica montana, Arnica foliosa, wild and cultivated Bellis perennis herbs were studied. Water-soluble polysaccharides and pectin fractions were isolated from studied objects; their quantitative content and monomeric composition were determined.Conclusion. The highest amount of water-soluble polysaccharides was found in cultivated Bellis perennis herb (10,13 %, the highest amount of pectin compounds – in Tagetes tenuifolia herb (13,62 %; the lowest amount of water-soluble polysaccharides and pectin compounds was found in Arnica montana herb (4,61 % and Tagetes patula herb (3,62 %, respectively. It was found that polysaccharide complexes from all studied species include glucose and arabinose

  3. A multifunctional polymeric nanofilm with robust chemical performances for special wettability

    Science.gov (United States)

    Wang, Yabin; Lin, Feng; Dong, Yaping; Liu, Zhong; Li, Wu; Huang, Yudong

    2016-02-01

    A multifunctional polymeric nanofilm of a triazinedithiolsilane compound, which can protect metallic substrates and activate the corresponding surface simultaneously, is introduced onto a copper mesh surface via facile solution-immersion approaches. The resultant interface exhibits hydrophilic features due to the existence of silanol groups (SiOH) outward and has the potential to act as a superhydrophilic and underwater superoleophobic material. As the polymeric nanofilm atop the copper mesh is modified with long-chain octadecyltrichlorosilane (OTS), the functionalized surface becomes superhydrophobic and superoleophilic. The OTS-modified polymeric nanofilm shows outstanding chemical durability and stability that are seldom concurrently satisfied for a material with special wettability, owing to its inherent architecture. These textures generate high separation efficiency, durable separation capability and excellent thermal stability. The protective ability, originating from the textures of the underlying cross-linked disulfide units (-SS-) and siloxane networks (SiOSi) on the top of the nanofilm, prolongs the chemical durability. The activating capability stemming from the residual SiOH groups improves the chemical stability as a result of the chemical bonds developed by these sites. The significant point of this investigation lies in enlightening us on the fabrication of multifunctional polymeric nanofilms on different metal surfaces using various triazinedithiolsilane compounds, and on the construction of interfaces with controllable wettable performances in demanding research or industrial applications.A multifunctional polymeric nanofilm of a triazinedithiolsilane compound, which can protect metallic substrates and activate the corresponding surface simultaneously, is introduced onto a copper mesh surface via facile solution-immersion approaches. The resultant interface exhibits hydrophilic features due to the existence of silanol groups (SiOH) outward and has

  4. Electron transport nonlocality in monolayer graphene modified with hydrogen silsesquioxane polymerization

    NARCIS (Netherlands)

    Kaverzin, A. A.; van Wees, B. J.

    2015-01-01

    A number of practical and fundamental applications of graphene requires modification of some of its properties. In this paper we study the effect of polymerization of a hydrogen silsesquioxane film on top of monolayer graphene with the intent to increase the strength of the spin-orbit interaction.

  5. Grafting of molecularly imprinted polymer to porous polyethylene filtration membranes by plasma polymerization.

    Science.gov (United States)

    Cowieson, D; Piletska, E; Moczko, E; Piletsky, S

    2013-08-01

    An application of plasma-induced grafting of polyethylene membranes with a thin layer of molecularly imprinted polymer (MIP) was presented. High-density polyethylene (HDPE) membranes, "Vyon," were used as a substrate for plasma grafting modification. The herbicide atrazine, one of the most popular targets of the molecular imprinting, was chosen as a template. The parameters of the plasma treatment were optimized in order to achieve a good balance between polymerization and ablation processes. Modified HDPE membranes were characterized, and the presence of the grafted polymeric layer was confirmed based on the observed weight gain, pore size measurements, and infrared spectrometry. Since there was no significant change in the porosity of the modified membranes, it was assumed that only a thin layer of the polymer was introduced on the surface. The experiments on the re-binding of the template atrazine to the membranes modified with MIP and blank polymers were performed. HDPE membranes which were grafted with polymer using continuous plasma polymerization demonstrated the best result which was expressed in an imprinted factor equal to 3, suggesting that molecular imprinting was successfully achieved.

  6. A Direct Sulfation Process of a Marine Polysaccharide in Ionic Liquid

    Directory of Open Access Journals (Sweden)

    Nathalie Chopin

    2015-01-01

    Full Text Available GY785 is an exopolysaccharide produced by a mesophilic bacterial strain Alteromonas infernus discovered in the deep-sea hydrothermal vents. GY785 highly sulfated derivative (GY785 DRS was previously demonstrated to be a promising molecule driving the efficient mesenchymal stem cell chondrogenesis for cartilage repair. This glycosaminoglycan- (GAG- like compound was modified in a classical solvent (N,N′-dimethylformamide. However, the use of classical solvents limits the polysaccharide solubility and causes the backbone degradation. In the present study, a one-step efficient sulfation process devoid of side effects (e.g., polysaccharide depolymerization and/or degradation was developed to produce GAG-like derivatives. The sulfation of GY785 derivative (GY785 DR was carried out using ionic liquid as a reaction medium. The successful sulfation of this anionic and highly branched heteropolysaccharide performed in ionic liquid would facilitate the production of new molecules of high specificity for biological targets such as tissue engineering or regenerative medicine.

  7. Extraction, characterisation and antioxidant activity of Allium sativum polysaccharide.

    Science.gov (United States)

    Cheng, Hao; Huang, Gangliang

    2018-07-15

    Extraction and antioxidant activity of polysaccharide from Allium sativum were investigated. The crude polysaccharide was obtained by the hot-water extraction method. The molecular weight of polysaccharide deproteinized with CaCl 2 was 7.35×10 3 . It indicated that polysaccharide from Allium sativum consisted of three monosaccharides, namely fructose, glucose, and galactose by HPLC. The polysaccharide had the β-glycosidic bond. Moreover, it was proved that the polysaccharide had the potential scavenging ability to superoxide anions and hydroxyl radicals. So, it should be a potential antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. RADIOCHEMICAL YIELDS OF GRAFT POLYMERIZATION REACTIONS OF CELLULOSE

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Jr, J C; Blouin, F A

    1963-12-15

    The preparation of radioinduced graft polymers of cotton cellulose, while retaining the fibrous nature and high molecular weight of the cellulose, depended primarily on the radiochemical yields of cellulose reactions and of graft polymerization reactions. Yields of the initial major molecular changes in cellulosic polymer indicated that, in the case of scission of the molecule and carboxyl group formation, chain reactions were not initiated by radiation; however, in the case of carbonyl group formation chain reactions were initiated but quickly terminated. Generally, experimental procedures, used in graft polymerization reactions, were: simultaneous irradiation reactions, that is, application of monomers or solutions of monomers to cellulose or chemically modified celluloses, then irradiation; and post-irradiation reactions, that is, irradiation of cellulose or chemically modified celluloses, then after removal from the field of radiation, contacting the irradiated cellulose with monomer. Some of the most important factors influencing the radiochemical yields of graft polymerization reactions, of styrene and acrylonitrile onto cellulose were: concentration of monomer in treating solution; solvent; ratio of monomer solution to cellulose; prior chemical modification of cellulose; and absence of oxygen, particularly in post-irradiation reactions. Experimental data are presented, and the direct and indirect effects of Co/sup 60/ gamma radiation on these reactions are discussed. (auth)

  9. Bio-inspired materials engineering using polysaccharide based biotemplates

    International Nuclear Information System (INIS)

    Zollfrank, C.

    2007-01-01

    Nano-structured materials with a controlled microstructure and tailored properties at a scale below 100 nm are of interest for applications in micro-mechanical, sensor and biomedical devices. In contrast to top-down manufacturing processes the formation of solid matter structures in nature is templated and directed by biomacromolecules such as polysaccharides and polypeptides. A promising biomimetic route for the directed deposition of ceramic materials is the application of anisotropically structured biomacromolecules as patterned templates. The polysaccharides exhibit a hierarchical multi scale order as well as self-assembly properties. The bio-inspired deposition and formation of ceramic phases on biomolecular polysaccharide templates was investigated. The polysaccharides were used at various structural levels from the molecular scale up to three-dimensional parts in the millimetre range. The versatility of polysaccharide shaping capabilities was explored using dissolved polysaccharide molecules as well as thin films for the or simultaneous or successive formation of inorganic mineral phases. Microalgae with a spherical appearance of 5 micro-m were applied in mineralisation studies. The extracellular polysaccharide (EPS) layers on the microalgae were used as biotemplates for manufacturing of functional ceramics. The obtained results on the mineralisation of inorganic phases on polysaccharides are adapted for novel biomimetic routes used in the fabrication for functional and biomedical ceramics. (author)

  10. Detection of Salmonella typhi utilizing bioconjugated fluorescent polymeric nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Swati, E-mail: swatijain.iitd@gmail.com; Chattopadhyay, Sruti, E-mail: sruticiitd@gmail.com; Jackeray, Richa; Abid, Zainul; Singh, Harpal, E-mail: harpal2000@yahoo.com [Centre for Biomedical Engineering, Indian Institute of Technology-Delhi (India)

    2016-05-15

    Present work demonstrates effective utilization of functionalized polymeric fluorescent nanoparticles as biosensing probe for the detection of Salmonella typhi bacteria on modified polycarbonate (PC) filters in about 3 h. Antibody modified-PC membranes were incubated with contaminated bacterial water for selective capturing which were detected by synthesized novel bioconjugate probe. Core–shell architecture of polymeric nanoparticles endows them with aqueous stabilization and keto-enolic functionalities making them usable for covalently linking S. typhi antibodies without any crosslinker or activator. Bradford analysis revealed that one nanoparticle has an average of 3.51 × 10{sup −19} g or 21 × 10{sup 4} bound S. typhi Ab molecules. Analysis of the regions of interest (ROI) in fluorescent micrographs of modified fluoroimmunoassay showed higher detection sensitivity of 5 × 10{sup 2} cells/mL due to signal amplification unlike conventional naked dye FITC-Ab conjugate. Fluorescence of pyrene dye remained same on immobilization of biomolecules and nanoparticles showed stable fluorescent intensity under prolong exposure to laser owing to protective polymeric layer allowing accurate identification of bacteria. Surface-functionalized PC matrix and fluorescent label NPs permit covalent interactions among biomolecules enhancing signal acquisitions showing higher detection efficiency as compared to conventional microtiter plate-based system. Our novel immunoassay has the potential to be explored as rapid detection method for identifying S. typhi contaminations in water.Graphical Abstract.

  11. Detection of Salmonella typhi utilizing bioconjugated fluorescent polymeric nanoparticles

    International Nuclear Information System (INIS)

    Jain, Swati; Chattopadhyay, Sruti; Jackeray, Richa; Abid, Zainul; Singh, Harpal

    2016-01-01

    Present work demonstrates effective utilization of functionalized polymeric fluorescent nanoparticles as biosensing probe for the detection of Salmonella typhi bacteria on modified polycarbonate (PC) filters in about 3 h. Antibody modified-PC membranes were incubated with contaminated bacterial water for selective capturing which were detected by synthesized novel bioconjugate probe. Core–shell architecture of polymeric nanoparticles endows them with aqueous stabilization and keto-enolic functionalities making them usable for covalently linking S. typhi antibodies without any crosslinker or activator. Bradford analysis revealed that one nanoparticle has an average of 3.51 × 10"−"1"9 g or 21 × 10"4 bound S. typhi Ab molecules. Analysis of the regions of interest (ROI) in fluorescent micrographs of modified fluoroimmunoassay showed higher detection sensitivity of 5 × 10"2 cells/mL due to signal amplification unlike conventional naked dye FITC-Ab conjugate. Fluorescence of pyrene dye remained same on immobilization of biomolecules and nanoparticles showed stable fluorescent intensity under prolong exposure to laser owing to protective polymeric layer allowing accurate identification of bacteria. Surface-functionalized PC matrix and fluorescent label NPs permit covalent interactions among biomolecules enhancing signal acquisitions showing higher detection efficiency as compared to conventional microtiter plate-based system. Our novel immunoassay has the potential to be explored as rapid detection method for identifying S. typhi contaminations in water.Graphical Abstract

  12. The antitussive activity of polysaccharides from Althaea officinalis l., var. Robusta, Arctium lappa L., var. Herkules, and Prunus persica L., Batsch.

    Science.gov (United States)

    Sutovska, M; Nosalova, G; Franova, S; Kardosova, A

    2007-01-01

    The therapy of pathological type of cough presents serious medical problem. The aim of experiments was to investigate polysaccacharide influence on experimentally induced cough. The purified and/or modified polysaccharides from the flowers and plants, characterized by chemical composition and molecular properties were subjected to tests for antitussive activity on cough, induced mechanically in conscious cats of both sexes. The results revealed that the tested polysaccharides exhibited statistically significant cough-suppressing activity, which was noticeably higher than that of the non-narcotic drug used in clinical practice to treat coughing. The most expressive antitussive activity was observed with the polysaccharide from marsh mallow, containing the highest proportion of the uronic acid constituent. Negative influence of the tested compounds on expectoration was negligible when compared to that of codeine. Antitussive activity of various plant polysaccharides was confirmed. These results allow ranging them among prospective antitussive agents (Tab. 2, Fig. 6, Ref. 15) Full Text (Free, PDF) www.bmj.sk.

  13. Corona-induced graft polymerization for surface modification of porous polyethersulfone membranes

    International Nuclear Information System (INIS)

    Zhu Liping; Zhu Baoku; Xu Li; Feng Yongxiang; Liu Fu; Xu Youyi

    2007-01-01

    Graft polymerization of acrylic acid (AA) onto porous polyethersulfone (PES) membrane surfaces was developed using corona discharge in atmospheric ambience as an activation process followed by polymerization of AA in aqueous solution. The effects of the corona parameters and graft polymerization conditions on grafting yield (GY) of AA were investigated. The grafting of AA on the PES membranes was confirmed by ATR-FTIR and X-ray photoelectron spectroscopy (XPS) analysis. Porosimetry measurements indicate the average pore diameters and porosities of the modified membranes decrease with the increase of the GY. The hydrophilicity and surface wetting properties of the original and modified membranes were evaluated by observing the dynamic changes of water contact angles. It is found that the grafting of AA occurs not only on the membrane surfaces, but also on the pore walls of the cells inside the membrane. The permeability experiments of protein solution reveal that the grafting of PAA endows the modified membranes with enhanced fluxes and anti-fouling properties. The optimized GY of AA is in the range of 150-200 μg/cm 2 . In addition, the tensile experiments show the corona discharge treatment with the power lower than 150 W yields little damage to the mechanical strength of the membranes

  14. Highly water-absorbing silk yarn with interpenetrating network via in situ polymerization.

    Science.gov (United States)

    Lee, Ka I; Wang, Xiaowen; Guo, Xia; Yung, Ka-Fu; Fei, Bin

    2017-02-01

    Silk was modified via in situ polymerization of two monomers acrylamide and sodium acrylate by swelling in an effective LiBr dissolution system. Swelling of natural silks in LiBr solutions of low concentration was clearly observed under optical microscope, and their conformational changes were revealed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy. Dissolution tests and FTIR spectra of these modified silks suggested the presence of interpenetrating network of polyacrylamide and poly(sodium acrylate) in the silk yarns. These modified silks exhibited superior water absorption to that of raw silk and greatly improved mechanical properties in both dry and wet states. These novel modified silks also showed low cytotoxicity towards skin keratinocytes, having potential applications in biomedical textiles. This modification method by in situ polymerization after swelling in LiBr provides a new route to highly enhance the properties and performance of silk for various applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Separation of piracetam derivatives on polysaccharide-based chiral stationary phases.

    Science.gov (United States)

    Kažoka, H; Koliškina, O; Veinberg, G; Vorona, M

    2013-03-15

    High-performance liquid chromatography was used for the enantiomeric separation of two chiral piracetam derivatives. The suitability of six commercially available polysaccharide-based chiral stationary phases (CSPs) under normal phase mode for direct enantioseparation has been investigated. The influence of the CSPs as well the nature and content of an alcoholic modifier in the mobile phase on separation and elution order was studied. It was established that CSP Lux Amylose-2 shows high chiral recognition ability towards 4-phenylsubstituted piracetam derivatives. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Polymeric compositions for “dry” decontamination of NPP equipment and premises

    International Nuclear Information System (INIS)

    Voronik, N.I.; Toropova, V.V.

    2015-01-01

    In JIPNR – “Sosny” NASB developed decontaminating polymeric compositions based on binder – polyvinyl alcohol solution with active additives such as nitric and borohydrofluoric acids, 1-hydroxyethylidene diphosphonic acid and its salts, detergents and fillers - natural tripoli; tripoli modified by ferrocyanides of nickel and copper; pulverized dolomite modified by manganese oxides, ferrocyanides of nickel and copper; clinoptilolite modified by iron chlorides (III) and calcium sodium phosphate and potassium ferrocyanide; hydrolytic lignin. It is shown that the developed decontaminating polymeric compositions (pastes) possess high decontaminating capacity (FD 102 – 103) and low adhesion to the surfaces of stainless and carbon steels, including painted, plastic, self-leveling floors, teflon-surface. Prolonged leaching method allowed determine the chemical resistance of “dry” decontamination wastes, strength of "1"3"7Cs and "6"0Co fixations in wastes obtained in result of using new decontamination pastes [ru

  17. Precision design of ethylene- and polar-monomer-based copolymers by organometallic-mediated radical polymerization

    Science.gov (United States)

    Kermagoret, Anthony; Debuigne, Antoine; Jérôme, Christine; Detrembleur, Christophe

    2014-03-01

    The copolymerization of ethylene with polar monomers is a major challenge when it comes to the manufacture of materials with potential for a wide range of commercial applications. In the chemical industry, free-radical polymerization is used to make a large proportion of such copolymers, but the forcing conditions result in a lack of fine control over the architecture of the products. Herein we introduce a synthetic tool, effective under mild experimental conditions, for the precision design of unprecedented ethylene- and polar-monomer-based copolymers. We demonstrate how an organocobalt species can control the growth of the copolymer chains, their composition and the monomer distribution throughout the chain. By fine tuning the ethylene pressure during polymerization and by exploiting a unique reactive mode of the end of the organometallic chain, novel block-like copolymer structures can be prepared. This highly versatile synthetic platform provides access to a diverse range of polymer materials.

  18. Structures of two cell wall-associated polysaccharides of a Streptococcus mitis biovar 1 strain. A unique teichoic acid-like polysaccharide and the group O antigen which is a C-polysaccharide in common with pneumococci

    DEFF Research Database (Denmark)

    Bergström, N; Jansson, P.-E.; Kilian, Mogens

    2000-01-01

    The cell wall of Streptococcus mitis biovar 1 strain SK137 contains the C-polysaccharide known as the common antigen of a closely related species Streptococcus pneumoniae, and a teichoic acid-like polysaccharide with a unique structure. The two polysaccharides are different entities and could...... be partially separated by gel chromatography. The structures of the two polysaccharides were determined by chemical methods and by NMR spectroscopy. The teichoic acid-like polymer has a heptasaccharide phosphate repeating unit with the following structure: The structure neither contains ribitol nor glycerol...... phosphate as classical teichoic acids do, thus we have used the expression teichoic acid-like for this polysaccharide. The following structure of the C-polysaccharide repeating unit was established: where AAT is 2-acetamido-4-amino-2,4, 6-trideoxy-D-galactose. It has a carbohydrate backbone identical...

  19. Hybrid Synthetic Receptors on MOSFET Devices for Detection of Prostate Specific Antigen in Human Plasma.

    Science.gov (United States)

    Tamboli, Vibha K; Bhalla, Nikhil; Jolly, Pawan; Bowen, Chris R; Taylor, John T; Bowen, Jenna L; Allender, Chris J; Estrela, Pedro

    2016-12-06

    The study reports the use of extended gate field-effect transistors (FET) for the label-free and sensitive detection of prostate cancer (PCa) biomarkers in human plasma. The approach integrates for the first time hybrid synthetic receptors comprising of highly selective aptamer-lined pockets (apta-MIP) with FETs for sensitive detection of prostate specific antigen (PSA) at clinically relevant concentrations. The hybrid synthetic receptors were constructed by immobilizing an aptamer-PSA complex on gold and subjecting it to 13 cycles of dopamine electropolymerization. The polymerization resulted in the creation of highly selective polymeric cavities that retained the ability to recognize PSA post removal of the protein. The hybrid synthetic receptors were subsequently used in an extended gate FET setup for electrochemical detection of PSA. The sensor was reported to have a limit of detection of 0.1 pg/mL with a linear detection range from 0.1 pg/mL to 1 ng/mL PSA. Detection of 1-10 pg/mL PSA was also achieved in diluted human plasma. The present apta-MIP sensor developed in conjunction with FET devices demonstrates the potential for clinical application of synthetic hybrid receptors for the detection of clinically relevant biomarkers in complex samples.

  20. Intrinsically active nanobody-modified polymeric micelles for tumor-targeted combination therapy

    Czech Academy of Sciences Publication Activity Database

    Talelli, M.; Oliveira, S.; Rijcken, C. J. F.; Pieters, E. H. E.; Etrych, Tomáš; Ulbrich, Karel; van Nostrum, R. C. F.; Storm, G.; Hennink, W. E.; Lammers, T.

    2013-01-01

    Roč. 34, č. 4 (2013), s. 1255-1260 ISSN 0142-9612 R&D Projects: GA AV ČR IAA400500806; GA ČR GAP301/11/0325 Institutional research plan: CEZ:AV0Z40500505 Keywords : polymeric micelle * doxorubicin * active targeting Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.312, year: 2013

  1. Novel Polysaccharide Based Polymers and Nanoparticles for Controlled Drug Delivery and Biomedical Imaging

    Science.gov (United States)

    Shalviri, Alireza

    The use of polysaccharides as building blocks in the development of drugs and contrast agents delivery systems is rapidly growing. This can be attributed to the outstanding virtues of polysaccharides such as biocompatibility, biodegradability, upgradability, multiple reacting groups and low cost. The focus of this thesis was to develop and characterize novel starch based hydrogels and nanoparticles for delivery of drugs and imaging agents. To this end, two different systems were developed. The first system includes polymer and nanoparticles prepared by graft polymerization of polymethacrylic acid and polysorbate 80 onto starch. This starch based platform nanotechnology was developed using the design principles based on the pathophysiology of breast cancer, with applications in both medical imaging and breast cancer chemotherapy. The nanoparticles exhibited a high degree of doxorubicin loading as well as sustained pH dependent release of the drug. The drug loaded nanoparticles were significantly more effective against multidrug resistant human breast cancer cells compared to free doxorubicin. Systemic administration of the starch based nanoparticles co-loaded with doxorubicin and a near infrared fluorescent probe allowed for non-invasive real time monitoring of the nanoparticles biodistribution, tumor accumulation, and clearance. Systemic administration of the clinically relevant doses of the drug loaded particles to a mouse model of breast cancer significantly enhanced therapeutic efficacy while minimizing side effects compared to free doxorubicin. A novel, starch based magnetic resonance imaging (MRI) contrast agent with good in vitro and in vivo tolerability was formulated which exhibited superior signal enhancement in tumor and vasculature. The second system is a co-polymeric hydrogel of starch and xanthan gum with adjustable swelling and permeation properties. The hydrogels exhibited excellent film forming capability, and appeared to be particularly useful in

  2. Influences of extracellular polymeric substances on the dewaterability of sewage sludge during bioleaching.

    Science.gov (United States)

    Zhou, Jun; Zheng, Guanyu; Zhang, Xueying; Zhou, Lixiang

    2014-01-01

    Extracellular polymeric substances (EPS) play important roles in regulating the dewaterability of sludge. This study sought to elucidate the influence of EPS on the dewaterability of sludge during bioleaching process. Results showed that, in bioleaching system with the co-inoculation of Acidithiobacillus thiooxidans TS6 and Acidithiobacillus ferrooxidans LX5 (A. t+A. f system), the capillary suction time (CST) of sludge reduced from 255.9 s to 25.45 s within 48 h, which was obviously better than the controls. The correlation analysis between sludge CST and sludge EPS revealed that the sludge EPS significantly impacted the dewaterability of sludge. Sludge CST had correlation with protein content in slime and both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers, and the decrease of protein content in slime and decreases of both protein and polysaccharide contents in TB-EPS and Slime+LB+TB layers improved sludge dewaterability during sludge bioleaching process. Moreover, the low sludge pH (2.92) and the increasing distribution of Fe in the solid phase were another two factors responsible for the improvement of sludge dewaterability during bioleaching. This study suggested that during sludge bioleaching the growth of Acidithiobacillus species resulted in the decrease of sludge pH, the increasing distribution of Fe in the solid phase, and the decrease of EPS content (mainly including protein and/or polysaccharide) in the slime, TB-EPS, and Slime+LB+TB layers, all of which are helpful for sludge dewaterability enhancement.

  3. Characterization of active polysaccharides of HemoHIM

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Kwang Sun; Shin, Myeong Suk; Bae, Beom Seon; Hwang, Yong Cheol [Kyonggi University, Suwon (Korea, Republic of); Ryu, Kwang Won [Chungju University, Chungju (Korea, Republic of)

    2007-07-15

    In this study, we aimed to elucidate the detailed structure and active moiety of polysaccharide, one of the active constituents of immune and hematopoietic modulating activities of HemoHIM. We first isolated the polysaccharide fractions from the hot water extracts of the each ingredient herbs (A. gigas, P. janonica, C. officinale) of HemoHIM and their mixture. These polysaccharides were composed of neutral (85.32-92.73%) and acidic (4.25-7.88%) saccharides, proteins (0.16-4.02%), and polyphenols (2.09-5.37%). The hydrolytic analysis of polysaccharide fractions showed that they commonly showed higher arabinose, galactose, and galacturonic acid contents. These result suggested that these polysaccharides may have higher contents of rhamnogalacturonan among pectic substances and the main active moiety is composed of polysaccharides. The anion exchange chromatography of HemoHIM and each ingredient herb extract using DEAE-Sepharose FF (Cl- form) column resulted in 1 non-adsorption and 8 adsorption fractions. The analysis of immune activity (lymphocyte proliferation) on these fractions showed that the fractions obtained by higher salt concentration carried the higher activity, but all fractions showed considerable immune activity

  4. Characterization of active polysaccharides of HemoHIM

    International Nuclear Information System (INIS)

    Shin, Kwang Sun; Shin, Myeong Suk; Bae, Beom Seon; Hwang, Yong Cheol; Ryu, Kwang Won

    2007-07-01

    In this study, we aimed to elucidate the detailed structure and active moiety of polysaccharide, one of the active constituents of immune and hematopoietic modulating activities of HemoHIM. We first isolated the polysaccharide fractions from the hot water extracts of the each ingredient herbs (A. gigas, P. janonica, C. officinale) of HemoHIM and their mixture. These polysaccharides were composed of neutral (85.32-92.73%) and acidic (4.25-7.88%) saccharides, proteins (0.16-4.02%), and polyphenols (2.09-5.37%). The hydrolytic analysis of polysaccharide fractions showed that they commonly showed higher arabinose, galactose, and galacturonic acid contents. These result suggested that these polysaccharides may have higher contents of rhamnogalacturonan among pectic substances and the main active moiety is composed of polysaccharides. The anion exchange chromatography of HemoHIM and each ingredient herb extract using DEAE-Sepharose FF (Cl- form) column resulted in 1 non-adsorption and 8 adsorption fractions. The analysis of immune activity (lymphocyte proliferation) on these fractions showed that the fractions obtained by higher salt concentration carried the higher activity, but all fractions showed considerable immune activity

  5. Organic synthetic dye degradation by modified pinhole discharge

    Czech Academy of Sciences Publication Activity Database

    Božic' Lončaric', A.; Koprivanac, N.; Šunka, Pavel; Člupek, Martin; Babický, Václav

    2004-01-01

    Roč. 54, suppl.C (2004), C958-C963 ISSN 0011-4626. [Symposium on Plasma Physics and Technology /21st/. Praha, 14.06.2004-17.06.2004] R&D Projects: GA ČR GA202/02/1026 Keywords : organic synthetic Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.292, year: 2004

  6. Rheological characteristics of synthetic road binders

    Energy Technology Data Exchange (ETDEWEB)

    Gordon D. Airey; Musarrat H. Mohammed; Caroline Fichter [University of Nottingham, Nottingham (United Kingdom)

    2008-08-15

    This paper deals with the synthesis of polymer binders from monomers that could in future be derived from renewable resources. These binders consist of polyethyl acrylate (PEA) of different molecular weight, polymethyl acrylate (PMA) and polybutyl acrylate (PBA), which were synthesised from ethyl acrylate, methyl acrylate and butyl acrylate, respectively, by atom transfer radical polymerization (ATRP). The fundamental rheological properties of these binders were determined by means of a dynamic shear rheometer (DSR) using a combination of temperature and frequency sweeps. The results indicate that PEA has rheological properties similar to that of 100/150 penetration grade bitumen, PMA similar rheological properties to that of 10/20 penetration grade bitumen, while PBA, due to its highly viscous nature and low complex modulus, cannot be used on its own as an asphalt binder. The synthetic binders were also combined with conventional penetration grade bitumen to produce a range of bitumen-synthetic polymer binder blends. These blends were batched by mass in the ratio of 1:1 or 3:1 and subjected to the same DSR rheological testing as the synthetic binders. The blends consisting of a softer bitumen (70/100 pen or 100/150 pen) with a hard synthetic binder (PMA) tended to be more compatible and therefore stable and produced rheological properties that combined the properties of the two components. The synthetic binders and particularly the extended bitumen samples (blends) produced rheological properties that showed similar characteristics to elastomeric SBS PMBs. 30 refs., 12 figs., 2 tabs.

  7. Structure and organization of phospholipid/polysaccharide nanoparticles

    International Nuclear Information System (INIS)

    Gerelli, Y; Bari, M T Di; Deriu, A; Cantu, L; Colombo, P; Como, C; Motta, S; Sonvico, F; May, R

    2008-01-01

    In recent years nanoparticles and microparticles composed of polymeric or lipid material have been proposed as drug carriers for improving the efficacy of encapsulated drugs. For the production of these systems different materials have been proposed, among them phospholipids and polysaccharides due to their biocompatibility, biodegradability, low cost and safety. We report here a morphological and structural investigation, performed using cryo-TEM, static light scattering and small angle neutron and x-ray scattering, on phospholipid/saccharide nanoparticles loaded with a lipophilic positively charged drug (tamoxifen citrate) used in breast cancer therapy. The lipid component was soybean lecithin; the saccharide one was chitosan that usually acts as an outer coating increasing vesicle stability. The microscopy and scattering data indicate the presence of two distinct nanoparticle families: uni-lamellar vesicles with average radius 90 A and multi-lamellar vesicles with average radius 440 A. In both families the inner core is occupied by the solvent. The presence of tamoxifen gives rise to a multi-lamellar structure of the lipid outer shell. It also induces a positive surface charge into the vesicles, repelling the positively charged chitosan molecules which therefore do not take part in nanoparticle formation

  8. Structure and organization of phospholipid/polysaccharide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Gerelli, Y; Bari, M T Di; Deriu, A [Dipartimento di Fisica and CNISM, Universita degli Studi di Parma and CRS SOFT, INFM-CNR (Italy); Cantu, L [Dipartimento di Chimica, Biochimica e Biotecnologie per la Medicina-LITA, Universita di Milano (Italy); Colombo, P; Como, C; Motta, S; Sonvico, F [Dipartimento Farmaceutico, Universita degli Studi di Parma (Italy); May, R [Institut Laue-Langevin, Grenoble (France)], E-mail: Antonio.Deriu@fis.unipr.it

    2008-03-12

    In recent years nanoparticles and microparticles composed of polymeric or lipid material have been proposed as drug carriers for improving the efficacy of encapsulated drugs. For the production of these systems different materials have been proposed, among them phospholipids and polysaccharides due to their biocompatibility, biodegradability, low cost and safety. We report here a morphological and structural investigation, performed using cryo-TEM, static light scattering and small angle neutron and x-ray scattering, on phospholipid/saccharide nanoparticles loaded with a lipophilic positively charged drug (tamoxifen citrate) used in breast cancer therapy. The lipid component was soybean lecithin; the saccharide one was chitosan that usually acts as an outer coating increasing vesicle stability. The microscopy and scattering data indicate the presence of two distinct nanoparticle families: uni-lamellar vesicles with average radius 90 A and multi-lamellar vesicles with average radius 440 A. In both families the inner core is occupied by the solvent. The presence of tamoxifen gives rise to a multi-lamellar structure of the lipid outer shell. It also induces a positive surface charge into the vesicles, repelling the positively charged chitosan molecules which therefore do not take part in nanoparticle formation.

  9. Structure and organization of phospholipid/polysaccharide nanoparticles

    Science.gov (United States)

    Gerelli, Y.; Di Bari, M. T.; Deriu, A.; Cantù, L.; Colombo, P.; Como, C.; Motta, S.; Sonvico, F.; May, R.

    2008-03-01

    In recent years nanoparticles and microparticles composed of polymeric or lipid material have been proposed as drug carriers for improving the efficacy of encapsulated drugs. For the production of these systems different materials have been proposed, among them phospholipids and polysaccharides due to their biocompatibility, biodegradability, low cost and safety. We report here a morphological and structural investigation, performed using cryo-TEM, static light scattering and small angle neutron and x-ray scattering, on phospholipid/saccharide nanoparticles loaded with a lipophilic positively charged drug (tamoxifen citrate) used in breast cancer therapy. The lipid component was soybean lecithin; the saccharide one was chitosan that usually acts as an outer coating increasing vesicle stability. The microscopy and scattering data indicate the presence of two distinct nanoparticle families: uni-lamellar vesicles with average radius 90 Å and multi-lamellar vesicles with average radius 440 Å. In both families the inner core is occupied by the solvent. The presence of tamoxifen gives rise to a multi-lamellar structure of the lipid outer shell. It also induces a positive surface charge into the vesicles, repelling the positively charged chitosan molecules which therefore do not take part in nanoparticle formation.

  10. Novel Zinc-Catalytic Systems for Ring-Opening Polymerization of ε-Caprolactone

    Directory of Open Access Journals (Sweden)

    Karolina Żółtowska

    2015-02-01

    Full Text Available Polycaprolactone (PCL is a biodegradable synthetic polymer that is currently widely used in many pharmaceutical and medical applications. In this paper we describe the coordination ring-opening polymerization of ε-caprolactone in the presence of two newly synthesized catalytic systems: diethylzinc/gallic acid and diethylzinc/propyl gallate. The chemical structures of the obtained PCLs were characterized by 1H- or 13C-NMR, FTIR spectroscopy and MALDI TOF mass spectrometry. The average molecular weight of the resulting polyesters was analysed by gel permeation chromatography and a viscosity method. The effects of temperature, reaction time and type of catalytic system on the polymerization process were examined. Linear PCLs with defined average molecular weight were successfully obtained. Importantly, in some cases the presence of macrocyclic products was not observed during the polymerization process. This study provides an effective method for the synthesis of biodegradable polyesters for medical and pharmaceutical applications due to the fact that gallic acid/propyl gallate are commonly used in the pharmaceutical industry.

  11. The immunostimulating role of lichen polysaccharides: a review.

    Science.gov (United States)

    Shrestha, Gajendra; St Clair, Larry L; O'Neill, Kim L

    2015-03-01

    The immune system has capacity to suppress the development or progression of various malignancies including cancer. Research on the immunomodulating properties of polysaccharides obtained from plants, microorganisms, marine organisms, and fungi is growing rapidly. Among the various potential sources, lichens, symbiotic systems involving a fungus and an alga and/or a cyanobacterium, show promise as a potential source of immunomodulating compounds. It is well known that lichens produce an abundance of structurally diverse polysaccharides. However, only a limited number of studies have explored the immunostimulating properties of lichen polysaccharides. Published studies have shown that some lichen polysaccharides enhance production of nitrous oxide (NO) by macrophages and also alter the production levels of various proinflammatory and antiinflammatory cytokines (IL-10, IL-12, IL-1β, TNF-α, and IFN-α/β) by macrophages and dendritic cells. Although there are only a limited number of studies examining the role of lichen polysaccharides, all results suggest that lichen polysaccharides can induce immunomodulatory responses in macrophages and dendritic cells. Thus, a detailed evaluation of immunomodulatory capacity of lichen polysaccharides could provide a unique opportunity for the discovery of novel therapeutic agents. Copyright © 2014 John Wiley & Sons, Ltd.

  12. Natural and synthetic biomaterials for controlled drug delivery.

    Science.gov (United States)

    Kim, Jang Kyoung; Kim, Hyung Jin; Chung, Jee-Young; Lee, Jong-Hwan; Young, Seok-Beom; Kim, Yong-Hee

    2014-01-01

    A wide variety of delivery systems have been developed and many products based on the drug delivery technology are commercially available. The development of controlled-release technologies accelerated new dosage form design by altering pharmacokinetic and pharmacodynamics profiles of given drugs, resulting in improved efficacy and safety. Various natural or synthetic polymers have been applied to make matrix, reservoir or implant forms due to the characteristics of polymers, especially ease of control for modifications of biocompatibility, biodegradation, porosity, charge, mechanical strength and hydrophobicity/hydrophilicity. Hydrogel is a hydrophilic, polymeric network capable of imbibing large amount of water and biological fluids. This review article introduces various applications of natural and synthetic polymer-based hydrogels from pharmaceutical, biomedical and bioengineering points of view.

  13. [Comparison on polysaccharide content and PMP-HPLC fingerprints of polysaccharide in stems and leaves of Dendrobium officinale].

    Science.gov (United States)

    Zhou, Gui-Fen; Pang, Min-Xia; Chen, Su-Hong; Lv, Gui-Yuan; Yan, Mei-Qiu

    2014-03-01

    In order to provide scientific basics for exploitation and sufficient application of Dendrobium officinale leaves resources, the phenol-sulfuric acid method was applied to determine the polysaccharide content. The monosaccharides were derivated by PMP and the derivatives were identified by HPLC-DAD-ESI-MS(n) and the contents of mannose and glucose were determined simultaneously. Similarity evaluation system for chromatographic fingerprint of traditional Chinese medicine (2004A) was employed to generate the mean chromatogram and similarity analysis of the samples was carried out. The results demonstrated that polysaccharide content, monosaccharide compositions and composition ratio had an obvious difference between stems and leaves. The polysaccharide content of stems was higher than that of leaves. Monosaccharide composition in leaf was significantly different from that in stem. The polysaccharide from stems was composed of mannose and glucose, however the polysaccharide of leaves was acid heteropolysaccharide and was mainly composed of five monosaccharides, including mannose, galacturonic acid, glucose, galactose and arabinose. The similarity value of the 14 batches was above 0.9, indicating that similarity of fingerprints among different samples was high. The study can provide evidence for expanding the medicinal parts of D. officinale.

  14. REVIEW: CHITOSAN BASED HYDROGEL POLYMERIC BEADS – AS DRUG DELIVERY SYSTEM

    Directory of Open Access Journals (Sweden)

    Manjusha Rani

    2010-11-01

    Full Text Available Chitosan obtained by alkaline deacetylation of chitin is a non-toxic, biocompatible, and biodegradable natural polymer. Chitosan-based hydrogel polymeric beads have been extensively studied as micro- or nano-particulate carriers in the pharmaceutical and medical fields, where they have shown promise for drug delivery as a result of their controlled and sustained release properties, as well as biocompatibility with tissue and cells. To introduce desired properties and enlarge the scope of the potential applications of chitosan, graft copolymerization with natural or synthetic polymers on it has been carried out, and also, various chitosan derivatives have been utilized to form beads. The desired kinetics, duration, and rate of drug release up to therapeutical level from polymeric beads are limited by specific conditions such as beads material and their composition, bead preparation method, amount of drug loading, drug solubility, and drug polymer interaction. The present review summarizes most of the available reports about compositional and structural effects of chitosan-based hydrogel polymeric beads on swelling, drug loading, and releasing properties. From the studies reviewed it is concluded that chitosan-based hydrogel polymeric beads are promising drug delivery systems.

  15. New composites of polyaniline and polysaccharides with applications as biomaterials: one review

    Directory of Open Access Journals (Sweden)

    Eliana França

    2007-03-01

    Full Text Available In this revision we will show some results involving composites made with polyaniline and polysaccharides and their properties as promising biomaterials. Studies about the biomedical application of conducting polymers have being considered due the electric stimulation, decrease citotoxicity, good biocompatibility, and others. Polyaniline and polymers derived from the aniline has received attention in the last years by chemical stability in environmental conditions, processibility, facility of polymerization and doping, short cost and particular properties. The botryospheran is an exopolysaccharide (EPS classified in the group of the beta-(1 -3 glucans, produced by the fungus botryosphaeria sp.. EPS has being investigated in parallel about the variability of biological answers of defense. The potential of interaction between conducting polymers with biological environment has been considered, once the application possibilities like development of artificial muscles, nerves regeneration stimulation and medicines delivery control.

  16. In vitro prebiotic effects of seaweed polysaccharides

    Science.gov (United States)

    Chen, Xiaolin; Sun, Yuhao; Hu, Linfeng; Liu, Song; Yu, Huahua; Xing, Rong'e.; Li, Rongfeng; Wang, Xueqin; Li, Pengcheng

    2017-09-01

    Although prebiotic activities of alginate and agar oligosaccharides isolated from seaweeds have been reported, it remains unknown whether seaweed polysaccharides have prebiotic activity. In this study, we isolated polysaccharides from four species of seaweeds, such as Grateloupia filicina (GFP), Eucheuma spinosum (ESP), Ulva pertusa (UPP), and Ascophyllum nodosum (ANP), and characterized their structures and prebiotic effects in vitro. The results showed that these polysaccharides were different in total sugar and sulfate contents as well as monosaccharide composition. GFP and ESP significantly promoted bifidobacterium proliferation and 0.1% ESP and 0.4% GFP resulted in the highest proliferation rates of beneficial bacteria, whereas UPP and ANP inhibited the growth of beneficial bacteria at all tested concentrations (0.1%-0.5%). The different behaviors of the four seaweed-originated polysaccharides might be reflected by differences in monosaccharide composition and structure. Therefore, polysaccharides isolated from GFP and ESP could be utilized as prebiotics. However, more studies must be carried out in vivo.

  17. Bioactive polysaccharides and gut microbiome (abstract)

    Science.gov (United States)

    Many polysaccharides have shown the ability to reduce plasma cholesterol or postprandial glycemia. Viscosity in the small intestine seems to be required to slow glucose uptake. Cereal mixed linkage beta-glucans, psyllium, glucomannans, and other polysaccharides also seem to require higher molecula...

  18. Direct surface PEGylation of nanodiamond via RAFT polymerization

    International Nuclear Information System (INIS)

    Shi, Yingge; Liu, Meiying; Wang, Ke; Huang, Hongye; Wan, Qing; Tao, Lei; Fu, Lihua; Zhang, Xiaoyong; Wei, Yen

    2015-01-01

    Graphical abstract: In this paper, we describe an efficient, practical and novel method to modify ND via direct immobilization of chain transfer agent for RAFT polymerization. - Highlights: • Surface PEGylation of ND via RAFT polymerization. • ND with high water dispersibility and excellent biocompatibility. • Controlled living polymerization. - Abstract: Nanodiamond (ND) is a novel class of carbon nanomaterials, which has been extensively investigated for biomedical applications because of its small size, high surface area and excellent biocompatibility. However, the biomedical applications of unmodified ND are still largely restricted because of their poor dispersibility in both aqueous and organic medium. In this work, we reported a novel strategy for the surface modification of ND via reversible addition fragmentation chain transfer (RAFT) polymerization. For preparation of the PEGylated ND (pPEGMA-ND), chain transfer agent (CTA) was immobilized onto ND through reaction between the hydroxyl group of ND and the carboxyl group of CTA, which was used as the initiator for surface-initiated RAFT polymerization. The successful preparation of pPEGMA-ND was characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and thermal gravimetric analysis in detail. Results demonstrated that pPEGMA-ND exhibited enhanced water dispersibility and desirable biocompatibility, making it promising for biomedical applications.

  19. Direct surface PEGylation of nanodiamond via RAFT polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yingge [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Liu, Meiying [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wang, Ke [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Huang, Hongye; Wan, Qing [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Tao, Lei [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China); Fu, Lihua [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry and Jiangxi Provincial Key Laboratory of New Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing 100084 (China)

    2015-12-01

    Graphical abstract: In this paper, we describe an efficient, practical and novel method to modify ND via direct immobilization of chain transfer agent for RAFT polymerization. - Highlights: • Surface PEGylation of ND via RAFT polymerization. • ND with high water dispersibility and excellent biocompatibility. • Controlled living polymerization. - Abstract: Nanodiamond (ND) is a novel class of carbon nanomaterials, which has been extensively investigated for biomedical applications because of its small size, high surface area and excellent biocompatibility. However, the biomedical applications of unmodified ND are still largely restricted because of their poor dispersibility in both aqueous and organic medium. In this work, we reported a novel strategy for the surface modification of ND via reversible addition fragmentation chain transfer (RAFT) polymerization. For preparation of the PEGylated ND (pPEGMA-ND), chain transfer agent (CTA) was immobilized onto ND through reaction between the hydroxyl group of ND and the carboxyl group of CTA, which was used as the initiator for surface-initiated RAFT polymerization. The successful preparation of pPEGMA-ND was characterized by nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectra and thermal gravimetric analysis in detail. Results demonstrated that pPEGMA-ND exhibited enhanced water dispersibility and desirable biocompatibility, making it promising for biomedical applications.

  20. Polymeric membrane studied using slow positron beam

    International Nuclear Information System (INIS)

    Hung, W.-S.; Lo, C.-H.; Cheng, M.-L.; Chen Hongmin; Liu Guang; Chakka, Lakshmi; Nanda, D.; Tung, K.-L.; Huang, S.-H.; Lee, Kueir-Rarn; Lai, J.-Y.; Sun Yiming; Yu Changcheng; Zhang Renwu; Jean, Y.C.

    2008-01-01

    A radioisotope slow positron beam has been built at the Chung Yuan Christian University in Taiwan for the research and development in membrane science and technology. Doppler broadening energy spectra and positron annihilation lifetime have been measured as a function of positron energy up to 30 keV in a polyamide membrane prepared by the interfacial polymerization between triethylenetetraamine (TETA) and trimesoyl chloride (TMC) on modified porous polyacrylonitrile (PAN) asymmetric membrane. The multilayer structures and free-volume depth profile for this asymmetric membrane system are obtained. Positron annihilation spectroscopy coupled with a slow beam could provide new information about size selectivity of transporting molecules and guidance for molecular designs in polymeric membranes

  1. Biochemical Aspects of Non-Starch Polysaccharides

    Directory of Open Access Journals (Sweden)

    Rodica Căpriţă

    2010-05-01

    Full Text Available Polysaccharides are macromolecules of monosaccharides linked by glycosidic bonds. Non-starch polysaccharides (NSP are principally non-α-glucan polysaccharides of the plant cell wall. They are a heterogeneous group of polysaccharides with varying degrees of water solubility, size, and structure. The water insoluble fiber fraction include cellulose, galactomannans, xylans, xyloglucans, and lignin, while the water-soluble fibers are the pectins, arabinogalactans, arabinoxylans, and β-(1,3(1,4-D-glucans (β-glucans. Knowledge of the chemical structure of NSP has permitted the development of enzyme technology to overcome their antinutritional effects. The physiological effects of NSP on the digestion and absorption of nutrients in human and monogastric animals have been attributed to their physicochemical properties: hydration properties, viscosity, cation exchange capacity and organic compound absorptive properties. This paper reviews and presents information on NSPs chemistry, physicochemical properties and physiological effects on the nutrient entrapment.

  2. Surface Initiated Polymerizations via e-ATRP in Pure Water

    Directory of Open Access Journals (Sweden)

    Seyed Schwan Hosseiny

    2013-10-01

    Full Text Available Here we describe the combined process of surface modification with electrochemical atom transfer radical polymerization (e-ATRP initiated from the surface of a modified gold-electrode in a pure aqueous solution without any additional supporting electrolyte. This approach allows for a very controlled growth of the polymer chains leading towards a steady increase in film thickness. Electrochemical quartz crystal microbalance displayed a highly regular increase in surface confined mass only after the addition of the pre-copper catalyst which is reduced in situ and transformed into the catalyst. Even after isolation and washing of the modified electrode surface, reinitiation was achieved with retention of the controlled electrochemical ATRP reaction. This reinitiation after isolation proves the livingness of the polymerization. This approach has interesting potential for smart thin film materials and offers also the possibility of post-modification via additional electrochemical induced reactions.

  3. Enantioselective potential of polysaccharide-based chiral stationary phases in supercritical fluid chromatography.

    Science.gov (United States)

    Kucerova, Gabriela; Kalikova, Kveta; Tesarova, Eva

    2017-06-01

    The enantioselective potential of two polysaccharide-based chiral stationary phases for analysis of chiral structurally diverse biologically active compounds was evaluated in supercritical fluid chromatography using a set of 52 analytes. The chiral selectors immobilized on 2.5 μm silica particles were tris-(3,5-dimethylphenylcarmabate) derivatives of cellulose or amylose. The influence of the polysaccharide backbone, different organic modifiers, and different mobile phase additives on retention and enantioseparation was monitored. Conditions for fast baseline enantioseparation were found for the majority of the compounds. The success rate of baseline and partial enantioseparation with cellulose-based chiral stationary phase was 51.9% and 15.4%, respectively. Using amylose-based chiral stationary phase we obtained 76.9% of baseline enantioseparations and 9.6% of partial enantioseparations of the tested compounds. The best results on cellulose-based chiral stationary phase were achieved particularly with propane-2-ol and a mixture of isopropylamine and trifluoroacetic acid as organic modifier and additive to CO 2 , respectively. Methanol and basic additive isopropylamine were preferred on amylose-based chiral stationary phase. The complementary enantioselectivity of the cellulose- and amylose-based chiral stationary phases allows separation of the majority of the tested structurally different compounds. Separation systems were found to be directly applicable for analyses of biologically active compounds of interest. © 2017 Wiley Periodicals, Inc.

  4. Immunomodulatory dietary polysaccharides: a systematic review of the literature

    Directory of Open Access Journals (Sweden)

    Nelson Erika D

    2010-11-01

    Full Text Available Abstract Background A large body of literature suggests that certain polysaccharides affect immune system function. Much of this literature, however, consists of in vitro studies or studies in which polysaccharides were injected. Their immunologic effects following oral administration is less clear. The purpose of this systematic review was to consolidate and evaluate the available data regarding the specific immunologic effects of dietary polysaccharides. Methods Studies were identified by conducting PubMed and Google Scholar electronic searches and through reviews of polysaccharide article bibliographies. Only articles published in English were included in this review. Two researchers reviewed data on study design, control, sample size, results, and nature of outcome measures. Subsequent searches were conducted to gather information about polysaccharide safety, structure and composition, and disposition. Results We found 62 publications reporting statistically significant effects of orally ingested glucans, pectins, heteroglycans, glucomannans, fucoidans, galactomannans, arabinogalactans and mixed polysaccharide products in rodents. Fifteen controlled human studies reported that oral glucans, arabinogalactans, heteroglycans, and fucoidans exerted significant effects. Although some studies investigated anti-inflammatory effects, most studies investigated the ability of oral polysaccharides to stimulate the immune system. These studies, as well as safety and toxicity studies, suggest that these polysaccharide products appear to be largely well-tolerated. Conclusions Taken as a whole, the oral polysaccharide literature is highly heterogenous and is not sufficient to support broad product structure/function generalizations. Numerous dietary polysaccharides, particularly glucans, appear to elicit diverse immunomodulatory effects in numerous animal tissues, including the blood, GI tract and spleen. Glucan extracts from the Trametes versicolor

  5. Polymerized serum albumin beads for use as slow-release adjuvants

    International Nuclear Information System (INIS)

    Martin, M.E.D.

    1987-02-01

    Experimental vaccines have been made by covalently bonding virus particles into polymerized rabbit serum albumin beads. Using Nodamura virus as a model antigen, these model vaccines induced specific humoral antibody production, comparable with that achieved using Freund's adjuvants. Virus specific antibodies were also induced when Nodamura virus was covalently attached to the bead surface using different crosslinkers. However, when poliovirus type 2 (Sabin strain) was polymerized into beads, the levels of neutralizing antibodies were insignificant compared with control aqueous vaccines. The synthetic immunostimulator, muramyl dipeptide, was included with bead vaccines in an attempt to potentiate the immune response. Immunostimulation is achieved by a slow release of antigen coinciding with the gradual breakdown of bead structure. Methods used include radio-iodination and radioimmunoassay. 65 figs., 6 tabs., 173 refs

  6. Polymerizations of beta-substituted allylic arsonium ylides with catalytic amounts of organoboron compounds

    International Nuclear Information System (INIS)

    Mondiere, R.

    2004-01-01

    My Ph.D. work consisted in the generalization and optimization of a new polymerization reaction involving allylic arsonium ylides and catalytic amounts of various boron compounds. Thus, various β-substituted allylic arsonium salts were produced according to synthetic strategies that depended on the nature of the functional group born by the salt. These salts were converted in situ to the corresponding arsonium ylides which were then treated with boron compounds to yield polymers. Our new method of polymerization afforded either non conjugated polyenes that are functionalized every three atoms of carbon, or statistic copolymers, depending on the nature of the group R born on the β position of the ylide. These new polymers cannot be synthesized by usual methods of polymerization. Initial molar ratios of reactants were found to give molar mass control of the synthesized polymers. This controlled polymerization allowed us to produce several bloc copolymers. All the polymers were characterized by NMR techniques, by size exclusion chromatography and, for some of them, by mass spectrometry. Investigation of their physicochemical properties will need additional experiments. (author)

  7. Protective effect of plant polysaccharides against radiation injury

    International Nuclear Information System (INIS)

    Wang Bingji; Huang Shafei; Cheng Lurong

    1989-01-01

    A series of polysaccharides have been isolated from Chinese traditional medicinal herbs and tested in mice subjected to ionizing radiation for their protective action. The polysaccharides from different origins showed various degrees of radioprotection. Those isolated from Hericium erinaceus and Armillaria mellea showed a higher radioprotective effect than some other polysaccharides. They could increase the survival rate of irradiated mice to 60%. But the polysaccheride separated from Apocynum venetum has negligible effect. In general, most of these polysaccharides are effective only on administration before irradiation. No apparent protection was observed when given post irradiation. The polysaccharide isolated from Armillaria venetum could raise the survival rate of mice irradiated by lethal dose of γ-rays to 58%. It is effective even when administered after irradiation. Some work has been carried out to clarify the mechanism of radioprotective action of polysaccharides. Protection of hemapoietic organs, regulation of immunological system, induction of release of some endogeneous bioactive substances in the organism and reduction of oxygen tension in some vital tissues may be correlated with the protection of organism against radiation injury

  8. The Effect of Microporous Polymeric Support Modification on Surface and Gas Transport Properties of Supported Ionic Liquid Membranes

    OpenAIRE

    Akhmetshina, Alsu A.; Davletbaeva, Ilsiya M.; Grebenschikova, Ekaterina S.; Sazanova, Tatyana S.; Petukhov, Anton N.; Atlaskin, Artem A.; Razov, Evgeny N.; Zaripov, Ilnaz I.; Martins, Carla F.; Neves, Lu?sa A.; Vorotyntsev, Ilya V.

    2015-01-01

    Microporous polymers based on anionic macroinitiator and toluene 2,4-diisocyanate were used as a support for 1-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6]) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([emim][Tf2N]) immobilization. The polymeric support was modified by using silica particles associated in oligomeric media, and the influence of the modifier used on the polymeric structure was studied. The supported ionic liquid membranes (SILMs) were tested ...

  9. Sustained delivery of plasmid DNA from polymeric scaffolds for tissue engineering.

    Science.gov (United States)

    Storrie, Hannah; Mooney, David J

    2006-07-07

    The encapsulation of DNA into polymeric depot systems can be used to spatially and temporally control DNA release, leading to a sustained, local delivery of therapeutic factors for tissue regeneration. Prior to encapsulation, DNA may be condensed with cationic polymers to decrease particle size, protect DNA from degradation, promote interaction with cell membranes, and facilitate endosomal release via the proton sponge effect. DNA has been encapsulated with either natural or synthetic polymers to form micro- and nanospheres, porous scaffolds and hydrogels for sustained DNA release and the polymer physical and chemical properties have been shown to influence transfection efficiency. Polymeric depot systems have been applied for bone, skin, and nerve regeneration as well as therapeutic angiogenesis, indicating the broad applicability of these systems for tissue engineering.

  10. Interaction between gut immunity and polysaccharides.

    Science.gov (United States)

    Huang, Xiaojun; Nie, Shaoping; Xie, Mingyong

    2017-09-22

    The human gut is colonized with a vast and diverse microbial ecosystem, and these bacteria play fundamental roles in the well being of our bodies. Gut-associated lymphoid tissues, the largest mucosal immune system, should never be overlooked for their profound effect in maintaining the host immunity. Therefore, we discussed the relationship between gut immunity and host health, primarily from two aspects: the homeostasis of gut microbiota, and the function of gut-associated lymphoid tissues. Polysaccharides, widely concerned as bioactive macromolecules in recent centuries, have been proved to benefit the intestinal health. Dietary polysaccharides can improve the ratio of probiotics, regulate the intestinal microenvironment like decreasing the gut pH, and stimulate the macrophages or lymphocytes in gut tissues to fight against diseases like cancer. Based on various experimental and clinical evidence, the impacts of dietary polysaccharides on intestinal health are summarized, in order to reveal the possible immunomodulatory mechanisms of polysaccharides.

  11. Deposition kinetics of extracellular polymeric substances (EPS) on silica in monovalent and divalent salts.

    Science.gov (United States)

    Zhu, Pingting; Long, Guoyu; Ni, Jinren; Tong, Meiping

    2009-08-01

    The deposition kinetics of extracellular polymeric substances (EPS) on silica surfaces were examined in both monovalent and divalent solutions under a variety of environmentally relevant ionic strength and pH conditions by employing a quartz crystal microbalance with dissipation (DCM-D). Soluble EPS (SEPS) and bound EPS (BEPS) were extracted from four bacterial strains with different characteristics. Maximum favorable deposition rates (k(fa)) were observed for all EPS at low ionic strengths in both NaCl and CaCl2 solutions. With the increase of ionic strength, k(fa) decreased due to the simultaneous occurrence of EPS aggregation in solutions. Deposition efficiency (alpha; the ratio of deposition rates obtained under unfavorable versus corresponding favorable conditions) for all EPS increased with increasing ionic strength in both NaCl and CaCl2 solutions, which agreed with the trends of zeta potentials and was consistent with the classic Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Comparison of alpha for SEPS and BEPS extracted from the same strain showed that the trends of alpha did not totally agree with trends of zeta potentials, indicating the deposition kinetics of EPS on silica surfaces were not only controlled by DLVO interactions, but also non-DLVO forces. Close comparison of alpha for EPS extracted from different sources showed alpha increased with increasing proteins to polysaccharides ratio. Subsequent experiments for EPS extracted from the same strain but with different proteins to polysaccharides ratios and from activated sludge also showed that alpha were largest for EPS with greatest proteins to polysaccharides ratio. Additional experiments for pure protein and solutions with different pure proteins to pure saccharides ratios further corroborated that larger proteins to polysaccharides ratio resulted in greater EPS deposition.

  12. Enzymatic method for improving the injectability of polysaccharides. [US Patent Application

    Science.gov (United States)

    Griffith, W.L.; Compere, A.L.; Holleman, J.W.

    A method for enhancing the ability of polysaccharides in aqueous solution to flow through a porous medium comprises contacting the polysaccharides with an endoenzyme capable of hydrolyzing at least one of the linkages of the sugar units of the polysaccharides and maintaining the polysaccharides in contact with the enzyme under hydrolysis conditions for a time sufficient to decrease the tendency of the polysaccharides to plug the porous medium yet insufficient to decrease the viscosity of the aqueous polysaccharides by more than 25%. The partially hydrolyzed polysaccharides are useful as thickening agents for flooding water used to recover oil from oil-containing subterranean formations.

  13. Bio-corrosion in synthetic and natural sea water of modified stainless steels by poison elements

    International Nuclear Information System (INIS)

    Hernandez Duque, G.

    1989-09-01

    In seawater, bacteria can modify the behaviour of stainless steels towards corrosion. It can be then considered to control this type of degradation by a better adjustment of the chemical composition of the steels used. In this work, has been studied the influence of the addition of 'poisons' elements for bacteria on the bio-corrosion resistance of an austenitic 316L steel. The added elements were copper, tin and arsenic. After a bibliographic study and a description of the metallographic, electrochemical and surface analyses methods used, the results obtained in the considered media are given: synthetical seawater, natural, or sterilized and then inoculated. The specific role of each addition elements has then been revealed as well as the alteration of the protecting films and of the induced bio-film, and the behaviour differences in aerobic and anaerobic conditions. (O.M.)

  14. Photo and radiation chemistry of polymeric systems and nanomaterials

    International Nuclear Information System (INIS)

    Mikhaylov, A.I.

    2004-01-01

    New approaches of analytical ESR-spectroscopy to studying of free-radical and electron-transport processes at radiation-chemical and photochemical modification both fictionalization of polymeric systems and nanomaterials were surveyed. Measuring techniques using of ESR-spectroscopy of paramagnetic centers were fulfilled. The radiation-chemical processes of modification, microencapsulation and kinetic stabilization of thermodynamically incompatible systems and interfaces for nanomaterials including fullerenes, nanotubes, nanofibres, etc. and composites on the basis of synthetic and natural polymers including plant fibers, fluoropolymers, polyolefins, etc. were developed

  15. Click polymerization for the synthesis of reduction-responsive polymeric prodrug

    Science.gov (United States)

    Zhang, Xiaojin; Wang, Hongquan; Dai, Yu

    2018-05-01

    Click polymerization is a powerful polymerization technique for the construction of new macromolecules with well-defined structures and multifaceted functionalities. Here, we synthesize reduction-responsive polymeric prodrug PEG- b-(PSS- g-MTX)- b-PEG containing disulfide bonds and pendant methotrexate (MTX) via two-step click polymerization followed by conjugating MTX to pendant hydroxyl. MTX content in polymeric prodrug is 13.5%. Polymeric prodrug is able to form polymeric micelles by self-assembly in aqueous solution. Polymeric micelles are spherical nanoparticles with tens of nanometers in size. Of note, polymeric micelles are reduction-responsive due to disulfide bonds in the backbone of PEG- b-(PSS- g-MTX)- b-PEG and could release pendant drugs in the presence of the reducing agents such as dl-dithiothreitol (DTT).

  16. Preparation of poly (methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization

    Institute of Scientific and Technical Information of China (English)

    史建明; 包永忠; 黄志明; 翁志学

    2004-01-01

    Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate (nano-CaCO3) surface modified with (-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.

  17. Pulsed-laser polymerization in compartmentalized liquids. 1. Polymerization in vesicles

    NARCIS (Netherlands)

    Jung, M.; Casteren, van I.A.; Monteiro, M.J.; Herk, van A.M.; German, A.L.

    2000-01-01

    Polymerization in vesicles is a novel type of polymerization in heterogeneous media, leading to parachute-like vesicle-polymer hybrid morphologies. To explore the kinetics of vesicle polymerizations and to learn more about the actual locus of polymerization we applied the pulsed-laser polymerization

  18. Regulation and diversity of plant polysaccharide utilisation in fungi

    NARCIS (Netherlands)

    Battaglia, E.

    2011-01-01

    Filamentous fungi obtain their nutrients by degrading dead or living plant material. Plant material consists of different cell wall and storage polysaccharides. Due to the complex structure and the variety of plant polysaccharides, filamentous fungi secrete a wide range of plant polysaccharide

  19. Radiation degradation of marine polysaccharides by low energy electron beam

    International Nuclear Information System (INIS)

    Yoshii, Fumio; Nagasawa, Naotsugu; Kume, Tamikazu

    2003-01-01

    The radiation degradations of marine polysaccharides by both gamma Co-60 and electron beam irradiations are investigated. Polysaccharides and oligosaccharides can be produced by degradation of corresponding polysaccharides including marine polysaccharides such as alginates, chitin chitosan and carrageenan. The viscosity of alginate, chitosan and carrageenan solution decreases markedly with increase of the low energy electron beam irradiation time and the beam current. Furthermore, the viscosity is reduced sharply in short time for polysaccharide solution with low concentration, for instance carrageenan solution of 1%. (author)

  20. Effects of Gamma irradiation on uronic acid sugars as cell wall polysaccharide model systems

    International Nuclear Information System (INIS)

    Irawati, Zubaidah; Pilnik, W.

    2001-01-01

    Irradiation is an alternative preservation method with can be utilized to extend the self-life of agricultural products by eliminating number of insects, and decreasing microbial growth effectively. Cell wall polysaccharides which mainly consist of pectic substances, hemicelluloses and cellulose play a major role on the immediate fruits. their degradation mechanism can be elucidates by studying their degradation products resulting from the irradiated cell wall or cell wall components. Isolated apple pectin and alginates as different in solid state by gamma irradiation at 15-30 kGy under two different humidities. The parameters observed were viscosity, β-elimination in the ester groups of pectin, and distribution of molecular weight. Irradiation with the doses of 15-30 kGy could reduce the viscosity of pectin and alginates, while irradiation did not cause β-elimination in the ester groups of pectin as confirmed by titration and ion exchange chromatography methods. The formation of 4,5-unsaturated uronosyl residues as a product of cleavage of the pectin backbone via- β-elimination was not found in irradiated pectin as confirmed by thio barbiture acid (TBA) test. High Performance Size Exclusion Chromatography (HPSEC) analysis for the irradiated polysaccharide model systems revealed that the average number of molecular weight showed a decrease by increasing radiation dose. Storage condition in two different relative humidities affected significantly the degree of polymerization of pectin and alginates in solid state

  1. A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings

    Directory of Open Access Journals (Sweden)

    Elbadawy A. Kamoun

    2017-05-01

    Full Text Available This review presents the past and current efforts with a brief description on the featured properties of hydrogel membranes fabricated from biopolymers and synthetic ones for wound dressing applications. Many endeavors have been exerted during past ten years for developing new artificial polymeric membranes, which fulfill the demanded conditions for the treatment of skin wounds. This review mainly focuses on representing specifications of ideal polymeric wound dressing membranes, such as crosslinked hydrogels compatible with wound dressing purposes. But as the hydrogels with single component have low mechanical strength, recent trends have offered composite or hybrid hydrogel membranes to achieve the typical wound dressing requirements.

  2. Plant-Polysaccharide-Degrading Enzymes from Basidiomycetes

    Science.gov (United States)

    Rytioja, Johanna; Hildén, Kristiina; Yuzon, Jennifer; Hatakka, Annele; de Vries, Ronald P.

    2014-01-01

    SUMMARY Basidiomycete fungi subsist on various types of plant material in diverse environments, from living and dead trees and forest litter to crops and grasses and to decaying plant matter in soils. Due to the variation in their natural carbon sources, basidiomycetes have highly varied plant-polysaccharide-degrading capabilities. This topic is not as well studied for basidiomycetes as for ascomycete fungi, which are the main sources of knowledge on fungal plant polysaccharide degradation. Research on plant-biomass-decaying fungi has focused on isolating enzymes for current and future applications, such as for the production of fuels, the food industry, and waste treatment. More recently, genomic studies of basidiomycete fungi have provided a profound view of the plant-biomass-degrading potential of wood-rotting, litter-decomposing, plant-pathogenic, and ectomycorrhizal (ECM) basidiomycetes. This review summarizes the current knowledge on plant polysaccharide depolymerization by basidiomycete species from diverse habitats. In addition, these data are compared to those for the most broadly studied ascomycete genus, Aspergillus, to provide insight into specific features of basidiomycetes with respect to plant polysaccharide degradation. PMID:25428937

  3. Anti-radiation effect of hericium erinaceus polysaccharide

    International Nuclear Information System (INIS)

    Liu Shuchen; Zhang Huijuan; Luo Chuanhuan; Wang Bingji

    1999-01-01

    Objective: To study the anti-radiation effect of hericium erinaceus polysaccharide on irradiated mice. Methods: 520 female mice were randomized to several groups and exposed to 6.25-8.5 Gy whole-body γ-rays. The hericium erinaceus polysaccharide was injected i.p before or after irradiation. The 30-day survival rate of mice was determined, and DNA content of bone marrow was observed as well at seventh day after irradiation. Results: It was showed that the 30-day survival rate and DNA content of bone marrow were all significantly higher in 30 mg or 15 mg hericium erinaceus polysaccharide-treated groups than those in the corresponding irradiated controls (P < 0.01). The 30-day survival rate increased from 35% to 97.5%. Conclusion: The hericium erinaceus polysaccharide has marked anti-radiation effect. Further investigation is worthwhile

  4. Improvement of Amperometric Sensor Used for Determination of Nitrate with Polypyrrole Nanowires Modified Electrode

    Directory of Open Access Journals (Sweden)

    Shi-chang Wang

    2005-12-01

    Full Text Available Polypyrrole(PPy nanowire modified electrodes were developed by template-freeelectrochemical method based on graphite electrode. The modified electrode wascharacterized by their amperometric response towards nitrate ions. Before reduction ofnitrate ions, electrochemical solid-phase extraction (EC-SPE of nitrate in/on modifiedelectrodes was conducted. It is found that the unusual nanowired structure of polypyrrolelayer (instead of well known cauliflower structure allows us to increase the effectivesurface area of the electrode and subsequently the sensitivity. And the effects ofelectrochemical preparation parameters of PPy nanowire modified electrodes on theircorresponding characters were evaluated. The experimental results show that theelectrochemical preparation parameters of the modified electrodes such as scan rate,polymerization potential, temperature of polymerization solution and polymerization timehave significantly effects on the morphology of PPy nanowires and subsequently effectivesurface area of the electrode and electroreduction current density of nitrate. Thedetermination sensitivity may be varied according to the modification parameters. Under acertain polymerization conditions, the corresponding sensitivity reaches 336.28 mA/M cm2 and the detection limit is 1.52×10-6 M. The proposed method was successfully applied in thedetection of nitrate in the real samples.

  5. Visualization of bacterial polysaccharides by scanning transmission electron microscopy.

    Science.gov (United States)

    Wolanski, B S; McAleer, W J; Hilleman, M R

    1983-04-01

    Highly purified capsular polysaccharides of Neisseria meningitidis groups A, B, and C have been visualized by high resolution Scanning Transmission Electron Microscopy (STEM). Spheroidal macromolecules approximately 200 A in diameter are characteristic of the Meningococcus A and C polysaccharides whereas filaments that are 400-600 A in length are found in Meningococcus B polysaccharide preparations. Filaments are occasionally found associated with the spheroidal Meningococcus A and C polysaccharides and it is proposed that these structures are composed of a long (1-4 microns) filament or filaments that are arranged in spheroidal molecules or micelles of high molecular weight. The Meningococcus B polysaccharide, by contrast, is a short flexuous filament or strand of relatively low molecular weight. A relationship between morphology and antigenicity is proposed.

  6. Chemical studies on the polysaccharides of Salicornia brachiata.

    Science.gov (United States)

    Sanandiya, Naresh D; Siddhanta, A K

    2014-11-04

    A group of 12 polysaccharide extracts were prepared from the tips, stem and roots of an Indian halophyte Salicornia brachiata Roxb. obtained by sequential extractions with cold water (CW), hot water (HW), aqueous ammonium oxalate (OX) and aqueous sodium hydroxide (ALK) solutions. Monosaccharide composition analysis revealed that all the polysaccharide extract samples consisted primarily of rhamnose, arabinose, mannose, galactose, glucose, whereas ribose and xylose were present only in some of the extracts. All the extracts exhibited low apparent viscosity (1.47-2.02 cP) and sulphate and contained no prominent toxic metal ions. Fucose was detected only in OX extract of the roots. These polysaccharides were found to be heterogeneous and highly branched (glycoside linkage analysis, size-exclusion chromatography, (13)C-NMR, FT-IR, circular dichroism and optical rotation data). Physico-chemical analyses of these polysaccharides including uronic acid, sulphate and protein contents were also carried out. This constitutes the first report on the profiling of Salicornia polysaccharides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Comparison of polysaccharides from two species of Ganoderma.

    Science.gov (United States)

    Xie, Jing; Zhao, Jing; Hu, De-Jun; Duan, Jin-Ao; Tang, Yu-Ping; Li, Shao-Ping

    2012-01-13

    Ganoderma lucidum and Ganoderma sinense, known as Lingzhi in Chinese, are commonly used Chinese medicines with excellent beneficial health effects. Triterpenes and polysaccharides are usually considered as their main active components. However, the content of triterpenes differs significantly between the two species of Ganoderma. To date, a careful comparison of polysaccharides from the two species of Ganoderma has not been performed. In this study, polysaccharides from fruiting bodies of two species of Lingzhi collected from different regions of China were analyzed and compared based on HPSEC-ELSD and HPSEC-MALLS-RI analyses, as well as enzymatic digestion and HPTLC of acid hydrolysates. The results indicated that both the HPSEC-ELSD profiles and the molecular weights of the polysaccharides were similar. Enzymatic digestion showed that polysaccharides from all samples of Lingzhi could be hydrolyzed by pectinase and dextranase. HPTLC profiles of their TFA hydrolysates colored with different reagents and their monosaccharides composition were also similar.

  8. Polymeric synthetic geo membranes in reservoirs waterproofing in the Kingdom of Morocco; Las geomembranas sinteticas polimericas en la impermeabilizacion de balsas en el Reino de Marruecos

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Fernandez, M.

    2015-07-01

    This essay aims to address some of the aspects related to polymeric synthetic geo membranes that could be used in reservoirs of water located in the Kingdom of Morocco. In this regard, it offers a description of the two basic components geo membranes consist of, that is, resins and additives. It also gives an overview of the key pieces of legislation affecting such an issue. Furthermore, it stresses the paramount importance of implementing monitoring procedures in order to assess the condition of geo membranes over time and, if necessary, to proceed to provide for new waterproofing. Lastly, the characteristics of the process monitoring aforementioned are detailed in terms of tensile strength, elongation, tear resistance, dynamic impact, puncture resistance, low-temperature folding. Shore hardness, stress cracking, oxidation induction times, joint strength shear and peeling test, content and dispersion of carbon black and reflection-optical and scanning-electron microscopy. (Author)

  9. Comparison of Polysaccharides from Two Species of Ganoderma

    OpenAIRE

    Xie, Jing; Zhao, Jing; Hu, De-Jun; Duan, Jin-Ao; Tang, Yu-Ping; Li, Shao-Ping

    2012-01-01

    Ganoderma lucidum and Ganoderma sinense, known as Lingzhi in Chinese, are commonly used Chinese medicines with excellent beneficial health effects. Triterpenes and polysaccharides are usually considered as their main active components. However, the content of triterpenes differs significantly between the two species of Ganoderma. To date, a careful comparison of polysaccharides from the two species of Ganoderma has not been performed. In this study, polysaccharides from fruiting bodies of two...

  10. A plasma polymerization technique to overcome cerebrospinal fluid shunt infections

    Energy Technology Data Exchange (ETDEWEB)

    Coekeliler, D [Plasma Aided Bioengineering and Biotechnology Research Laboratory, Engineering Faculty, Hacettepe University, 06532, Ankara (Turkey); Caner, H [Department of Neurosurgery, School of Medicine, Baskent University, 06610, Ankara (Turkey); Zemek, J [Institute of Physics, Academy of Sciences of the Czech Republic, Cukrovarnicka 10, 162 53, Prague, Czech Republic (Czech Republic); Choukourov, A [Department of Macromolecular Physics, Charles University, V Holesovickach 2, 18000 Prague (Czech Republic); Biederman, H [Department of Macromolecular Physics, Charles University, V Holesovickach 2, 18000 Prague (Czech Republic); Mutlu, M [Plasma Aided Bioengineering and Biotechnology Research Laboratory, Engineering Faculty, Hacettepe University, 06532, Ankara (Turkey)

    2007-03-01

    Prosthetic devices, mainly shunts, are frequently used for temporary or permanent drainage of cerebrospinal fluid. The pathogenesis of shunt infection is a very important problem in modern medicine and generally this is characterized by staphylococcal adhesion to the cerebrospinal fluid shunt surfaces. In this paper, the prevention of the attachment of test microorganism Staphylococcus epidermidis on the cerebrospinal fluid shunt surfaces by 2-hydroxyethylmethacrylate (HEMA) precursor modification in the plasma polymerization system, is reported. Different plasma polymerization conditions (RF discharge power 10-20-30 W, exposure time 5-10-15 min) were employed during the surface modification. The surface chemistry and topology of unmodified and modified shunts was characterized by x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and atomic force microscopy (AFM). Also, static contact angle measurements were performed to state the change of surface hydrophilicity. All samples were tested in vitro with Staphylococcus epidermidis. A plasma-polymerized HEMA film (PP HEMA) was found to be an alternative simple method to decrease the microorganism attachment and create bacterial anti-fouling surfaces. The attachment of the model microorganism Staphylococcus epidermidis on the shunt surface modified by PP HEMA at 20 W and 15 min was reduced 62.3% if compared to the unmodified control surface of the shunt.

  11. Polysaccharides in fungi. XXXII. Hypoglycemic activity and chemical properties of a polysaccharide from the cultural mycelium of Cordyceps sinensis.

    Science.gov (United States)

    Kiho, T; Hui, J; Yamane, A; Ukai, S

    1993-12-01

    Crude polysaccharides were obtained from a hot-water extract and alkaline extracts of the cultural mycelium of Cordyceps sinensis. They showed significant activity in normal mice and streptozotocin-induced diabetic mice as a result of intraperitoneal (i.p.) injection. A crude polysaccharide (CS-OHEP) obtained from 5% sodium hydroxide extract slightly lowered the plasma glucose level in normal mice by oral (p.o.) administration. A neutral polysaccharide (CS-F30) exhibited higher hypoglycemic activity than its crude polysaccharide (CS-OHEP), exhibited by i.p. injection, and it significantly lowered the glucose level by p.o. administration (50 mg/kg). However, it hardly affected the plasma insulin level in normal mice. CS-F30 ([alpha]D + 21 degrees in water) is composed of galactose, glucose and mannose (molar percent, 62:28:10), and its molecular weight is about 45000.

  12. Radiation-chemical destruction of cellulose and other polysaccharides

    International Nuclear Information System (INIS)

    Ershov, B.G.

    1998-01-01

    The studies concerning the radiation-chemical destruction of cellulose, its ethers and some polysaccharides (xylan, starch, decstrans, chitin, chitosan and geparin) are discussed. Ionising irradiation causes the destruction of these compounds with the decay of pyranose ring, accompanied by the formation of compounds containing carbonyl or carboxyl groups, as well as hydrogen, carbon dioxide, and carbon oxide. The efficiency of radiation degradation increases with increasing the temperature and depends on the structure of polysaccharides and the nature of substituents. The mechanism of radiation-chemical transformations of cellulose and others polysaccharides is proposed. Prospects of the application of radiation-chemical methods of treatment of cellulose and other polysaccharides in industry and agriculture considered [ru

  13. Modification of Jute Fibers with Polystyrene via Atom Transfer Radical Polymerization

    DEFF Research Database (Denmark)

    Plackett, David; Jankova, Katja Atanassova; Egsgaard, Helge

    2005-01-01

    Atom transfer radical polymerization (ATRP) was investigated as a method of covalently bonding polystyrene to jute (Corchorus capsularis) and as a possible approach to fiber composites with enhanced properties. Jute fibers were modified with a brominated initiator and subsequently ATRP modified...... to attach polystyrene and then examined using SEM, DSC, TGA, FTIR, XPS, elemental analysis, and Py-GC-MS. These techniques confirmed that polystyrene had been covalently bound to the fibers and consequently ATRP-modified jute fiber mats were used to prepare hot-pressed polystyrene composites. Composite...

  14. Improved coupling of bacterial polysaccharides to macromolecules and solid supports

    DEFF Research Database (Denmark)

    2013-01-01

    The invention relates to a method of producing a polysaccharide-carrier conjugate comprising coupling a polysaccharide to a carrier, said polysaccharide comprising at least one monosaccharide unit comprising a keto-carboxy group according to the formula -C(=O)COOR, where R is either hydrogen or C1......-alkoxyamine group of the carrier with a keto-carboxy group of said polysaccharide to form a covalent amide bond between the carrier and the polysaccharide. Another aspect of the present invention relates to a compound or solid surface obtained when performing the method of the present invention. A third aspect...

  15. Synthesis and characterization of kaolin with polystyrene via in-situ polymerization and their application on polypropylene

    International Nuclear Information System (INIS)

    Zhao, Songfang; Qiu, Shangchang; Zheng, Yuying; Cheng, Lei; Guo, Yong

    2011-01-01

    To improve both the mechanical and thermal properties of kaolin/polypropylene (PP) composites, kaolin was modified by using 3-(trimethoxysilyl) propylmethacrylate (YDH-570) as a coupling agent to form polymerizable particle. Styrene was radically polymerized through the immobilized vinyl using benzoyl peroxide (BPO) as an initiator. Fourier transform-infrared (FTIR) spectroscopy, particle size distribution, X-ray diffraction (XRD) and thermo-gravimetric analysis (TGA) well demonstrated that the kaolin-polystyrene particles were successfully synthesized via in-situ polymerization. While the modified kaolin and raw kaolin were introduced into the PP matrix, it could be concluded that modified kaolin/PP composites have better mechanical and thermal properties than raw kaolin/PP composites, and these improvements were attributed to the desirable dispersion of kaolin in PP matrix.

  16. Post-Synthetic Polymerization of UiO-66-NH2 Nanoparticles and Polyurethane Oligomer toward Stand-Alone Membranes for Dye Removal and Separation.

    Science.gov (United States)

    Yao, Bing-Jian; Jiang, Wei-Ling; Dong, Ying; Liu, Zhi-Xian; Dong, Yu-Bin

    2016-07-18

    Metal-organic frameworks (MOFs) are widely used as porous materials in the fields of adsorption and separation. However, their practical application is largely hindered by limitations to their processability. Herein, new UiO-66-Urea-based flexible membranes with MOF loadings of 50 (1), 60 (2), and 70 wt % (3) were designed and prepared by post-synthetic polymerization of UiO-66-NH2 nanoparticles and a polyurethane oligomer under mild conditions. The adsorption behavior of membrane 3 towards four hydrophilic dyes, namely, eosin Y (EY), rhodamine B (RB), malachite green (MG), and methylene blue (MB), in aqueous solution was studied in detail. It exhibits strong adsorption of EY and RB but weak adsorption of MG and MB in aqueous solution. Owing to the selective adsorption of these hydrophilic dyes, membrane 3 can remove EY and RB from aqueous solution and completely separate EY/MB, RB/MG, and RB/MB mixtures in aqueous solution. In addition, the membrane is uniformly textured, easily handled, and can be reused for dye adsorption and separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Characterization of polysaccharides from Ganoderma spp. using saccharide mapping.

    Science.gov (United States)

    Wu, Ding-Tao; Xie, Jing; Hu, De-Jun; Zhao, Jing; Li, Shao-Ping

    2013-09-12

    Polysaccharides from Ganoderma spp. and their adulterants were firstly investigated and compared using saccharide mapping, enzymatic (endo-1,3-β-D-glucanase and pectinase) digestion followed by polysaccharide analysis using carbohydrate gel electrophoresis analysis. The results showed that both 1,3-β-D-glucosidic and 1,4-α-D-galactosiduronic linkages were existed in Lingzhi (Ganoderma lucidum and Ganoderma sinense), and the similarity of polysaccharides from G. lucidum and G. sinense was high, which may contribute to rational use of Lingzhi. Different species of Ganoderma and their adulterants can be differentiated based on the saccharide mapping, which is helpful to well understand the structural characters of polysaccharides from different species of Ganoderma and to improve the quality control of polysaccharides in Lingzhi. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Antimicrobial activity of biodegradable polysaccharide and protein-based films containing active agents.

    Science.gov (United States)

    Kuorwel, Kuorwel K; Cran, Marlene J; Sonneveld, Kees; Miltz, Joseph; Bigger, Stephen W

    2011-04-01

    Significant interest has emerged in the introduction of food packaging materials manufactured from biodegradable polymers that have the potential to reduce the environmental impacts associated with conventional packaging materials. Current technologies in active packaging enable effective antimicrobial (AM) packaging films to be prepared from biodegradable materials that have been modified and/or blended with different compatible materials and/or plasticisers. A wide range of AM films prepared from modified biodegradable materials have the potential to be used for packaging of various food products. This review examines biodegradable polymers derived from polysaccharides and protein-based materials for their potential use in packaging systems designed for the protection of food products from microbial contamination. A comprehensive table that systematically analyses and categorizes much of the current literature in this area is included in the review.

  19. Crumb waste tire rubber surface modification by plasma polymerization of ethanol and its application on oil-well cement

    Energy Technology Data Exchange (ETDEWEB)

    Xiaowei, Cheng [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu (China); School of Material Science and Engineering, Southwest Petroleum University, Chengdu (China); Sheng, Huang [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu (China); School of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu (China); Xiaoyang, Guo, E-mail: guoxiaoyangswpi@126.com [State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu (China); School of Oil and Natural Gas Engineering, Southwest Petroleum University, Chengdu (China); Wenhui, Duan, E-mail: wenhui.duan@monash.edu [Department of Civil Engineering, Monash University, Clayton, Melbourne 3800 (Australia)

    2017-07-01

    Highlights: • The crumb waste tire rubber (WTR) was modified by plasma polymerization of ethanol. • Hydrophilic groups were introduced onto WTR surface and improved its hydrophilia. • The functionalized crumb WTR was applied in oil-well cement. • The mechanical properties of modified oil-well cement were intensively enhanced. - Abstract: Crumb waste tire rubber (WTR) was pretreated by oxygen low temperature plasma (LTP) and modified by LTP polymerization process of ethanol monomer to improve the adhesion property with oil-well cement matrix and the mechanical properties of cement. The surface properties of modified crumb WTR and the mechanical properties and structures of modified oil-well cement were investigated by means of contact angle measurement, dispersion test, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), mechanics performance tests, permeability test and scanning electron microscopy (SEM). It was demonstrated that LTP treatment changed both the surface composition and roughness. The contact angle of pretreated crumb WTR dramatically fell from 122° to 34°, and sample with ethanol LPT polymer film decreased even further to 11°. The ATR-FTIR and XPS analysis results demonstrated that hydrophilic groups, such as –COOH, C–OH, and –CHO, were introduced on the WTR surface. The oxygen atomic percent increased from 8.11% to 14.50% and 24.83%. The mechanical properties, porosity and permeability of raw cement were compared to samples modified by untreated crumb WTR, pretreated crumb WTR and ethanol LTP polymerization treated crumb WTR. It was found that after 28 days, the compressive strength of the samples with the untreated crumb WTR decreased to 80% with respect to raw cement. The tensile strength and flexural strength also had a slight reduction compared with the raw cement. On the contrary, after 28 days, the tensile strength of cement modified by LTP polymerization

  20. Crumb waste tire rubber surface modification by plasma polymerization of ethanol and its application on oil-well cement

    International Nuclear Information System (INIS)

    Xiaowei, Cheng; Sheng, Huang; Xiaoyang, Guo; Wenhui, Duan

    2017-01-01

    Highlights: • The crumb waste tire rubber (WTR) was modified by plasma polymerization of ethanol. • Hydrophilic groups were introduced onto WTR surface and improved its hydrophilia. • The functionalized crumb WTR was applied in oil-well cement. • The mechanical properties of modified oil-well cement were intensively enhanced. - Abstract: Crumb waste tire rubber (WTR) was pretreated by oxygen low temperature plasma (LTP) and modified by LTP polymerization process of ethanol monomer to improve the adhesion property with oil-well cement matrix and the mechanical properties of cement. The surface properties of modified crumb WTR and the mechanical properties and structures of modified oil-well cement were investigated by means of contact angle measurement, dispersion test, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), mechanics performance tests, permeability test and scanning electron microscopy (SEM). It was demonstrated that LTP treatment changed both the surface composition and roughness. The contact angle of pretreated crumb WTR dramatically fell from 122° to 34°, and sample with ethanol LPT polymer film decreased even further to 11°. The ATR-FTIR and XPS analysis results demonstrated that hydrophilic groups, such as –COOH, C–OH, and –CHO, were introduced on the WTR surface. The oxygen atomic percent increased from 8.11% to 14.50% and 24.83%. The mechanical properties, porosity and permeability of raw cement were compared to samples modified by untreated crumb WTR, pretreated crumb WTR and ethanol LTP polymerization treated crumb WTR. It was found that after 28 days, the compressive strength of the samples with the untreated crumb WTR decreased to 80% with respect to raw cement. The tensile strength and flexural strength also had a slight reduction compared with the raw cement. On the contrary, after 28 days, the tensile strength of cement modified by LTP polymerization

  1. Synthetic 6B di-, tri-, and tetrasaccharide-protein conjugates contain pneumococcal type 6A and 6B common and 6B-specific epitopes that elicit protective antibodies in mice

    NARCIS (Netherlands)

    Vliegenthart, J.F.G.; Jansen, W.T.M.; Hogenboom, S.; Thijssen, M.J.L.; Kamerling, J.P.; Verhoef, J.; Snippe, H.; Verheul, A.F.M.

    2001-01-01

    The immunogenicity and protective capacity of Streptococcus pneumoniae 6B capsular polysaccharide (PS)-derived synthetic phosphate-containing disaccharide (Rha-ribitol-P-), trisaccharide (ribitol-P-Gal-Glc-), and tetrasaccharide (Rha-ribitol-P-Gal-Glc-)-protein conjugates in rabbits and mice were

  2. Removal of arsenic species from drinking water by Iranian natural and synthetic zeolites

    International Nuclear Information System (INIS)

    Menhaje-Bena, R.; Kazemian, H.; Shahtaheri, S.J.; Ghazi-Khansari, M.

    2003-01-01

    The main objective of this study was to find a relatively inexpensive method for removal of arsenic species from drinking water. The uptake capability of Iron (II) modified natural clinoptilolites and relevant synthetic zeolites A and P was investigated toward inorganic arsenic species from drinking water. Results obtained from sorption experiments, using a batch (static) technique showed that, among the investigated zeolites, modified synthetic zeolite A was the most selective sorbent for removal of arsenate and arsenite from drinking water. Through this study the influencing of factories including temperature, concentration, pH, particle size and interferences was evaluated on removal of arsenic species. The synthetic zeolites and their modified forms were also characterized, using XRD, XRF and thermal analysis techniques. (authors)

  3. Recent advances of basic materials to obtain electrospun polymeric nanofibers for medical applications

    Science.gov (United States)

    Manea, L. R.; Hristian, L.; Leon, A. L.; Popa, A.

    2016-08-01

    The most important applications of electrospun polymeric nanofibers are by far those from biomedical field. From the biological point of view, almost all the human tissues and organs consist of nanofibroas structures. The examples include the bone, dentine, cartilage, tendons and skin. All these are characterized through different fibrous structures, hierarchically organized at nanometer scale. Electrospinning represents one of the nanotechnologies that permit to obtain such structures for cell cultures, besides other technologies, such as selfassembling and phase separation technologies. The basic materials used to produce electrospun nanofibers can be natural or synthetic, having polymeric, ceramic or composite nature. These materials are selected depending of the nature and structure of the tissue meant to be regenerated, namely: for the regeneration of smooth tissues regeneration one needs to process through electrospinning polymeric basic materials, while in order to obtain the supports for the regeneration of hard tissues one must mainly use ceramic materials or composite structures that permit imbedding the bioactive substances in distinctive zones of the matrix. This work presents recent studies concerning basic materials used to obtain electrospun polymeric nanofibers, and real possibilities to produce and implement these nanofibers in medical bioengineering applications.

  4. Chemical characteristics and anti-proliferation activities of Ganoderma tsugae polysaccharides.

    Science.gov (United States)

    Chien, Rao-Chi; Yen, Ming-Tsung; Tseng, Yu-Hsiu; Mau, Jeng-Leun

    2015-09-05

    Polysaccharides were extracted by hot-water and hot-alkali from four forms of Ganoderma tsugae including mature and baby Ling chih, mycelium and filtrate. Different profiles of proximate composition and monosaccharide constituents, and element contents were found in the extracted polysaccharides from different extractions and different forms. The molecular weight distributions of polysaccharides were 2.8×10(4)-6.5×10(5)Da and their infrared spectra were comparable. The hot-alkali extracted polysaccharides exhibited better anti-proliferation on IMR32 cells than the hot-water extracted polysaccharides, which were in turn more effective than the hot-water extracts. Besides, most hot-water extracts and both extracted polysaccharides exhibited an anti-proliferation effect on Hep G2 cells. However, the hot-water extracts showed less effective in anti-proliferation of IMR32 and Hep G2 cells. Based on the anti-tumor effects, both polysaccharides could be prepared for use in the formulation of nutraceuticals and functional foods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Modification of silica surface by gamma ray induced Ad micellar Polymerization

    International Nuclear Information System (INIS)

    Buathong, Salukjit; Pongprayoon, Thirawudh; Suwanmala, Phiriyatorn

    2005-10-01

    Precipitated silica is often added to natural rubber compounds in order to improve performance in commercial application. A problem with using silica as filler is the poor compatibility between silica and natural rubber. In this research, polyisoprene was coated on silica surface by gamma ray induced ad micellar polymerization in order to achieve the better compatibility between silica and natural rubber. The modified silica was characterized by FT-IR, and SEM. The results show that polyisoprene was successfully coated on silica surface via gamma ray induced ad micellar polymerization

  6. Solid-Phase Synthesis of Modified Peptides as Putative Inhibitors of Histone Modifying Enzymes

    DEFF Research Database (Denmark)

    Cohrt, Anders Emil O'Hanlon

    to be compatible with all 20 naturally occurring amino acids, and were furthermore feasible on several commonly used polymeric supports. By using dilute SnCl4 for N -Boc deprotection, and NaOH for the release of material from the solid support, N -modified peptides were cleanly obtained in excellent yields...

  7. Cation Exchange Efficiency Of Modified Bentonite Using In-Situ GAMMA Radiation Polymerization Of Acrylic Acid Or Acrylamide

    International Nuclear Information System (INIS)

    ISMAIL, S.A.; FALAZI, B.

    2009-01-01

    Modified bentonites as cation exchangers were prepared by treating raw bentonite with 3N NaOH at 95 0 C followed by in-situ polymerization using gamma irradiation as well as hydrogen peroxide initiation of acrylic acid or acrylamide in the matrix.Water swelling and acid capacity were determined and cation exchange capacity for Cu 2+ , Ni 2+ and Co 2+ was evaluated. It has been found that catiexchange capacity of treated bentonite was increased as result of formed polyacrylic acid and polyacrylamide in the matrix. In case of acrylic acid, the maximum cation exchange capacities of 3.5, 3.1 and 2.5 mg equivalent/g were determined for Cu 2+ , Ni 2+ and Co 2+ , respectively, and for acrylamide, the corresponding capacities were 2.9, 2.8 and 2.6 mg equivalent/g, respectively. Water swelling was found to be associated with holding large amounts of water, for instance, 49 g of water was sorbed per one gram of the sodium salt form of polyacrylic acid in bentonite matrix, in other words the degree of swelling in water achieved 4500%.

  8. The synthesis and characterisation of mucoadhesive polymeric systems using synthetic and natural polymers

    OpenAIRE

    Sarah, Duggan

    2015-01-01

    Mucoadhesion is the binding of a material to a mucosal surface. The mucosal surface has a rate of absorption of up to four times that of the skin and, therefore, has great potential as a route of drug administration. Mucoadhesive polymeric drug delivery devices have been designed to allow for the slow and controlled release of a drug to a specific site, with fewer side effects and greater bioavailability in comparison to other methods of administration. In this project, mucoadhesive polyme...

  9. Structure of polysaccharide antibiotics

    International Nuclear Information System (INIS)

    Matutano, L.

    1966-01-01

    Study of the structure of antibiotics having two or several sugars in their molecule. One may distinguish: the polysaccharide antibiotics themselves, made up of two or several sugars either with or without nitrogen, such as streptomycin, neomycins, paromomycine, kanamycin, chalcomycin; the hetero-polysaccharide antibiotics made up of one saccharide part linked to an aglycone of various type through a glucoside: macrolide, pigment, pyrimidine purine. Amongst these latter are: erythromycin, magnamycin, spiramycin, oleandomycin, cinerubin and amicetin. The sugars can either play a direct role in biochemical reactions or act as a dissolving agent, as far as the anti-microbe power of these antibiotics is concerned. (author) [fr

  10. Using Gamma Irradiation to Modify Properties of Polysaccharides (Guar Gum)

    International Nuclear Information System (INIS)

    Sayed, H.

    2015-01-01

    Radiation processing of material is one of most recent technology used in modification of material properties. The aim of this work was to determine the effect of gamma irradiation on the Polysaccharides Viscosity and Molecular Weight, as definition of Guar Gum. Its series of glactomanene (glactos + manose). (1-2-,3). Guar Gum powder was the main material and Co-60 irradiator facility as main technique. For gamma–ray source of required doses, 2.5, 5, 7.5, 10, 20, 30, 40 and 50 kGy. Viscosity of the aqueous suspensions of irradiated Guar Gum at different concentrations (0.1–0.5%) was measured, also it measured for solutions made of irradiated powder. Results used to calculate the difference occur in molecular weight, in order to determine the irradiation effect in the material. The monitored rheological parameters showed (non-Newtonian Behavior) of the samples which processed by gamma irradiation. The decrease tendency of the viscosity by irradiation of samples under study (different concentrations) and compared with control also for irradiated powder decrease of the concentration as well has been noticed. From results evaluation concluded that the viscosity values for all studied concentrations decreased by irradiation. This aspect suggests a depolymerization phenomenon of the aqueous Guar Gum solutions. This study contributes to the knowledge of the viscoelastic properties of Guar Gum as powder or aqueous solution, with application for food, agriculture, medical products, Petroleum and construction. (author)

  11. Synthesis of 3'-, or 5'-, or internal methacrylamido-modified oligonucleotides

    Science.gov (United States)

    Golova, Julia B.; Chernov, Boris K.

    2010-04-27

    New modifiers were synthesized for incorporation of a methacrylic function in 3'-, 5'- and internal positions of oligonucleotides during solid phase synthesis. A modifier was used for synthesis of 5'-methacrylated oligonucleotides for preparation of microarrays by a co-polymerization method.

  12. Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery.

    Science.gov (United States)

    Alvarez-Lorenzo, Carmen; Blanco-Fernandez, Barbara; Puga, Ana M; Concheiro, Angel

    2013-08-01

    Polysaccharides are gaining increasing attention as components of stimuli-responsive drug delivery systems, particularly since they can be obtained in a well characterized and reproducible way from the natural sources. Ionic polysaccharides can be readily crosslinked to render hydrogel networks sensitive to a variety of internal and external variables, and thus suitable for switching drug release on-off through diverse mechanisms. Hybrids, composites and grafted polymers can reinforce the responsiveness and widen the range of stimuli to which polysaccharide-based systems can respond. This review analyzes the state of the art of crosslinked ionic polysaccharides as components of delivery systems that can regulate drug release as a function of changes in pH, ion nature and concentration, electric and magnetic field intensity, light wavelength, temperature, redox potential, and certain molecules (enzymes, illness markers, and so on). Examples of specific applications are provided. The information compiled demonstrates that crosslinked networks of ionic polysaccharides are suitable building blocks for developing advanced externally activated and feed-back modulated drug delivery systems. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. [Effects of tree species on polysaccharides content of epiphytic Dendrobium officinale].

    Science.gov (United States)

    Guo, Ying-Ying; Zhu, Yan; Si, Jin-Ping; Liu, Jing-Jing; Wu, Cheng-Yong; Li, Hui

    2014-11-01

    To reveals the effects of tree species on polysaccharides content of epiphytic Dendrobium officinale. The polysaccharides content of D. officinale attached to living tress in wild or stumps in bionic-facility was determined by phenol-sulfuric acid method. There were extremely significant differences of polysaccharides content of D. officinale attached to different tree species, but the differences had no relationship with the form and nutrition of barks. The polysaccharides content of D. officinale mainly affected by the light intensity of environment, so reasonable illumination favored the accumulation of polysaccharides. Various polysaccharides content of D. officinal from different attached trees is due to the difference of light regulation, but not the form and nutrition of barks.

  14. Effects of selenylation modification on immune-enhancing activity of garlic polysaccharide.

    Directory of Open Access Journals (Sweden)

    Shulei Qiu

    Full Text Available The garlic polysaccharide was modified by HNO3-Na2SeO3 method according to orthogonal design L9(3(4 to obtain nine selenizing garlic polysaccharides, sGPS1-sGPS9. Their effects on chicken peripheral lymphocytes proliferation in vitro were compared by MTT assay. The results showed that sGPSs could significantly promote lymphocytes proliferation, sGPS3, sGPS5 and sGPS6 presented stronger efficacy. In vivo experiment, 14-day-old chickens were injected respectively with sGPS3, sGPS5 and sGPS6 when they were vaccinated with ND vaccine taking unmodified GPS as control. The results showed that three sGPSs could significantly promote lymphocyte proliferation, enhance serum antibody titer, IFN-γ and IL-2 contents. These results indicated that selenylation modification could significantly enhance the immune-enhancing activity of GPS, sGPS6 possessed the best efficacy and could be as a candidate drug of immunoenhancer. Its optimal modification conditions were 400 mg of sodium selenite for 500 mg of GPS, reaction temperature of 70°C and reaction time of 6 h.

  15. Efficacy of conventional synthetic disease-modifying antirheumatic drugs, glucocorticoids and tofacitinib: a systematic literature review informing the 2013 update of the EULAR recommendations for management of rheumatoid arthritis

    NARCIS (Netherlands)

    Gaujoux-Viala, Cécile; Nam, Jackie; Ramiro, Sofia; Landewé, Robert; Buch, Maya H.; Smolen, Josef S.; Gossec, Laure

    2014-01-01

    To update a previous systematic review assessing the efficacy of conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) in rheumatoid arthritis (RA). Two systematic reviews of the literature using PubMed, Embase and the Cochrane library were performed from 2009 until January 2013 to

  16. Distinction of synthetic dl-α-tocopherol from natural vitamin E (d-α-tocopherol) by reversed-phase liquid chromatography. Enhanced selectivity of a polymeric C18 stationary phase at low temperature and/or at high pressure.

    Science.gov (United States)

    Yui, Yuko; Miyazaki, Shota; Ma, Yan; Ohira, Masayoshi; Fiehn, Oliver; Ikegami, Tohru; McCalley, David V; Tanaka, Nobuo

    2016-06-10

    Separation of diastereomers of dl-α-tocopherol was studied by reversed-phase liquid chromatography using three types of stationary phases, polymeric ODS, polymeric C30, and monomeric ODS. Polymeric ODS stationary phase (Inertsil ODS-P, 3mmID, 20cm) was effective for the separation of the isomers created by the presence of three chiral centers on the alkyl chain of synthetic dl-α-tocopherol. Considerable improvement of the separation of isomers was observed on ODS-P phase at high pressure and at low temperature. Complete separation of four pairs of diastereomers was achieved at 12.0°C, 536bar, while three peaks were observed when the separation was carried out either at 12.0°C at low pressure or at 20°C at 488bar. Higher temperature (30.0°C) with the ODS-P phase resulted in only partial separation of the diastereomers even at high pressure. Only slight resolution was observed for the mixture of diastereomers with the C30 stationary phase (Inertsil C30) at 12.0°C and 441bar, although the stationary phase afforded greater resolution for β- and γ-tocopherol than ODS-P. A monomeric C18 stationary phase did not show any separation at 12.0°C and 463bar. The results suggest that the binding site of the polymeric ODS-P phase is selective for flexible alkyl chains that provided the longest retention for the natural form, (R,R,R) form, and the enantiomer, (S,S,S) form, of dl-α-tocopherol. Copyright © 2016. Published by Elsevier B.V.

  17. Chromatography in characterization of polysaccharides from medicinal plants and fungi.

    Science.gov (United States)

    Hu, De-jun; Cheong, Kit-leong; Zhao, Jing; Li, Shao-ping

    2013-01-01

    Polysaccharides isolated from medicinal plants and fungi exhibit multiple pharmacological activities. The biological activities of polysaccharides depend on their chemical characteristics. However, characterization of polysaccahrides is a challenge because of their complicated structure and macromolecular mass. In this review, chromatography in characterization of polysaccharides, including physicochemical characterization (purity, molecular mass, and distribution), structural characterization (constituent monosaccharide composition and the ratio, the features of glycosidic linkages), and fingerprint of polysaccharides (acidic and enzymatic hydrolysates), from medicinal plants and fungi were reviewed and discussed according to the publications collected in Web of Science since 2007. The perspective for characterization of polysaccharides has also been described. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Lytic polysaccharide monooxygenases from Myceliophthora thermophila C1

    NARCIS (Netherlands)

    Frommhagen, Matthias

    2017-01-01

    Current developments aim at the effective enzymatic degradation of plant biomass polysaccharides into fermentable monosaccharides for biofuels and biochemicals. Recently discovered lytic polysaccharide monooxgygenases (LPMOs) boost the hydrolytic breakdown of lignocellulosic biomass, especially

  19. Stimuli-Responsive Polymeric Nanoparticles.

    Science.gov (United States)

    Liu, Xiaolin; Yang, Ying; Urban, Marek W

    2017-07-01

    There is increasing evidence that stimuli-responsive nanomaterials have become significantly critical components of modern materials design and technological developments. Recent advances in synthesis and fabrication of stimuli-responsive polymeric nanoparticles with built-in stimuli-responsive components (Part A) and surface modifications of functional nanoparticles that facilitate responsiveness (Part B) are outlined here. The synthesis and construction of stimuli-responsive spherical, core-shell, concentric, hollow, Janus, gibbous/inverse gibbous, and cocklebur morphologies are discussed in Part A, with the focus on shape, color, or size changes resulting from external stimuli. Although inorganic/metallic nanoparticles exhibit many useful properties, including thermal or electrical conductivity, catalytic activity, or magnetic properties, their assemblies and formation of higher order constructs are often enhanced by surface modifications. Section B focuses on selected surface reactions that lead to responsiveness achieved by decorating nanoparticles with stimuli-responsive polymers. Although grafting-to and grafting-from dominate these synthetic efforts, there are opportunities for developing novel synthetic approaches facilitating controllable recognition, signaling, or sequential responses. Many nanotechnologies utilize a combination of organic and inorganic phases to produce ceramic or metallic nanoparticles. One can envision the development of new properties by combining inorganic (metals, metal oxides) and organic (polymer) phases into one nanoparticle designated as "ceramers" (inorganics) and "metamers" (metallic). © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Semi-Synthetic Glycoconjugate Vaccine Candidate for Carbapenem-Resistant Klebsiella pneumoniae.

    Science.gov (United States)

    Seeberger, Peter H; Pereira, Claney L; Khan, Naeem; Xiao, Guozhi; Diago-Navarro, Elizabeth; Reppe, Katrin; Opitz, Bastian; Fries, Bettina C; Witzenrath, Martin

    2017-11-06

    Hospital-acquired infections are an increasingly serious health concern. Infections caused by carpabenem-resistant Klebsiella pneumoniae (CR-Kp) are especially problematic, with a 50 % average survival rate. CR-Kp are isolated from patients with ever greater frequency, 7 % within the EU but 62 % in Greece. At a time when antibiotics are becoming less effective, no vaccines to protect from this severe bacterial infection exist. Herein, we describe the convergent [3+3] synthesis of the hexasaccharide repeating unit from its capsular polysaccharide and related sequences. Immunization with the synthetic hexasaccharide 1 glycoconjugate resulted in high titers of cross-reactive antibodies against CR-Kp CPS in mice and rabbits. Whole-cell ELISA was used to establish the surface staining of CR-Kp strains. The antibodies raised were found to promote phagocytosis. Thus, this semi-synthetic glycoconjugate is a lead for the development of a vaccine against a rapidly progressing, deadly bacterium. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Iron Polymerization and Arsenic Removal During In-Situ Iron Electrocoagulation in Synthetic Bangladeshi Groundwater

    Science.gov (United States)

    van Genuchten, C. M.; Pena, J.; Addy, S.; Gadgil, A.

    2010-12-01

    Millions of people worldwide are exposed to arsenic-contamination in groundwater drinking supplies. The majority of affected people live in rural Bangladesh. Electrocoagulation (EC) using iron electrodes is a promising arsenic removal strategy that is based on the generation of iron precipitates with a high affinity for arsenic through the electrochemical dissolution of a sacrificial iron anode. Many studies of iron hydrolysis in the presence of co-occurring ions in groundwater such as PO43-, SiO44-, and AsO43- suggest that these ions influence the polymerization and formation of iron oxide phases. However, the combined impact of these ions on precipitates generated by EC is not well understood. X-ray absorption spectroscopy (XAS) was used to examine EC precipitates generated in synthetic Bangladeshi groundwater (SBGW). The iron oxide structure and arsenic binding geometry were investigated as a function of EC operating conditions. As and Fe k-edge spectra were similar between samples regardless of the large range of current density (0.02, 1.1, 5.0, 100 mA/cm2) used during sample generation. This result suggests that current density does not play a large role in the formation EC precipitates in SBGW. Shell-by-shell fits of Fe K-edge data revealed the presence of a single Fe-Fe interatomic distance at approximately 3.06 Å. The absence of longer ranged Fe-Fe correlations suggests that EC precipitates consist of nano-scale chains (polymers) of FeO6 octahedra sharing equatorial edges. Shell-by-shell fits of As K-edge spectra show arsenic bound in primarily bidentate, binuclear corner sharing complexes. In this coordination geometry, arsenic prevents the formation of FeO6 corner-sharing linkages, which are necessary for 3-dimensional crystal growth. The individual and combined effects of other anions, such as PO43- and SiO44- present in SBGW are currently being investigated to determine the role of these ions in stunting crystal growth. The results provided by this

  2. Melting and crystallization of in-situ polymerized cyclic butylene terephthalates with and without organoclay: a modulated DSC study

    Directory of Open Access Journals (Sweden)

    2007-02-01

    Full Text Available The polymerization of cyclic butylene terephthalate oligomers (CBT were studied in presence (in 5 wt.% and absence of an organoclay (Cloisite® 30B by modulated DSC (MDSC. The organoclay containing samples were produced by dry and melt blending, respectively. The first heating, causing the polymerization of the CBT catalyzed by an organotin compound, was followed by cooling prior to the second heating. The MDSC scans covered the temperature interval between 0 and 260°C. The aim of this protocol was to study the crystallization and melting behavior of the resulting polybutylene terephthalate (pCBT and its organoclay modified nanocomposites. It was found that the thermal behaviors of the polymerizing and polymerized CBT (pCBT were strongly affected by the sample preparation. The organoclay suppressed the crystallization of the pCBT produced during the first heating. However, results from the second heating suggest that more perfect crystallites were formed in the organoclay modified pCBT variants. The organoclay also affected the conversion and mean molecular mass of the resulting pCBT which were slightly lower than those of the plain pCBT polymerized under identical conditions.

  3. Biochemical indicators of nephrotoxicity in blood serum of rats treated with novel 4-thiazolidinone derivatives or their complexes with polyethylene glycol-containing nanoscale polymeric carrier

    Directory of Open Access Journals (Sweden)

    L. I. Kоbylinska

    2016-02-01

    Full Text Available The aim of this study was to compare the effect of new synthetic 4-thiazolidinone derivatives (potential anticancer compounds denoted as 3882, 3288 and 3833 and doxorubicin (positive control in free form and in their complexes with synthetic polyethylene glycol-containing nanoscale polymeric carrier on the biochemical indicators of nephrotoxicity in blood serum of rats. The concentration of total protein, urea, creatinine, glucose, ions of sodium, potassium, calcium, iron and chloride was measured. It was found that after injection of the investigated compounds, the concentration of sodium cations and chloride anions in blood serum was increased compared with control (untreated animals. Doxorubicin’s injection was accompanied by a decrease in the concentration of iron cations. The concentration of total protein, urea and creatinine decreased under the influence of the studied compounds. Complexation of these аntineoplastic substances with a synthetic polymeric nanocarrier lowered the concentration of the investigated metabolites substantially compared to the effect of these compounds in free form. The normalization of concentration of total protein, urea and creatinine in blood serum of rats treated with complexes of the studied compounds with the polymeric carrier comparing with increased concentration of these indicators at the introduction of such compounds in free form was found.

  4. Radiation techniques in the formulation of synthetic biomaterials

    International Nuclear Information System (INIS)

    Kaetsu, Isao

    1992-01-01

    This chapter reviews the uses of various radiation techniques, such as radiation polymerization, grafting, and crosslinking, for the formulation of synthetic biomaterials. The biomaterials are divided into four categories: Biocompatible polymers, immobilized proteins, immobilized cells, and drug delivery systems. The recent achievements in each category are described, and the contributions of novel radiation techniques to this field are discussed. Work on drug delivery systemsis also reviewed, and the status of the practical applications of drug delivery systems for therapy is summarized. Future trends in the field of radiation-synthesized biomaterials are indicated. (orig.)

  5. Preparation of poly (methyl methacrylate)/nanometer calcium carbonate composite by in-situ emulsion polymerization

    Institute of Scientific and Technical Information of China (English)

    史建明; 包永忠; 黄志明; 翁志学

    2004-01-01

    Methyl methacrylate (MMA) emulsion polymerization in the presence of nanometer calcium carbonate(nano-CaCO3) surface modified with γ-methacryloxypropyltrimethoxysilane (MPTMS) was carried out to prepare poly (methyl methacrylate) (PMMA)/nano-CaCO3 composite. The reaction between nano-CaCO3 and MPTMS, and the grafting of PMMA onto nano-CaCO3 were confirmed by infrared spectrum. The grafting ratio and grafting efficiency of PMMA on nano-CaCO3 modified with MPTMS were much higher than that on nano-CaCO3 modified with stearic acid. The grafting ratio of PMMA increased as the weight ratio between MMA and nano-CaCO3 increased, while the grafting efficiency of PMMA decreased. Transmission electron micrograph showed that nano-CaCO3 covered with PMMA was formed by in-situ emulsion polymerization.

  6. Polysulfone hemodiafiltration membranes with enhanced anti-fouling and hemocompatibility modified by poly(vinyl pyrrolidone) via in situ cross-linked polymerization.

    Science.gov (United States)

    Zhu, Lijing; Song, Haiming; Wang, Jiarong; Xue, Lixin

    2017-05-01

    Poly(vinyl pyrrolidone) (PVP) and its copolymers have been widely employed for the modification of hemodiafiltration membranes due to their excellent hydrophilicity, antifouling and hemocompatibility. However, challenges still remain to simplify the modification procedure and to improve the utilization efficiency. In this paper, antifouling and hemocompatibility polysulfone (PSf) hemodiafiltration membranes were fabricated via in situ cross-linked polymerization of vinyl pyrrolidone (VP) and vinyltriethoxysilane (VTEOS) in PSf solutions and non-solvent induced phase separation (NIPS) technique. The prepared membranes were characterized by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM), which suggested that VP and VTEOS have been cross-linked copolymerized in PSf membranes. The modified PSf membranes with high polymer content showed improved hydrophilicity, ultrafiltration and protein antifouling ability. In addition, the modified PSf membranes showed lower protein adsorption, inhibited platelet adhesion and deformation, prolonged the activated partial thromboplastin time (APTT), prothrombin time (PT), and decreased the content of fibrinogen (FIB) transferring to fibrin, indicating enhanced hemocompatibility. In a word, the present work provides a simple and effective one-step modification method to construct PSf membranes with improved hydrophilicity, antifouling and hemocompatibility. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Characterization and antioxidant activities of polysaccharides from thirteen boletus mushrooms.

    Science.gov (United States)

    Zhang, Lan; Hu, Yu; Duan, Xiaoyu; Tang, Tingting; Shen, Yingbin; Hu, Bin; Liu, Aiping; Chen, Hong; Li, Cheng; Liu, Yuntao

    2018-07-01

    Water-soluble polysaccharides were extracted from the caps and stipes of thirteen boletus mushrooms representing five different species collected in Southwest China. Investigations of their structures and antioxidant activities allowed an evaluation of structure-function relationships. The polysaccharides were composed mainly of the monosaccharides arabinose, xylose, mannose, glucose and galactose. Most samples displayed a broad molecular weight range, with significant differences observed between the molecular weight ranges of the polysaccharides from the caps and the stipes. FT-IR spectral analysis of the polysaccharides revealed that most of polysaccharides from boletus mushrooms (except Boletus edulis) contained a pyranose ring. The antioxidant activities of the polysaccharides in stipes showed a significant correlation with their monosaccharide composition, and were also related to their molecular weight and anomeric configuration. Suillellus luridus collected in Pingwu, Mianyang, Sichuan, China had remarkably superior antioxidant activity and might be developed as a natural antioxidant. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Labelling by deuteration and nitroxide radicals of mono-, oligo- and polysaccharides (cellulose and amylose)

    Energy Technology Data Exchange (ETDEWEB)

    Odier, L

    1975-01-01

    The application of NMR and deuteration labelling to the investigation of polysaccharides has led to considerable progress in recent years in the knowledge of these compounds. Although far more recent, the introduction of spin labelling techniques in the investigation of polymers, has given rise to interesting EPR studies of synthetic and natural macromolecules, but nothing appears to have been accomplished in the area of spin labelling of polysaccharides. This work was aimed at applying these two techniques to the study of glucose derivatives and of some of its oligomers (low molecular weight polymers): cellobiose, maltose and cyclodextrins; and its polymers: cellulose and amylose. Irrespective of the technique employed, the complexity of the polymers and problems connected with handling them always require the same procedure: an initial study of a model compound generally prepared from the monomer or an oligomer (dimer), followed by the oligomers, and finally the polymer. Part 1 is devoted to the deuteration labelling of mono- and oligosaccharides. Part 2 concerns spin labelling of cellulose acetate. In part 3, an attempt is made to apply the spin labelling technique to the determination of conformations of two disaccharides of different glycosidic configurations: cellobiose and maltose. Part 4 is devoted to spin and deuteration labelling of ..cap alpha.. and ..beta.. cyclodextrins.

  9. Studies on water soluble polysaccharides from Pithecellobium dulce (Roxb.) Benth. seeds.

    Science.gov (United States)

    Bagchi, S; Kumar, K Jayaram

    2016-03-15

    In this existing experimental work, water soluble PDP polysaccharides were secluded from Pithecellobium dulce (Roxb.) Benth. seeds. The physicochemical properties were analyzed in terms of swelling power, solubility, pH and water holding capacity. Micromeretic studies proved the polysaccharide may be used a potential pharmaceutical adjuvant. The polysaccharide was characterized by FT-IR, SEM, TGA and NMR techniques. Methylation analysis confirmed that the polysaccharide is composed of Arabinose (Araf) units. The chemical shifts of anomeric proton region were found in the region of 4.4-5.5ppm. Thermogravimetric analysis showed that PDP polysaccharide was thermally stable. The in vitro antioxidant capacities of the polysaccharide were investigated in terms of scavenging of hydroxyl radicals, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals, hydrogen peroxide (H2O2) and reducing power assay. The polysaccharide fractions showed activity in a concentration dependent manner which was comparable to the standard, ascorbic acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Drag reduction by natural polymeric additives in PMDS microchannel: Effect of types of additives

    Directory of Open Access Journals (Sweden)

    Ling Fiona W.M.

    2017-01-01

    Full Text Available Drag reduction technology was used in medical applications to enhance the blood flow in semiclogged blood streams which can be an alternative treatment for atherosclerosis. In this present study, natural polymeric drag reducing additives (DRA was introduced to replace synthetic polymer which has the possibility of bringing side effects to human health. Three different sources, namely okra, aloe vera and hibiscus were utilized to extract the natural polymeric additives which were then tested in custom made microchannel simulating human heart blood vessels. The performance of different types of additives was evaluated using pressure measurements. The maximum drag reduction up to 63.48% is achieved using 300 ppm of hibiscus mucilage at operating pressure of 50 mbar. In this present work, hibiscus showed the best drag reduction performance, giving the highest %FI in most of the cases. This experimental results proved that these natural polymeric additives could be utilized as DRA in enhancing the blood flow in semiclogged blood streams.

  11. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing

    DEFF Research Database (Denmark)

    Runavot, Jean-Luc; Guo, Xiaoyuan; Willats, William George Tycho

    2014-01-01

    -cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide......Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non...... localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being...

  12. Efficacy of glucocorticoids, conventional and targeted synthetic disease-modifying antirheumatic drugs: a systematic literature review informing the 2016 update of the EULAR recommendations for the management of rheumatoid arthritis

    NARCIS (Netherlands)

    Chatzidionysiou, Katerina; Emamikia, Sharzad; Nam, Jackie; Ramiro, Sofia; Smolen, Josef; van der Heijde, Désirée; Dougados, Maxime; Bijlsma, Johannes; Burmester, Gerd; Scholte, Marieke; van Vollenhoven, Ronald; Landewé, Robert

    2017-01-01

    To perform a systematic literature review (SLR) informing the 2016 update of the recommendations for the management of rheumatoid arthritis (RA). An SLR for the period between 2013 and 2016 was undertaken to assess the efficacy of glucocorticoids (GCs), conventional synthetic disease-modifying

  13. Polysaccharides isolated from Açaí fruit induce innate immune responses.

    Directory of Open Access Journals (Sweden)

    Jeff Holderness

    2011-02-01

    Full Text Available The Açaí (Acai fruit is a popular nutritional supplement that purportedly enhances immune system function. These anecdotal claims are supported by limited studies describing immune responses to the Acai polyphenol fraction. Previously, we characterized γδ T cell responses to both polyphenol and polysaccharide fractions from several plant-derived nutritional supplements. Similar polyphenol and polysaccharide fractions are found in Acai fruit. Thus, we hypothesized that one or both of these fractions could activate γδ T cells. Contrary to previous reports, we did not identify agonist activity in the polyphenol fraction; however, the Acai polysaccharide fraction induced robust γδ T cell stimulatory activity in human, mouse, and bovine PBMC cultures. To characterize the immune response to Acai polysaccharides, we fractionated the crude polysaccharide preparation and tested these fractions for activity in human PBMC cultures. The largest Acai polysaccharides were the most active in vitro as indicated by activation of myeloid and γδ T cells. When delivered in vivo, Acai polysaccharide induced myeloid cell recruitment and IL-12 production. These results define innate immune responses induced by the polysaccharide component of Acai and have implications for the treatment of asthma and infectious disease.

  14. Antibiofilm activity of Actinobacillus pleuropneumoniae serotype 5 capsular polysaccharide.

    Directory of Open Access Journals (Sweden)

    Michael T Karwacki

    Full Text Available Cell-free extracts isolated from colony biofilms of Actinobacillus pleuropneumoniae serotype 5 were found to inhibit biofilm formation by Staphylococcus aureus, S. epidermidis and Aggregatibacter actinomycetemcomitans, but not by A. pleuropneumoniae serotype 5 itself, in a 96-well microtiter plate assay. Physical and chemical analyses indicated that the antibiofilm activity in the extract was due to high-molecular-weight polysaccharide. Extracts isolated from a mutant strain deficient in the production of serotype 5 capsular polysaccharide did not exhibit antibiofilm activity. A plasmid harboring the serotype 5 capsule genes restored the antibiofilm activity in the mutant extract. Purified serotype 5 capsular polysaccharide also exhibited antibiofilm activity against S. aureus. A. pleuropneumoniae wild-type extracts did not inhibit S. aureus growth, but did inhibit S. aureus intercellular adhesion and binding of S. aureus cells to stainless steel surfaces. Furthermore, polystyrene surfaces coated with A. pleuropneumoniae wild-type extracts, but not with capsule-mutant extracts, resisted S. aureus biofilm formation. Our findings suggest that the A. pleuropneumoniae serotype 5 capsule inhibits cell-to-cell and cell-to-surface interactions of other bacteria. A. pleuropneumoniae serotype 5 capsular polysaccharide is one of a growing number of bacterial polysaccharides that exhibit broad-spectrum, nonbiocidal antibiofilm activity. Future studies on these antibiofilm polysaccharides may uncover novel functions for bacterial polysaccharides in nature, and may lead to the development of new classes of antibiofilm agents for industrial and clinical applications.

  15. Insights from Synthetic Star-forming Regions. II. Verifying Dust Surface Density, Dust Temperature, and Gas Mass Measurements With Modified Blackbody Fitting

    Energy Technology Data Exchange (ETDEWEB)

    Koepferl, Christine M.; Robitaille, Thomas P. [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Dale, James E., E-mail: koepferl@usm.lmu.de [University Observatory Munich, Scheinerstr. 1, D-81679 Munich (Germany)

    2017-11-01

    We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densities can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; −13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ {sup 2} values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; −7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect

  16. Insights from Synthetic Star-forming Regions. II. Verifying Dust Surface Density, Dust Temperature, and Gas Mass Measurements with Modified Blackbody Fitting

    Science.gov (United States)

    Koepferl, Christine M.; Robitaille, Thomas P.; Dale, James E.

    2017-11-01

    We use a large data set of realistic synthetic observations (produced in Paper I of this series) to assess how observational techniques affect the measurement physical properties of star-forming regions. In this part of the series (Paper II), we explore the reliability of the measured total gas mass, dust surface density and dust temperature maps derived from modified blackbody fitting of synthetic Herschel observations. We find from our pixel-by-pixel analysis of the measured dust surface density and dust temperature a worrisome error spread especially close to star formation sites and low-density regions, where for those “contaminated” pixels the surface densities can be under/overestimated by up to three orders of magnitude. In light of this, we recommend to treat the pixel-based results from this technique with caution in regions with active star formation. In regions of high background typical in the inner Galactic plane, we are not able to recover reliable surface density maps of individual synthetic regions, since low-mass regions are lost in the far-infrared background. When measuring the total gas mass of regions in moderate background, we find that modified blackbody fitting works well (absolute error: + 9%; -13%) up to 10 kpc distance (errors increase with distance). Commonly, the initial images are convolved to the largest common beam-size, which smears contaminated pixels over large areas. The resulting information loss makes this commonly used technique less verifiable as now χ 2 values cannot be used as a quality indicator of a fitted pixel. Our control measurements of the total gas mass (without the step of convolution to the largest common beam size) produce similar results (absolute error: +20%; -7%) while having much lower median errors especially for the high-mass stellar feedback phase. In upcoming papers (Paper III; Paper IV) of this series we test the reliability of measured star formation rate with direct and indirect techniques.

  17. Surface engineering: molecularly imprinted affinity membranes by photograft polymerization

    Science.gov (United States)

    Matuschewski, Heike; Sergeyeva, Tatiana A.; Bendig, Juergen; Piletsky, Sergey A.; Ulbricht, Matthies; Schedler, Uwe

    2001-02-01

    Commercial polymer microfiltration membranes were surface-modified with a graft copolymer of a functional monomer and a crosslinker in the presence of a template (triazine-herbicide). As result, membranes covered with a thin layer of imprinted polymer (MIP) selective to the template were obtained. The influence of the polymerization conditions on membrane recognition properties was studied by membranes

  18. Mapping the polysaccharide degradation potential of Aspergillus niger

    Science.gov (United States)

    2012-01-01

    Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger. PMID:22799883

  19. Functionalized Ormosil Scaffolds Processed by Direct Laser Polymerization for Application in Tissue Engineering

    DEFF Research Database (Denmark)

    Matei, A.; Schou, Jørgen; Canulescu, Stela

    The N,N’-(methacryloyloxyethyl triehtoxy silyl propyl carbamoyl-oxyhexyl)-urea hybrid methacrylate for applications in tissue engineering was synthesized and afterwards polymerized by direct laser polymerization using femtosecond laser pulses with the aim of using it for further applications...... in tissue engineering. The as-obtained scaffolds were modified either by low pressure argon plasma treatment or by using two different proteins (lysozyme, fibrinogen). For improved adhesion, the proteins were deposited by matrix assisted pulsed laser evaporation. The functionalized structures were tested...

  20. Bacillus subtilis biofilm induction by plant polysaccharides.

    Science.gov (United States)

    Beauregard, Pascale B; Chai, Yunrong; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2013-04-23

    Bacillus subtilis is a plant-beneficial Gram-positive bacterium widely used as a biofertilizer. However, relatively little is known regarding the molecular processes underlying this bacterium's ability to colonize roots. In contrast, much is known about how this bacterium forms matrix-enclosed multicellular communities (biofilms) in vitro. Here, we show that, when B. subtilis colonizes Arabidopsis thaliana roots it forms biofilms that depend on the same matrix genes required in vitro. B. subtilis biofilm formation was triggered by certain plant polysaccharides. These polysaccharides served as a signal for biofilm formation transduced via the kinases controlling the phosphorylation state of the master regulator Spo0A. In addition, plant polysaccharides are used as a source of sugars for the synthesis of the matrix exopolysaccharide. The bacterium's response to plant polysaccharides was observed across several different strains of the species, some of which are known to have beneficial effects on plants. These observations provide evidence that biofilm genes are crucial for Arabidopsis root colonization by B. subtilis and provide insights into how matrix synthesis may be triggered by this plant.

  1. Molecularly Imprinted Microrods via Mesophase Polymerization.

    Science.gov (United States)

    Parisi, Ortensia Ilaria; Scrivano, Luca; Candamano, Sebastiano; Ruffo, Mariarosa; Vattimo, Anna Francesca; Spanedda, Maria Vittoria; Puoci, Francesco

    2017-12-28

    The aim of the present research work was the synthesis of molecularly imprinted polymers (MIPs) with a rod-like geometry via "mesophase polymerization". The ternary lyotropic system consisting of sodium dodecyl sulfate (SDS), water, and decanol was chosen to prepare a hexagonal mesophase to direct the morphology of the synthesized imprinted polymers using theophylline, methacrylic acid, and ethylene glycol dimethacrylate as a drug model template, a functional monomer, and a crosslinker, respectively. The obtained molecularly imprinted microrods (MIMs) were assessed by performing binding experiments and in vitro release studies, and the obtained results highlighted good selective recognition abilities and sustained release properties. In conclusion, the adopted synthetic strategy involving a lyotropic mesophase system allows for the preparation of effective MIPs characterized by a rod-like morphology.

  2. Extraction, purification and antioxidant activities of the polysaccharides from maca (Lepidium meyenii).

    Science.gov (United States)

    Zha, Shenghua; Zhao, Qingsheng; Chen, Jinjin; Wang, Liwei; Zhang, Guifeng; Zhang, Hong; Zhao, Bing

    2014-10-13

    Water-soluble polysaccharides were separated from maca (Lepidium meyenii) aqueous extract (MAE). The crude polysaccharides were deproteinized by Sevag method. During the preparation process of maca polysaccharides, amylase and glucoamylase effectively removed starch in maca polysaccharides. Four Lepidium meyenii polysaccharides (LMPs) were obtained by changing the concentration of ethanol in the process of polysaccharide precipitation. All of the LMPs were composed of rhamnose, arabinose, glucose and galactose. Antioxidant activity tests revealed that LMP-60 showed good capability of scavenging hydroxyl free radical and superoxide radical at 2.0mg/mL, the scavenging rate was 52.9% and 85.8%, respectively. Therefore, the results showed that maca polysaccharides had a high antioxidant activity and could be explored as the source of bioactive compounds. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Life cycle assessment of polysaccharide materials: a review

    NARCIS (Netherlands)

    Shen, L.|info:eu-repo/dai/nl/310872022; Patel, M.K.|info:eu-repo/dai/nl/18988097X

    2008-01-01

    Apart from conventional uses of polysaccharide materials, such as food, clothing, paper packaging and construction, new polysaccharide products and materials have been developed. This paper reviews life cycle assessment (LCA) studies in order to gain insight of the environmental profiles of

  4. X-ray initiated polymerization of wood impregnants

    Energy Technology Data Exchange (ETDEWEB)

    Cleland, Marshall R.; Galloway, Richard A. [IBA Industrial, Inc., Edgewood, NY (United States); Berejka, Anthony J. [Ionicorp, Huntington, NY 11743 (United States)], E-mail: berejka@msn.com; Montoney, Daniel [Strathmore Products, Syracuse, NY (United States); Driscoll, Mark; Smith, Leonard; Scott Larsen, L. [State University of New York, SUNY-ESF, Syracuse, NY (United States)

    2009-07-15

    X-rays, derived from a high energy, high-current electron beam (EB), initiated in-situ polymerization of a unique class of monomers that were found to penetrate the cell walls of wood. X-rays initiated an auto-catalytic acrylic polymerization and penetrated through thick pieces of wood. The final cured product having the polymerizate, a polymer, both in the wood cell lumens and in the cell walls is called wood impregnated with a wood-polymer penetrant (WPP). The controlled lower dose rate of X-rays overcame disproportionation encountered when using higher dose-rate electron beam initiation. With X-rays, the in-situ polymerization took place in one exposure of modest dose. With EB, multiple passes were needed to avoid excessive heat build-up and monomer volatilization. Having entered the cell walls of the wood and then being polymerized within the cell walls, these radiation-cured unique monomers imparted outstanding dimensional stability upon exposure of the impregnated wood to humidity cycling. The preferred monomer system was also chemically modified prior to impregnation with agents that would remain in the wood and prevent the growth of fungi and other microbials. This technique differs from historic uses of monomers that merely filled the lumens of the wood (historic wood-polymer composites), which are only suitable for indoor use. The WPP impregnated wood that was either X-ray cured or EB cured demonstrated enhanced structural properties, dimensional stability, and decay resistance.

  5. X-ray initiated polymerization of wood impregnants

    International Nuclear Information System (INIS)

    Cleland, Marshall R.; Galloway, Richard A.; Berejka, Anthony J.; Montoney, Daniel; Driscoll, Mark; Smith, Leonard; Scott Larsen, L.

    2009-01-01

    X-rays, derived from a high energy, high-current electron beam (EB), initiated in-situ polymerization of a unique class of monomers that were found to penetrate the cell walls of wood. X-rays initiated an auto-catalytic acrylic polymerization and penetrated through thick pieces of wood. The final cured product having the polymerizate, a polymer, both in the wood cell lumens and in the cell walls is called wood impregnated with a wood-polymer penetrant (WPP). The controlled lower dose rate of X-rays overcame disproportionation encountered when using higher dose-rate electron beam initiation. With X-rays, the in-situ polymerization took place in one exposure of modest dose. With EB, multiple passes were needed to avoid excessive heat build-up and monomer volatilization. Having entered the cell walls of the wood and then being polymerized within the cell walls, these radiation-cured unique monomers imparted outstanding dimensional stability upon exposure of the impregnated wood to humidity cycling. The preferred monomer system was also chemically modified prior to impregnation with agents that would remain in the wood and prevent the growth of fungi and other microbials. This technique differs from historic uses of monomers that merely filled the lumens of the wood (historic wood-polymer composites), which are only suitable for indoor use. The WPP impregnated wood that was either X-ray cured or EB cured demonstrated enhanced structural properties, dimensional stability, and decay resistance.

  6. Biodegradability of PP/HMSPP and natural and synthetic polymers blends in function of gamma irradiation degradation

    International Nuclear Information System (INIS)

    Cardoso, Elisabeth C.L.; Scagliusi, Sandra R.; Lima, Luis F.C.P.; Bueno, Nelson R.; Brant, Antonio J.C.; Parra, Duclerc F.; Lugão, Ademar B.

    2014-01-01

    Polymers are used for numerous applications in different industrial segments, generating enormous quantities of discarding in the environment. Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. Polypropylene (PP) undergoes crosslinking and extensive main chain scissions when submitted to ionizing irradiation; as one of the most widely used linear hydrocarbon polymers, PP, made from cheap petrochemical feed stocks, shows easy processing leading it to a comprehensive list of finished products. Consequently, there is accumulation in the environment, at 25 million tons per year rate, since polymeric products are not easily consumed by microorganisms. PP polymers are very bio-resistant due to involvement of only carbon atoms in main chain with no hydrolysable functional group. Several possibilities have been considered to minimize the environmental impact caused by non-degradable plastics, subjecting them to: physical, chemical and biological degradation or combination of all these due to the presence of moisture, air, temperature, light, high energy radiation or microorganisms. There are three main classes of biodegradable polymers: synthetic polymers, natural polymers and blends of polymers in which one or more components are readily consumed by microorganisms. This work aims to biodegradability investigation of a PP/HMSPP (high melt strength polypropylene) blended with sugarcane bagasse, PHB (poly-hydroxy-butyrate) and PLA (poly-lactic acid), both synthetic polymers, at a 10% level, subjected to gamma radiation at 50, 100, 150 and 200 kGy doses. Characterization will comprise IR, DSC, TGA, OIT and Laboratory Soil Burial Test (LSBT). - Highlights: • Polymeric materials composites account for an estimated from 20 to 30% total volume of solid waste. • Landfills will not be enough for an estimated accumulation of 25 million tons per year of plastics. • Incorporation of natural/synthetic polymers in PP/HMSPP to reduce

  7. Transgenic rice expressing a codon-modified synthetic CP4-EPSPS confers tolerance to broad-spectrum herbicide, glyphosate.

    Science.gov (United States)

    Chhapekar, Sushil; Raghavendrarao, Sanagala; Pavan, Gadamchetty; Ramakrishna, Chopperla; Singh, Vivek Kumar; Phanindra, Mullapudi Lakshmi Venkata; Dhandapani, Gurusamy; Sreevathsa, Rohini; Ananda Kumar, Polumetla

    2015-05-01

    Highly tolerant herbicide-resistant transgenic rice was developed by expressing codon-modified synthetic CP4--EPSPS. The transformants could tolerate up to 1% commercial glyphosate and has the potential to be used for DSR (direct-seeded rice). Weed infestation is one of the major biotic stress factors that is responsible for yield loss in direct-seeded rice (DSR). Herbicide-resistant rice has potential to improve the efficiency of weed management under DSR. Hence, the popular indica rice cultivar IR64, was genetically modified using Agrobacterium-mediated transformation with a codon-optimized CP4-EPSPS (5-enolpyruvylshikimate-3-phosphate synthase) gene, with N-terminal chloroplast targeting peptide from Petunia hybrida. Integration of the transgenes in the selected rice plants was confirmed by Southern hybridization and expression by Northern and herbicide tolerance assays. Transgenic plants showed EPSPS enzyme activity even at high concentrations of glyphosate, compared to untransformed control plants. T0, T1 and T2 lines were tested by herbicide bioassay and it was confirmed that the transgenic rice could tolerate up to 1% of commercial Roundup, which is five times more in dose used to kill weeds under field condition. All together, the transgenic rice plants developed in the present study could be used efficiently to overcome weed menace.

  8. Use of polymeric resins for removing contaminants from oily waters

    Energy Technology Data Exchange (ETDEWEB)

    Clarisse, M.D.; Queiros, Y.G.C.; Mauro, A.C.; Lucas, E.F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas; Barbosa, C.C.R. [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Barbosa, L.C.F.; Louvisse, A.M.T. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Polymeric resins are being tried as an alternative material for treating oily waters from the petroleum industry, which have already been treated by conventional methods. The objective of this work has been to evaluate the purification degree of synthetic oily waters when treated in fixed bed columns packed with polymeric resins made up of hydrophilic and lipophilic moieties. The analysis used for characterizing the total grease and oil content (TOG) was fluorimetry. Starting oily waters of average TOG 40 ppm were prepared. Data obtained from eluted waters did not outweigh 1% of the TOG values of starting solutions. The kinetic study showed that the contaminant removal efficiency depends on the system elution flow rate; optimum removal values were reached at a 7.0 mL/min flow rate. High efficiency and speed in the purification process were obtained at this optimum flow rate. The passage of a water volume 1,000 times the volume of the column bed was not sufficient to observe its saturation level. (author)

  9. Polysaccharides purified from wild Cordyceps activate FGF2/FGFR1c signaling

    Science.gov (United States)

    Zeng, Yangyang; Han, Zhangrun; Yu, Guangli; Hao, Jiejie; Zhang, Lijuan

    2015-02-01

    Land animals as well as all organisms in ocean synthesize sulfated polysaccharides. Fungi split from animals about 1.5 billion years ago. As fungi make the evolutionary journey from ocean to land, the biggest changes in their living environment may be a sharp decrease in salt concentration. It is established that sulfated polysaccharides interact with hundreds of signaling molecules and facilitate many signaling transduction pathways, including fibroblast growth factor (FGF) and FGF receptor signaling pathway. The disappearance of sulfated polysaccharides in fungi and plants on land might indicate that polysaccharides without sulfation might be sufficient in facilitating protein ligand/receptor interactions in low salinity land. Recently, it was reported that plants on land start to synthesize sulfated polysaccharides in high salt environment, suggesting that fungi might be able to do the same when exposed in such environment. Interestingly, Cordyceps, a fungus habituating inside caterpillar body, is the most valued traditional Chinese Medicine. One of the important pharmaceutical active ingredients in Cordyceps is polysaccharides. Therefore, we hypothesize that the salty environment inside caterpillar body might allow the fungi to synthesize sulfated polysaccharides. To test the hypothesis, we isolated polysaccharides from both lava and sporophore of wild Cordyceps and also from Cordyceps militaris cultured without or with added salts. We then measured the polysaccharide activity using a FGF2/FGFR1c signaling-dependent BaF3 cell proliferation assay and found that polysaccharides isolated from wild Cordyceps activated FGF2/FGFR signaling, indicating that the polysaccharides synthesized by wild Cordyceps are indeed different from those by the cultured mycelium.

  10. Radical-Mediated Enzymatic Polymerizations

    Science.gov (United States)

    Zavada, Scott R.; Battsengel, Tsatsral; Scott, Timothy F.

    2016-01-01

    Polymerization reactions are commonly effected by exposing monomer formulations to some initiation stimulus such as elevated temperature, light, or a chemical reactant. Increasingly, these polymerization reactions are mediated by enzymes―catalytic proteins―owing to their reaction efficiency under mild conditions as well as their environmental friendliness. The utilization of enzymes, particularly oxidases and peroxidases, for generating radicals via reduction-oxidation mechanisms is especially common for initiating radical-mediated polymerization reactions, including vinyl chain-growth polymerization, atom transfer radical polymerization, thiol–ene step-growth polymerization, and polymerization via oxidative coupling. While enzyme-mediated polymerization is useful for the production of materials intended for subsequent use, it is especially well-suited for in situ polymerizations, where the polymer is formed in the place where it will be utilized. Such polymerizations are especially useful for biomedical adhesives and for sensing applications. PMID:26848652

  11. Biomedical inorganic polymers bioactivity and applications of natural and synthetic polymeric inorganic molecules

    CERN Document Server

    Müller, Werner E G; Schröder, Heinz C; Schroder, Heinz C

    2014-01-01

    In recent years, inorganic polymers have attracted much attention in nano-biomedicine, in particular in the area of regenerative medicine and drug delivery. This growing interest in inorganic polymers has been further accelerated by the development of new synthetic and analytical methods in the field of nanotechnology and nanochemistry. Examples for biomedical inorganic polymers that had been proven to exhibit biomedical effects and/or have been applied in preclinical or clinical trials are polysilicate / silica glass (such as naturally formed "biosilica" and synthetic "bioglass") and inorganic polyphosphate. Some members of the mentioned biomedical inorganic polymers have already been applied e.g. as "bioglass" for bone repair and bone tissue engineering, or they are used in food processing and in dental care (inorganic polyphosphates). However, there are a number of further biological and medicinal properties of these polymers, which have been elucidated in the last few years but not yet been applied for tr...

  12. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    Science.gov (United States)

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  13. Mapping the polysaccharide degradation potential of Aspergillus niger

    Directory of Open Access Journals (Sweden)

    Andersen Mikael R

    2012-07-01

    Full Text Available Abstract Background The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required. For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential of a given fungus for polysaccharide degradation. Results Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list of 188 genes coding for carbohydrate-active enzymes from Aspergillus niger, thus forming an analysis framework, which can be queried. Combination of this information network with gene expression analysis on mono- and polysaccharide substrates has allowed elucidation of concerted gene expression from this organism. One such example is the identification of a full set of extracellular polysaccharide-acting genes for the degradation of oat spelt xylan. Conclusions The mapping of plant polysaccharide structures along with the corresponding enzymatic activities is a powerful framework for expression analysis of carbohydrate-active enzymes. Applying this network-based approach, we provide the first genome-scale characterization of all genes coding for carbohydrate-active enzymes identified in A. niger.

  14. Modified synthesis of 11-[14C]-clozapine

    International Nuclear Information System (INIS)

    Matloubi, Hojatollah; Ghandi, Mehdi; Zarrindast, M.-R.; Saemian, Nader

    2001-01-01

    The reported synthetic pathway of 8-chloro-11-(4-methyl-1-piperazinyl)-11-[ 14 C]-5H-dibenzo[b,e][1,4]diazapine (clozapine) was modified in several steps. The synthetic pathway was shortened by 60% and the total yield was increased from 6% to 23%

  15. Planar elongation of soft polymeric networks

    DEFF Research Database (Denmark)

    Jensen, Mette Krog; Hassager, Ole; Rasmussen, Henrik K.

    2010-01-01

    . To validate this new technique, soft polymeric networks of poly(propylene oxide) (PPO) were investigated during deformation. Particle tracking and video recording were used to detect to what extent the imposed strain rate and the sample perimeter remained constant. It was observed that, by using...... difference deviated more from the classical prediction due to the dynamic structures in the material. A modified Lodge model using characteristic parameters from linear viscoelastic measurements gave very good stress predictions at all Deborah numbers used in the quasi-linear regime....

  16. Modulating surface rheology by electrostatic protein/polysaccharide interactions

    NARCIS (Netherlands)

    Ganzevles, R.A.; Zinoviadou, K.; Vliet, van T.; Cohen Stuart, M.A.; Jongh, de H.H.J.

    2006-01-01

    There is a large interest in mixed protein/polysaccharide layers at air-water and oil-water interfaces because of their ability to stabilize foams and emulsions. Mixed protein/polysaccharide adsorbed layers at air-water interfaces can be prepared either by adsorption of soluble protein/

  17. Maca polysaccharides: A review of compositions, isolation, therapeutics and prospects.

    Science.gov (United States)

    Li, Yujuan; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Cui, Xiaowei; Han, Chunchao

    2018-05-01

    Maca polysaccharides, some of the major bioactive substances in Lepidium meyenii (Walp.) (Maca), have various biological properties, including anti-oxidant, anti-fatigue, anti-tumor, and immunomodulatory effects, as well as hepatoprotective activity and regulation function. Although many therapeutics depend on multiple structures of maca polysaccharides in addition to providing sufficient foundations for maca polysaccharide products in industrial applications, the relationships between the pharmacological effects and structures have not been established. Therefore, this article summarizes the extraction and purification methods, compositions, pharmacological effects, prospects and industrial applications of maca polysaccharides. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Complex Macromolecular Architectures by Living Cationic Polymerization

    KAUST Repository

    Alghamdi, Reem D.

    2015-05-01

    Poly (vinyl ether)-based graft polymers have been synthesized by the combination of living cationic polymerization of vinyl ethers with other living or controlled/ living polymerization techniques (anionic and ATRP). The process involves the synthesis of well-defined homopolymers (PnBVE) and co/terpolymers [PnBVE-b-PCEVE-b-PSiDEGVE (ABC type) and PSiDEGVE-b-PnBVE-b-PSiDEGVE (CAC type)] by sequential living cationic polymerization of n-butyl vinyl ether (nBVE), 2-chloroethyl vinyl ether (CEVE) and tert-butyldimethylsilyl ethylene glycol vinyl ether (SiDEGVE), using mono-functional {[n-butoxyethyl acetate (nBEA)], [1-(2-chloroethoxy) ethyl acetate (CEEA)], [1-(2-(2-(t-butyldimethylsilyloxy)ethoxy) ethoxy) ethyl acetate (SiDEGEA)]} or di-functional [1,4-cyclohexanedimethanol di(1-ethyl acetate) (cHMDEA), (VEMOA)] initiators. The living cationic polymerizations of those monomers were conducted in hexane at -20 0C using Et3Al2Cl3 (catalyst) in the presence of 1 M AcOEt base.[1] The PCEVE segments of the synthesized block terpolymers were then used to react with living macroanions (PS-DPE-Li; poly styrene diphenyl ethylene lithium) to afford graft polymers. The quantitative desilylation of PSiDEGVE segments by n-Bu4N+F- in THF at 0 °C led to graft co- and terpolymers in which the polyalcohol is the outer block. These co-/terpolymers were subsequently subjected to “grafting-from” reactions by atom transfer radical polymerization (ATRP) of styrene to afford more complex macromolecular architectures. The base assisted living cationic polymerization of vinyl ethers were also used to synthesize well-defined α-hydroxyl polyvinylether (PnBVE-OH). The resulting polymers were then modified into an ATRP macro-initiator for the synthesis of well-defined block copolymers (PnBVE-b-PS). Bifunctional PnBVE with terminal malonate groups was also synthesized and used as a precursor for more complex architectures such as H-shaped block copolymer by “grafting-from” or

  19. Crumb waste tire rubber surface modification by plasma polymerization of ethanol and its application on oil-well cement

    Science.gov (United States)

    Xiaowei, Cheng; Sheng, Huang; Xiaoyang, Guo; Wenhui, Duan

    2017-07-01

    Crumb waste tire rubber (WTR) was pretreated by oxygen low temperature plasma (LTP) and modified by LTP polymerization process of ethanol monomer to improve the adhesion property with oil-well cement matrix and the mechanical properties of cement. The surface properties of modified crumb WTR and the mechanical properties and structures of modified oil-well cement were investigated by means of contact angle measurement, dispersion test, attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), mechanics performance tests, permeability test and scanning electron microscopy (SEM). It was demonstrated that LTP treatment changed both the surface composition and roughness. The contact angle of pretreated crumb WTR dramatically fell from 122° to 34°, and sample with ethanol LPT polymer film decreased even further to 11°. The ATR-FTIR and XPS analysis results demonstrated that hydrophilic groups, such as -COOH, C-OH, and -CHO, were introduced on the WTR surface. The oxygen atomic percent increased from 8.11% to 14.50% and 24.83%. The mechanical properties, porosity and permeability of raw cement were compared to samples modified by untreated crumb WTR, pretreated crumb WTR and ethanol LTP polymerization treated crumb WTR. It was found that after 28 days, the compressive strength of the samples with the untreated crumb WTR decreased to 80% with respect to raw cement. The tensile strength and flexural strength also had a slight reduction compared with the raw cement. On the contrary, after 28 days, the tensile strength of cement modified by LTP polymerization treated WTR increased 11.03% and 13.36%, and the flexural strength increased 9.65% and 7.31%, respectively. A decrease in the compressive strength also occurred but was inconspicuous. A tight interface bonding for ethanol LTP polymerization treated WTR with cement matrix was observed via an SEM image.

  20. Polymeric molecular sieve membranes via in situ cross-linking of non-porous polymer membrane templates.

    Science.gov (United States)

    Qiao, Zhen-An; Chai, Song-Hai; Nelson, Kimberly; Bi, Zhonghe; Chen, Jihua; Mahurin, Shannon M; Zhu, Xiang; Dai, Sheng

    2014-04-16

    High-performance polymeric membranes for gas separation are attractive for molecular-level separations in industrial-scale chemical, energy and environmental processes. Molecular sieving materials are widely regarded as the next-generation membranes to simultaneously achieve high permeability and selectivity. However, most polymeric molecular sieve membranes are based on a few solution-processable polymers such as polymers of intrinsic microporosity. Here we report an in situ cross-linking strategy for the preparation of polymeric molecular sieve membranes with hierarchical and tailorable porosity. These membranes demonstrate exceptional performance as molecular sieves with high gas permeabilities and selectivities for smaller gas molecules, such as carbon dioxide and oxygen, over larger molecules such as nitrogen. Hence, these membranes have potential for large-scale gas separations of commercial and environmental relevance. Moreover, this strategy could provide a possible alternative to 'classical' methods for the preparation of porous membranes and, in some cases, the only viable synthetic route towards certain membranes.

  1. Extraction, characterization and antioxidant activities of Se-enriched tea polysaccharides.

    Science.gov (United States)

    Wang, Yuanfeng; Li, Yongfu; Liu, Yangyang; Chen, Xueqing; Wei, Xinlin

    2015-01-01

    Se-polysaccharides from Se-enriched tea leaves were purified by DEAE-sepharose fast flow gel column (2.5×60cm) and three polysaccharide fractions (Se-TPS1, Se-TPS2, and Se-TPS3) were isolated and purified with yields of 6.5, 37.14, and 8.57%, respectively. The average sizes of Se-TPS1 and Se-TPS2 were determined by HPGPC system, with molecular weights of 1.1×10(5) and 2.4×10(5)Da, respectively. Se-TPS3 was a polysaccharide polymer with two peaks with molecular weights of 9.2×10(5) and 2.5×10(5)Da. Monosaccharide components analysis by ion chromatography revealed Se-polysaccharides were acidic polysaccharoses and different from each other in monosaccharide kinds and molar ratio. Elements of Se, C, H, N, S, and 14 kinds of mineral elements were analyzed by AFS, EA, and ICP-AES, respectively. Spectral analysis (IR and UV) indicated Se-polysaccharides were typical glycoproteins. Morphological analyses of the samples were determined by SEM and AFM. In addition, the DPPH and superoxide radicals scavenging activities were also discussed to assess antioxidant activities of the samples, and Se-polysaccharides showed higher antioxidant activities compared to the ordinary polysaccharides. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Ultrasonic-assisted extraction and in vitro antioxidant activity of polysaccharides from Agaricus bisporus.

    Science.gov (United States)

    Qiao, De-Liang; Zhao, Feng; Huang, Hai-Zhong; Fan, Chun-Chun; Han, Lei

    2012-08-01

    To optimize ultrasonic-assisted extraction parameters of polysaccharides from Agaricus bisporus and evaluate antioxidant activities of A. bisporus polysaccharides. Polysaccharides from A. bisporus was extracted by using methods of ultrasonic-assisted hot water lixiviation, ethanol precipitation, Sevag's deproteination and ethanol precipitation again. Extraction temperature, extraction time, ratio of water to raw material and ultrasonic power were selected in single-factor tests. Based on the single-factor tests, parameters combination for the ultrasonic-assisted extraction of A. bisporus polysaccharides was optimized by using four-factor-three-level orthogonal test. Antioxidant activities (reductive potential, superoxide anion scavenging activity and H2O2 scavenging activity) of A. bisporus polysaccharides were evaluated in vitro. Optimum conditions for the extracting of A. bisporus polysaccharides were extracting temperature 65 degrees C, extracting time 40 min, ratio of water to raw material 30 mL/g and ultrasonic power 170 w. Practicing this optimal condition, extraction yield of polysaccharides from A. bisporus was 5.6 014%. In crude polysaccharides of A. bisporus, carbohydrates content, determined by applying the phenol-sulfuric acid method, was 75.48%. Polysaccharides of A. bisporus could reduce ferric ion, scavenge superoxide anion and hydrogen peroxide in a dose-dependent manner. Utrasonic-assisted extraction could be used in the extracting of A. bisporus polysaccharides. Polysaccharides of A. bisporus, had direct and potent antioxidant activities, might be developed and utilized as natural antioxidant.

  3. Synthetic Light-Curable Polymeric Materials Provide a Supportive Niche for Dental Pulp Stem Cells.

    Science.gov (United States)

    Vining, Kyle H; Scherba, Jacob C; Bever, Alaina M; Alexander, Morgan R; Celiz, Adam D; Mooney, David J

    2018-01-01

    Dental disease annually affects billions of patients, and while regenerative dentistry aims to heal dental tissue after injury, existing polymeric restorative materials, or fillings, do not directly participate in the healing process in a bioinstructive manner. There is a need for restorative materials that can support native functions of dental pulp stem cells (DPSCs), which are capable of regenerating dentin. A polymer microarray formed from commercially available monomers to rapidly identify materials that support DPSC adhesion is used. Based on these findings, thiol-ene chemistry is employed to achieve rapid light-curing and minimize residual monomer of the lead materials. Several triacrylate bulk polymers support DPSC adhesion, proliferation, and differentiation in vitro, and exhibit stiffness and tensile strength similar to existing dental materials. Conversely, materials composed of a trimethacrylate monomer or bisphenol A glycidyl methacrylate, which is a monomer standard in dental materials, do not support stem cell adhesion and negatively impact matrix and signaling pathways. Furthermore, thiol-ene polymerized triacrylates are used as permanent filling materials at the dentin-pulp interface in direct contact with irreversibly injured pulp tissue. These novel triacrylate-based biomaterials have potential to enable novel regenerative dental therapies in the clinic by both restoring teeth and providing a supportive niche for DPSCs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Comparison of Polysaccharides from Two Species of Ganoderma

    Directory of Open Access Journals (Sweden)

    Yu-Ping Tang

    2012-01-01

    Full Text Available Ganoderma lucidum and Ganoderma sinense, known as Lingzhi in Chinese, are commonly used Chinese medicines with excellent beneficial health effects. Triterpenes and polysaccharides are usually considered as their main active components. However, the content of triterpenes differs significantly between the two species of Ganoderma. To date, a careful comparison of polysaccharides from the two species of Ganoderma has not been performed. In this study, polysaccharides from fruiting bodies of two species of Lingzhi collected from different regions of China were analyzed and compared based on HPSEC-ELSD and HPSEC-MALLS-RI analyses, as well as enzymatic digestion and HPTLC of acid hydrolysates. The results indicated that both the HPSEC-ELSD profiles and the molecular weights of the polysaccharides were similar. Enzymatic digestion showed that polyshaccharides from all samples of Lingzhi could be hydrolyzed by pectinase and dextranase. HPTLC profiles of their TFA hydrolysates colored with different reagents and their monosaccharides composition were also similar.

  5. Inhibitory Effects of Various Ratios of Polysaccharides/Alkaloids from ...

    African Journals Online (AJOL)

    and increases survival in endotoxemic mice. Acta. Pharmacol Sin ... secretion in hyperthyroid diarrheic rats. Regul Peptides ... effect of Coptis chinensis polysaccharide in high-fat diet ... polysaccharides decrease blood sugar by inhibition of α-.

  6. Nanoparticle-Supported Molecular Polymerization Catalysts

    OpenAIRE

    Amgoune, Abderramane; Krumova, Marina; Mecking, Stefan

    2008-01-01

    Homogeneous molecular catalysts are immobilzed in a well-defined fashion on individual silica nanoparticles with a narrow particle size distribution by covalent attachment. This synthetic methodology is demonstrated with modified salicylaldiminato-substituted titanium(IV) complexes incorporating a trimethoxysilane-terminated linker: dichloro-bis[κ2-N,O-6-(3-(trimethoxysilyl)propoxyphenylimino)-2-tert-butyl-phenolato]titanium(IV) (3) and dichlorobis[κ2-N,O-6-(4-(trimethoxysilyl)propoxy-2,3,5,6...

  7. Sulfated Polysaccharides in Marine Sponges: Extraction Methods and Anti-HIV Activity

    Directory of Open Access Journals (Sweden)

    Ana I. S. Esteves

    2011-01-01

    Full Text Available The extraction, fractionation and HIV-1 inhibition potential of polysaccharides extracted from three species of marine sponges, Erylus discophorus, Cliona celata and Stelletta sp., collected in the Northeastern Atlantic, is presented in this work. The anti-HIV activity of 23 polysaccharide pellets and three crude extracts was tested. Crude extracts prepared from Erylus discophorus specimens were all highly active against HIV-1 (90 to 95% inhibition. Cliona celata pellets showed low polysaccharide content (bellow 38.5% and almost no anti-HIV activity (<10% inhibition. Stelletta sp. pellets, although quite rich in polysaccharide (up to 97.3%, showed only modest bioactivity (<36% HIV-1 inhibition. Erylus discophorus pellets were among the richest in terms of polysaccharide content (up to 98% and the most active against HIV-1 (up to 95% inhibition. Chromatographic fractionation of the polysaccharide pellet obtained from a specimen of Erylus discophorus (B161 yielded only modestly active fractions. However, we could infer that the active molecule is most probably a high molecular weight sulfated polysaccharide (>2000 kDa, whose mechanism is possibly preventing viral attachment and entry (fusion inhibitor.

  8. Elektroaktive polymerer

    DEFF Research Database (Denmark)

    West, K.

    Traditionelt tænker vi på polymerer (plastik) som elektrisk isolerende materialer - det som er udenpå ledningerne. I dag kender vi imidlertid også polymerer med intrinsisk elektrisk ledningsevne, og plast er på vej ind i anvendelser, der tidligereudelukkende var baseret på metaller og uorganiske...... halvledere. Hertil kommer, at en del af de ledende polymerer kan stimuleres til at skifte mellem en ledende og en halvledende tilstand, hvorved de ændret både form og farve. I foredraget gives der enrække eksempler på anvendelse af polymerer som elektriske komponenter - rækkende fra polymer elektronik over...

  9. Polymer-based Drug Delivery Systems Applied to Insects Repellents Devices: A Review.

    Science.gov (United States)

    Barradas, Thaís Nogueira; Senna, Juliana Perdiz; Ricci, Eduardo; Mansur, Claudia Regina Elias

    2016-01-01

    Insects-borne diseases constitute a public health concern. Since there is no vaccine or curative treatment for many of these diseases, individual protection is the main approach to prevent them. Nowadays, the search for replacing synthetic molecules for insect repellents from natural sources, such as essential oils, is increasing. However, most of them present low efficiency compared to synthetic repellents. Therefore, decreasing skin permeation of synthetic repellents or yet, increasing effectiveness of natural repellents are challenges that must be overcome during the development of novel insect repellent formulations. In this context, polymer-based formulations allow entrapping active ingredients and provide release control. Encapsulation into polymeric micro/nanocapsules, cyclodextrins, polymeric micelles or hydrogels constitutes an approach to modify physicochemical properties of encapsulated molecules. Such techniques, applied in topical formulations, fabrics modification for personal protection, or food packaging have proved to be more effective in increasing repellency time and also in reducing drug dermal absorption, improving safety profiles of these products. In this work, the main synthetic and natural insect repellents are described as well as their polymeric carrier systems and their potential applications.

  10. [Analysis of thickening polysaccharides by the improved diethyldithioacetal derivatization method].

    Science.gov (United States)

    Akiyama, Takumi; Yamazaki, Takeshi; Tanamoto, Kenichi

    2011-01-01

    The identification test for thickening polysaccharides containing neutral saccharides and uronic acids was investigated by GC analysis of constituent monosaccharides. The reported method, in which monosaccharides were converted to diethyldithioacetal derivatives with ethanethiol followed by trimethylsilylation, was improved in terms of operability and reproducibility of GC/MS analysis. The suitability of the improved diethyldithioacetal derivatization method was determined for seven thickening polysaccharides, i.e., carob bean gum, guar gum, karaya gum, gum arabic, gum ghatti, tragacanth gum and peach gum. The samples were acid-hydrolyzed to form monosaccharides. The hydrolysates were derivatized and analyzed with GC/FID. Each sugar derivative was detected as a single peak and was well separated from others on the chromatograms. The amounts of constituent monosaccharides in thickening polysaccharides were successfully estimated. Seven polysaccharides were distinguished from each other on the basis of constituent monosaccharides. Further examination of the time period of hydrolysis of polysaccharides using peach gum showed that the optimal times were not the same for all monosaccharides. A longer time was needed to hydrolyze glucuronic acid than neutral saccharides. The findings suggest that hydrolysis time may sometimes affect the analytical results on composition of constituent monosaccharides in polysaccharides.

  11. Vinyl Chloride Emulsion Polymerization Reaction: Effect of Various Formulations

    Directory of Open Access Journals (Sweden)

    Seyed Mehrdad Jalilian

    2013-01-01

    Full Text Available A mixture  of  sodium  lauryl  sulfate  (SLS  as  ionic  emulsifer  and  stearyl alcohol as non-ionic emulsifer was employed in a vinyl chloride emulsion polymerization  reaction  to  study  the  infuence  of  various  interactive parameters involved in the reaction system. It was found that the particle size was dependent on the amount and type of emulsifer. The average particle size of polyvinyl chloride was dropped by higher amount of emulsifying agents.  At the gel point, more heat was generated by higher amount of vinyl chloride fed into the reaction system. The molecular weight of the polymer was decreased by increases in reaction temperature while,  it  increased by augmenting  the amount of emulsifer. According to the 13C NMR and FTIR spectroscopic data no defect was detected in the chain structure of synthetic polyvinylchloride product. An optimization of polymerization reaction condition was reached based on ultimate particle size desired for its favorable distribution in plastisols.

  12. Optical and Scanning electron Microscopy as advanced analysis methods to determine the condition of synthetic geo membranes

    International Nuclear Information System (INIS)

    Soriano Carrillo, J.; Blanco Fernandez, M.; Garcia Calleja, M. A.; Leiro Lopez, A.; Mateo Sanz, B.; Aguilar Gonzalez, E.; Rubin de Celix, M.

    2014-01-01

    Microscopic techniques have been widely used for years in the study of inorganic materials however their use in organic materials and specifically, in synthetic geo membranes, is very limited. In this study, this innovative technology has been used with the different geo synthetic polymeric barriers with which this research team is experienced: plasticized polyvinyl chloride, polyethylenes, rubbers such as ethenyltriphenyl-diene monomer terpolymer and butyl, polyolefins, ethylene-vinyl acetate copolymer, chlorosulfonated polyethylene and polypropylene. the influence of the extraction area and the time since their application is tested. (Author)

  13. Recent Advances in Marine Algae Polysaccharides: Isolation, Structure, and Activities.

    Science.gov (United States)

    Xu, Shu-Ying; Huang, Xuesong; Cheong, Kit-Leong

    2017-12-13

    Marine algae have attracted a great deal of interest as excellent sources of nutrients. Polysaccharides are the main components in marine algae, hence a great deal of attention has been directed at isolation and characterization of marine algae polysaccharides because of their numerous health benefits. In this review, extraction and purification approaches and chemico-physical properties of marine algae polysaccharides (MAPs) are summarized. The biological activities, which include immunomodulatory, antitumor, antiviral, antioxidant, and hypolipidemic, are also discussed. Additionally, structure-function relationships are analyzed and summarized. MAPs' biological activities are closely correlated with their monosaccharide composition, molecular weights, linkage types, and chain conformation. In order to promote further exploitation and utilization of polysaccharides from marine algae for functional food and pharmaceutical areas, high efficiency, and low-cost polysaccharide extraction and purification methods, quality control, structure-function activity relationships, and specific mechanisms of MAPs activation need to be extensively investigated.

  14. Functionalization of lanthanum hydroxide nanowires by atom transfer radical polymerization

    International Nuclear Information System (INIS)

    Zhou Mi; Yuan Jinying; Yuan Weizhong; Yin Yingwu; Hong Xiaoyin

    2007-01-01

    Atom transfer radical polymerization (ATRP) has been used to prepare a core-shell hybrid nanostructure successfully: a hard core of single-crystalline lanthanum hydroxide nanowires and a soft shell of polystyrene (PS) brushes. Transmission electron microscopy (TEM) images indicated that the resulting products presented special structures and different thicknesses of polymer layers. The chemical components and grafted PS quantities of the samples were measured by Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric analysis (TGA). The polymers showed narrow polydispersity, which proved that the lanthanum hydroxide nanowires initiated the 'living'/controlled polymerization of styrene. With the modifiability of lanthanum hydroxide nanowires, the solubility increased, which affords a new way to functionalize nanowires

  15. Effect of Inhibitors on Atom Transfer Radical Polymerization of MMA

    Institute of Scientific and Technical Information of China (English)

    张鸿; 徐冬梅; 张可达

    2005-01-01

    Effect of a series of inhibitors as additives on atom transfer radical polymerization (ATRP) of methyl methacrylate (MMA) with FeCl2/PPh3 as catalyst system was studied, including 2,4,6-trinitrophenol (TNP), 4-methoxyphenol (4-MP), hydroquinone (HQ) and nitrobenzene (NB). It was found that TNP was the only. efficient additive for ATRP among these inhibitors. In the presence of small amounts of TNP, the polymerization proceeded rapidly after induction period to yield the polymers with controlled molecular weights and narrow molecular weight distributions (MWD). The initiating efficiency of the modified catalyst system with TNP was increased. The mechanism was proposed and confirmed by the end group analysis of the polymer.

  16. Cloud point enhancement profile of libraries of modified Poly(N-isopropylmethacrylamide)

    International Nuclear Information System (INIS)

    Tavares, Alexandre Guilherme Silva; Silveira, Kelly Cristine da; Lucas, Elizabete Fernandes

    2016-01-01

    Full text: Poly(N-isopropyl methacrylamide) (PNIPMAM) based polymers are commercially available. These polymers present low cloud point, which may result in precipitation problems when applying for petroleum exploration [1]. Production of oil and gas has high temperature points, which can induce loss of activity for kinetic hydrate inhibitors (KHI), causing blockages by hydrates in pipes, fittings or valves. Hydrophobic groups can be added to modify PNIPMAM based polymers for hydrate inhibition during petroleum production. The cloud point enhancement profile of series of modified polymers was studied in this work. We synthesized poly(N-isopropyl methacrylamide-co-acrylic acid), P(NIPMAM-co-AA), by standard polymerization using AIBN as initiator. Series of modified polymers using two different groups (terc-butil and cyclopentyl) were studied. The characterization was made by nuclear magnetic resonance (NMR) to confirm the chemical structure; titration was used to determine the acrylic acid content for all synthesized polymers; Gel Permeation Chromatography (GPC) was applied to determine molar mass and polydispersity. A carbodiimide mediated coupling reaction (CMC) [2] was used to post synthetically modify the base polymer P(NIPMAM-co-AA) with N-(3-dimethylaminopropyl)-N’- ethylcarbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) as activation agents. The cloud point experiment was carried out with deionized water and brine water where small vials with polymer solution were heated at 12 deg C/min rate. The temperature when the solution became turbid was monitored. The modified PNIPMAM based polymers presented a significant enhancement on cloud point temperature, up to 80 deg C, in comparison to unmodified polymer, P(NIPMAM-co- AA). References: [1] Mady, M. F.; Kelland, M.A. Energy and Fuels,28, 5714 (2014) [2] Silveira, K.C.; Sheng, Q.; Tian, W.; Lucas, E.F.; Wood, C.D. J. Appl. Poly. Sci.,132, 42797 (2015). (author)

  17. Design and fabrication of polymeric nanocomposites with conducting fillers as electronic nanomaterials

    Science.gov (United States)

    Mushibe, Eliud Kizito

    The growing demand for small, portable and high performance electronic devices has resulted in research activity for embedded electronic components. This offers prospects for the development of flexible electronic components that combines the use of organic and inorganic materials and can be produced on a roll-to-roll process. This dissertation presents advances in the fabrication and characterization of flexible polymeric nanocomposite thin films. Inorganic and synthetic metal nanostructures with high electrical and dielectric properties were employed as filler materials. The processability of these functional filler materials was achieved by dispersion in conventional polymer matrices such as polystyrene (PS), polymethylmethacrylate (PMMA) and poly(vinylidene fluoride) to afford electroactive polymeric composite materials. In the fabrication of inorganic nanostructures, a Tubes by Fiber Template technique was employed to afford submicron metal and metal oxide tubes. Silver and copper nanostructures were fabricated by electroless deposition on electrospun fiber templates. To obtain hollow, submicron tubes, the sacrificial polymer template materials were removed by a combination of solvent dissolution and thermal degradation under an inert atmosphere. Polyaniline thin film deposited on the fiber template was used as a binding interface to enhance uniform and continuous deposition of the metal. This was instrumental in fabricating tubes with varied wall thicknesses ranging from 50 to 300 nm obtained as a function of plating time. By doping electrically conducting polymers such as polyaniline, the conductivity can be modified. We describe the fabrication of highly conducting polyaniline nanostructures via template free synthesis. A novel approach that involves a combination of hydrochloric acid and camphorsulfonic acid dopant at low concentrations was adopted. This approach afforded nanofibers with diameters of 150 ± 50 nm and high electrical conductivity of 4.2

  18. Structural characterization and immunomodulatory activity of a pectic polysaccharide (CALB-4) from Fructus aurantii.

    Science.gov (United States)

    Shu, Zunpeng; Yang, Yanni; Xing, Na; Wang, Yi; Wang, Qiuhong; Kuang, Haixue

    2018-02-01

    A purified polysaccharide, designated CALB-4, was acquired from Fructus aurantii that is the traditional edible/medicina plant in China. The present study was performed to characterize the CALB-4 and to evaluate its immunomodulatory activities on human peripheral blood mononuclear cells (PBMCs). The structure of CALB-4 was characterized by partial acid hydrolysis, periodate oxidation, Smith degradation, and methylation analysis combined with gas chromatography-mass spectrometry (GC-MS), Infrared Spectroscopy (IR) and scanning electron microscopy (SEM). The results indicated that CALB-4 was elucidated as a pectic polysaccharide and its main chain is composed of Man, Gal UA and Gal, interspersed with Ara, Rha, Man and Gal. Furthermore, immunological tests showed that CALB-4 exhibits the immunoenhancement effects. The mechanism for this action might be attributed to the increase of the cytoplasmic concentration of pro-IL-1 via the up-regulation of several mitogen-activated protein kinases (MAPKs) and the nuclear translocation of p65. This study clarified that CALB-4 could be as an efficacious biological response modifier in immunotherapy. Copyright © 2018. Published by Elsevier B.V.

  19. Natural-Synthetic Hybrid Polymers Developed via Electrospinning: The Effect of PET in Chitosan/Starch System

    Science.gov (United States)

    Espíndola-González, Adolfo; Martínez-Hernández, Ana Laura; Fernández-Escobar, Francisco; Castaño, Victor Manuel; Brostow, Witold; Datashvili, Tea; Velasco-Santos, Carlos

    2011-01-01

    Chitosan is an amino polysaccharide found in nature, which is biodegradable, nontoxic and biocompatible. It has versatile features and can be used in a variety of applications including films, packaging, and also in medical surgery. Recently a possibility to diversify chitosan properties has emerged by combining it with synthetic materials to produce novel natural-synthetic hybrid polymers. We have studied structural and thermophysical properties of chitosan + starch + poly(ethylene terephthalate) (Ch + S + PET) fibers developed via electrospinning. Properties of these hybrids polymers are compared with extant chitosan containing hybrids synthesized by electrospinning. Molecular interactions and orientation in the fibers are analyzed by infrared and Raman spectroscopies respectively, morphology by scanning electron microscopy and thermophysical properties by thermogravimetric analysis and differential scanning calorimetry. Addition of PET to Ch + S systems results in improved thermal stability at elevated temperatures. PMID:21673930

  20. Tofacitinib with conventional synthetic disease‐modifying antirheumatic drugs in Chinese patients with rheumatoid arthritis: Patient‐reported outcomes from a Phase 3 randomized controlled trial

    OpenAIRE

    Li, Zhanguo; An, Yuan; Su, Houheng; Li, Xiangpei; Xu, Jianhua; Zheng, Yi; Li, Guiye; Kwok, Kenneth; Wang, Lisy; Wu, Qizhe

    2018-01-01

    Abstract Aim Tofacitinib is an oral Janus kinase inhibitor for the treatment of rheumatoid arthritis (RA). We assess the effect of tofacitinib + conventional synthetic disease‐modifying anti rheumatic drugs (csDMARDs) on patient‐reported outcomes in Chinese patients with RA and inadequate response to DMARDs. Methods This analysis of data from the Phase 3 study ORAL Sync included Chinese patients randomized 4 : 4 : 1 : 1 to receive tofacitinib 5 mg twice daily, tofacitinib 10 mg twice daily, p...

  1. Polysaccharide-Based Membranes in Food Packaging Applications

    Directory of Open Access Journals (Sweden)

    Ana R. V. Ferreira

    2016-04-01

    Full Text Available Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications.

  2. Polysaccharide-Based Membranes in Food Packaging Applications

    Science.gov (United States)

    Ferreira, Ana R. V.; Alves, Vítor D.; Coelhoso, Isabel M.

    2016-01-01

    Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications. PMID:27089372

  3. Capsular Polysaccharide Expression in Commensal Streptococcus Species

    DEFF Research Database (Denmark)

    Skov Sørensen, Uffe B; Yao, Kaihu; Yang, Yonghong

    2016-01-01

    Expression of a capsular polysaccharide is considered a hallmark of most invasive species of bacteria, including Streptococcus pneumoniae, in which the capsule is among the principal virulence factors and is the basis for successful vaccines. Consequently, it was previously assumed that capsule....... pneumoniae evolved by import of cps fragments from commensal Streptococcus species, resulting in a mosaic of genes of different origins. The demonstrated antigenic identity of at least eight of the numerous capsular polysaccharide structures expressed by commensal streptococci with recognized serotypes of S...... of Streptococcus pneumoniae and is the basis for successful vaccines against infections caused by this important pathogen. Contrasting with previous assumptions, this study showed that expression of capsular polysaccharides by the same genetic mechanisms is a general property of closely related species...

  4. In vitro and in vivo effects of macrophage-stimulatory polysaccharide from leaves of Perilla frutescens var. crispa.

    Science.gov (United States)

    Kwon, Ki Han; Kim, Kyung Im; Jun, Woo Jin; Shin, Dong Hoon; Cho, Hong Yon; Hong, Bum Shik

    2002-03-01

    The crude polysaccharide (PFB-1) was isolated from the leaves of Perilla frutescens var. crispa by the sequential procedures with hot-water extraction, methanol reflux, and ethanol precipitation. It was further purified by anion column chromatography in order to obtain the partially purified polysaccharide (PFB-1-0). In the presence of PFB-1-0, strong cellular lysosomal enzyme activity of murine peritoneal macrophages was observed in vitro. Compared to bacterial lipopolysaccharide (LPS), its activity was relatively high. The in vitro phagocytic activity was enhanced by PFB-1-0 as the similar pattern in both gram-negative bacteria, E. coli, and gram-positive bacteria, S. aureus with a time-dependent manner. We also investigated the production of several mediators by murine peritoneal macrophages upon stimulation with PFB-1 (in vivo) or PFB-1-0 (in vitro). The levels of nitric oxide (NO) and tumor necrosis factor (TNF)-alpha were increased in the presence of PFB-1-0 in vitro. The PFB-1 stimulated the production of interleukin (IL)-6 and granulocyte-macrophage colony-stimulating factor (GM-CSF) in vivo. Results suggest that the polysaccharide from P. frutescens var. crispa represents an immunopotentiator and biological response modifiers in vitro and in vivo levels.

  5. Temperature modulates the cell wall mechanical properties of rice coleoptiles by altering the molecular mass of hemicellulosic polysaccharides

    Science.gov (United States)

    Nakamura, Yukiko; Wakabayashi, Kazuyuki; Hoson, Takayuki

    2003-01-01

    The present study was conducted to investigate the mechanism inducing the difference in the cell wall extensibility of rice (Oryza sativa L. cv. Koshihikari) coleoptiles grown under various temperature (10-50 degrees C) conditions. The growth rate and the cell wall extensibility of rice coleoptiles exhibited the maximum value at 30-40 degrees C, and became smaller as the growth temperature rose or dropped from this temperature range. The amounts of cell wall polysaccharides per unit length of coleoptile increased in coleoptiles grown at 40 degrees C, but not at other temperature conditions. On the other hand, the molecular size of hemicellulosic polysaccharides was small at temperatures where the cell wall extensibility was high (30-40 degrees C). The autolytic activities of cell walls obtained from coleoptiles grown at 30 and 40 degrees C were substantially higher than those grown at 10, 20 and 50 degrees C. Furthermore, the activities of (1-->3),(1-->4)-beta-glucanases extracted from coleoptile cell walls showed a similar tendency. When oat (1-->3),(1-->4)-beta-glucans with high molecular mass were incubated with the cell wall enzyme preparations from coleoptiles grown at various temperature conditions, the extensive molecular mass downshifts were brought about only by the cell wall enzymes obtained from coleoptiles grown at 30-40 degrees C. There were close correlations between the cell wall extensibility and the molecular mass of hemicellulosic polysaccharides or the activity of beta -glucanases. These results suggest that the environmental temperature regulates the cell wall extensibility of rice coleoptiles by modifying mainly the molecular mass of hemicellulosic polysaccharides. Modulation of the activity of beta-glucanases under various temperature conditions may be involved in the alteration of the molecular size of hemicellulosic polysaccharides.

  6. Biophysical functionality in polysaccharides: from Lego-blocks to nano-particles.

    Science.gov (United States)

    Cesàro, Attilio; Bellich, Barbara; Borgogna, Massimiliano

    2012-04-01

    The objective of the paper is to show the very important biophysical concepts that have been developed with polysaccharides. In particular, an attempt will be made to relate "a posteriori" the fundamental aspects, both experimental and theoretical, with some industrial applications of polysaccharide-based materials. The overview of chain conformational aspects includes relationships between topological features and local dynamics, exemplified for some naturally occurring carbohydrate polymers. Thus, by using simulation techniques and computational studies, the physicochemical properties of aqueous solutions of polysaccharides are interpreted. The relevance of conformational disorder-order transitions, chain aggregation, and phase separation to the underlying role of the ionic contribution to these processes is discussed. We stress the importance of combining information from analysis of experimental data with that from statistical-thermodynamic models for understanding the conformation, size, and functional stability of industrially important polysaccharides. The peculiar properties of polysaccharides in industrial applications are summarized for the particularly important example of nanoparticles production, a field of growing relevance and scientific interest.

  7. Structural Features and Healthy Properties of Polysaccharides Occurring in Mushrooms

    Directory of Open Access Journals (Sweden)

    Eva Guillamón

    2012-12-01

    Full Text Available Polysaccharides from mushrooms have attracted a great deal of attention due to the many healthy benefits they have demonstrated, such as immunomodulation, anticancer activity, prevention and treatment of cardiovascular diseases, antiviral and antimicrobial effects, among others. Isolation and purification of polysaccharides commonly involve several steps, and different techniques are actually available in order to increase extraction yield and purity. Studies have demonstrated that the molecular structure and arrangement significantly influence the biological activity; therefore, there is a wide range of analytical techniques for the elucidation of chemical structures. Different polysaccharides have been isolated from mushrooms, most of them consisting of β-linked glucans, such as lentinan from Lentinus edodes, pleuran from Pleurotus species, schizophyllan from Schizophyllum commune, calocyban from Calocybe indica, or ganoderan and ganopoly from Ganoderma lucidum. This article reviews the main methods of polysaccharide isolation and structural characterization, as well as some of the most important polysaccharides isolated from mushrooms and the healthy benefits they provide.

  8. Increasing stringiness of low-fat mozzarella string cheese using polysaccharides.

    Science.gov (United States)

    Oberg, E N; Oberg, C J; Motawee, M M; Martini, S; McMahon, D J

    2015-07-01

    When fat content of pasta filata cheese is lowered, a loss of fibrous texture occurs and low-fat (LF) mozzarella cheese loses stringiness, making it unsuitable for the manufacture of string cheese. We investigated the use of various polysaccharides that could act as fat mimetics during the stretching and extruding process to aid in protein strand formation and increase stringiness. Low-fat mozzarella cheese curd was made, salted, and then 3.6-kg batches were heated in hot (80°) 5% brine, stretched, and formed into a homogeneous mass. Hot (80°C) slurries of various polysaccharides were then mixed with the hot cheese and formed into LF string cheese using a small piston-driven extruder. Polysaccharides used included waxy corn starch, waxy rice starch, instant tapioca starch, polydextrose, xanthan gum, and guar gum. Adding starch slurries increased cheese moisture content by up to 1.6% but was not effective at increasing stringiness. Xanthan gum functioned best as a fat mimetic and produced LF string cheese that most closely visually resembled commercial string cheese made using low-moisture part skim (LMPS) mozzarella cheese without any increase in moisture content. Extent of stringiness was determined by pulling apart the cheese longitudinally and observing size, length, and appearance of individual cheese strings. Hardness was determined using a modified Warner-Bratzler shear test. When LF string cheese was made using a 10% xanthan gum slurry added at ~1%, increased consumer flavor liking was observed, with scores after 2wk of storage of 6.44 and 6.24 compared with 5.89 for the LF control cheese; although this was lower than an LMPS string cheese that scored 7.27. The 2-wk-old LF string cheeses containing xanthan gum were considered still slightly too firm using a just-about-right (JAR) test, whereas the LMPS string cheese was considered as JAR for texture. With further storage up to 8wk, all of the LF string cheeses softened (JAR score was closer to 3

  9. Unusual monosaccharides: components of O-antigenic polysaccharides of microorganisms

    Science.gov (United States)

    Kochetkov, Nikolai K.

    1996-09-01

    The data on new monosaccharides detected in O-antigenic polysaccharides of Gram-negative bacteria have been surveyed. The results of isolation and structure determination of these unusual monosaccharides have been arranged and described systematically. The NMR spectroscopy techniques are shown to be promising for the O-antigenic polysaccharides structure determination. The information about fine structure of monosaccharides which constitute the base of important class of microbial polysaccharides, is of great significance for applied studies, first of all, the design and synthesis of biologically active substances. The bibliography includes 216 references.

  10. Colloid, adhesive and release properties of nanoparticular ternary complexes between cationic and anionic polysaccharides and basic proteins like bone morphogenetic protein BMP-2.

    Science.gov (United States)

    Petzold, R; Vehlow, D; Urban, B; Grab, A L; Cavalcanti-Adam, E A; Alt, V; Müller, M

    2017-03-01

    Herein we describe an interfacial local drug delivery system for bone morphogenetic protein 2 (BMP-2) based on coatings of polyelectrolyte complex (PEC) nanoparticles (NP). The application horizon is the functionalization of bone substituting materials (BSM) used for the therapy of systemic bone diseases. Nanoparticular ternary complexes of cationic and anionic polysaccharides and BMP-2 or two further model proteins, respectively, were prepared in dependence of the molar mixing ratio, pH value and of the cationic polysaccharide. As further proteins chymotrypsin (CHY) and papain (PAP) were selected, which served as model proteins for BMP-2 due to similar isoelectric points and molecular weights. As charged polysaccharides ethylenediamine modified cellulose (EDAC) and trimethylammonium modified cellulose (PQ10) were combined with cellulose sulphatesulfate (CS). Mixing diluted cationic and anionic polysaccharide and protein solutions according to a slight either anionic or cationic excess charge colloidal ternary dispersions formed, which were cast onto germanium model substrates by water evaporation. Dynamic light scattering (DLS) demonstrated, that these dispersions were colloidally stable for at least one week. Fourier Transform Infrared (FTIR) showed, that the cast protein loaded PEC NP coatings were irreversibly adhesive at the model substrate in contact to HEPES buffer and solely CHY, PAP and BMP-2 were released within long-term time scale. Advantageously, out of the three proteins BMP-2 showed the smallest initial burst and the slowest release kinetics and around 25% of the initial BMP-2 content were released within 14days. Released BMP-2 showed significant activity in the myoblast cells indicating the ability to regulate the formation of new bone. Therefore, BMP-2 loaded PEC NP are suggested as novel promising tool for the functionalization of BSM used for the therapy of systemic bone diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Morphology-controlled SWCNT/polymeric microsphere arrays by a wet chemical self-assembly technique and their application for sensors

    International Nuclear Information System (INIS)

    Huang Xingjiu; Li Yue; Im, Hyung-Soon; Yarimaga, Oktay; Kim, Ju-Hyun; Jang, Doon-Yoon; Cho, Sung-Oh; Cai Weiping; Choi, Yang-Kyu

    2006-01-01

    Large-scale morphology-controlled SWCNT/polymeric microsphere arrays can be obtained by a wet chemical self-assembly technique. The loading of SWCNTs, the length of SWCNTs, and the size and nature of polymeric microspheres can easily be controlled. Similar results can also be reached using this method for MWCNTs. In both types of CNTs, they form an interesting interactive 'net' structure on spheres and sphere joints. The SWCNT/PS-modified Au electrode was used for detection of uric acid by cyclic voltammetry and single-potential time-based techniques. The preliminary results show that the modified electrode presents good sensitivity and stability to uric acid

  12. Preparation and characterization of polysaccharides/PVA blend nanofibrous membranes by electrospinning method.

    Science.gov (United States)

    Santos, Carla; Silva, Carla J; Büttel, Zsófia; Guimarães, Rodrigo; Pereira, Sara B; Tamagnini, Paula; Zille, Andrea

    2014-01-01

    A series of polyvinyl alcohol (PVA), PVA/chitosan (CS) and PVA/cyanobacterial extracellular polymeric substances (EPS) blended nanofibrous membranes were produced by electrospinning using a microfiltration poly(vinylidene fluoride) (PVDF) basal membrane, for potential applications in water filtration. Nanofibres were obtained from solutions of 20% (w/w) PVA with 1% (w/w) CS or EPS, using a weight ratio of 60/40. Blended nanofibres have shown a smooth morphology, no beads formation and diameters between 50 and 130 nm. Thermo-mechanical analysis demonstrated that there were inter and/or intramolecular hydrogen bonds between the molecules of PVA/CS and PVA/EPS in the blends. The electrospun blended PVA/EPS membrane showed better tensile mechanical properties when compared with PVA and PVA/CS, and resisted more against disintegration in the temperature range between 10 and 50 °C. Finally, the blended membranes have shown an increase in chromium binding capacity of 5%. This is the first successful report of a blended membrane of electrospinned cyanobacterial polysaccharide with PVA. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch.

    Science.gov (United States)

    Say, R; Şenay, R Hilal; Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz; Akgöl, Sinan; Denizli, Adil

    2013-05-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. Km values were 0.26 and 0.87 mM and Vmax values were 0.36 IU mg(-1) and 22.32 IU mg(-1) for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70-80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Final Technical Report: Collaborative Research. Polymeric Muliferroics

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Shenqiang [Univ. of Kansas, Lawrence, KS (United States)

    2015-06-05

    The goal of this project is to investigate room temperature magnetism and magnetoelectric coupling of polymeric multiferroics. A new family of organic charge-transfer complexes has been emerged as a fascinating opportunity for the development of all-organic electrics and spintronics due to its weak hyperfine interaction and low spin-orbit coupling; nevertheless, direct observations of room temperature magnetic spin ordering have yet to be accomplished in organic charge-transfer complexes. Furthermore, room temperature magnetoelectric coupling effect hitherto known multiferroics, is anticipated in organic donor-acceptor complexes because of magnetic field effects on charge-transfer dipoles, yet this is also unexplored. The PIs seek to fundamental understanding of the synthetic control of organic complexes to demonstrate and explore room temperature multiferroicity.

  15. Evaluation of the Components Released by Wine Yeast Strains on Protein Haze Formation in White Wine

    Directory of Open Access Journals (Sweden)

    Ellen Cristine Giese

    2016-12-01

    Full Text Available Cultures of 23 indigenous yeast strains (22 Saccharomyces cerevisiae and a non-Saccharomyces, Torulaspora delbrueckii, isolated from fermentation tanks at wineries in Castilla-La Mancha (Spain, and were performed under winemaking conditions using a synthetic must. Polysaccharide analysis and turbidity assays were conducted so as to observe the capacity of the released mannoproteins against protein haze formation in white wine, and 3 strains (2 Saccharomyces cerevisiae and T. delbrueckii were chosen for further experiments. The action of a commercial b-glucanolytic enzyme preparation (Lallzyme BETA®, and a β-(1→3-glucanase preparation from Trichoderma harzianum Rifai were evaluated to release polysaccharides from the different yeast strains’ cell walls. Protection against protein haze formation was strain dependent, and only two strains (Sc2 and Sc4 presented >50% stabilization in comparison to controls. Addition of β-glucanases did not increase the concentrations of polysaccharides in the fermentation musts; however, a significant increase of polymeric mannose (mannoproteins was detected using an enzymatic assay following total acid hydrolysis of the soluble polysaccharides. Enzymatic treatment presented positive effects and decreased protein haze formation in white wine. DOI http://dx.doi.org/10.17807/orbital.v8i6.869

  16. Biodegradation of bacterial polysaccharides adsorbed on montmorillonite

    International Nuclear Information System (INIS)

    Guckert, A.; Tok, H.H.; Jacquin, F.

    1977-01-01

    In this research, by means of a model, a study was made of the biodegradation of microbial organic compounds adsorbed on clays, with a parallel experiment on Fontainebleau sand serving as the control. During incubation the three classes of organic matter ( 14 C-labelled glucose, 14 C-labelled polysaccharides and 14 C-labelled microbial cells) mineralize more actively in the presence of sand than in the presence of clay, since the latter provides protection against biodegradation. Mineralization of the adsorbed organic compounds, however, is marked by clear-cut differences after three weeks - glucose (55%)>polysaccharides (43%)>microbial organisms (7.3%). After incubation, chemical extraction of the organo-mineral complexes by alkaline solvents shows only water-soluble and alkali-soluble products in the case of sand; conversely, in that of montmorillonite the bulk of the 14 C was found in the non-extractable fraction or humin (18.1% of the initial 14 C for glucose, 27.3% for the polysaccharides, and 67.6% for the microbial organisms). A second incubation carried out after a phase in which there was drying and remoistening of the organo-mineral complexes, brings to light the important part played by climatic alternations during the biodegradation process. A new mineralization phase is observed, affecting more the bacterial organisms (14.1%) than the polysaccharides (6.3%), with the glucose-base complexes occupying an intermediate position (11.2%). The chemical fractioning of the organo-mineral complexes following re-incubation shows the stability of 14 C in humin very clearly, especially in the case of polysaccharides, where the mineralization phase relates primarily to the products extractable with alkalis. (author)

  17. Computation of the mass attenuation coefficient of polymeric materials at specific gamma photon energies

    Science.gov (United States)

    Mirji, Rajeshwari; Lobo, Blaise

    2017-06-01

    The gamma ray mass attenuation coefficients of ten synthetic polymeric materials, namely, polyethylene (PE), polystyrene (PS), polycarbonate (PC), polyvinyl alcohol (PVA), polyvinyl chloride (PVC), Polyethylene terephthalate (PET), Polyvinyl pyrrolidone (PVP), Polytetrafluoroethylene (PTFE), Polypropylene (PP) and Polymethyl methacrylate (PMMA) have been calculated using second order polynomial equation and logarithmic interpolation formula at selected gamma photon energies, in the energy range starting from 14.4 keV up to 1332 keV. It is important to note that second order polynomial equation fits very well with NIST data for all the polymeric materials considered here, for gamma photon energies ranging from 300 keV up to 2000 keV. Third order polynomial fitting is best suited for lower gamma photon energies (from 10 keV up to 200 keV).

  18. [Variation of polysaccharides and alcohol-soluble extracts content of Dendrobium officinale].

    Science.gov (United States)

    Yu, Qiao-xian; Guo, Ying-ying; Si, Jin-ping; Wu, Ling-shang; Wang, Lin-hua

    2014-12-01

    To reveal the variation of polysaccharides and alcohol-soluble extract contents of Dendrobium officinale, the polysaccharides and alcohol-soluble extracts contents of three D. officinale strains were determined by phenol-sulfuric acid method and hot-dip method, respectively. The results showed that the contents of polysaccharides and alcohol-soluble extracts and their total content were significantly different among D. officinale samples collected in different periods, and the variations were closely related to the phenology of D. officinale. Additionally, the quality variation of polysaccharides was closely related to the flowering of D. officinale, while the alcohol-soluble extracts was closely associated to the formation and germination of buds. According to the dynamic variation of these two compounds, it is more reasonable to harvest D. officinale at biennials pre-bloom than at specific harvesting month considering polysaccharides content. It is better to harvest before the germination of buds considering alcohol-soluble extracts. While with regards to both polysaccharides and alcohol-soluble extract, it is better to harvest this plant at the period from the sprouting to pre-bloom next year.

  19. Surface Modification of Sodium Montmorillonite Nanoclay by Plasma Polymerization and Its Effect on the Properties of Polystyrene Nanocomposites

    Directory of Open Access Journals (Sweden)

    Rosa Idalia Narro-Céspedes

    2018-01-01

    Full Text Available Sodium montmorillonite nanoclay (Na+-MMT was modified by plasma polymerization with methyl methacrylate (MMA and styrene (St as monomers and was denominated as Na+-MMT/MMA and Na+-MMT/St, respectively. This plasma modified nanoclay was used as reinforcement for polystyrene (PS nanocomposites that were prepared by melt mixing. Pristine and modified Na+-MMT nanoclay were analyzed by the dispersion in various solvents, Fourier transform infrared spectroscopy (FTIR, thermogravimetric analysis (TGA, and scanning electron microscopy (SEM. The results confirmed a change in hydrophilicity of the modified Na+-MMT, as well as the presence of a polymeric material over its surface. The pristine PS/Na+-MMT and modified PS/Na+-MMT/MMA and PS/Na+-MMT/St nanocomposites were studied with X-ray diffraction (XRD, differential scanning calorimetry (DSC, and TGA, as well as mechanical properties. It was found that the PS/Na+-MMT/St nanocomposites presented better thermal properties and an improvement in Young’s modulus (YM in compared to PS/Na+-MMT/MMA nanocomposites.

  20. Modified synthesis of 11-[{sup 14}C]-clozapine

    Energy Technology Data Exchange (ETDEWEB)

    Matloubi, Hojatollah E-mail: hmatloubi@seai.neda.net.ir; Ghandi, Mehdi; Zarrindast, M.-R.; Saemian, Nader

    2001-11-01

    The reported synthetic pathway of 8-chloro-11-(4-methyl-1-piperazinyl)-11-[{sup 14}C]-5H-dibenzo[b,e][1,4]diazapine (clozapine) was modified in several steps. The synthetic pathway was shortened by 60% and the total yield was increased from 6% to 23%.

  1. Effects of delayed polymerization time and bracket manipulation on orthodontic resin modified glass ionomer adhesive

    Science.gov (United States)

    Gilbert, Danielle Wiggins

    This study examined the effect of varying delayed polymerization times in combination with bracket manipulation on shear bond strength (SBS), degree of conversion (DC), and adhesive remnant index (ARI) score when using a resin modified glass ionomer (RMGI) adhesive. Specimens were divided into three groups of clinically relevant delay times (0.5, 2, and 4-min) to simulate the delay that frequently occurs between bracket placement and manipulation and subsequent light curing. Based on an analysis of variance (alpha=.05), the SBS was not significantly different between the three groups. While one of the goals of this study was to be the first study to quantify DC of RMGI using Raman microspectroscopy, several challenges, including weak peak signal with and without fluorescence, were encountered and as a result, DC could not be determined. A significant difference (pbracket with increasing delay time. A Spearman correlation between SBS and ARI indicated no positive association between SBS and ARI measures across delay times. The results of this study suggest that clinically relevant delay times of 0.5, 2, and 4-min do not negatively impact the SBS of a RMGI adhesive. However, with increasing delay time, the results suggest that more adhesive might remain on the bracket during debonding. With more adhesive remaining on the bracket, this could be beneficial in that less adhesive needs to be removed from enamel by grinding at the time of bracket removal when orthodontic treatment is completed.

  2. Direct laser writing by two-photon polymerization as a tool for developing microenvironments for evaluation of bacterial growth

    Energy Technology Data Exchange (ETDEWEB)

    Otuka, A.J.G. [Instituto de Física de São Carlos, Universidade de São Paulo, CP.369, 13560-970 São Carlos, SP (Brazil); Corrêa, D.S. [Laboratório Nacional de Nanotecnologia para o Agronegócio (LNNA), Embrapa Instrumentação, Rua XV de Novembro, 1452, CP.741, 13560-970 São Carlos, SP (Brazil); Fontana, C.R. [Department of Clinical Analysis, School of Pharmaceutical Sciences, University of São Paulo State (UNESP), 1621 Expedicionarios do Brasil Street, Araraquara, Sao Paulo 14801-960 (Brazil); Mendonça, C.R., E-mail: crmendon@ifsc.usp.br [Instituto de Física de São Carlos, Universidade de São Paulo, CP.369, 13560-970 São Carlos, SP (Brazil)

    2014-02-01

    Monitoring bacteria growth and motion in environments is fundamental to understand, for instance, how they proliferate and contaminate organism. Therefore, techniques to fabricate microenvironments for in situ and in vivo studies are interesting for that purpose. In this work we used two-photon polymerization to fabricate microenvironments and, as a proof of principle, we demonstrated the development of the bacteria ATCC 25922 Escherichia coli (E. coli) into the microstructure surroundings. Two varieties of polymeric microenvironments are presented: (i) a microenvironment doped at specific site with ciprofloxacin, an antibiotic typically used in the treatment of diseases caused by E. coli and (ii) micro-fences, which serve as traps for bacteria. These microenvironments, fabricated by two-photon polymerization, may be a potential platform for drug delivery system, by promoting or inhibiting the growth of bacteria in specific biological or synthetic sites. - Highlights: • Microenvironments were fabricated by two-photon polymerization. • We demonstrated the development of Escherichia coli into the microstructure surroundings. • Microenvironment doped with the antibiotic ciprofloxacin was fabricated. • Micro-fences, which serve as traps for bacteria, were also produced.

  3. Direct laser writing by two-photon polymerization as a tool for developing microenvironments for evaluation of bacterial growth

    International Nuclear Information System (INIS)

    Otuka, A.J.G.; Corrêa, D.S.; Fontana, C.R.; Mendonça, C.R.

    2014-01-01

    Monitoring bacteria growth and motion in environments is fundamental to understand, for instance, how they proliferate and contaminate organism. Therefore, techniques to fabricate microenvironments for in situ and in vivo studies are interesting for that purpose. In this work we used two-photon polymerization to fabricate microenvironments and, as a proof of principle, we demonstrated the development of the bacteria ATCC 25922 Escherichia coli (E. coli) into the microstructure surroundings. Two varieties of polymeric microenvironments are presented: (i) a microenvironment doped at specific site with ciprofloxacin, an antibiotic typically used in the treatment of diseases caused by E. coli and (ii) micro-fences, which serve as traps for bacteria. These microenvironments, fabricated by two-photon polymerization, may be a potential platform for drug delivery system, by promoting or inhibiting the growth of bacteria in specific biological or synthetic sites. - Highlights: • Microenvironments were fabricated by two-photon polymerization. • We demonstrated the development of Escherichia coli into the microstructure surroundings. • Microenvironment doped with the antibiotic ciprofloxacin was fabricated. • Micro-fences, which serve as traps for bacteria, were also produced

  4. Living Polymerization of N -Substituted β-Alanine N -Carboxyanhydrides: Kinetic Investigations and Preparation of an Amphiphilic Block Copoly-β-Peptoid

    KAUST Repository

    Grossmann, Arlett

    2012-07-03

    Poly(α-peptoid)s (N-substituted polyglycines) are interesting peptidomimetic biomaterials that have been discussed for many applications. Poly(β-peptoid)s (N-substituted poly-β-alanines), although equally intriguing, have received much less attention. Here we present results that suggest that while N-substituted β-alanine N-carboxyanhydrides can undergo a living nucleophilic ring-opening polymerization, the solubility of poly(β-peptoid)s can be very poor, which contributes to the limited accessibility using other synthetic approaches. The living character of the polymerization was utilized for the preparation of the first polymerized amphiphilic block copoly-β-peptoid. Our results may open a new route towards highly defined functional poly(β-peptoid)s which could represent biomaterials. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Synthesis, characterization and thermal properties of paraffin microcapsules modified with nano-Al2O3

    International Nuclear Information System (INIS)

    Jiang, Xiang; Luo, Ruilian; Peng, Feifei; Fang, Yutang; Akiyama, Tomohiro; Wang, Shuangfeng

    2015-01-01

    Highlights: • Novel MEPCM modified with nano-Al 2 O 3 was prepared via emulsion polymerization. • The paraffin microcapsules presented a well-defined microstructure. • The composite achieved high encapsulation efficiency. • The thermal conductivity of MEPCM was enhanced due to the nano-Al 2 O 3 particles. - Abstract: A sort of new microencapsulated phase change materials (MEPCM) based on paraffin wax core and poly(methyl methacrylate-co-methyl acrylate) shell with nano alumina (nano-Al 2 O 3 ) inlay was synthesized through emulsion polymerization. Various techniques were used to characterize the as-prepared products so as to investigate the effect of nano-Al 2 O 3 on morphology and thermal performance, including scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and thermal conductivity measurement. The results showed that the products achieved the best performance with 16% (monomer mass) nano-Al 2 O 3 added under the optimal preparation conditions. The DSC results indicated that the phase change temperature of the composite exhibited appropriate phase change temperature and achieved high encapsulation efficiency. The thermal conductivity of the paraffin microcapsules is also significantly improved owing to the presence of high thermal conductive nano-Al 2 O 3 . This synthetic technique can be a perspective way to prepare the MEPCM with enhanced thermal transfer and phase change properties for potential applications to energy-saving building materials

  6. Protein cages and synthetic polymers: a fruitful symbiosis for drug delivery applications, bionanotechnology and materials science.

    Science.gov (United States)

    Rother, Martin; Nussbaumer, Martin G; Renggli, Kasper; Bruns, Nico

    2016-11-07

    Protein cages are hollow protein nanoparticles, such as viral capsids, virus-like particles, ferritin, heat-shock proteins and chaperonins. They have well-defined capsule-like structures with a monodisperse size. Their protein subunits can be modified by genetic engineering at predetermined positions, allowing for example site-selective introduction of attachment points for functional groups, catalysts or targeting ligands on their outer surface, in their interior and between subunits. Therefore, protein cages have been extensively explored as functional entities in bionanotechnology, as drug-delivery or gene-delivery vehicles, as nanoreactors or as templates for the synthesis of organic and inorganic nanomaterials. The scope of functionalities and applications of protein cages can be significantly broadened if they are combined with synthetic polymers on their surface or within their interior. For example, PEGylation reduces the immunogenicity of protein cage-based delivery systems and active targeting ligands can be attached via polymer chains to favour their accumulation in diseased tissue. Polymers within protein cages offer the possibility of increasing the loading density of drug molecules, nucleic acids, magnetic resonance imaging contrast agents or catalysts. Moreover, the interaction of protein cages and polymers can be used to modulate the size and shape of some viral capsids to generate structures that do not occur with native viruses. Another possibility is to use the interior of polymer cages as a confined reaction space for polymerization reactions such as atom transfer radical polymerization or rhodium-catalysed polymerization of phenylacetylene. The protein nanoreactors facilitate a higher degree of control over polymer synthesis. This review will summarize the hybrid structures that have been synthesized by polymerizing from protein cage-bound initiators, by conjugating polymers to protein cages, by embedding protein cages into bulk polymeric

  7. Structural studies of the O-specific polysaccharide(s) from the lipopolysaccharide of Azospirillum brasilense type strain Sp7.

    Science.gov (United States)

    Sigida, Elena N; Fedonenko, Yuliya P; Shashkov, Alexander S; Zdorovenko, Evelina L; Konnova, Svetlana A; Ignatov, Vladimir V; Knirel, Yuriy A

    2013-10-18

    Lipopolysaccharide was obtained by phenol-water extraction from dried bacterial cells of Azospirillum brasilense type strain Sp7. Mild acid hydrolysis of the lipopolysaccharide followed by GPC on Sephadex G-50 resulted in a polysaccharide mixture, which was studied by composition and methylation analyses, Smith degradation and (1)H and (13)C NMR spectroscopy. The following polysaccharide structures were established, where italics indicate a non-stoichiometric (∼40%) 2-O-methylation of l-rhamnose. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. US Competitiveness in Synthetic Biology.

    Science.gov (United States)

    Gronvall, Gigi Kwik

    2015-01-01

    Synthetic biology is an emerging technical field that aims to make biology easier to engineer; the field has applications in strategically important sectors for the US economy. While the United States currently leads in synthetic biology R&D, other nations are heavily investing in order to boost their economies, which will inevitably diminish the US leadership position. This outcome is not entirely negative--additional investments will expand markets--but it is critical that the US government take steps to remain competitive: There are applications from which the US population and economy may benefit; there are specific applications with importance for national defense; and US technical leadership will ensure that US experts have a leading role in synthetic biology governance, regulation, and oversight. Measures to increase competitiveness in S&T generally are broadly applicable for synthetic biology and should be pursued. However, the US government will also need to take action on fundamental issues that will affect the field's development, such as countering anti-GMO (genetically modified organism) sentiments and anti-GMO legislation. The United States should maintain its regulatory approach so that it is the product that is regulated, not the method used to create a product. At the same time, the United States needs to ensure that the regulatory framework is updated so that synthetic biology products do not fall into regulatory gaps. Finally, the United States needs to pay close attention to how synthetic biology applications may be governed internationally, such as through the Nagoya Protocol of the Convention on Biological Diversity, so that beneficial applications may be realized.

  9. Matrix polyelectrolyte capsules based on polysaccharide/MnCO₃ hybrid microparticle templates.

    Science.gov (United States)

    Wei, Qingrong; Ai, Hua; Gu, Zhongwei

    2011-06-15

    An efficient strategy for biomacromolecule encapsulation based on spontaneous deposition into polysaccharide matrix-containing capsules is introduced in this study. First, hybrid microparticles composed of manganese carbonate and ionic polysaccharides including sodium hyaluronate (HA), sodium alginate (SA) and dextran sulfate sodium (DS) with narrow size distribution were synthesized to provide monodisperse templates. Incorporation of polysaccharide into the hybrid templates was successful as verified by thermogravimetric analysis (TGA) and confocal laser scanning microscopy (CLSM). Matrix polyelectrolyte microcapsules were fabricated through layer-by-layer (LbL) self-assembly of oppositely charged polyelectrolytes (PEs) onto the hybrid particles, followed by removal of the inorganic part of the cores, leaving polysaccharide matrix inside the capsules. The loading and release properties of the matrix microcapsules were investigated using myoglobin as a model biomacromolecule. Compared to matrix-free capsules, the matrix capsules had a much higher loading capacity up to four times; the driving force is mostly due to electrostatic interactions between myoglobin and the polysaccharide matrix. From our observations, for the same kind of polysaccharide, a higher amount of polysaccharide inside the capsules usually led to better loading capacity. The release behavior of the loaded myoglobin could be readily controlled by altering the environmental pH. These matrix microcapsules may be used as efficient delivery systems for various charged water-soluble macromolecules with applications in biomedical fields. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. Uptake and metabolism of polymerized albumin by rat liver. Role of the scavenger receptor

    International Nuclear Information System (INIS)

    Wright, T.L.; Roll, F.J.; Jones, A.L.; Weisiger, R.A.

    1988-01-01

    Hepatitis B virus binds avidly to albumin polymers, which in turn may mediate viral attachment to liver cells. This hypothesis is critically dependent on prior results obtained using glutaraldehyde-polymerized human serum albumin as a model for naturally occurring albumin species. We used the perfused rat liver to characterize the uptake, cellular distribution, and metabolism of glutaraldehyde-polymerized human albumin. 125 I-glutaraldehyde-polymerized human albumin was efficiently removed from the perfusate by the liver (29% extraction). However, few autoradiographic grains were located over hepatic parenchymal cells (6%). Instead, most glutaraldehyde-polymerized human albumin appeared to be removed by endothelial (59%) or Kupffer (31%) cells. Hepatic uptake was strongly inhibited by formaldehyde-treated monomeric albumin, a known ligand of the endothelial scavenger receptor for chemically modified proteins. After uptake, most glutaraldehyde-polymerized human albumin was rapidly degraded and released into the perfusate (74% within 60 min). This process was blocked by chloroquine and leupeptin, suggesting that it involves lysosomal acid hydrolases. We conclude that glutaraldehyde-polymerized albumin is efficiently cleared and degraded by the endothelial scavenger pathway. Glutaraldehyde-polymerized albumin therefore appears to be a poor model for predicting the hepatic handling of naturally occurring albumin species bound to hepatitis B virions. Even if viral particles were to follow this pathway, few would enter parenchymal hepatocytes

  11. Amperometric detection of morphine based on poly(3,4-ethylenedioxythiophene) immobilized molecularly imprinted polymer particles prepared by precipitation polymerization

    International Nuclear Information System (INIS)

    Ho, K.-C.; Yeh, W.-M.; Tung, T.-S.; Liao, J.-Y.

    2005-01-01

    Molecular imprinting is a novel technique used for chiral separation, artificial antibodies, sensors, and assays. Typically, molecular imprinted polymers (MIPs) are monoliths with irregular shapes. However, microspherical shapes with more uniform size can be obtained by the method of precipitation polymerization, which offers a higher active surface area by manipulating its compositions. In this study, MIP particles for the target molecule, morphine, were synthesized using a precipitation polymerization method that is more facile than the previous one that produced a thermally polymerized bulk. The conducting polymer, poly(3,4-ethylenedioxythiophene) (PEDOT), was utilized to immobilize the MIP particles onto the indium tin oxide (ITO) glass as a MIP/PEDOT-modified electrode. The sensitivity for the MIP/PEDOT-modified electrode with MIP particles was 41.63 μA/cm 2 mM, which is more sensitive than that with non-MIP particles or that of a single PEDOT film with no incorporated particles in detecting morphine ranging from 0.1 to 2 mM. The detection limit was 0.3 mM (S/N = 3). In addition, we presented that the modified electrode can discriminate codeine that plays an interfering species

  12. High Stability Pentacene Transistors Using Polymeric Dielectric Surface Modifier.

    Science.gov (United States)

    Wang, Xiaohong; Lin, Guangqing; Li, Peng; Lv, Guoqiang; Qiu, Longzhen; Ding, Yunsheng

    2015-08-01

    1,6-bis(trichlorosilyl)hexane (C6Cl), polystyrene (PS), and cross-linked polystyrene (CPS) were investigated as gate dielectric modified layers for high performance organic transistors. The influence of the surface energy, roughness and morphology on the charge transport of the organic thin-film transistors (OTFTs) was investigated. The surface energy and roughness both affect the grain size of the pentacene films which will control the charge carrier mobility of the devices. Pentacene thin-film transistors fabricated on the CPS modified dielectric layers exhibited charge carrier mobility as high as 1.11 cm2 V-1 s-1. The bias stress stability for the CPS devices shows that the drain current only decays 1% after 1530 s and the mobility never decreases until 13530 s.

  13. Immunogold scanning electron microscopy can reveal the polysaccharide architecture of xylem cell walls

    Science.gov (United States)

    Sun, Yuliang; Juzenas, Kevin

    2017-01-01

    Abstract Immunofluorescence microscopy (IFM) and immunogold transmission electron microscopy (TEM) are the two main techniques commonly used to detect polysaccharides in plant cell walls. Both are important in localizing cell wall polysaccharides, but both have major limitations, such as low resolution in IFM and restricted sample size for immunogold TEM. In this study, we have developed a robust technique that combines immunocytochemistry with scanning electron microscopy (SEM) to study cell wall polysaccharide architecture in xylem cells at high resolution over large areas of sample. Using multiple cell wall monoclonal antibodies (mAbs), this immunogold SEM technique reliably localized groups of hemicellulosic and pectic polysaccharides in the cell walls of five different xylem structures (vessel elements, fibers, axial and ray parenchyma cells, and tyloses). This demonstrates its important advantages over the other two methods for studying cell wall polysaccharide composition and distribution in these structures. In addition, it can show the three-dimensional distribution of a polysaccharide group in the vessel lateral wall and the polysaccharide components in the cell wall of developing tyloses. This technique, therefore, should be valuable for understanding the cell wall polysaccharide composition, architecture and functions of diverse cell types. PMID:28398585

  14. O-sulfated bacterial polysaccharides with low anticoagulant activity inhibit metastasis.

    Science.gov (United States)

    Borgenström, Marjut; Wärri, Anni; Hiilesvuo, Katri; Käkönen, Rami; Käkönen, Sanna; Nissinen, Liisa; Pihlavisto, Marjo; Marjamäki, Anne; Vlodavsky, Israel; Naggi, Annamaria; Torri, Giangiacomo; Casu, Benito; Veromaa, Timo; Salmivirta, Markku; Elenius, Klaus

    2007-07-01

    Heparin-like polysaccharides possess the capacity to inhibit cancer cell proliferation, angiogenesis, heparanase-mediated cancer cell invasion, and cancer cell adhesion to vascular endothelia via adhesion receptors, such as selectins. The clinical applicability of the antitumor effect of such polysaccharides, however, is compromised by their anticoagulant activity. We have compared the potential of chemically O-sulfated and N,O-sulfated bacterial polysaccharide (capsular polysaccharide from E. COLI K5 [K5PS]) species to inhibit metastasis of mouse B16-BL6 melanoma cells and human MDA-MB-231 breast cancer cells in two in vivo models. We demonstrate that in both settings, O-sulfated K5PS was a potent inhibitor of metastasis. Reducing the molecular weight of the polysaccharide, however, resulted in lower antimetastatic capacity. Furthermore, we show that O-sulfated K5PS efficiently inhibited the invasion of B16-BL6 cells through Matrigel and also inhibited the in vitro activity of heparanase. Moreover, treatment with O-sulfated K5PS lowered the ability of B16-BL6 cells to adhere to endothelial cells, intercellular adhesion molecule-1, and P-selectin, but not to E-selectin. Importantly, O-sulfated K5PSs were largely devoid of anticoagulant activity. These findings indicate that O-sulfated K5PS polysaccharide should be considered as a potential antimetastatic agent.

  15. Optimization of polysaccharides extraction from watermelon rinds: Structure, functional and biological activities.

    Science.gov (United States)

    Romdhane, Molka Ben; Haddar, Anissa; Ghazala, Imen; Jeddou, Khawla Ben; Helbert, Claire Boisset; Ellouz-Chaabouni, Semia

    2017-02-01

    In the present work, optimization of hot water extraction, structural characteristics, functional properties, and biological activities of polysaccharides extracted from watermelon rinds (WMRP) were investigated. The physicochemical characteristics and the monosaccharide composition of these polysaccharides were then determined using chemical composition analysis, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM) and gas chromatography-flame ionization detection (GC-FID). SEM images showed that extracted polysaccharides had a rough surface with many cavities. GC-FID results proved that galactose was the dominant sugar in the extracted polysaccharides, followed by arabinose, glucose, galacturonic acid, rhamnose, mannose, xylose and traces of glucuronic acid. The findings revealed that WMRP displayed excellent antihypertensive and antioxidant activities. Those polysaccharides had also a protection effect against hydroxyl radical-induced DNA damage. Functional properties of extracted polysaccharides were also evaluated. WMRP showed good interfacial dose-dependent proprieties. Overall, the results suggested that WMRP presents a promising natural source of antioxidants and antihypertensive agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Extraction and antioxidation of polysaccharide from porphyra haitanensis using response surface method

    International Nuclear Information System (INIS)

    Cai, C.; Yang, Y.; Zhao, M.; Jia, R.; He, P.

    2017-01-01

    This paper deals with the preparation and antioxidation of polysaccharide from Porphyra haitanensis. The ratio of water to raw material, extraction temperature and extraction time were taken in sequence as independent variables in single factor test, and polysaccharide yield as response value. Using Box-Benhnken central combination experimental design principles and response surface methodology, interactions of variables and their influence on polysaccharide yield of P. haitanensis were studied and the prediction model of quadratic polynomial regression equation was inferred by simulation, in which the optimum parameters for preparing polysaccharide from P. haitanensis were 88.4°C of extraction temperature, 1.97 h of extraction time and 40:1 (ml/g) of ratio of water to raw material, and polysaccharide of 15.19 % in yield from P. haitanensis was verified after two parallel test. Furthermore, the polysaccharide of P. haitanensis showed good antioxidant capacity which could be used as potential natural antioxidant products in food additives industries. (author)

  17. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization

    Energy Technology Data Exchange (ETDEWEB)

    Abednejad, Atiye Sadat, E-mail: atiyeabednejad@gmail.com [Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of); Amoabediny, Ghasem [Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of); Research Center for New Technologies in Life Science Engineering, University of Tehran, P.O. Box 63894-14179, Tehran (Iran, Islamic Republic of); Ghaee, Azadeh [Department of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, P.O. Box 14395-1561, Tehran (Iran, Islamic Republic of)

    2014-09-01

    Polypropylene hollow fiber microporous membranes have been used in a wide range of applications, including blood oxygenator. The hydrophobic feature of the polypropylene surface causes membrane fouling. To minimize fouling, a modification consisting of three steps: surface activation in H{sub 2} and O{sub 2} plasma, membrane immersion in polyethylene glycol (PEG) and plasma graft polymerization was performed. The membranes were characterized by contact angle measurement, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), tensile test, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Oxygen transfer of modified membranes was also tested. The stability of grafted PEG was measured in water and in phosphate buffer saline (PBS) at 37 °C. Blood compatibility of modified surfaces was evaluated by the platelet adhesion method. Water contact angel reduction from 110° to 72° demonstrates the enhanced hydrophilicity, and XPS results verify the presence of oxygenated functional groups due to the peak existence in 286 eV as a result of PEG grafting. The results clearly indicate that plasma graft-polymerization of PEG is an effective way for antifouling improvement of polypropylene membranes. Also, the results show that oxygen transfer changes in PEG grafted membranes are not significant. - Highlights: • H{sub 2} and O{sub 2} plasma graft polymerization of PEG on polypropylene membrane was carried out. • Changes in surface properties were investigated by FTIR, XPS, SEM, and AFM. • Surface wettability enhanced as a result of poly ethylene glycol grafting. • PEG grafting degree increase causes reduction of fouling and adhesion.

  18. Plant cell wall polysaccharide analysis during cell elongation

    DEFF Research Database (Denmark)

    Guo, Xiaoyuan

    Plant cell walls are complex structures whose composition and architecture are important to various cellular activities. Plant cell elongation requires a high level of rearrangement of the cell wall polymers to enable cell expansion. However, the cell wall polysaccharides dynamics during plant cell...... elongation is poorly understood. This PhD project aims to elucidate the cell wall compositional and structural change during cell elongation by using Comprehensive Microarray Polymer Profiling (CoMPP), microscopic techniques and molecular modifications of cell wall polysaccharide. Developing cotton fibre......, pea and Arabidopsis thaliana were selected as research models to investigate different types of cell elongation, developmental elongation and tropism elongation. A set of comprehensive analysis covering 4 cotton species and 11 time points suggests that non-cellulosic polysaccharides contribute...

  19. Polysaccharides from Probiotics: New Developments as Food Additives

    Directory of Open Access Journals (Sweden)

    Philippe Michaud

    2010-01-01

    Full Text Available Microbial polysaccharides with nutraceutical potential and bioactive properties have been investigated in detail during the last few decades. There is an increasing demand in food industries for live microbes or polysaccharides produced by them which assert health benefits other than dietetic constituents. Although there are a large number of exopolysaccharide (EPS-producing bacteria, the titers are low for commercialization. This manuscript deals with the polysaccharides produced by probiotic strains, with major emphasis on the EPSs, their properties, applications and some of the strategies adopted which would be helpful in better understanding of the process in the near future. Research on the improved EPS biosynthesis is essential for obtaining high yields. Therefore, to reach commercialization, metabolic engineering must be applied.

  20. Spin Label Studies of the Hemoglobin-Membrane Interaction During Sickle Hemoglobin Polymerization

    International Nuclear Information System (INIS)

    Falcon Dieguez, Jose E.; Rodi, Pablo; Lores Guevara, Manuel A.; Gennaro, Ana Maria

    2009-12-01

    An enhanced hemoglobin-membrane association has been previously documented in Sickle Cell Anemia. However, it is not known how this interaction is modified during the hemoglobin S polymerization process. In this work, we use a model of reconstituted erythrocytes from ghost membranes whose cytoskeleton proteins had been previously labeled with the 4-maleimido Tempo spin label, and that were subsequently resealed with hemoglobin S or A solutions. Using EPR spectroscopy, we studied the time dependence of the spectral W/S parameter, indicative of the conformational state of cytoskeleton proteins (mainly spectrin) under spontaneous deoxygenation, with the aim of detecting the eventual effects due to hemoglobin S polymerization. The differences observed in the temporal behaviour of W/S in erythrocytes reconstituted with both hemoglobins were considered as experimental evidence of an increment in hemoglobin S-membrane interaction, as a result of the polymerization process of hemoglobin S under spontaneous deoxygenation. (author)

  1. Antioxidant properties of cell wall polysaccharides of Stevia rebaudiana leaves

    Directory of Open Access Journals (Sweden)

    Mediesse Kengne Francine

    2014-12-01

    Full Text Available Objective: To examine the total phenolic and protein contents, and the antioxidant activities of cell wall polysaccharide fractions of Stevia rebaudiana leaves. Methods: Three different polysaccharide-enriched fractions, namely FPE (extract with 50 mmol/ L ethylene diamine tetra acetic acid, FPK (extract with 0.05 mol/L KOH and FH (extract with 4 mol/L KOH were extracted from Stevia rebaudiana leaves. The antioxidant activity of these fractions was evaluated based on their ability to scavenge DPPH (1, 1-diphenyl-2-picryl hydrazyl free radical, to reduce ferric power, to chelate ferrous ion and to protect human DNA. Results: The results indicated that protein content was found to be higher in FPK polysaccharide enriched fraction (47.48 µg per mg of FPK. Furthermore, the phenolic compound analysis according to the Folin-Ciocalteu method was higher in FPK (17.71 µg ferulic acid. The DPPH maximal inhibition percentage of the three polysaccharide-enriched fractions at 400 µg/mL was 27.66%, 59.90% and 23.21% respectively for FPE, FPK and FH. All the polysaccharide fractions exhibited a ferric reducing power except the FH one. The three fractions also exhibited lipid peroxidation inhibition, and they completely reverted the DNA damage induced by H2O2/FeCl2. FPK showed the strongest scavenging activity against the DPPH radical, the best chelating ability and lipid peroxidation inhibition. Conclusions: Stevia cell wall polysaccharide fractions are potent protective agents against oxidative stress. The analysis revealed major differences in the antioxidant activity in the three polysaccharides fractions. However, the 0.05 mol/L KOH pectin fraction (FPK showed better antioxidant activity.

  2. Antiviral Potential of Algae Polysaccharides Isolated from Marine Sources: A Review

    Directory of Open Access Journals (Sweden)

    Azin Ahmadi

    2015-01-01

    Full Text Available From food to fertilizer, algal derived products are largely employed in assorted industries, including agricultural, biomedical, food, and pharmaceutical industries. Among different chemical compositions isolated from algae, polysaccharides are the most well-established compounds, which were subjected to a variety of studies due to extensive bioactivities. Over the past few decades, the promising results for antiviral potential of algae-derived polysaccharides have advocated them as inordinate candidates for pharmaceutical research. Numerous studies have isolated various algal polysaccharides possessing antiviral activities, including carrageenan, alginate, fucan, laminaran, and naviculan. In addition, different mechanisms of action have been reported for these polysaccharides, such as inhibiting the binding or internalization of virus into the host cells or suppressing DNA replication and protein synthesis. This review strives for compiling previous antiviral studies of algae-derived polysaccharides and their mechanism of action towards their development as natural antiviral agents for future investigations.

  3. Extraction, Structural Characterization, and Potential Antioxidant Activity of the Polysaccharides from Four Seaweeds

    Science.gov (United States)

    He, Jinzhe; Xu, Yaoyang; Chen, Hongbo; Sun, Peilong

    2016-01-01

    Four seaweed polysaccharides were extracted from Sarcodia ceylonensis, Ulva lactuca L., Gracilaria lemaneiformis, and Durvillaea antarctica, respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material) on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM) with a Box–Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight (MW) distribution were analyzed by infrared (IR) spectrometry, gas chromatography (GC), and high-performance gel permeation chromatography (HPGPC). IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP), Ulva lactuca L. polysaccharide (ULLP), and Durvillaea antarctica polysaccharide (DAP) were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP), all belong to β-pyranosidic polysaccharides. The average molecular weight (MW) of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays—2,2–azino –bis (3-ethylbenzthiazoline-6- sulfonate) (ABTS), hydroxyl radical, nitrite scavenging capacity, and reducing power—and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The

  4. Extraction, Structural Characterization, and Potential Antioxidant Activity of the Polysaccharides from Four Seaweeds

    Directory of Open Access Journals (Sweden)

    Jinzhe He

    2016-11-01

    Full Text Available Four seaweed polysaccharides were extracted from Sarcodia ceylonensis, Ulva lactuca L., Gracilaria lemaneiformis, and Durvillaea antarctica, respectively, by microwave-assisted extraction. The effect of three significant variables (extraction time, extraction temperature, and the ratio of water to raw material on the process for extracting polysaccharides was investigated, along with the optimization of the extraction using the response surface method (RSM with a Box–Behnken design. The polysaccharide structure, monosaccharide composition, degree of sulfation, and molecular weight (MW distribution were analyzed by infrared (IR spectrometry, gas chromatography (GC, and high-performance gel permeation chromatography (HPGPC. IR spectrometry showed that Sarcodia ceylonensis polysaccharide (SCP, Ulva lactuca L. polysaccharide (ULLP, and Durvillaea antarctica polysaccharide (DAP were all sulfated polysaccharides and, except Gracilaria lemaneiformis polysaccharide (GLP, all belong to β-pyranosidic polysaccharides. The average molecular weight (MW of SCP, ULLP, GLP, and DAP was 466, 404, 591, and 482 kDa, respectively. The quantitative and comparative results with external standards indicated that the main monosaccharide in SCP and ULLP was mannose; and GLP and DAP were mainly composed of galactose and glucose, respectively. Then the in vitro antioxidant activity of all of the polysaccharides was evaluated using different assays—2,2–azino –bis (3-ethylbenzthiazoline-6- sulfonate (ABTS, hydroxyl radical, nitrite scavenging capacity, and reducing power—and the relationship between their antioxidant activity and chemical characteristics were also examined. ULLP presented the highest ABTS radical scavenging activity; ULLP, SCP and DAP also showed a strong effect on the ABTS radical scavenging activity. SCP and ULLP exhibited excellent hydroxyl radical scavenging activities, about 83.33% ± 2.31% and 80.07% ± 2.17%, respectively, at 4 mg/mL. The

  5. Potential of polymeric particles as future vaccine delivery systems/adjuvants for parenteral and non-parenteral immunization against tuberculosis: A systematic review

    Directory of Open Access Journals (Sweden)

    Farzad Khademi

    2018-02-01

    Full Text Available Objective(s: Production of effective tuberculosis (TB vaccine is necessity. However, the development of new subunit vaccines is faced with concerns about their weak immunogenicity. To overcome such problems, polymers-based vaccine delivery systems have been proposed to be used via various routes. The purpose of this study was to determine the potential of polymeric particles as future vaccine delivery systems/adjuvants for parenteral and non-parenteral immunization against TB. Materials and Methods: PubMed, Scopus, Science-Direct, and the ISI web of knowledge databases were searched for related keywords. A total of 420 articles, written up to June 25, 2016, were collected on the potential of polymeric particles as TB vaccine delivery systems after parenteral and non-parenteral immunization. Thirty-one relevant articles were selected by applying inclusion and exclusion criteria. Results: It was shown that the immunogenicity of TB vaccines had been improved by using biodegradable and non-biodegradable synthetic polymers as well as natural polymers and they are better able to enhance the humoral and cellular immune responses, compared to TB vaccines alone. The present study revealed that various polymeric particles, after M. tuberculosis challenge in animal models, provide long-lasting protection against TB. PLGA (poly (lactide-co-glycolide and chitosan polymers were widely used as TB vaccine delivery systems/adjuvants. Conclusion: It seems that PLGA and chitosan polymers are well-suited particles for the parenteral and non-parenteral administration of TB vaccines, respectively. Non-biodegradable synthetic polymers in comparison with biodegradable synthetic and natural polymers have been used less frequently. Therefore, further study on this category of polymers is required.

  6. FINAL TECHNICAL REPORT Synthetic, Structural and Mechanistic Investigations of Olefin Polymerization Catalyzed by Early Transition Metal Compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bercaw, John E. [California Institute of Technology

    2014-05-23

    The goal of this project is to develop new catalysts and provide understanding of ligand effects on catalyst composition in order to guide development of superior catalyst systems for polymerization of olefins. Our group is designing and synthesizing new “LX2”,“pincer” type ligands and complexing early transition metals to afford precatalysts. In a collaboration with Hans Brintzinger from the University of Konstanz, we are also examining the structures of the components of catalyst systems obtained from reaction of zirconocene dichlorides with aluminum alkyls and aluminum hydrides. Such systems are currently used commercially to produce polyolefins, but the nature of the active and dormant species as well as the mechanisms of their interconversions are not understood. New information on catalyst design and performance may lead to new types of polymers and/or new chemical transformations between hydrocarbons and transition metal centers, ultimately contributing to the development of catalytic reactions for the production of fuels, commodity and polymeric materials.

  7. Size resolved airborne particulate polysaccharides in summer high Arctic

    Science.gov (United States)

    Leck, C.; Gao, Q.; Mashayekhy Rad, F.; Nilsson, U.

    2013-04-01

    Size-resolved aerosol samples for subsequent determination of polysaccharides (monosaccharides in combined form) were collected in air over the central Arctic Ocean during the biologically most active period between the late summer melt season and into the transition to autumn freeze-up. The analysis was carried out using liquid chromatography coupled with highly selective and sensitive tandem mass spectrometry. Polysaccharides were detected in all sizes ranging from 0.035 to 10 μm in diameter with distinct features of heteropolysaccharides, enriched in xylose, glucose + mannose as well as a substantial fraction of deoxysugars. Polysaccharides containing deoxysugars showed a bimodal structure with about 60% of their mass found in the Aitken mode over the pack ice area. Pentose (xylose) and hexose (glucose + mannose) showed a weaker bimodal character and were largely found in the coarse mode in addition to a minor fraction apportioned in the sub-micrometer size range. The concentration of total hydrolysable neutral sugars (THNS) in the samples collected varied over 3 orders of magnitude (1 to 692 pmol m-3) in the super-micrometer size fraction and to a lesser extent in sub-micrometer particles (4 to 88 pmol m-3). Lowest THNS concentrations were observed in air masses that had spent more than 5 days over the pack ice. Within the pack ice area, about 53% (by mass) of the total mass of polysaccharides were found in sub-micrometer particles. The relative abundance of sub-micrometer polysaccharides was closely related to the length of time that the air mass spent over pack ice, with highest fraction (> 90%) observed for > 7 days of advection. The ambient aerosol particles collected onboard ship showed similar monosaccharide composition, compared to particles generated experimentally in situ at the open lead site. This supports the existence of a primary source of particulate polysaccharides from open leads by bubble bursting at the air-sea interface. We speculate that

  8. [Monosaccharide composition analysis and its content determination of polysaccharides from Rhaponticum uniforum].

    Science.gov (United States)

    Li, Fa-Sheng; Xu, Heng-Gui; Yan, Xiao-Mei; Li, Ming-Yang; Liu, Hui

    2008-06-01

    To analyze the monosaccharide composition in the polysaccharides from Rhaponticum uniforum, determine the content of monosaccharide, and provide some references for further research. The monosaccharide composition was determined by high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). Phenol-sulfuric acid method was used for the determination of the content of polysaccharide. The monosaccharides composition in polysaccharides from R. uniforum are glucose, arabonose and fructose. Their molar ratios are 1 : 1.61 : 2.21. The content of polysaccharide is 95.78%, taking the mixture of monosaccharide compositions as reference substances. HPAEC-PAD can be used to analyze the monosaccharide composition in the polysaccharide with high precision, and the method of phenol-sulfuric acid is simple, convenient and reliable.

  9. Synthetic approaches to uniform polymers.

    Science.gov (United States)

    Ali, Monzur; Brocchini, Steve

    2006-12-30

    Uniform polymers are characterised by a narrow molecular weight distribution (MWD). Uniformity is also defined by chemical structure in respect of (1) monomer orientation, sequence and stereo-regularity, (2) polymer shape and morphology and (3) chemical functionality. The function of natural polymers such as polypeptides and polynucleotides is related to their conformational structure (e.g. folded tertiary structure). This is only possible because of their high degree of uniformity. While completely uniform synthetic polymers are rare, polymers with broad structure and MWD are widely used in medicine and the biomedical sciences. They are integral components in final dosage forms, drug delivery systems (DDS) and in implantable devices. Increasingly uniform polymers are being used to develop more complex medicines (e.g. delivery of biopharmaceuticals, enhanced formulations or DDS's for existing actives). In addition to the function imparted by any new polymer it will be required to meet stringent specifications in terms of cost containment, scalability, biocompatibility and performance. Synthetic polymers with therapeutic activity are also being developed to exploit their polyvalent properties, which is not possible with low molecular weight molecules. There is need to utilise uniform polymers for applications where the polymer may interact with the systemic circulation, tissues or cellular environment. There are also potential applications (e.g. stimuli responsive coatings) where uniform polymers may be used for their more defined property profile. While it is not yet practical to prepare synthetic polymers to the same high degree of uniformity as proteins, nature also effectively utilises many polymers with lower degrees of uniformity (e.g. polysaccharides, poly(amino acids), polyhydroxyalkanoates). In recent years it has become possible to prepare with practical experimental protocols sufficient quantities of polymers that display many aspects of uniformity. This

  10. Application of gamma irradiation for the enhanced physiological properties of polysaccharides from seaweeds

    International Nuclear Information System (INIS)

    Choi, Jong-il; Kim, Hyun-Joo; Kim, Jae-Hun; Byun, Myung-Woo; Soo Chun, Byeong; Hyun Ahn, Dong; Hwang, Young-Jeong; Kim, Duk-Jin; Kim, Gwang Hoon; Lee, Ju-Woon

    2009-01-01

    Polysaccharides from seaweeds, fucoidan and laminarin, were irradiated with gamma rays, and their structural changes and anti-oxidative activities were investigated. The gamma irradiation decreased the average molecular weights of polysaccharides, and UV spectra of irradiated polysaccharides showed increases in the numbers of carboxyl and carbonyl groups and double bonds. DPPH radical scavenging ability and reducing power of the gamma irradiated polysaccharides were significantly higher than those non-irradiated.

  11. Radiation chemistry of polymeric system

    International Nuclear Information System (INIS)

    Machi, Sueo; Ishigaki, Isao

    1978-01-01

    Among wide application of radiation in the field of polymer chemistry, practices of polymerization, graft polymerization, bridging, etc. are introduced hereinafter. As for the radiation sources of radiation polymerization, in addition to the 60 Co-γ ray with long permeation distance which has been usually applied, electron beam accelerators with high energy, large current and high reliability have come to be produced, and the liquid phase polymerization by electron beam has attracted attention industrially. Concerning polymerizing reactions, explanations were given to electron beam polymerization under high dose rate, the polymerization in supercooling state or under high pressure, and emulsifying polymerization. As for radiation bridging, radiation is applied for the bridging of hydrogel, acceleration of bridging and improvement of radiation resistance. It is also utilized for reforming membranes by graft polymerization, and synthesis of polymers for medical use. Application of fixed enzymes in the medical field has been investigated by fixing various enzymes by low temperature γ-ray polymerization with glassy monomers such as HEMA. (Kobatake, H.)

  12. Impact of synthetic or real urban wastewater on membrane bioreactor (MBR) performances and membrane fouling under stable conditions.

    Science.gov (United States)

    Villain, Maud; Bourven, Isabelle; Guibaud, Gilles; Marrot, Benoît

    2014-03-01

    Influence of substrate type (synthetic (SWW) or real wastewater (RWW)) on lab scale MBR performances (e.g. COD and N-NH4(+) removal rates and bioactivities) was assessed. Membrane fouling was related to MBR biological medium characteristics. With RWW, autotrophic biomass was better acclimated with complete ammonium removal. MBR biological medium was characterized by main soluble microbial products (SMP) (proteins, polysaccharides and humic-like substances) quantification and molecular weights (MW) distribution determination. The biological medium of SWW acclimation contained 60mgL(-1) more of SMP, mainly composed of proteins and polysaccharides. A protein fraction having high MW (>600kDa) could be responsible for higher removable fouling fraction in that case. SMP of RWW experiment were mainly composed of small proteic and humic-like fractions, poorly retained by the membrane and resulting in a weak augmentation of irremovable and irreversible fouling fractions compared to SWW acclimation. Therefore RWW utilization is preferable to approach real operating MBR. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Chemical Composition and Antioxidant Activities of Three Polysaccharide Fractions from Pine Cones

    Directory of Open Access Journals (Sweden)

    Pu Wang

    2012-11-01

    Full Text Available The traditional method of gas chromatography-mass spectrometry for monosaccharide component analysis with pretreatment of acetylation is described with slight modifications and verified in detail in this paper. It was then successfully applied to the quantitative analysis of component monosaccharides in polysaccharides extracted from the pine cones. The results demonstrated that the three pine cone polysaccharides all consisted of ribose, rhamnose, arabinose, xylose, mannose, glucose and galactose in different molar ratios. According to the recovery experiment, the described method was proved accurate and practical for the analysis of pine cone polysaccharides, meeting the need in the field of chemical analysis of Pinus plants. Furthermore; the chemical characteristics, such as neutral sugar, uronic acids, amino acids, molecular weights, and antioxidant activities of the polysaccharides were investigated by chemical and instrumental methods. The results showed that the chemical compositions of the polysaccharides differed from each other, especially in the content of neutral sugar and uronic acid. In the antioxidant assays, the polysaccharide fractions exhibited effective scavenging activities on ABTS radical and hydroxyl radical, with their antioxidant capabilities decreasing in the order of PKP > PAP > PSP. Therefore, although the polysaccharide fractions had little effect on superoxide radical scavenging, they still have potential to be developed as natural antioxidant agents in functional foods or medicine.

  14. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities.

    Science.gov (United States)

    Ferreira, Isabel C F R; Heleno, Sandrina A; Reis, Filipa S; Stojkovic, Dejan; Queiroz, Maria João R P; Vasconcelos, M Helena; Sokovic, Marina

    2015-06-01

    Ganoderma genus comprises one of the most commonly studied species worldwide, Ganoderma lucidum. However, other Ganoderma species have been also reported as important sources of bioactive compounds. Polysaccharides are important contributors to the medicinal properties reported for Ganoderma species, as demonstrated by the numerous publications, including reviews, on this matter. Yet, what are the chemical features of Ganoderma polysaccharides that have bioactivity? In the present manuscript, the chemical features of Ganoderma polysaccharides with reported antioxidant, antitumor and antimicrobial activities (the most studied worldwide) are analyzed in detail. The composition of sugars (homo- versus hetero-glucans and other polysaccharides), type of glycosidic linkages, branching patterns, and linkage to proteins are discussed. Methods for extraction, isolation and identification are evaluated and, finally, the bioactivity of polysaccharidic extracts and purified compounds are discussed. The integration of data allows deduction of structure-activity relationships and gives clues to the chemical aspects involved in Ganoderma bioactivity. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Identification of interstellar polysaccharides and related hydrocarbons

    International Nuclear Information System (INIS)

    Hoyle, F.; Olavesen, A.H.; Wickramasinghe, N.C.

    1978-01-01

    A discussion is presented on the infrared transmittance spectra of several polysaccharides that may be of interest as possible interstellar candidates. It is stated that a 2.5 to 15 μm spectrum computed from the author's measurements is remarkably close to that required to explain a wide range of astronomical data, except for two points. First the required relative opacity at the 3 μm absorption dip is a factor of about 1.5 lower than was found in laboratory measurements; this difference may arise from the presence of water in terrestrial polysaccharide samples. Secondly, in the 9.5 to 12 μm waveband an additional source of opacity appears to be necessary. Close agreement between the spectrum of this additional opacity and the absorption spectrum of propene, C 3 H 6 , points strongly to the presence of hydrocarbons of this type, which may be associated with polysaccharide grains in interstellar space. (U.K.)

  16. Neisseria meningitidis serogroup A capsular polysaccharide acetyltransferase, methods and compositions

    Energy Technology Data Exchange (ETDEWEB)

    Stephens, David S [Stone Mountain, GA; Gudlavalleti, Seshu K [Kensington, MD; Tzeng, Yih-Ling [Atlanta, GA; Datta, Anup K [San Diego, CA; Carlson, Russell W [Athens, GA

    2011-02-08

    Provided are methods for recombinant production of an O-acetyltransferase and methods for acetylating capsular polysaccharides, especially those of a Serogroup A Neisseria meningitidis using the recombinant O-acetyltransferase, and immunogenic compositions comprising the acetylated capsular polysaccharide.

  17. Competitive adsorption of heavy metal by extracellular polymeric substances (EPS) extracted from sulfate reducing bacteria.

    Science.gov (United States)

    Wang, Jin; Li, Qing; Li, Ming-Ming; Chen, Tian-Hu; Zhou, Yue-Fei; Yue, Zheng-Bo

    2014-07-01

    Competitive adsorption of heavy metals by extracellular polymeric substances (EPS) extracted from Desulfovibrio desulfuricans was investigated. Chemical analysis showed that different EPS compositions had different capacities for the adsorption of heavy metals which was investigated using Cu(2+) and Zn(2+). Batch adsorption tests indicated that EPS had a higher combined ability with Zn(2+) than Cu(2+). This was confirmed and explained by Fourier transform infrared (FTIR) and excitation-emission matrix (EEM) spectroscopy analysis. FTIR analysis showed that both polysaccharides and protein combined with Zn(2+) while only protein combined with Cu(2+). EEM spectra further revealed that tryptophan-like substances were the main compositions reacted with the heavy metals. Moreover, Zn(2+) had a higher fluorescence quenching ability than Cu(2+). Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Effect of atracylodes rhizome polysaccharide in rats with adenine-induced chronic renal failure.

    Science.gov (United States)

    Yang, C; Liu, C; Zhou, Q; Xie, Y C; Qiu, X M; Feng, X

    2015-01-01

    The aim of the study was to elucidate the therapeutic effects of Atracylodes rhizome polysaccharide on adenine-induced chronic renal failure in rats. Fifty male Sprague Dawley rats were selected and randomly divided in to 5 groups (n=10 rats per group): The normal control group, the chronic renal failure pathological control group, the dexamethasone treatment group and two Atracylodes rhizome polysaccharide treatment groups, treated with two different concentrations of the polysaccharide, the Atracylodes rhizome polysaccharide high group and the Atracylodes rhizome polysaccharide low group. All the rats, except those in the normal control group were fed adenine-enriched diets, containing 10 g adenine per kg food for 3 weeks. After being fed with adenine, the dexamethasone treatment group, Atracylodes rhizome polysaccharide high group and Atracylodes rhizome polysaccharide low group rats were administered the drug orally for 2 weeks. On day 35, the kidney coefficient of the rats and the serum levels of creatinine, blood urea nitrogen, total protein and hemalbumin were determined. Subsequent to experimentation on a model of chronic renal failure in rats, the preparation was proven to be able to reduce serum levels of creatinine, blood urea nitrogen and hemalbumin levels (Prenal function. Atracylodes rhizome polysaccharide had reversed the majority of the indices of chronic renal failure in rats.

  19. Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations.

    Science.gov (United States)

    Gädt, Torben; Ieong, Nga Sze; Cambridge, Graeme; Winnik, Mitchell A; Manners, Ian

    2009-02-01

    Block copolymers consist of two or more chemically distinct polymer segments, or blocks, connected by a covalent link. In a selective solvent for one of the blocks, core-corona micelle structures are formed. We demonstrate that living polymerizations driven by the epitaxial crystallization of a core-forming metalloblock represent a synthetic tool that can be used to generate complex and hierarchical micelle architectures from diblock copolymers. The use of platelet micelles as initiators enables the formation of scarf-like architectures in which cylindrical micelle tassels of controlled length are grown from specific crystal faces. A similar process enables the fabrication of brushes of cylindrical micelles on a crystalline homopolymer substrate. Living polymerizations driven by heteroepitaxial growth can also be accomplished and are illustrated by the formation of tri- and pentablock and scarf architectures with cylinder-cylinder and platelet-cylinder connections, respectively, that involve different core-forming metalloblocks.

  20. Neutron is a marvelous probe to see the living things as it is alive. Real time and in-situ observation on living polymerization

    International Nuclear Information System (INIS)

    Koizumi, Satoshi

    2011-01-01

    Small-angle neutron scattering was employed in order to perform a real time and in-situ observation on a polymerization-induced self-assembly process in in-vivo or in-vitro systems; precise living anionic polymerization of poly-styrene-b-polyisoprene, pre-irradiation radical polymerization of polystyrene onto a polytetrafluoroethylene film, and microbial or enzymatic polymerization of cellulose. The aim of these studies is to clarify self-organizations of macro-molecular assemblies appeared in open non-equilibrium systems, which are exposed to external energy and mass flows induced by chemical reactions. The open non-equilibrium systems are believed to be important for understanding pattern formations not only in materials processing in industry but also in living things. Small-angle scattering observed for the systems was investigated according to the methods established for condensed matter physics (fractal and computational analyses), bridging with synthetic chemistry and molecular biology. (author)

  1. [Correlation analysis of major agronomic characters and the polysaccharide contents in Dendrobium officinale].

    Science.gov (United States)

    Zhang, Lei; Zheng, Xi-Long; Qiu, Dao-Shou; Cai, Shi-Ke; Luo, Huan-Ming; Deng, Rui-Yun; Liu, Xiao-Jin

    2013-10-01

    In order to provide theoretical and technological basis for the germplasm innovation and variety breeding in Dendrobium officinale, a study of the correlation between polysaccharide content and agronomic characters was conducted. Based on the polysaccharide content determination and the agronomic characters investigation of 30 copies (110 individual plants) of Dendrobium officinale germplasm resources, the correlation between polysaccharide content and agronomic characters was analyzed via path and correlation analysis. Correlation analysis results showed that there was a significant negative correlation between average spacing and polysaccharide content, the correlation coefficient was -0.695. And the blade thickness was positively correlated with the polysaccharide content, but the correlation was not significant. The path analysis results showed that the stem length was the maximum influence factor to the polysaccharide, and it was positive effect, the direct path coefficient was 1.568. According to thess results, the polysaccharide content can be easily and intuitively estimated by the agronomic characters investigating data in the germpalsm resources screening and variety breeding. Therefore, it is a visual and practical technology guidance in quality variety breeding of Dendrobium officinale.

  2. Mapping the polysaccharide degradation potential of Aspergillus niger

    DEFF Research Database (Denmark)

    Andersen, Mikael Rørdam; Giese, Malene; de Vries, Ronald P.

    2012-01-01

    Background: The degradation of plant materials by enzymes is an industry of increasing importance. For sustainable production of second generation biofuels and other products of industrial biotechnology, efficient degradation of non-edible plant polysaccharides such as hemicellulose is required....... For each type of hemicellulose, a complex mixture of enzymes is required for complete conversion to fermentable monosaccharides. In plant-biomass degrading fungi, these enzymes are regulated and released by complex regulatory structures. In this study, we present a methodology for evaluating the potential...... of a given fungus for polysaccharide degradation. Results: Through the compilation of information from 203 articles, we have systematized knowledge on the structure and degradation of 16 major types of plant polysaccharides to form a graphical overview. As a case example, we have combined this with a list...

  3. Screening of polysaccharides from tamarind, fenugreek and jackfruit seeds as pharmaceutical excipients.

    Science.gov (United States)

    Nayak, Amit Kumar; Pal, Dilipkumar; Santra, Kousik

    2015-08-01

    The paper describes the isolation and screening of plant polysaccharides namely tamarind seed polysaccharide (TSP), fenugreek seed mucilage (FSM) and jackfruit seed starch (JFSS) from tamarind (Tamarindus indica L.) seeds, fenugreek (Trigonella foenum-graecum L.) seeds and jackfruit (Artocarpus heterophyllus L.) seeds, respectively. The yields of isolated dried TSP, FSM and JFSS were 47.00%, 17.36% and 18.86%, respectively. Various physicochemical properties like colour, odour, taste, solubility in water, pH and viscosity of these isolated plant polysaccharides were assessed. Isolated polysaccharide samples were subjected to some phytochemical identification tests. FTIR and (1)H NMR analyses of isolated polysaccharides were performed, which suggest the presence of sugar residues. Isolated TSP, FSM and JFSS can be used as pharmaceutical excipients in various pharmaceutical formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Synthesis of Hydroxyapatite Nanoparticles in Presence of a Linear Polysaccharide

    Directory of Open Access Journals (Sweden)

    Humberto A. Monreal Romero

    2013-01-01

    Full Text Available Hydroxyapatite nanoparticles compounds were synthesized. Natural hydroxyapatite and a linear polysaccharide (1–3 linked   β-D galactopyranose and 1,4 linked 3,6 anhydro-α-L-galactopyranose were used as a precursor in its formation. Our purpose was to produce nanoparticles in the presence of a linear polysaccharide with the use of a gelification method. The powder sample was evaluated by scanning tunneling microscope (STM, Brunauer-Emmett-Teller (BET analysis, X-ray diffraction pattern (XRD, differential thermal analysis (DTA, infrared (IR analysis, and thermal gravimetric analysis (TGA. According to the results, it was found that these nanoparticles can successfully be synthesized using a polysaccharide in a solution. On the other hand, the XRD peak intensity corresponds to hydroxyapatite structure in the range of temperature of 810°C. The influence of the polysaccharide on the evolution of the nanoparticles has been demonstrated. This observation opens up new routes for the fabrication of nanoparticles using polysaccharides network. The synthesized nanoparticles have diameters ranging from 10 nm to 11 nm approximately. The elaboration conditions such as pH and concentration were optimized in this solution.

  5. Extraction, purification and elicitor activities of polysaccharides from Chrysanthemum indicum.

    Science.gov (United States)

    Du, Ningning; Tian, Wei; Zheng, Dongfang; Zhang, Xinyi; Qin, Pinyan

    2016-01-01

    Polysaccharides isolated from Chrysanthemum indicum were studied for their pathogen-derived resistance against Sclerotium rolfsii sacc in Atractylodis maceocephalae koidz. The total sugar content and monosaccharide analysis were determined by phenol-sulfuric acid method and gas chromatography, and infrared spectroscopy performed for simple structure information. The activities of CAT and POD as protective enzymes in A. maceocephalae leaves were evaluated. The purified polysaccharides exhibited strong CAT and POD activities in inoculated with S. rolfsii in A. macrocephala leaves, attained the maximum value 568.3 Ug(-1)min(-1) and 604.4 Ug(-1)min(-1)respectively. Whereas, when compared with the control plants, 20mg/ml purified polysaccharides exhibited the strongest CAT and POD activities. Notably, the treatments of A. macepcephalae seedlings with C. indicum polysaccharides (CIP) decreased disease index development caused by S. rolfsii. The disease index after 10 days was significantly reduced when the seedlings treated with 20mg/ml CIP, 4.41 compared to the control plants 32.00. Given together, these results indicated that purified polysaccharides derived from C. indicum may be useful as a natural inducer. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Design and construction of "synthetic species".

    Directory of Open Access Journals (Sweden)

    Eduardo Moreno

    Full Text Available Synthetic biology is an area of biological research that combines science and engineering. Here, I merge the principles of synthetic biology and regulatory evolution to create a new species with a minimal set of known elements. Using preexisting transgenes and recessive mutations of Drosophila melanogaster, a transgenic population arises with small eyes and a different venation pattern that fulfils the criteria of a new species according to Mayr's Biological Species Concept. The population described here is the first transgenic organism that cannot hybridize with the original wild type population but remains fertile when crossed with other identical transgenic animals. I therefore propose the term "synthetic species" to distinguish it from "natural species", not only because it has been created by genetic manipulation, but also because it may never be able to survive outside the laboratory environment. The use of genetic engineering to design artificial species barriers could help us understand natural speciation and may have practical applications. For instance, the transition from transgenic organisms towards synthetic species could constitute a safety mechanism to avoid the hybridization of genetically modified animals with wild type populations, preserving biodiversity.

  7. Maca polysaccharides: Extraction optimization, structural features and anti-fatigue activities.

    Science.gov (United States)

    Li, Yujuan; Xin, Yizhou; Xu, Fangxue; Zheng, Mengmeng; Xi, Xiaozhi; Cui, Xiaowei; Cao, Hui; Guo, Hong; Han, Chunchao

    2018-08-01

    The maca polysaccharides optimal extraction conditions were obtained by using response surface methodology (RSM) method and the anti-fatigue activity of maca polysaccharides (MCP) was explored. The maca polysaccharides extract yield of RSM could reach 9.97 mg/g by using the model predicts, and the total sugar and protein purity were 61.00% and 4.46% with the further isolation process, respectively. And the monosaccharide compositions obtained by gas chromatograph (GC) were composed of rhamnose (rha), glucose (glc), galactose (gal) with the ratio of 2.34:10.21:1.00. Furthermore, the anti-fatigue activity was evaluated by the swimming parameter, biochemistry parameters (liver glycogen (LG), blood urea nitrogen (BUN), and lactic acid (LD)), the result indicated that the low-dose maca polysaccharides group had the significant anti-fatigue activity. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Ultrasonic extraction, antioxidant and anticancer activities of novel polysaccharides from Chuanxiong rhizome.

    Science.gov (United States)

    Hu, Jie; Jia, Xuejing; Fang, Xiaobin; Li, Peng; He, Chengwei; Chen, Meiwan

    2016-04-01

    Ultrasonic-assisted extraction technology was employed to prepare Ligusticum chuanxiong Hort polysaccharide. Single factor test and orthogonal experimental design were used to optimize the extraction conditions. The results showed that the optimal extraction conditions consisted of ultrasonic temperature of 80°C, ultrasonic time of 40 min and water to raw material ratio of 30 mL/g. Three novel polysaccharides fractions, LCX0, LCX1 and LCX2, were isolated and purified from the crude polysaccharides using DEAE-52 cellulose and Sephadex G-100 column chromatography. The molecular weight and monosaccharide composition of three LCX polysaccharides fractions were analyzed with gel permeation chromatography (GPC) and HPLC analysis, respectively. Furthermore, the antioxidant and in vitro anticancer activities of the polysaccharides were investigated. Compared with LCX0, LCX2 and LCX1 showed relative higher antioxidant activity and inhibitory activity to the growth of HepG2, SMMC7721, A549 and HCT-116 cells. It is suggested that the novel polysaccharides from rhizome of L. chuanxiong could be promising bioactive macromolecules for biomedical use. Copyright © 2016. Published by Elsevier B.V.

  9. Natural and synthetic polymers for wounds and burns dressing.

    Science.gov (United States)

    Mogoşanu, George Dan; Grumezescu, Alexandru Mihai

    2014-03-25

    In the last years, health care professionals faced with an increasing number of patients suffering from wounds and burns difficult to treat and heal. During the wound healing process, the dressing protects the injury and contributes to the recovery of dermal and epidermal tissues. Because their biocompatibility, biodegradability and similarity to macromolecules recognized by the human body, some natural polymers such as polysaccharides (alginates, chitin, chitosan, heparin, chondroitin), proteoglycans and proteins (collagen, gelatin, fibrin, keratin, silk fibroin, eggshell membrane) are extensively used in wounds and burns management. Obtained by electrospinning technique, some synthetic polymers like biomimetic extracellular matrix micro/nanoscale fibers based on polyglycolic acid, polylactic acid, polyacrylic acid, poly-ɛ-caprolactone, polyvinylpyrrolidone, polyvinyl alcohol, polyethylene glycol, exhibit in vivo and in vitro wound healing properties and enhance re-epithelialization. They provide an optimal microenvironment for cell proliferation, migration and differentiation, due to their biocompatibility, biodegradability, peculiar structure and good mechanical properties. Thus, synthetic polymers are used also in regenerative medicine for cartilage, bone, vascular, nerve and ligament repair and restoration. Biocompatible with fibroblasts and keratinocytes, tissue engineered skin is indicated for regeneration and remodeling of human epidermis and wound healing improving the treatment of severe skin defects or partial-thickness burn injuries. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Salt Effect on the Antioxidant Activity of Red Microalgal Sulfated Polysaccharides in Soy-Bean Formula.

    Science.gov (United States)

    Burg, Ariela; Oshrat, Levy-Ontman

    2015-10-20

    Sulfated polysaccharides produced by microalgae, which are known to exhibit various biological activities, may potentially serve as natural antioxidant sources. To date, only a few studies have examined the antioxidant bioactivity of red microalgal polysaccharides. In this research, the effect of different salts on the antioxidant activities of two red microalgal sulfated polysaccharides derived from Porphyridium sp. and Porphyridium aerugineum were studied in a soy bean-based infant milk formula. Salt composition and concentration were both shown to affect the polysaccharides' antioxidant activity. It can be postulated that the salt ions intefer with the polysaccharide chains' interactions and alter their structure, leading to a new three-dimensional structure that better exposes antiooxidant sites in comparison to the polysaccharide without salt supplement. Among the cations that were studied, Ca(2+) had the strongest enhancement effect on antioxidant activities of both polysaccharides. Understanding the effect of salts on polysaccharides' stucture, in addition to furthering knowledge on polysaccharide bioactivities, may also shed light on the position of the antioxidant active sites.

  11. Fabrication of luminescent hydroxyapatite nanorods through surface-initiated RAFT polymerization: Characterization, biological imaging and drug delivery applications

    Energy Technology Data Exchange (ETDEWEB)

    Heng, Chunning [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Zheng, Xiaoyan [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Liu, Meiying; Xu, Dazhuang; Huang, Hongye; Deng, Fengjie [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Hui, Junfeng, E-mail: huijunfeng@126.com [Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R& D Center of Biomaterials and Fermentation Engineering, School of Chemical and Engineering, Northwest University, Xi’an, 710069 (China); Zhang, Xiaoyong, E-mail: xiaoyongzhang1980@gmail.com [Department of Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang 330031 (China); Wei, Yen, E-mail: weiyen@tsinghua.edu.cn [Department of Chemistry and the Tsinghua Center for Frontier Polymer Research, Tsinghua University, Beijing, 100084 (China)

    2016-11-15

    Highlights: • Hydrophobic hydroxyapatite nanorods were obtained from hydrothermal synthesis. • Surface initiated RAFT polymerization was adopted to surface modification of hydroxyapatite nanorods. • These modified hydroxyapatite nanorods showed high water dispersibility and biocompatibility. • These modified hydroxyapatite nanorods can be used for controlled drug delivery. - Abstract: Hydroxyapatite nanomaterials as an important class of nanomaterials, have been widely applied for different biomedical applications for their excellent biocompatibility, biodegradation potential and low cost. In this work, hydroxyapatite nanorods with uniform size and morphology were prepared through hydrothermal synthesis. The surfaces of these hydroxyapatite nanorods are covered with hydrophobic oleic acid, making them poor dispersibility in aqueous solution and difficult for biomedical applications. To overcome this issue, a simple surface initiated polymerization strategy has been developed via combination of the surface ligand exchange and reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyapatite nanorods were first modified with Riboflavin-5-phosphate sodium (RPSSD) via ligand exchange reaction between the phosphate group of RPSSD and oleic acid. Then hydroxyl group of nHAp-RPSSD was used to immobilize chain transfer agent, which was used as the initiator for surface-initiated RAFT polymerization. The nHAp-RPSSD-poly(IA-PEGMA) nanocomposites were characterized by means of {sup 1}H nuclear magnetic resonance, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal gravimetric analysis in detailed. The biocompatibility, biological imaging and drug delivery of nHAp-RPSSD-poly(IA-PEGMA) were also investigated. Results showed that nHAp-RPSSD-poly(IA-PEGMA) exhibited excellent water dispersibility, desirable optical properties, good biocompatibility and high drug loading capability, making them promising candidates for

  12. Fabrication of luminescent hydroxyapatite nanorods through surface-initiated RAFT polymerization: Characterization, biological imaging and drug delivery applications

    International Nuclear Information System (INIS)

    Heng, Chunning; Zheng, Xiaoyan; Liu, Meiying; Xu, Dazhuang; Huang, Hongye; Deng, Fengjie; Hui, Junfeng; Zhang, Xiaoyong; Wei, Yen

    2016-01-01

    Highlights: • Hydrophobic hydroxyapatite nanorods were obtained from hydrothermal synthesis. • Surface initiated RAFT polymerization was adopted to surface modification of hydroxyapatite nanorods. • These modified hydroxyapatite nanorods showed high water dispersibility and biocompatibility. • These modified hydroxyapatite nanorods can be used for controlled drug delivery. - Abstract: Hydroxyapatite nanomaterials as an important class of nanomaterials, have been widely applied for different biomedical applications for their excellent biocompatibility, biodegradation potential and low cost. In this work, hydroxyapatite nanorods with uniform size and morphology were prepared through hydrothermal synthesis. The surfaces of these hydroxyapatite nanorods are covered with hydrophobic oleic acid, making them poor dispersibility in aqueous solution and difficult for biomedical applications. To overcome this issue, a simple surface initiated polymerization strategy has been developed via combination of the surface ligand exchange and reversible addition fragmentation chain transfer (RAFT) polymerization. Hydroxyapatite nanorods were first modified with Riboflavin-5-phosphate sodium (RPSSD) via ligand exchange reaction between the phosphate group of RPSSD and oleic acid. Then hydroxyl group of nHAp-RPSSD was used to immobilize chain transfer agent, which was used as the initiator for surface-initiated RAFT polymerization. The nHAp-RPSSD-poly(IA-PEGMA) nanocomposites were characterized by means of "1H nuclear magnetic resonance, Fourier transform infrared spectroscopy, fluorescence spectroscopy and thermal gravimetric analysis in detailed. The biocompatibility, biological imaging and drug delivery of nHAp-RPSSD-poly(IA-PEGMA) were also investigated. Results showed that nHAp-RPSSD-poly(IA-PEGMA) exhibited excellent water dispersibility, desirable optical properties, good biocompatibility and high drug loading capability, making them promising candidates for biological

  13. Atomic force microscopy analysis of synthetic membranes applied in release studies

    Energy Technology Data Exchange (ETDEWEB)

    Olejnik, Anna, E-mail: annamar@amu.edu.pl; Nowak, Izabela

    2015-11-15

    Graphical abstract: - Highlights: • We compare eight synthetic membranes by atomic force microscopy. • We predict the behavior of membranes in the release experiments. • The polymeric synthetic membranes varied in shape and size. • We detect substructures in pores of cellulose esters and nylon membranes. • Substructures limit the release rate of active compound. - Abstract: Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  14. Atomic force microscopy analysis of synthetic membranes applied in release studies

    International Nuclear Information System (INIS)

    Olejnik, Anna; Nowak, Izabela

    2015-01-01

    Graphical abstract: - Highlights: • We compare eight synthetic membranes by atomic force microscopy. • We predict the behavior of membranes in the release experiments. • The polymeric synthetic membranes varied in shape and size. • We detect substructures in pores of cellulose esters and nylon membranes. • Substructures limit the release rate of active compound. - Abstract: Synthetic membranes are commonly used in drug release studies and are applied mostly in quality control. They contain pores through which the drug can be diffused directly into the receptor fluid. Investigation of synthetic membranes permits determination of their structure and characterization of their properties. We suggest that the preliminary characterization of the membranes can be relevant to the interpretation of the release results. The aim of this study was to compare eight synthetic membranes by using atomic force microscopy in order to predict and understand their behavior in the release experiments. The results proved that polytetrafluoroethylene membrane was not suitable for the release study of tetrapeptide due to its hydrophobic nature, thickness and the specific structure with high trapezoid shaped blocks. The additional substructures in pores of mixed cellulose esters and nylon membranes detected by AFM influenced the diffusion rate of the active compound. These findings indicate that the selection of the membrane for the release studies should be performed cautiously by taking into consideration the membrane properties and by analyzing them prior the experiment.

  15. BISRU: Synthetic Microbes for Moon, Mars and Beyond

    Science.gov (United States)

    Cumbers, J.; Rothchild, L.

    2010-04-01

    Synthetic biology and genomics will bring a new range of designer organisms into being and give us new tools for the manipulation and control of these organisms. BISRU or biological in situ resource utilization is the use of such genetically modified organisms in space.

  16. Twin screw extruders as polymerization reactors for a free radical homo polymerization

    NARCIS (Netherlands)

    Ganzeveld, K.J.; Janssen, L.P.B.M.

    The bulk polymerization of n-butylmethacrylate was investigated in a counter-rotating twin screw extruder. It appeared that the gel effect, occurring with bulk polymerizations, affected the polymerization progress very strongly. Due to this effect the conversion of the reaction is independent of the

  17. Iodophilic polysaccharide synthesis, acid production and growth in oral streptococci

    NARCIS (Netherlands)

    Houte, J. van; Winkler, K.C.; Jansen, H.M.

    The relation between iodophilic polysaccharide formation, acid production and growth in α-haemolytic streptococci, isolated from human dental plaque, was studied. In experiments with resting cell suspensions, or with cells growing at a low rate, all strains synthesizing iodophilic polysaccharide

  18. Synchronous long-term oscillations in a synthetic gene circuit.

    Science.gov (United States)

    Potvin-Trottier, Laurent; Lord, Nathan D; Vinnicombe, Glenn; Paulsson, Johan

    2016-10-27

    Synthetically engineered genetic circuits can perform a wide variety of tasks but are generally less accurate than natural systems. Here we revisit the first synthetic genetic oscillator, the repressilator, and modify it using principles from stochastic chemistry in single cells. Specifically, we sought to reduce error propagation and information losses, not by adding control loops, but by simply removing existing features. We show that this modification created highly regular and robust oscillations. Furthermore, some streamlined circuits kept 14 generation periods over a range of growth conditions and kept phase for hundreds of generations in single cells, allowing cells in flasks and colonies to oscillate synchronously without any coupling between them. Our results suggest that even the simplest synthetic genetic networks can achieve a precision that rivals natural systems, and emphasize the importance of noise analyses for circuit design in synthetic biology.

  19. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch

    International Nuclear Information System (INIS)

    Say, R.; Şenay, R. Hilal; Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz; Akgöl, Sinan; Denizli, Adil

    2013-01-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. K m values were 0.26 and 0.87 mM and V max values were 0.36 IU mg −1 and 22.32 IU mg −1 for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70–80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst. - Highlights: ► Developing to prepare nanoprotein particles carrying α-amylase ► Characterization of nanostructured α-amylase ► Usability of α-amylase nanoparticles in hydrolysis of starch

  20. Polymeric amylase nanoparticles as a new semi-synthetic enzyme system for hydrolysis of starch

    Energy Technology Data Exchange (ETDEWEB)

    Say, R. [Anadolu University, Faculty of Science, Chemistry Department, Yunus Emre Campus, Eskişehir (Turkey); Şenay, R. Hilal [Ege University, Faculty of Science, Biochemistry Department, 35100 Bornova-Izmir (Turkey); Biçen, Özlem; Ersöz, Arzu; Şişman Yılmaz, Filiz [Anadolu University, Faculty of Science, Chemistry Department, Yunus Emre Campus, Eskişehir (Turkey); Akgöl, Sinan, E-mail: sinanakgol@yahoo.co.uk [Ege University, Faculty of Science, Biochemistry Department, 35100 Bornova-Izmir (Turkey); Denizli, Adil [Hacettepe University, Faculty of Science, Chemistry Department, 06532 Ankara (Turkey)

    2013-05-01

    α-Amylase (EC 3.2.1.1; α-D-1,4,glucan glucanohydrolase) catalyzes the hydrolysis of α-D-(1,4)-glucosidic linkages in starch, glycogen, and various malto-oligosaccharides, by releasing α-anomeric products. In this study, a novel method has been developed to prepare nanoprotein particles that carry α-amylase as a monomer by using a photosensitive microemulsion polymerization process. The nanostructured α-amylase with photosensitive features have been characterized by fluorescence spectroscopy, transmission electron microscopy (TEM) and Zeta Sizer. The fluorescence intensity of amylase nanoparticles was determined to be 658 a.u. at 610 nm and the average particle size of nanoamylase was found to be about 71.8 nm. Both free α-amylase and nanoparticles were used in the hydrolysis of starch under varying reaction conditions such as pH and temperature that affect enzyme activity and the results were compared to each other. K{sub m} values were 0.26 and 0.87 mM and V{sub max} values were 0.36 IU mg{sup −1} and 22.32 IU mg{sup −1} for nanoenzyme and free enzyme, respectively. Then, thermal stability, storage stability and reusability were investigated and according to the results, activity was preserved 60% at 60 °C; 20% at 70–80 °C temperature values and 80% after 105 days storage. Finally after 10 cycles, the activity was preserved 90% and this novel enzymatic polymeric amylase nanoparticle has showed considerable potential as reusable catalyst. - Highlights: ► Developing to prepare nanoprotein particles carrying α-amylase ► Characterization of nanostructured α-amylase ► Usability of α-amylase nanoparticles in hydrolysis of starch.

  1. Optimization and control of a continuous polymerization reactor

    Directory of Open Access Journals (Sweden)

    L. A. Alvarez

    2012-12-01

    Full Text Available This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO, the Model Predictive Control (MPC and a Target Calculation (TC that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized.

  2. Study of sodium clay modification through polyaniline polymerization

    International Nuclear Information System (INIS)

    Saade, Wesley; Pinto, Camila P.; Becker, Daniela; Dalmolin, Carla

    2015-01-01

    The synthesis of hybrids nanocomposites, such as polyaniline/montmorillonite (Pani/MMT), combines the processability and electrical conductivity of this polymer with the mechanical properties of a ceramic material bringing a multitude of new possibilities for use in high-tech, consumer and industry. With this in mind, we sought to characterize and modify sodium clay through polymerization of polyaniline. The characterization was carried out by X-ray diffraction, infrared spectroscopy by Fourier transformed (FTIR) and spectroscopy by impedance. Through the XRD analysis, it could be inferred that there was a interplanar displacement from 12,4Å (pure sodium montmorillonite) to 15,6Å due to the cation exchange of Na + ions by the anilinium ions, allowing the polymerization interspersed with Pani MMT platelets. By FTIR analysis, presences of the characteristic functional groups of both compounds are detected in the synthesized nanocomposite. Through conductivity and impedance tests it is concluded that the addition of polyaniline decreases the resistive behavior of clay and the electrical conduction becomes possible. (author)

  3. Improvement of reinforced concrete properties based on modified starch/polybutadiene nanocomposites.

    Science.gov (United States)

    Saboktakin, Amin; Saboktakin, Mohammad Reza

    2014-09-01

    A novel polymer-modified cement concrete with carboxymethyl starch (CMS) and 1,4-cis polybutadiene (PBD) system by mixing polymer dispersions or redispersible polymer powders with the fresh mixture have been examined. In this paper, the addition of CMS-PBD powders in an aqueous solution is studied. Polymeric molecules are supplied on a molecular scale, improving the approach of the relatively large cement grains by the polymers. The chemical and mechanical properties of CMS-PBD-modified cement concrete have been studied. The additions of very small amounts of CMS-PBD polymeric system results in an improvement of the durability and the adhesion strength of the cementitious materials, which makes them appropriate as repair materials. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Mechanocatalytic polymerization and cross-linking in a polymeric matrix

    NARCIS (Netherlands)

    Jakobs, R.T.M.; Ma, Shuang; Sijbesma, R.P.

    2013-01-01

    A latent olefin metathesis catalyst, bearing two polymeric NHC ligands, was embedded in a semicrystalline polymer matrix containing cyclic olefins. The catalyst was activated by straining the solid material under compression, resulting in polymerization and cross-linking reactions of the monomers in

  5. Research work of radiation induced graft polymerization for synthesis and modification of polymer materials in CRICI

    Energy Technology Data Exchange (ETDEWEB)

    Hu Fumin; Ma Xueming [Chenguan Research Institute of Chemical Industry, Chengdu (China)

    2000-03-01

    The direct and post radiation induced graft polymerization had been studied in CRICI (Chenguan Research Institute of Chemical Industry). The method consists of irradiation of various polymer substrates in the presence (or absence) of monomers in a liquid, saturated vapour or gaseous and non-saturated vapour. 1. Grafting of functional monomers. --- It is possible to divide the grafting into two main approaches for synthesis of functional polymer materials. The first is grafting of monomers attached required functional group such as unsaturated carboxylic acid (acrylic and methacrylic acid), unsaturated nitrogen containing (alkali) base (vinylpyridine), monomers with hydrophilic unionized and polar groups (acrylamide, N-vinylpyrrolidone glycidylmethacrylate) and so on. The second is grafting of monomers capable of continuing chemical modification after graft polymerization. This approach essentially expands synthetic possibility of RGP for preparing functional polymers. 2. The effect of some salts on aqueous solution graft polymerization. The grafting of AA or AAm onto PE by direct or post radiation method in the presence of Mohr's salt or cupric nitrate was studied in detail. 3. Radiation induced graft polymerization by gaseous phase of monomers. This method consists of irradiation or preirradiation of various polymer substrates in the presence (or absence for preirradiation) of monomer in a gaseous of nonsaturated vapour state. (J.P.N.)

  6. Research work of radiation induced graft polymerization for synthesis and modification of polymer materials in CRICI

    International Nuclear Information System (INIS)

    Hu Fumin; Ma Xueming

    2000-01-01

    The direct and post radiation induced graft polymerization had been studied in CRICI (Chenguan Research Institute of Chemical Industry). The method consists of irradiation of various polymer substrates in the presence (or absence) of monomers in a liquid, saturated vapour or gaseous and non-saturated vapour. 1. Grafting of functional monomers. --- It is possible to divide the grafting into two main approaches for synthesis of functional polymer materials. The first is grafting of monomers attached required functional group such as unsaturated carboxylic acid (acrylic and methacrylic acid), unsaturated nitrogen containing (alkali) base (vinylpyridine), monomers with hydrophilic unionized and polar groups (acrylamide, N-vinylpyrrolidone glycidylmethacrylate) and so on. The second is grafting of monomers capable of continuing chemical modification after graft polymerization. This approach essentially expands synthetic possibility of RGP for preparing functional polymers. 2. The effect of some salts on aqueous solution graft polymerization. The grafting of AA or AAm onto PE by direct or post radiation method in the presence of Mohr's salt or cupric nitrate was studied in detail. 3. Radiation induced graft polymerization by gaseous phase of monomers. This method consists of irradiation or preirradiation of various polymer substrates in the presence (or absence for preirradiation) of monomer in a gaseous of nonsaturated vapour state. (J.P.N.)

  7. Composition and antioxidant activities of four polysaccharides extracted from Herba Lophatheri.

    Science.gov (United States)

    Ge, Qing; Mao, Jian-wei; Guo, Xiao-qing; Zhou, Yi-feng; Gong, Jing-yan; Mao, Shuang-rong

    2013-09-01

    Four polysaccharides (BLF80-A, BLF80-B, BLF80-C and BLF80-D) were isolated by hot-water extraction and purified from the leaves of Herba Lophatheri by DEAE-Sepharose fast flow. Their chemical and physical characteristics were determined and antioxidant activities were investigated on the basis of DPPH radical assay, hydroxyl radical assay and superoxide radical assay. The results showed that four polysaccharides exhibited antioxidant activities in a concentration-dependent manner, and the higher molecular weight, the stronger antioxidant activities of polysaccharides. Besides, the monosaccharide compositions of polysaccharides also influence their antioxidant activities. BLP80-D showed the strongest scavenging ability, followed by BLP80-C, BLP80-B and BLP80-A. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. [Correlation Between Functional Groups and Radical Scavenging Activities of Acidic Polysaccharides from Dendrobium].

    Science.gov (United States)

    Liao, Ying; Yuan, Wen-yu; Zheng, Wen-ke; Luo, Ao-xue; Fan, Yi-jun

    2015-11-01

    To compare the radical scavenging activity of five different acidic polysaccharides, and to find the correlation with the functional groups. Alkali extraction method and Stepwise ethanol precipitation method were used to extract and concentrate the five Dendrobium polysaccharides, and to determine the contents of sulfuric acid and uronic acid of each kind of acidic polysaccharides, and the scavenging activity to ABTS+ radical and hydroxyl radical. Functional group structures were examined by FTIR Spectrometer. Five kinds of Dendrobium polysaccharides had different ability of scavenging ABTS+ free radical and hydroxyl free radical. Moreover, the study had shown that five kinds of antioxidant activity of acidic polysaccharides had obvious correlation withuronic acid and sulfuric acid. The antioxidant activity of each sample was positively correlated with the content of uronic acid, and negatively correlated with the content of sulfuric acid. Sulfuric acid can inhibit the antioxidant activity of acidic polysaccharide but uronic acid can enhance the free radical scavenging activity. By analyzing the structure characteristics of five acidic polysaccharides, all samples have similar structures, however, Dendrobium denneanum, Dendrobium devonianum and Dendrobium officinale which had β configuration have higher antioxidant activity than Dendrobium nobile and Dendrobium fimbriatum which had a configuration.

  9. Carrageenan: a natural seaweed polysaccharide and its applications.

    Science.gov (United States)

    Prajapati, Vipul D; Maheriya, Pankaj M; Jani, Girish K; Solanki, Himanshu K

    2014-05-25

    Polysaccharides have been gaining interesting and valuable applications in the food and pharmaceutical fields. As they are derived from the natural source, they are easily available, non-toxic, cheap, biodegradable and biocompatible. Carrageenan is one among them, which fulfills the criteria of polysaccharide; it is a natural carbohydrate (polysaccharide) obtained from edible red seaweeds. The name Carrageenan is derived from the Chondrus crispus species of seaweed (Rhodophyceace) known as Carrageen Moss or Irish Moss, and Carraigin. A demand based on its application has been widely increasing in food and pharmaceutical sectors. Carrageenan has gained wide applications in experimental medicine, pharmaceutical formulations, cosmetics, and food industries. Through keen references of the reported literature on carrageenan, in this review, we have described about carrageenan, its properties, extraction and refining, and its food and pharmaceutical applications. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Analyses of Aloe polysaccharides using carbohydrate microarray profiling

    DEFF Research Database (Denmark)

    Isager Ahl, Louise; Grace, Olwen M; Pedersen, Henriette Lodberg

    2018-01-01

    As the popularity of Aloe vera extracts continues to rise, a desire to fully understand the individual polymer components of the leaf mesophyll, their relation to one another and the effects they have on the human body are increasing. Polysaccharides present in the leaf mesophyll have been...... identified as the components responsible for the biological activities of Aloe vera, and they have been widely studied in the past decades. However, the commonly used methods do not provide the desired platform to conduct large comparative studies of polysaccharide compositions as most of them require...... a complete or near-complete fractionation of the polymers. The objective for this study was to assess whether carbohydrate microarrays could be used for the high-throughput analysis of cell wall polysaccharides in Aloe leaf mesophyll. The method we chose is known as Comprehensive Microarray Polymer Profiling...

  11. Two- and Three-Component Visible Light Photoinitiating Systems for Radical Polymerization Based on Onium Salts: An Overview of Mechanistic and Laser Flash Photolysis Studies

    Directory of Open Access Journals (Sweden)

    María L. Gómez

    2012-01-01

    Full Text Available A review of our work on two- and-three component photoinitiator systems is presented. The emphasis is in on visible light polymerization in aqueous media. The systems discussed comprise a synthetic dye as sensitizer and an onium salt as coinitiator, or a dye-amine-onium salt with the amine as coinitiator and the onium salt as an enhancer of the polymerization efficiency. The effect of the composition of the system on the photopolymerization kinetics was analyzed. To this end, the photophysics and photochemistry of the dye under polymerization conditions was explored by means of stationary and time-resolved spectroscopic methods. Different dyes and onium salts were investigated. The action mechanism of the different photoinitiators systems is discussed.

  12. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth.

    Science.gov (United States)

    Naksuriya, Ornchuma; Shi, Yang; van Nostrum, Cornelus F; Anuchapreeda, Songyot; Hennink, Wim E; Okonogi, Siriporn

    2015-08-01

    Curcumin (CM) has been reported as a potential anticancer agent. However, its pharmaceutical applications as therapeutic agent are hampered because of its poor aqueous solubility. The present study explores the advantages of polymeric micelles composed of block copolymers of methoxypoly(ethylene glycol) (mPEG) and N-(2-hydroxypropyl) methacrylamide (HPMA) modified with monolactate, dilactate and benzoyl side groups to enhance CM solubility and inhibitory activity against cancer cells. Amphiphilic block copolymers, ω-methoxypoly(ethylene glycol)-b-(N-(2-benzoyloxypropyl) methacrylamide) (PEG-HPMA-Bz) were synthesized and characterized by (1)H NMR and GPC. One polymer with a molecular weight of 28,000Da was used to formulate CM and compared with other aromatic substituted polymers. CM was loaded by a fast heating method (PEG-HPMA-DL and PEG-HPMA-Bz-L) and a nanoprecipitation method (PEG-HPMA-Bz). Physicochemical characteristics and cytotoxicity/cytocompatibility of the CM loaded polymeric micelles were evaluated. It was found that HPMA-based polymeric micelles significantly enhanced the solubility of CM. The PEG-HPMA-Bz micelles showed the best solubilization properties. CM loaded polymeric micelles showed sustained release of the loading CM for more than 20days. All of CM loaded polymeric micelles formulations showed a significantly potent cytotoxic effect against three cancer cell lines. HPMA-based polymeric micelles are therefore promising nanodelivery systems of CM for cancer therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Ozone treatment of polysaccharides from Arthrocnemum indicum: Physico-chemical characterization and antiproliferative activity.

    Science.gov (United States)

    Mzoughi, Zeineb; Chakroun, Ibtissem; Hamida, Sarra Ben; Rihouey, Christophe; Mansour, Hedi Ben; Le Cerf, Didier; Majdoub, Hatem

    2017-12-01

    The isolation, purification and ozone depolymerization of polysaccharides from Arthrocnemum indicum as well as the evaluation of their antiproliferative capacities were investigated. The ozone treatment for various reaction times (0, 15, 30, 45 and 60min) was employed as degradation method in order to attain lower molecular weight product with stronger antiproliferative property. According to FTIR, 1 H NMR and UV-vis analysis, the main chain of ozonolytic degraded polysaccharides could be preserved. The monosaccharide composition, which was determined via GC/MS analysis, showed that extracted polysaccharides were of type of arabinan-rich pectic polysaccharides. Macromolecular characteristics as well as intrinsic viscosity of the degraded polysaccharides were performed by size exclusion chromatography before and after ozone treatment. These experiments showed that intrinsic viscosity and molecular weight (Mn and Mw) of degraded samples decreased with increase in reaction time. Furthermore, preliminary antiproliferative tests indicated that degraded polysaccharide for 1h showed even better antiproliferative capacity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Marine Polysaccharides: A Source of Bioactive Molecules for Cell Therapy and Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Anne-Marie Fischer

    2011-09-01

    Full Text Available The therapeutic potential of natural bioactive compounds such as polysaccharides, especially glycosaminoglycans, is now well documented, and this activity combined with natural biodiversity will allow the development of a new generation of therapeutics. Advances in our understanding of the biosynthesis, structure and function of complex glycans from mammalian origin have shown the crucial role of this class of molecules to modulate disease processes and the importance of a deeper knowledge of structure-activity relationships. Marine environment offers a tremendous biodiversity and original polysaccharides have been discovered presenting a great chemical diversity that is largely species specific. The study of the biological properties of the polysaccharides from marine eukaryotes and marine prokaryotes revealed that the polysaccharides from the marine environment could provide a valid alternative to traditional polysaccharides such as glycosaminoglycans. Marine polysaccharides present a real potential for natural product drug discovery and for the delivery of new marine derived products for therapeutic applications.

  15. In vitro biocompatibility of plasma-aided surface-modified 316L stainless steel for intracoronary stents

    International Nuclear Information System (INIS)

    Bayram, Cem; Denkbas, Emir Baki; Mizrak, Alpay Koray; Aktuerk, Selcuk; Kursaklioglu, Hurkan; Iyisoy, Atila; Ifran, Ahmet

    2010-01-01

    316L-type stainless steel is a raw material mostly used for manufacturing metallic coronary stents. The purpose of this study was to examine the chemical, wettability, cytotoxic and haemocompatibility properties of 316L stainless steel stents which were modified by plasma polymerization. Six different polymeric compounds, polyethylene glycol, 2-hydroxyethyl methacrylate, ethylenediamine, acrylic acid, hexamethyldisilane and hexamethyldisiloxane, were used in a radio frequency glow discharge plasma polymerization system. As a model antiproliferative drug, mitomycin-C was chosen for covalent coupling onto the stent surface. Modified SS 316L stents were characterized by water contact angle measurements (goniometer) and x-ray photoelectron spectroscopy. C1s binding energies showed a good correlation with the literature. Haemocompatibility tests of coated SS 316L stents showed significant latency (t-test, p < 0.05) with respect to SS 316L and control groups in each test.

  16. ISOLATION AND CHARACTERIZATION OF SOLUBLE POLYSACCHARIDES FROM CALAMAGROSTIS ANGUSTIFOLIA KOM

    Directory of Open Access Journals (Sweden)

    Xue-Fei Cao

    2011-06-01

    Full Text Available Sequential treatments of dewaxed Calamagrostis angustifolia Kom with water (60 ºC and 90 ºC, 70% ethanol, and 70% ethanol containing 0.2%, 1.0%, 2.0%, 4.0%, and 8.0% NaOH at a solid to liquid ratio of 1:25 (g/mL at 80 ºC for 3 h yielded 36.2% soluble polysaccharides of the dry dewaxed material. The eight polysaccharide fractions obtained were comparatively studied by sugar analysis, GPC, FT-IR, 1H and 13C-NMR, and 2D-NMR (HSQC spectroscopy. The results showed that the water-soluble polysaccharides might contain noticeable amounts of β-D-glucan, as well as some pectic substances and galactoarabinoxylan. 70% ethanol-soluble polysaccharide was mainly arabinogalactan. The five alkali-soluble hemicelluloses were mainly galactoarabinoxylans. The Ara/Xyl and Ara/Gal values of H5-H8 fractions decreased with the increment of NaOH concentration from 1.0% to 8.0%. Meanwhile, the molecular weights had a declining trend from ~60,000 to ~40,000 g/mol. The smaller sized and more branched polysaccharides tended to be extracted in the early stages under milder conditions, and the larger molecular sized and more linear hemicelluloses tended to be isolated under more highly alkaline conditions.

  17. Influence of zeolite nanofillers on properties of polymeric materials

    OpenAIRE

    Kopcová, M.; Ondrušová, D.; Krmela, J.; Průša, P.; Pajtášová, M.; Jankurová, Z.

    2012-01-01

    The present work deals with the preparation and study of modified polymeric materials with the replacement of carbon black by nanofillers on the basis of zeolite that is environmentally friendly. Natural zeolites from a group of aluminosilicate nanoporous materials have wide range of possibilities for applications that are environmentally friendly. Zeolites can be used in the role of fillers into the polymer materials too [1]. The given work deals with the preparation and study of modif...

  18. The Synthesis of Carborane-Oxetane Monomers and their Polymerization

    Science.gov (United States)

    1988-07-11

    polyether glycol was liter demonstrated.’ During this time, " modified cationic polymerization technique was developef’, which allowed the synthesis of...Migration of these chemicals in the propellant grain is a continuous and serious problem. We proposed that a urethane curable polyether glycol with a...Br CH3 g 3 Cl CH3 This scheme has the advantage that the leaving group is not on the oxetane. Oxetane is a neopentyl type system which is typically

  19. Chelating polymeric membranes

    KAUST Repository

    Peinemann, Klaus-Viktor; Villalobos Vazquez de la Parra, Luis Francisco; Hilke, Roland

    2015-01-01

    microporous chelating polymeric membrane. Embodiments include, but are not limited to, microporous chelating polymeric membranes, device comprising the membranes, and methods of using and making the same.

  20. Nuclear Magnetic Resonance: new applications in the quantification and assessment of polysaccharide-based vaccine intermediates

    International Nuclear Information System (INIS)

    Garrido, Raine; Velez, Herman; Verez, Vicente

    2013-01-01

    Nuclear Magnetic Resonance has become the choice for structural studies, identity assays and simultaneous quantification of active pharmaceutical ingredient of different polysaccharide-based vaccine. In the last two decades, the application of quantitative Nuclear Magnetic Resonance had an increasing impact to support several quantification necessities. The technique involves experiments with several modified parameters in order to obtain spectra with quantifiable signals. The present review is supported by some recent relevant reports and it discusses several applications of NMR in carbohydrate-based vaccines. Moreover, it emphasizes and describes several parameters and applications of quantitative Nuclear Magnetic Resonance